WorldWideScience

Sample records for macrophage depletion increased

  1. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury.

    Science.gov (United States)

    Zhu, Y; Soderblom, C; Krishnan, V; Ashbaugh, J; Bethea, J R; Lee, J K

    2015-02-01

    Spinal cord injury (SCI) leads to formation of a fibrotic scar that is inhibitory to axon regeneration. Recent evidence indicates that the fibrotic scar is formed by perivascular fibroblasts, but the mechanism by which they are recruited to the injury site is unknown. Using bone marrow transplantation in mouse model of spinal cord injury, we show that fibroblasts in the fibrotic scar are associated with hematogenous macrophages rather than microglia, which are limited to the surrounding astroglial scar. Depletion of hematogenous macrophages results in reduced fibroblast density and basal lamina formation that is associated with increased axonal growth in the fibrotic scar. Cytokine gene expression analysis after macrophage depletion indicates that decreased Tnfsf8, Tnfsf13 (tumor necrosis factor superfamily members) and increased BMP1-7 (bone morphogenetic proteins) expression may serve as anti-fibrotic mechanisms. Our study demonstrates that hematogenous macrophages are necessary for fibrotic scar formation and macrophage depletion results in changes in multiple cytokines that make the injury site less fibrotic and more conducive to axonal growth.

  2. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice

    NARCIS (Netherlands)

    van Amerongen, Machteld J.; Harmsen, Martin C.; van Rooijen, Nico; Petersen, Arjen H.; van Luyn, Marja J. A.

    2007-01-01

    Macrophages have been suggested to be beneficial for myocardial wound healing. We investigated the role of macrophages in myocardial wound healing by inhibition of macrophage infiltration after myocardial injury. We used a murine cryoinjury model to induce left ventricular damage. Infiltrating macro

  3. Neonatal Pulmonary Macrophage Depletion Coupled to Defective Mucus Clearance Increases Susceptibility to Pneumonia and Alters Pulmonary Immune Responses.

    Science.gov (United States)

    Saini, Yogesh; Wilkinson, Kristen J; Terrell, Kristy A; Burns, Kimberlie A; Livraghi-Butrico, Alessandra; Doerschuk, Claire M; O'Neal, Wanda K; Boucher, Richard C

    2016-02-01

    Resident immune cells (e.g., macrophages [MΦs]) and airway mucus clearance both contribute to a healthy lung environment. To investigate interactions between pulmonary MΦ function and defective mucus clearance, a genetic model of lysozyme M (LysM) promoter-mediated MΦ depletion was generated, characterized, and crossed with the sodium channel β subunit transgenic (Scnn1b-Tg) mouse model of defective mucus clearance. Diphtheria toxin A-mediated depletion of LysM(+) pulmonary MΦs in wild-type mice with normal mucus clearance resulted in lethal pneumonia in 24% of neonates. The pneumonias were dominated by Pasteurella pneumotropica and accompanied by emaciation, neutrophilic inflammation, and elevated Th1 cytokines. The incidence of emaciation and pneumonia reached 51% when LysM(+) MΦ depletion was superimposed on the airway mucus clearance defect of Scnn1b-Tg mice. In LysM(+) MΦ-depleted Scnn1b-Tg mice, pneumonias were associated with a broader spectrum of bacterial species and a significant reduction in airway mucus plugging. Bacterial burden (CFUs) was comparable between Scnn1b-Tg and nonpneumonic LysM(+) MΦ-depleted Scnn1b-Tg mice. However, the nonpneumonic LysM(+) MΦ-depleted Scnn1b-Tg mice exhibited increased airway inflammation, the presence of neutrophilic infiltration, and increased levels of inflammatory cytokines in bronchoalveolar lavage fluid compared with Scnn1b-Tg mice. Collectively, these data identify key MΦ-mucus clearance interactions with respect to both infectious and inflammatory components of muco-obstructive lung disease.

  4. Macrophage depletion disrupts immune balance and energy homeostasis.

    Science.gov (United States)

    Lee, Bonggi; Qiao, Liping; Kinney, Brice; Feng, Gen-Sheng; Shao, Jianhua

    2014-01-01

    Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT) receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE) infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF) which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions.

  5. Macrophage depletion disrupts immune balance and energy homeostasis.

    Directory of Open Access Journals (Sweden)

    Bonggi Lee

    Full Text Available Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions.

  6. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    Science.gov (United States)

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines.

  7. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production

    Science.gov (United States)

    Velmurugan, Gopal V.; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K.; Beaman, Kenneth D.; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2017-01-01

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca2+ influx through the store-operated Ca2+ entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. PMID:26671149

  8. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  9. Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress.

    Science.gov (United States)

    Xiao, Weihua; Liu, Yu; Chen, Peijie

    2016-12-01

    Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.

  10. Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control

    NARCIS (Netherlands)

    Fink, K.; Ng, C.; Nkenfou, C.; Vasudevan, S.G.; Rooijen, van N.; Schul, W.

    2009-01-01

    Monocytes and macrophages are target cells for dengue infection. Besides their potential role for virus replication, activated monocytes/macrophages produce cytokines that may be critical for dengue pathology. To study the in vivo role of monocytes and macrophages for virus replication, we depleted

  11. Ego depletion increases risk-taking.

    Science.gov (United States)

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings.

  12. Systemic and Cardiac Depletion of M2 Macrophage through CSF-1R Signaling Inhibition Alters Cardiac Function Post Myocardial Infarction.

    Science.gov (United States)

    Leblond, Anne-Laure; Klinkert, Kerstin; Martin, Kenneth; Turner, Elizebeth C; Kumar, Arun H; Browne, Tara; Caplice, Noel M

    2015-01-01

    The heart hosts tissue resident macrophages which are capable of modulating cardiac inflammation and function by multiple mechanisms. At present, the consequences of phenotypic diversity in macrophages in the heart are incompletely understood. The contribution of cardiac M2-polarized macrophages to the resolution of inflammation and repair response following myocardial infarction remains to be fully defined. In this study, the role of M2 macrophages was investigated utilising a specific CSF-1 receptor signalling inhibition strategy to achieve their depletion. In mice, oral administration of GW2580, a CSF-1R kinase inhibitor, induced significant decreases in Gr1lo and F4/80hi monocyte populations in the circulation and the spleen. GW2580 administration also induced a significant depletion of M2 macrophages in the heart after 1 week treatment as well as a reduction of cardiac arginase1 and CD206 gene expression indicative of M2 macrophage activity. In a murine myocardial infarction model, reduced M2 macrophage content was associated with increased M1-related gene expression (IL-6 and IL-1β), and decreased M2-related gene expression (Arginase1 and CD206) in the heart of GW2580-treated animals versus vehicle-treated controls. M2 depletion was also associated with a loss in left ventricular contractile function, infarct enlargement, decreased collagen staining and increased inflammatory cell infiltration into the infarct zone, specifically neutrophils and M1 macrophages. Taken together, these data indicate that CSF-1R signalling is critical for maintaining cardiac tissue resident M2-polarized macrophage population, which is required for the resolution of inflammation post myocardial infarction and, in turn, for preservation of ventricular function.

  13. Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea.

    Directory of Open Access Journals (Sweden)

    Mark E Warchol

    Full Text Available Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.

  14. Depletion of spleen macrophages delays AA amyloid development: a study performed in the rapid mouse model of AA amyloidosis.

    Directory of Open Access Journals (Sweden)

    Katarzyna Lundmark

    Full Text Available AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM, marginal zone macrophages (MZM, metallophilic marginal zone macrophages (MMZM. MMZM and MZM are located in the marginal zone and express a unique collection of scavenger receptors that are involved in the uptake of blood-born particles. The murine AA amyloid model that resembles the human form of the disease has been used to study amyloid effects on different macrophage populations. Amyloid was induced by intravenous injection of amyloid enhancing factor and subcutaneous injections of silver nitrate and macrophages were identified with specific antibodies. We show that MZMs are highly sensitive to amyloid and decrease in number progressively with increasing amyloid load. Total area of MMZMs is unaffected by amyloid but cells are activated and migrate into the white pulp. In a group of mice spleen macrophages were depleted by an intravenous injection of clodronate filled liposomes. Subsequent injections of AEF and silver nitrate showed a sustained amyloid development. RPMs that constitute the majority of macrophages in spleen, appear insensitive to amyloid and do not participate in amyloid formation.

  15. Macrophage depletion by clodronate liposome attenuates muscle injury and inflammation following exhaustive exercise

    Directory of Open Access Journals (Sweden)

    Noriaki Kawanishi

    2016-03-01

    Full Text Available Exhaustive exercise promotes muscle injury, including myofiber lesions; however, its exact mechanism has not yet been elucidated. In this study, we tested the hypothesis that macrophage depletion by pretreatment with clodronate liposomes alters muscle injury and inflammation following exhaustive exercise. Male C57BL/6J mice were divided into four groups: rest plus control liposome (n=8, rest plus clodronate liposome (n=8, exhaustive exercise plus control liposome (n=8, and exhaustive exercise plus clodronate liposome (n=8. Mice were treated with clodronate liposome or control liposome for 48 h before undergoing exhaustive exercise on a treadmill. Twenty-four hours after exhaustive exercise, the gastrocnemius muscles were removed for histological and PCR analyses. Exhaustive exercise increased the number of macrophages in the muscle; however, clodronate liposome treatment reduced this infiltration. Although exhaustive exercise resulted in an increase in injured myofibers, clodronate liposome treatment following exhaustive exercise reduced the injured myofibers. Clodronate liposome treatment also decreased the mRNA expression levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6 in the skeletal muscle after exhaustive exercise. These results suggest that macrophages play a critical role in increasing muscle injury by regulating inflammation.

  16. Depletion of alveolar macrophages in CD11c diphtheria toxin receptor mice produces an inflammatory response

    Science.gov (United States)

    Roberts, Lydia M; Ledvina, Hannah E; Tuladhar, Shraddha; Rana, Deepa; Steele, Shaun P; Sempowski, Gregory D; Frelinger, Jeffrey A

    2015-01-01

    Alveolar macrophages play a critical role in initiating the immune response to inhaled pathogens and have been shown to be the first cell type infected following intranasal inoculation with several pathogens, including Francisella tularensis. In an attempt to further dissect the role of alveolar macrophages in the immune response to Francisella, we selectively depleted alveolar macrophages using CD11c.DOG mice. CD11c.DOG mice express the diphtheria toxin receptor (DTR) under control of the full CD11c promoter. Because mice do not express DTR, tissue restricted expression of the primate DTR followed by treatment with diphtheria toxin (DT) has been widely used as a tool in immunology to examine the effect of acute depletion of a specific immune subset following normal development. We successfully depleted alveolar macrophages via intranasal administration of DT. However, alveolar macrophage depletion was accompanied by many other changes to the cellular composition and cytokine/chemokine milieu in the lung that potentially impact innate and adaptive immune responses. Importantly, we observed a transient influx of neutrophils in the lung and spleen. Our experience serves as a cautionary note to other researchers using DTR mice given the complex changes that occur following DT treatment that must be taken into account when analyzing data. PMID:26029367

  17. Self-regulatory depletion increases emotional reactivity in the amygdala

    National Research Council Canada - National Science Library

    Wagner, Dylan D; Heatherton, Todd F

    2013-01-01

    ... attention control task that required effortful inhibition (depletion group) or not (control group). Compared to the control group, depleted participants showed increased activity in the left amygdala to negative but not to positive or neutral scenes...

  18. Minor effect of depletion of resident macrophages from peritoneal cavioty on resistance of common carp Cyprinus carpio to blood flagellates

    NARCIS (Netherlands)

    Saeij, J.P.J.; Groeneveld, A.; Rooijen, van N.; Haenen, O.L.M.; Wiegertjes, G.F.

    2003-01-01

    Carp Cyprinus carpio macrophages were depleted by intraperitoneal (i.p.) injection of clodronate-liposomes for the in vivo study of the effect of macrophage depletion on the resistance of carp to infection with blood flagellate parasites. Clodronate released inside the cell induces apoptosis of

  19. Minor effect of depletion of resident macrophages from peritoneal cavioty on resistance of common carp Cyprinus carpio to blood flagellates

    NARCIS (Netherlands)

    Saeij, J.P.J.; Groeneveld, A.; Rooijen, van N.; Haenen, O.L.M.; Wiegertjes, G.F.

    2003-01-01

    Carp Cyprinus carpio macrophages were depleted by intraperitoneal (i.p.) injection of clodronate-liposomes for the in vivo study of the effect of macrophage depletion on the resistance of carp to infection with blood flagellate parasites. Clodronate released inside the cell induces apoptosis of (mur

  20. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion.

    Science.gov (United States)

    Candela, Joseph; Wang, Rui; White, Carl

    2017-05-01

    The function of perivascular adipose tissue as an anticontractile mediator in the microvasculature is lost during obesity. Obesity results in inflammation and recruitment of proinflammatory macrophages to the perivascular adipose tissue that is paralleled by depletion of the vasorelaxant signaling molecule hydrogen sulfide (H2S) in the vessel. The current objective was to assess the role of macrophages in determining vascular [H2S] and defining how this impinged on vasodilation. Contractility and [H2S] were measured in mesenteric resistance arterioles from lean and obese mice by using pressure myography and confocal microscopy, respectively. Vasodilation was impaired and smooth muscle and endothelial [H2S] decreased in vessels from obese mice compared with those from lean controls. Coculturing vessels from lean mice with macrophages from obese mice, or macrophage-conditioned media, recapitulated obese phenotypes in vessels. These effects were mediated by low molecular weight species and dependent on macrophage inducible nitric oxide synthase activity. The inducible nitric oxide synthase activity of perivascular adipose tissue-resident proinflammatory macrophages promotes microvascular endothelial dysfunction by reducing the bioavailability of H2S in the vessel. These findings support a model in which vascular H2S depletion underpins the loss of perivascular adipose tissue anticontractile function in obesity. © 2017 American Heart Association, Inc.

  1. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  2. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters.

    Science.gov (United States)

    Hammerbeck, Christopher D; Brocato, Rebecca L; Bell, Todd M; Schellhase, Christopher W; Mraz, Steven R; Queen, Laurie A; Hooper, Jay W

    2016-07-15

    Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS. Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then challenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macrophages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1α and MIP-2 chemokine expression, and vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge. These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS. Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophylactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease pathogenesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syrian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the respiratory tract, alveolar macrophages are

  3. Herp depletion inhibits zearalenone-induced cell death in RAW 264.7 macrophages.

    Science.gov (United States)

    Chen, Fenglei; Lin, Pengfei; Wang, Nan; Yang, Diqi; Wen, Xin; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2016-04-01

    Herp is an endoplasmic reticulum (ER) membrane protein and strongly induced by the ER stress that not only participates in the unfolded protein response (UPR) under the ER stress, but also in cell autophagy under glucose starvation (GS). However, we do not know whether Herp plays any roles in other responses, such as zearalenone (ZEA). In this study, we constructed recombinant lentiviral vectors for Herp shRNA expression and generated stable Herp knockdown RAW 264.7 macrophages. Flow cytometry analysis showed Herp depletion could inhibit cell death induced by ZEA. Western blot analysis revealed that Herp depletion could up-regulate autophagy-related protein LC3-I conversion into LC3-II and the expression of ER stress-related protein CHOP. These results suggest that Herp depletion inhibits cell death by up-regulating autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats.

    NARCIS (Netherlands)

    Omer, A; Keegan, M; Czismadia, E; Vos, P De; Rooijen, van N.; Bonner-Weir, S; Weir, GC

    2003-01-01

    BACKGROUND: Macrophages can accumulate on the surface of empty and islet-containing alginate capsules, leading to loss of functional tissue. In this study, the effect of peritoneal macrophage depletion on the biocompatibility of alginate macrocapsules and function of macroencapsulated porcine neonat

  5. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats

    NARCIS (Netherlands)

    Omer, A; Keegan, M; Czismadia, E; De Vos, P; Van Rooijen, N; Bonner-Weir, S; Weir, GC

    2003-01-01

    Background: Macrophages can accumulate on the surface of empty and islet-containing alginate capsules, leading to loss of functional tissue. In this study, the effect of peritoneal macrophage depletion on the biocompatibility of alginate macrocapsules and function of macroencapsulated porcine neonat

  6. ACAT1 deficiency increases cholesterol synthesis in mouse peritoneal macrophages.

    Science.gov (United States)

    Dove, Dwayne E; Su, Yan Ru; Swift, Larry L; Linton, MacRae F; Fazio, Sergio

    2006-06-01

    Acyl-coenzyme A:cholesterol acyltransferase (ACAT) esterifies free cholesterol and stores cholesteryl esters in lipid droplets. Macrophage ACAT1 deficiency results in increased atherosclerotic lesion area in hyperlipidemic mice via disrupted cholesterol efflux, increased lipoprotein uptake, accumulation of intracellular vesicles, and accelerated apoptosis. The objective of this study was to determine whether lipid synthesis is affected by ACAT1. The synthesis, esterification, and efflux of new cholesterol were measured in peritoneal macrophages from ACAT1(-/-) mice. Cholesterol synthesis was increased by 134% (p=0.001) in ACAT1(-/-) macrophages compared to wildtype macrophages. Increased synthesis resulted in a proportional increase in the efflux of newly synthesized cholesterol. Although the esterification of new cholesterol was reduced by 93% (pSREBP1a mRNA was increased 6-fold in ACAT1(-/-) macrophages compared to wildtype macrophages, suggesting an up-regulation of cholesterol and fatty acid synthesis in ACAT1(-/-) macrophages. Increased cholesterol synthesis and up-regulation of SREBP in ACAT1(-/-) macrophages suggests that ACAT1 affects the regulation of lipid metabolism in macrophages. This change in cholesterol homeostasis may contribute to the atherogenic potential of ACAT1(-/-) macrophages.

  7. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression.

    Directory of Open Access Journals (Sweden)

    Katharina Galmbacher

    Full Text Available A tumor promoting role of macrophages has been described for a transgenic murine breast cancer model. In this model tumor-associated macrophages (TAMs represent a major component of the leukocytic infiltrate and are associated with tumor progression. Shigella flexneri is a bacterial pathogen known to specificly induce apotosis in macrophages. To evaluate whether Shigella-induced removal of macrophages may be sufficient for achieving tumor regression we have developed an attenuated strain of S. flexneri (M90TDeltaaroA and infected tumor bearing mice. Two mouse models were employed, xenotransplantation of a murine breast cancer cell line and spontanous breast cancer development in MMTV-HER2 transgenic mice. Quantitative analysis of bacterial tumor targeting demonstrated that attenuated, invasive Shigella flexneri primarily infected TAMs after systemic administration. A single i.v. injection of invasive M90TDeltaaroA resulted in caspase-1 dependent apoptosis of TAMs followed by a 74% reduction in tumors of transgenic MMTV-HER-2 mice 7 days post infection. TAM depletion was sustained and associated with complete tumor regression.These data support TAMs as useful targets for antitumor therapy and highlight attenuated bacterial pathogens as potential tools.

  8. Macrophage depletion lowers blood pressure and restores sympathetic nerve α2-adrenergic receptor function in mesenteric arteries of DOCA-salt hypertensive rats

    Science.gov (United States)

    Thang, Loc V.; Demel, Stacie L.; Crawford, Robert; Kaminski, Norbert E.; Swain, Greg M.; Van Rooijen, Nico

    2015-01-01

    We tested the hypothesis that vascular macrophage infiltration and O2− release impairs sympathetic nerve α2-adrenergic autoreceptor (α2AR) function in mesenteric arteries (MAs) of DOCA-salt hypertensive rats. Male rats were uninephrectomized or sham operated (sham). DOCA pellets were implanted subcutaneously in uninephrectomized rats who were provided high-salt drinking water or high-salt water with apocynin. Sham rats received tap water. Blood pressure was measured using radiotelemetry. Treatment of sham and DOCA-salt rats with liposome-encapsulated clodronate was used to deplete macrophages. After 3–5, 10–13, and 18–21 days of DOCA-salt treatment, MAs and peritoneal fluid were harvested from euthanized rats. Norepinephrine (NE) release from periarterial sympathetic nerves was measured in vitro using amperometry with microelectrodes. Macrophage infiltration into MAs as well as TNF-α and p22phox were measured using immunohistochemistry. Peritoneal macrophage activation was measured by flow cytometry. O2− was measured using dihydroethidium staining. Hypertension developed over 28 days, and apocynin reduced blood pressure on days 18–21. O2− and macrophage infiltration were greater in DOCA-salt MAs compared with sham MAs after day 10. Peritoneal macrophage activation occurred after day 10 in DOCA-salt rats. Macrophages expressing TNF-α and p22phox were localized near sympathetic nerves. Impaired α2AR function and increased NE release from sympathetic nerves occurred in MAs from DOCA-salt rats after day 18. Macrophage depletion reduced blood pressure and vascular O2− while restoring α2AR function in DOCA-salt rats. Macrophage infiltration into the vascular adventitia contributes to increased blood pressure in DOCA-salt rats by releasing O2−, which disrupts α2AR function, causing enhanced NE release from sympathetic nerves. PMID:26320034

  9. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    Science.gov (United States)

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  10. Self-regulatory depletion increases emotional reactivity in the amygdala.

    Science.gov (United States)

    Wagner, Dylan D; Heatherton, Todd F

    2013-04-01

    The ability to self-regulate can become impaired when people are required to engage in successive acts of effortful self-control, even when self-control occurs in different domains. Here, we used functional neuroimaging to test whether engaging in effortful inhibition in the cognitive domain would lead to putative dysfunction in the emotional domain. Forty-eight participants viewed images of emotional scenes during functional magnetic resonance imaging in two sessions that were separated by a challenging attention control task that required effortful inhibition (depletion group) or not (control group). Compared to the control group, depleted participants showed increased activity in the left amygdala to negative but not to positive or neutral scenes. Moreover, whereas the control group showed reduced amygdala activity to all scene types (i.e. habituation), the depletion group showed increased amygdala activity relative to their pre-depletion baseline; however this was only significant for negative scenes. Finally, depleted participants showed reduced functional connectivity between the left amygdala and ventromedial prefrontal cortex during negative scene processing. These findings demonstrate that consuming self-regulatory resources leads to an exaggerated neural response to emotional material that appears specific to negatively valenced stimuli and further suggests a failure to recruit top-down prefrontal regions involved in emotion regulation.

  11. Ozone depletion, related UVB changes and increased skin cancer incidence

    Science.gov (United States)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  12. Prolonged Ischemia Triggers Necrotic Depletion of Tissue-Resident Macrophages To Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury.

    Science.gov (United States)

    Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhai, Yuan

    2017-05-01

    Although mechanisms of immune activation against liver ischemia reperfusion (IR) injury (IRI) have been studied extensively, questions regarding liver-resident macrophages, that is, Kupffer cells (KCs), remain controversial. Recent progress in the biology of tissue-resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver-resident versus infiltrating macrophages by FACS and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages, but also necrotic depletion of KCs. Inhibition of receptor-interacting protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induced depletion, resulting in the reduction of macrophage infiltration, suppression of proinflammatory immune activation, and protection of livers from IRI. The depletion of KCs by clodronate liposomes abrogated the effect of necrostatin-1s. Additionally, liver reconstitutions with KCs postischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, that is, RIP1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Stratospheric ozone depletion from future nitrous oxide increases

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available We have investigated the impact of the assumed nitrous oxide (N2O increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM. In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001–2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2 increases can strongly offset the ozone depletion effect of N2O.

  14. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  15. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  16. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine.

    Science.gov (United States)

    Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P; Frye, Jeanetta W; Casero, Robert A; Wilson, Keith T

    2014-03-01

    The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. The overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production.

  17. In Vitro Immune Toxicity of Depleted Uranium: Effects on Murine Macrophages, CD4+ T Cells, and Gene Expression Profiles

    Science.gov (United States)

    Wan, Bin; Fleming, James T.; Schultz, Terry W.; Sayler, Gary S.

    2006-01-01

    Depleted uranium (DU) is a by-product of the uranium enrichment process and shares chemical properties with natural and enriched uranium. To investigate the toxic effects of environmental DU exposure on the immune system, we examined the influences of DU (in the form of uranyl nitrate) on viability and immune function as well as cytokine gene expression in murine peritoneal macrophages and splenic CD4+ T cells. Macrophages and CD4+ T cells were exposed to various concentrations of DU, and cell death via apoptosis and necrosis was analyzed using annexin-V/propidium iodide assay. DU cytotoxicity in both cell types was concentration dependent, with macrophage apoptosis and necrosis occurring within 24 hr at 100 μM DU exposure, whereas CD4+ T cells underwent cell death at 500 μM DU exposure. Noncytotoxic concentrations for macrophages and CD4+ T cells were determined as 50 and 100 μM, respectively. Lymphoproliferation analysis indicated that macrophage accessory cell function was altered with 200 μM DU after exposure times as short as 2 hr. Microarray and real-time reverse-transcriptase polymerase chain reaction analyses revealed that DU alters gene expression patterns in both cell types. The most differentially expressed genes were related to signal transduction, such as c-jun, NF-κ Bp65, neurotrophic factors (e.g., Mdk), chemokine and chemokine receptors (e.g., TECK/CCL25), and interleukins such as IL-10 and IL-5, indicating a possible involvement of DU in cancer development, autoimmune diseases, and T helper 2 polarization of T cells. The results are a first step in identifying molecular targets for the toxicity of DU and the elucidation of the molecular mechanisms for the immune modulation ability of DU. PMID:16393663

  18. Depletion of Alveolar Macrophages Does Not Prevent Hantavirus Disease Pathogenesis in Golden Syrian Hamsters

    Science.gov (United States)

    2016-05-20

    Antigens of Yellow Fever virus, which is transmitted by the bite of the Aedes aegypti 389 mosquito , can be found inside the rough endoplasmic...Smith MR, Standiford TJ, Reddy RC. 2007. PPARs in Alveolar Macrophage Biology . PPAR 631 research 2007:23812. 632 9. Kim HM, Lee YW, Lee KJ, Kim HS...American journal of respiratory cell and 729 molecular biology 51:502-515. 730 42. Kooguchi K, Hashimoto S, Kobayashi A, Kitamura Y, Kudoh I, Wiener

  19. Mycobacteria clumping increase their capacity to damage macrophages

    Directory of Open Access Journals (Sweden)

    Cecilia Brambilla

    2016-10-01

    Full Text Available The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps. Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of Mycobacterium abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least 5 rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 hours post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 hours post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 hours post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors.

  20. Mycobacteria Clumping Increase Their Capacity to Damage Macrophages

    Science.gov (United States)

    Brambilla, Cecilia; Llorens-Fons, Marta; Julián, Esther; Noguera-Ortega, Estela; Tomàs-Martínez, Cristina; Pérez-Trujillo, Miriam; Byrd, Thomas F.; Alcaide, Fernando; Luquin, Marina

    2016-01-01

    The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps). Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of M. abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least five rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 h post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 h post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 h post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors. PMID:27757105

  1. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models.

    Science.gov (United States)

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-12-01

    We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop 'molecularly targeted' combination strategies.

  2. Eicosanoid production by peritoneal and splenic macrophages in mice depleted of bone marrow by /sup 89/Sr

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y.; Bautista, A.P.; Pennington, S.N.; Humes, J.L.; Volkman, A.

    1987-04-01

    Previous studies showed that the prostaglandin-forming macrophages (M phi) induced in the spleens of CBA/J mice by intraperitoneal administration of Corynebacterium parvum (CP) could not be demonstrated following the depletion of bone marrow and blood monocytes with /sup 89/Sr. The present study compares prostaglandin E2 (PGE2), leukotriene C4 (LTC4), and LTB4 release by splenic and resident peritoneal M phi in /sup 89/Sr-treated mice and /sup 88/Sr controls following in vivo CP and in vitro incubation with zymosan, calcium ionophore A23187, or phorbol ester (PMA). Intraperitoneal administration of CP resulted in the appearance of PGE2- and LTB4-releasing M phi in the spleens of control but not /sup 89/Sr mice. The incorporation and quantitative distribution of 3H-arachidonic acid into membrane lipids, however, were comparable in test and control mice. Neither zymosan nor any of the other stimulatory agents was able to effect significant release of PGE2 in vitro. No release of LTC4 by splenic M phi was detectable under experimental or control conditions. In contrast, the capacity of resident peritoneal M phi to release PGE2, LTC4, and LTB4 was apparently unaffected by /sup 89/Sr-induced bone marrow and monocyte depletion with virtually no demonstrable elicitation. Resident peritoneal M phi removed after CP in such mice showed a dramatic decrease in PGE2 release when incubated in vitro with zymosan, A23187, or PMA. These results, taken with earlier findings, demonstrate characteristically different phenotypic expression of metabolism of certain eicosanoids by splenic M phi from the spleen and the peritoneal cavity and suggest in addition that the induction of PGE2-synthesizing M phi in the spleen by CP is dependent on either an immigrant cell originating in the bone marrow or a regulatory agent derived from a bone marrow cell.

  3. Ego depletion increases ad-lib alcohol consumption: investigating cognitive mediators and moderators.

    Science.gov (United States)

    Christiansen, Paul; Cole, Jon C; Field, Matt

    2012-04-01

    When self-control resources are depleted ("ego depletion"), alcohol-seeking behavior becomes closely associated with automatic alcohol-related processing biases (e.g., Ostafin, Marlatt, & Greenwald, 2008). The current study aimed to replicate and extend these findings, and also to investigate whether the effects of ego depletion on drinking behavior would be mediated by temporary impairments in executive function or increases in impulsivity. Eighty heavy social drinkers (46 female) initially completed measures of automatic approach tendencies (stimulus response compatibility [SRC] task) and attentional bias (visual probe task) elicited by alcohol-related cues. Participants were then exposed to either an ego depletion manipulation or a control manipulation, before completing a bogus taste test in order to assess ad-lib alcohol consumption. In a subsequent testing session, we examined effects of the ego depletion manipulation (vs. control manipulation) on 3 aspects of executive function (inhibitory control, phonemic fluency, and delay discounting). Results indicated that the ego depletion manipulation increased ad-lib drinking, relative to the control manipulation. Automatic approach tendencies, but not attentional bias, predicted ad-lib drinking, although this effect was not moderated by ego depletion. Ego depletion had inconsistent effects on measures of executive function and impulsivity, and none of these measures mediated the effect of ego depletion on ad-lib drinking. However, the effect of ego depletion on ad-lib drinking was mediated by self-reported effort in suppressing emotion and thoughts during the manipulation. Implications for the effects of self-control strength on drinking behavior, and cognitive mediators of these effects, are discussed.

  4. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue.

    Directory of Open Access Journals (Sweden)

    Christina Camell

    Full Text Available Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding increases adipose tissue (AT leukocytes and alters the inflammatory profile of AT macrophages. We have seen that short term high fat feeding to C57BL/6J male mice increases palmitic and oleic acid within AT depots, but oleic acid increase is highest in the mesenteric AT (MAT. In vitro, oleic acid increases M2 macrophage markers (CD206, MGL1, and ARG1 in a murine macrophage cell line, while addition of palmitic acid is able to inhibit that increase. Three day supplementation of a chow diet, with oleic acid, induced an increase in M2 macrophage markers in the MAT, but not in the epididymal AT. We tested whether increases in M2 macrophages occur during short term ad lib feeding of a high fat diet, containing oleic acid. Experiments revealed two distinct populations of macrophages were altered by a three day high milk-fat diet. One population, phenotypically intermediate for F4/80, showed diet-induced increases in CD206, an anti-inflammatory marker characteristic of M2 macrophages intrinsic to the AT. Evidence for a second population, phenotypically F4/80(HICD11b(HI macrophages, showed increased association with the MAT following short term feeding that is dependent on the adhesion molecule, ICAM-1. Collectively, we have shown that short term feeding of a high-fat diet changes two population of macrophages, and that dietary oleic acid is responsible for increases in M2 macrophage polarization.

  5. Systemic and Cardiac Depletion of M2 Macrophage through CSF-1R Signaling Inhibition Alters Cardiac Function Post Myocardial Infarction

    OpenAIRE

    Anne-Laure Leblond; Kerstin Klinkert; Kenneth Martin; Turner, Elizebeth C.; Arun H Kumar; Tara Browne; Caplice, Noel M.

    2015-01-01

    The heart hosts tissue resident macrophages which are capable of modulating cardiac inflammation and function by multiple mechanisms. At present, the consequences of phenotypic diversity in macrophages in the heart are incompletely understood. The contribution of cardiac M2-polarized macrophages to the resolution of inflammation and repair response following myocardial infarction remains to be fully defined. In this study, the role of M2 macrophages was investigated utilising a specific CSF-1...

  6. Macrophage colony-stimulating factor gene transduction into human lung cancer cells differentially regulates metastasis formations in various organ microenvironments of natural killer cell-depleted SCID mice.

    Science.gov (United States)

    Yano, S; Nishioka, Y; Nokihara, H; Sone, S

    1997-02-15

    We investigated whether local production of macrophage colony-stimulating factor (M-CSF), responsible for migration and activation of monocytes/macrophages at a tumor growth site, affected the metastatic pattern of lung cancer. For this, highly metastatic human squamous (RERF-LC-AI) or small (H69/VP) cell lung carcinoma cells were transduced with the human M-CSF gene inserted into pRc/CMV-MCSF to establish M-CSF-producing clones (MCSF-AI-9-18, MCSF-AI-9-24, and MCSF-VP-5). M-CSF gene transduction had no effect on the expression of surface antigen or on in vitro proliferation. After s.c. injection into SCID mice, the growth rates of M-CSF-producing cells were slower than those of parent or mock-transduced cells. In the metastatic model in SCID mice depleted of natural killer cells, RERF-LC-AI cells formed metastases mainly in the liver and kidneys, whereas H69/VP cells metastasized mainly to the liver and systemic lymph nodes. The numbers of metastatic colonies of MCSF-AI-9-18 and MCSF-AI-9-24 cells in the liver but not the kidneys were significantly reduced. The development of lymph node metastases of MCSF-VP-5 cells was also less than that of parent or mock-transduced cells. Treatment of SCID mice with anti-human M-CSF antibody resulted in a significant increase in liver metastases of their M-CSF gene transfectants. No significant differences were observed in the distributions in mice or in the in vitro invasive potentials of MCSF-AI-9-18 cells and Neo-AI-3 cells. These findings indicate that the antimetastatic effect of M-CSF may be specific to particular organs, suggesting the influence of heterogeneity of organ microenvironments on the metastasis of lung cancer.

  7. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    Directory of Open Access Journals (Sweden)

    María Virtudes Céspedes

    2016-12-01

    Full Text Available We explored whether the combination of lurbinectedin (PM01183 with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii specific depletion of tumor-associated macrophages (TAMs. We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR. Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI=0.66] and SW-1990 (CI=0.80 tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX, cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies.

  8. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    Science.gov (United States)

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-01-01

    ABSTRACT We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies. PMID:27780828

  9. 9-cis β-Carotene Increased Cholesterol Efflux to HDL in Macrophages

    Directory of Open Access Journals (Sweden)

    Sapir Bechor

    2016-07-01

    Full Text Available Cholesterol efflux from macrophages is a key process in reverse cholesterol transport and, therefore, might inhibit atherogenesis. 9-cis-β-carotene (9-cis-βc is a precursor for 9-cis-retinoic-acid (9-cis-RA, which regulates macrophage cholesterol efflux. Our objective was to assess whether 9-cis-βc increases macrophage cholesterol efflux and induces the expression of cholesterol transporters. Enrichment of a mouse diet with βc from the alga Dunaliella led to βc accumulation in peritoneal macrophages. 9-cis-βc increased the mRNA levels of CYP26B1, an enzyme that regulates RA cellular levels, indicating the formation of RA from βc in RAW264.7 macrophages. Furthermore, 9-cis-βc, as well as all-trans-βc, significantly increased cholesterol efflux to high-density lipoprotein (HDL by 50% in RAW264.7 macrophages. Likewise, food fortification with 9-cis-βc augmented cholesterol efflux from macrophages ex vivo. 9-cis-βc increased both the mRNA and protein levels of ABCA1 and apolipoprotein E (APOE and the mRNA level of ABCG1. Our study shows, for the first time, that 9-cis-βc from the diet accumulates in peritoneal macrophages and increases cholesterol efflux to HDL. These effects might be ascribed to transcriptional induction of ABCA1, ABCG1, and APOE. These results highlight the beneficial effect of βc in inhibition of atherosclerosis by improving cholesterol efflux from macrophages.

  10. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide

    Directory of Open Access Journals (Sweden)

    Lan B. Hoang-Minh

    2016-10-01

    Full Text Available A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM cells and their response to temozolomide (TMZ, the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1, a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

  11. Increased Lytic Efficiency of Bovine Macrophages Trained with Killed Mycobacteria

    Science.gov (United States)

    Juste, Ramon A.; Alonso-Hearn, Marta; Garrido, Joseba M.; Abendaño, Naiara; Sevilla, Iker A.; Gortazar, Christian; de la Fuente, José; Dominguez, Lucas

    2016-01-01

    Innate immunity is evolutionarily conserved in multicellular organisms and was considered to lack memory until very recently. One of its more characteristic mechanisms is phagocytosis, the ability of cells to engulf, process and eventually destroy any injuring agent. We report the results of an ex vivo experiment in bovine macrophages in which improved clearance of Mycobacterium bovis (M. bovis) was induced by pre-exposure to a heat killed M. bovis preparation. The effects were independent of humoral and cellular adaptive immune responses and lasted up to six months. Specifically, our results demonstrate the existence of a training effect in the lytic phase of phagocytosis that can be activated by killed mycobacteria, thus suggesting a new mechanism of vaccine protection. These findings are compatible with the recently proposed concept of trained immunity, which was developed to explain the observation that innate immune responses provide unspecific protection against pathogens including other than those that originally triggered the immune response. PMID:27820836

  12. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  13. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions

    Science.gov (United States)

    MacCallum, Donna M.; Brown, Gordon D.

    2017-01-01

    ABSTRACT   The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468

  14. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.

    Science.gov (United States)

    Petrick, Lauren; Rosenblat, Mira; Paland, Nicole; Aviram, Michael

    2016-06-01

    Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016.

  15. Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment.

    Directory of Open Access Journals (Sweden)

    Munkyung Kim

    Full Text Available Alport syndrome is a genetic disease of collagen IV (α3, 4, 5 resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.

  16. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamashita

    Full Text Available AIMS: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. METHODS: Macrophage-rich or smooth muscle cell (SMC-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS and interferon-γ (INFγ were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using (18F-fluorodeoxyglucose ((18F-FDG and pimonidazole, a marker of hypoxia. RESULTS: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20. The uptake of (18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p<0.0001. Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8 and pentose phosphate pathway (4 of 6 metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely

  17. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    Science.gov (United States)

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur.

  18. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    Science.gov (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  19. Pomegranate juice sugar fraction reduces macrophage oxidative state, whereas white grape juice sugar fraction increases it.

    Science.gov (United States)

    Rozenberg, Orit; Howell, Amy; Aviram, Michael

    2006-09-01

    The antiatherogenic properties of pomegranate juice (PJ) were attributed to its antioxidant potency and to its capacity to decrease macrophage oxidative stress, the hallmark of early atherogeneis. PJ polyphenols and sugar-containing polyphenolic anthocyanins were shown to confer PJ its antioxidant capacity. In the present study, we questioned whether PJ simple or complex sugars contribute to the antioxidative properties of PJ in comparison to white grape juice (WGJ) sugars. Whole PJ decreased cellular peroxide levels in J774A.1 macrophage cell-line by 23% more than PJ polyphenol fraction alone. Thus, we next determined the contribution of the PJ sugar fraction to the decrease in macrophage oxidative state. Increasing concentrations of the PJ sugar fraction resulted in a dose-dependent decrement in macrophage peroxide levels, up to 72%, compared to control cells. On the contrary, incubation of the cells with WGJ sugar fraction at the same concentrations resulted in a dose-dependent increment in peroxide levels by up to 37%. The two sugar fractions from PJ and from WGJ showed opposite effects (antioxidant for PJ and pro-oxidant for WGJ) also in mouse peritoneal macrophages (MPM) from control as well as from streptozotocin-induced diabetic Balb/C mice. PJ sugar consumption by diabetic mice for 10 days resulted in a small but significant decrement in their peritoneal macrophage total peroxide levels and an increment in cellular glutathione content, compared to MPM harvested from control diabetic mice administrated with water. In contrast, WGJ sugar consumption by diabetic mice resulted in a 22% increment in macrophage total peroxide levels and a 45% decrement in cellular glutathione content. Paraoxonase 2 activity in macrophages increases under oxidative stress conditions. Indeed, macrophage paraoxonase 2 activity was decreased after PJ sugars supplementation, but increased after WGJ sugars supplementation. We conclude that PJ sugar fraction, unlike WGJ sugar fraction

  20. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.

    Science.gov (United States)

    Lumeng, Carey N; Deyoung, Stephanie M; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties.

  1. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model.

    Science.gov (United States)

    Broquet, Alexis; Roquilly, Antoine; Jacqueline, Cédric; Potel, Gilles; Caillon, Jocelyne; Asehnoune, Karim

    2014-06-01

    Pseudomonas aeruginosa infection is a clinically relevant infection involved in pneumonia in ICUs. Understanding the type of immune response initiated by the host during pneumonia would help defining new strategies to interfere with the bacteria pathogenicity. In this setting, the role of natural killer cells remains controversial. We assessed the role of systemic natural killer cells in a Pseudomonas aeruginosa mouse pneumonia model. Experimental study. Research laboratory from a university hospital. RjOrl:SWISS and BALB/cJ mice (weight, 20-24 g). Lung injuries were assessed by bacterial load, myeloperoxidase activity, endothelial permeability (pulmonary edema), immune cell infiltrate (histological analysis), proinflammatory cytokine release, and Ly6-G immunohistochemistry. Bacterial loads were assessed in the lungs and spleen. Natural killer cell number and status were assessed in spleen (flow cytometry and quantitative polymerase chain reaction). Depletion of natural killer cells was achieved through an IV anti-asialo-GM1 antibody injection. Pseudomonas aeruginosa tracheal instillation led to an acute pneumonia with a rapid decrease of bacterial load in lungs and with an increase of endothelial permeability, proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and myeloperoxidase activity followed by Ly6-G positive cell infiltrate in lungs. Pseudomonas aeruginosa was detected in the spleen. Membrane markers of activation and maturation (CD69 and KLRG1 molecules) were increased in splenic natural killer cells during Pseudomonas aeruginosa infection. Splenic natural killer cells activated upon Pseudomonas aeruginosa infection produced interferon-γ but not interleukin-10. Ultimately, mice depleted of natural killer cells displayed an increased neutrophil numbers in the lungs and an increased mortality rate without bacterial load modifications in the lungs, indicating that mice depleted of natural killer cells were much more susceptible to

  2. Increased Expression of Visfatin in Monocytes and Macrophages in Male Acute Myocardial Infarction Patients

    Directory of Open Access Journals (Sweden)

    Cheng-An Chiu

    2012-01-01

    Full Text Available We demonstrated that visfatin expressed in monocytes and neutrophils and increased their reactivity in male acute ST-segment elevation myocardial infarction patients. Furthermore, visfatin was strongly appeared in lipid rich coronary rupture plaques and macrophages. These results suggest another explanation about leukocytes mediated visfatin that may play a pathogenesis role in coronary vulnerable plaques rupture.

  3. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression.

    Science.gov (United States)

    Wahl, S M; Greenwell-Wild, T; Peng, G; Hale-Donze, H; Doherty, T M; Mizel, D; Orenstein, J M

    1998-10-13

    Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocytes were exposed to MAC antigens (MAg) or viable MAC and their levels of tumor necrosis factor alpha (TNFalpha) and HIV-1 coreceptors monitored. MAC enhanced TNFalpha production in vitro, consistent with its expression in coinfected lymph nodes. Using a polyclonal antibody to the CCR5 coreceptor that mediates viral entry of macrophage tropic HIV-1, a subset of unstimulated monocytes was shown to be CCR5-positive by fluorescence-activated cell sorter analysis. After stimulation with MAg or infection with MAC, CCR5 expression was increased at both the mRNA level and on the cell surface. Up-regulation of CCR5 by MAC was not paralleled by an increase in the T cell tropic coreceptor, CXCR4. Increases in NF-kappaB, TNFalpha, and CCR5 were consistent with the enhanced production of HIV-1 in MAg-treated adherent macrophage cultures as measured by HIV-1 p24 levels. Increased CCR5 was also detected in coinfected lymph nodes as compared with tissues with only HIV-1. The increased production of TNFalpha, together with elevated expression of CCR5, provide potential mechanisms for enhanced infection and replication of HIV-1 by macrophages in OI-infected cells and tissues. Consequently, treating OI may inhibit not only the OI-induced pathology, but also limit the viral burden.

  4. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression

    OpenAIRE

    1998-01-01

    Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocyte...

  5. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P.

    Science.gov (United States)

    Tuluc, Florin; Meshki, John; Spitsin, Sergei; Douglas, Steven D

    2014-07-01

    Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163(low) and CD163(high)) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163(high) cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis. © 2014 Society for Leukocyte Biology.

  6. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid.

    Directory of Open Access Journals (Sweden)

    Enrico D'Aniello

    Full Text Available Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1, a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA.

  7. Glutamine depletion induces murine neonatal melena with increased apoptosis of the intestinal epithelium

    Institute of Scientific and Technical Information of China (English)

    Takayuki Motoki; Hiroshi Tsuchita; Mehmet Gunduz; Hitoshi Nagatsuka; Noriaki Tanaka; Toshiyoshi Fujiwara; Yoshio Naomoto; Junji Hoshiba; Yasuhiro Shirakawa; Tomoki Yamatsuji; Junji Matsuoka; Munenori Takaoka; Yasuko Tomono; Yasuhiro Fujiwara

    2011-01-01

    AIM: To investigate the possible biological outcome and effect of glutamine depletion in neonatal mice and rodent intestinal epithelial cells.METHODS: We developed three kinds of artificial milk with different amounts of glutamine; Complete amino acid milk (CAM), which is based on maternal mouse milk, glutamine-depleted milk (GDM), and glutaminerich milk (GRM). GRM contains three-fold more glutamine than CAM. Eighty-seven newborn mice were divided into three groups and were fed with either of CAM, GDM, or GRM via a recently improved nipple-bottle system for seven days. After the feeding period, the mice were subjected to macroscopic and microscopic observations by immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 as markers of cell proliferation,and for cleaved-caspase-3 as a marker of apoptosis.Moreover, IEC6 rat intestinal epithelial cells were cultured in different concentrations of glutamine and were subject to a 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate cell proliferation assay, flow cytometry, and western blotting to examine the biological effect of glutamine on cell growth and apoptosis.RESULTS: During the feeding period, we found colonic hemorrhage in six of 28 GDM-fed mice (21.4%), but not in the GRM-fed mice, with no differences in body weight gain between each group. Microscopic examination showed destruction of microvilli and the disappearance of glycocalyx of the intestinal wall in the colon epithelial tissues taken from GDM-fed mice. Intake of GDM reduced BrdU incorporation (the average percentage of BrdU-positive staining; GRM: 13.8%, CAM: 10.7%, GDM:1.14%, GRM vs GDM: P < 0.001, CAM vs GDM: P < 0.001)and Ki-67 labeling index (the average percentage of Ki-67-positive staining; GRM: 24.5%, CAM: 22.4% GDM:19.4%, GRM vs GDM: P = 0.001, CAM vs GDM: P =0.049), suggesting that glutamine depletion inhibited cell proliferation of intestinal epithelial cells. Glutamine deprivation further caused the

  8. Transfusion of Leukocyte-Depleted RBCs Is Independently Associated With Increased Morbidity After Pediatric Cardiac Surgery

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; Grotenhuis, Femke; Berger, Rolf F. M.; Ebels, Tjark W.; Burgerhof, Johannes G. M.; Albers, Marcel J. I. J.

    Objective: To test the hypothesis that transfusion of leukocyte-depleted RBC preparations within the first 48 hours of PICU stay was independently associated with prolonged duration of mechanical ventilation, irrespective of surgery type and disease severity. Design: Retrospective, observational

  9. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available BACKGROUND: HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. CONCLUSION AND SIGNIFICANCE: HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  10. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Oda, Hideaki [Department of Pathology, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.

  11. Platelet-activating factor increases reactive oxygen species-mediated microbicidal activity of human macrophages infected with Leishmania (Viannia) braziliensis.

    Science.gov (United States)

    Borges, Arissa Felipe; Morato, Camila Imai; Gomes, Rodrigo Saar; Dorta, Miriam Leandro; de Oliveira, Milton Adriano Pelli; Ribeiro-Dias, Fátima

    2017-09-29

    Platelet-activating factor (PAF) is produced by macrophages during inflammation and infections. We evaluated whether PAF is able to modulate the infection of human macrophages by Leishmania braziliensis, the main Leishmania sp. in Brazil. Monocyte-derived macrophages were incubated with promastigote forms in absence or presence of exogenous PAF. We observed that the treatment of macrophages with low concentrations of PAF prior to infection increased the phagocytosis of L. braziliensis. More importantly, exogenous PAF reduced the parasitism when it was added before, during or after infection. In addition, treatment with a PAF antagonist (PCA 4248) resulted in a significant increase of macrophage infection in a concentration-dependent manner, suggesting that endogenous PAF is important to control L. braziliensis infection. Mechanistically, while exogenous PAF increased production of reactive oxygen species (ROS) treatment with PCA 4248 reduced oxidative burst during L. braziliensis infection. The microbicidal effects of exogenous PAF were abolished when macrophages were treated with apocynin, an NADPH oxidase inhibitor. The data show that PAF promotes the production of ROS induced by L. braziliensis, suggesting that this lipid mediator may be relevant to control L. braziliensis infection in human macrophages. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Increased Infiltration of Macrophages in Omental Adipose Tissue Is Associated With Marked Hepatic Lesions in Morbid Human Obesity

    National Research Council Canada - National Science Library

    Raffaella Cancello; Joan Tordjman; Christine Poitou; Gaël Guilhem; Jean Luc Bouillot; Danielle Hugol; Christiane Coussieu; Arnaud Basdevant; Avner Bar Hen; Pierre Bedossa; Michèle Guerre-Millo; Karine Clément

    2006-01-01

    Increased Infiltration of Macrophages in Omental Adipose Tissue Is Associated With Marked Hepatic Lesions in Morbid Human Obesity Raffaella Cancello 1 2 3 , Joan Tordjman 1 2 3 , Christine Poitou 1 2 3...

  13. Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in broiler chickens.

    Science.gov (United States)

    Gomes, A V S; Quinteiro-Filho, W M; Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Baskeville, E; Akamine, A T; Astolfi-Ferreira, C S; Ferreira, A J P; Palermo-Neto, J

    2014-01-01

    Overcrowding stress is a reality in the poultry industry. Chickens exposed to long-term stressful situations present a reduction of welfare and immunosuppression. We designed this experiment to analyse the effects from overcrowding stress of 16 birds/m(2) on performance parameters, serum corticosterone levels, the relative weight of the bursa of Fabricius, plasma IgA and IgG levels, intestinal integrity, macrophage activity and experimental Salmonella Enteritidis invasion. The results of this study indicate that overcrowding stress decreased performance parameters, induced enteritis and decreased macrophage activity and the relative bursa weight in broiler chickens. When the chickens were similarly stressed and infected with Salmonella Enteritidis, there was an increase in feed conversion and a decrease in plasma IgG levels in the stressed and Salmonella-infected birds. We observed moderate enteritis throughout the duodenum of chickens stressed and infected with Salmonella. The overcrowding stress decreased the macrophage phagocytosis intensity and increased Salmonella Enteritidis counts in the livers of birds challenged with the pathogenic bacterium. Overcrowding stress via the hypothalamic-pituitary-adrenal axis that is associated with an increase in corticosterone and enteritis might influence the quality of the intestinal immune barrier and the integrity of the small intestine. This effect allowed pathogenic bacteria to migrate through the intestinal mucosa, resulting in inflammatory infiltration and decreased nutrient absorption. The data strengthen the hypothesis that control of the welfare of chickens and avoidance of stress from overcrowding in poultry production are relevant factors for the maintenance of intestinal integrity, performance and decreased susceptibility to Salmonella infection.

  14. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Directory of Open Access Journals (Sweden)

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  15. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  16. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  17. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Nan [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Liu-Hua [Department of Minimally Invasive Surgery Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ye, Run-Yi [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Lin, Ying, E-mail: frostlin@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Wang, Shen-Ming, E-mail: shenmingwang@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-02-15

    Highlights: ► IL-8 depletion affects cell cycle distribution. ► Intrinsic IL-8 mediates breast cancer cell migration and invasion. ► IL-8 siRNA down regulates key factors that control survival and metastatic pathway. ► IL-8 depletion reduces integrin β3 expression. ► IL-8 depletion increases the chemosensitivity to docetaxel. -- Abstract: IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  18. Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans.

    Science.gov (United States)

    To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, seven healthy volunteers received oral prednisone for 6 days on two separate occasions, at least 2 weeks apart, and in random order. On the sixth day of each treatment course, they received 5 h intr...

  19. Transfusion of Leukocyte-Depleted RBCs Is Independently Associated With Increased Morbidity After Pediatric Cardiac Surgery

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; Grotenhuis, Femke; Berger, Rolf F. M.; Ebels, Tjark W.; Burgerhof, Johannes G. M.; Albers, Marcel J. I. J.

    2013-01-01

    Objective: To test the hypothesis that transfusion of leukocyte-depleted RBC preparations within the first 48 hours of PICU stay was independently associated with prolonged duration of mechanical ventilation, irrespective of surgery type and disease severity. Design: Retrospective, observational stu

  20. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    Science.gov (United States)

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Depletion of CD25+ cells during acute toxoplasmosis does not significantly increase mortality in Swiss OF1 mice

    Directory of Open Access Journals (Sweden)

    Haroon Akbar

    2012-03-01

    Full Text Available The interleukin (IL-2R alpha chain (CD25 is expressed on regulatory T cells (Treg, which constitute more than 85% of the CD25+ T cell population in a naïve mouse. CD25 is also expressed on effector T cells in mice suffering from an acute infection by the obligate intracellular protozoan parasite, Toxoplasma gondii. Lethal toxoplasmosis is accompanied by a significant loss of Treg in mice naturally susceptible to toxoplasmosis. The present study was done to explore the role of Treg cells using an anti-CD25 antibody-mediated depletion in mice naturally resistant to toxoplasmosis. Although a significant decrease in the percentage of Treg cells was observed following anti-CD25 monoclonal antibody injections, the depletion of CD25+ cells during acute toxoplasmosis did not significantly increase the mortality of Swiss OF1 mice and no significant difference was observed in the brain parasitic load between the mice in the depleted-infected and isotype-infected groups. We found no significant difference between the titres of total IgG in the sera of the mice from the two groups in the chronic phase. However, CD25+ cells depletion was followed by significantly higher levels of IL-12 in the serum of depleted mice than in that of mice injected with the isotype control antibody.

  2. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2011-12-01

    Full Text Available Abstract Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.

  3. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression.

    Science.gov (United States)

    Filipek, Agnieszka; Czerwińska, Monika E; Kiss, Anna K; Wrzosek, Małgorzata; Naruszewicz, Marek

    2015-12-15

    Oleacein (dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EDA) have been proven to possess antioxidant and anti-inflammatory activity. In this study, we examined whether oleacein could increase CD163 and IL-10 receptor expression as well as HO-1 intracellular secretion in human macrophages. Effect of oleacein (10 and 20 μmol/l) or oleacein together with complexes of haemoglobin (Hb) and haptoglobin 1-1 (Hp11) or haptoglobin 2-2 (Hp22) on expression of IL-10 and CD163 receptor was determined by Flow Cytometry. Expression of CD163mRNA was measured by real-time quantitative RT-PCR. Heme oxygenase 1 (HO-1) intracellular secretion in macrophages was investigated by enzyme-linked immunosorbent assay (ELISA). Oleacein (OC) together with complexes HbHp11 or HbHp22 stimulated the expression of CD163 (30-100-fold), IL-10 (170-300-fold) and HO-1 secretion (60-130-fold) after 5 days of coincubation. The 2-fold (24 h), 4-fold (48 h) increase of CD163 mRNA level and its final (72 h) decrease was also observed. Our results suggested that oleacein enhances anti-inflammatory activity of complexes haemoglobin with haptoglobin 1-1 and 2-2 and could play a potential role in the prevention of inflammatory disease related to atherosclerosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. CD28 ligation increases macrophage suppression of T-cell proliferation.

    Science.gov (United States)

    Silberman, Daniel; Bucknum, Amanda; Bartlett, Thomas; Composto, Gabriella; Kozlowski, Megan; Walker, Amanda; Werda, Amy; Cua, Jackelyn; Sharpe, Arlene H; Somerville, John E; Riggs, James E

    2012-07-01

    When compared to spleen or lymph node cells, resident peritoneal cavity cells respond poorly to T-cell activation in vitro. The greater proportional representation of macrophages in this cell source has been shown to actively suppress the T-cell response. Peritoneal macrophages exhibit an immature phenotype (MHC class II(lo), B7(lo)) that reduces their efficacy as antigen-presenting cells. Furthermore, these cells readily express inducible nitric oxide synthase (iNOS), an enzyme that promotes T-cell tolerance by catabolism of the limiting amino acid arginine. Here, we investigate the ability of exogenous T-cell costimulation to recover the peritoneal T-cell response. We show that CD28 ligation failed to recover the peritoneal T-cell response and actually suppressed responses that had been recovered by inhibiting iNOS. As indicated by cytokine ELISpot and neutralizing monoclonal antibody (mAb) treatment, this 'cosuppression' response was due to CD28 ligation increasing the number of interferon (IFN)-γ-secreting cells. Our results illustrate that cellular composition and cytokine milieu influence T-cell costimulation biology.Cellular & Molecular Immunology advance online publication, 23 April 2012; doi:10.1038/cmi.2012.13.

  5. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria

    Science.gov (United States)

    Wolf, Andrea J.; Arruda, Andrea; Reyes, Christopher N.; Kaplan, Amber T.; Shimada, Takahiro; Shimada, Kenichi; Arditi, Moshe; Liu, George; Underhill, David M.

    2011-01-01

    Signaling by innate immune receptors initiates and orchestrates the overall immune responses to infection. Macrophage receptors recognizing pathogens can be broadly grouped into surface receptors and receptors restricted to intracellular compartments, such as phagosomes and the cytoplasm. There is an expectation that ingestion and degradation of microorganisms by phagocytes contributes to activation of intracellular innate receptors, although direct demonstrations of this are rare and many model ligands are studied in soluble form, outside of their microbial context. By comparing a wild-type strain of Staphylococcus aureus and a lysozyme-sensitive mutant, we have been able to directly address the role of degradation of live bacteria by mouse macrophages in determining the overall innate cellular inflammatory response. Our investigations revealed a biphasic response to S. aureus that consisted of an initial signal resulting from the engagement of surface TLR2, followed by a later, second wave on inflammatory gene induction. This second wave of inflammatory signaling was dependent on and correlated with the timing of bacterial degradation in phagosomes. We found that TLR2 signaling followed by TLR2/TLR9 signaling enhanced sensitivity to small numbers of bacteria. We further found that treating wild-type bacteria with the peptidoglycan synthesis-inhibiting antibiotic vancomycin made S. aureus more susceptible to degradation and resulted in increased inflammatory responses, similar to those observed for mutant degradation-sensitive bacteria. PMID:22031762

  6. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dan, E-mail: y.dan@lacdr.leidenuniv.nl [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Meurs, Illiana [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Ohigashi, Megumi [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Calpe-Berdiel, Laura; Habets, Kim L.L.; Zhao, Ying [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Kubo, Yoshiyuki [Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University (Japan); Yamaguchi, Akihito [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Van Berkel, Theo J.C. [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Nishi, Tsuyoshi [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Van Eck, Miranda [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands)

    2010-05-07

    Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.

  7. Helicobacter pylori infection is associated with increased expression of macrophage migration inhibitory factor by T cells and macrophages in gastric mucosa

    Institute of Scientific and Technical Information of China (English)

    HE Xing Xiang; Harry Hua Xiang XIA; ZHAO Ying Heng; LIN Man Peng; SHEN Qing Yan; LIU Wei; ZHENG Xue Ling

    2004-01-01

    AIM Macrophage migration inhibitory factor (MIF) plays a pivotal role in inflammatory/immune diseases.This study aimed to determine MIF expression in H.pylori-induced gastritis,and the effect of H.pylori on MIF expression in monocytes in vitro.METHODS Seventy-nine patients (M/F,39/40,mean age,52 yrs) referred for upper endoscopy were selected;19 with gastric ulcer,15 with duodenal ulcer and 45 with non-ulcer dyspepsia (NUD).Gastric antral and body biopsies were obtained for histological examinations,double immunostaining for MIF/T-cells (CD45RO) and MIF/macrophage (KP1),and in situ hybridization for the expression of MIF mRNA.THp-1,a monocyte cell line,was co-incubated with different concentrations of the whole cell proteins prepared from H.pylori strain ATCC26695 or its isogenic type with cagA gene deleted.The expression of MIF protein was determined by using enzyme linked immunosorbent assay and the MIF mRNA by retrospective transcription-polymerase chain reaction techniques.RESULTS H.pylori was detected in 50 patients (10 with gastric ulcer, 15 with duodenal ulcer and 25 with NUD).Overall,the numbers of total T-cells,MIF+T-cells,total macrophages,MIF+macrophages and MIF mRNA+ cells were greater in the gastric antrum than in the body.There was a significant increase in the numbers of total T-cells, MIF+ T-cells,total macrophages,MIF+macrophages and MIF mRNA+cells in H. pylori positive,compared with H.pylori negative patients,in both the antral and body mucosa.Moreover,the cell numbers increased with more severe chronic gastritis in both the antrum and body.The numbers were also significantly higher in ulcer patients than in NUD patients, particularly in H. pylori positive patients.In vitro,the expression of MIF protein and mRNA in monocytes was significantly increased by incubation with H.pylori whole cell proteins,in a time and dose dependent manner.CONCLUSIONS H.pylori infection stimulates the expression of MIF in the gastric inflammatory cells,which may play a

  8. Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells

    Directory of Open Access Journals (Sweden)

    Thompson Oliver

    2012-01-01

    Full Text Available Abstract Background SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype. Results We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress. Conclusions These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential.

  9. Adoptive transfer of macrophages ameliorates renal fibrosis in mice.

    Science.gov (United States)

    Nishida, Masashi; Okumura, Yasuko; Fujimoto, Shin-Ichiro; Shiraishi, Isao; Itoi, Toshiyuki; Hamaoka, Kenji

    2005-06-24

    We performed adoptive transfer of bone marrow-derived (BM) macrophages following pharmacological depletion of leukocytes in a mouse model of unilateral ureteral obstruction (UUO). Treatment with cyclophosphamide (CPM) caused marked decrease in the numbers of F4/80-positive interstitial macrophages as well as in peripheral blood leukocyte counts, and adoptive transfer of BM macrophages to CPM-treated mice resulted in significant increase in the numbers of interstitial macrophages both at day 5 and at day 14 after UUO. At day 5 after UUO, no significant change was observed in the degree of renal interstitial fibrosis either by treatment with CPM or with CPM+macrophage. However, at day 14 after UUO, treatment with CPM caused significant increase in the degree of interstitial fibrosis, and adoptive macrophage transfer to these mice attenuated this enhancement in renal fibrosis. Our result suggests the role of infiltrating macrophages on facilitating tissue repair at late stage of UUO.

  10. Increased Serum CD14 Level Is Associated with Depletion of TNF-α in Monocytes in Migraine Patients during Interictal Period

    Directory of Open Access Journals (Sweden)

    Slawomir Michalak

    2017-02-01

    Full Text Available The aim of the present study was to investigate the levels of circulating CD14 in relation to the expression of tumor necrosis factor alpha (TNF-α in monocytes, and serum levels of TNF-α and macrophage inflammatory protein-1 (MIP-1 in migraine patients. Numerous studies revealed controversial changes in the components of the immune system during attacks and the interictal period in migraine patients. Our study included 40 migraineurs and 39 controls. The levels of TNF-α, MIP-1 and CD14 were measured in peripheral monocytes and in sera with the Enzyme-Linked Immunosorbent Assay (ELISA method, and the monocyte expression of TNF-α was also analysed by immunostaining. Serum CD14 concentrations were higher and the expression of TNF-α in monocytes was decreased in migraineurs. The serum MIP-1 level correlated with Verbal Rating Scale (VRS; the MIP-1:CD14 ratio in monocytes correlated with Visual Analogue Scale (VAS; the MIP-1:CD14 ratio correlated with Migraine Severity (MIGSEV-Pain scores; and serum CD14 concentration correlated with migraine duration in years. Increased serum CD14 and depletion of TNF-α in monocytes can orchestrate other components of the immune system during the interictal period.

  11. Increased Serum CD14 Level Is Associated with Depletion of TNF-α in Monocytes in Migraine Patients during Interictal Period

    Science.gov (United States)

    Michalak, Slawomir; Kalinowska-Lyszczarz, Alicja; Wegrzyn, Danuta; Niezgoda, Adam; Losy, Jacek; Osztynowicz, Krystyna; Kozubski, Wojciech

    2017-01-01

    The aim of the present study was to investigate the levels of circulating CD14 in relation to the expression of tumor necrosis factor alpha (TNF-α) in monocytes, and serum levels of TNF-α and macrophage inflammatory protein-1 (MIP-1) in migraine patients. Numerous studies revealed controversial changes in the components of the immune system during attacks and the interictal period in migraine patients. Our study included 40 migraineurs and 39 controls. The levels of TNF-α, MIP-1 and CD14 were measured in peripheral monocytes and in sera with the Enzyme-Linked Immunosorbent Assay (ELISA) method, and the monocyte expression of TNF-α was also analysed by immunostaining. Serum CD14 concentrations were higher and the expression of TNF-α in monocytes was decreased in migraineurs. The serum MIP-1 level correlated with Verbal Rating Scale (VRS); the MIP-1:CD14 ratio in monocytes correlated with Visual Analogue Scale (VAS); the MIP-1:CD14 ratio correlated with Migraine Severity (MIGSEV)-Pain scores; and serum CD14 concentration correlated with migraine duration in years. Increased serum CD14 and depletion of TNF-α in monocytes can orchestrate other components of the immune system during the interictal period. PMID:28208835

  12. Hepatic Glucose Production Increases in Response to Metformin Treatment in the Glycogen-depleted State

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole;

    Metformin is believed to reduce glucose levels primarily by inhibiting hepatic glucose production, but at the same time do not cause hypoglycemia. Recent data indicate that metformin antagonizes the major glucose counterregulatory hormone, glucagon suggesting that other mechanisms protect against...... hypoglycemia. Here, we examined the effect of metformin on whole-body glucose metabolism after a glycogen-depleting 40 h fast and the role of reduced-function alleles in OCT1. In a randomized cross-over trial, 34 healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9...... with two reduced-function alleles) were fasted for 42 h twice. In one of the periods, before the fasting, the volunteers were titrated to steady-state with 1 g metformin twice daily for seven days. Parameters of whole-body glucose metabolism were assessed using [3-3^H] glucose, indirect calorimetry...

  13. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing.

    Science.gov (United States)

    Bellner, Lars; Marrazzo, Giuseppina; van Rooijen, Nico; Dunn, Michael W; Abraham, Nader G; Schwartzman, Michal L

    2015-01-01

    Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2(-/-) and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2(-/-) mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2(-/-) macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2(-/-) mice. These findings indicate that HO-2-deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2(-/-) cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.

  14. Macrophage Polarization Modulates Development of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-10-01

    Full Text Available Background/Aims: Macrophages have recently been shown to play a critical role in the pathogenesis of systemic lupus erythematosus (SLE. However, the underlying mechanisms remain unclear. Methods: Here, we used an activated lymphocyte-derived DNA (ALD-DNA method to induce SLE in mice. We used a macrophage-specific eliminator clodronate to selectively deplete macrophages in mice. We isolated macrophages from bone marrow of the mice and used cytokines to differentiate M1 and M2 macrophages, respectively. Adoptive transplantation of M1 or M2 macrophages was performed in clodronate-treated mice. The effects on SLE were evaluated by serum anti-dsDNA autoantibody, by renal pathological changes, and by urine protein levels. Results: ALD-DNA induced SLE-like features in mice, manifested by induction of serum anti-dsDNA autoantibody, by renal pathological changes, and by increases in urine protein levels. Clodronate significantly decreased macrophages in mice, which significantly increased SLE severity. Adoptive transplantation of M2, but not M1 macrophages significantly reduced SLE severity in clodronate- and ALD-DNA-treated mice. Conclusion: M1 and M2 macrophages play different roles in development of SLE. M1 macrophages increase the severity of SLE, while M2 macrophages reduce it. Modulation of macrophage polarity may be an attractive therapy for SLE.

  15. The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells.

    Science.gov (United States)

    Shao, Nan; Chen, Liu-Hua; Ye, Run-Yi; Lin, Ying; Wang, Shen-Ming

    2013-02-15

    IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  16. The Increase in Mannose Receptor Recycling Favors Arginase Induction and Trypanosoma Cruzi Survival in Macrophages

    Directory of Open Access Journals (Sweden)

    Vanina V. Garrido, Laura R. Dulgerian, Cinthia C. Stempin, Fabio M. Cerbán

    2011-01-01

    Full Text Available The macrophage mannose receptor (MR is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand biased nitric oxide (NO/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and

  17. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat.

    Directory of Open Access Journals (Sweden)

    David F Razidlo

    Full Text Available Histone deacetylase (Hdac3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health.

  18. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Kelly J Gauger

    Full Text Available The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1, is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO. Sfrp1(-/- mice fed a high fat diet (HFD exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1 and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3 in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1, and glucose transporters are repressed (Slc2a2 and Slc2a4 in Sfrp1(-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1(-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1(-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.

  19. Oxidized galectin-1 reduces lipopolysaccharide-induced increase of proinflammatory cytokine mRNA in cultured macrophages

    Directory of Open Access Journals (Sweden)

    Yukie Kogawa

    2011-01-01

    Full Text Available Yukie Kogawa1, Kou Nakajima1, Kenichi Sasaguri1, Nobushiro Hamada2, Haruhisa Kawasaki3, Sadao Sato1, Toshihiko Kadoya4, Hidenori Horie51Department of Orthodontics, 2Department of Oral Microbiology, Kanagawa Dental College, Yokosuka; 3Keio University, Kanagawa; 4Maebashi Institute of Technology, Maebashi; 5Research Center of Brain and Oral Science, Kanagawa Dental College, Yokosuka, JapanBackground: Periodontitis is prevalent in older humans. Limiting the inflammation associated with periodontitis may provide a therapy for this condition, because Gram-negative bacteria expressing lipopolysaccharide (LPS have a key role in initiation of inflammation by activating macrophage functions. Because oxidized galectin-1 regulates macrophage functions in other systems, we sought to establish whether this galectin-1 mRNA is expressed in the oral cavity, and whether it could dampen LPS-induced macrophage activation in vitro.Methods: Using the reverse transcriptase polymerase chain reaction (RT-PCR, we measured galectin-1 mRNA expression to clarify its localization to rat gingival tissues and studied the effect of Porphyromonas gingivalis challenge on galectin-1 expression. Next, we tested the effects of adding oxidized galectin-1 to cultured LPS-activated peritoneal macrophages on mRNA expression of proinflammatory factors by RT-PCR and real-time RT-PCR.Results: We established that galectin-1 mRNA is expressed in gingival tissues and also showed that galectin-1 mRNA was significantly increased by challenge with P. gingivalis, indicating that galectin-1 may regulate oral inflammation. On the other hand, LPS 100 ng/mL in serum-containing medium induced macrophages to upregulate mRNA associated with a proinflammatory response, ie, interleukins 1β and 6, and inducible nitric oxide synthase. We showed that application of 0.1–10 ng/mL of oxidized galectin-1 to LPS-treated macrophages reduced the intense LPS-induced increase by serum in proinflammatory m

  20. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages.

    Science.gov (United States)

    Hortelano, S; Alvarez, A M; Boscá, L

    1999-12-01

    Treatment of elicited peritoneal macrophages or the macrophage cell line RAW 264.7 with high concentrations of nitric oxide donors is followed by apoptotic cell death. Analysis of the changes in the mitochondrial transmembrane potential (DeltaPsi(m)) with specific fluorescent probes showed a rapid and persistent increase of DeltaPsi(m), a potential that usually decreases in cells undergoing apoptosis through mitochondrial-dependent mechanisms. Using confocal microscopy, the release of cytochrome c from the mitochondria to the cytosol was characterized as an early event preceding the rise of DeltaPsi(m). The cytochrome c from cells treated with nitric oxide donors was modified chemically, probably through the formation of nitrotyrosine residues, suggesting the synthesis of peroxynitrite in the mitochondria. These results indicate that nitric oxide-dependent apoptosis in macrophages occurs in the presence of a sustained increase of DeltaPsi(m), and that the chemical modification and release of cytochrome c from the mitochondria precede the changes of DeltaPsi(m).-Hortelano, S., Alvarez, A. M., Boscá, L. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages.

  1. Myeloid-Specific Krüppel-Like Factor 2 Inactivation Increases Macrophage and Neutrophil Adhesion and Promotes Atherosclerosis

    Science.gov (United States)

    Lingrel, Jerry B; Pilcher-Roberts, Robyn; Basford, Joshua E.; Manoharan, Palanikumar; Neumann, Jon; Konaniah, Eddy S.; Srinivasan, Ramprasad; Bogdanov, Vladimir Y; Hui, David Y.

    2012-01-01

    Rationale and Objective Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis. Methods and Results Cell-specific knockout mice were generated by Cre/loxP recombination. Macrophages isolated from myeloid-specific Klf2 knockout (myeKlf2-/-) mice were similar to myeKlf2+/+ macrophages in response to activation, polarization, and lipid accumulation. However, in comparison to myeKlf2+/+ macrophages, myeKlf2-/- macrophages adhered more robustly to endothelial cells. Neutrophils from myeKlf2-/- mice also adhered more robustly to endothelial cells, and less myeKlf2-/- neutrophils survived in culture over a 24 hr period in comparison with myeKlf2+/+ neutrophils. When myeKlf2-/- mice were mated to Ldlr-/- mice and then fed a high fat and high cholesterol diet, significant increase in atherosclerosis was observed in the myeKlf2-/-Ldlr-/- mice compared to myeKlf2+/+Ldlr-/- littermates. The increased atherosclerosis in myeKlf2-/-Ldlr-/- mice was associated with elevated presence of neutrophils and macrophages, with corresponding increase of myeloperoxidase as well as chlorinated- and nitrosylated-tyrosine epitopes in their lesion areas compared to myeKlf2+/+Ldlr-/- mice. Conclusions This study documents a role for myeloid KLF2 expression in modulating atherosclerosis. The increased neutrophil accumulation and atherosclerosis progression with myeloid-specific KLF2 deficiency also underscores the importance of neutrophils in promoting vascular oxidative stress and atherosclerosis. Collectively, these results suggest that elevating KLF2 expression may be a novel strategy for prevention and treatment of atherosclerosis. PMID:22474254

  2. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

    Directory of Open Access Journals (Sweden)

    Iczkowski Kenneth A

    2005-07-01

    Full Text Available Abstract Background Macrophage migration inhibitory factor (MIF is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum levels. Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate. Methods MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis. Results Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115 compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158. ELISA diluent reagents that included bovine serum albumin (BSA significantly reduced MIF serum detection (p Conclusion Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic adenocarcinoma compared to benign tissue from matched samples, supporting our earlier finding of increased MIF gene expression in prostate cancer.

  3. Enhanced depletion of glutathione and increased liver oxidative damage in aflatoxin-fed mice infected with Plasmodium berghei

    DEFF Research Database (Denmark)

    Ankrah, N A; Sittie, A; Addo, P G

    1995-01-01

    The effect of dietary aflatoxins B1 and G1 and Plasmodium berghei infection on glutathione (GSH) levels and liver status in mice was investigated. Three days after intraperitoneal injection of 0.1 x 10(6) parasitized red blood cells into the mice, there was a significant fall in blood glutathione...... levels accompanied by a significant increase in serum cholinesterase and liver malonic dialdehyde levels in the mice fed aflatoxin compared with those in the control group. The results suggested that malaria parasites can enhance depletion of host glutathione and oxidative damage of the liver in mice fed...... low levels of aflatoxins....

  4. Impact of Increasing Stratospheric Water Vapor on Ozone Depletion and Temperature Change

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenshou; Martyn P. CHIPPERFIELD; L(U) Daren

    2009-01-01

    Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H2O on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H2O. The chemical effects of this H2O increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differcntly due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudcs and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000-2050 than between 2050-2100, driven mainly by the larger relative change in chlorine in the earlier period.

  5. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice

    DEFF Research Database (Denmark)

    Tran, E H; Hoekstra, K; van Rooijen, N

    1998-01-01

    studies to investigate the mechanisms by which macrophages contribute to the lesion formation in EAE, by studying the effect of Cl2MDP-containing mannosylated liposomes (Cl2MDP-mnL) on adoptively transferred EAE in SJL/J mice. Adoptive transfer of EAE with myelin basic protein-reactive CD4+ T cells to SJL....../J mice was abrogated by Cl2MDP-mnL treatment. CD4+ T cell and MHC II+ B220+ B cell extravasation from blood vessels and Th1 cytokine production were not inhibited. However, invasion of the central nervous system intraparenchymal tissues by lymphocytes, F4/80+, Mac-1+, and MOMA-1+ macrophages was almost....../microglial activation, was inhibited. This intervention reveals a role for macrophages in regulating the invasion of autoreactive T cells and secondary glial recruitment that ordinarily lead to demyelinating pathology in EAE and multiple sclerosis....

  6. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anouk A J Hamers

    Full Text Available Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS- and 2,4,6-trinitrobenzene sulfonic acid (TNBS-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases.

  7. Territorial approach to increased energy consumption of water extraction from depletion of a highlands Mexican aquifer.

    Science.gov (United States)

    Fonseca, Carlos Roberto; Esteller, María Vicenta; Díaz-Delgado, Carlos

    2013-10-15

    This work proposes a method to estimate increased energy consumption of pumping caused by a drawdown of groundwater level and the equivalent energy consumption of the motor-pump system in an aquifer under intensive exploitation. This method has been applied to the Valley of Toluca aquifer, located in the Mexican highlands, whose intensive exploitation is reflected in a decline in the groundwater level of between 0.10 and 1.6 m/year. Results provide a summary of energy consumption and a map of energy consumption isopleths showing the areas that are most susceptible to increases in energy consumption due to pumping. The proposed method can be used to estimate the effect of the intensive exploitation of the Valley of Toluca aquifer on the energy consumption of groundwater extraction. Finding reveals that, for the year 2006, groundwater extraction in the urban zone required 2.39 times more energy than the conditions observed 38 years earlier. In monetary terms, this reflects an increase of USD$ 3 million annually, according to 2005 energy production costs.

  8. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides.

    Science.gov (United States)

    Torres-Platas, Susana G; Cruceanu, Cristiana; Chen, Gary Gang; Turecki, Gustavo; Mechawar, Naguib

    2014-11-01

    Despite increasing evidence supporting the neuroinflammatory theory of depression, little is known about cerebral macrophages in individuals suffering from major depression. In the present study, we investigated the morphology and distribution of cells immunostained for the macrophage-specific marker ionized calcium binding adaptor molecule 1 (IBA1) in the dorsal anterior cingulate cortex (dACC) white matter of middle-aged depressed suicides and matched non-psychiatric controls. This region is known for its implication in mood disorders, and its white matter compartment was previously found to display hypertrophic astrocytes in depressed suicides. Distributions of IBA1-immunoreactive (IBA-IR) microglial phenotypes were assessed using stereology and cell morphometry, and blood vessels were characterized as being intimately associated with either a high or a low density of IBA1-IR amoeboid-like cells. Total densities of IBA1-IR microglia did not differ between depressed suicides and controls. However, a finer analysis examining relative proportions of microglial phenotypes revealed that the ratio of primed over ramified ("resting") microglia was significantly increased in depressed suicides. Strikingly, the proportion of blood vessels surrounded by a high density of macrophages was more than twice higher in depressed suicides than in controls, and this difference was strongly significant. Consistent with these observations, gene expression of IBA1 and MCP-1, a chemokine involved in the recruitment of circulating monocytes, was significantly upregulated in depressed suicides. Furthermore, mRNA for CD45, a marker enriched in perivascular macrophages, was also significantly increased in samples from depressed suicides. An increase compared to controls was also observed in the proportion of blood vessels surrounded by a high density of CD45-IR cells, but this difference did not reach significance. These histological and molecular data suggest the recruitment of monocytes

  9. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway

    Science.gov (United States)

    Sun, Liqiang; Li, En; Wang, Feng; Wang, Tao; Qin, Zhiping; Niu, Shaohui; Qiu, Chunguang

    2015-01-01

    The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and evaluated the foam cells formation, cholesterol content and apoptosis of the cells. We found that quercetin induced the expression of ABCA1 in differentiated THP-1 cells, and increased the cholesterol efflux from THP-1 cell derived foam cells. Eventually, cholesterol level and the formation of foam cell derived from THP-1 cells decreased after quercetin treatment. In addition, quercetin activated PPARγ-LXRα pathway to upregulate ABCA1 expression through increasing protein level of PPARγ and its transcriptional activity. Inhibition of PPARγ activity by siRNA knockdown or the addition of chemical inhibitor, GW9662, abolished quercetin induced ABCA1 expression and cholesterol efflux in THP-1 derived macrophages. Our data demonstrated that quercetin increased cholesterol efflux from macrophages through upregulating the expressions of PPARγ and ABCA1. Taken together, increasing uptake of quercetin or quercetin-rich foods would be an effective way to lower the risk of atherosclerosis. PMID:26617799

  10. Electroacupuncture at the ST36 acupoint increases interleukin-4 responsiveness in macrophages, generation of alternatively activated macrophages and susceptibility to Leishmania major infection

    Directory of Open Access Journals (Sweden)

    Aguiar Danillo N

    2012-07-01

    Full Text Available Abstract Background Electroacupuncture (EA has been used to treat inflammatory diseases. Alternatively activated macrophages (AAMo stimulated by cytokines such as interleukin (IL-4, IL-10 and IL-13 are anti-inflammatory and mildly microbicidal. This study aimed to evaluate whether EA at the Zusanli acupoint (ST36 would change the profile of healthy murine macrophages, particularly the generation of AAMo and susceptibility to Leishmania major infection. Methods BALB/c mice were treated with EA (15/30 Hz at the ST36 acupoint for 20 min/d for 5 d. After the final EA session, the mice were euthanized and their peritoneal cells were harvested and counted for determination of arginase activity, nitric oxide (NO production and microbicidal activity after culture in the presence or absence of IL-4, interferon-γ (IFNγ or lipopolysaccharide (LPS or both IFNγ and LPS. Twelve mice were infected with L. major promastigotes into the footpads after the final EA session and the infection course was monitored. Results Peritoneal cells freshly obtained from EA-treated mice had similar arginase and microbicidal activities to cells from sham-treated mice. After culture with IL-4, cells from EA-treated mice exhibited significant increases in the arginase activity (sham: 58 ± 11.3 vs. EA: 80.7 ± 4.6%, P = 0.025 and number of parasites/infected cell (sham: 2.5 ± 0.4 vs. EA: 4.3 ± 0.8 cells, P = 0.007. The NO production was lower in cells from EA-treated mice cultured in the presence of a combination of IFNγ and LPS (sham: 31.6 ± 6.5 vs. EA: 22.3 ± 2.1 μM, P = 0.025. The lesion size in mice infected with L. major promastigotes was larger in EA-treated mice (sham: 3.26 ± 0.29 vs. EA: 2.23 ± 0.4 mm, P = 0.039. Conclusion EA at the ST36 acupoint increases IL-4 responsiveness in macrophages, Generation of AAMo and susceptibility to L. major infection

  11. Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis.

    Science.gov (United States)

    Sarajärvi, Timo; Haapasalo, Annakaisa; Viswanathan, Jayashree; Mäkinen, Petra; Laitinen, Marjo; Soininen, Hilkka; Hiltunen, Mikko

    2009-12-04

    Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against beta-amyloid (Abeta) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the beta-secretase (BACE1) function and beta-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that approximately 60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Abeta secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized gamma-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced beta-amyloidogenic processing of APP and ultimately increased Abeta production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased beta-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease

  12. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-04-01

    Full Text Available We investigate the effects of a strengthened Brewer-Dobson circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, low-energy-electron precipitation is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation, the enhancements of NOx concentrations are expected to be transported to lower altitudes in extra-tropical regions, becoming even more significant in the ozone budget. We use simulations with the chemistry climate model system ECHAM5/MESSy to compare present day effects of low-energy-electron precipitation with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.5 μmol/mol at 5 hPa is found. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations.

  13. Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher's disease

    DEFF Research Database (Denmark)

    Møller, Holger Jon; de Fost, Maaike; Aerts, Hans

    2004-01-01

    Recently, soluble CD163 (sCD163) has been identified as a macrophage/monocyte-specific plasma protein and increased concentrations have been measured in patients with infection and myeloid leukaemia. In the present study we investigated the levels of sCD163 in patients with Gaucher's disease...... supplementation therapy, the sCD163 levels were significantly reduced [4.7 mg/L (3.2-6.6), P = 0.0004]. sCD163 correlated with disease severity (rho = 0.43, P 0.0001). This study further establishes that sCD163 may be a valuable laboratory parameter...... in monitoring disease with increased macrophage activity....

  14. Will climate change increase ozone depletion from low-energy-electron precipitation?

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-10-01

    Full Text Available We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NOx concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NOx with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NOx effect appears to lose importance due to the different nature of the climate-change induced circulation changes.

  15. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors.

    Science.gov (United States)

    Maródi, L; Schreiber, S; Anderson, D C; MacDermott, R P; Korchak, H M; Johnston, R B

    1993-01-01

    In contrast to its macrophage-activating capacity, IFN-gamma downregulates expression of the macrophage mannose receptor (MMR), which mediates uptake of Candida and other microorganisms. We found that IFN-gamma induced a concentration-dependent increase in the capacity of human monocyte-derived macrophages to ingest and kill both opsonized and unopsonized Candida albicans and to release superoxide anion upon stimulation with Candida. Mannan or mannosylated albumin inhibited this activated uptake of unopsonized Candida, but glucan did not. Addition of mAb to complement receptor (CR) 3 did not inhibit ingestion; macrophages that lacked CR3 (leukocyte adhesion defect) showed normal upregulation of ingestion by IFN-gamma. The increased candidacidal activity of IFN-gamma-activated macrophages was associated with reduced expression of MMR by a mean of 79% and decreased pinocytic uptake of 125I-mannosylated BSA by 73%; K(uptake) of pinocytosis was not changed. Exposure of resident macrophages to unopsonized Candida did not elicit a transient increase in intracellular free Ca2+ ([Ca2+]i); macrophages activated by IFN-gamma expressed a brisk increase in [Ca2+]i on exposure to Candida. These data suggest that macrophage activation by IFN-gamma can enhance resistance to C. albicans infection in spite of downregulation of the MMR, perhaps through enhanced coupling of the MMR to microbicidal functions. PMID:8390485

  16. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Ivec, Martin; Botic, Tanja; Koren, Srecko

    2007-01-01

    and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our...... understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability...... dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied....

  17. Endogenous glucose production increases in response to metformin treatment in the glycogen-depleted state in humans

    DEFF Research Database (Denmark)

    Christensen, Mette Marie H; Højlund, Kurt; Hother-Nielsen, Ole

    2015-01-01

    had two reduced-function alleles in OCT1). Three were excluded from the analysis because of early dropout. Metformin significantly stimulated glucose disposal rates and non-oxidative glucose metabolism with no effect on glucose oxidation. This increase in glucose utilisation was explained...... of metformin on glucose metabolism in humans after a glycogen-depleting fast and the role of reduced-function alleles in OCT1 (also known as SLC22A1). METHODS: In a randomised, crossover trial, healthy individuals with or without reduced-function alleles in OCT1 were fasted for 42 h twice, either...... metabolism were assessed using [3-(3)H]glucose, indirect calorimetry and measurement of substrates and counter-regulatory hormones. The primary outcome was endogenous glucose production (EGP). RESULTS: Thirty-seven individuals were randomised. Thirty-four completed the study (12 had none, 13 had one and nine...

  18. Monocytes/macrophages infected with Toxoplasma gondii do not increase co-stimulatory molecules while maintaining their migratory ability.

    Science.gov (United States)

    Seipel, Daniele; Ribeiro-Gomes, Flavia Lima; Barcelos, Michelle Willmen; Ramalho, André Villaça; Kanashiro, Milton M; Kipnis, Thereza Liberman; Arnholdt, Andrea Cristina Veto

    2009-09-01

    Toxoplasma gondii is an obligate intracellular parasite that is able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. The parasite is able to infect macrophages and dendritic cells and use them for dispersal throughout the body, but the activation state of those cells is unknown. We investigated the ability of human and murine cells from monocytic/macrophage lineages that had not previously been exposed to inflammatory cytokines to up-regulate co-stimulatory and adhesion molecules upon infection. Toxoplasma gondii-infected human monocytes (freshly isolated and THP1 lineage) were unable to up-regulate CD86, CD83, CD40 or CD1a. CD80 expression increased in infected cells but expression of l-selectin and beta2 integrin was unaltered. We evaluated the ability of infected macrophages from wild type C57/BL/6 or CD14(-/-) mice to migrate in 8 mum transwells. Infected cells from CD14(-/-) mice were more likely to de-adhere than infected cells from wild type mice but they did not show any increase in migratory ability. The non-stimulatory profile of these infected cells may contribute to parasite spread throughout the lymphatic circulation in the initial phases of infection.

  19. Sodium chloride increases the ciliary transportability of cystic fibrosis and bronchiectasis sputum on the mucus-depleted bovine trachea.

    Science.gov (United States)

    Wills, P J; Hall, R L; Chan, W; Cole, P J

    1997-01-01

    Mucus retention in the lungs is an important feature of several respiratory diseases (Regnis, J.A., M. Robinson, D.L. Bailey, P. Cook, P. Hooper, H.K. Chan, I. Gonda, G. Bautovich, and P.T.P. Bye. 1994. Am. J. Respir. Crit. Care Med. 150:66-71 and Currie, D.C., D. Pavia, J.E. Agnew, M.T. Lopez-Vidriero, P.D. Diamond, P.J. Cole, and S.W. Clarke. 1987. Thorax. 42:126-130). On the mucus-depleted bovine trachea, the ciliary transport rate of sputum from patients with cystic fibrosis and bronchiectasis of other causes was slow, but the rate was doubled by increasing the sodium chloride content by 90 mM. Increasing the sputum osmolality by inspissation or by the addition of nonelectrolytes had a similar effect. The viscoelasticity of sputum, but not the bovine ciliary beat frequency, was markedly saline dependent over the pathophysiological range. This suggests that low mucus salinity, not (as is generally assumed) its under-hydration, contributes to its retention in bronchiectasis due to cystic fibrosis and other causes, probably by affecting its rheology. It also indicates how the genetic defect in cystic fibrosis might lead to impaired mucus clearance. Therapies that increase the osmolality of lung mucus might benefit patients with mucus retention.

  20. Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells/macrophages in diet-induced steatohepatitis in FGF5 deficient mice

    Science.gov (United States)

    Nakashima, Hiroyuki; Nakashima, Masahiro; Kinoshita, Manabu; Ikarashi, Masami; Miyazaki, Hiromi; Hanaka, Hiromi; Imaki, Junko; Seki, Shuhji

    2016-01-01

    We have recently reported that Kupffer cells consist of two subsets, radio-resistant resident CD68+ Kupffer cells and radio-sensitive recruited CD11b+ Kupffer cells/macrophages (Mφs). Non-alcoholic steatohepatitis (NASH) is characterized not only by hepatic steatosis but also chronic inflammation and fibrosis. In the present study, we investigated the immunological mechanism of diet-induced steatohepatitis in fibroblast growth factor 5 (FGF5) deficient mice. After consumption of a high fat diet (HFD) for 8 weeks, FGF5 null mice developed severe steatohepatitis and fibrosis resembling human NASH. F4/80+ Mφs which were both CD11b and CD68 positive accumulated in the liver. The production of TNF and FasL indicated that they are the pivotal effectors in this hepatitis. The weak phagocytic activity and lack of CRIg mRNA suggested that they were recruited Mφs. Intermittent exposure to 1 Gy irradiation markedly decreased these Mφs and dramatically inhibited liver inflammation without attenuating steatosis. However, depletion of the resident subset by clodronate liposome (c-lipo) treatment increased the Mφs and tended to exacerbate disease progression. Recruited CD11b+ CD68+ Kupffer cells/Mφs may play an essential role in steatohepatitis and fibrosis in FGF5 null mice fed with a HFD. Recruitment and activation of bone marrow derived Mφs is the key factor to develop steatohepatitis from simple steatosis. PMID:27708340

  1. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    OpenAIRE

    María Virtudes Céspedes; María José Guillén; Pedro Pablo López-Casas; Francesca Sarno; Alberto Gallardo; Patricia Álamo; Carmen Cuevas; Manuel Hidalgo; Carlos María Galmarini; Paola Allavena; Pablo Avilés; Ramón Mangues

    2016-01-01

    We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tum...

  2. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  3. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    Science.gov (United States)

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation.

  4. Self-regulation and personality: how interventions increase regulatory success, and how depletion moderates the effects of traits on behavior.

    Science.gov (United States)

    Baumeister, Roy F; Gailliot, Matthew; DeWall, C Nathan; Oaten, Megan

    2006-12-01

    Self-regulation is a highly adaptive, distinctively human trait that enables people to override and alter their responses, including changing themselves so as to live up to social and other standards. Recent evidence indicates that self-regulation often consumes a limited resource, akin to energy or strength, thereby creating a temporary state of ego depletion. This article summarizes recent evidence indicating that regular exercises in self-regulation can produce broad improvements in self-regulation (like strengthening a muscle), making people less vulnerable to ego depletion. Furthermore, it shows that ego depletion moderates the effects of many traits on behavior, particularly such that wide differences in socially disapproved motivations produce greater differences in behavior when ego depletion weakens the customary inner restraints.

  5. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages.

    Science.gov (United States)

    Iio, Akio; Ohguchi, Kenji; Maruyama, Hiroe; Tazawa, Shigemi; Araki, Yoko; Ichihara, Kenji; Nozawa, Yoshinori; Ito, Masafumi

    2012-03-15

    The ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that directly contributes to high-density lipoprotein (HDL) biogenesis by regulating the cellular efflux of cholesterol. Since ABCA1 plays a pivotal role in cholesterol homeostasis and HDL metabolism, identification of a novel substance that is capable of increasing its expression would be beneficial for the prevention and therapy of atherosclerosis. In the present study, we studied the effects of ethanolic extracts of Brazilian red propolis (EERP) on ABCA1 expression and cholesterol efflux in THP-1 macrophages. EERP enhanced PPARγ and liver X receptor (LXR) transcriptional activity at 5-15μg/ml, which was associated with upregulation of PPARγ and LXRα expression. It was also found that EERP increase the activity of the ABCA1 promoter, which is positively regulated by LXR. Consistent with these findings, treatment with EERP increased both mRNA and protein expression of ABCA1. Finally, EERP upregulated ApoA-I-mediated cholesterol efflux. Our results showed that EERP promote ApoA-I-mediated cholesterol efflux from macrophages by increasing ABCA1 expression via induction of PPARγ/LXR. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2017-09-01

    Full Text Available We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3–20 μM increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.

  7. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Holm, Sverre [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Yndestad, Arne [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Scholz, Hanne [Section for Transplantation, Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo (Norway); Sagen, Ellen Lund [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Nebb, Hilde [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Holven, Kirsten B. [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Dahl, Tuva B. [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Aukrust, Pål [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway)

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  8. Angiotensin II-Induced Endothelial Dysfunction is Temporally Linked with Increases in Intereukin-6 and Vascular Macrophage Accumulation

    Directory of Open Access Journals (Sweden)

    Sean P Didion

    2014-10-01

    Full Text Available Angiotensin II (Ang II is associated with vascular hypertrophy, endothelial dysfunction and activation of a number of inflammatory molecules, however the linear events involved in the development of hypertension and endothelial dysfunction produced in response to Ang II are not well defined. The goal of this study was to examine the dose- and temporal-dependent development of endothelial dysfunction in response to Ang II. Blood pressure and responses of carotid arteries were examined in control (C57Bl/6 mice and in mice infused with 50, 100, 200, 400, or 1000 ng/kg/min Ang II for either 14 or 28 Days. Infusion of Ang II was associated with graded and marked increases in systolic blood pressure and plasma Ang II concentrations. While low doses of Ang II (ie, 50 and 100 ng/kg/min had little to no effect on blood pressure or endothelial function, high doses of Ang II (e.g., 1000 ng/kg/min were associated with large increases in arterial pressure and marked impairment of endothelial function. In contrast, intermediate doses of Ang II (200 and 400 ng/kg/min while initially having no effect on systolic blood pressure were associated with significant increases in pressure over time. Despite increasing blood pressure, 200 ng/kg/min had no effect on endothelial function, whereas 400 ng/kg/min produced modest impairment on Day 14 and marked impairment of endothelial function on Day 28. The degree of endothelial dysfunction produced by 400 and 1000 ng/kg/min Ang II was reflective of parallel increases in plasma IL-6 levels and vascular macrophage content, suggesting that increases in arterial blood pressure precede the development of endothelial dysfunction. These findings are important as they demonstrate that along with increases in arterial pressure that increases in IL-6 and vascular macrophage accumulation correlate with the impairment of endothelial function produced by Ang II.

  9. Deficiency in macrophage-stimulating protein results in spontaneous intestinal inflammation and increased susceptibility toward epithelial damage in zebrafish.

    Science.gov (United States)

    Witte, Merlijn; Huitema, Leonie F A; Nieuwenhuis, Edward E S; Brugman, Sylvia

    2014-12-01

    Several genome-wide association studies have identified the genes encoding for macrophage-stimulating protein (MSP) and its receptor RON (Recepteur d'Origine Nantais) as possible susceptibility factors in inflammatory bowel disease. While it has been shown that the MSP-RON signaling pathway is involved in tissue injury responses, current mouse models for MSP and RON deficiency have not clearly demonstrated a role of MSP-RON signaling in the context of intestinal inflammation. In this study, we report that the recently identified zebrafish Msp mutant (msp(t34230)) develops spontaneous intestinal inflammation over time. From 14 to 28 weeks postfertilization Msp-deficient zebrafish show intestinal eosinophilia, increased intestinal expression of inflammatory marker mmp9, and activation of intestinal goblet cells. Moreover, these Msp mutant zebrafish are more susceptible toward ethanol-induced epithelial damage, which resulted in increased infiltration and proliferation of immune cells within the lamina propria and prolonged intestinal proinflammatory cytokine responses in some mutant fish. In light of the recent development of many tools to visualize, monitor, and genetically modify zebrafish, these Msp-deficient zebrafish will enable in-depth in vivo analysis of epithelial and macrophage-specific MSP-RON signaling in the context of intestinal inflammation.

  10. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation

    Directory of Open Access Journals (Sweden)

    Matija Hedl

    2016-08-01

    Full Text Available Interferon regulatory factor 5 (IRF5 regulates inflammatory M1 macrophage polarization, and disease-associated IRF5 genetic variants regulate pattern-recognition-receptor (PRR-induced cytokines. PRR-stimulated macrophages and M1 macrophages exhibit enhanced glycolysis, a central mediator of inflammation. We find that IRF5 is needed for PRR-enhanced glycolysis in human macrophages and in mice in vivo. Upon stimulation of the PRR nucleotide binding oligomerization domain containing 2 (NOD2 in human macrophages, IRF5 binds RIP2, IRAK1, and TRAF6. IRF5, in turn, is required for optimal Akt2 activation, which increases expression of glycolytic pathway genes and HIF1A as well as pro-inflammatory cytokines and M1 polarization. Furthermore, pro-inflammatory cytokines and glycolytic pathways co-regulate each other. Rs2004640/rs2280714 TT/TT IRF5 disease-risk-carrier cells demonstrate increased IRF5 expression and increased PRR-induced Akt2 activation, glycolysis, pro-inflammatory cytokines, and M1 polarization relative to GG/CC carrier macrophages. Our findings identify that IRF5 disease-associated polymorphisms regulate diverse immunological and metabolic outcomes and provide further insight into mechanisms contributing to the increasingly recognized important role for glycolysis in inflammation.

  11. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes.

    Science.gov (United States)

    Dumont, Nicolas A; Frenette, Jérôme

    2013-02-01

    Skeletal muscle injury and regeneration are closely associated with an inflammatory reaction that is usually characterized by sequential recruitment of neutrophils and monocytes or macrophages. Selective macrophage depletion models have shown that macrophages are essential for complete regeneration of muscle fibers after freeze injuries, toxin injuries, ischemia-reperfusion, and hindlimb unloading and reloading. Although there is growing evidence that macrophages possess major myogenic capacities, it is not known whether the positive effects of macrophages can be optimized to stimulate muscle regrowth. We used in vivo and in vitro mouse models of atrophy to investigate the effects of stimulating macrophages with macrophage colony-stimulating factor (M-CSF) on muscle regrowth. When atrophied soleus muscles were injected intramuscularly with M-CSF, we observed a 1.6-fold increase in macrophage density and a faster recovery in muscle force (20%), combined with an increase in muscle fiber diameter (10%), after 7 days of reloading, compared with PBS-injected soleus muscles. Furthermore, coculture of atrophied myotubes with or without bone marrow-derived macrophages (BMDM) and/or M-CSF revealed that the combination of BMDMs and M-CSF was required to promote myotube growth (15%). More specifically, M-CSF promoted the anti-inflammatory macrophage phenotype, which in turn decreased protein degradation and MuRF-1 expression by 25% in growing myotubes. These results indicate that specific macrophage subsets can be stimulated to promote muscle cell regrowth after atrophy.

  12. Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis.

    Science.gov (United States)

    Deng, Long; Hong, Tao; Lin, Jinyi; Ding, Suling; Huang, Zheyong; Chen, Jinmiao; Jia, Jianguo; Zou, Yunzeng; Wang, Timothy C; Yang, Xiangdong; Ge, Junbo

    2015-08-17

    Histamine is a biogenic amine that is widely distributed and has multiple functions, but the role it plays in acute myocardial infarction (AMI) remains unclear. In this study, we investigated the origin and contribution of endogenous histamine to AMI. Histidine decarboxylase (HDC) is the unique enzyme responsible for histamine generation. Using HDC-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the HDC promoter, we identified HDC expression primarily in CD11b(+)Gr-1(+) immature myeloid cells (IMCs) that markedly increase in the early stages of AMI. Deficiency of histamine in HDC knockout mice (HDC(-/-)) reduced cardiac function and exacerbated the injury of infarcted heart. Furthermore, administering either an H1 receptor antagonist (pyrilamine) or an H2 receptor antagonist (cimetidine) demonstrated a protective effect of histamine against myocardial injury. The results of in vivo and in vitro assays showed that histamine deficiency promotes the apoptosis of cardiomyocytes and inhibits macrophage infiltration. In conclusion, CD11b(+)Gr-1(+) IMCs are the predominant HDC-expressing sites in AMI, and histamine plays a protective role in the process of AMI through inhibition of cardiomyocyte apoptosis and facilitation of macrophage infiltration.

  13. Leptin-mediated increases in catecholamine signaling reduce adipose tissue inflammation via activation of macrophage HDAC4.

    Science.gov (United States)

    Luan, Bing; Goodarzi, Mark O; Phillips, Naomi G; Guo, Xiuqing; Chen, Yii-Der I; Yao, Jie; Allison, Matthew; Rotter, Jerome I; Shaw, Reuben; Montminy, Marc

    2014-06-03

    Obesity promotes systemic insulin resistance through inflammatory changes that lead to the release of cytokines from activated macrophages. Although the mechanism is unclear, the second messenger cAMP has been found to attenuate macrophage activity in response to a variety of hormonal signals. We show that, in the setting of acute overnutrition, leptin triggers catecholamine-dependent increases in cAMP signaling that reduce inflammatory gene expression via the activation of the histone deacetylase HDAC4. cAMP stimulates HDAC4 activity through the PKA-dependent inhibition of the salt-inducible kinases (SIKs), which otherwise phosphorylate and sequester HDAC4 in the cytoplasm. Following its dephosphorylation, HDAC4 shuttles to the nucleus where it inhibits NF-κB activity over proinflammatory genes. As variants in the Hdac4 gene are associated with obesity in humans, our results indicate that the cAMP-HDAC4 pathway functions importantly in maintaining insulin sensitivity and energy balance via its effects on the innate immune system. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Experimental depletion of CD8+ cells in acutely SIVagm-Infected African Green Monkeys results in increased viral replication

    Directory of Open Access Journals (Sweden)

    Apetrei Cristian

    2010-05-01

    Full Text Available Abstract Background In vivo CD8+ cell depletions in pathogenic SIV infections identified a key role for cellular immunity in controlling viral load (VL and disease progression. However, similar studies gave discordant results in chronically-infected SMs, leading some authors to propose that in natural hosts, SIV replication is independent of cellular immunity. To assess the role of cellular immune responses in the control of SIV replication in natural hosts, we investigated the impact of CD8+ cell depletion during acute SIV infection in AGMs. Results Nine AGMs were infected with SIVagm.sab and were followed up to day 225 p.i. Four were intravenously infused with the cM-T807 antibody on days 0 (50 mg/kg, 6, and 13 (10 mg/kg, respectively post infection (p.i.. CD8+ cells were depleted for up to 28 days p.i. in peripheral blood and LNs in all treated AGMs. Partial CD8+ T cell depletion occurred in the intestine. SIVagm VLs peaked at similar levels in both groups (107-108 RNA copies/ml. However, while VLs were controlled in undepleted AGMs, reaching set-point levels (104-105 RNA copies/ml by day 28 p.i., high VLs (>106 RNA copies/ml were maintained by day 21 p.i. in CD8-depleted AGMs. By day 42 p.i., VLs were comparable between the two groups. The levels of immune activation and proliferation remained elevated up to day 72 p.i. in CD8-depleted AGMs and returned to preinfection levels in controls by day 28 p.i. None of the CD8-depleted animals progressed to AIDS. Conclusion CD8+ cells are responsible for a partial control of postacute viral replication in SIVagm.sab-infected AGMs. In contrast to macaques, the SIVagm-infected AGMs are able to control viral replication after recovery of the CD8+ T cells and avoid disease progression.

  15. Acute tryptophan depletion increases translational indices of anxiety but not fear: serotonergic modulation of the bed nucleus of the stria terminalis?

    Science.gov (United States)

    Robinson, Oliver J; Overstreet, Cassie; Allen, Phillip S; Pine, Daniel S; Grillon, Christian

    2012-07-01

    Serotonin is strongly implicated in the mammalian stress response, but surprisingly little is known about its mode of action. Recent data suggest that serotonin can inhibit aversive responding in humans, but this remains underspecified. In particular, data in rodents suggest that global serotonin depletion may specifically increase long-duration bed nucleus of the stria terminalis (BNST)-mediated aversive responses (ie, anxiety), but not short-duration BNST-independent responses (ie, fear). Here, we extend these findings to humans. In a balanced, placebo-controlled crossover design, healthy volunteers (n=20) received a controlled diet with and without the serotonin precursor tryptophan (acute tryptophan depletion; ATD). Aversive states were indexed by translational acoustic startle measures. Fear and anxiety were operationally defined as the increase in startle reactivity during short- and long-duration threat periods evoked by predictable shock (fear-potentiated startle) and by the context in which the shocks were administered (anxiety-potentiated startle), respectively. ATD significantly increased long-duration anxiety-potentiated startle but had no effect on short-duration fear-potentiated startle. These results suggest that serotonin depletion in humans selectively increases anxiety but not fear. Current translational frameworks support the proposition that ATD thus disinhibits dorsal raphé-originating serotonergic control of corticotropin-releasing hormone-mediated excitation of the BNST. This generates a candidate neuropharmacological mechanism by which depleted serotonin may increase response to sustained threats, alongside clear implications for our understanding of the manifestation and treatment of mood and anxiety disorders.

  16. IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn2+ that Promotes Pathogen Persistence in Macrophages

    Directory of Open Access Journals (Sweden)

    Kavitha Subramanian Vignesh

    2016-09-01

    Full Text Available Alternative activation of macrophages promotes wound healing but weakens antimicrobial defenses against intracellular pathogens. The mechanisms that suppress macrophage function to create a favorable environment for pathogen growth remain elusive. We show that interleukin (IL-4 triggers a metallothionein 3 (MT3- and Zn exporter SLC30A4-dependent increase in the labile Zn2+ stores in macrophages and that intracellular pathogens can exploit this increase in Zn to survive. IL-4 regulates this pathway by shuttling extracellular Zn into macrophages and by activating cathepsins that act on MT3 to release bound Zn. We show that IL-4 can modulate Zn homeostasis in both human monocytes and mice. In vivo, MT3 can repress macrophage function in an M2-polarizing environment to promote pathogen persistence. Thus, MT3 and SLC30A4 dictate the size of the labile Zn2+ pool and promote the survival of a prototypical intracellular pathogen in M2 macrophages.

  17. Increased basolateral sorting of carcinoembryonic antigen in a polarized colon carcinoma cell line after cholesterol depletion-Implications for treatment of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Robert Ehehalt; Markus Krautter; Martin Zorn; Richard Sparla; Joachim Fūllekrug; Hasan Kulaksiz; Wolfgang Stremmel

    2008-01-01

    AIM:To investigate a possible increase of basolateral expression of carcinoembryonic antigen(CEA)by interfering with the apical transport machinery,we studied the effect of cholesterol depletion on CEA sorting and secretion.METHODS:Cholesterol depletion was performed in polarized Caco-2 cells using Iovastatin and methyl-βcyclodextrin.RESULTS:We show that CEA is predominantly expressed and secreted at the apical surface.Reduction of the cholesterol level of the cell by 40%-50% with Iovastatin and methyl-β-cyclodextrin led to a significant change of the apical-to-basolateral transport ratio towards the basolateral membrane.CONCLUSION:As basolateral expression of CEA has been suggested to have anti-inflamatory properties,Cholesterol depletion of enterocytes might be a potential approach to influence the course of inflammatory bowel disease.

  18. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  19. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice.

    Science.gov (United States)

    Rom, Oren; Korach-Rechtman, Hila; Hayek, Tony; Danin-Poleg, Yael; Bar, Haim; Kashi, Yechezkel; Aviram, Michael

    2016-09-30

    The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE(-/-)) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.

  20. IL4I1 Is a Novel Regulator of M2 Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production.

    Directory of Open Access Journals (Sweden)

    Yinpu Yue

    Full Text Available Interleukin 4-induced gene-1 (IL4I1 was initially described as an early IL-4-inducible gene in B cells. IL4I1 protein can inhibit T cell proliferation by releasing its enzymatic catabolite, H2O2, and this effect is associated with transient down-regulation of T cell CD3 receptor-zeta (TCRζ expression. Herein, we show that IL4I1 contributes to the regulation of macrophage programming. We found that expression of IL4I1 increased during bone marrow-derived macrophage (BMDM differentiation, expression of IL4I1 is much higher in primary macrophages than monocytes, and IL4I1 expression in BMDMs could be induced by Th1 and Th2 cytokines in two different patterns. Gene expression analysis revealed that overexpression of IL4I1 drove the expression of M2 markers (Fizz1, Arg1, YM-1, MR and inhibited the expression of M1-associated cytokines. Conversely, knockdown of IL4I1 by siRNA resulted in opposite effects, and also attenuated STAT-3 and STAT-6 phosphorylation. Furthermore, IL4I1 produced by macrophages catalyzed L-tryptophan degradation, while levo-1-methyl-tryptophan (L-1-MT, but not dextro-1-methyl-tryptophan, partially rescued IL4I1-dependent inhibition of T cell activation. Other inhibitors, such as diphenylene iodonium (DPI, an anti-IL-10Rα blocking antibody, and a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine, also had this effect. Overall, our findings indicate that IL4I1 promotes an enhanced M2 functional phenotype, which is most likely associated with the phosphorylation of STAT-6 and STAT-3. Moreover, DPI, L-1-MT, NG-monomethyl-L-arginine, and anti-IL-10Rα blocking antibody were all found to be effective IL4I1 inhibitors in vitro.

  1. Partial depletion of CD4(+)CD25(+)Foxp3(+) T regulatory cells significantly increases morbidity during acute phase Toxoplasma gondii infection in resistant BALB/c mice.

    Science.gov (United States)

    Morampudi, Vijay; De Craeye, Stephane; Le Moine, Alain; Detienne, Sophie; Braun, M Y; D'Souza, Sushila

    2011-04-01

    CD4(+)CD25(+)Foxp3(+) T regulatory (Treg) cells, are known to regulate responses to infectious agents. Here we compared disease progression in BALB/c and C57BL/6(B6) mice infected perorally with Toxoplasma gondii for 7 days and examined the affect of partial depletion of Treg cells in these mice. BALB/c mice were seen to be resistant to peroral infection whereas B6 mice were susceptible in terms of mortality. Although the depletion of Treg cells before infection had no effect on the survival of B6 or BALB/c mice, it resulted in increased parasite burdens in BALB/c mice, especially in the lamina propria, but not in B6 mice. Pro-inflammatory cytokines were also increased in Treg cells depleted BALB/c mice as compared to B6 mice. In addition Treg cell depleted BALB/c mice displayed increased ileal histopathology compared to their non-treated counterparts. These findings provide evidence for the contribution of Treg cells, in the resistance of BALB/c mice against peroral T. gondii infection.

  2. Shear-affected depletion interaction

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.; Lang, P.R.

    2012-01-01

    We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force i

  3. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans.

    Science.gov (United States)

    Fink, Lisbeth N; Costford, Sheila R; Lee, Yun S; Jensen, Thomas E; Bilan, Philip J; Oberbach, Andreas; Blüher, Matthias; Olefsky, Jerrold M; Sams, Anette; Klip, Amira

    2014-03-01

    In obesity, immune cells infiltrate adipose tissue. Skeletal muscle is the major tissue of insulin-dependent glucose disposal, and indices of muscle inflammation arise during obesity, but whether and which immune cells increase in muscle remain unclear. Immune cell presence in quadriceps muscle of wild type mice fed high-fat diet (HFD) was studied for 3 days to 10 weeks, in CCL2-KO mice fed HFD for 1 week, and in human muscle. Leukocyte presence was assessed by gene expression of lineage markers, cyto/chemokines and receptors; immunohistochemistry; and flow cytometry. After 1 week HFD, concomitantly with glucose intolerance, muscle gene expression of Ly6b, Emr1 (F4/80), Tnf, Ccl2, and Ccr2 rose, as did pro- and anti-inflammatory markers Itgax (CD11c) and Mgl2. CD11c+ proinflammatory macrophages in muscle increased by 76%. After 10 weeks HFD, macrophages in muscle increased by 47%. Quadriceps from CCL2-KO mice on HFD did not gain macrophages and maintained insulin sensitivity. Muscle of obese, glucose-intolerant humans showed elevated CD68 (macrophage marker) and ITGAX, correlating with poor glucose disposal and adiposity. Mouse and human skeletal muscles gain a distinct population of inflammatory macrophages upon HFD or obesity, linked to insulin resistance in humans and CCL2 availability in mice. © 2013 The Obesity Society.

  4. Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone

    DEFF Research Database (Denmark)

    Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik

    2012-01-01

    on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages....... The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide...... apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug...

  5. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    Directory of Open Access Journals (Sweden)

    Gabriela Mora-Bau

    2015-07-01

    Full Text Available Urinary tract infection (UTI is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  6. Topical application of 1% ZnSO4 on oral ulcers increases the number of macrophages in normal or diabetic conditions of wistar rats

    Directory of Open Access Journals (Sweden)

    Rochman Mujayanto

    2017-03-01

    Full Text Available Background: Therapy for chronic ulcer in diabetic patient is by modifying local inflammation response using drugs that acts as immunomodulator, neuromodulator and growth factors stimulator. Topical zinc is one of drug that can modifiy local inflammation response, immunostimulation or immunosuppresion. Purpose: This study was to prove about the number of macrophage in oral ulcer between normal and diabetes microscopically and the difference if treated by 1% ZnSO4 gel topically. Method: Ulcer in lower labial mucosa was made in normal and diabetic Wistar rats (induced by STZ, then applied 1% ZnSO4 gel and CMC-Na gel as control. They were decapitated in third and fifth day and specimen was made by processing lower labial mucosa Result: Microscopically, the result showed the number of macrophages in oral ulcer in diabetic condition was significantly higher than normal and the application of 1% ZnSO4 increased the number of macrophages in fifth day. Conclusion: The number of macrophages was higher in diabetic than normal condition, and was proven that topical application of 1% ZnSO4 increased the number macrophages of oral ulcer diabetic and normal condition.

  7. Macrophage Deletion of SOCS1 Increases Sensitivity to LPS and Palmitic Acid and Results in Systemic Inflammation and Hepatic Insulin Resistance

    Science.gov (United States)

    Graham, Kate L.; Galic, Sandra; Honeyman, Jane E.; Fynch, Stacey L.; Hewitt, Kimberly A.; Kay, Thomas W.

    2011-01-01

    OBJECTIVE Macrophage secretion of proinflammatory cytokines contributes to the pathogenesis of obesity-related insulin resistance. An important regulator of inflammation is the suppressor of cytokine signaling-1 (SOCS1), which inhibits the JAK-STAT and toll-like receptor-4 (TLR4) pathways. Despite the reported role of SOCS1 in inhibiting insulin signaling, it is surprising that a SOCS1 polymorphism that increases SOCS1 promoter activity is associated with enhanced insulin sensitivity despite obesity. In the current study, we investigated the physiological role of myeloid and lymphoid cell SOCS1 in regulating inflammation and insulin sensitivity. RESEARCH DESIGN AND METHODS We used mice generated by crossing SOCS1 floxed mice with mice expressing Cre recombinase under the control of the LysM-Cre promoter (SOCS1 LysM-Cre). These mice have deletion of SOCS1 in macrophages and lymphocytes. We assessed macrophage inflammation using flow cytometry and serum cytokine levels using Bioplex assays. We then measured insulin sensitivity using glucose tolerance tests and the euglycemic-hyperinsulinemic clamp. Using bone marrow–derived macrophages, we tested the effects of SOCS1 deletion in regulating responses to the TLR4 ligands: lipopolysaccharide (LPS) and palmitic acid. RESULTS SOCS1 LysM-Cre mice had increased macrophage expression of CD11c, enhanced sensitivity to LPS, and palmitic acid and increased serum concentrations of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein. Increased inflammation was associated with impaired glucose tolerance and hyperinsulinemia as a result of reduced hepatic but not skeletal muscle insulin sensitivity. CONCLUSIONS The expression of SOCS1 in hematopoietic cells protects mice against systemic inflammation and hepatic insulin resistance potentially by inhibiting LPS and palmitate-induced TLR4 signaling in macrophages. PMID:21646388

  8. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017.

  9. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  10. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation?

    Directory of Open Access Journals (Sweden)

    Ana Flavia Popi

    Full Text Available The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP, and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/- mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11 that is often found in B-1 cells. These results strongly suggest that op/op((-/- peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of

  11. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages.

    Science.gov (United States)

    Bouhy, Delphine; Malgrange, Brigitte; Multon, Sylvie; Poirrier, Anne-Lise; Scholtes, Félix; Schoenen, Jean; Franzen, Rachelle

    2006-06-01

    Macrophages (monocytes/microglia) could play a critical role in central nervous system repair. We have previously found a synchronism between the regression of spontaneous axonal regeneration and the deactivation of macrophages 3-4 wk after a compression-injury of rat spinal cord. To explore whether reactivation of endogenous macrophages might be beneficial for spinal cord repair, we have studied the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) in the same paraplegia model and in cell cultures. There was a significant, though transient, improvement of locomotor recovery after a single delayed intraperitoneal injection of 2 microg GM-CSF, which also increased significantly the expression of Cr3 and brain-derived neurotrophic factor (BDNF) by macrophages at the lesion site. At longer survival delays, axonal regeneration was significantly enhanced in GM-CSF-treated rats. In vitro, BV2 microglial cells expressed higher levels of BDNF in the presence of GM-CSF and neurons cocultured with microglial cells activated by GM-CSF generated more neurites, an effect blocked by a BDNF antibody. These experiments suggest that GM-CSF could be an interesting treatment option for spinal cord injury and that its beneficial effects might be mediated by BDNF.

  12. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    Energy Technology Data Exchange (ETDEWEB)

    Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Kunstman, Kevin, E-mail: kunstman@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Gabuzda, Dana, E-mail: dana_gabuzda@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Neurology (Microbiology and Immunobiology), Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.

  13. Model of risk of cortical cataract in the US population with exposure to increased ultraviolet radiation due to stratospheric ozone depletion.

    Science.gov (United States)

    West, Sheila K; Longstreth, Janice D; Munoz, Beatriz E; Pitcher, Hugh M; Duncan, Donald D

    2005-12-01

    The authors modeled the possible consequences for US cataract incidence of increases in ultraviolet B radiation due to ozone depletion. Data on the dose-response relation between ocular exposure to ultraviolet B radiation and cortical cataract were derived from a population-based study (the Salisbury Eye Evaluation Project, Salisbury, Maryland) in which extensive data on cataract and ultraviolet radiation were collected in persons aged 65-84 years. Exposure estimates for the US population were derived using estimated ultraviolet radiation fluxes as a function of wavelength. US Census data were used to obtain the age, ethnicity, and sex distribution of the population. Predicted probabilities of cataract were derived from the age-, sex-, and ethnicity-specific ocular ultraviolet exposure data and were modeled under conditions of 5-20% ozone depletion. The analysis indicated that by 2050, the prevalence of cortical cataract will increase above expected levels by 1.3-6.9%. The authors estimate that with 5-20% ozone depletion, there will be 167,000-830,000 additional cases of cortical cataract by 2050. Because of the high prevalence of cataract in older persons, at a 2003 cost of 3,370 dollars per cataract operation, this increase could represent an excess cost of 563 million dollars to 2.8 billion dollars.

  14. Increased Levels of Calprotectin in Obesity Are Related to Macrophage Content: Impact on Inflammation and Effect of Weight Loss

    Science.gov (United States)

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Fernández-Real, José Manuel; Salvador, Javier; Frühbeck, Gema

    2011-01-01

    Calprotectin has been recently described as a novel marker of obesity. The aim of this study was to determine the circulating concentrations and expression levels of calprotectin subunits (S100A8 and S100A9) in visceral adipose tissue (VAT), exploring its impact on insulin resistance and inflammation and the effect of weight loss. We included 53 subjects in the study. Gene expression levels of the S100A8/A9 complex were analyzed in VAT as well as in both adipocytes and stromovascular fraction cells (SVFCs). In addition, circulating calprotectin and soluble receptor for the advanced glycation end product (sRAGE) concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 26). Circulating concentrations and VAT expression of S100A8/A9 complex were increased in normoglycemic and type 2 diabetic obese patients (P diabetes, its positive association with inflammation as well as the higher expression levels in the SVFCs in VAT suggests a potential role of this protein as a chemotactic factor in the recruitment of macrophages to VAT, increasing inflammation and the development of obesity-associated comorbidities. PMID:21738950

  15. Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen.

    Science.gov (United States)

    Stempin, Cinthia; Giordanengo, Laura; Gea, Susana; Cerbán, Fabio

    2002-10-01

    We studied the macrophage (Mo) activation pathways through Mo interaction with immunogenic Trypanosoma cruzi antigens as cruzipain (Cz) and R13. J774 cells, peritoneal and spleen Mo from normal mice, were used. Although Mo classic activation was observed in the presence of lipopolysaccharide, evaluated through nitric oxide (NO) and interleukin (IL)-12 production, Cz and R13 did not activate Mo in this way. To study the alternative pathway, we examined the arginase activity in Mo cultured with Cz. An increase of arginase activity was detected in all Mo sources assayed. An increase of IL-10 and transforming growth factor-beta in culture supernatants from Mo stimulated with Cz was observed. The study of expression of B7.1 and B7.2 in spleen Mo revealed that Cz induces preferential expression of B7.2. In vitro studies revealed that Cz stimulated J774 cells and then, infected with trypomastigotes of T. cruzi, developed a higher number of intracellular parasites than unstimulated infected Mo. Thus, Cz favors the perpetuation of T. cruzi infection. In addition, a down-regulation of inducible NO synthase was observed in J774 cells stimulated with Cz. These results suggest that Cz interaction with Mo could modulate the immune response generated against T. cruzi through the induction of a preferential metabolic pathway in Mo.

  16. Obesity Contributes to Ovarian Cancer Metastatic Success through Increased Lipogenesis, Enhanced Vascularity, and Decreased Infiltration of M1 Macrophages.

    Science.gov (United States)

    Liu, Yueying; Metzinger, Matthew N; Lewellen, Kyle A; Cripps, Stephanie N; Carey, Kyle D; Harper, Elizabeth I; Shi, Zonggao; Tarwater, Laura; Grisoli, Annie; Lee, Eric; Slusarz, Ania; Yang, Jing; Loughran, Elizabeth A; Conley, Kaitlyn; Johnson, Jeff J; Klymenko, Yuliya; Bruney, Lana; Liang, Zhong; Dovichi, Norman J; Cheatham, Bentley; Leevy, W Matthew; Stack, M Sharon

    2015-12-01

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy, with high mortality attributable to widespread intraperitoneal metastases. Recent meta-analyses report an association between obesity, ovarian cancer incidence, and ovarian cancer survival, but the effect of obesity on metastasis has not been evaluated. The objective of this study was to use an integrative approach combining in vitro, ex vivo, and in vivo studies to test the hypothesis that obesity contributes to ovarian cancer metastatic success. Initial in vitro studies using three-dimensional mesomimetic cultures showed enhanced cell-cell adhesion to the lipid-loaded mesothelium. Furthermore, in an ex vivo colonization assay, ovarian cancer cells exhibited increased adhesion to mesothelial explants excised from mice modeling diet-induced obesity (DIO), in which they were fed a "Western" diet. Examination of mesothelial ultrastructure revealed a substantial increase in the density of microvilli in DIO mice. Moreover, enhanced intraperitoneal tumor burden was observed in overweight or obese animals in three distinct in vivo models. Further histologic analyses suggested that alterations in lipid regulatory factors, enhanced vascularity, and decreased M1/M2 macrophage ratios may account for the enhanced tumorigenicity. Together, these findings show that obesity potently affects ovarian cancer metastatic success, which likely contributes to the negative correlation between obesity and ovarian cancer survival. ©2015 American Association for Cancer Research.

  17. Increased levels of calprotectin in obesity are related to macrophage content: impact on inflammation and effect of weight loss.

    Science.gov (United States)

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Fernández-Real, José Manuel; Salvador, Javier; Frühbeck, Gema

    2011-01-01

    Calprotectin has been recently described as a novel marker of obesity. The aim of this study was to determine the circulating concentrations and expression levels of calprotectin subunits (S100A8 and S100A9) in visceral adipose tissue (VAT), exploring its impact on insulin resistance and inflammation and the effect of weight loss. We included 53 subjects in the study. Gene expression levels of the S100A8/A9 complex were analyzed in VAT as well as in both adipocytes and stromovascular fraction cells (SVFCs). In addition, circulating calprotectin and soluble receptor for the advanced glycation end product (sRAGE) concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 26). Circulating concentrations and VAT expression of S100A8/A9 complex were increased in normoglycemic and type 2 diabetic obese patients (P calprotectin levels in obese patients decreased (P Calprotectin was mainly expressed by SVFCs, and its expression was significantly correlated (P calprotectin in obesity and obesity-associated type 2 diabetes, its positive association with inflammation as well as the higher expression levels in the SVFCs in VAT suggests a potential role of this protein as a chemotactic factor in the recruitment of macrophages to VAT, increasing inflammation and the development of obesity-associated comorbidities.

  18. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion.

    Directory of Open Access Journals (Sweden)

    Kevin Anton

    Full Text Available Mesenchymal stem cells (MSCs exhibit tropism for sites of tissue injury and tumors. However, the influence of the microenvironment on MSC phenotype and localization remains incompletely characterized. In this study, we begin to define a macrophage-induced MSC phenotype. These MSCs secrete interleukin-6 (IL-6, CCL5, and interferon gamma-induced protein-10 (CXCL10 and exhibit increased mobility in response to multiple soluble factors produced by macrophages including IL-8, CCL2, and CCL5. The pro-migratory phenotype is dependent on activation of a c-Jun N-terminal kinase (JNK pathway. This work begins to identify the influence of macrophages on MSC biology. These interactions are likely to play an important role in the tissue inflammatory response and may provide insight into the migratory potential of MSCs in inflammation and tissue injury.

  19. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture

    Science.gov (United States)

    Lee, K.; Santibanez-Koref, M.; Polvikoski, T.; Birchall, D.; Mendelow, A.D.; Keavney, B.

    2013-01-01

    Objective Resident macrophages play an important role in atheromatous plaque rupture. The macrophage gene expression signature associated with plaque rupture is incompletely defined due to the complex cellular heterogeneity in the plaque. We aimed to characterise differential gene expression in resident plaque macrophages from ruptured and stable human atheromatous lesions. Methods and results We performed genome-wide expression analyses of isolated macrophage-rich regions of stable and ruptured human atherosclerotic plaques. Plaques present in carotid endarterectomy specimens were designated as stable or ruptured using clinical, radiological and histopathological criteria. Macrophage-rich regions were excised from 5 ruptured and 6 stable plaques by laser micro-dissection. Transcriptional profiling was performed using Affymetrix microarrays. The profiles were characteristic of activated macrophages. At a false discovery rate of 10%, 914 genes were differentially expressed between stable and ruptured plaques. The findings were confirmed in fourteen further stable and ruptured samples for a subset of eleven genes with the highest expression differences (p < 0.05). Pathway analysis revealed that components of the PPAR/Adipocytokine signaling pathway were the most significantly upregulated in ruptured compared to stable plaques (p = 5.4 × 10−7). Two key components of the pathway, fatty-acid binding-protein 4 (FABP4) and leptin, showed nine-fold (p = 0.0086) and five-fold (p = 0.0012) greater expression respectively in macrophages from ruptured plaques. Conclusions We found differences in gene expression signatures between macrophages isolated from stable and ruptured human atheromatous plaques. Our findings indicate the involvement of FABP4 and leptin in the progression of atherosclerosis and plaque rupture, and suggest that down-regulation of PPAR/adipocytokine signaling within plaques may have therapeutic potential. PMID:23122912

  20. Cyclophosphamide-induced cystitis increases bladder CXCR4 expression and CXCR4-macrophage migration inhibitory factor association.

    Directory of Open Access Journals (Sweden)

    Pedro L Vera

    Full Text Available BACKGROUND: Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine involved in cystitis and a non-cognate ligand of the chemokine receptor CXCR4 in vitro. We studied whether CXCR4-MIF associations occur in rat bladder and the effect of experimental cystitis. METHODS AND FINDINGS: Twenty male rats received saline or cyclophosphamide (40 mg/kg; i.p.; every 3(rd day to induce persistent cystitis. After eight days, urine was collected and bladders excised under anesthesia. Bladder CXCR4 and CXCR4-MIF co-localization were examined with immunhistochemistry. ELISA determined MIF and stromal derived factor-1 (SDF-1; cognate ligand for CXCR4 levels. Bladder CXCR4 expression (real-time RTC-PCR and protein levels (Western blotting were examined. Co-immunoprecipitations studied MIF-CXCR4 associations.Urothelial basal and intermediate (but not superficial cells in saline-treated rats contained CXCR4, co-localized with MIF. Cyclophosphamide treatment caused: 1 significant redistribution of CXCR4 immunostaining to all urothelial layers (especially apical surface of superficial cells and increased bladder CXCR4 expression; 2 increased urine MIF with decreased bladder MIF; 3 increased bladder SDF-1; 4 increased CXCR4-MIF associations. CONCLUSIONS: These data demonstrate CXCR4-MIF associations occur in vivo in rat bladder and increase in experimental cystitis. Thus, CXCR4 represents an alternative pathway for MIF-mediated signal transduction during bladder inflammation. In the bladder, MIF may compete with SDF-1 (cognate ligand to activate signal transduction mediated by CXCR4.

  1. Depletion of regulatory T cells augments a vaccine-induced T effector cell response against the liver-stage of malaria but fails to increase memory.

    Directory of Open Access Journals (Sweden)

    Maria del Rosario Espinoza Mora

    Full Text Available Regulatory T cells (T(reg have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4(+CD25(+ T(reg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3(+CD25(- T(reg. To obtain more insights in the specific function of T(reg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG. As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP of Plasmodium berghei (Pb was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC. Using this system we demonstrate here that the number of CSP-specific T cells increases when T(reg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.

  2. Sesamin increases heme oxygenase-1 protein in RAW 264.7 macrophages through inhibiting its ubiquitination process.

    Science.gov (United States)

    Fukunaga, Mizuki; Ohnishi, Masatoshi; Shiratsuchi, Ayano; Kawakami, Takuya; Takahashi, Madoka; Motomura, Misato; Egusa, Kyohei; Urasaki, Tomoka; Inoue, Atsuko

    2014-10-15

    Sesamin is a major component in lignans of sesame seed oil, known to possess potent anti-oxidative capacity. In this study, the variation of heme oxygenase (HO)-1, a kind of anti-oxidative enzyme, by sesamin in murine macrophage cell line RAW 264.7 cells was investigated. Lipopolysaccharide (LPS; 10μg/ml) exposure tended to increase HO-1 protein expression. Co-treatment with 100μM sesamin for 12h up-regulated the HO-1 protein level increased by LPS; however, HO-1 mRNA was unaffected. Sesamin delayed the reversal, by the protein synthesis inhibitor cycloheximide (1μM), of the LPS-induced increase of HO-1 protein level. Meanwhile, sesamin suppressed LPS-induced expression of inducible nitric oxide (NO) synthase (iNOS) protein and associated NO release. LPS-induced increase of iNOS protein expression was also reversed by cycloheximide, which was not affected by sesamin, unlike HO-1. To clarify the mechanisms that underlie the up-regulation of HO-1 protein level by sesamin, the human embryonic kidney (HEK) 293T cell line transfected with Flag-tagged HO-1 was used. A proteasome inhibitor, MG-132 (10μM), stabilized HO-1 protein in HEK 293T cells. Co-treatment with sesamin decreased ubiquitinated HO-1 protein accumulation by MG-132. However, sesamin did not affect the proteasome activity. These findings suggest that sesamin disturbs the degradation of HO-1 protein through inhibiting its ubiquitination, resulting in HO-1 protein up-regulation.

  3. Increased Proinflammatory Cytokine Production and Decreased Cholesterol Efflux Due to Downregulation of ABCG1 in Macrophages Exposed to Indoxyl Sulfate

    Directory of Open Access Journals (Sweden)

    Koji Matsuo

    2015-08-01

    Full Text Available One of the possible causes of enhanced atherosclerosis in patients with chronic kidney disease (CKD is the accumulation of uremic toxins. Since macrophage foam cell formation is a hallmark of atherosclerosis, we examined the direct effect of indoxyl sulfate (IS, a representative uremic toxin, on macrophage function. Macrophages differentiated from THP-1 cells were exposed to IS in vitro. IS decreased the cell viability of THP-1 derived macrophages but promoted the production of inflammatory cytokines (IL-1β, IS 1.0 mM: 101.8 ± 21.8 pg/mL vs. 0 mM: 7.0 ± 0.3 pg/mL, TNF-α, IS 1.0 mM: 96.6 ± 11.0 pg/mL vs. 0 mM: 15.1 ± 3.1 pg/mL and reactive oxygen species. IS reduced macrophage cholesterol efflux (IS 0.5 mM: 30.3% ± 7.3% vs. 0 mM: 43.5% ± 1.6% and decreased ATP-binding cassette transporter G1 expression. However, lipid uptake into cells was not enhanced. A liver X receptor (LXR agonist, T0901317, improved IS-induced production of inflammatory cytokines as well as reduced cholesterol efflux. In conclusion, IS induced inflammatory reactions and reduced cholesterol efflux in macrophages. Both effects of IS were improved with activation of LXR. Direct interactions of uremic toxins with macrophages may be a major cause of atherosclerosis acceleration in patients with CKD.

  4. Increased expression of T cell immunoglobulin and mucin domain 3 aggravates brain inflammation via regulation of the function of microglia/macrophages after intracerebral hemorrhage in mice.

    Science.gov (United States)

    Xu, ChangJun; Wang, Tao; Cheng, Si; Liu, YuGuang

    2013-12-01

    Microglia/macrophages are known to play important roles in initiating brain inflammation after spontaneous intracerebral hemorrhage (ICH). T cell immunoglobulin and mucin domain-3 (Tim-3) have been proven to play a critical part in several inflammatory diseases through regulation of both adaptive and innate immune responses. Tim-3 can be expressed by microglia/macrophages and regulates their function in the innate immune response. However, the effect of Tim-3 on inflammatory responses following ICH is unclear. In this study, we investigated Tim-3 expression, the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and brain water content in peri-hematomal brain tissue at 12 hours and at 1, 3, 5, and 7 days post-ICH in wild type (WT) ICH and Tim-3-/- ICH mice. The numbers of Tim-3 positive cells,astrocytes, neutrophils and microglia/macrophages were detected using immunofluorescence staining. Cytokines were measured by ELISA. Double immunofluorescence labeling was performed to identify the cellular source of Tim-3 expression. Mouse neurological deficit scores were assessed through animal behavior. Expression of Tim-3 increased early in mouse peri-hematomal brain tissue after autologous blood injection, peaked at day 1, and was positively correlated with the concentrations of TNF-α, IL-1β, and brain water content. Tim-3 was predominantly expressed in microglia/macrophages. Compared with WT mice, Tim-3-/- mice had reduced ICH-induced brain inflammation with decreased TNF-α and IL-1β, cerebral edema and neurological deficit scores. Moreover, Tim-/- inhibited activation of microglia/macrophages. The number of activated microglia/macrophages in Tim-3-/- ICH mice was much lower than that in WT ICH mice. Our findings demonstrate that Tim-3 plays an important role in brain inflammation after ICH, and may be a potential treatment target.

  5. “Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

    Science.gov (United States)

    Sosale, Nisha G; Ivanovska, Irena I; Tsai, Richard K; Swift, Joe; Hsu, Jake W; Alvey, Cory M; Zoltick, Philip W; Discher, Dennis E

    2016-01-01

    Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress “Marker of Self” CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show “hCD47-Lenti” display properly oriented human-CD47 for interactions with the macrophage’s inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg−/− (NSG) mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known “Self” signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors) and also in targeting various SIRPA-expressing tumors such as glioblastomas. PMID:28053997

  6. Selective and specific macrophage ablation is detrimental to wound healing in mice.

    Science.gov (United States)

    Mirza, Rita; DiPietro, Luisa A; Koh, Timothy J

    2009-12-01

    Macrophages are thought to play important roles during wound healing, but definition of these roles has been hampered by our technical inability to specifically eliminate macrophages during wound repair. The purpose of this study was to test the hypothesis that specific depletion of macrophages after excisional skin wounding would detrimentally affect healing by reducing the production of growth factors important in the repair process. We used transgenic mice that express the human diphtheria toxin (DT) receptor under the control of the CD11b promoter (DTR mice) to specifically ablate macrophages during wound healing. Mice without the transgene are relatively insensitive to DT, and administration of DT to wild-type mice does not alter macrophage or other inflammatory cell accumulation after injury and does not influence wound healing. In contrast, treatment of DTR mice with DT prevented macrophage accumulation in healing wounds but did not affect the accumulation of neutrophils or monocytes. Such macrophage depletion resulted in delayed re-epithelialization, reduced collagen deposition, impaired angiogenesis, and decreased cell proliferation in the healing wounds. These adverse changes were associated with increased levels of tumor necrosis factor-alpha and reduced levels of transforming growth factor-beta1 and vascular endothelial growth factor in the wound. In summary, macrophages seem to promote both wound closure and dermal healing, in part by regulating the cytokine environment of the healing wound.

  7. Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer.

    Science.gov (United States)

    Park, Jae-Young; Sung, Ji-Youn; Lee, Juhie; Park, Yong-Koo; Kim, Youn Wha; Kim, Gou Young; Won, Kyu Yeoun; Lim, Sung-Jig

    2016-06-01

    Tumor-associated macrophages (TAMs) play a significant role in tumor progression and angiogenesis. However, the prognostic value of TAMs in different histologic locations of gastric cancer (GC) is still unknown. We evaluated the distribution of TAMs in different histologic locations to investigate its importance in predicting prognosis and the relationship with angiogenesis and CXCL12 expression in GC. The distribution of TAMs and microvessel density (MVD) in 113 GC samples were evaluated by immunohistochemical staining of CD163 and CD105, respectively. The extent of TAM distribution in the tumor was categorized into three groups: infiltrated TAMs in the tumor nest (TN), tumor stroma (TS) and invasive tumor margin (TM). The expression of CXCL12 in GC were evaluated by immunohistochemical staining of tissues from 88 GC samples. The increased CD163+ TAMs in TS and TM were closely correlated with tumor size, depth of invasion, TNM stage, lymph node metastasis, and lymphovascular invasion. TAMs in TN was not related with any clinicopathologic characteristics except histologic differentiation. The high infiltration of CD163+ TAMs in TS and TM were significantly correlated with poor overall survival. Regardless of location, CD163+ TAMs were significantly correlated with increased MVD. CXCL12 expression was significantly associated with increased CD163+ TAMs in TS and TM. TAMs in different histologic locations in GC were related to distinct aspects of tumor progression. CD163+ TAMs in TS and TM are associated with tumor progression and CXCL12 expression in GC. TAMs may be involved in tumor progression through the angiogenesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone

    Science.gov (United States)

    Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik; Dal, Jakob; Anton, Gabriele; Etzerodt, Anders; Petersen, Mikkel D; Christensen, Peter A; Møller, Holger J; Moestrup, Søren K

    2012-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery. PMID:22643864

  9. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5.

    Science.gov (United States)

    Mefford, Megan E; Kunstman, Kevin; Wolinsky, Steven M; Gabuzda, Dana

    2015-07-01

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120-CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues.

  10. Deficiency of macrophage stimulating protein results in spontaneous inflammation and increased susceptibility towards epithelial damage in zebrafish

    NARCIS (Netherlands)

    Witte, M.; Huitema, L.F.; Nieuwenhuis, E.E.S.; Brugman, S.

    2014-01-01

    Several genome-wide association studies have identified the genes encoding for macrophage-stimulating protein (MSP) and its receptor RON (Recepteur d'Origine Nantais) as possible susceptibility factors in inflammatory bowel disease. While it has been shown that the MSP–RON signaling pathway is invol

  11. Hyperglycemia Determines Increased Specific MicroRNAs Levels in Sera and HDL of Acute Coronary Syndrome Patients and Stimulates MicroRNAs Production in Human Macrophages

    Science.gov (United States)

    Carnuta, Mihaela G.; Sanda, Gabriela M.; Stancu, Camelia S.; Popescu, Andreea C.; Popescu, Mihaela R.; Vlad, Adelina; Dimulescu, Doina R.; Simionescu, Maya; Sima, Anca V.

    2016-01-01

    We aimed to determine the levels of microRNAs (miRNAs) in sera and HDL of acute coronary syndrome (ACS) compared to stable angina (SA) patients with/without hyperglycemia, and evaluate comparatively the functional effect of these sera on the processing machinery proteins (Drosha, DGCR8, Dicer) and miRNAs production in human macrophages. MiRNAs levels in sera and HDL from 35 SA and 72 ACS patients and 30 healthy subjects were measured by using microRNA TaqMan assays. MiR-223, miR-92a, miR-486, miR-122, miR-125a and miR-146a levels were higher in the hyperglycemic ACS compared to normoglycemic sera. MiR-223 and miR-486 prevailed in HDL2, while miR-92a predominated in HDL3, all three miRNAs discriminating between ACS and SA patients; their levels were increased in HDL from hyperglycemic ACS patients versus normoglycemic ones. The incubation of human macrophages with sera from ACS and SA patients showed that all patients’ sera induced an increase of Drosha, DGCR8 and Dicer expressions and of selected miRNAs levels compared to control sera, the effect being higher in the case of hyperglycemic versus normoglycemic ACS sera. The addition of glucose to SA and ACS sera increased Drosha, DGCR8 and Dicer expression and miRNAs levels in the exposed macrophages. In conclusion, hyperglycemia is associated with increased miR-223, miR-92a, miR-486 levels in HDL, which discriminate between ACS and SA patients. Exposure of human macrophages to ACS compared to SA sera determines the upregulation of Drosha, DGCR8 and Dicer expression and the increase of selected miRNAs production, the effect being augmented by an increased glucose concentration. PMID:27519051

  12. Temperature increase effects on a double-pass cavity type II second-harmonic generation: a model for depleted Gaussian continuous waves.

    Science.gov (United States)

    Sabaeian, Mohammad; Jalil-Abadi, Fatemeh Sedaghat; Rezaee, Mostafa Mohammad; Motazedian, Alireza; Shahzadeh, Mohammadreza

    2015-02-01

    In this work, the effect of temperature increase on the efficiency of a double-pass cavity type II second-harmonic generation (SHG) is investigated. To this end, a depleted wave model describing the continuous-wave SHG process with fundamental Gaussian waves was developed. First, six coupled equations were proposed to model a double-pass cavity to generate the second harmonic of a Gaussian fundamental wave in type II configuration. Then, the effect of temperature increase in the nonlinear crystal due to the optical absorption was modeled. To do this, a mismatched phase arising from changes in refractive indices was added to the coupled equations. Although the nondepleted assumption is usually used in such problems, a simultaneous solving of coupled equations with assumption of fundamental beam depletion was performed. The results were obtained by a homemade code written in Intel Fortran, and show how the efficiency of the SHG process decreases when the crystal is warmed up by 5, 10, and 15 K. Dramatic reductions in SHG efficiency were observed due to small changes in temperature. The results show excellent agreement with the experimental data [Opt. Commun.173, 311-314 (2000)].

  13. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  14. Morinda citrifolia Linn. fruit (Noni) juice induces an increase in NO production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c.

    Science.gov (United States)

    Almeida-Souza, Fernando; de Souza, Celeste da Silva Freitas; Taniwaki, Noemi Nosomi; Silva, João José Mendes; de Oliveira, Renata Mondêgo; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva

    2016-08-31

    Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 μg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 μg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes.

  15. Groundwater Depletion and the Sharp Increase of Seismicity in the Southern States, How GRACE Data Could Help?

    Science.gov (United States)

    Hong, Z.; Hasan, E.; Hong, Y.; Xia, B.; Zhong, H.

    2016-12-01

    This study is a contribution to how NASA's Gravity Recovery and Climate Experiment (GRACE) data may be used to track anthropogenic related change in the groundwater in the Southern Great Plains (SGP) as well recently increased seismicity in the southern states. The SGP contains one of the most important groundwater aquifers in the United States, the Ogallala groundwater aquifer, which has been exploited since 1900. Meanwhile, the recent activities of oil and gas extraction from the unconventional shall reservoir systems has led to significantly increased groundwater withdrawal and injection of wastewater. Consequently, numerous induced fracture related earthquakes have been recorded in Oklahoma and Texas between 2002 and 2016 The current paper investigates the utility of GRACE data along with the Land Water Content (LWC) information from the Global Land Data Assimilation System (GLDAS) to monitor and track the groundwater changes in three southern states of SGP (Oklahoma, Texas and New Mexico). Additionally, the paper investigates links between active seismicity and the injection of the wastewater due to the oil and gas production. Using GRACE data yields unprecedented information about the inter-annual changes in the Total Water Storage (TWS) from 2002 to 2016 over SGP. The LWC data set sums the soil moisture records with the the total canopy water storage to reveal the total land surface water content. The arithmetic difference between the TWS and LWC is the Groundwater Anomaly (GWA) for any particular region. In the current study, the GWA analysis reveals the following: (1) statistically significant drop of the GWA of about - 27 mm from 2002 to 2007 due to natural and anthropogenic causes; (2) the increased precipitation records from 2008 to 2011 over SGP leads to significant recovery in TWS and an increase in the groundwater content of about 40 mm; (3) the period from 2012 to 2015 experienced increased GWA of about - 6 mm for the period. Using the available

  16. Muscle glycogen depletion following 75-km of cycling is not linked to increased muscle IL-6, IL-8, and MCP-1 mRNA expression and protein content

    Directory of Open Access Journals (Sweden)

    David Christopher Nieman

    2016-09-01

    Full Text Available The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N=20 participated in a 75-km cycling time trial (168±26.0 min, with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2±17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5±2.8-, 45.3±7.8-, and 8.25±1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5±14.1%, 347±68.1%, and 148±21.3%, respectively (all, P<0.001. Serum myoglobin and cortisol increased 32.1±3.3 to 242±48.3 mg/mL, and 295±27.6 to 784±63.5 nmol/L, respectively (both P<0.001. Plasma IL-6, IL-8, and MCP-1 increased 0.42±0.07 to 18.5±3.8, 4.07±0.37 to 17.0±1.8, and 96.5±3.7 to 240±21.6 pg/mL, respectively (all P<0.001. Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r=0.462, P=0.040, with change in myoglobin related to plasma IL-8 (r=0.582, P=0.007 and plasma MCP-1 (r=0.457, P=0.043, and muscle MCP-1 protein (r=0.588, P=0.017; cortisol was related to plasma IL-8 (r=0.613, P=0.004, muscle IL-8 protein (r=0.681, P=0.004, and plasma MCP-1 (r=0.442, P=0.050. In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1.

  17. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion

    Directory of Open Access Journals (Sweden)

    Kjellström Johan

    2012-05-01

    Full Text Available Abstract Background Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO or the polyamine analogue N1,N11-diethylnorspermine (DENSPM. Methods A human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 μM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 μM. A 96-well assay was used to determine cytotoxicity after five days after treatment. Results The cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre

  18. Diabetes-induced increases in sup 131 I-albumin permeation are unaffected by essential fatty acid depletion

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J.R.; Lefkowith, J.B.; Chang, K.; Tilton, R.G. (Washington Univ., St. Louis, MO (United States))

    1990-02-26

    The authors assessed effects of essential fatty acid deficiency (EFAD) on regional {sup 131}I-albumin permeation in diabetic and age-matched control rats. Male, Sprague-Dawley rats (50-75 g) were randomized into EFAD diet or normal diet groups. Three months later, diabetes was induced in one half of the rats in each group by injecting i.v. 35-45 mg/kg b.w. streptozotocin. One month later, {sup 131}I-albumin clearance ({mu} g plasma/g tissue/minute) was assessed as described previously (Circ Res 64;890, 1989). Within controls, EFAD decreased body weight gain 28% but did not affect control values for plasma glucose (118{plus minus}8 (SD) mg/dl) or glycosylated hemoglobin (1.33{plus minus}0.22 % of total hemoglobin). In normal diet and EFAD diabetics, plasma glucose (535{plus minus}64 and 419{plus minus}161, respectively) and glycosylated hemoglobin (4.38{plus minus}0.97 and 2.97{plus minus}1.69) were increased significantly versus controls. Diabetes increased {sup 131}I-albumin clearance in retinal (5.1x controls), choroid (3.4x), anterior uvea (2.7x), aorta (3.5x), and sciatic nerve (2.2x). No differences were evident in tissue {sup 131}I-albumin clearances between both control groups or both diabetic groups. These results suggest that essential fatty acids do not modulate diabetes-induced changes in endothelial cell barrier function.

  19. Enhanced adult neurogenesis increases brain stiffness: in vivo magnetic resonance elastography in a mouse model of dopamine depletion.

    Directory of Open Access Journals (Sweden)

    Charlotte Klein

    Full Text Available The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP mouse model for dopaminergic neurodegeneration as observed in Parkinson's disease (PD to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration.

  20. Virgin Coconut Oil Meningkatkan Aktivitas Fagositosis Makrofag Ayam Pedaging Pascavaksinasi Flu Burung (VIRGIN COCONUT OIL INCREASES THE PHAGOCYTOSIS ACTIVITY OF MACROPHAGE OF BROILER CHICKEN FOLLOWING AVIAN INFLUENZA VACCINATION

    Directory of Open Access Journals (Sweden)

    Enny Yusuf Wachidah Yuniwarti

    2013-09-01

    Full Text Available The research objective was to find an alternative avian influenza prevention in broilers by increasinganimal’s antibody titer and macrophages phagocytic  activity.  Virgin coconut oil (VCO is a food supplementthat is proven safe for human consumption therefore it is assumed to be safe for the animal’s (chickens.Factorial design  2 vaccinated: unvaccinated x 4 (dose of VCO: 0, 5, 10 and 15 mL/kg feed were applied inthis study.  A total of 40 day day old chick were allocated in the eight treatments groups.  Feed and drinkingwater were available  ad libitum.  Antibody titers of the animals were detected using ELISA, whereasphagocytic activity of the macrophages were detected from spleen.  The result showed that the highestphagocytic activity and antibody titers were seen in chickens which were given VCO at 10 mL/kg feed.  It isconcluded that the VCO could increased the phagocytic activity of macrophages.

  1. Increase of bone marrow macrophages and CD8(+) T lymphocytes predict graft failure after allogeneic bone marrow or cord blood transplantation.

    Science.gov (United States)

    Kawashima, N; Terakura, S; Nishiwaki, S; Koyama, D; Ozawa, Y; Ito, M; Miyamura, K

    2017-08-01

    Graft failure (GF) remains an obstacle to survival after allogeneic hematopoietic stem cell transplantation. However, differentiating GF from delayed engraftment (DE) can be difficult. Host CD8(+) lymphocytes have been reported to mediate graft rejection, but the impact of macrophages on DE or GF is yet to be clarified. Peri-engraftment bone marrow (BM) specimens of 32 adult patients with normal engraftment, DE or GF were retrospectively evaluated to identify the potential associations of CD163(+) macrophage and CD8(+) lymphocyte infiltration into BM. The macrophage or CD8(+) lymphocyte number/total nucleated cell number was defined as the Mac ratio and CD8 ratio, respectively. Both DE and GF groups had significantly higher Mac ratios at day 14 than the normal group (PGF groups (P=1.000). The CD8 ratio at day 14 was significantly higher in the GF than in the normal group (P=0.005), whereas the CD8 ratios of the DE and normal groups were similar (P=0.07). A high Mac ratio at day 14 was associated with a risk of DE or subsequent GF. Patients with increased CD8 ratio at day 14 had a further risk of GF. The Mac ratio and the CD8 ratio appear to be well suited for predicting engraftment status.

  2. Inhibition of p38-MAPK potentiates cisplatin-induced apoptosis via GSH depletion and increases intracellular drug accumulation in growth-arrested kidney tubular epithelial cells.

    Science.gov (United States)

    Rodríguez-García, Maria Elena; Quiroga, Adoración G; Castro, José; Ortiz, Alberto; Aller, Patricio; Mata, Felicísima

    2009-10-01

    We were interested in analyzing the regulation by mitogen-activated protein kinases (MAPKs) of cisplatin-provoked toxicity in epithelial renal tubule cell lines, when assayed under culture conditions (cell confluence plus serum deprivation), which mimic the characteristics of a nonproliferating epithelium. Under these restrictive growth conditions, cisplatin induced apoptosis with lower efficacy than in exponentially growing cells, and decreased p38-MAPK phosphorylation in NRK-52E and other (LLC-PK1, MDCK, HK2) cell lines. Moreover, cisplatin-provoked apoptosis was potentiated by cotreatment with p38-MAPK-specific inhibitors (SB203580, SB220025) or transfection with a kinase-negative mutant of MKK6, whereas c-Jun NH2-terminal kinase or extracellular signal-regulated kinase/MAPK and ERK Kinase inhibitors were ineffective. By contrast, when applied to exponentially growing cells, cisplatin stimulated p38-MAPK phosphorylation and apoptosis, was attenuated by kinase inhibitors. Treatment of confluent/serum-deprived cells with cisplatin caused mitochondrial transmembrane potential disruption and activated the mitochondrial apoptotic pathway, as indicated by the decrease in Bcl-X(L) expression, increase in Bax expression and cytochrome c release, and these effects were potentiated by cotreatment with SB203580. Treatment of confluent/serum-deprived cells with cisplatin plus SB203580 decreased the intracellular reduced glutathione (GSH) content, and increased intracellular cisplatin accumulation as well as cisplatin binding to DNA. Cotreatment with the GSH-depleting agent D,L-buthionine-R,S-sulfoximine also potentiated cisplatin-provoked apoptosis. In summary, p38-MAPK inhibition potentiates cisplatin-provoked apoptosis in growth-arrested epithelial renal tubule cells, a result that may be explained at least in part by GSH depletion and drug transport alteration.

  3. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  4. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis.

    Science.gov (United States)

    Jaquenod De Giusti, Carolina; Ure, Agustín E; Rivadeneyra, Leonardo; Schattner, Mirta; Gomez, Ricardo M

    2015-08-01

    Macrophage influx and galectin 3 production have been suggested as major players driving acute inflammation and chronic fibrosis in many diseases. However, their involvement in the pathogenesis of viral myocarditis and subsequent cardiomyopathy are unknown. Our aim was to characterise the role of macrophages and galectin 3 on survival, clinical course, viral burden, acute pathology, and chronic fibrosis in coxsackievirus B3 (CVB3)-induced myocarditis. Our results showed that C3H/HeJ mice infected with CVB3 and depleted of macrophages by liposome-encapsulated clodronate treatment compared with infected untreated mice presented higher viral titres but reduced acute myocarditis and chronic fibrosis, compared with untreated infected mice. Increased galectin 3 transcriptional and translational expression levels correlated with CVB3 infection in macrophages and in non-depleted mice. Disruption of the galectin 3 gene did not affect viral titres but reduced acute myocarditis and chronic fibrosis compared with C57BL/6J wild-type mice. Similar results were observed after pharmacological inhibition of galectin 3 with N-acetyl-d-lactosamine in C3H/HeJ mice. Our results showed a critical role of macrophages and their galectin 3 in controlling acute viral-induced cardiac injury and the subsequent fibrosis. Moreover, the fact that pharmacological inhibition of galectin 3 induced similar results to macrophage depletion regarding the degree of acute cardiac inflammation and chronic fibrosis opens up the possibility of new pharmacological strategies for viral myocarditis.

  5. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis

    Science.gov (United States)

    Schaaf, Kaitlyn; Smith, Samuel R.; Duverger, Alexandra; Wagner, Frederic; Wolschendorf, Frank; Westfall, Andrew O.; Kutsch, Olaf; Sun, Jim

    2017-01-01

    The ability to suppress host macrophage apoptosis is essential for M. tuberculosis (Mtb) to replicate intracellularly while protecting it from antibiotic treatment. We recently described that Mtb infection upregulated expression of the host phosphatase PPM1A, which impairs the antibacterial response of macrophages. Here we establish PPM1A as a checkpoint target used by Mtb to suppress macrophage apoptosis. Overproduction of PPM1A suppressed apoptosis of Mtb-infected macrophages by a mechanism that involves inactivation of the c-Jun N-terminal kinase (JNK). Targeted depletion of PPM1A by shRNA or inhibition of PPM1A activity by sanguinarine restored JNK activation, resulting in increased apoptosis of Mtb-infected macrophages. We also demonstrate that activation of JNK by subtoxic concentrations of anisomycin induced selective apoptotic killing of Mtb-infected human macrophages, which was completely blocked in the presence of a specific JNK inhibitor. Finally, selective killing of Mtb-infected macrophages and subsequent bacterial release enabled rifampicin to effectively kill Mtb at concentrations that were insufficient to act against intracellular Mtb, providing proof of principle for the efficacy of a “release and kill” strategy. Taken together, these findings suggest that drug-induced selective apoptosis of Mtb-infected macrophages is achievable. PMID:28176854

  6. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  7. Glutamine Modulates Macrophage Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Li He

    2016-04-01

    Full Text Available Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs, activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.

  8. Brief Glutamine Pretreatment Increases Alveolar Macrophage CD163/Heme Oxygenase-1/p38-MAPK Dephosphorylation Pathway and Decreases Capillary Damage but Not Neutrophil Recruitment in IL-1/LPS-Insufflated Rats.

    Science.gov (United States)

    Fernandez-Bustamante, Ana; Agazio, Amanda; Wilson, Paul; Elkins, Nancy; Domaleski, Luke; He, Qianbin; Baer, Kaily A; Moss, Angela F D; Wischmeyer, Paul E; Repine, John E

    2015-01-01

    Glutamine (GLN) attenuates acute lung injury (ALI) but its effect on alveolar macrophages is unknown. We hypothesized that GLN pretreatment would induce the anti-inflammatory CD163/heme oxygenase (HO)-1/p38-MAPK dephosphorylation pathway in alveolar macrophages and reduce ALI in rats insufflated with interleukin-1 (IL-1) and lipopolysaccharide (LPS). Male Sprague-Dawley rats were randomized to the following groups: GLN-IL-1/LPS-, GLN+IL-1/LPS-, GLN-IL-1/LPS+, and GLN+IL-1/LPS+. GLN pretreatment was given via gavage (1 g/kg L-alanyl-L-glutamine) daily for 2 days. ALI was subsequently induced by insufflating 50 ng IL-1 followed by 5mg/kg E.coli LPS. After 24h, bronchoalveolar lavage (BAL) protein, lactate dehydrogenase (LDH) and neutrophil concentrations were analyzed. BAL alveolar macrophage CD163+ expression, HO-1 and p38-MAPK concentrations were measured, as well as alveolar macrophage tumor necrosis factor (TNF)-α and interleukin (IL)-10 concentrations. Histology and immunofluorescence studies were also performed. Following IL-1/LPS insufflation, GLN pretreated rats had significantly decreased BAL protein and LDH concentrations, but not BAL neutrophil counts, compared to non-GLN pretreated rats. The number of alveolar macrophages and the number of CD163+ macrophages were significantly increased in GLN pretreated IL-1/LPS-insufflated rats compared to non-GLN pretreated, IL-1/LPS-insufflated rats. GLN pretreatment before IL-1/LPS also significantly increased HO-1 concentrations and dephosphorylated p38-MAPK levels but not cytokine levels in alveolar macrophages. Immunofluorescence localized CD163 and HO-1 in alveolar macrophages. Short-term GLN pretreatment activates the anti-inflammatory CD163/HO-1/p38-MAPK dephosphorylation pathway of alveolar macrophages and decreases capillary damage but not neutrophil recruitment in IL-1/LPS-insufflated rats.

  9. Depletion of regulatory T cells in a hapten-induced inflammation model results in prolonged and increased inflammation driven by T cells

    DEFF Research Database (Denmark)

    Christensen, A. D.; Skov, Søren; Kvist, P. H.

    2015-01-01

    Regulatory T cells (Tregs ) are known to play an immunosuppressive role in the response of contact hypersensitivity (CHS), but neither the dynamics of Tregs during the CHS response nor the exaggerated inflammatory response after depletion of Tregs has been characterized in detail. In this study w......). Furthermore, depletion of Tregs enhanced the release of cytokines and chemokines locally in the inflamed ear and augmented serum levels of the systemic inflammatory mediators serum amyloid (SAP) and haptoglobin early in the response....

  10. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  11. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation.

    Science.gov (United States)

    Dias, Irundika H K; Mistry, Jayna; Fell, Shaun; Reis, Ana; Spickett, Corinne M; Polidori, Maria C; Lip, Gregory Y H; Griffiths, Helen R

    2014-10-01

    Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.

  12. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  13. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Macrophage-specific expression of Arginase-1 is commonly believed to promote inflammation, fibrosis, and wound healing by enhancing L-proline, polyamine, and Th2 cytokine production. Here, however, we show that macrophage-specific Arg1 functions as an inhibitor of inflammation and fibrosis following infection with the Th2-inducing pathogen Schistosoma mansoni. Although susceptibility to infection was not affected by the conditional deletion of Arg1 in macrophages, Arg1(-/flox;LysMcre mice died at an accelerated rate. The mortality was not due to acute Th1/NOS2-mediated hepatotoxicity or endotoxemia. Instead, granulomatous inflammation, liver fibrosis, and portal hypertension increased in infected Arg1(-/flox;LysMcre mice. Similar findings were obtained with Arg1(flox/flox;Tie2cre mice, which delete Arg1 in all macrophage populations. Production of Th2 cytokines increased in the infected Arg1(-/flox;LysMcre mice, and unlike alternatively activated wild-type macrophages, Arg1(-/flox;LysMcre macrophages failed to inhibit T cell proliferation in vitro, providing an underlying mechanism for the exacerbated Th2 pathology. The suppressive activity of Arg1-expressing macrophages was independent of IL-10 and TGF-beta1. However, when exogenous L-arginine was provided, T cell proliferation was restored, suggesting that Arg1-expressing macrophages deplete arginine, which is required to sustain CD4(+ T cell responses. These data identify Arg1 as the essential suppressive mediator of alternatively activated macrophages (AAM and demonstrate that Arg1-expressing macrophages function as suppressors rather than inducers of Th2-dependent inflammation and fibrosis.

  14. Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Rui-hua

    2012-04-01

    Full Text Available Abstract Background Human olfactomedin 4 (OLFM4 gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance. Methods OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2 or tumor necrosis factor-alpha (TNF α were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk. Results The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P 2O2 or TNF α-induced apoptosis and caspase-3 activity (all P 2O2 or TNF α-induced apoptosis in OLFM4 knockdown cells (all P Conclusion Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.

  15. Depleting components of the THO complex causes increased telomere length by reducing the expression of the telomere-associated protein Rif1p.

    Directory of Open Access Journals (Sweden)

    Tai-Yuan Yu

    Full Text Available Telomere length is regulated mostly by proteins directly associated with telomeres. However, genome-wide analysis of Saccharomyces cerevisiae mutants has revealed that deletion of Hpr1p, a component of the THO complex, also affects telomere length. The THO complex comprises four protein subunits, namely, Tho2p, Hpr1p, Mft1p, and Thp2p. These subunits interplay between transcription elongation and co-transcriptional assembly of export-competent mRNPs. Here we found that the deletion of tho2 or hpr1 caused telomere lengthening by ∼50-100 bps, whereas that of mft1 or thp2 did not affect telomere length. Since the THO complex functions in transcription elongation, we analyzed the expression of telomere-associated proteins in mutants depleted of complex components. We found that both the mRNA and protein levels of RIF1 were decreased in tho2 and hpr1 cells. RIF1 encodes a 1917-amino acid polypeptide that is involved in regulating telomere length and the formation of telomeric heterochromatin. Hpr1p and Tho2p appeared to affect telomeres through Rif1p, as increased Rif1p levels suppressed the telomere lengthening in tho2 and hpr1 cells. Moreover, yeast cells carrying rif1 tho2 or rif1 hpr1 double mutations showed telomere lengths and telomere silencing effects similar to those observed in the rif1 mutant. Thus, we conclude that mutations of components of the THO complex affect telomere functions by reducing the expression of a telomere-associated protein, Rif1p.

  16. Impaired Functions of Macrophage from Cystic Fibrosis Patients: CD11b, TLR-5 Decrease and sCD14, Inflammatory Cytokines Increase

    Science.gov (United States)

    Simonin-Le Jeune, Karin; Le Jeune, André; Jouneau, Stéphane; Belleguic, Chantal; Roux, Pierre-François; Jaguin, Marie; Dimanche-Boitre, Marie-Thérèse; Lecureur, Valérie; Leclercq, Caroline; Desrues, Benoît; Brinchault, Graziella; Gangneux, Jean-Pierre; Martin-Chouly, Corinne

    2013-01-01

    Background Early in life, cystic fibrosis (CF) patients are infected with microorganisms. The role of macrophages has largely been underestimated in literature, whereas the focus being mostly on neutrophils and epithelial cells. Macrophages may however play a significant role in the initiating stages of this disease, via an inability to act as a suppressor cell. Yet macrophage dysfunction may be the first step in cascade of events leading to chronic inflammation/infection in CF. Moreover, reports have suggested that CFTR contribute to altered inflammatory response in CF by modification of normal macrophage functions. Objectives In order to highlight possible intrinsic macrophage defects due to impaired CFTR, we have studied inflammatory cytokines secretions, recognition of pathogens and phagocytosis in peripheral blood monocyte-derived macrophages from stable adult CF patients and healthy subjects (non-CF). Results In CF macrophage supernatants, concentrations of sCD14, IL-1β, IL-6, TNF-α and IL-10 were strongly raised. Furthermore expression of CD11b and TLR-5 were sorely decreased on CF macrophages. Beside, no difference was observed for mCD14, CD16, CD64, TLR-4 and TLR1/TLR-2 expressions. Moreover, a strong inhibition of phagocytosis was observed for CF macrophages. Elsewhere CFTR inhibition in non-CF macrophages also led to alterations of phagocytosis function as well as CD11b expression. Conclusions Altogether, these findings demonstrate excessive inflammation in CF macrophages, characterized by overproduction of sCD14 and inflammatory cytokines, with decreased expression of CD11b and TLR-5, and impaired phagocytosis. This leads to altered clearance of pathogens and non-resolution of infection by CF macrophages, thereby inducing an exaggerated pro-inflammatory response. PMID:24098711

  17. Chemical and physical effects on the adhesion, maturation, and survival of monocytes, macrophages, and foreign body giant cells

    Science.gov (United States)

    Collier, Terry Odell, III

    Injury caused by biomedical device implantation initiates inflammatory and wound healing responses. Cells migrate to the site of injury to degrade bacteria and toxins, create new vasculature, and form new and repair injured tissue. Blood-proteins rapidly adsorb onto the implanted material surface and express adhesive ligands which mediate cell adhesion on the material surface. Monocyte-derived macrophages and multi-nucleated foreign body giant cells adhere to the surface and degrade the surface of the material. Due to the role of macrophage and foreign body giant cell on material biocompatibility and biostability, the effects of surface chemistry, surface topography and specific proteins on the maturation and survival of monocytes, macrophages and foreign body giant cells has been investigated. Novel molecularly designed materials were used to elucidate the dynamic interactions which occur between inflammatory cells, proteins and surfaces. The effect of protein and protein adhesion was investigated using adhesive protein depleted serum conditions on RGD-modified and silane modified surfaces. The effects of surface chemistry were investigated using temperature responsive surfaces of poly (N-isopropylacrylamide) and micropatterned surfaces of N-(2 aminoethyl)-3-aminopropyltrimethoxysilane regions on an interpenetrating polymer network of polyacrylamide and poly(ethylene glycol). The physical effects were investigated using polyimide scaffold materials and polyurethane materials with surface modifying end groups. The depletion of immunoglobulin G caused decreased levels of macrophage adhesion, foreign body giant cell formation and increased levels of apoptosis. The temporal nature of macrophage adhesion was observed with changing effectiveness of adherent cell detachment with time, which correlated to increased expression of beta1 integrin receptors on detached macrophages with time. The limited ability of the micropatterned surface, polyimide scaffold and surface

  18. Macrophage-mediated psoriasis can be suppressed by regulatory T lymphocytes.

    Science.gov (United States)

    Leite Dantas, Rafael; Masemann, Dörthe; Schied, Tanja; Bergmeier, Vera; Vogl, Thomas; Loser, Karin; Brachvogel, Bent; Varga, Georg; Ludwig, Stephan; Wixler, Viktor

    2016-11-01

    We recently described an inducible human TNF transgenic mouse line (ihTNFtg) that develops psoriasis-like arthritis after doxycycline stimulation and analysed the pathogenesis of arthritis in detail. Here, we show that the skin phenotype of these mice is characterized by hyperproliferation and aberrant activation of keratinocytes, induction of pro-inflammatory cytokines, and infiltration with Th1 and Treg lymphocytes, particularly with macrophage infiltration into lesional skin, thus pointing to a psoriasis-like phenotype. To reveal the contribution of T cells and macrophages to the development of TNF-mediated psoriasis, ihTNFtg mice were crossbred into RAG1(KO) mice lacking mature T and B cells. Surprisingly, the psoriatic phenotype in the double mutants was not reduced; rather, it was enhanced. The skin showed significantly increased inflammation and in particular, increased infiltration by macrophages. Consequently, depletion of macrophages in RAG1(KO) or wild-type mice led to decreased disease severity. On the contrary, depletion of Treg cells in wild-type mice increased both psoriasis and the number of infiltrating macrophages, while adoptive transfer of Foxp3-positive cells into RAG1(KO) or wild-type mice decreased both the development of psoriasis and macrophage infiltration. Thus, we conclude that Treg lymphocytes inhibit the pro-inflammatory activity of macrophages, which are the major immune effector cells in hTNF-mediated psoriasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Melamine activates NFκB/COX-2/PGE2 pathway and increases NADPH oxidase-dependent ROS production in macrophages and human embryonic kidney cells.

    Science.gov (United States)

    Kuo, Fu-Chen; Tseng, Yu-Ting; Wu, Sing-Ru; Wu, Ming-Tsang; Lo, Yi-Ching

    2013-09-01

    Melamine is a wildly used compound in manufactures of plastics and resins. A variety of toxic effects from melamine, including nephrolithiasis, chronic kidney inflammation, and bladder carcinoma, have been mentioned. Oxidative stress is considered to be an important pathogenic mechanism of kidney disease which may develop from an increasing free radical production through inflammation. The aim of this study is to investigate melamine-induced oxidative stress and inflammation in macrophage-like cell line RAW 264.7 and human embryonic kidney cell line HEK293. Results indicated melamine activated nuclear factor (NF)-κB through increasing IκB-α degradation and NF-κB p65/p50 DNA-binding activity. In addition, melamine significantly increased COX-2 expression and prostaglandin E2 (PGE2) production. Moreover, melamine activated NADPH oxidase (NOX), including NOX1, NOX2 and NOX4, accompanied with an increase in reactive oxygen species (ROS) production. Furthermore, melamine-induced ROS production could be attenuated by apocynin, a NOX inhibitor. In conclusion, our findings suggest melamine increased inflammation and oxidative stress via activation of NF-κB/COX-2 and NOX/ROS pathway, and first revealed the critical role of NOX in melamine-induced ROS production, suggesting the potential of NOX inhibitor against melamine toxicity.

  20. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion.

    Science.gov (United States)

    He, Li-Xia; Ren, Jin-Wei; Liu, Rui; Chen, Qi-He; Zhao, Jian; Wu, Xin; Zhang, Zhao-Feng; Wang, Jun-Bo; Pettinato, Giuseppe; Li, Yong

    2017-09-06

    Traditionally used as a restorative medicine, ginseng (Panax ginseng Meyer) has been the most widely used and acclaimed herb in Chinese communities for thousands of years. To investigate the immune-modulating activity of ginseng oligopeptides (GOP), 420 healthy female BALB/c mice were intragastrically administered distilled water (control), whey protein (0.15 g per kg body weight (BW)), and GOP 0.0375, 0.075, 0.15, 0.3 and 0.6 g per kg BW for 30 days. Blood samples from mice were collected from the ophthalmic venous plexus and then sacrificed by cervical dislocation. Seven assays were conducted to determine the immunomodulatory effects of GOP on innate and adaptive immune responses, followed by flow cytometry to investigate spleen T lymphocyte sub-populations, multiplex sandwich immunoassays to investigate serum cytokine and immunoglobulin levels, and ELISA to investigate intestinally secreted immunoglobulin to study the mechanism of GOP affecting the immune system. Our results showed that GOP was able to enhance innate and adaptive immune responses in mice by improving cell-mediated and humoral immunity, macrophage phagocytosis capacity and NK cell activity. Notably, the use of GOP revealed a better immune-modulating activity compared to whey protein. We conclude that the immune-modulating activity might be due to the increased macrophage phagocytosis capacity and NK cell activity, and the enhancement of T and Th cells, as well as IL-2, IL-6 and IL-12 secretion and IgA, IgG1 and IgG2b production. These results indicate that GOP could be considered a good candidate that may improve immune functions if used as a dietary supplement, with a dosage that ranges from 0.3 to 0.6 g per kg BW.

  1. REACTIVE MILIEU OF HODGKIN LYMPHOMA WITH EMPHASIS ON MAST CELLS AND MACROPHAGES

    Directory of Open Access Journals (Sweden)

    Nidhish Kumar

    2016-08-01

    Full Text Available AIM OF STUDY To study the clinical importance of reactive microenvironment inHodgkin Lymphoma (HL with special reference to macrophages and mast cells. MATERIALS AND METHODS The present prospective and retrospective study was undertaken for a period ranging from January 2011 to June 2015 at the Department of Pathology, Kasturba Medical College, Mangalore. The Haematoxylin and Eosin (H and E stained slides were reviewed and classified using WHO (2008 classification. Six immuno-histochemical markers were used in the study. CD 68 was for the macrophage count. Giemsa stain was done to highlight the mast cells. RESULTS AND ANALYSIS Thirty cases of HL were studied. Out of the 5 cases of Lymphocyte Depleted (LD Classical Hodgkin Lymphoma (cHL, all cases showed high macrophage count. Out of 30 cases of HL, only 6 cases showed increased mast cell count. DISCUSSION Mast cells act actively in various types of cancers. They can either have a pro-tumorigenic function or an anti-tumorigenic function depending on the type of cancer. Four (80% cases of LD-cHL showed macrophage count between 25-50% and 1 (20% case showed macrophage count >50% correlating with the aggressive nature and advanced stage of the disease. CONCLUSION In this study of microenvironment of HL mast cells and macrophages were analysed in each subtype. Though the mast cells were seen in all cases, an increased count of >10/10 (High power field HPF was observed only in 6 cases. The macrophage count was highest in LD-cHL and was statistically significant and thus correlated with this aggressive subtype of HL. The mast cell and macrophage count did not correlate with B-symptoms and stage of the disease a conclusion on survival versus the macrophage count and mast cell count was not possible in this study because of shorter follow up. A longer follow up and more number of cases are needed for a significant outcome.

  2. Association of enhanced HIV-1 neutralization by a single Y681H substitution in gp41 with increased gp120-CD4 interaction and macrophage infectivity.

    Directory of Open Access Journals (Sweden)

    Rajesh Ringe

    Full Text Available HIV-1 variants that show unusual sensitivity to autologous antibodies due to presence of critical neutralization signatures would likely contribute towards rational envelope based HIV-1 vaccine design. In the present study, we found that presence of a naturally occurring H681 in gp41 membrane proximal external region (MPER of a clade C envelope (Env obtained from a recently infected Indian patient conferred increased sensitivity to autologous and heterologous plasma antibodies. Furthermore, Env-pseudotyped viruses expressing H681 showed increased sensitivity to soluble CD4, b12 and 4E10 monoclonal antibodies both in related and unrelated Envs and was corroborated with increased Env susceptibility and binding to cellular CD4 as well as with prolonged exposure of MPER epitopes. The increased gp120-CD4 interaction was further associated with relative exposure of CD4-induced epitopes and macrophage infectivity. In summary, our data indicate that Y681H substitution exposes neutralizing epitopes in CD4bs and MPER towards comprehensive interference in HIV-1 entry.

  3. Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1.

    Science.gov (United States)

    Christophi, George P; Massa, Paul T

    2009-12-01

    SHP-1 is a protein tyrosine phosphatase that negatively regulates cytokine signaling and inflammatory gene expression. Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following intracranial inoculation with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Furthermore, SHP-1-deficient mice show a profound and predominant infiltration of blood-derived macrophages into the CNS following intracerebral injection of TMEV, and these macrophages are concentrated in areas of demyelination in brain and spinal cord. In the present study we investigated the role of SHP-1 in controlling CNS inflammatory demyelination following a peripheral instead of an intracerebral inoculation of TMEV. Surprisingly, we found that while wild-type mice were entirely refractory to intraperitoneal (IP) infection by TMEV, in agreement with previous studies, all SHP-1-deficient mice displayed profound macrophage neuroinvasion and macrophage-mediated inflammatory demyelination. Moreover, SHP-1 deficiency led to increased expression of inflammatory molecules in macrophages, serum, and CNS following IP infection with TMEV. Importantly, pharmacological depletion of peripheral macrophages significantly decreased both paralysis and CNS viral loads in SHP-1-deficient mice. In addition, peripheral MCP-1 neutralization attenuated disease severity, decreased macrophage infiltration into the CNS, and decreased monocyte numbers in the blood of SHP-1-deficient mice, implicating MCP-1 as an important mediator of monocyte migration between multiple tissues. These results demonstrate that peripheral TMEV infection results in a unique evolution of macrophage-mediated demyelination in SHP-1-deficient mice, implicating SHP-1 in the control of neuroinvasion of inflammatory macrophages and neurotropic viruses into the CNS.

  4. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Directory of Open Access Journals (Sweden)

    Juliann G. Kiang

    2014-01-01

    Full Text Available Exposure to ionizing radiation alone (radiation injury, RI or combined with traumatic tissue injury (radiation combined injury, CI is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to 60Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.

  5. Age-dependent increase in green autofluorescence of blood erythrocytes

    Indian Academy of Sciences (India)

    Sanjay Khandelwal; Rajiv K Saxena

    2007-09-01

    Green auto-fluorescence (GAF) of different age groups of mouse blood erythrocytes was determined by using a double in vivo biotinylation (DIB) technique that enables delineation of circulating erythrocytes of different age groups. A significant increase in GAF was seen for erythrocytes of old age group (age in circulation > 40 days) as compared to young erythrocytes (age < 15 days). Erythrocytes are removed from blood circulation by macrophages in the reticulo-endothelial system and depletion of macrophages results in an increased proportion of aged erythrocytes in the blood. When mice were depleted of macrophages for 7 days by administration of clodronate loaded liposomes, the overall GAF of erythrocytes increased significantly and this increase could be ascribed to an increase in GAF of the oldest population of erythrocytes. Using the DIB technique, the GAF of a cohort of blood erythrocyte generated during a 5 day window was tracked in vivo. GAF of the defined cohort of erythrocytes remained low till 40 days of age in circulation and then increased steeply till the end of the life span of erythrocytes. Taken together our results provide evidence for an age dependent increase in the GAF of blood erythrocytes that is accentuated by depletion of macrophages. Kinetics of changes in GAF of circulating erythrocytes with age has also been defined.

  6. Age-dependent increase in green autofluorescence of blood erythrocytes

    Indian Academy of Sciences (India)

    Sanjay Khandelwal; Rajiv K Saxena

    2007-12-01

    Green auto-fluorescence (GAF) of different age groups of mouse blood erythrocytes was determined by using a double in vivo biotinylation (DIB) technique that enables delineation of circulating erythrocytes of different age groups. A significant increase in GAF was seen for erythrocytes of old age group (age in circulation > 40 days) as compared to young erythrocytes (age < 15 days). Erythrocytes are removed from blood circulation by macrophages in the reticulo-endothelial system and depletion of macrophages results in an increased proportion of aged erythrocytes in the blood. When mice were depleted of macrophages for 7 days by administration of clodronate loaded liposomes, the overall GAF of erythrocytes increased significantly and this increase could be ascribed to an increase in GAF of the oldest population of erythrocytes. Using the DIB technique, the GAF of a cohort of blood erythrocyte generated during a 5 day window was tracked in vivo. GAF of the defined cohort of erythrocytes remained low till 40 days of age in circulation and then increased steeply till the end of the life span of erythrocytes. Taken together our results provide evidence for an age dependent increase in the GAF of blood erythrocytes that is accentuated by depletion of macrophages. Kinetics of changes in GAF of circulating erythrocytes with age has also been defined.

  7. Reduced Levels of microRNAs miR-124a and miR-150 Are Associated with Increased Proinflammatory Mediator Expression in Krüppel-like Factor 2 (KLF2)-deficient Macrophages*

    Science.gov (United States)

    Manoharan, Palanikumar; Basford, Joshua E.; Pilcher-Roberts, Robyn; Neumann, Jonathan; Hui, David Y.; Lingrel, Jerry B.

    2014-01-01

    Previous studies have shown that the myeloid-specific deficiency of the transcription factor Krüppel-like factor 2 (KLF2) accelerates atherosclerosis in hypercholesterolemic Ldlr−/− mice due to the enhanced adhesion of myeloid cells to activated endothelial cells in the vessel wall. This study revealed elevated basal inflammation with elevated plasma levels of Ccl2, Ccl4, Ccl5, and Ccl11 in the myeloid-specific KLF2 knock-out (myeKlf2−/−) mice. Peritoneal macrophages isolated from myeKlf2−/− mice showed increased mRNA levels of several inflammatory mediators, including Ccl2, Ccl5, Ccl7, Cox-2, Cxcl1, and IL-6. In contrast, the levels of two microRNAs, miR-124a and miR-150, were lower in Klf2−/− macrophages compared with Klf2+/+ macrophages. Additional studies showed a direct inverse relationship between miR-124a levels with Ccl2 expression, with anti-miR-124a increasing Ccl2 mRNA levels in Klf2+/+ macrophages, whereas the restoration of miR-124a levels in Klf2−/− macrophages significantly reduced Ccl2 mRNA expression. Likewise, the inverse relationship was observed between miR-150 levels and Cxcl1 expression in Klf2+/+ and Klf2−/− mice. Moreover, miR150 likely regulates the miR124a expression and thus augments expression of inflammatory mediators in myeKlf2−/− macrophages. This study documented that the transcription factor KLF2 modulates inflammatory chemokine production via regulation of microRNA expression levels in immune cells. PMID:25248747

  8. An extra-ribosomal function of ribosomal protein L13a in macrophage resolves inflammation

    Science.gov (United States)

    Poddar, Darshana; Basu, Abhijit; Baldwin, William; Kondratov, Roman V; Barik, Sailen; Mazumder, Barsanjit

    2013-01-01

    Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of pro-inflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout (KO) mice here we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these KO animals show unregulated expression of several chemokines e.g. CXCL13, CCL22, CCL8 and CCR3. These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, our studies provide the first evidence of an essential extra-ribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host. PMID:23460747

  9. Subcapsular sinus macrophages limit acute gammaherpesvirus dissemination.

    Science.gov (United States)

    Frederico, Bruno; Chao, Brittany; Lawler, Clara; May, Janet S; Stevenson, Philip G

    2015-08-01

    Lymphocyte proliferation, mobility and longevity make them prime targets for virus infection. Myeloid cells that process and present environmental antigens to lymphocytes are consequently an important line of defence. Subcapsular sinus macrophages (SSMs) filter the afferent lymph and communicate with B-cells. How they interact with B-cell-tropic viruses is unknown. We analysed their encounter with murid herpesvirus-4 (MuHV-4), an experimentally accessible gammaherpesvirus related to Kaposi's sarcoma-associated herpesvirus. MuHV-4 disseminated via lymph nodes, and intranasally or subcutaneously inoculated virions readily infected SSMs. However, this infection was poorly productive. SSM depletion with clodronate-loaded liposomes or with diphtheria toxin in CD169-diphtheria toxin receptor transgenic mice increased B-cell infection and hastened virus spread to the spleen. Dendritic cells provided the main route to B-cells, and SSMs slowed host colonization, apparently by absorbing virions non-productively from the afferent lymph.

  10. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation

    Directory of Open Access Journals (Sweden)

    Malkinson Alvin M

    2011-06-01

    Full Text Available Abstract Background Worldwide, lung cancer kills more people than breast, colon and prostate cancer combined. Alterations in macrophage number and function during lung tumorigenesis suggest that these immune effector cells stimulate lung cancer growth. Evidence from cancer models in other tissues suggests that cancer cells actively recruit growth factor-producing macrophages through a reciprocal signaling pathway. While the levels of lung macrophages increase during tumor progression in mouse models of lung cancer, and high pulmonary macrophage content correlates with a poor prognosis in human non-small cell lung cancer, the specific role of alveolar macrophages in lung tumorigenesis is not clear. Methods After culturing either an immortalized lung macrophage cell line or primary murine alveolar macrophages from naïve and lung-tumor bearing mice with primary tumor isolates and immortalized cell lines, the effects on epithelial proliferation and cellular kinase activation were determined. Insulin-like growth factor-1 (IGF-1 was quantified by ELISA, and macrophage conditioned media IGF-1 levels manipulated by IL-4 treatment, immuno-depletion and siRNA transfection. Results Primary macrophages from both naïve and lung-tumor bearing mice stimulated epithelial cell proliferation. The lungs of tumor-bearing mice contained 3.5-times more IGF-1 than naïve littermates, and media conditioned by freshly isolated tumor-educated macrophages contained more IGF-1 than media conditioned by naïve macrophages; IL-4 stimulated IGF-1 production by both macrophage subsets. The ability of macrophage conditioned media to stimulate neoplastic proliferation correlated with media IGF-1 levels, and recombinant IGF-1 alone was sufficient to induce epithelial proliferation in all cell lines evaluated. Macrophage-conditioned media and IGF-1 stimulated lung tumor cell growth in an additive manner, while EGF had no effect. Macrophage-derived factors increased p-Erk1/2, p

  11. A novel CD14(high) CD16(high) subset of peritoneal macrophages from cirrhotic patients is associated to an increased response to LPS.

    Science.gov (United States)

    Ruiz-Alcaraz, Antonio José; Tapia-Abellán, Ana; Fernández-Fernández, María Dolores; Tristán-Manzano, María; Hernández-Caselles, Trinidad; Sánchez-Velasco, Eduardo; Miras-López, Manuel; Martínez-Esparza, María; García-Peñarrubia, Pilar

    2016-04-01

    The aim of this study was to characterize monocyte-derived macrophages (M-DM) from blood and ascites of cirrhotic patients comparatively with those obtained from blood of healthy controls. The phenotypic profile based on CD14/CD16 expression was analyzed by flow cytometry. Cells were isolated and stimulated in vitro with LPS and heat killed Candida albicans. Phosphorylation of ERK, c-Jun, p38 MAPK, and PKB/Akt was analyzed by Western blotting. A novel CD14(high)CD16(high) M-DM subpopulation is present in ascites (∼33%). The CD14(++)CD16(+) intermediate subset is increased in the blood of cirrhotic patients (∼from 4% to 11%) and is predominant in ascites (49%), while the classical CD14(++)CD16(-) subpopulation is notably reduced in ascites (18%). Basal hyperactivation of ERK and JNK/c-Jun pathways observed in ascites M-DM correlates with CD14/CD16 high expressing subsets, while PI3K/PKB does it with the CD16 low expressing cells. In vitro LPS treatment highly increases ERK1/2, PKB/Akt and c-Jun phosphorylation, while that of p38 MAPK is decreased in M-DM from ascites compared to control blood M-DM. Stimulation of healthy blood M-DM with LPS and C. albicans induced higher phosphorylation levels of p38 than those from ascites. Regarding cytokines secretion, in vitro activated M-DM from ascites of cirrhotic patients produced significantly higher amounts of IL-6, IL-10 and TNF-α, and lower levels of IL-1β and IL-12 than control blood M-DM. In conclusion, a new subpopulation of CD14(high)CD16(high) peritoneal M-DM has been identified in ascites of cirrhotic patients, which is very sensitive to LPS stimulation.

  12. Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Rafał Biedroń

    Full Text Available The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl, causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin and glycoproteins (human apo-transferrin, ovalbumin gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206, scavenger receptors A (CD204 and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system

  13. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Kämmerer Ines

    2011-11-01

    Full Text Available Abstract Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1 and scavenger receptor class B type 1 (SR-BI. The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA, 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway.

  14. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Joyce, Kellie [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Xie, Hong [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Falank, Carolyne [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); and others

    2014-04-15

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  15. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Wu, Jian-Feng [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Yan-Yan; Zhang, Min; Li, Yuan [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Chen, Kong; Zeng, Meng-Ya [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Yao, Feng; Xie, Wei [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Zheng, Xi-Long [Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1 (Canada); Zeng, Gao-Feng, E-mail: qichingnudou@tom.com [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Chao-Ke, E-mail: tangchaoke@qq.com [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China)

    2014-10-03

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.

  16. Increase the awareness of macrophage activation syndrome%应提高对巨噬细胞活化综合征的认识

    Institute of Scientific and Technical Information of China (English)

    何晓琥

    2010-01-01

    @@ 巨噬细胞活化综合征(macrophage activation syndrome,MAS)是一种凶险的急症,可以并发于多种风湿性疾病,尤其是全身型幼年特发性关节炎(systemic onset juvenile idiopathic arthritis,SOJIA).

  17. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    /microglial reactivity was evident in demyelinating lesions in spinal cord, but T cells were not detected during chronic disease. The participation of TNF-alpha in the demyelinating process is thus more probably due to the perpetuation of macrophage/microglial activation than to direct cytotoxicity of myelin...

  18. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA- OMVs, without further stimulating their proinflammatory activity on circulating monocytes.

    Science.gov (United States)

    Tavano, Regina; Franzoso, Susanna; Cecchini, Paola; Cartocci, Elena; Oriente, Francesca; Aricò, Beatrice; Papini, Emanuele

    2009-07-01

    Hypervirulent MenB causing fatal human infections frequently display the oligomeric-coiled coil adhesin NadA, a 45-kDa intrinsic outer membrane protein implicated in binding to and invasion of respiratory epithelial cells. A recombinant soluble mutant lacking the 10-kDa COOH terminal membrane domain (NadA(Delta351-405)) also activates human monocytes/macrophages/DCs. As NadA is physiologically released during sepsis as part of OMVs, in this study, we tested the hypothesis that NadA(+) OMVs have an enhanced or modified proinflammatory/proimmune action compared with NadA(-) OMVs. To do this we investigated the activity of purified free NadA(Delta351-405) and of OMVs from MenB and Escherichia coli strains, expressing or not full-length NadA. NadA(Delta351-405) stimulated monocytes and macrophages to secrete cytokines (IL-1beta, TNF-alpha, IL-6, IL-12p40, IL-12p70, IL-10) and chemokines (IL-8, MIP-1alpha, MCP-1, RANTES), and full-length NadA improved MenB OMV activity, preferentially on macrophages, and only increased cytokine release. NadA(Delta351-405) induced the lymphocyte costimulant CD80 in monocytes and macrophages, and NadA(+) OMVs induced a wider set of molecules supporting antigen presentation (CD80, CD86, HLA-DR, and ICAM-1) more efficiently than NadA(-) OMVs only in macrophages. Moreover, membrane NadA effects, unlike NadA(Delta351-405) ones, were much less IFN-gamma-sensitive. The activity of NadA-positive E. coli OMVs was similar to that of control OMVs. NadA in MenB OMVs acted at adhesin concentrations approximately 10(6) times lower than those required to stimulate cells with free NadA(Delta351-405).

  19. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  20. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Science.gov (United States)

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar; Kallert, Stephanie; Morgelin, Matthias; Lindstrøm, Thomas; Borregaard, Niels; Stenger, Steffen; Sonawane, Avinash; Sørensen, Ole E

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  1. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    Science.gov (United States)

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  2. The Role of Macrophages in Tumor Development

    Directory of Open Access Journals (Sweden)

    Gerben J. van der Bij

    2005-01-01

    Full Text Available Macrophages constitute a large proportion of the immune cell infiltrate, which is present in many tumors. Activation state of macrophages is greatly influenced by their environment, leading to different macrophage subsets with diverse functions. Although previously regarded as potent immune cells that are capable of destroying tumor cells, recent literature focuses on the ability of macrophages to promote tumor development due to secretion of mediators, like growth and angiogenic factors. It is now becoming increasingly clear that a complicated synergistic relationship exists between macrophages and malignant cells whereby tumor cells can affect macrophage phenotype, and vice versa. As such, macrophages and their contribution in cancer development are currently subject of debate.

  3. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bréchot

    Full Text Available BACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI. However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1 is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/- mice subjected to femoral artery excision, we report that tsp-1(-/- mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/- and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/- mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/- mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/- mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue

  4. Rhinovirus infection induces interleukin-13 production from CD11b-positive, M2-polarized exudative macrophages.

    Science.gov (United States)

    Chung, Yutein; Hong, Jun Young; Lei, Jing; Chen, Qiang; Bentley, J Kelley; Hershenson, Marc B

    2015-02-01

    Rhinovirus (RV) causes asthma exacerbations. Previously, we showed that adherent bronchoalveolar cells from allergen-treated mice produce IL-13 when stimulated with RV ex vivo, implicating cells of the monocyte/macrophage lineage in viral-induced airway inflammation. In this study, we hypothesized that RV infection of allergen-treated mice results in IL-13 production by CD11b+ exudative macrophages in vivo. We sensitized and challenged BALB/c mice with ovalbumin (OVA), after which mice were inoculated with RV or sham HeLa cell lysate. After 1 day, lungs were harvested, and cell suspensions were analyzed by flow cytometry. We repeated this process in IL-13 reporter mice, CD11b-DTR mice in which diphtheria toxin selectively depletes CD11b+ cells, and chemokine receptor 2 (CCR2) null mice. We found that lungs of mice infected with RV alone showed increases in CD45+, CD68+, F4/80+, Ly6C+, and CD11b(high) cells, indicating an influx of inflammatory monocytes and exudative macrophages. The combination of OVA and RV had synergistic effects on the exudative macrophage number. However, CD11b+ cells from OVA-treated, RV-infected mice showed M2 polarization, including expression of CD206 and CD301 and production of IL-13. Similar results were obtained in IL-13 reporter mice. Diphtheria toxin depleted CD11b+, IL-13-producing cells in OVA-treated, RV-infected, CD11b-DTR mice, decreasing airway inflammation and responsiveness. CD11b+, Ly6C+ cells were reduced in CCR2 knockout mice. We conclude that, in contrast to naive mice, RV infection of mice with allergic airways disease induces an influx of IL-13-producing CD11b+ exudative macrophages bearing M2 macrophage markers. This finding further implicates alternatively activated macrophages in RV-induced asthma exacerbations.

  5. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  6. Mouse macrophages completely lacking Rho (RhoA, RhoB and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and increased motility

    DEFF Research Database (Denmark)

    Koenigs, Volker; Jennings, Richard; Vogl, Thomas

    2014-01-01

    RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB and RhoC) is actually required for the directed migration of primary cells is diffi......RhoA is thought to be essential for coordination of the membrane protrusions and retractions required for immune cell motility and directed migration. Whether the subfamily of Rho (Ras homolog) GTPases (RhoA, RhoB and RhoC) is actually required for the directed migration of primary cells...... is difficult to predict. Macrophages isolated from myeloid-restricted RhoA/RhoB (conditional) double knockout (dKO) mice did not express RhoC and were essentially pan-Rho deficient. Using real-time chemotaxis assays, we found that retraction of the trailing edge was dissociated from advance of the cell body...... branches due to impaired lamellipodial retraction. A mouse model of peritonitis indicated that monocyte/macrophage recruitment was, surprisingly, more rapid in RhoA/RhoB dKO mice than in WT mice. In comparison to dKO cells, the phenotypes of single RhoA or RhoB deficient macrophages were mild due to mutual...

  7. Ozone Depletion by Hydrofluorocarbons

    Science.gov (United States)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  8. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    Science.gov (United States)

    Rosche, Kristin L; Aljasham, Alanoud T; Kipfer, James N; Piatkowski, Bryan T; Konjufca, Vjollca

    2015-01-01

    Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  9. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    Directory of Open Access Journals (Sweden)

    Kristin L Rosche

    Full Text Available Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella causes systemic inflammatory disease and enlargement of the spleen (splenomegaly. Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP, marginal zone (MZ, and red pulp (RP is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM, we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  10. CREB pathway links PGE2 signaling with macrophage polarization.

    Science.gov (United States)

    Luan, Bing; Yoon, Young-Sil; Le Lay, John; Kaestner, Klaus H; Hedrick, Susan; Montminy, Marc

    2015-12-22

    Obesity is thought to promote insulin resistance in part via activation of the innate immune system. Increases in proinflammatory cytokine production by M1 macrophages inhibit insulin signaling in white adipose tissue. In contrast, M2 macrophages have been found to enhance insulin sensitivity in part by reducing adipose tissue inflammation. The paracrine hormone prostaglandin E2 (PGE2) enhances M2 polarization in part through activation of the cAMP pathway, although the underlying mechanism is unclear. Here we show that PGE2 stimulates M2 polarization via the cyclic AMP-responsive element binding (CREB)-mediated induction of Krupple-like factor 4 (KLF4). Targeted disruption of CREB or the cAMP-regulated transcriptional coactivators 2 and 3 (CRTC2/3) in macrophages down-regulated M2 marker gene expression and promoted insulin resistance in the context of high-fat diet feeding. As re-expression of KLF4 rescued M2 marker gene expression in CREB-depleted cells, our results demonstrate the importance of the CREB/CRTC pathway in maintaining insulin sensitivity in white adipose tissue via its effects on the innate immune system.

  11. Effects of ischemia on lung macrophages.

    Directory of Open Access Journals (Sweden)

    Aigul Moldobaeva

    Full Text Available Angiogenesis after pulmonary ischemia is initiated by reactive O(2 species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int, CD11C+, alveolar macrophages (MHCII(int, CD11C+, CD11B- and mature lung macrophages (MHCII(int, CD11C+, CD11B+ in left lungs from mice immediately (0 h or 24 h after left pulmonary artery ligation (LPAL. In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05. No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs. When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01 compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA. These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.

  12. Polarization of macrophages and microglia in inflammatory demyelination

    Institute of Scientific and Technical Information of China (English)

    Li Cao; Cheng He

    2013-01-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system,and microglia and macrophages play important roles in its pathogenesis.The activation of microglia and macrophages accompanies disease development,whereas depletion of these cells significantly decreases disease severity.Microglia and macrophages usually have diverse and plastic phenotypes.Both pro-inflammatory and antiinflammatory microglia and macrophages exist in MS and its animal model,experimental autoimmune encephalomyelitis.The polarization of microglia and macrophages may underlie the differing functional properties that have been reported.In this review,we discuss the responses and polarization of microglia and macrophages in MS,and their effects on its pathogenesis and repair.Harnessing their beneficial effects by modulating their polarization states holds great promise for the treatment of inflammatory demyelinating diseases.

  13. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection.

    Directory of Open Access Journals (Sweden)

    Hongyu Qiu

    Full Text Available Acinetobacter baumannii is an emerging bacterial pathogen that causes nosocomial pneumonia and other infections. Although it is recognized as an increasing threat to immunocompromised patients, the mechanism of host defense against A. baumannii infection remains poorly understood. In this study, we examined the potential role of macrophages in host defense against A. baumannii infection using in vitro macrophage culture and the mouse model of intranasal (i.n. infection. Large numbers of A. baumannii were taken up by alveolar macrophages in vivo as early as 4 h after i.n. inoculation. By 24 h, the infection induced significant recruitment and activation (enhanced expression of CD80, CD86 and MHC-II of macrophages into bronchoalveolar spaces. In vitro cell culture studies showed that A. baumannii were phagocytosed by J774A.1 (J774 macrophage-like cells within 10 minutes of co-incubation, and this uptake was microfilament- and microtubule-dependent. Moreover, the viability of phagocytosed bacteria dropped significantly between 24 and 48 h after co-incubation. Infection of J774 cells by A. baumannii resulted in the production of large amounts of proinflammatory cytokines and chemokines, and moderate amounts of nitric oxide (NO. Prior treatment of J774 cells with NO inhibitors significantly suppressed their bactericidal efficacy (P<0.05. Most importantly, in vivo depletion of alveolar macrophages significantly enhanced the susceptibility of mice to i.n. A. baumannii challenge (P<0.01. These results indicate that macrophages may play an important role in early host defense against A. baumannii infection through the efficient phagocytosis and killing of A. baumannii to limit initial pathogen replication and the secretion of proinflammatory cytokines and chemokines for the rapid recruitment of other innate immune cells such as neutrophils.

  14. Pegylated G-CSF Inhibits Blood Cell Depletion, Increases Platelets, Blocks Splenomegaly, and Improves Survival after Whole-Body Ionizing Irradiation but Not after Irradiation Combined with Burn

    Science.gov (United States)

    2014-03-05

    of the mice to be treated. The suspension was centrifuged to remove the particulate filler and the supernatant solution was passed through a 0.45-m...processes that involve the destruction of abnormal RBC in the spleen. From our results, we speculate that sple- nomegalymay be caused by removal of RBC...B. Elliott, “ Ciprofloxacin inhibits gamma radiation-induced increases in -H2AX, p53 phosphorylation in human tumor cells and p53 phosphorylation

  15. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

      The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...... giving rise to depletion layers, and the mechanisms and border conditions that control their presence and extension require still clarification. Recently, careful systematic reflectivity experiments were re-done on the same system. No depletion layers were found, and it was conjectured that the whole...

  16. Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung.

    Science.gov (United States)

    Bongard, Robert D; Yan, Ke; Hoffmann, Raymond G; Audi, Said H; Zhang, Xiao; Lindemer, Brian J; Townsley, Mary I; Merker, Marilyn P

    2013-12-01

    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 µmol · g(-1) dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 to 38.62 ± 3.14 µmol · 15 min(-1) perfusion · g(-1) dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 to 0.156 ± 0.037 ml · min(-1) · cm H2O(-1) · g(-1) dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency.

  17. Passive immunotherapy against Aβ in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage

    Directory of Open Access Journals (Sweden)

    Gordon Marcia N

    2004-12-01

    Full Text Available Abstract Background Anti-Aβ immunotherapy in transgenic mice reduces both diffuse and compact amyloid deposits, improves memory function and clears early-stage phospho-tau aggregates. As most Alzheimer disease cases occur well past midlife, the current study examined adoptive transfer of anti-Aβ antibodies to 19- and 23-month old APP-transgenic mice. Methods We investigated the effects of weekly anti-Aβ antibody treatment on radial-arm water-maze performance, parenchymal and vascular amyloid loads, and the presence of microhemorrhage in the brain. 19-month-old mice were treated for 1, 2 or 3 months while 23-month-old mice were treated for 5 months. Only the 23-month-old mice were subject to radial-arm water-maze testing. Results After 3 months of weekly injections, this passive immunization protocol completely reversed learning and memory deficits in these mice, a benefit that was undiminished after 5 months of treatment. Dramatic reductions of diffuse Aβ immunostaining and parenchymal Congophilic amyloid deposits were observed after five months, indicating that even well-established amyloid deposits are susceptible to immunotherapy. However, cerebral amyloid angiopathy increased substantially with immunotherapy, and some deposits were associated with microhemorrhage. Reanalysis of results collected from an earlier time-course study demonstrated that these increases in vascular deposits were dependent on the duration of immunotherapy. Conclusions The cognitive benefits of passive immunotherapy persist in spite of the presence of vascular amyloid and small hemorrhages. These data suggest that clinical trials evaluating such treatments will require precautions to minimize potential adverse events associated with microhemorrhage.

  18. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  19. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  20. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids.

    Science.gov (United States)

    Rogers, Carlyle; Davis, Barbara; Neufer, P Darrell; Murphy, Michael P; Anderson, Ethan J; Robidoux, Jacques

    2014-02-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused a reduction in MIM potential, oxygen consumption, and ATP synthetic capacity and, ultimately, death. Additionally, we showed that FAs induce a transient increase in intramitochondrial reactive oxygen species (ROS) and lipid peroxide production, lasting roughly 30 and 120min for the ROS and lipid peroxides, respectively. MIM permeabilization and its deleterious consequences including mitochondrial crisis and cell death were prevented by treating the cells with the mitochondrial FA uptake inhibitor etomoxir, the mitochondrion-selective superoxide and lipid peroxide antioxidants MitoTempo and MitoQ, or the lipid peroxide and reactive carbonyl scavenger l-carnosine. FAs also promoted a delayed oxidative stress phase. However, the beneficial effects of etomoxir, MitoTempo, and l-carnosine were lost by delaying the treatment by 2h, suggesting that the initial phase was sufficient to prime the cells for the delayed MIM permeabilization and mitochondrial crisis. It also suggested that the second ROS production phase is a consequence of this loss in mitochondrial health. Altogether, our data suggest that approaches designed to diminish intramitochondrial ROS or lipid peroxide accumulation, as well as MIM permeabilization, are valid mechanism-based therapeutic avenues to prevent the loss in preadipocyte metabolic fitness associated with prolonged exposure to elevated FA levels. © 2013 Elsevier Inc. All rights reserved.

  1. The higher susceptibility of congenital analbuminemic rats to Ca2+-induced mitochondrial permeability transition is associated with the increased expression of cyclophilin D and nitrosothiol depletion.

    Science.gov (United States)

    Figueira, Tiago R; Castilho, Roger F; Saito, Angela; Oliveira, Helena C F; Vercesi, Anibal E

    2011-12-01

    Congenital analbuminemia is a rare autosomal recessive disorder characterized by a trace level of albumin in blood plasma and mild clinical symptoms. Analbuminemic patients generally present associated abnormalities, among which dyslipidemia is a hallmark. In this study, we show that mitochondria isolated from different tissues (liver, heart and brain) from 3-month-old analbuminemic rats (NAR) present a higher susceptibility to Ca(2+)-induced mitochondrial permeability transition (MPT), as assessed by either Ca(2+)-induced mitochondrial swelling, dissipation of membrane potential or mitochondrial Ca(2+) release. The Ca(2+) retention capacity of the liver mitochondria isolated from 3-month-old NAR was about 50% that of the control. Interestingly, the assessment of this variable in 21-day-old NAR indicated that the mitochondrial Ca(2+) retention capacity was preserved at this age, as compared to age-matched controls, which indicates that a reduced capacity for mitochondrial Ca(2+) retention is not a constitutive feature. The search for putative mediators of MPT sensitization in NAR revealed a 20% decrease in mitochondrial nitrosothiol content and a 30% increase in cyclophilin D expression. However, the evaluation of other variables related to mitochondrial redox status showed similar results between the controls and NAR, i.e., namely the contents of reduced mitochondrial membrane protein thiol groups and total glutathione, H(2)O(2) release rate, and NAD(P)H reduced state. We conclude that the higher expression of cyclophilin D, a major component of the MPT pore, and decreased nitrosothiol content in NAR mitochondria may underlie MPT sensitization in these animals.

  2. Antibodies against invasive phenotype-specific antigens increase Mycobacterium avium subspecies paratuberculosis translocation across a polarized epithelial cell model and enhance killing by bovine macrophages

    Science.gov (United States)

    Everman, Jamie L.; Bermudez, Luiz E.

    2015-01-01

    Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a severe chronic enteritis which affects large populations of ruminants globally. Prevention strategies to combat the spread of Johne's disease among cattle herds involve adhering to strict calving practices to ensure young susceptible animals do not come in contact with MAP-contaminated colostrum, milk, or fecal material. Unfortunately, the current vaccination options available are associated with high cost and suboptimal efficacy. To more successfully combat the spread of Johne's disease to young calves, an efficient method of protection is needed. In this study, we examined passive immunization as a mode of introducing protective antibodies against MAP to prevent the passage of the bacterium to young animals via colostrum and milk. Utilizing the infectious MAP phenotype developed after bacterial exposure to milk, we demonstrate that in vitro opsonization with serum from Johne's-positive cattle results in enhanced translocation across a bovine MDBK polarized epithelial cell monolayer. Furthermore, immune serum opsonization of MAP results in a rapid host cell-mediated killing by bovine macrophages in an oxidative-, nitrosative-, and extracellular DNA trap-independent manner. This study illustrates that antibody opsonization of MAP expressing an infectious phenotype leads to the killing of the bacterium during the initial stage of macrophage infection. PMID:26301206

  3. Increased tumor necrosis factor-alpha and nitric oxide production by rat macrophages following in vitro stimulation and intravenous administration of the delta-opioid agonist SNC 80.

    Science.gov (United States)

    Gomez-Flores, R; Rice, K C; Zhang, X; Weber, R J

    2001-05-04

    Opioids alter immune function by binding to opioid receptors on cells of the immune system, or indirectly by acting on receptors within the central nervous system. Mu-selective opioid agonists are generally associated with immunosuppression, whereas delta-opioid receptor-selective agonists are commonly associated with immunopotentiation. We have previously shown that intracerebroventricular administration of the nonpeptide delta-opioid receptor agonist (+)-4-((alpha R)-alpha-((2S, 5R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-methoxybenzyl)-N, N-diethyl-benzamide (SNC 80) did not alter certain parameters of immunocompetence. In the present study, we studied the in vitro and ex vivo effects of SNC 80 on rat macrophage and lymphocyte functions. We showed that SNC 80 at concentrations of 10(-7) M and 10(-6) M, significantly (P SNC 80 (6.8 mg/kg) significantly (P SNC 80 plus Con A potentiated ex vivo LPS-stimulated macrophage functions. SNC 80 could potentially be utilized in various clinical situations where immunosuppression is undesirable.

  4. Extreme depletion of PIP3 accompanies the increased life span and stress tolerance of PI3K-null C. elegans mutants

    Directory of Open Access Journals (Sweden)

    Puneet eBharill

    2013-03-01

    Full Text Available The regulation of animal longevity shows remarkable plasticity, in that a variety of genetic lesions are able to extend lifespan by as much as tenfold. Such studies have implicated several key signaling pathways that must normally limit longevity, since their disruption prolongs life. Little is known, however, about the proximal effectors of aging on which these pathways are presumed to converge, and to date, no pharmacologic agents even approach the life-extending effects of genetic mutation. In the present study, we have sought to define the downstream consequences of age-1 nonsense mutations, which confer 10-fold life extension to the nematode C. elegans ― the largest effect documented for any single mutation. Such mutations insert a premature stop codon upstream of the catalytic domain of the AGE-1/ p110α subunit of class-I PI3K. As expected, we do not detect class-I PI3K (and based on our sensitivity, it constitutes <14% of wild-type levels, nor do we find any PI3K activity as judged by immunodetection of phosphorylated AKT, which strongly requires PIP3 for activation by upstream kinases, or immunodetection of its product, PIP3. In the latter case, the upper 95%-confidence limit for PIP3 is 1.4% of the wild-type level. We tested a variety of commercially available PI3K inhibitors, as well as three phosphatidylinositol analogues (PIAs that are most active in inhibiting AKT activation, for effects on longevity and survival of oxidative stress. Of these, GDC-0941, PIA6 and PIA24 (each at 1 or 10 μM extended lifespan by 7–14%, while PIAs 6, 12 and 24 (at 1 or 10 μM increased survival time in 5-mM peroxide by 12–52%.These effects may have been conferred by insulinlike signaling, since a reporter regulated by the DAF-16/FOXO transcription factor, SOD3::GFP, was stimulated by these PIAs in the same rank order (PIA24>PIA6>PIA12 as lifespan. A second reporter, PEPCK::GFP, was equally activated (~40% by all three.

  5. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  6. (JASR) Vol. 12, No. 2, 2012 DEPLETING FOREST RESOURCES OF ...

    African Journals Online (AJOL)

    HP

    undisturbed lands leading to depletion of the forest cover and increase on the sand dunes .... depletion of the ozone layer leading to a rise in global temperature. ... Nigeria has good correlation with greenhouse gas emission which can cause ...

  7. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Kenichiro Nishikawa

    Full Text Available Interleukin 17 (IL-17 is a pleiotropic cytokine that acts on both immune and non-immune cells and is generally implicated in inflammatory and autoimmune diseases. Although IL-17 as well as their source, mainly but not limited to Th17 cells, is also abundant in the inflamed intestine, the role of IL-17 in inflammatory bowel disease remains controversial. In the present study, by using IL-17 knockout (KO mice, we investigated the role of IL-17 in colitis, with special focus on the macrophage subpopulations. Here we show that IL-17KO mice had increased susceptibility to DSS-induced colitis which was associated with decrease in expression of mRNAs implicated in M2 and/or wound healing macrophages, such as IL-10, IL-1 receptor antagonist, arginase 1, cyclooxygenase 2, and indoleamine 2,3-dioxygenase. Lamina propria leukocytes from inflamed colon of IL-17KO mice contained fewer CD11b+Ly6C+MHC Class II+ macrophages, which were derived, at least partly, from blood monocytes, as compared to those of WT mice. FACS-purified CD11b+ cells from WT mice, which were more abundant in Ly6C+MHC Class II+ cells, expressed increased levels of genes associated M2/wound healing macrophages and also M1/proinflammatory macrophages. Depletion of this population by topical administration of clodronate-liposome in the colon of WT mice resulted in the exacerbation of colitis. These results demonstrate that IL-17 confers protection against the development of severe colitis through the induction of an atypical M2-like macrophage subpopulation. Our findings reveal a previously unappreciated mechanism by which IL-17 exerts a protective function in colitis.

  8. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice.

    Science.gov (United States)

    Terlizzi, Michela; Colarusso, Chiara; Popolo, Ada; Pinto, Aldo; Sorrentino, Rosalinda

    2016-09-06

    Macrophages highly populate tumour microenvironment and are referred to as tumor-associated macrophages (TAMs). The inflammasome is a multiprotein complex responsible of IL-1 like cytokines release, which biology has been widely studied by using bone-marrow-derived macrophages to mimic a physiological and/or host defense condition. To understand the role of this complex in lung tumor-associated macrophages (TAMs), we isolated and cultured broncho-alveolar lavage (BAL)-derived cells of lung tumor-bearing mice. The stimulation of lung TAMs with LPS+ATP increased the release of IL-1β. The inhibition of NLRP3 by means of glybenclamide significantly reduced IL-1β release. Similarly, C3H-derived, caspase-1 ko and caspase-11 ko TAMs released significantly reduced levels of IL-1β. Moreover, the stimulation of lung TAMs with the sole LPS induced a significant release of IL-1α, which was significantly reduced after caspase-1 pharmacological inhibition, and in TAMs genetically lacking caspase-1 and caspase-11. The inhibition of calpain I/II by means of MDL28170 did not alter IL-1α release after LPS treatment of lung TAMs. To note, the inoculation of LPS-treated bone marrow-derived macrophages into carcinogen-exposed mice increased lung tumor formation. In contrast, the depletion of TAMs by means of clodronate liposomes reduced lung tumorigenesis, associated to lower in vivo release of IL-1α and IL-1β.In conclusion, our data imply lung tumor lesions are populated by macrophages which pro-tumor activity is regulated by the activation of the NLRP3 inflammasome that leads to the release of IL-1α and IL-1β in a caspase-11/caspase-1-dependent manner.

  9. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment.

    Science.gov (United States)

    Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E; Ellett, Felix; Lieschke, Graham J; Ramakrishnan, Lalita

    2015-07-08

    The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis.

  10. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

    with an AFM (2).    The intuitive explanation for the depletion based on "hydrophobic mismatch" between the obviously hydrophilic bulk phase of water next to the hydrophobic polymer. It would thus be an intrinsic property of all interfaces between non-matching materials. The detailed physical interaction path......  The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...

  11. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation.

    Science.gov (United States)

    Eliason, Jonathan L; Hannawa, Kevin K; Ailawadi, Gorav; Sinha, Indranil; Ford, John W; Deogracias, Michael P; Roelofs, Karen J; Woodrum, Derek T; Ennis, Terri L; Henke, Peter K; Stanley, James C; Thompson, Robert W; Upchurch, Gilbert R

    2005-07-12

    Neutrophils may be an important source of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two matrix-degrading enzymes thought to be critical in the formation of an abdominal aortic aneurysm (AAA). The purpose of this investigation was to test the hypothesis that neutrophil depletion would limit experimental AAA formation by altering one or both of these enzymes. Control, rabbit serum-treated (RS; n=27) or anti-neutrophil-antibody-treated (anti-PMN; n=25) C57BL/6 mice underwent aortic elastase perfusion to induce experimental aneurysms. Anti-PMN-treated mice became neutropenic (mean, 349 cells/microL), experiencing an 84% decrease in the circulating absolute neutrophil count (P<0.001) before elastase perfusion. Fourteen days after elastase perfusion, control mice exhibited a mean aortic diameter (AD) increase of 104+/-14% (P<0.0001), and 67% developed AAAs, whereas anti-PMN-treated mice exhibited a mean AD increase of 42+/-33%, with 8% developing AAAs. The control group also had increased tissue neutrophils (20.3 versus 8.6 cells per 5 high-powered fields [HPFs]; P=0.02) and macrophages (6.1 versus 2.1 cells per 5 HPFs, P=0.005) as compared with anti-PMN-treated mice. There were no differences in monocyte chemotactic protein-1 or macrophage inflammatory protein-1alpha chemokine levels between groups by enzyme-linked immunosorbent assay. Neutrophil collagenase (MMP-8) expression was detected only in the 14-day control mice, with increased MMP-8 protein levels by Western blotting (P=0.017), and MMP-8-positive neutrophils were seen almost exclusively in this group. Conversely, there were no statistical differences in MMP-2 or MMP-9 mRNA expression, protein levels, enzyme activity, or immunostaining patterns between groups. When C57BL/6 wild-type (n=15) and MMP-8-deficient mice (n=17) were subjected to elastase perfusion, however, ADs at 14 days were no different in size (134+/-7.9% versus 154+/-9.9%; P=0.603), which suggests that MMP-8

  12. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis

    Directory of Open Access Journals (Sweden)

    Tony DeFalco

    2015-08-01

    Full Text Available The testis produces sperm throughout the male reproductive lifespan by balancing self-renewal and differentiation of spermatogonial stem cells (SSCs. Part of the SSC niche is thought to lie outside the seminiferous tubules of the testis; however, specific interstitial components of the niche that regulate spermatogonial divisions and differentiation remain undefined. We identified distinct populations of testicular macrophages, one of which lies on the surface of seminiferous tubules, in close apposition to areas of tubules enriched for undifferentiated spermatogonia. These macrophages express spermatogonial proliferation- and differentiation-inducing factors, such as colony-stimulating factor 1 (CSF1 and enzymes involved in retinoic acid (RA biosynthesis. We show that transient depletion of macrophages leads to a disruption in spermatogonial differentiation. These findings reveal an unexpected role for macrophages in the spermatogonial niche in the testis and raise the possibility that macrophages play previously unappreciated roles in stem/progenitor cell regulation in other tissues.

  13. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    Wenqi Yao; Ke Li; Kan Liao

    2009-01-01

    The key event in the atherosclerosis development is the lipids uptake by macrophage and the formation of foam cell in subendothelial arterial space. Besides the uptake of modified low-density lipoprotein (LDL) by scavenger receptor-mediated endocytosis, macrophages possess constitutive macropinocytosis, which is capable of taking up a large quantity of solute. Macrophage foam cell formation could be induced in RAW264.7 cells by increasing the serum concentration in the culture medium. Foam cell formation induced by serum could be blocked by phosphoinositide 3-kinase inhibi-tor, LY294002 or wortmannin, which inhibited macro-pinocytosis but not receptor-mediated endocytosis. Further analysis indicated that macropinocytosis took place at the gangliosides-enriched membrane area. Cholesterol depletion by β-methylcyclodextrin-blocked macropinocytosis without affecting scavenger receptor-mediated endocytosis of modified LDLs. These results suggested that macropinocytosis might be one of the important mechanisms for lipid uptake in macrophage. And it made significant contribution to the lipid accumulation and foam cell formation.

  14. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue.

    Science.gov (United States)

    Hui, Xiaoyan; Zhang, Mingliang; Gu, Ping; Li, Kuai; Gao, Yuan; Wu, Donghai; Wang, Yu; Xu, Aimin

    2017-04-01

    Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD(+)-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages. © 2017 The Authors.

  15. Identification of an Autophagy Defect in Smokers’ Alveolar Macrophages1

    OpenAIRE

    2010-01-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbial-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers’ lungs but they have a functional immune deficit. In this study, we identify for the first time an autophagy defect in smokers’ alveolar macrophages. Smokers’ alveolar macrophages accumulate both autophagosomes and p6...

  16. Selective and Specific Macrophage Ablation Is Detrimental to Wound Healing in Mice

    OpenAIRE

    Mirza, Rita; DiPietro, Luisa A.; Koh, Timothy J.

    2009-01-01

    Macrophages are thought to play important roles during wound healing, but definition of these roles has been hampered by our technical inability to specifically eliminate macrophages during wound repair. The purpose of this study was to test the hypothesis that specific depletion of macrophages after excisional skin wounding would detrimentally affect healing by reducing the production of growth factors important in the repair process. We used transgenic mice that express the human diphtheria...

  17. 雌激素通过调节IRF4促进巨噬细胞向M2型极化%Estrogen promotes M2 macrophages polarization by increasing IRF4 expression

    Institute of Scientific and Technical Information of China (English)

    刘黎; 胡静平; 岳艳

    2013-01-01

    Differential macrophage polarization in male and female mice defines susceptibility to disease.It is reported that estrogen plays an important role in maerophage polarization,but its underlying molecular mechanism is still unknown.In this study we studied the effect of estrogen on polarization of the M-CSF-induced bone marrow macrophages and then explored its potential mechanisms.We found that estrogen did not affect macrophage differentiation but promoted M2 polarization.Further,we found that estrogen could increase expression of M2-associated transcription factor IRF4.More importantly,the level of IRF4 was correlated with the extent of estrogen-induced M2 polarization.This study may provide some explanation for difference in susceptibility to diseases between male and female mice,and may also provide new clues for macrophage polarization-based treatements.%病毒性心肌炎、系统性红斑狼疮及肝癌等多种疾病其发病及严重情况呈现明显的性别差异,其中巨噬细胞不同极化是引起上述差异的重要原因.目前发现,雌激素(estrogen)可显著影响巨噬细胞极化,然而其涉及的分子免疫学机制尚不明了.本研究我们探讨了雌激素对骨髓来源巨噬细胞(BMM)极化的影响极其分子机制.雌激素虽不影响巨噬细胞的分化,但可显著促进巨噬细胞向M2型极化.进一步研究发现雌激素可上调M2型巨噬细胞重要转录因子IRF4的表达,且上调水平与M2极化程度呈正相关.提示,雌激素通过上调转录因子IRF4进而促进了M2型巨噬细胞极化.本研究为雌雄小鼠对疾病发病敏感差异性作出了一定理论解释,同时为通过调控巨噬细胞极化治疗疾病提供了新的线索.

  18. Increased expression of phosphorylated forms of heat-shock protein-27 and p38MAPK in macrophage-rich regions of fibro-fatty atherosclerotic lesions in the rabbit.

    Science.gov (United States)

    Shafi, Shahida; Codrington, Rosalind; Gidden, Lewis Michael; Ferns, Gordon Ashley Anthony

    2016-02-01

    We aimed to assess the expression and distribution of Hsp27, pHsp27 (Ser82), p38MAPK and p-p38MAPK in fibro-fatty atherosclerotic lesions and the myocardium of hypercholesterolaemic rabbits. Male New Zealand white rabbits were fed a high-cholesterol diet for 18 weeks, maintaining serum cholesterol at approximately 20 mmol/l over this period. Aortic arch and myocardial tissues were analysed by Western blot, immunohistochemistry and double immunofluorescence. Plasma Hsp27 levels were measured by ELISA. There was a significant increase in the expression of monomeric and dimeric forms of Hsp27, together with pHsp27 (Ser82), p38MAPK and p-p38MAPK in the fibro-fatty atherosclerotic lesions (P < 0.01; P < 0.05; P < 0.001; and P < 0.001, respectively) and the myocardial tissues (P < 0.001) from the cholesterol-fed rabbits compared with equivalent tissues from controls when the plasma concentration was low. Immunohistochemical analysis of the fibro-fatty lesions showed marked increases in Hsp27 and pHsp27 (Ser82) immunoreactivity. Double immunostaining showed intense expression of pHsp27 and p-p38MAPK in regions that were rich in macrophages, suggesting a close association with these inflammatory cells, whereas, in regions rich in smooth muscle cells, only p-p38MAPK was found to be strongly expressed. An increased expression of pHsp27 (Ser82) was spatially associated with increased p-p38MAPK within fibro-fatty atherosclerotic lesions and was colocalized to regions rich in macrophages. The initial increase in plasma Hsp27 levels may reflect the increase in systemic inflammation and oxidative stress in the early phases of disease. The falling concentrations subsequently may be coincident with the development of the advanced atherosclerotic lesions.

  19. Psoriasis and cardiovascular risk factors: increased serum myeloperoxidase and corresponding immunocellular overexpression by Cd11b+ CD68+ macrophages in skin lesions

    Science.gov (United States)

    Cao, Lauren Y; Soler, David C; Debanne, Sarah M; Grozdev, Ivan; Rodriguez, Myriam E; Feig, Rivka L; Carman, Teresa L; Gilkeson, Robert C; Orringer, Carl E; Kern, Elizabeth F; McCormick, Thomas S; Cooper, Kevin D; Korman, Neil J

    2014-01-01

    Background: Recent studies report independent associations between psoriasis, cardiovascular (CV) events and risk factors. Blood Myeloperoxidase (MPO) from activated myeloid cells is associated with CV risk mainly through lipid oxidation, induction of endothelial dysfunction and release of IL-12 from macrophages. Objectives: To elucidate associations between psoriasis and conventional CV risk factors. Methods: We performed a cross-sectional study of 100 psoriasis patients and 53 controls, group matched on age, gender and body mass index, to assess levels of MPO in serum, as well as immunohistochemical staining from psoriasis skin lesions, psoriasis uninvolved skin, and normal skin. Results: Although the groups did not differ on waist circumference, glucose, cholesterol, triglycerides, creatinine or personal history of CV events, psoriasis patients had significantly higher waist-to-hip ratios, blood pressures, proportion of current smokers, and lower high density lipoprotein level than controls. Serum MPO level was elevated 2.5 fold (Ppsoriasis patients, even after adjusting for the CV risk factors on which the groups differed. MPO did correlate with coronary artery calcification, carotid plaque, carotid intima media thickness and flow mediated dilation, but did not correlate with psoriasis severity. However, MPO was highly expressed in lesional psoriatic skin and colocalized predominantly with CD45+ CD11b+ leukocytes. CD11b+ cell density correlated with circulation MPO levels. Conclusion: Lesional skin CD11b+ leukocytes activated to generate MPO may contribute to serum levels of MPO. Lesional CD11b+ cell activity may be an alternative measure of disease burden to PASI that underlies the MPO biomarker for systemic inflammation related to Cardiovascular Disease. PMID:24349618

  20. Depletion of intense fields

    CERN Document Server

    Seipt, D; Marklund, M; Bulanov, S S

    2016-01-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multi-photon nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude $a_0 \\sim 10^3$ and electron bunches with charges of the order of nC.

  1. Learning about ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, J. P. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany; Oppenheimer M. [Woodrow Wilson School of Public and International Affairs, Department of Geosciences, Princeton University, Princeton, NJ (United States)

    2008-07-15

    Stratospheric ozone depletion has been much studied as a case history in the interaction between environmental science and environmental policy. The positive influence of science on policy is often underscored, but here we review the photochemistry of ozone in order to illustrate how scientific learning has the potential to mislead policy makers. The latter may occur particularly in circumstances where limited observations are combined with simplified models of a complex system, such as may generally occur in the global change arena. Even for the well-studied case of ozone depletion, further research is needed on the dynamics of scientific learning, particularly the scientific assessment process, and how assessments influence the development of public policy.

  2. Depletion of Intense Fields

    Science.gov (United States)

    Seipt, D.; Heinzl, T.; Marklund, M.; Bulanov, S. S.

    2017-04-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multiphoton Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multiphoton nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude a0˜1 03 and electron bunches with charges of the order of 10 nC.

  3. Critical Role for Monocytes/Macrophages in Rapid Progression to AIDS in Pediatric Simian Immunodeficiency Virus-Infected Rhesus Macaques.

    Science.gov (United States)

    Sugimoto, Chie; Merino, Kristen M; Hasegawa, Atsuhiko; Wang, Xiaolei; Alvarez, Xavier A; Wakao, Hiroshi; Mori, Kazuyasu; Kim, Woong-Ki; Veazey, Ronald S; Didier, Elizabeth S; Kuroda, Marcelo J

    2017-09-01

    Infant humans and rhesus macaques infected with the human or simian immunodeficiency virus (HIV or SIV), respectively, express higher viral loads and progress more rapidly to AIDS than infected adults. Activated memory CD4(+) T cells in intestinal tissues are major primary target cells for SIV/HIV infection, and massive depletion of these cells is considered a major cause of immunodeficiency. Monocytes and macrophages are important cells of innate immunity and also are targets of HIV/SIV infection. We reported previously that a high peripheral blood monocyte turnover rate was predictive for the onset of disease progression to AIDS in SIV-infected adult macaques. The purpose of this study was to determine if earlier or higher infection of monocytes/macrophages contributes to the more rapid progression to AIDS in infants. We observed that uninfected infant rhesus macaques exhibited higher physiologic baseline monocyte turnover than adults. Early after SIV infection, the monocyte turnover further increased, and it remained high during progression to AIDS. A high percentage of terminal deoxynucleotidyltransferase dUTP nick end label (TUNEL)-positive macrophages in the lymph nodes (LNs) and intestine corresponded with an increasing number of macrophages derived from circulating monocytes (bromodeoxyuridine positive [BrdU(+)] CD163(+)), suggesting that the increased blood monocyte turnover was required to rapidly replenish destroyed tissue macrophages. Immunofluorescence analysis further demonstrated that macrophages were a significant portion of the virus-producing cells found in LNs, intestinal tissues, and lungs. The higher baseline monocyte turnover in infant macaques and subsequent macrophage damage by SIV infection may help explain the basis of more rapid disease progression to AIDS in infants.IMPORTANCE HIV infection progresses much more rapidly in pediatric cases than in adults; however, the mechanism for this difference is unclear. Using the rhesus macaque model

  4. ATP Depletion Via Mitochondrial F1F0 Complex by Lethal Factor is an Early Event in B. Anthracis-Induced Sudden Cell Death

    Directory of Open Access Journals (Sweden)

    Mitchell W. Woodberry

    2009-08-01

    Full Text Available Bacillus anthracis’ primary virulence factor is a tripartite anthrax toxin consisting of edema factor (EF, lethal factor (LF and protective antigen (PA. In complex with PA, EF and LF are internalized via receptor-mediated endocytosis. EF is a calmodulin- dependent adenylate cyclase that induces tissue edema. LF is a zinc-metalloprotease that cleaves members of mitogen-activated protein kinase kinases. Lethal toxin (LT: PA plus LF-induced death of macrophages is primarily attributed to expression of the sensitive Nalp1b allele, inflammasome formation and activation of caspase-1, but early events that initiate these processes are unknown. Here we provide evidence that an early essential event in pyroptosis of alveolar macrophages is LF-mediated depletion of cellular ATP. The underlying mechanism involves interaction of LF with F1F0-complex gamma and beta subunits leading to increased ATPase activity in mitochondria. In support, mitochondrial DNA-depleted MH-S cells have decreased F1F0 ATPase activity due to the lack of F06 and F08 polypeptides and show increased resistance to LT. We conclude that ATP depletion is an important early event in LT-induced sudden cell death and its prevention increases survival of toxin-sensitive cells.

  5. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia.

    Science.gov (United States)

    Ramos, Pedro; Casu, Carla; Gardenghi, Sara; Breda, Laura; Crielaard, Bart J; Guy, Ella; Marongiu, Maria Franca; Gupta, Ritama; Levine, Ross L; Abdel-Wahab, Omar; Ebert, Benjamin L; Van Rooijen, Nico; Ghaffari, Saghi; Grady, Robert W; Giardina, Patricia J; Rivella, Stefano

    2013-04-01

    Regulation of erythropoiesis is achieved by the integration of distinct signals. Among them, macrophages are emerging as erythropoietin-complementary regulators of erythroid development, particularly under stress conditions. We investigated the contribution of macrophages to physiological and pathological conditions of enhanced erythropoiesis. We used mouse models of induced anemia, polycythemia vera and β-thalassemia in which macrophages were chemically depleted. Our data indicate that macrophages contribute decisively to recovery from induced anemia, as well as the pathological progression of polycythemia vera and β-thalassemia, by modulating erythroid proliferation and differentiation. We validated these observations in primary human cultures, showing a direct impact of macrophages on the proliferation and enucleation of erythroblasts from healthy individuals and patients with polycythemia vera or β-thalassemia. The contribution of macrophages to stress and pathological erythropoiesis, which we have termed stress erythropoiesis macrophage-supporting activity, may have therapeutic implications.

  6. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  7. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    Science.gov (United States)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  8. Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down our Understanding of Macrophage Function?

    Directory of Open Access Journals (Sweden)

    Michael James Kraakman

    2014-09-01

    Full Text Available Obesity and type 2 diabetes are now recognized as chronic pro-inflammatory diseases. In the last decade, the role of the macrophage in particular has become increasingly implicated in their pathogenesis. Abundant literature now establishes that monocytes get recruited to peripheral tissues (ie pancreas, liver and adipose tissue to become resident macrophages and contribute to local inflammation, development of insulin resistance or even pancreatic dysfunction. Furthermore, an accumulation of evidence has established an important role for macrophage polarisation in the development of metabolic diseases. The general view in obesity is that there is an imbalance in the ratio of M1/M2 macrophages, with M1 pro-inflammatory macrophages being enhanced compared with M2 anti-inflammatory macrophages being down-regulated, leading to chronic inflammation and the propagation of metabolic dysfunction. However, there is emerging evidence revealing a more complex scenario with the spectrum of macrophage states exceeding well beyond the M1/M2 binary classification and confused further by human and animal models exhibiting different macrophage profiles. In this review we will discuss the recent findings regarding macrophage polarization in obesity and type 2 diabetes.

  9. Physics of Fully Depleted CCDs

    CERN Document Server

    Holland, S E; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

  10. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury.

    NARCIS (Netherlands)

    Naidu, BV; Krishnadasan, B; Farivar, AS; Woolley, SM; Thomas, R; Rooijen, van N.; Verrier, ED; Mulligan, MS

    2003-01-01

    .006) and marked reductions in bronchoalveolar lavage fluid leukocyte accumulation. Alveolar macrophage-depleted animals also demonstrated marked reductions of the elaboration of multiple proinflammatory chemokines and cytokines in the lavage effluent and nuclear transcription factors in lung homoge

  11. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans

    DEFF Research Database (Denmark)

    Fink, Lisbeth N; Costford, Sheila R; Lee, Yun S

    2014-01-01

    In obesity, immune cells infiltrate adipose tissue. Skeletal muscle is the major tissue of insulin-dependent glucose disposal, and indices of muscle inflammation arise during obesity, but whether and which immune cells increase in muscle remain unclear.......In obesity, immune cells infiltrate adipose tissue. Skeletal muscle is the major tissue of insulin-dependent glucose disposal, and indices of muscle inflammation arise during obesity, but whether and which immune cells increase in muscle remain unclear....

  12. Alpha-linolenic acid increases cholesterol efflux in macrophage-derived foam cells by decreasing stearoyl CoA desaturase 1 expression: evidence for a farnesoid-X-receptor mechanism of action.

    Science.gov (United States)

    Zhang, Jun; Kris-Etherton, Penny M; Thompson, Jerry T; Hannon, Daniel B; Gillies, Peter J; Heuvel, John P Vanden

    2012-04-01

    Increased cholesterol efflux from macrophage-derived foam cells (MDFCs) is an important protective mechanism to decrease lipid load in the atherosclerotic plaque. Dietary alpha-linolenic acid (ALA), an omega-3 polyunsaturated fatty acid (PUFA), decreases circulating cholesterol, but its role in cholesterol efflux has not been extensively studied. Stearoyl CoA desaturase 1 (SCD1) is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids (MUFAs). Endogenous MUFAs are preferentially incorporated into triglycerides, phospholipids and cholesteryl ester, which are abundant in atherosclerotic plaque. This study investigated the mechanisms by which ALA regulated SCD1 and subsequent effect on cholesterol storage and transport in MDFCs. Small interfering RNA (siRNA) also was applied to modify SCD1 expression in foam cells. Alpha-linolenic acid treatment and SCD1 siRNA significantly decreased SCD1 expression in MDFCs. The reduction of SCD1 was accompanied with increased cholesterol efflux and decreased intracellular cholesterol storage within these cells. Alpha-linolenic acid activated the nuclear receptor farnesoid-X-receptor, which in turn increased its target gene small heterodimer partner (SHP) expression, and decreased liver-X-receptor dependent sterol regulatory element binding protein 1c transcription, ultimately resulting in repressed SCD1 expression. In conclusion, repression of SCD1 by ALA favorably increased cholesterol efflux and decreased cholesterol accumulation in foam cells. This may be one mechanism by which dietary omega-3 PUFAs promote atherosclerosis regression. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Porcine circovirus type 2 increases IL-1β and IL-10 production via the MyD88-NF-κB signaling pathway in porcine alveolar macrophages in vitro.

    Science.gov (United States)

    Han, Junyuan; Zhang, Shuxia; Zhang, Yaqun; Chen, Mengmeng; Lv, Yingjun

    2016-07-25

    Porcine alveolar macrophages represent the first line of defense in the porcine lung after infection with porcine circovirus type 2 (PCV2) via the respiratory tract. However, PCV2 infection impairs the microbicidal capability of PAMs and alters cytokine production and/or secretion. Currently, the reason for the imbalance of cytokines has not been fully elucidated and the regulatory mechanisms involved are not clear. Here, we investigated the expression levels and regulation of IL-1β and IL-10 in PAMs following incubation with PCV2 in vitro. Both levels of IL-1β and IL-10 increased in PAM supernatants, and the distribution of NF-κB p65 staining in the nucleus, the expression of MyD88 and p-IκB in the cytoplasm and the DNA-binding activity of NF-κB increased after incubation with PCV2, while the expression of p65 in the cytoplasm of PAMs decreased. However, when PAMs were co-incubated with PCV2 and small interfering RNA targeting MyD88, these effects were reversed. Additionally, mRNA expression levels of Toll-like receptor (TLR)-2, -3, -4, -7, -8 and -9 were increased when PAMs were incubated with PCV2. These findings showed that PCV2 induced increased IL-1β and IL-10 production in PAMs, and these changes in expression were relative to the TLR-MyD88-NF-κB signaling pathway.

  14. Wound-associated macrophages control collagen 1α2 transcription during the early stages of skin wound healing.

    Science.gov (United States)

    Rodero, Mathieu P; Legrand, Julien M D; Bou-Gharios, George; Khosrotehrani, Kiarash

    2013-02-01

    Wound-associated fibrosis is important to provide tensile strength upon wound healing but at the same time is detrimental to proper tissue regeneration. To date, there is no clear evidence of the role of macrophages and their subpopulations in the control of the kinetics of collagen production during wound healing. To evaluate in vivo the contribution of macrophages in collagen transcription, we depleted macrophages after wounding luciferase reporter mice of the collagen 1 alpha 2 (Col 1α2) promoter activity. Our data reveal that Col 1α2 starts to be transcribed at D2 after wounding, reaching a plateau after 7 days. Sustained macrophage depletion significantly reduced collagen 1α2 transcription from D4, indicating that the control of fibrosis by macrophages occurs during the early stages of the wound healing process. In conclusion, our results demonstrate an important role of wound macrophages in the control of collagen production during wound healing.

  15. NK-derived IFN-γ/IL-4 triggers the sexually disparate polarization of macrophages in CVB3-induced myocarditis.

    Science.gov (United States)

    Liu, Li; Yue, Yan; Xiong, Sidong

    2014-11-01

    Coxsackievirus B3 (CVB3) is a common etiology of myocarditis with an increased morbidity and mortality in males. We previously reported that differential polarization of macrophages contributed to sexually dimorphic susceptibility of mice to CVB3-induced myocarditis. However, the underlying kinetics, impetus as well as the molecular mechanism remain unclear. Here, we demonstrated that myocardial macrophages started to polarize at as early as day 5 post CVB3 infection in both genders of BALB/c mice, with M1 phenotype detected in males and M2a phenotype in females, and this trend was further amplified at day 7 when myocarditis reached peak. In addition, we identified that prevailed IFN-γ in males and dominant IL-4 in females were critical myocardial cytokines for the disparate macrophage polarization, which respectively activated JAK1-STAT1 and JAK3-STAT6 pathways. Strikingly, we found that the main source of IFN-γ and IL-4 cytokines in both genders were myocardial infiltrating NK cells, which differentially secreted cytokines in various microenvironments manifested synergistically by sex hormones and CVB3 infection. Consistently, depletion of NK cells significantly impeded the myocardial macrophage polarization in both genders of CVB3-infected mice. Collectively, these data indicated that myocardial NK-derived IFN-γ/IL-4 was critical for the differential polarization of macrophages in CVB3-induced myocarditis via activating JAK1-STAT1 and JAK3-STAT6 pathways respectively. Our study may help understand the mechanism of sexually differential polarization of macrophages and provide clues for the gender bias in CVB3-induced myocarditis.

  16. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF-α pathway.

    Directory of Open Access Journals (Sweden)

    Joo Young Kim

    Full Text Available The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF-α. We determined whether the serine protease in German cockroach extract (GCE enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR, inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model.

  17. Pristane-induced granulocyte recruitment promotes phenotypic conversion of macrophages and protects against diffuse pulmonary hemorrhage in Mac-1 deficiency.

    Science.gov (United States)

    Shi, Yiqin; Tsuboi, Naotake; Furuhashi, Kazuhiro; Du, Qiuna; Horinouchi, Asuka; Maeda, Kayaho; Kosugi, Tomoki; Matsuo, Seiichi; Maruyama, Shoichi

    2014-11-15

    Diffuse pulmonary hemorrhage (DPH) is an uncommon but critical complication of systemic lupus erythematosus. Peritoneal administration of 2,6,10,14-tetramethylpentadecane (pristane) can recapitulate a lupus-like syndrome in mice, which can develop into DPH within a few weeks, especially in C57BL/6 mice. Mac-1 (CD11b/CD18), a leukocyte adhesion molecule, is known to play a role in inflammation by regulating migration of leukocytes into injured tissue. In this study, we aimed to clarify the role of Mac-1 in pristane-induced DPH, using Mac-1(-/-) and wild-type (WT) mice on a C57BL/6 background. After pristane injection, Mac-1(-/-) mice showed reduced prevalence of DPH and attenuated peritonitis compared with WT mice. Analysis of the peritoneal lavage on days 5 and 10 after pristane treatment revealed increased numbers of eosinophils and alternatively activated macrophages, but decreased numbers of neutrophils and classically activated macrophages in Mac-1(-/-) mice compared with WT. Enhanced production of IL-4 and IL-13, both key mediators of macrophage polarization toward the mannose receptor(+) (MMR(+)) phenotype, was observed in the peritoneal cavity of Mac-1(-/-) mice. Depletion of neutrophils and eosinophils or adoptive transfer of classically activated macrophages resulted in the exacerbation of pristane-mediated DPH in both WT and Mac-1(-/-) mice. Moreover, peritoneal transfer of F4/80(high)MMR(+) alternatively activated macrophages successfully reduced the prevalence of DPH in WT mice. Collectively, Mac-1 promoted acute inflammatory responses in the peritoneal cavity and the lungs by downregulating granulocyte migration and subsequent phenotypic conversion of macrophages in a pristane-induced systemic lupus erythematosus model. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...... M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation...... frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation...

  19. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Science.gov (United States)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  20. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China); Zhao Jing [China Institute of Atomic Energy (China); Hao Fuhua [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China); Chen Chang [Institute of Biophysics, The Chinese Academy of Sciences, National Laboratory of Biomacromolecules (China); Bhakoo, Kishore [Singapore Bioimaging Consortium Agency for Science, Technology and Research (A-STAR) (Singapore); Tang, Huiru, E-mail: huiru.tang@wipm.ac.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (China)

    2011-05-15

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  1. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    Science.gov (United States)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  2. Crucial role of synovial lining macrophages in the promotion of transforming growth factor beta-mediated osteophyte formation.

    NARCIS (Netherlands)

    Lent, P.L.E.M. van; Blom, A.B.; Kraan, P.M. van der; Holthuysen, A.E.M.; Vitters, E.L.; Rooijen, N. van; Smeets, R.L.L.; Nabbe, K.C.A.M.; Berg, W.B. van den

    2004-01-01

    OBJECTIVE: To investigate in vivo and in vitro whether macrophages have an intermediate role in transforming growth factor beta (TGFbeta)-induced osteophyte formation. METHODS: In vivo, synovial lining macrophages were selectively depleted by injection of clodronate-laden liposomes 7 days prior to i

  3. Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages.

    Science.gov (United States)

    Valdearcos, Martín; Esquinas, Esperanza; Meana, Clara; Peña, Lucía; Gil-de-Gómez, Luis; Balsinde, Jesús; Balboa, María A

    2012-03-30

    Lipin-2 is a member of the lipin family of enzymes, which are key effectors in the biosynthesis of lipids. Mutations in the human lipin-2 gene are associated with inflammatory-based disorders; however, the role of lipin-2 in cells of the immune system remains obscure. In this study, we have investigated the role of lipin-2 in the proinflammatory action of saturated fatty acids in murine and human macrophages. Depletion of lipin-2 promotes the increased expression of the proinflammatory genes Il6, Ccl2, and Tnfα, which depends on the overstimulation of the JNK1/c-Jun pathway by saturated fatty acids. In contrast, overexpression of lipin-2 reduces the release of proinflammatory factors. Metabolically, the absence of lipin-2 reduces the cellular content of triacylglycerol in saturated fatty acid-overloaded macrophages. Collectively, these studies demonstrate a protective role for lipin-2 in proinflammatory signaling mediated by saturated fatty acids that occurs concomitant with an enhanced cellular capacity for triacylglycerol synthesis. The data provide new insights into the role of lipin-2 in human and murine macrophage biology and may open new avenues for controlling the fatty acid-related low grade inflammation that constitutes the sine qua non of obesity and associated metabolic disorders.

  4. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  5. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  6. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  7. Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers.

    Science.gov (United States)

    Silva, Igor Henrique Morais; de Andrade, Samantha Cardoso; de Faria, Andreza Barkokebas Santos; Fonsêca, Deborah Daniela Diniz; Gueiros, Luiz Alcino Monteiro; Carvalho, Alessandra Albuquerque Tavares; da Silva, Wylla Tatiana Ferreira; de Castro, Raul Manhães; Leão, Jair Carneiro

    2016-12-01

    The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) with different parameters and wavelengths on nitric oxide (NO) release and cell viability. Irradiation was performed with Ga-Al-As laser, continuous mode and wavelengths of 660 and 808 nm at different energy and power densities. For each wavelength, powers of 30, 50, and 100 mW and times of 10, 30, and 60 s were used. NO release was measured using Griess reaction, and cell viability was evaluated by mitochondrial reduction of bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan. LLLT promoted statistically significant changes in NO release and MTT value only at the wavelength of 660 nm (p < 0.05). LLLT also promoted an increase in the NO release and cell viability when the energy densities 64 (p = 0.04) and 214 J/cm(2) (p = 0.012), respectively, were used. LLLT has a significant impact on NO release without affecting cell viability, but the significance of these findings in the inflammatory response needs to be further studied.

  8. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  9. Targeting colon cancer cell NF-κB promotes an anti-tumour M1-like macrophage phenotype and inhibits peritoneal metastasis.

    Science.gov (United States)

    Ryan, A E; Colleran, A; O'Gorman, A; O'Flynn, L; Pindjacova, J; Lohan, P; O'Malley, G; Nosov, M; Mureau, C; Egan, L J

    2015-03-19

    In a model of peritoneal metastasis in immune-competent mice, we show that nuclear factor (NF)-κB inhibition in CT26 colon cancer cells prevents metastasis. NF-κB inhibition, by stable overexpression of IκB-α super-repressor, induced differential polarization of co-cultured macrophages to an M1-like anti-tumour phenotype in vitro. NF-κB-deficient cancer cell-conditioned media (CT26/IκB-α SR) induced interleukin (IL)-12 and nitric oxide (NO) synthase (inducible NO synthase (iNOS)) expression in macrophages. Control cell (CT26/EV) conditioned media induced high levels of IL-10 and arginase in macrophages. In vivo, this effect translated to reduction in metastasis in mice injected with CT26/ IκB-α SR cells and was positively associated with increased CD8(+)CD44(+)CD62L(-) and CD4(+)CD44(+)CD62L(-) effector T cells. Furthermore, inhibition of NF-κB activity induced high levels of NO in infiltrating immune cells and decreases in matrix metalloproteinase-9 expression, simultaneous with increases in tissue inhibitor of metalloproteinases 1 and 2 within tumours. CT26/IκB-α SR tumours displayed increased pro-inflammatory gene expression, low levels of angiogenesis and extensive intratumoral apoptosis, consistent with the presence of an anti-tumour macrophage phenotype. Macrophage depletion reduced tumour size in CT26/EV-injected animals and increased tumour size in CT26/IκB-α SR cells compared with untreated tumours. Our data demonstrate, for the first time, that an important implication of targeting tumour cell NF-κB is skewing of macrophage polarization to an anti-tumour phenotype. This knowledge offers novel therapeutic opportunities for anticancer treatment.

  10. The relationship between LDL oxidation and macrophage myeloperoxidase activity

    Institute of Scientific and Technical Information of China (English)

    武军驻; 刘艳红; 李小明; 陈丽达; 夏腊菊; 洪嘉玲

    2003-01-01

    Objective To explore low density lipoprotein (LDL) oxidation by macrophage myeloperoxidase (MPO) at molecular level.Methods Using a mouse macrophage model, we examined the relationship between LDL oxidation and macrophage MPO by measuring macrophage MPO activity, LDL oxidation products, MPO gene expression and cellular orientation of LDL oxidation. Results MPO gene expression increased to its maximum gradually when the concentration of LDL was increased, and then maintained at that level. NaN3 inhibied the elevation of MPO activity and LDL oxidation, which was LDL concentration-dependent. After the composition of macrophage membrane was roughly analyzed, it was determined that the contents of MPO and LDL in 5% sucrose were 7.667 and 21 times higher than those in 10% sucrose, respectively. Conclusion LDL is attached to the "microdomain" of the macrophage membrane in which LDL is oxidized by MPO.

  11. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  12. Depletable resources and the economy.

    NARCIS (Netherlands)

    Heijman, W.J.M.

    1991-01-01

    The subject of this thesis is the depletion of scarce resources. The main question to be answered is how to avoid future resource crises. After dealing with the complex relation between nature and economics, three important concepts in relation with resource depletion are discussed: steady state, ti

  13. Pediatric patients with inflammatory bowel disease exhibit increased serum levels of proinflammatory cytokines and chemokines, but decreased circulating levels of macrophage inhibitory protein-1β, interleukin-2 and interleukin-17.

    Science.gov (United States)

    Kleiner, Giulio; Zanin, Valentina; Monasta, Lorenzo; Crovella, Sergio; Caruso, Lorenzo; Milani, Daniela; Marcuzzi, Annalisa

    2015-06-01

    Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory condition of the gastrointestinal tract. Although the causative events that lead to the onset of IBD are yet to be fully elucidated, deregulation of immune and inflammatory mechanisms are hypothesized to significantly contribute to this disorder. Since the onset of IBD is often during infancy, in the present study, the serum values of a large panel of cytokines and chemokines in pediatric patients (<18 years; n=26) were compared with age-matched controls (n=37). While elevations in the serum level of several proinflammatory and immune regulating cytokines were confirmed, such as interleukin (IL)-1β, IL-5, IL-7, interferon (IFN)-γ-inducible protein-10, IL-16, cutaneous T-cell-attracting chemokine, leukemia inhibitory factor, monokine induced by γ-IFN, IFN-α2 and IFN-γ, notably decreased levels of IL-2, IL-17 and macrophage inhibitory protein-1β were also observed. Therefore, while a number of proinflammatory cytokines exhibit increased levels in IBD patients, pediatric IBD patients may also exhibit certain aspects of a reduced immunological response.

  14. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Eun-Min Kim

    2017-05-01

    Full Text Available Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages. Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype, which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  15. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  16. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy

    Science.gov (United States)

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M.; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-01

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells. PMID:28134280

  17. Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models.

    Science.gov (United States)

    Tevis, Kristie M; Cecchi, Ryan J; Colson, Yolonda L; Grinstaff, Mark W

    2017-03-01

    Tumor associated macrophages (TAMs) are critical stromal components intimately involved with the progression, invasion, and metastasis of cancer cells. To address the need for an in vitro system that mimics the clinical observations of TAM localizations and subsequent functional performance, a cancer cell/macrophage spheroid model is described. The central component of the model is a triple negative breast cancer spheroid embedded in a three-dimensional collagen gel. Macrophages are incorporated in two different ways. The first is a heterospheroid, a spheroid containing both tumor cells and macrophages. The heterospheroid mimics the population of TAMs infiltrated into the tumor mass, thus being exposed to hypoxia and metabolic gradients. In the second model, macrophages are diffusely seeded in the collagen surrounding the spheroid, thus modeling TAMs in the cancer stroma. The inclusion of macrophages as a heterospheroid changes the metabolic profile, indicative of synergistic growth. In contrast, macrophages diffusely seeded in the collagen bear the same profile regardless of the presence of a tumor cell spheroid. The macrophages in the heterospheroid secrete EGF, a cytokine critical to tumor/macrophage co-migration, and an EGF inhibitor decreases the metabolic activity of the heterospheroid, which is not observed in the other systems. The increased secretion of IL-10 indicates that the heterospheroid macrophages follow an M2/TAM differentiation pathway. Lastly, the heterospheroid exhibits resistance to paclitaxel. In summary, the collagen embedded heterospheroid model promotes TAM-like characteristics, and will be of utility in cancer biology and drug discovery.

  18. Testing fully depleted CCD

    Science.gov (United States)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  19. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  20. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  1. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  2. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric i

  3. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  4. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    Science.gov (United States)

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  5. Intracellular survival and persistence of Chlamydia muridarum is determined by macrophage polarization.

    Directory of Open Access Journals (Sweden)

    Eric Gracey

    Full Text Available Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ/LPS induced (M1 and alternatively-activated, IL-4 induced (M2 macrophages. The goal of this study is to characterize macrophage-Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia. M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia. However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host-pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host.

  6. N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance.

    Science.gov (United States)

    Chion, Alain; O'Sullivan, Jamie M; Drakeford, Clive; Bergsson, Gudmundur; Dalton, Niall; Aguila, Sonia; Ward, Soracha; Fallon, Padraic G; Brophy, Teresa M; Preston, Roger J S; Brady, Lauren; Sheils, Orla; Laffan, Michael; McKinnon, Thomas A J; O'Donnell, James S

    2016-10-13

    Enhanced von Willebrand factor (VWF) clearance is important in the etiology of von Willebrand disease. However, the molecular mechanisms underlying VWF clearance remain poorly understood. In this study, we investigated the role of VWF domains and specific glycan moieties in regulating in vivo clearance. Our findings demonstrate that the A1 domain of VWF contains a receptor-recognition site that plays a key role in regulating the interaction of VWF with macrophages. In A1-A2-A3 and full-length VWF, this macrophage-binding site is cryptic but becomes exposed following exposure to shear or ristocetin. Previous studies have demonstrated that the N-linked glycans within the A2 domain play an important role in modulating susceptibility to ADAMTS13 proteolysis. We further demonstrate that these glycans presented at N1515 and N1574 also play a critical role in protecting VWF against macrophage binding and clearance. Indeed, loss of the N-glycan at N1515 resulted in markedly enhanced VWF clearance that was significantly faster than that observed with any previously described VWF mutations. In addition, A1-A2-A3 fragments containing the N1515Q or N1574Q substitutions also demonstrated significantly enhanced clearance. Importantly, clodronate-induced macrophage depletion significantly attenuated the increased clearance observed with N1515Q and N1574Q in both full-length VWF and A1-A2-A3. Finally, we further demonstrate that loss of these N-linked glycans does not enhance clearance in VWF in the presence of a structurally constrained A2 domain. Collectively, these novel findings support the hypothesis that conformation of the VWF A domains plays a critical role in modulating macrophage-mediated clearance of VWF in vivo.

  7. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  8. [Macrophages in asthma].

    Science.gov (United States)

    Medina Avalos, M A; Orea Solano, M

    1997-01-01

    Every time they exist more demonstrations of the paper than performs the line monocytes-macrophage in the patogenesis of the bronchial asthma. The mononuclear phagocytes cells, as the alveolar macrophages, also they can be activated during allergic methods. The monocytes macrophages are possible efficient inductors of the inflammation; this due to the fact that they can secrete inflammatory mediators, between those which are counted the pre-forming granules of peptides, metabolites of oxidation activation, activator of platelets activator and metabolites of the arachidonic acid. The identification of IL-1 in the liquidate of the bronchial ablution of sick asthmatic, as well as the identification of IL-1 in the I bronchioalveolar washing of places of allergens cutaneous prick, supports the activation concept mononuclear of phagocytic cells in allergic sufferings.

  9. Macrophages and Iron Metabolism.

    Science.gov (United States)

    Soares, Miguel P; Hamza, Iqbal

    2016-03-15

    Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.

  10. Genetic variations of the endothelial nitric oxide synthase gene are related to increased levels of C-reactive protein and macrophage-colony stimulating-factor in patients with coronary artery disease.

    Science.gov (United States)

    Lekakis, John P; Ikonomidis, Ignatios; Tsibida, Maria; Protogerou, Athanasios; Papada, Aggeliki; Papapanagiotou, Aggeliki; Revela, Ioanna; Papamichael, Christos M; Kalofoutis, Anastasios T; Kremastinos, Dimitrios T

    2006-10-01

    It was the objective of this study to investigate the relation between nitric oxide synthase (NOS3) gene polymorphisms, vascular inflammation, endothelial function, and atherosclerosis. We examined the effects of a variable nucleotide tandem repeats (VNTR) in intron 4, G894T in exon 7 and T-786C at the promoter region of NOS3 on i) C-reactive protein (CRP) and macrophage-colony stimulating-factor (MCSF), and ii) augmentation index (AI) measured by pulse-wave analysis , flow-mediated dilation (FMD) of the brachial artery, intima-media thickness (IMT) of the carotid and femoral artery using ultrasonography and ankle-brachial index (ABI) in 122 patients with chronic coronary artery disease (CAD) who underwent coronary angiography. MCSF and CRP were increased in patients withT-786C (77/122) or VNTR (40/122) allele compared to those without (F = 10.8, p = 0.002 and F = 3.8, p = 0.04 for T-786C and F = 3.65, p = 0.04 and F = 3.2 p = 0.049 forVNTR), even after adjustment for traditional risk factors and medication. Patients with combination of VNTR and T-786C (31/122) had higher MCSF or CRP than patients with one or none of these alleles (p 262 pg/ml or CRP>3.2 mg/l (n = 33/77) had a higher femoral and carotid IMT and number of plaques in the peripheral arteries than those with lower values of these inflammatory indices (p 262 pg/ml had also lower FMD and higher Gensini score than those with lower MCSF (p < 0.05). The intron 4-VNTR and T-786C mutation of NOS3 gene enhance the inflammatory process in patients with chronic CAD.

  11. The increases in mRNA expressions of inflammatory cytokines by adding cleaning solvent or tetrachloroethylene in the murine macrophage cell line J774.1 evaluated by real-time PCR.

    Science.gov (United States)

    Kido, Takamasa; Sugaya, Chiemi; Ikeuchi, Ryutaro; Kudo, Yuichiro; Tsunoda, Masashi; Aizawa, Yoshiharu

    2013-01-01

    The use of a petroleum-derived cleaning solvent for dry cleaning, instead of tetrachloroethylene (perchloroethylene, PCE), has increased. The cleaning solvent may induce immunological alteration. In this study, murine macrophage-lineage J774.1 cells were exposed to the cleaning solvent at 0, 25, 50, and 75 µg/ml or PCE at 0, 400, 600, 800, and 1,000 µg/ml by vigorous vortexing. Cell viability was determined. The mRNA expressions of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, IL-10, IL-12p40 (a dimer of IL-12), and IL-27p28 (a dimer of IL-27) were evaluated by real-time PCR. The mean viabilities in the 50 and 75 µg/ml groups of the cleaning solvent were significantly lower than that of the control. The mean mRNA expressions of TNF-α and IL-1β in the 50 µg/ml group were significantly higher than those in the control. For PCE, the mean viabilities at 600 µg/ml and over were significantly lower than that of the control. The mean expressions of IL-6 and IL-10 in the 800 µg/ml group were significantly higher than that in the control. The productions of IL-1β and TNF-α may be altered in human during intoxication of the cleaning solvent as well as those of IL-6 and IL-10 in human during that of PCE, and these may affect on immune cells.

  12. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  13. Effect of kerosene and its soot on the chrysotile-mediated toxicity to the rat alveolar macrophages.

    Science.gov (United States)

    Arif, J M; Khan, S G; Ahmad, I; Joshi, L D; Rahman, Q

    1997-02-01

    In order to examine the pulmonary toxicity of kerosene oil and its combustion product (soot) in asbestos-exposed rats, various biochemical and chemical parameters were assayed. Treatment of rats with a single intratracheal dose of chrysotile asbestos (5 mg) and kerosene (50 microliters) or its soot (5 mg) in combination led to an increased number of pulmonary alveolar macrophages (PAM), elevated levels of hydrogen peroxide, and thiobarbituric acid-reacting substances, alterations in the activities of primary (glutathione peroxidase and catalase) and secondary (glutathione reductase and glucose-6-phosphate dehydrogenase) endogenous antioxidant enzymes, and depletion in the levels of glutathione in PAM compared to the chrysotile, kerosene, or soot alone. These changes may indicate the generation of oxidative stress in the macrophages. The resulting oxidative stress may be subsequently critical in collapsing the cellular membrane, which may change the cell membrane permeability and may also damage the phagolysosomal membrane, thereby releasing the membrane bound enzymes as indicated by an increased leakage of intracellular acid phosphatase and lactate dehydrogenase. The injury to macrophages may trigger events that lead to lung fibrosis and/or malignancies in the exposed animals. This study may be helpful in understanding the etiology of certain clinical and pathological disorders in the population exposed simultaneously to both asbestos and kerosene or its combustion products.

  14. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  15. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  16. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2008-06-01

    Full Text Available Abstract Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD, is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES, are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO production via suppression of inducible NO synthase (iNOS protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels. NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and

  17. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation

    DEFF Research Database (Denmark)

    Fux, Michaela; van Rooijen, Nico; Owens, Trevor

    2008-01-01

    We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which...... was confirmed by F4/80(-) and MOMA-1(-) stainings in spleen. Sequential clodronate-liposome treatment 4, 2 and 0 days before axotomy resulted in significant reduction of infiltrating CD45(high) CD11b(+) macrophages in the hippocampus at 1, 2 and 3 days post-lesion, measured by flow cytometry. There was a slight...

  18. In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice

    OpenAIRE

    Derderian, S. Christopher; Togarrati, P. Priya; King, Charmin; Moradi, Patriss W.; Reynaud, Damien; Czechowicz, Agnieszka; Weissman, Irving L; MacKenzie, Tippi C.

    2014-01-01

    In utero injection of an antibody against the c-Kit receptor can effectively deplete host HSCs in mice.In utero depletion of host HSCs leads to significantly increased engraftment after neonatal congenic hematopoietic cell transplantation.

  19. Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via β3AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia.

    Directory of Open Access Journals (Sweden)

    Hisashi Nagai

    Full Text Available Chronic intermittent hypoxia (IH induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV via central β1-adrenergic receptors (AR (brain and peripheral β2AR (pulmonary arteries. Prolonged hypercatecholemia has been shown to upregulate β3AR. However, the relationship between IH and β3AR in the modification of HPV is unknown. It has been observed that chronic stimulation of β3AR upregulates inducible nitric oxide synthase (iNOS in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates β3AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O2 for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of pro-inflammatory pulmonary macrophages. In these macrophages, both β3AR and iNOS were upregulated and stimulation of the β3AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of β3AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of β3AR/iNOS signaling in chronic IH.

  20. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation.

  1. Overexpression of IL-10 in C2D macrophages promotes a macrophage phenotypic switch in adipose tissue environments.

    Science.gov (United States)

    Xie, Linglin; Fu, Qiang; Ortega, Teresa M; Zhou, Lun; Rasmussen, Dane; O'Keefe, Jacy; Zhang, Ke K; Chapes, Stephen K

    2014-01-01

    Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206(+), CD301(+), CD11c(-)CD206(+) (M2) and CD11c(+)CD206(+) (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.

  2. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

    Science.gov (United States)

    Keliher, Edmund J.; Ye, Yu-Xiang; Wojtkiewicz, Gregory R.; Aguirre, Aaron D.; Tricot, Benoit; Senders, Max L.; Groenen, Hannah; Fay, Francois; Perez-Medina, Carlos; Calcagno, Claudia; Carlucci, Giuseppe; Reiner, Thomas; Sun, Yuan; Courties, Gabriel; Iwamoto, Yoshiko; Kim, Hye-Yeong; Wang, Cuihua; Chen, John W.; Swirski, Filip K.; Wey, Hsiao-Ying; Hooker, Jacob; Fayad, Zahi A.; Mulder, Willem J. M.; Weissleder, Ralph; Nahrendorf, Matthias

    2017-01-01

    Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particle's short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology. PMID:28091604

  3. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing.

    Science.gov (United States)

    Kimball, Andrew S; Joshi, Amrita D; Boniakowski, Anna E; Schaller, Matthew; Chung, Jooho; Allen, Ronald; Bermick, Jennifer; Carson, William F; Henke, Peter K; Maillard, Ivan; Kunkel, Steve L; Gallagher, Katherine A

    2017-01-01

    Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAML(floxed)Lyz2(Cre+) ) demonstrated delayed early healing (days 1-3) and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D), Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAML(floxed)Lyz2(Cre+) on a high-fat diet), improved wound healing was seen at late time points (days 6-7). These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  4. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing

    Directory of Open Access Journals (Sweden)

    Andrew S. Kimball

    2017-06-01

    Full Text Available Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAMLfloxedLyz2Cre+ demonstrated delayed early healing (days 1–3 and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D, Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAMLfloxedLyz2Cre+ on a high-fat diet, improved wound healing was seen at late time points (days 6–7. These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  5. Depleting depletion: Polymer swelling in poor solvent mixtures

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos; Stuehn, Torsten; Kremer, Kurt

    A polymer collapses in a solvent when the solvent particles dislike monomers more than the repulsion between monomers. This leads to an effective attraction between monomers, also referred to as depletion induced attraction. This attraction is the key factor behind standard polymer collapse in poor solvents. Strikingly, even if a polymer exhibits poor solvent condition in two different solvents, it can also swell in mixtures of these two poor solvents. This collapse-swelling-collapse scenario is displayed by poly(methyl methacrylate) (PMMA) in aqueous alcohol. Using molecular dynamics simulations of a thermodynamically consistent generic model and theoretical arguments, we unveil the microscopic origin of this phenomenon. Our analysis suggests that a subtle interplay of the bulk solution properties and the local depletion forces reduces depletion effects, thus dictating polymer swelling in poor solvent mixtures.

  6. Toxicity of Depleted Uranium

    Science.gov (United States)

    1997-02-01

    Medical Research and Materiel Command Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 1997 i0i4 090 12a. DISTRIBUTION/ AVAILABILTY ...cancers was low in the face of an increasing usage of such protheses.3 The assessment also included failed attempts to isolate "precancerous" cells from...Springer Verlag, 1973. 26. Fisher DR, Swint MJ, Kathren RL (eds.): Evaluation of Health Effects in Sequoyah Fuels Corporation Workers from Accidental

  7. Combination of spices and herbal extract restores macrophage foam cell migration and abrogates the athero-inflammatory signalling cascade of atherogenesis.

    Science.gov (United States)

    Nimgulkar, Chetan; Ghosh, Sudip; Sankar, Anand B; Uday, Kumar P; Surekha, M V; Madhusudhanachary, P; Annapurna, B R; Raghu, P; Bharatraj, Dinesh Kumar

    2015-09-01

    The trapping of lipid-laden macrophages in the arterial intima is a critical but reversible step in atherogenesis. However, information about possible treatments for this condition is lacking. Here, we hypothesized that combining the polyphenol-rich fractions (PHC) of commonly consumed spices (Allium sativum L (Liliaceae), Zingiber officinale R (Zingiberaceae), Curcuma longa L (Zingiberaceae)) and herbs (Terminalia arjuna (R) W & A (Combretaceae) and Cyperus rotundus L (Cyperaceae)) prevents foam cell formation and atherogenesis. Using an in vitro foam cell formation assay, we found that PHC significantly inhibited lipid-laden macrophage foam cell formation compared to the depleted polyphenol fraction of PHC (F-PHC). We further observed that PHC attenuated the LDL and LPS induced CD36, p-FAK and PPAR-γ protein expression in macrophages and increased their migration. NK-κB-DNA interaction, TNF-α, ROS generation, and MMP9 and MMP2 protein expression were suppressed in PHC-treated macrophages. The anti-atherosclerotic activity of PHC was investigated in a high fat- and cholesterol-fed rabbit model. The inhibition of foam cell deposition within the aortic intima and atheroma formation confirmed the atheroprotective activity of PHC. Therefore, we conclude that the armoury of polyphenols in PHC attenuates the CD36 signalling cascade-mediated foam cell formation, enhances the migration of these cells and prevents atherogenesis.

  8. Ozone depletion during solar proton events in solar cycle 21

    Science.gov (United States)

    Mcpeters, R. D.; Jackman, C. H.

    1985-01-01

    Ozone profile data from the Solar Backscattered Ultraviolet Instrument on Nimbus 7 from 1979 to the present and clear cases of ozone destruction associated with five sudden proton events (SPEs) on June 7, 1979, August 21, 1979, October 13-14, 1981, July 13, 1982, and December 8, 1982 are found. During the SPE on July 13, 1982, the largest of this solar cycle, no depletion at all at 45 km is observed, but there is a 15 percent ozone depletion at 50 km increasing to 27 percent at 55 km, all at a solar zenith angle of 85 deg. A strong variation of the observed depletion with solar zenith angle is found, with maximum depletion occurring at the largest zenith angles (near 85 deg) decreasing to near zero for angles below about 70 deg. The observed depletion is short lived, disappearing within hours of the end of the SPE.

  9. The effect of ego depletion on sprint start reaction time.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2014-10-01

    In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.

  10. Characterization of Macrophage Phenotypes in Three Murine Models of House-Dust-Mite-Induced Asthma

    NARCIS (Netherlands)

    Draijer, Christina; Robbe, Patricia; Boorsma, Carian E.; Hylkema, Machteld N.; Melgert, Barbro N.

    2013-01-01

    In asthma, an important role for innate immunity is increasingly being recognized. Key innate immune cells in the lungs are macrophages. Depending on the signals they receive, macrophages can at least have an M1, M2, or M2-like phenotype. It is unknown how these macrophage phenotypes behave with reg

  11. Is interleukin-1β a culprit in macrophage-adipocyte crosstalk in obesity?

    OpenAIRE

    Bing, Chen

    2015-01-01

    Abstract Adipose tissue remodeling occurs in obesity, characterized by adipocyte hypertrophy and increased infiltration of macrophages which also shift to a proinflammatory phenotype. Factors derived from these macrophages significantly alter adipocyte function, such as repressing adipogenesis, inducing inflammatory response and desensitizing insulin action. As macrophages produce a cocktail of inflammatory signals, identifying the key factors that mediate the detrimental effects may offer ef...

  12. SIV Encephalitis Lesions Are Composed of CD163+ Macrophages Present in the Central Nervous System during Early SIV Infection and SIV-Positive Macrophages Recruited Terminally with AIDS

    Science.gov (United States)

    Nowlin, Brian T.; Burdo, Tricia H.; Midkiff, Cecily C.; Salemi, Marco; Alvarez, Xavier; Williams, Kenneth C.

    2016-01-01

    Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163+) and inflammatory (MAC387+) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2′-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387+ macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163+ macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU+ cells were MAC387+; however, CD163+BrdU+ macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28+ macrophages entering the CNS late compared with those entering early (P CD163+ macrophage recruitment to the CNS inversely correlated with time to death (P CD163 correlated with CD163+ macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS. PMID:25963554

  13. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS.

    Science.gov (United States)

    Nowlin, Brian T; Burdo, Tricia H; Midkiff, Cecily C; Salemi, Marco; Alvarez, Xavier; Williams, Kenneth C

    2015-06-01

    Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Experimental Trichinellosis in rats: Peritoneal macrophage activity

    Directory of Open Access Journals (Sweden)

    Gruden-Movsesijan Alisa

    2010-01-01

    Full Text Available The influence of Trichinella spiralis infection on macrophage activity in rats during the first 28 days of infection was examined by measuring the production of NO and IL-6, as well as the expression of mannose receptor on the surface of peritoneal macrophages. During the course of a dynamic shift in the 3 life-cycle stages of the parasite, intermittent variations in NO production were observed but ended with increased values that coincided with the highest values for IL-6 release in the final, muscle phase of infection. No change in mannose receptor expression was observed during the course of infection. These results confirm that the Trichinella spiralis infection provokes changes in macrophage activity that could influence not only the course of the parasitic disease but also the overall immune status of the host.

  15. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction.

    Science.gov (United States)

    de Couto, Geoffrey; Liu, Weixin; Tseliou, Eleni; Sun, Baiming; Makkar, Nupur; Kanazawa, Hideaki; Arditi, Moshe; Marbán, Eduardo

    2015-08-03

    Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury-induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.

  16. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chen-Hao [National Taiwan University, Department of Horticulture (China); Hsiao, Jong-Kai [National Taiwan University Hospital and College of Medicine, Department of Medical Imaging (China); Wang, Jaw-Lin [National Taiwan University, Institute of Biomedical Engineering (China); Sheu, Fuu, E-mail: fsheu@ntu.edu.t [National Taiwan University, Department of Horticulture (China)

    2010-01-15

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 {mu}g Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 {mu}g Fe/mL showed a significant (p < 0.01) increase in cytokine (TNF-{alpha}, IL-1{beta}, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly (p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 {mu}g Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  17. Small ruminant macrophage polarization may play a pivotal role on lentiviral infection.

    Science.gov (United States)

    Crespo, Helena; Bertolotti, Luigi; Juganaru, Magda; Glaria, Idoia; de Andrés, Damián; Amorena, Beatriz; Rosati, Sergio; Reina, Ramsés

    2013-09-26

    Small ruminant lentiviruses (SRLV) infect the monocyte/macrophage lineage inducing a long-lasting infection affecting body condition, production and welfare of sheep and goats all over the world. Macrophages play a pivotal role on the host's innate and adaptative immune responses against parasites by becoming differentially activated. Macrophage heterogeneity can tentatively be classified into classically differentiated macrophages (M1) through stimulation with IFN-γ displaying an inflammatory profile, or can be alternatively differentiated by stimulation with IL-4/IL-13 into M2 macrophages with homeostatic functions. Since infection by SRLV can modulate macrophage functions we explored here whether ovine and caprine macrophages can be segregated into M1 and M2 populations and whether this differential polarization represents differential susceptibility to SRLV infection. We found that like in human and mouse systems, ovine and caprine macrophages can be differentiated with particular stimuli into M1/M2 subpopulations displaying specific markers. In addition, small ruminant macrophages are plastic since M1 differentiated macrophages can express M2 markers when the stimulus changes from IFN-γ to IL-4. SRLV replication was restricted in M1 macrophages and increased in M2 differentiated macrophages respectively according to viral production. Identification of the infection pathways in macrophage populations may provide new targets for eliciting appropriate immune responses against SRLV infection.

  18. Rotational Mixing and Lithium Depletion

    CERN Document Server

    Pinsonneault, M H

    2010-01-01

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  19. Charge depletion in organic heterojunction

    Science.gov (United States)

    Ng, T. W.; Lo, M. F.; Lee, S. T.; Lee, C. S.

    2012-03-01

    Until now two types of organic-organic heterojunction (OHJ) have been observed in P-N junctions formed between undoped-organic semiconductors. Charge-transfers across OHJs are either negligible or showing electron transfer from P-type to N-type materials, leading to charges accumulation near the interface. Here, we observed that junction of 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA)/bathocuproine (BCP) show the third-behavior. Electrons in BCP (N-type) transfer to m-MTDATA (P-type), leading to depletion of mobile majority carriers near the junction. While "depletion junctions" are typical in inorganic semiconductors, there are no reports in undoped-OHJ. Formation mechanism of depletion OHJs and fundamental differences between inorganic and organic HJs are discussed.

  20. Transcriptional Regulation and Macrophage Differentiation.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  1. Identification of Leptospira interrogans phospholipase C as a novel virulence factor responsible for intracellular free calcium ion elevation during macrophage death.

    Directory of Open Access Journals (Sweden)

    Jing-Fang Zhao

    Full Text Available BACKGROUND: Leptospira-induced macrophage death has been confirmed to play a crucial role in pathogenesis of leptospirosis, a worldwide zoonotic infectious disease. Intracellular free Ca(2+ concentration ([Ca(2+]i elevation induced by infection can cause cell death, but [Ca(2+]i changes and high [Ca(2+]i-induced death of macrophages due to infection of Leptospira have not been previously reported. METHODOLOGY/PRINCIPAL FINDINGS: We first used a Ca(2+-specific fluorescence probe to confirm that the infection of L. interrogans strain Lai triggered a significant increase of [Ca(2+]i in mouse J774A.1 or human THP-1 macrophages. Laser confocal microscopic examination showed that the [Ca(2+]i elevation was caused by both extracellular Ca(2+ influx through the purinergic receptor, P2X7, and Ca(2+ release from the endoplasmic reticulum, as seen by suppression of [Ca(2+]i elevation when receptor-gated calcium channels were blocked or P2X7 was depleted. The LB361 gene product of the spirochete exhibited phosphatidylinositol phospholipase C (L-PI-PLC activity to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2 into inositol-1,4,5-trisphosphate (IP3, which in turn induces intracellular Ca(2+ release from endoplasmic reticulum, with the Km of 199 µM and Kcat of 8.566E-5 S(-1. Secretion of L-PI-PLC from the spirochete into supernatants of leptospire-macrophage co-cultures and cytosol of infected macrophages was also observed by Western Blot assay. Lower [Ca(2+]i elevation was induced by infection with a LB361-deficient leptospiral mutant, whereas transfection of the LB361 gene caused a mild increase in [Ca(2+]i. Moreover, PI-PLCs (PI-PLC-β3 and PI-PLC-γ1 of the two macrophages were activated by phosphorylation during infection. Flow cytometric detection demonstrated that high [Ca(2+]i increases induced apoptosis and necrosis of macrophages, while mild [Ca(2+]i elevation only caused apoptosis. CONCLUSIONS/SIGNIFICANCE: This study demonstrated that L

  2. Biliverdin Reductase A (BVRA) Mediates Macrophage Expression of Interleukin-10 in Injured Kidney.

    Science.gov (United States)

    Hu, Zhizhi; Pei, Guangchang; Wang, Pengge; Yang, Juan; Zhu, Fengmin; Guo, Yujiao; Wang, Meng; Yao, Ying; Zeng, Rui; Liao, Wenhui; Xu, Gang

    2015-09-18

    Biliverdin reductase A is an enzyme, with serine/threonine/tyrosine kinase activation, converting biliverdin (BV) to bilirubin (BR) in heme degradation pathway. It has been reported to have anti-inflammatory and antioxidant effect in monocytes and human glioblastoma. However, the function of BVRA in polarized macrophage was unknown. This study aimed to investigate the effect of BVRA on macrophage activation and polarization in injured renal microenvironment. Classically activated macrophages (M1macrophages) and alternative activation of macrophages (M2 macrophages) polarization of murine bone marrow derived macrophage was induced by GM-CSF and M-CSF. M1 polarization was associated with a significant down-regulation of BVRA and Interleukin-10 (IL-10), and increased secretion of TNF-α. We also found IL-10 expression was increased in BVRA over-expressed macrophages, while it decreased in BVRA knockdown macrophages. In contrast, BVRA over-expressed or knockdown macrophages had no effect on TNF-α expression level, indicating BVRA mediated IL-10 expression in macrophages. Furthermore, we observed in macrophages infected with recombinant adenoviruses BVRA gene, which BVRA over-expressed enhanced both INOS and ARG-1 mRNA expression, resulting in a specific macrophage phenotype. Through in vivo study, we found BVRA positive macrophages largely existed in mice renal ischemia perfusion injury. With the treatment of the regular cytokines GM-CSF, M-CSF or LPS, excreted in the injured renal microenvironment, IL-10 secretion was significantly increased in BVRA over-expressed macrophages. In conclusion, the BVRA positive macrophage is a source of anti-inflammatory cytokine IL-10 in injured kidney, which may provide a potential target for treatment of kidney disease.

  3. Macrophage Migration Inhibitory Factor in Protozoan Infections

    Directory of Open Access Journals (Sweden)

    Marcelo T. Bozza

    2012-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.

  4. Palytoxin and an Ostreopsis toxin extract increase the levels of mRNAs encoding inflammation-related proteins in human macrophages via p38 MAPK and NF-κB.

    Directory of Open Access Journals (Sweden)

    Rita Crinelli

    Full Text Available BACKGROUND: Palytoxin and, likely, its analogues produced by the dinoflagellate genus Ostreopsis, represent a class of non-proteinaceous compounds displaying high toxicity in animals. Owing to the wide distribution and the poisonous effects of these toxins in humans, their chemistry and mechanism of action have generated a growing scientific interest. Depending on the exposure route, palytoxin and its Ostreopsis analogues may cause several adverse effects on human health, including acute inflammatory reactions which seem more typical of cutaneous and inhalation contact. These observations have led us to hypothesize that these toxins may activate pro-inflammatory signalling cascades. METHODOLOGY AND PRINCIPAL FINDINGS: Here we demonstrate that palytoxin and a semi-purified Ostreopsis cf. ovata toxin extract obtained from a cultured strain isolated in the NW Adriatic Sea and containing a putative palytoxin and all the ovatoxins so far known--including the recently identified ovatoxin-f--significantly increase the levels of mRNAs encoding inflammation-related proteins in immune cells, i.e. monocyte-derived human macrophages, as assessed by Real-Time PCR analysis. Western immunoblot and electrophoretic mobility shift assays revealed that nuclear transcription factor -κB (NF-κB is activated in cells exposed to toxins in coincidence with reduced levels of the inhibitory protein IκB-α. Moreover, Mitogen-Activated Protein Kinases (MAPK were phosphorylated in response to palytoxin, as also reported by others, and to the Ostreopsis toxin extract, as shown here for the first time. By using specific chemical inhibitors, the involvement of NF-κB and p38 MAPK in the toxin-induced transcription and accumulation of Cycloxigenase-2, Tumor Necrosis Factor-α, and Interleukin-8 transcripts has been demonstrated. CONCLUSIONS AND SIGNIFICANCE: The identification of specific molecular targets of palytoxin and its Ostreopsis analogues, besides contributing to

  5. Imipramine exploits histone deacetylase 11 to increase the IL-12/IL-10 ratio in macrophages infected with antimony-resistant Leishmania donovani and clears organ parasites in experimental infection.

    Science.gov (United States)

    Mukherjee, Sandip; Mukherjee, Budhaditya; Mukhopadhyay, Rupkatha; Naskar, Kshudiram; Sundar, Shyam; Dujardin, Jean-Claude; Roy, Syamal

    2014-10-15

    The efflux of antimony through multidrug resistance protein (MDR)-1 is the key factor in the failure of metalloid treatment in kala-azar patients infected with antimony-resistant Leishmania donovani (Sb(R)LD). Previously we showed that MDR-1 upregulation in Sb(R)LD infection is IL-10-dependent. Imipramine, a drug in use for the treatment of depression and nocturnal enuresis in children, inhibits IL-10 production from Sb(R)LD-infected macrophages (Sb(R)LD-Mϕs) and favors accumulation of surrogates of antimonials. It inhibits IL-10-driven nuclear translocation of c-Fos/c-Jun, critical for enhanced MDR-1 expression. The drug upregulates histone deacetylase 11, which inhibits acetylation of IL-10 promoter, leading to a decrease in IL-10 production from Sb(R)LD-Mϕs. It abrogates Sb(R)LD-mediated p50/c-Rel binding to IL-10 promoter and preferentially recruits p65/RelB to IL-12 p35 and p40 promoters, causing a decrease in IL-10 and overproduction of IL-12 in Sb(R)LD-Mϕs. Histone deacetylase 11 per se does not influence IL-12 promoter activity. Instead, a imipramine-mediated decreased IL-10 level allows optimal IL-12 production in Sb(R)LD-Mϕs. Furthermore, exogenous rIL-12 inhibits intracellular Sb(R)LD replication, which can be mimicked by the presence of Ab to IL-10. This observation indicated that reciprocity exists between IL-10 and IL-12 and that imipramine tips the balance toward an increased IL-12/IL-10 ratio in Sb(R)LD-Mϕs. Oral treatment of infected BALB/c mice with imipramine in combination with sodium stibogluconate cleared organ Sb(R)LD parasites and caused an expansion of the antileishmanial T cell repertoire where sodium stibogluconate alone had no effect. Our study deciphers a detailed molecular mechanism of imipramine-mediated regulation of IL-10/IL-12 reciprocity and its impact on Sb(R)LD clearance from infected hosts.

  6. High homocysteine induces betaine depletion.

    Science.gov (United States)

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.

  7. Macrophages largely contribute to heterologous anti-Propionibacterium acnes antibody-mediated protection from Actinobacillus pleuropneumoniae infection in mice.

    Science.gov (United States)

    Ma, Qiuyue; Sun, Changjiang; Yang, Feng; Wang, Lei; Qin, Wanhai; Xia, Xiaojing; Feng, Xin; Du, Chongtao; Gu, Jingmin; Han, Wenyu; Lei, Liancheng

    2015-03-01

    Actinobacillus pleuropneumoniae is the causative agent of acute and chronic pleuropneumonia. Propionibacterium acnes is a facultative anaerobic gram-positive corynebacterium. We have previously found that anti-P. acnes antibodies can prevent A. pleuropneumoniae infections in mice. To investigate the role of macrophages in this process, affinity-purified anti-P. acnes IgG and anti-A. pleuropneumoniae IgG were used in opsonophagocytosis assays. Additionally, the efficacy of passive immunization with P. acnes serum against A. pleuropneumoniae was tested in macrophage-depleted mice. It was found that anti-P. acnes IgG had an effect similar to that of anti-A. pleuropneumoniae IgG (P > 0.05), which significantly promotes phagocytosis of A. pleuropneumoniae by macrophages (P pleuropneumoniae infection under conditions of macrophage depletion (P > 0.05). Furthermore, in mice that had been passively immunized with anti-P. acnes serum, macrophage depletion resulted in a greater A. pleuropneumoniae burden and more severe pathological features of pneumonia in lung tissues than occurred in macrophage-replete mice. It was concluded that macrophages are essential for the process by which anti-P. acnes antibody prevents A. pleuropneumoniae infection in mice. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  8. Ecological and corrosion behavior of depleted uranium

    Directory of Open Access Journals (Sweden)

    Stojanović Mirjana D.

    2015-01-01

    Full Text Available Environmental pollution with radionuclides, particularly uranium and its decay products is a serious global problem. The current scientific studies estimated that the contamination originating from TENORM, caused by nuclear and non-nuclear technologies, has significantly increased natural level of radioactivity in the last thirty years. During the last decades all the more were talking about the "new pollutant" - depleted uranium (DU, which has been used in anti-tank penetrators because of its high density, penetration and pyrophoric properties. It is estimated that during the Gulf War, the war in Bosnia and Yugoslavia and during the invasion of Iraq, 1.4 million missiles with depleted uranium was fired. During the NATO aggression against the ex Yugoslavia in 1999., 112 locations in Kosovo and Metohija, 12 locations in southern Serbia and two locations in Montenegro were bombed. On this occasion, approximately 10 tons of depleted uranium were entered into the environment, mainly on land, where the degree of contamination ranged from 200 Bq / kg to 235 000 Bq/kg, which is up to 1000 times higher than the natural level. Fourteen years ago there was very little information about the behavior of ecological systems damaged by DU penetrators fired. Today, unfortunately, we are increasingly faced with the ―invisible threat" of depleted uranium, which has a strong radioactive and hemotoxic impact on human health. Present paper provides a detailed overview of the current understanding of corrosion and corrosion behavior of DU and environmental factors that control corrosion, together with indicators of environmental impact in order to highlight areas that need further attention in developing remediation programs.

  9. Transfer of cholesterol from macrophages to lymphocytes in culture.

    Science.gov (United States)

    de Bittencourt Júnior, P I; Curi, R

    1998-02-01

    A major feature of macrophage metabolism is its capacity to produce and export cholesterol. Several reports have shown that the manipulation of lymphocyte cholesterol content elicits important changes in lymphocyte proliferation. These findings lead to an inquiry as to whether macrophage-derived cholesterol released into the lymphocyte surroundings may be transferred to the latter thus affecting lymphocyte function. In this study, cholesterol transfer from macrophages to lymphocytes was examined in vitro using rat cells in culture. The findings indicate that there may be a significant transfer of cholesterol from [4-14C]cholesterol labeled resident peritoneal macrophages to mesenteric lymph node resting lymphocytes (up to 173.9 +/- 2.7 pmol/10(7) lymphocytes/10(7) macrophages when co-cultivated for 48 h), in a lipoprotein-dependent manner. This represents the mass transfer of ca. 17 nmoles of cholesterol molecules per 10(7) lymphocytes from 10(7) macrophages (calculated on the basis of specific radioactivity incorporated into macrophages after the pre-labelling period), which suggests that macrophages are capable of replacing the whole lymphocyte cholesterol pool every 21 h. Moreover, an 111%-increase in the total cholesterol content of lymphocytes was found after co-cultivation with macrophages for 48 h. When compared to peritoneal cells, monocytes/macrophages obtained from circulating blood leukocytes presented a much higher cholesterol transfer capacity to lymphocytes (3.06 +/- 0.10 nmol/10(7) lymphocytes/10(7) macrophages co-cultivated for 24 h). Interestingly, inflammatory macrophages dramatically reduced their cholesterol transfer ability (by up to 91%, as compared to resident macrophages). Cholesterol transfer may involve a humoral influence, since it is not only observed when cells are co-cultivated in a single-well chamber system (cells in direct contact), but also in a two-compartment system (where cells can communicate but not by direct contact). Co

  10. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration

    Science.gov (United States)

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter

    2017-01-01

    Introduction. Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P1–5) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods. Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results. All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P1. In contrast, M1-polarized macrophages significantly downregulated S1P4. The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion. The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  11. Rab6a/a’ Are Important Golgi Regulators of Pro-Inflammatory TNF Secretion in Macrophages

    Science.gov (United States)

    Micaroni, Massimo; Stanley, Amanda C.; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X. F.; Lim, Jet P.; Marsh, Brad J.; Storrie, Brian; Gleeson, Paul A.; Stow, Jennifer L.

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6–GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages. PMID:23437303

  12. Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages.

    Science.gov (United States)

    Micaroni, Massimo; Stanley, Amanda C; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X F; Lim, Jet P; Marsh, Brad J; Storrie, Brian; Gleeson, Paul A; Stow, Jennifer L

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.

  13. Specific Uptake and Genotoxicity Induced by Polystyrene Nanobeads with Distinct Surface Chemistry on Human Lung Epithelial Cells and Macrophages

    Science.gov (United States)

    Kortulewski, Thierry; Grall, Romain; Gamez, Christelle; Blazy, Kelly; Aguerre-Chariol, Olivier; Chevillard, Sylvie; Braun, Anne; Rat, Patrice; Lacroix, Ghislaine

    2015-01-01

    Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects

  14. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages.

    Science.gov (United States)

    Paget, Vincent; Dekali, Samir; Kortulewski, Thierry; Grall, Romain; Gamez, Christelle; Blazy, Kelly; Aguerre-Chariol, Olivier; Chevillard, Sylvie; Braun, Anne; Rat, Patrice; Lacroix, Ghislaine

    2015-01-01

    Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects

  15. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  16. Impact of mineral resource depletion

    CSIR Research Space (South Africa)

    Brent, AC

    2006-09-01

    Full Text Available In a letter to the editor, the authors comment on BA Steen's article on "Abiotic Resource Depletion: different perceptions of the problem with mineral deposits" published in the special issue of the International Journal of Life Cycle Assessment...

  17. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  18. The interaction of Acanthamoeba castellanii cysts with macrophages and neutrophils.

    Science.gov (United States)

    Hurt, Michael; Proy, Vincent; Niederkorn, Jerry Y; Alizadeh, Hassan

    2003-06-01

    Acanthamoeba castellanii, a free-living amoeba, causes a sight-threatening form of keratitis. Even after extensive therapies, corneal damage can be severe, often requiring corneal transplantation to restore vision. However, A. castellanii cysts are not eliminated from the conjunctiva and stroma of humans and can excyst, resulting in infection of the corneal transplant. The aim of this study was to determine whether elements of the innate immune apparatus, neutrophils and macrophages, were capable of detecting and eliminating A. castellanii cysts and to examine the mechanism by which they kill the cysts. Results show that neither innate immune cell is attracted chemotactically to intact cysts, yet both were attracted to lysed cysts. Both macrophages and neutrophils were capable of killing significant numbers of cysts, yet neutrophils were 3-fold more efficient than macrophages. Activation of macrophages with lipopolysaccharide and interferon-gamma did not increase their cytolytic ability. Conditioned medium isolated from macrophages did not lyse the cysts; however, prevention of phagocytosis by cytochalasin D inhibited 100% of macrophage-mediated killing of the cysts. Conditioned medium from neutrophils did kill significant numbers of the cysts, and this killing was blocked by quercetin, a potent inhibitor of myeloperoxidase (MPO). These results indicate that neither macrophages nor neutrophils are chemoattracted to intact cysts, yet both are capable of killing the cysts. Macrophages killed the cysts by phagocytosis, whereas neutrophils killed cysts through the secretion of MPO.

  19. Adipose tissue macrophages: the inflammatory link between obesity and cancer?

    Science.gov (United States)

    Wagner, Marek; Samdal Steinskog, Eli Sihn; Wiig, Helge

    2015-04-01

    Obesity has increased dramatically over the last three decades. Thus, epidemiological evidence linking obesity and cancer has ignited our interest in the relationship between adipose tissue mass and cancer development. Obesity is defined as an excess of adipose tissue that is typified by a chronic, low-grade inflammatory response instigated by macrophage infiltration. Therefore, in this review, we will discuss the putative causal relationship between obesity-induced chronic inflammation and cancer with particular focus on adipose tissue macrophages. Chronic, low-grade inflammation has long been associated with cancer initiation, promotion and progression. Therefore, signals derived from adipose tissue macrophages may play a significant role in carcinogenesis. In this review we will discuss the molecular mechanisms of cancer development in obesity and highlight possible therapeutic strategies aiming at adipose tissue macrophages. The strong correlation between tumor-associated macrophage infiltration and tumor growth and progression emphasizes the value of macrophages as an effective therapeutic target. It remains to be deciphered to what extent adipose tissue macrophages contribute to these processes, especially in tumors growing within or adjacent to adipose tissue. More effort should also be placed on elucidating macrophage differences between humans and mice that may lead to the development of more effective diagnostic and therapeutic strategies.

  20. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  1. Nucleosome loss facilitates the chemotactic response of macrophages.

    Science.gov (United States)

    De Toma, I; Rossetti, G; Zambrano, S; Bianchi, M E; Agresti, A

    2014-11-01

    High mobility group box 1 (HMGB1) is a small nuclear protein with two functions. In the nucleus, it helps to wrap DNA around nucleosomes. When secreted, it recruits inflammatory cells and induces cytokine production. Before HMGB1 is secreted from inflammatory cells, it relocates to the cytoplasm, which partially or totally depletes cell nuclei of HMGB1. We previously showed that cells lacking HMGB1 contain 20% fewer nucleosomes and 30% more RNA transcripts levels genome-wide. We hypothesized that the depletion of nuclear HMGB1 plays a role in inflammation that can enhance or complement the role of extracellular HMGB1. We analysed the transcriptional profile of wild-type and Hmgb1-/- mouse embryonic fibroblasts (MEFs) as a proxy for cells that have lost HMGB1 from their nuclei. We explored the transcriptome of wild-type and Hmgb1-/- macrophages differentiated in the presence of granulocyte-macrophage colony-stimulating factor, before and after exposure to LPS/IFN-γ. In the same cells, histones and nuclear HMGB1 were quantified. We found that Hmgb1-/- MEFs show a transcriptional profile associated with stress and inflammation responses. Moreover, wild-type macrophages that have secreted HMGB1 because of LPS/IFN-γ exposure rapidly reduce their histone content as much as cells that genetically lack HMGB1. Importantly, unstimulated Hmgb1-/- macrophages activate transcriptional pathways associated with cell migration and chemotaxis. We suggest that nucleosome loss is an early event that facilitates transcriptional responses of macrophages to inflammation, particularly chemotaxis. HMGB1's dual roles in the nucleus and in the extracellular space appear to be complementary. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  2. Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats.

    Science.gov (United States)

    Chen, Jun-Feng; Ni, Hai-Feng; Pan, Ming-Ming; Liu, Hong; Xu, Min; Zhang, Ming-Hui; Liu, Bi-Cheng

    2013-03-15

    Tubulointerstitial macrophage infiltration is a hallmark of chronic kidney disease involved in the progression of renal fibrosis. Pirfenidone is a newly identified antifibrotic drug, the potential mechanism of which remains unclear. The aim of this study was to investigate the effects of pirfenidone on M1/M2 macrophage infiltration in nephrectomized rats. Nephrectomized rats were treated with pirfenidone by gavage for 12 wk. Twenty-four hour urinary protein, N-acetyl-β-D-glycosaminidase (NAG) activity, systolic blood pressure, and C-reactive protein were determined. Paraffin-embedded sections were stained for CD68, CCR7, and CD163 macrophages. Monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), as well as M1 and M2 macrophages secretory markers, were evaluated by real-time RT-PCR and Western blotting analysis. Pirfenidone significantly improved the elevated proteinuria and NAG activity from week 2 onward after surgery. Pirfenidone attenuated interstitial fibrosis and decreased expression of fibrotic markers including transforming growth factor-β(1), connective tissue growth factor, α-smooth muscle actin, fibronectin, and fibroblast-specific protein-1. Pirfenidone significantly decreased the infiltrating macrophages. The number of M1 and M2 macrophages was significantly lower after pirfenidone treatment. MCP-1 and MIP-1α were increased in nephrectomized rats at mRNA and protein levels. Pirfenidone treatment significantly inhibited their expression. The TNF-α, IL-6, and nitric oxide synthases-2 expressed by M1 macrophages were increased in nephrectomized rats, and pirfenidone significantly attenuated their expression. Pirfenidone treatment also significantly decreased arginase-1, dectin-1, CD206, and CD86 expressed by M2 macrophages. Thus pirfenidone inhibits M1 and M2 macrophage infiltration in 5/6 nephrectomized rats, which suggests its efficacy in the early and late periods of renal fibrosis.

  3. Interleukin 36α Attenuates Sepsis by Enhancing Antibacterial Functions of Macrophages.

    Science.gov (United States)

    Tao, Xintong; Song, Zhixin; Wang, Chuanjiang; Luo, Hongchun; Luo, Qin; Lin, Xue; Zhang, Liping; Yin, Yibing; Cao, Ju

    2017-01-15

    Sepsis is newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection with a high mortality rate and limited effective treatments. The role of interleukin 36α (IL-36α) in host response during sepsis remains unknown. An experimental sepsis model of cecal ligation and puncture was established to investigate the effects of IL-36α on host response to sepsis. IL-36α production was significantly up-regulated during sepsis. IL-36α treatment reduced the mortality rate in mice with severe sepsis by cecal ligation and puncture. IL-36α-treated mice had more efficient bacterial clearance, inhibited tissue inflammation, improved organ injury, and reduced immune cell apoptosis. The therapeutic implication of these observations was also highlighted by the finding that specific blockade of IL-36α led to an increased mortality rate in mice with nonsevere sepsis. Furthermore, we found that IL-36α enhanced bacterial phagocytosis and killing by macrophages, thereby allowing local and systemic bacterial clearance. Importantly, macrophage depletion before the onset of sepsis eliminated IL-36α-mediated protection against sepsis. Our results demonstrate that IL-36α plays an important role in the host defense response to sepsis and suggest a potential therapeutic role for IL-36α in sepsis.

  4. The macrophage and its related cholesterol efflux as a HDL function index in atherosclerosis.

    Science.gov (United States)

    Yamamoto, Suguru; Narita, Ichiei; Kotani, Kazuhiko

    2016-06-01

    The macrophage and its related cholesterol efflux are considered to be a key player in atherosclerotic formation in relation to the function of high-density lipoprotein (HDL). The HDL function can be evaluated by the reaction between lipid-loaded macrophages and lipid-acceptors in the HDL fraction from the plasma, apolipoprotein B-depleted serum, and/or whole serum/plasma. Recent studies have reported that an impaired cholesterol efflux of HDL is observed in patients with cardiometabolic diseases, such as dyslipidemia, diabetes mellitus, and chronic kidney disease. A population-based cohort study has reported an inverse association between the cholesterol efflux capacity of HDL and the incidence of atherosclerotic disease, regardless of the serum HDL-cholesterol level. Moreover, in this paper, when we summarized several clinical interventional studies of statin treatment that examined cholesterol efflux, a potential increase in the efflux in patients treated with statins was implied. However, the effect was not fully defined in the current situation because of the small sample sizes, lack of a unified protocol for measuring the efflux, and short-term intervention periods without cardiovascular outcomes in available studies. Further investigation is necessary to determine the effect of drugs on cholesterol efflux. With additional advanced studies, cholesterol efflux is a promising laboratory index to understand the HDL function.

  5. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease.

    Science.gov (United States)

    Bacci, Monica; Capobianco, Annalisa; Monno, Antonella; Cottone, Lucia; Di Puppo, Francesca; Camisa, Barbara; Mariani, Margherita; Brignole, Chiara; Ponzoni, Mirco; Ferrari, Stefano; Panina-Bordignon, Paola; Manfredi, Angelo A; Rovere-Querini, Patrizia

    2009-08-01

    The mechanisms that sustain endometrial tissues at ectopic sites in patients with endometriosis are poorly understood. Various leukocytes, including macrophages, infiltrate endometriotic lesions. In this study, we depleted mouse macrophages by means of either clodronate liposomes or monoclonal antibodies before the injection of syngeneic endometrial tissue. In the absence of macrophages, tissue fragments adhered and implanted into the peritoneal wall, but endometriotic lesions failed to organize and develop. When we depleted macrophages after the establishment of endometriotic lesions, blood vessels failed to reach the inner layers of the lesions, which stopped growing. Macrophages from patients with endometriosis and experimental mice, but not nonendometriotic patients who underwent surgery for uterine leiomyomas or control mice, expressed markers of alternative activation. These markers included high levels of scavenger receptors, CD163 and CD206, which are involved in both the scavenging of hemoglobin with iron transfer into macrophages and the silent clearance of inflammatory molecules. Macrophages in both inflammatory liquid and ectopic lesions were equally polarized, suggesting a critical role of environmental cues in the peritoneal cavity. Adoptively transferred, alternatively activated macrophages dramatically enhanced endometriotic lesion growth in mice. Inflammatory macrophages effectively protected mice from endometriosis. Therefore, endogenous macrophages involved in tissue remodeling appear as players in the natural history of endometriosis, required for effective vascularization and ectopic lesion growth.

  6. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  7. Expression of functions by normal sheep alveolar macrophages and their alteration by interaction with Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Niang, M; Rosenbusch, R F; Lopez-Virella, J; Kaeberle, M L

    1997-10-31

    Normal sheep alveolar macrophages collected by bronchial lavage were exposed to live or heat-killed Mycoplasma ovipneumoniae organisms, and their capability to ingest Staphylococcus aureus and to elicit antibody-dependent cellular cytotoxicity against sensitized chicken red blood cells was tested. Controls consisted of non-infected macrophages in M199 medium. In addition, the effect of M. ovipneumoniae on expression of surface molecules on these sheep alveolar macrophages was determined. The percentage of S. aureus ingested by nontreated sheep alveolar macrophages was significantly higher than that of infected macrophages. Live mycoplasmas were more effective in suppressing the ingestion of S. aureus by these macrophages than killed mycoplasmas. Both live and killed mycoplasmas suppressed the cytolytic effect of the sheep alveolar macrophages to a similar degree. About 78% and 45% of the normal sheep alveolar macrophages had IgG and complement receptors, respectively. Infection of these macrophages with M. ovipneumoniae decreased significantly the expression of IgG receptors but had no effects on complement receptors. There were substantial increases in the expression of both MHC class I and class II by the mycoplasma-induced macrophages as compared with unstimulated macrophages. Live mycoplasmas were more effective in inducing expression of both classes than killed mycoplasmas. The results, taken together, suggest that M. ovipneumoniae induced alterations in macrophage activities and this may be a contributing factor in the pathogenesis of respiratory disease induced by the organism.

  8. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  9. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  10. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  11. Ozone depletion, paradigms, and politics

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  12. Effects of nanoparticles on murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Chevallet, M; Aude-Garcia, C; Lelong, C; Candeias, S; Luche, S; Collin-Faure, V; Triboulet, S; Diallo, D; Rabilloud, T [CEA/DSV/IRTSV, laboratoire de Biochimie et Biophysique des Systemes Integres, Unite Mixte CNRS UMR5092, Universite Joseph Fourier - Grenoble, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble (France); Diemer, H; Dorsselaer, A van, E-mail: thierry.rabilloud@cea.fr [IPHC, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Universite Louis Pasteur - Strasbourg I (France)

    2011-07-06

    Metallic nanoparticles are more and more widely used in an increasing number of applications. Consequently, they are more and more present in the environment, and the risk that they may represent for human health must be evaluated. This requires to increase our knowledge of the cellular responses to nanoparticles. In this context, macrophages appear as an attractive system. They play a major role in eliminating foreign matter, e.g. pathogens or infectious agents, by phagocytosis and inflammatory responses, and are thus highly likely to react to nanoparticles. We have decided to study their responses to nanoparticles by a combination of classical and wide-scope approaches such as proteomics. The long term goal of this study is the better understanding of the responses of macrophages to nanoparticles, and thus to help to assess their possible impact on human health. We chose as a model system bone marrow-derived macrophages and studied the effect of commonly used nanoparticles such as TiO{sub 2} and Cu. Classical responses of macrophage were characterized and proteomic approaches based on 2D gels of whole cell extracts were used. Preliminary proteomic data resulting from whole cell extracts showed different effects for TiO{sub 2}-NPs and Cu-NPs. Modifications of the expression of several proteins involved in different pathways such as, for example, signal transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response have been underscored. These first results validate our proteomics approach and open a new wide field of investigation for NPs impact on macrophages.

  13. Effects of nanoparticles on murine macrophages

    Science.gov (United States)

    Chevallet, M.; Aude-Garcia, C.; Lelong, C.; Candéias, S.; Luche, S.; Collin-Faure, V.; Triboulet, S.; Diallo, D.; Diemer, H.; van Dorsselaer, A.; Rabilloud, T.

    2011-07-01

    Metallic nanoparticles are more and more widely used in an increasing number of applications. Consequently, they are more and more present in the environment, and the risk that they may represent for human health must be evaluated. This requires to increase our knowledge of the cellular responses to nanoparticles. In this context, macrophages appear as an attractive system. They play a major role in eliminating foreign matter, e.g. pathogens or infectious agents, by phagocytosis and inflammatory responses, and are thus highly likely to react to nanoparticles. We have decided to study their responses to nanoparticles by a combination of classical and wide-scope approaches such as proteomics. The long term goal of this study is the better understanding of the responses of macrophages to nanoparticles, and thus to help to assess their possible impact on human health. We chose as a model system bone marrow-derived macrophages and studied the effect of commonly used nanoparticles such as TiO2 and Cu. Classical responses of macrophage were characterized and proteomic approaches based on 2D gels of whole cell extracts were used. Preliminary proteomic data resulting from whole cell extracts showed different effects for TiO2-NPs and Cu-NPs. Modifications of the expression of several proteins involved in different pathways such as, for example, signal transduction, endosome-lysosome pathway, Krebs cycle, oxidative stress response have been underscored. These first results validate our proteomics approach and open a new wide field of investigation for NPs impact on macrophages.

  14. Prediction Method of Safety Mud Density in Depleted Oilfields

    Directory of Open Access Journals (Sweden)

    Yuan Jun-Liang

    2013-04-01

    Full Text Available At present, many oilfields were placed in the middle and late development period and the reservoir pressure depleted usually, resulting in more serious differential pressure sticking and drilling mud leakage both in the reservoir and cap rock. In view of this situation, a systematic prediction method of safety mud density in depleted oilfields was established. The influence of reservoir depletion on stress and strength in reservoir and cap formation were both studied and taken into the prediction of safety mud density. The research showed that the risk of differential pressure sticking and drilling mud leakage in reservoir and cap formation were both increased and they were the main prevention object in depleted oilfields drilling. The research results were used to guide the practice drilling work, the whole progress gone smoothly.

  15. Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL in HIV-1-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Yunlong Huang

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM culture system was infected with macrophage-tropic HIV-1(ADA, HIV-1(JR-FL, or HIV-1(BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1 activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.

  16. Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species.

    Science.gov (United States)

    Mahesh, P P; Retnakumar, R J; Mundayoor, Sathish

    2016-02-15

    Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heat-killed H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rv-infected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation.

  17. Impairment of survival signaling and efferocytosis in TRPC3-deficient macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Jean-Yves; Smedlund, Kathryn; Lee, Robert [Department of Physiology and Pharmacology and the Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Av, Toledo, OH 43614 (United States); Abramowitz, Joel; Birnbaumer, Lutz [Laboratory of Membrane Signaling, Department of Signal Transduction, National Institute of Environmental Health Science, Research Triangle Park, NC 23709 (United States); Vazquez, Guillermo, E-mail: Guillermo.Vazquez@utoledo.edu [Department of Physiology and Pharmacology and the Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Av, Toledo, OH 43614 (United States)

    2011-07-08

    Highlights: {yields} We examined the role of TRPC3 channel in macrophage survival, apoptosis and efferocytic properties. {yields} TRPC3-deficient macrophages exhibit impaired survival signaling, increased apoptosis and impaired efferocytosis. {yields} These findings suggest that macrophage TRPC3 is an essential component for macrophage survival and clearance of apoptotic cells. -- Abstract: We have recently shown that in macrophages proper operation of the survival pathways phosphatidylinositol-3-kinase (PI3K)/AKT and nuclear factor kappa B (NFkB) has an obligatory requirement for constitutive, non-regulated Ca{sup 2+} influx. In the present work we examined if Transient Receptor Potential Canonical 3 (TRPC3), a member of the TRPC family of Ca{sup 2+}-permeable cation channels, contributes to the constitutive Ca{sup 2+} influx that supports macrophage survival. We used bone marrow-derived macrophages obtained from TRPC3{sup -/-} mice to determine the activation status of survival signaling pathways, apoptosis and their efferocytic properties. Treatment of TRPC3{sup +/+} macrophages with the pro-apoptotic cytokine TNF{alpha} induced time-dependent phosphorylation of I{kappa}B{alpha}, AKT and BAD, and this was drastically reduced in TRPC3{sup -/-} macrophages. Compared to TRPC3{sup +/+} cells TRPC3{sup -/-} macrophages exhibited reduced constitutive cation influx, increased apoptosis and impaired efferocytosis. The present findings suggest that macrophage TRPC3, presumably through its constitutive function, contributes to survival signaling and efferocytic properties.

  18. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    Science.gov (United States)

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue.

  19. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats

    Directory of Open Access Journals (Sweden)

    Smith Malcolm

    2011-01-01

    Full Text Available Abstract Background Injury to the peripheral branch of dorsal root ganglia (DRG neurons prior to injury to the central nervous system (CNS DRG branch results in the regeneration of the central branch. The exact mechanism mediating this regenerative trigger is not fully understood. It has been proposed that following peripheral injury, the intraganglionic inflammatory response by macrophage cells plays an important role in the pre-conditioning of injured CNS neurons to regenerate. In this study, we investigated whether the presence of macrophage cells is crucial for this type of regeneration to occur. We used a clodronate liposome technique to selectively and temporarily deplete these cells during the conditioning phase of DRG neurons. Results Retrograde and anterograde tracing results indicated that in macrophage-depleted animals, the regenerative trigger characteristic of pre-conditioned DRG neurons was abolished as compared to injury matched-control animals. In addition, depletion of macrophage cells led to: (i a reduction in macrophage infiltration into the CNS compartment even after cellular repopulation, (ii astrocyte up-regulation at rostral regions and down-regulation in brain derived neurotrophic factor (BDNF concentration in the serum. Conclusion Activation of macrophage cells in response to the peripheral nerve injury is essential for the enhanced regeneration of ascending sensory neurons.

  20. Macrophages are required for adult salamander limb regeneration.

    Science.gov (United States)

    Godwin, James W; Pinto, Alexander R; Rosenthal, Nadia A

    2013-06-04

    The failure to replace damaged body parts in adult mammals results from a muted growth response and fibrotic scarring. Although infiltrating immune cells play a major role in determining the variable outcome of mammalian wound repair, little is known about the modulation of immune cell signaling in efficiently regenerating species such as the salamander, which can regrow complete body structures as adults. Here we present a comprehensive analysis of immune signaling during limb regeneration in axolotl, an aquatic salamander, and reveal a temporally defined requirement for macrophage infiltration in the regenerative process. Although many features of mammalian cytokine/chemokine signaling are retained in the axolotl, they are more dynamically deployed, with simultaneous induction of inflammatory and anti-inflammatory markers within the first 24 h after limb amputation. Systemic macrophage depletion during this period resulted in wound closure but permanent failure of limb regeneration, associated with extensive fibrosis and disregulation of extracellular matrix component gene expression. Full limb regenerative capacity of failed stumps was restored by reamputation once endogenous macrophage populations had been replenished. Promotion of a regeneration-permissive environment by identification of macrophage-derived therapeutic molecules may therefore aid in the regeneration of damaged body parts in adult mammals.

  1. 1-Bromopropane induces macrophage activation via extracellular signal-regulated kinase 1/2 MAPK and NF-κB pathways.

    Science.gov (United States)

    Han, Eun Hee; Hwang, Yong Pil; Lee, Kyung Jin; Jeong, Tae Cheon; Jeong, Hye Gwang

    2008-04-08

    1-Bromopropane (1-BP) has been used in the workplace as an alternative to ozone-depleting solvents. This study examined the effects of 1-BP on the production of nitric oxide (NO) and on proinflammatory cytokines, and analyzed the mechanisms involved in macrophages. 1-BP dose-dependently induced the production of NO and proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α, and expression levels of these genes also increased in a dose-dependent manner. The NF-κB sites were identified in the promoter of the iNOS and proinflammatory cytokine genes. Transient transfection and electrophoretic mobility shift assays revealed that NF-κB-mediated the 1-BP-induced increase in the iNOS and proinflammatory cytokine expression levels. Pretreating the macrophages with the NF-κB inhibitor, BAY 11-7082, and the ERK inhibitor, PD98059, inhibited NO production and iNOS expression induced by 1-BP. This demonstrates that 1-BP stimulates macrophage activation via NF-κB transactivation and ERK1/2 MAP kinase phosphorylation. These results suggest that 1-BP has the potential to be inflammatory and that it has previously unrecognized immunomodulating activity.

  2. Role of the tumor suppressor ARF in macrophage polarization

    Science.gov (United States)

    Herranz, Sandra; Través, Paqui G.; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf−/− macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf−/− peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf−/− as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf−/− macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages. PMID:23243586

  3. Macrophages in neuroinflammation: role of the renin-angiotensin-system.

    Science.gov (United States)

    Hammer, Anna; Stegbauer, Johannes; Linker, Ralf A

    2017-04-01

    Macrophages are essential players of the innate immune system which are involved in the initiation and progression of various inflammatory and autoimmune diseases including neuroinflammation. In the past few years, it has become increasingly clear that the regulation of macrophage responses by the local tissue milieu is also influenced by mediators which were first discovered as regulators in the nervous or also cardiovascular system. Here, the renin-angiotensin system (RAS) is a major focus of current research. Besides its classical role in blood pressure control, body fluid, and electrolyte homeostasis, the RAS may influence (auto)immune responses, modulate T cells, and particularly act on macrophages via different signaling pathways. Activation of classical RAS pathways including angiotensin (Ang) II and AngII type 1 (AT1R) receptors may drive pro-inflammatory macrophage responses in neuroinflammation via regulation of chemokines. More recently, alternative RAS pathways were described, such as binding of Ang-(1-7) to its receptor Mas. Signaling via Mas pathways may counteract some of the AngII/AT1R-mediated effects. In macrophages, the Ang-(1-7)/Mas exerts beneficial effects on neuroinflammation via modulating macrophage polarization, migration, and T cell activation in vitro and in vivo. These data delineate a pivotal role of the RAS in inflammation of the nervous system and identify RAS modulation as a potential new target for immunotherapy with a special focus on macrophages.

  4. Human macrophage differentiation involves an interaction between integrins and fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Laouar, A.; Chubb, C.B.H.; Collart, F.; Huberman, E.

    1997-03-14

    The authors have examined the role of integrins and extracellular matrix (ECM) proteins in macrophage differentiation of (1) human HL-60 myeloid leukemia cells induced by phorbol 12-myristate 13-acetate (PMA) and (2) human peripheral blood monocytes induced by either PMA or macrophage-colony stimulating factor (M-CSF). Increased {beta}{sub 1} integrin and fibronectin (FN) gene expression was observed in PMA-treated HL-60 cells and PMA- or M-CSF-treated monocytes, even at a time preceding the manifestation of macrophage markers. Treated HL-60 cells and monocytes also released and deposited FN on the culture dishes. An HL-60 cell variant, HL-525, which is deficient in protein kinase C {beta} (PKC{beta}) and resistant to PMA-induced differentiation, failed to express FN after PMA treatment. Restoration of PKC{beta} resulted in PMA-induced FN gene expression and macrophage differentiation. The macrophage phenotype induced in HL-60 cells or monocytes was attenuated by anti-{beta}{sub 1} integrin or anti-FN MAbs. The authors suggest that macrophage differentiation involves activation of PKC and expression of specific integrins and ECM proteins. The stimulated cells, through their integrins, attach and spread on these substrates by binding to the deposited ECM proteins. This attachment and spreading in turn, through integrin signaling, leads to the macrophage phenotype.

  5. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    Science.gov (United States)

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  6. The Case of Ozone Depletion

    Science.gov (United States)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  7. Glutathione Depletion Induces Spermatogonial Cell Autophagy.

    Science.gov (United States)

    Mancilla, Héctor; Maldonado, Rodrigo; Cereceda, Karina; Villarroel-Espíndola, Franz; Montes de Oca, Marco; Angulo, Constanza; Castro, Maite A; Slebe, Juan C; Vera, Juan C; Lavandero, Sergio; Concha, Ilona I

    2015-10-01

    The development and survival of male germ cells depend on the antioxidant capacity of the seminiferous tubule. Glutathione (GSH) plays an important role in the antioxidant defenses of the spermatogenic epithelium. Autophagy can act as a pro-survival response during oxidative stress or nutrient deficiency. In this work, we evaluated whether autophagy is involved in spermatogonia-type germ cell survival during severe GSH deficiency. We showed that the disruption of GSH metabolism with l-buthionine-(S,R)-sulfoximine (BSO) decreased reduced (GSH), oxidized (GSSG) glutathione content, and GSH/GSSG ratio in germ cells, without altering reactive oxygen species production and cell viability, evaluated by 2',7'-dichlorodihydrofluorescein (DCF) fluorescence and exclusion of propidium iodide assays, respectively. Autophagy was assessed by processing the endogenous protein LC3I and observing its sub-cellular distribution. Immunoblot and immunofluorescence analysis showed a consistent increase in LC3II and accumulation of autophagic vesicles under GSH-depletion conditions. This condition did not show changes in the level of phosphorylation of AMP-activated protein kinase (AMPK) or the ATP content. A loss in S-glutathionylated protein pattern was also observed. However, inhibition of autophagy resulted in decreased ATP content and increased caspase-3/7 activity in GSH-depleted germ cells. These findings suggest that GSH deficiency triggers an AMPK-independent induction of autophagy in germ cells as an adaptive stress response. © 2015 Wiley Periodicals, Inc.

  8. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether, J.W.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations on the 630.0 nm nightglow brightness at the equatorial station at Arequipa, Peru (16.2 S, 71.4 W geographic, 3.2 S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridional wind reached a velocity of 100 m/s near 22h LT lasting for 1 to 2 hours. The temperature increases of 100K or more existed only in the poleware (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge. (Author)

  9. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether J.W. Jr.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations of the 630.0 nm nightglow brightness at the equatorial station of Arequipa. Peru (16.2/sup 0/S, 71.4/sup 0/W geographic, 3.2/sup 0/S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridonal wind reached a velocity of 100 m/s near 22/sup h/ LT lasting for 1 or 2 hours. The temperature increases of 10 K or more existed only in the poleward (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge.

  10. Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype.

    Directory of Open Access Journals (Sweden)

    Rafael L Lopes

    Full Text Available Macrophages are myeloid cells that play an essential role in inflammation and host defense, regulating immune responses and maintaining tissue homeostasis. Depending on the microenvironment, macrophages can polarize to two distinct phenotypes. The M1 phenotype is activated by IFN-γ and bacterial products, and displays an inflammatory profile, while M2 macrophages are activated by IL-4 and tend to be anti-inflammatory or immunosupressive. It was observed that DnaK from Mycobacterium tuberculosis has immunosuppressive properties, inducing a tolerogenic phenotype in dendritic cells and MDSCs, contributing to graft acceptance and tumor growth. However, its role in macrophage polarization remains to be elucidated. We asked whether DnaK was able to modulate macrophage phenotype. Murine macrophages, derived from bone marrow, or from the peritoneum, were incubated with DnaK and their phenotype compared to M1 or M2 polarized macrophages. Treatment with DnaK leads macrophages to present higher arginase I activity, IL-10 production and FIZZ1 and Ym1 expression. Furthermore, DnaK increased surface levels of CD206. Importantly, DnaK-treated macrophages were able to promote tumor growth in an allogeneic melanoma model. Our results suggest that DnaK polarizes macrophages to the M2-like phenotype and could constitute a virulence factor and is an important immunomodulator of macrophage responses.

  11. Quantification and localization of M2 macrophages in human kidneys with acute tubular injury

    Directory of Open Access Journals (Sweden)

    Palmer MB

    2014-11-01

    Full Text Available Matthew B Palmer,1 Alfred A Vichot,2 Lloyd G Cantley,2 Gilbert W Moeckel1 1Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; 2Department of Medicine, Yale University School of Medicine, New Haven, CT, USA Abstract: This study addresses for the first time the question whether there is significant macrophage population in human kidney sections from patients with acute tubular injury (ATI. We examined therefore the interstitial macrophage population in human kidney tissue with biopsy-proven diagnosis of ATI, minimal change disease (MCD, and MCD with ATI. Kidney biopsies from patients with the above diagnoses were stained with antibodies directed against CD68 (general macrophage marker, CD163 (M2 marker, and HLA-DR (M1 marker and their respective electron microscopy samples were evaluated for the presence of interstitial macrophages. Our study shows that patients with ATI have significantly increased numbers of interstitial CD68+ macrophages, with an increase in both HLA-DR+ M1 macrophages and CD163+ M2 macrophages as compared to patients with MCD alone. Approximately 75% of macrophages were M2 (CD163+ whereas only 25% were M1 (HLA-DR+. M2 macrophages, which are believed to be critical for wound healing, were found to localize close to the tubular basement membrane of injured proximal tubule cells. Ultra structural examination showed close adherence of macrophages to the basement membrane of injured tubular epithelial cells. We conclude that macrophages accumulate around injured tubules following ATI and exhibit predominantly an M2 phenotype. We further speculate that macrophage-mediated repair may involve physical contact between the M2 macrophage and the injured tubular epithelial cell. Keywords: macrophages, acute kidney injury, CD163, HLA-DR, CD68, electron microscopy

  12. UV radiation below an Arctic vortex with severe ozone depletion

    Directory of Open Access Journals (Sweden)

    B. M. Knudsen

    2005-01-01

    Full Text Available The erythemally weighted (UV irradiance below the severely depleted Arctic vortices in spring 1996 and 1997 were substantially elevated. On average the UV increased 36 and 33% relative to the 1979-1981 mean assuming clear skies from day 80-100 in 1996 and 1997, respectively. On clear sky days large regions of the Arctic experienced maximum UV increases exceeding 70 and 50% on single days in 1996 and 1997, respectively. A minor fraction of these increases are not anthropogenic and have a dynamical origin as seen by comparison to 1982, when hardly any ozone depletion is expected.

  13. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.

    Science.gov (United States)

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.

  14. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available BACKGROUND: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. CONCLUSIONS/SIGNIFICANCE: HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute

  15. Btk regulates macrophage polarization in response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    Joan Ní Gabhann

    Full Text Available Bacterial Lipopolysaccharide (LPS is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\\- mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/- macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/- macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/- macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/- mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.

  16. The Influence of Chronic Ego Depletion on Goal Adherence: An Experience Sampling Study.

    Directory of Open Access Journals (Sweden)

    Ligang Wang

    Full Text Available Although ego depletion effects have been widely observed in experiments in which participants perform consecutive self-control tasks, the process of ego depletion remains poorly understood. Using the strength model of self-control, we hypothesized that chronic ego depletion adversely affects goal adherence and that mental effort and motivation are involved in the process of ego depletion. In this study, 203 students reported their daily performance, mental effort, and motivation with respect to goal directed behavior across a 3-week time period. People with high levels of chronic ego depletion were less successful in goal adherence than those with less chronic ego depletion. Although daily effort devoted to goal adherence increased with chronic ego depletion, motivation to adhere to goals was not affected. Participants with high levels of chronic ego depletion showed a stronger positive association between mental effort and performance, but chronic ego depletion did not play a regulatory role in the effect of motivation on performance. Chronic ego depletion increased the likelihood of behavior regulation failure, suggesting that it is difficult for people in an ego-depletion state to adhere to goals. We integrate our results with the findings of previous studies and discuss possible theoretical implications.

  17. The Influence of Chronic Ego Depletion on Goal Adherence: An Experience Sampling Study.

    Science.gov (United States)

    Wang, Ligang; Tao, Ting; Fan, Chunlei; Gao, Wenbin; Wei, Chuguang

    2015-01-01

    Although ego depletion effects have been widely observed in experiments in which participants perform consecutive self-control tasks, the process of ego depletion remains poorly understood. Using the strength model of self-control, we hypothesized that chronic ego depletion adversely affects goal adherence and that mental effort and motivation are involved in the process of ego depletion. In this study, 203 students reported their daily performance, mental effort, and motivation with respect to goal directed behavior across a 3-week time period. People with high levels of chronic ego depletion were less successful in goal adherence than those with less chronic ego depletion. Although daily effort devoted to goal adherence increased with chronic ego depletion, motivation to adhere to goals was not affected. Participants with high levels of chronic ego depletion showed a stronger positive association between mental effort and performance, but chronic ego depletion did not play a regulatory role in the effect of motivation on performance. Chronic ego depletion increased the likelihood of behavior regulation failure, suggesting that it is difficult for people in an ego-depletion state to adhere to goals. We integrate our results with the findings of previous studies and discuss possible theoretical implications.

  18. Action orientation overcomes the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Shi, Yucai; Mao, Lihua

    2015-04-01

    It has been consistently demonstrated that initial exertion of self-control had negative influence on people's performance on subsequent self-control tasks. This phenomenon is referred to as the ego depletion effect. Based on action control theory, the current research investigated whether the ego depletion effect could be moderated by individuals' action versus state orientation. Our results showed that only state-oriented individuals exhibited ego depletion. For individuals with action orientation, however, their performance was not influenced by initial exertion of self-control. The beneficial effect of action orientation against ego depletion in our experiment results from its facilitation for adapting to the depleting task.

  19. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  20. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  1. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  2. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimulatin

  3. Macrophage IL-12p70 Signaling Prevents HSV-1–Induced CNS Autoimmunity Triggered by Autoaggressive CD4+ Tregs

    Science.gov (United States)

    Mott, Kevin R.; Gate, David; Zandian, Mandana; Allen, Sariah J.; Rajasagi, Naveen Kumar; van Rooijen, Nico; Chen, Shuang; Arditi, Moshe; Rouse, Barry T.; Flavell, Richard A.; Town, Terrence; Ghiasi, Homayon

    2011-01-01

    Purpose. CD4+CD25+FoxP3+ naturally occurring regulatory T cells (Tregs) maintain self-tolerance and function to suppress overly exuberant immune responses. However, it is unclear whether innate immune cells modulate Treg function. Here the authors examined the role of innate immunity in lymphomyeloid homeostasis. Methods. The involvement of B cells, dendritic cells (DCs), macrophages, natural killer (NK) cells, and T cells in central nervous system (CNS) demyelination in different strains of mice infected ocularly with herpes simplex virus type 1 (HSV-1) was investigated. Results. The authors found that depletion of macrophages, but not DCs, B cells, NK cells, CD4+ T cells, or CD8+ T cells, induced CNS demyelination irrespective of virus or mouse strain. As with macrophage depletion, mice deficient in interleukin (IL)-12p35 or IL-12p40 showed CNS demyelination after HSV-1 infection, whereas demyelination was undetectable in HSV-1–infected, IL-23p19–deficient, or Epstein-Barr virus–induced gene 3-deficient mice. Demyelination could be rescued in macrophage-depleted mice after the injection of IL-12p70 DNA and in IL-12p35−/− or IL-12p40−/− mice after injection with IL-12p35 or IL-12p40 DNA or with recombinant viruses expressing IL-12p35 or IL-12p40. Using FoxP3-, CD4-, CD8-, or CD25-depletion and gene-deficient mouse approaches, the authors demonstrated that HSV-1–induced demyelination was blocked in the absence of CD4, CD25, or FoxP3 in macrophage-depleted mice. Flow cytometry showed an elevation of CD4+CD25+FoxP3+ T cells in the spleens of infected macrophage-depleted mice, and adoptive transfer of CD4+CD25+ T cells to infected macrophage-depleted severe combined immunodeficient mice induced CNS demyelination. Conclusions. The authors demonstrated that macrophage IL-12p70 signaling plays an important role in maintaining immune homeostasis in the CNS by preventing the development of autoaggressive CD4+ Tregs. PMID:21220560

  4. Modulation of macrophage antitumor potential by apoptotic lymphoma cells.

    Science.gov (United States)

    Voss, Jorine J L P; Ford, Catriona A; Petrova, Sofia; Melville, Lynsey; Paterson, Margaret; Pound, John D; Holland, Pam; Giotti, Bruno; Freeman, Tom C; Gregory, Christopher D

    2017-06-01

    In aggressive non-Hodgkin's lymphoma (NHL), constitutive apoptosis of a proportion of the tumor cell population can promote net tumor growth. This is associated with the accumulation of tumor-associated macrophages (TAMs) that clear apoptotic cells and exhibit pro-oncogenic transcriptional activation profiles characteristic of reparatory, anti-inflammatory and angiogenic programs. Here we consider further the activation status of these TAMs. We compare their transcriptomic profile with that of a range of other macrophage types from various tissues noting especially their expression of classically activated (IFN-γ and LPS) gene clusters - typically antitumor - in addition to their previously described protumor phenotype. To understand the impact of apoptotic cells on the macrophage activation state, we cocultured apoptotic lymphoma cells with classically activated macrophages (M(IFN-γ/LPS), also known as M1, macrophages). Although untreated and M(IFN-γ/LPS) macrophages were able to bind apoptotic lymphoma cells equally well, M(IFN-γ/LPS) macrophages displayed enhanced ability to phagocytose them. We found that direct exposure of M(IFN-γ/LPS) macrophages to apoptotic lymphoma cells caused switching towards a protumor activation state (often referred to as M2-like) with concomitant inhibition of antitumor activity that was a characteristic feature of M(IFN-γ/LPS) macrophages. Indeed, M(IFN-γ/LPS) macrophages exposed to apoptotic lymphoma cells displayed increased lymphoma growth-promoting activities. Antilymphoma activity by M(IFN-γ/LPS) macrophages was mediated, in part, by galectin-3, a pleiotropic glycoprotein involved in apoptotic cell clearance that is strongly expressed by lymphoma TAMs but not lymphoma cells. Intriguingly, aggressive lymphoma growth was markedly impaired in mice deficient in galectin-3, suggesting either that host galectin-3-mediated antilymphoma activity is required to sustain net tumor growth or that additional functions of galectin-3

  5. Ozone depletion and skin cancer incidence: an integrated modelling approach

    NARCIS (Netherlands)

    Slaper H; den Elzen MGJ; de Woerd HJ; de Greef J

    1992-01-01

    A decrease in stratospheric ozone, probably caused by chlorofluorocarbon (CFC) emissions, has been observed over large parts of the globe. The incidence of skin cancer is expected to increase due to ozone depletion. An integrated source-risk model is developed and applied to evaluate the increased

  6. Ozone depletion and skin cancer incidence: an integrated modelling approach

    NARCIS (Netherlands)

    Slaper H; den Elzen MGJ; de Woerd HJ; de Greef J

    1992-01-01

    A decrease in stratospheric ozone, probably caused by chlorofluorocarbon (CFC) emissions, has been observed over large parts of the globe. The incidence of skin cancer is expected to increase due to ozone depletion. An integrated source-risk model is developed and applied to evaluate the increased

  7. Identification of an autophagy defect in smokers' alveolar macrophages.

    Science.gov (United States)

    Monick, Martha M; Powers, Linda S; Walters, Katherine; Lovan, Nina; Zhang, Michael; Gerke, Alicia; Hansdottir, Sif; Hunninghake, Gary W

    2010-11-01

    Alveolar macrophages are essential for clearing bacteria from the alveolar surface and preventing microbe-induced infections. It is well documented that smokers have an increased incidence of infections, in particular lung infections. Alveolar macrophages accumulate in smokers' lungs, but they have a functional immune deficit. In this study, we identify an autophagy defect in smokers' alveolar macrophages. Smokers' alveolar macrophages accumulate both autophagosomes and p62, a marker of autophagic flux. The decrease in the process of autophagy leads to impaired protein aggregate clearance, dysfunctional mitochondria, and defective delivery of bacteria to lysosomes. This study identifies the autophagy pathway as a potential target for interventions designed to decrease infection rates in smokers and possibly in individuals with high environmental particulate exposure.

  8. 1-Bromopropane up-regulates cyclooxygenase-2 expression via NF-κB and C/EBP activation in murine macrophages.

    Science.gov (United States)

    Han, Eun Hee; Yang, Ji Hye; Kim, Hyung-Kyun; Choi, Jae Ho; Khanal, Tilak; Do, Minh Truong; Chung, Young Chul; Lee, Kwang Youl; Jeong, Tae Cheon; Jeong, Hye Gwang

    2012-05-01

    1-Bromopropane (1-BP) has been used in industry as an alternative to ozone-depleting solvents. In the present study, we examined the effect of 1-BP on cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. 1-BP dose-dependently increased COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity in macrophages. Additionally, exposure to 1-BP markedly enhanced the production of prostaglandin E(2) (PGE(2)), a major COX-2 metabolite, in macrophages. Transfection experiments with several human COX-2 promoter constructs revealed that 1-BP activated the transcription factors nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein (C/EBP), but not AP-1 or the cyclic AMP response element binding protein. Furthermore, Akt and mitogen-activated protein (MAP) kinases were significantly activated by 1-BP. These results demonstrated that 1-BP induced COX-2 expression via NF-κB and C/EBP activation through the Akt/ERK and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of 1-BP.

  9. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage.

    Science.gov (United States)

    Tsai, Yung-Chieh; Tseng, Joseph T; Wang, Chia-Yih; Su, Mei-Tsz; Huang, Jyun-Yuan; Kuo, Pao-Lin

    2017-09-05

    M1 macrophage differentiation plays a crucial role in enhanced inflammation during pregnancy, which may lead to pregnancy complications. Therefore, modulation of macrophage differentiation toward the M2 phenotype is desirable to ensure a successful pregnancy. Medroxyprogesterone acetate (MPA) is a potent progestin with an anti-inflammatory property, but its effect on macrophage differentiation is unknown. This study aimed to examine whether MPA can induce an M2 macrophage differentiation by using the human monocytes cell line THP-1 or primary monocytes. THP-1 cells were primed with phorbol-12-myristate-13 acetate (PMA) to initiate macrophage differentiation. By incubating with MPA, the cells (denoted as MPA-pTHP-1) underwent M2 macrophage differentiation with downregulations of CD11c, IL-1β and TNF-α, and upregulations of CD163 and IL-10; while cells incubated with progesterone (P4) did not show the M2 phenotype. Primary monocytes treated with MPA also had the same M2 phenotype. Moreover, M1 macrophages derived from IFN-γ/LPS-treated THP-1 cells, which had high levels of IL-1b and iNOS, and low levels of IL-10 and IDO, were reversed to the M2 phenotype by the MPA treatment. We also found that the MPA-pTHP-1 promoted the decidualization of endometrial stromal cells and the invasion of trophoblast cells. To mimic conditions of exposure to various pathogens, MPA-pTHP-1 cells were stimulated by different types of TLR ligands. We found they produced lower levels of IL-1β and TNF-α, as well as a higher level of IL-10, compared to untreated cells. Finally, we found the level of phosphorylated ERK in the MPA-pTHP-1 cells was increased, but its IL-10 production was suppressed by either the progesterone/glucocorticoid antagonist (Mifepristone) or MEK inhibitor (U0126). Taken together, MPA could drive monocyte differentiation toward an M2 phenotype that mimics decidual macrophages. This finding holds great potential to combat chronic endometrial inflammation

  10. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  11. Anxiety, ego depletion, and sports performance.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2012-10-01

    In the present article, we analyzed the role of self-control strength and state anxiety in sports performance. We tested the hypothesis that self-control strength and state anxiety interact in predicting sports performance on the basis of two studies, each using a different sports task (Study 1: performance in a basketball free throw task, N = 64; Study 2: performance in a dart task, N = 79). The patterns of results were as expected in both studies: Participants with depleted self-control strength performed worse in the specific tasks as their anxiety increased, whereas there was no significant relation for participants with fully available self-control strength. Furthermore, different degrees of available self-control strength did not predict performance in participants who were low in state anxiety, but did in participants who were high in state anxiety. Thus increasing self-control strength could reduce the negative anxiety effects in sports and improve athletes' performance under pressure.

  12. Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers.

    Directory of Open Access Journals (Sweden)

    Suzanne E Elcombe

    Full Text Available In response to infection by fungal pathogens, the innate immune system recognises specific fungal pathogen associated molecular patterns (PAMPs via pattern recognition receptors including the C-type lectin dectin-1 and members of the Toll Like Receptor (TLR family. Stimulation of these receptors leads to the induction of both pro- and anti-inflammatory cytokines. The protein kinases MSK1 and 2 are known to be important in limiting inflammatory cytokine production by macrophages in response to the TLR4 agonist LPS. In this study we show that MSKs are also activated in macrophages by the fungal derived ligand zymosan, as well as the dectin-1 specific agonists curdlan and depleted zymosan, via the ERK1/2 and p38α MAPK pathways. Furthermore, we show that MSKs regulate dectin-1 induced IL-10 production, and that this regulation is dependent on the ability of MSKs to phosphorylate the transcription factor CREB. IL-10 secreted in response to zymosan was able to promote STAT3 phosphorylation via an autocrine feedback loop. Consistent with the decreased IL-10 secretion in MSK1/2 knockout macrophages, these cells also had decreased STAT3 tyrosine phosphorylation relative to wild type controls after stimulation with zymosan. We further show that the reduction in IL-10 production in the MSK1/2 macrophages results in increased secretion of IL-12p40 in response to zymosan relative to wild type controls. The production of high levels of IL-10 but low levels of IL-12 has previously been associated with an M2b or 'regulatory' macrophage phenotype, which was initially described in macrophages stimulated with a combination of immune complexes and LPS. We found that zymosan, via dectin-1 activation, also leads to the expression of SphK1 and LIGHT, markers of a regulatory like phenotype in mouse macrophages. The expression of these makers was further reinforced by the high level of IL-10 secreted in response to zymosan stimulation.

  13. The functional dissection of the plasma corona of SiO₂-NPs spots histidine rich glycoprotein as a major player able to hamper nanoparticle capture by macrophages.

    Science.gov (United States)

    Fedeli, Chiara; Segat, Daniela; Tavano, Regina; Bubacco, Luigi; De Franceschi, Giorgia; de Laureto, Patrizia Polverino; Lubian, Elisa; Selvestrel, Francesco; Mancin, Fabrizio; Papini, Emanuele

    2015-11-14

    A coat of strongly-bound host proteins, or hard corona, may influence the biological and pharmacological features of nanotheranostics by altering their cell-interaction selectivity and macrophage clearance. With the goal of identifying specific corona-effectors, we investigated how the capture of amorphous silica nanoparticles (SiO2-NPs; Ø = 26 nm; zeta potential = -18.3 mV) by human lymphocytes, monocytes and macrophages is modulated by the prominent proteins of their plasma corona. LC MS/MS analysis, western blotting and quantitative SDS-PAGE densitometry show that Histidine Rich Glycoprotein (HRG) is the most abundant component of the SiO2-NP hard corona in excess plasma from humans (HP) and mice (MP), together with minor amounts of the homologous Kininogen-1 (Kin-1), while it is remarkably absent in their Foetal Calf Serum (FCS)-derived corona. HRG binds with high affinity to SiO2-NPs (HRG Kd ∼2 nM) and competes with other plasma proteins for the NP surface, so forming a stable and quite homogeneous corona inhibiting nanoparticles binding to the macrophage membrane and their subsequent uptake. Conversely, in the case of lymphocytes and monocytes not only HRG but also several common plasma proteins can interchange in this inhibitory activity. The depletion of HRG and Kin-1 from HP or their plasma exhaustion by increasing NP concentration (>40 μg ml(-1) in 10% HP) lead to a heterogeneous hard corona, mostly formed by fibrinogen (Fibr), HDLs, LDLs, IgGs, Kallikrein and several minor components, allowing nanoparticle binding to macrophages. Consistently, the FCS-derived SiO2-NP hard corona, mainly formed by hemoglobin, α2 macroglobulin and HDLs but lacking HRG, permits nanoparticle uptake by macrophages. Moreover, purified HRG competes with FCS proteins for the NP surface, inhibiting their recruitment in the corona and blocking NP macrophage capture. HRG, the main component of the plasma-derived SiO2-NPs' hard corona, has antiopsonin characteristics and

  14. Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages.

    Directory of Open Access Journals (Sweden)

    Noemi Cifani

    Full Text Available Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations.

  15. Contribution of macrophages to plasmin activity in ewe bulk milk

    Directory of Open Access Journals (Sweden)

    M. Albenzio

    2010-04-01

    Full Text Available A total of 225 bulk sheep milk samples were collected throughout lactation to assess the contribution of macrophages to the regulation of the plasmin/plasminogen system. Samples were analyzed for composition, milk renneting parameters, and for activities of plasmin (PL, plasminogen (PG and plasminogen activators (PA. Isolation of macrophages from milk was performed using a magnetic positive separation; separated cells were lysed and activity of urokinase-PA was determined. PL activity in milk decreased during lactation (P < 0.001. The reduction in plasmin activity recorded in the mid and late lactation milk matched with the increase in PG/PL ratio (P < 0.001. The activity of PA increased throughout lactation (P < 0.001, the highest value being recorded in the late lactation milk.The amount of isolated and concentrated macrophages was higher in early and mid lactation milk than in late lactation milk (P < 0.01. Stage of lactation did not influence the activity of u-PA detected in isolated macrophages. The activity of u-PA associated with macrophages was lower than total PA activity detected in milk. Our results lend support to the hypothesis that in ewe bulk milk from healthy flocks macrophages only slightly contributed to the activation of plasmin/plasminogen system.

  16. Modulation of macrophage activation by prostaglandins

    Directory of Open Access Journals (Sweden)

    L. Sautebin

    1996-01-01

    Full Text Available The effect of prostaglandtn E2, iloprost and cAMP on both nitric oxide and tumour necrosis factor-α release in J774 macrophages has been studied. Both prostaglandin E2 and iloprost inhibited, in a concentration-dependent fashion, the lipopolysaccharide-induced generation of nitric oxide and tumour necrosis factor-α. The inhibitory effect of these prostanoids seems to be mediated by an increase of the second messenger cAMP since it was mimicked by dibutyryl cAMP and potentiated by the selective type IV phosphodiesterase inhibitor RO-20-1724. Our results suggest that the inhibition of nitric oxide release by prostaglandin E2 and iloprost in lipopolysaccharide-activated J774 macrophages may be secondary to the inhibition of tumour necrosis factor-α generation, which in turn is likely to be mediated by cAMP.

  17. Depleted uranium disposal options evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  18. Bond rupture between colloidal particles with a depletion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)

    2016-05-15

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.

  19. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Directory of Open Access Journals (Sweden)

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  20. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  1. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Science.gov (United States)

    Raza, Haider; John, Annie

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  2. Macrophage invasion does not contribute to muscle membrane injury during inflammation

    Science.gov (United States)

    Tidball, J. G.; Berchenko, E.; Frenette, J.

    1999-01-01

    Previous observations have shown that neutrophil invasion precedes macrophage invasion during muscle inflammation and that peak muscle injury is observed at the peak of ED1+ macrophage invasion. We tested the hypothesis that neutrophil invasion causes subsequent invasion by ED1+ macrophages and that ED1+ macrophages then contribute significantly to muscle membrane injury during modified muscle use. Rat hindlimbs were unloaded for 10 days followed by reloading by normal ambulation to induce inflammation. Membrane injury was measured by assaying Evans blue-bound serum protein influx through membrane lesions. Muscle neutrophil populations increased significantly during the first 2 h of reloading but ED1+ macrophages did not increase until 24 h. Neutrophil invasion was uncoupled from subsequent macrophage invasion by reloading rat hindlimbs for 2 h to cause neutrophil invasion, followed by resuspension for hours 2-24. This produced similar increases in neutrophil concentration as measured in muscles continuously reloaded for 24 h without causing an increase in macrophages. However, resuspension did not reduce the extent of muscle damage compared with that occurring in muscles that were reloaded continuously for 24 h. Thus, muscle invasion by neutrophils is not sufficient to cause invasion by ED1+ macrophages. In addition, muscle membrane injury that occurs during reloading is independent of invasion by ED1+ macrophages.

  3. Cherubism mice also deficient in c-Fos exhibit inflammatory bone destruction executed by macrophages that express MMP14 despite the absence of TRAP+ osteoclasts.

    Science.gov (United States)

    Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi

    2017-09-15

    Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP +) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2(KI/KI) ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2(KI/KI) mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum ICTP, a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, while levels of serum CTX, another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2(KI/KI) mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2(KI/KI) mice. After activation of the NF-κB pathway, M-CSF-dependent macrophages from c-Fos-deficient Sh3bp2(KI/KI) mice expressed increased amounts of MMP14 compared to wild-type macrophages. Interestingly, RANKL-deficient Sh3bp2(KI/KI) mice failed to show notable bone erosion, while c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2(KI/KI) mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2(KI

  4. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages

    OpenAIRE

    Woolard, Matthew D.; Barrigan, Lydia M.; Fuller, James R.; Buntzman, Adam S.; Bryan, Joshua; Manoil, Colin; Kawula, Thomas H.; Frelinger, Jeffrey A.

    2013-01-01

    Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cell...

  5. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages.

    OpenAIRE

    Matthew Dale Woolard; Barrigan, Lydia M.; Fuller, James R.; Buntzman, Adam S.; Joshua eBryan; Colin eManoil; Tom eKawula; Frelinger, Jeffrey A.

    2013-01-01

    Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the ce...

  6. ROCK-Isoform-Specific Polarization of Macrophages Associated with Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Souska Zandi

    2015-02-01

    Full Text Available Age is a major risk factor in age-related macular degeneration (AMD, but the underlying cause is unknown. We find increased Rho-associated kinase (ROCK signaling and M2 characteristics in eyes of aged mice, revealing immune changes in aging. ROCK isoforms determine macrophage polarization into M1 and M2 subtypes. M2-like macrophages accumulated in AMD, but not in normal eyes, suggesting that these macrophages may be linked to macular degeneration. M2 macrophages injected into the mouse eye exacerbated choroidal neovascular lesions, while M1 macrophages ameliorated them, supporting a causal role for macrophage subtypes in AMD. Selective ROCK2 inhibition with a small molecule decreased M2-like macrophages and choroidal neovascularization. ROCK2 inhibition upregulated M1 markers without affecting macrophage recruitment, underlining the plasticity of these macrophages. These results reveal age-induced innate immune imbalance as underlying AMD pathogenesis. Targeting macrophage plasticity opens up new possibilities for more effective AMD treatment.

  7. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  8. Calpain-6 confers atherogenicity to macrophages by dysregulating pre-mRNA splicing

    Science.gov (United States)

    Tonami, Kazuo; Hata, Shoji; Aiuchi, Toshihiro; Lei, Xiao-Feng; Kim-Kaneyama, Joo-ri; Takeya, Motohiro; Itabe, Hiroyuki; Kurihara, Hiroki; Miyazaki, Akira

    2016-01-01

    Macrophages contribute to the development of atherosclerosis through pinocytotic deposition of native LDL–derived cholesterol in macrophages in the vascular wall. Inhibiting macrophage-mediated lipid deposition may have protective effects in atheroprone vasculature, and identifying mechanisms that potentiate this process may inform potential therapeutic interventions for atherosclerosis. Here, we report that dysregulation of exon junction complex–driven (EJC-driven) mRNA splicing confers hyperpinocytosis to macrophages during atherogenesis. Mechanistically, we determined that inflammatory cytokines induce an unconventional nonproteolytic calpain, calpain-6 (CAPN6), which associates with the essential EJC-loading factor CWC22 in the cytoplasm. This association disturbs the nuclear localization of CWC22, thereby suppressing the splicing of target genes, including those related to Rac1 signaling. CAPN6 deficiency in LDL receptor–deficient mice restored CWC22/EJC/Rac1 signaling, reduced pinocytotic deposition of native LDL in macrophages, and attenuated macrophage recruitment into the lesions, generating an atheroprotective phenotype in the aorta. In macrophages, the induction of CAPN6 in the atheroma interior limited macrophage movements, resulting in a decline in cell clearance from the lesions. Consistent with this finding, we observed that myeloid CAPN6 contributed to atherogenesis in a murine model of bone marrow transplantation. Furthermore, macrophages from advanced human atheromas exhibited increased CAPN6 induction and impaired CWC22 nuclear localization. Together, these results indicate that CAPN6 promotes atherogenicity in inflamed macrophages by disturbing CWC22/EJC systems. PMID:27525442

  9. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Show Monocyte/macrophage traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage traffic

  10. Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Directory of Open Access Journals (Sweden)

    Al-Abed Yousef

    2009-05-01

    Full Text Available Abstract Background MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages. Methods To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation. Results Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2 and keratinocyte-derived chemokine (KC in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p 4 vs. 1.90 ± 0.61 × 104, p Conclusion MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.

  11. Influence of Macrophages on the Rooster Spermatozoa Quality.

    Science.gov (United States)

    Kuzelova, L; Vasicek, J; Chrenek, P

    2015-08-01

    The goal of this study was to evaluate the occurrence of macrophages in rooster semen and to investigate their impact on the spermatozoa quality. Ross 308 breeder males (n = 30) with no evidence of genital tract infections were used to determine the concentration of macrophages using fluorescently conjugated acetylated low-density lipoprotein (AcLDL). Subsequently, the roosters were divided into two groups on the basis of semen macrophage concentration, and semen quality was compared in two heterospermic samples. We applied computer-assisted semen analysis (CASA) system to determine motility parameters. Fluorescence microscopy and flow cytometry were used to evaluate occurrence of apoptotic and dead spermatozoa. Spermatozoa fertility potential was examined after intravaginal artificial insemination of hens. Eighteen roosters (control group) contained 0.2-3% of macrophages within spermatozoa population and ten roosters (macrophage group) had 10-15% of macrophages. Males from macrophage group had lower (p < 0.05) motility parameters (total and progressive movement, velocity curved line) and increased concentration of dead spermatozoa detected by flow cytometry and fluorescence microscopy (p < 0.001 and p ˂ 0.05, respectively). Differences (p < 0.05) between fluorescent microscopy and flow cytometry in results on spermatozoa apoptosis and viability were observed. No significant difference was found between groups in fertility of spermatozoa. In conclusion, the higher presence of macrophages in rooster semen may have a negative effect on some parameters of rooster spermatozoa evaluated in vitro. Furthermore, our study suggests that flow cytometry allows more precise examination of spermatozoa viability and apoptosis in a very short time compared with the fluorescent microscopy.

  12. Melanocortin 1 Receptor Signaling Regulates Cholesterol Transport in Macrophages.

    Science.gov (United States)

    Rinne, Petteri; Rami, Martina; Nuutinen, Salla; Santovito, Donato; van der Vorst, Emiel P C; Guillamat-Prats, Raquel; Lyytikäinen, Leo-Pekka; Raitoharju, Emma; Oksala, Niku; Ring, Larisa; Cai, Minying; Hruby, Victor J; Lehtimäki, Terho; Weber, Christian; Steffens, Sabine

    2017-07-04

    The melanocortin 1 receptor (MC1-R) is expressed by monocytes and macrophages, where it exerts anti-inflammatory actions on stimulation with its natural ligand α-melanocyte-stimulating hormone. The present study was designed to investigate the specific role of MC1-R in the context of atherosclerosis and possible regulatory pathways of MC1-R beyond anti-inflammation. Human and mouse atherosclerotic samples and primary mouse macrophages were used to study the regulatory functions of MC1-R. The impact of pharmacological MC1-R activation on atherosclerosis was assessed in apolipoprotein E-deficient mice. Characterization of human and mouse atherosclerotic plaques revealed that MC1-R expression localizes in lesional macrophages and is significantly associated with the ATP-binding cassette transporters ABCA1 and ABCG1, which are responsible for initiating reverse cholesterol transport. Using bone marrow-derived macrophages, we observed that α-melanocyte-stimulating hormone and selective MC1-R agonists similarly promoted cholesterol efflux, which is a counterregulatory mechanism against foam cell formation. Mechanistically, MC1-R activation upregulated the levels of ABCA1 and ABCG1. These effects were accompanied by a reduction in cell surface CD36 expression and in cholesterol uptake, further protecting macrophages from excessive lipid accumulation. Conversely, macrophages deficient in functional MC1-R displayed a phenotype with impaired efflux and enhanced uptake of cholesterol. Pharmacological targeting of MC1-R in atherosclerotic apolipoprotein E-deficient mice reduced plasma cholesterol levels and aortic CD36 expression and increased plaque ABCG1 expression and signs of plaque stability. Our findings identify a novel role for MC1-R in macrophage cholesterol transport. Activation of MC1-R confers protection against macrophage foam cell formation through a dual mechanism: It prevents cholesterol uptake while concomitantly promoting ABCA1- and ABCG1-mediated reverse

  13. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation.

    Directory of Open Access Journals (Sweden)

    Olga M Pena

    Full Text Available Macrophages play a critical role in the innate immune response. To respond in a rapid and efficient manner to challenges in the micro-environment, macrophages are able to differentiate towards classically (M1 or alternatively (M2 activated phenotypes. Synthetic, innate defense regulators (IDR peptides, designed based on natural host defence peptides, have enhanced immunomodulatory activities and reduced toxicity leading to protection in infection and inflammation models that is dependent on innate immune cells like monocytes/macrophages. Here we tested the effect of IDR-1018 on macrophage differentiation, a process essential to macrophage function and the immune response. Using transcriptional, protein and systems biology analysis, we observed that differentiation in the presence of IDR-1018 induced a unique signature of immune responses including the production of specific pro and anti-inflammatory mediators, expression of wound healing associated genes, and increased phagocytosis of apoptotic cells. Transcription factor IRF4 appeared to play an important role in promoting this IDR-1018-induced phenotype. The data suggests that IDR-1018 drives macrophage differentiation towards an intermediate M1-M2 state, enhancing anti-inflammatory functions while maintaining certain pro-inflammatory activities important to the resolution of infection. Synthetic peptides like IDR-1018, which act by modulating the immune system, could represent a powerful new class of therapeutics capable of treating the rising number of multidrug resistant infections as well as disorders associated with dysregulated immune responses.

  14. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    Science.gov (United States)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p inflammatory cytokine secretion and NO production.

  15. Seasonal iron depletion in temperate shelf seas

    Science.gov (United States)

    Birchill, Antony J.; Milne, Angela; Woodward, E. Malcolm S.; Harris, Carolyn; Annett, Amber; Rusiecka, Dagmara; Achterberg, Eric P.; Gledhill, Martha; Ussher, Simon J.; Worsfold, Paul J.; Geibert, Walter; Lohan, Maeve C.

    2017-09-01

    Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe), and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (<0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, and 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralized sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf and therefore is likely low enough to affect phytoplankton growth and species composition.

  16. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  17. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages.

    Science.gov (United States)

    Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  18. Recovery of the Ozone Layer: The Ozone Depleting Gas Index

    Science.gov (United States)

    Hofmann, David J.; Montzka, Stephen A.

    2009-01-01

    The stratospheric ozone layer, through absorption of solar ultraviolet radiation, protects all biological systems on Earth. In response to concerns over the depletion of the global ozone layer, the U.S. Clean Air Act as amended in 1990 mandates that NASA and NOAA monitor stratospheric ozone and ozone-depleting substances. This information is critical for assessing whether the Montreal Protocol on Substances That Deplete the Ozone Layer, an international treaty that entered into force in 1989 to protect the ozone layer, is having its intended effect of mitigating increases in harmful ultraviolet radiation. To provide the information necessary to satisfy this congressional mandate, both NASA and NOAA have instituted and maintained global monitoring programs to keep track of ozone-depleting gases as well as ozone itself. While data collected for the past 30 years have been used extensively in international assessments of ozone layer depletion science, the language of scientists often eludes the average citizen who has a considerable interest in the health of Earth's protective ultraviolet radiation shield. Are the ozone-destroying chemicals declining in the atmosphere? When will these chemicals