WorldWideScience

Sample records for macromolecular scaffolds bovine

  1. SCAFFOLD DARI BOVINE HYDROXYAPATITE DENGAN POLY VYNIALCHOHOL COATING

    Directory of Open Access Journals (Sweden)

    Alva Edy Tontowi, Punto Dewo, Endang Tri Wahyuni, dan Joko Triyono

    2012-06-01

    Full Text Available In Indonesia, it is about 40% patients with hard tissue defect due to ostheoporosis, cancer or accidents and therest are defect since they have born.For many years, efforts for recovering have been done by transplantation orimplantation methods.Transplantation is more appropriate butit is not sustain because of limited donor, whileimplantation using synthetic materials such as bioceramics scaffoldis expensive due to import and the scaffold iseasier to break which does not match to the medical requirements.The research therefore has been addressed to thisissue. Local bovine hydroxyapatite (bHAscaffold has been used as thebase material and poly vynilalchohol (PVAas a coating material.The bHA scaffold was prepared by cutting a fresh bovine bone in the size of 5mmx5mmx5mmand boil it in a distilled water to remove its organic material. It was then heated up at 900 oC for 2 hours infurnace to obtain bovine hydroxyapatite scaffold (bHA. Coating process has been carried out by dip coating of thebHAscaffold in PVA solution.

  2. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.

    Science.gov (United States)

    Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2010-02-23

    The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.

  3. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons.

    Science.gov (United States)

    Ghodbane, Salim A; Dunn, Michael G

    2016-11-01

    Collagen scaffolds are often utilized in tissue engineering applications where their performance depends on physical and mechanical properties. This study investigated the effects of collagen source (bovine, porcine, and ovine tendon) on properties of collagen sponge scaffolds cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). Scaffolds were tested for tensile and compressive properties, stability (resistance to enzymatic degradation), pore size, and swelling ratio. No significant differences in tensile modulus were observed, but ovine scaffolds had significantly greater ultimate strain, stress, and toughness relative to bovine and porcine scaffolds. No significant differences in compressive properties, pore size, or swelling ratio were observed as a function of collagen source. Ovine scaffolds were more resistant to collagenase degradation compared to bovine samples, which were more resistant than porcine scaffolds. In comparison to bovine scaffolds, ovine scaffolds performed equivalently or superiorly in all evaluations, and porcine scaffolds were equivalent in all properties except enzymatic stability. These results suggest that collagen sponges derived from bovine, porcine, and ovine tendon have similar physical and mechanical properties, and are all potentially suitable materials for various tissue engineering applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2685-2692, 2016.

  4. Designs for the self-assembly of open and closed macromolecular structures and a molecular switch using DNA methyltransferases to order proteins on nucleic acid scaffolds

    Science.gov (United States)

    Smith, Steven S.

    2002-06-01

    The methyltransferase-directed addressing of fusion proteins to DNA scaffolds offers an approach to the construction of protein/nucleic acid biostructures with potential in a variety of applications. The technology is currently only limited by the yield of high occupancy structures. However, current evidence shows that DNA scaffolds that contain three or four targeted proteins can be reliably constructed. This permits a variety of macromolecular designs, several of which are given in this paper. Designs for open and closed two-dimensional and three-dimensional assemblies and a design for a molecular switch are discussed. The closed two-dimensional assembly takes the form of a square, and could find application as a component of other systems including a macromolecular rotaxane. The closed three-dimensional system takes the form of a trigonal bipyramid and could find application as a macromolecular carcerand. The molecular switch could find application as a peptide biosensor. Guidelines for the construction and structural verification of these designs are reported.

  5. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds.

    Science.gov (United States)

    Vetsch, Jolanda R; Paulsen, Samantha J; Müller, Ralph; Hofmann, Sandra

    2015-02-01

    Fetal bovine serum (FBS) is a common media supplement used in tissue engineering (TE) cultures. The chemical composition of FBS is known to be highly variable between different brands, types or batches and can have a significant impact on cell function. This study investigated the influence of four different FBS types in osteogenic or control medium on mineralization of acellular and cell-seeded silk fibroin (SF) scaffolds. In bone TE, mineralized tissue is considered as the final product of a successful cell culture. Calcium assays and micro-computed tomography scans revealed spontaneous mineralization on SF scaffolds with certain FBS types, even without cells present. In contrast, cell-mediated mineralization was found under osteogenic conditions only. Fourier transform infrared spectroscopy analysis demonstrated a similar ion composition of the mineralization present in scaffolds, whether cell-mediated or spontaneous. These results were confirmed by scanning electron microscopy. This study shows clear evidence for the influence of FBS type on mineralization on SF scaffolds. The suitability of FBS medium supplementation in TE studies is highly questionable with regard to reproducibility of studies and comparability of obtained results. For future TE studies, alternatives to conventional FBS such as defined FBS or serum-free media should be considered, as suggested decades ago.

  6. Favorable Effects of the Detergent and Enzyme Extraction Method for Preparing Decellularized Bovine Pericardium Scaffold for Tissue Engineered Heart Valves

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Wang, Xue-Ning; Zhu, Ya-Bin; Gu, Y. John

    2009-01-01

    Bovine pericardium has been extensively applied as the biomaterial for artificial heart valves and may potentially be used as a scaffold for tissue-engineered heart valves after decellularization. Although various methods of decellularization are currently available, it is unknown which method is

  7. Conformation and assembly of polypeptide scaffolds in templating the synthesis of silica: an example of a polylysine macromolecular "switch".

    Science.gov (United States)

    Patwardhan, Siddharth V; Maheshwari, Ronak; Mukherjee, Niloy; Kiick, Kristi L; Clarson, Stephen J

    2006-02-01

    Although the role of polycationic macromolecules in catalyzing the synthesis of silica structures is well established, detailed understanding of the mechanisms behind the production of silica structures of controlled morphologies remains unclear. In this study, we have used both poly-L-lysine (PLL) and/or poly-D-lysine (PDL) for silica synthesis to investigate mechanisms controlling inorganic morphologies. The formation of both spherical silica particles and hexagonal plates was observed. The formation of hexagonal plates was suggested, via circular dichroic spectroscopy (CD), to result from the assembly of helical polylysine molecules. We confirm that the formation of PLL helices is a prerequisite to the hexagonal silica synthesis. In addition, we present for the first time that the handedness of the helicity of the macromolecule does not affect the formation of hexagonal silica. We also show, by using two different silica precursors, that the precursor does not have a direct effect on the formation of hexagonal silica plates. Furthermore, when polylysine helices were converted to beta-sheet structure, only silica particles were obtained, thus suggesting that the adoption of a helical conformation by PLL is required for the formation of hexagonally organized silica. These results demonstrate that the change in polylysine conformation can act as a "switch" in silica structure formation and suggest the potential for controlling morphologies and structures of inorganic materials via control of the conformation of soft macromolecular templates.

  8. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve : An in vitro and in vivo feasibility study

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y. John

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was

  9. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve : An in vitro and in vivo feasibility study

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y. John

    2012-01-01

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was

  10. Effects of Macromolecular Crowding on Human Adipose Stem Cell Culture in Fetal Bovine Serum, Human Serum, and Defined Xeno-Free/Serum-Free Conditions

    Directory of Open Access Journals (Sweden)

    Mimmi Patrikoski

    2017-01-01

    Full Text Available Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS- and human serum- (HS- based media and xeno- and serum-free (XF/SF media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation.

  11. Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold

    Institute of Scientific and Technical Information of China (English)

    Yuping Feng; Jiao Wang; Shixin Ling; Zhuo Li; Mingsheng Li; Qiongyi Li; Zongren Ma; Sijiu Yu

    2014-01-01

    The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.

  12. The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Um, Yoo-Jung; Jung, Ui-Won; Chae, Gyung-Joon; Kim, Chang-Sung; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752 l (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of)], E-mail: shchoi726@yuhs.ac

    2008-12-15

    The purpose of this study was to evaluate the effects of biphasic hydroxyapatite/calcium phosphate glass (HA/CPG) scaffold and its surface modification with bovine serum albumin (BSA) on periodontal regeneration. 1-wall intrabony defects were surgically created on five beagle dogs. HA/CPG scaffolds, with a hydroxyapatite (HA)/calcium phosphate glass (CPG) ratio of 95:5 by weight (%) and surface modification done by 2% bovine serum albumin, were used. The control group received surgical flap operation, and the experimental groups were filled with HA/CPG scaffolds and HA/CPG(BSA) scaffolds. The animals were sacrificed eight weeks after surgery. Histological findings revealed better space maintenance in the experimental groups than the control group, and showed new bone formation intermittently in between the residual material particles. The newly formed bone was mostly woven bone and the residual particles were undergoing resorption. Cementum regeneration was observed with limited root resorption in all the groups. Histometric analysis also revealed greater mean values in new bone formation, cementum regeneration and bone area than the control group in both experimental groups. However, similar findings were presented between HA/CPG and HA/CPG(BSA). The result of the present study revealed the newly fabricated HA/CPG scaffold to have a potential use as a bone substitute material.

  13. Preseeding of human vascular cells in decellularized bovine pericardium scaffold for tissue-engineered heart valve: an in vitro and in vivo feasibility study.

    Science.gov (United States)

    Yang, Min; Chen, Chang-Zhi; Shu, Yu-Sheng; Shi, Wei-Ping; Cheng, Shao-Fei; Gu, Y John

    2012-08-01

    Human vascular cells from saphenous veins have been used for cell seeding on the synthetic scaffolds for constructing tissue-engineered heart valve (TEHV). However, little is known about the seeding of human vascular cells on bovine pericardium, a potential natural scaffold for TEHV. This study was aimed to assess the basic in vitro and in vivo characteristics of the human vascular cells seeded on decellularized bovine pericardium. In vitro, bovine pericardium samples with cell seeding were inspected on day 7, 14, and 21 by histology, scanning electron microscopy, and immunohistochemistry. In vivo, experiments were performed in nude mice by bilateral dorsal incision for the implantation of decellularized bovine pericardium with and without cell seeding. Results demonstrated that a total of 8-10 × 10(6) cells were obtained within 4-5 wk by the primary co-culture, which were detected positive for von Willebrand factor, α-smooth muscle actin antibodies, and fibronectin, indicating the presence of endothelial cells, smooth muscle cells, and fibroblasts, respectively. In vitro, the seeded cells showed a steady increase of endothelial activity from day 1 to day 7 and remained stable until day 21. After 30 days of implantation in vivo, the cells on the decellularized bovine pericardium could differentiate directionally and show all the identities of human endothelial cells, smooth muscle cells, and fibroblasts. These results indicate that the human vascular cells from the saphenous vein are an optional cell source for seeding on decellularized bovine pericardium scaffold for constructing TEHV. Copyright © 2012 Wiley Periodicals, Inc.

  14. Fabrication of macromolecular gradients in aligned fiber scaffolds using a combination of in-line blending and air-gap electrospinning.

    Science.gov (United States)

    Kishan, Alysha P; Robbins, Andrew B; Mohiuddin, Sahar F; Jiang, Mingliang; Moreno, Michael R; Cosgriff-Hernandez, Elizabeth M

    2016-12-22

    Although a variety of fabrication methods have been developed to generate electrospun meshes with gradient properties, no platform has yet to achieve fiber alignment in the direction of the gradient that mimics the native tendon-bone interface. In this study, we present a method combining in-line blending and air-gap electrospinning to address this limitation in the field. A custom collector with synced rotation permitted fiber collection with uniform mesh thickness and periodic copper wires were used to induce fiber alignment. Two poly(ester urethane ureas) with different hard segment contents (BPUR 50, BPUR 10) were used to generate compositional gradient meshes with and without fiber alignment. The compositional gradient across the length of the mesh was characterized using a fluorescent dye and the results indicated a continuous transition from the BPUR 50 to the BPUR 10. As expected, the fiber alignment of the gradient meshes induced a corresponding alignment of adherent cells in static culture. Tensile testing of the sectioned meshes confirmed a graded transition in mechanical properties and an increase in anisotropy with fiber alignment. Finite element modeling was utilized to illustrate the gradient mechanical properties across the full length of the mesh and lay the foundation for future computational development work. Overall, these results indicate that this electrospinning method permits the fabrication of macromolecular gradients in the direction of fiber alignment and demonstrate its potential for use in interfacial tissue engineering.

  15. Macromolecular architectures for organic photovoltaics.

    Science.gov (United States)

    Popere, Bhooshan C; Della Pelle, Andrea M; Poe, Ambata; Thayumanavan, S

    2012-03-28

    Research in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.

  16. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair.

    Science.gov (United States)

    Li, Donghai; Deng, Liqing; Xie, Xiaowei; Yang, Zhouyuan; Kang, Pengde

    2016-06-01

    Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.

  17. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects.

    Science.gov (United States)

    Liu, Yihan; Ming, Leiguo; Luo, Hailang; Liu, Wenjia; Zhang, Yongjie; Liu, Hongchen; Jin, Yan

    2013-12-01

    Reconstruction of large area bone defect with mechanical integrity to the skeleton is important for patient's rehabilitation. However with the limitation of scaffold material and suitable seed cell sources, the best treating strategy remains to be identified though various tissue engineering methods were reported. In this study, we investigated the feasibility of applying calcined bovine bone (CBB) which was coated by allograft bone marrow mesenchymal stem cells (BMSC)-sheet as a 3D scaffold material in bone repairing tissue engineering. The new scaffold material was implanted into osteoporosis rat cranial bone defects and repairing critical size bone defects (8 mm diameter). Data showed that CBB-BMSC-sheet combination had a stronger potential in osteogenic differentiation and mineralized formation both in vitro and in vivo than CBB-BMSC combination. In in vitro study BMSC-sheet had a more feasible characteristic upon bone repairing including richer ECM, larger mineralized area and stronger ALP activity in addition with a significant higher mRNA expression of osteogenic maker such as BMP-2, b-FGF, Col 1a1, OSX and Runx-2 than the control group. In in vivo study 3D reconstruction of micro CT, HE staining and bone strength results showed that newly formed bone in CBB-BMSC-sheet group was significant higher than that in CBB-BMSC group at 4, 8 and 12 weeks after transplantation in the aspect of area and volume. What was more, results indicated that allograft BMSC-sheet had survivaled in the scaffold material and participated in the newly formed bone which had the same thickness with surrounding autologous bone tissues after transplantation. Results of our study demonstrated that CBB-BMSC-sheet combination was a promising strategy in healing of large area bone defect in osteoporosis.

  18. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  19. Macromolecular Prodrugs of Ribavirin

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Hinton, Tracey M; Gajda, Paulina

    2017-01-01

    The requirement for new antiviral therapeutics is an ever present need. Particularly lacking are broad spectrum antivirals that have low toxicity. We develop such agents based on macromolecular prodrugs whereby both the polymer chain and the drug released from the polymer upon cell entry have ant...

  20. Expression of the Multimeric and Highly Immunogenic Brucella spp. Lumazine Synthase Fused to Bovine Rotavirus VP8d as a Scaffold for Antigen Production in Tobacco Chloroplasts

    Science.gov (United States)

    Alfano, E. Federico; Lentz, Ezequiel M.; Bellido, Demian; Dus Santos, María J.; Goldbaum, Fernando A.; Wigdorovitz, Andrés; Bravo-Almonacid, Fernando F.

    2015-01-01

    Lumazine synthase from Brucella spp. (BLS) is a highly immunogenic decameric protein which can accommodate foreign polypeptides or protein domains fused to its N-termini, markedly increasing their immunogenicity. The inner core domain (VP8d) of VP8 spike protein from bovine rotavirus is responsible for viral adhesion to sialic acid residues and infection. It also displays neutralizing epitopes, making it a good candidate for vaccination. In this work, the BLS scaffold was assessed for the first time in plants for recombinant vaccine development by N-terminally fusing BLS to VP8d and expressing the resulting fusion (BLSVP8d) in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern, northern and western blot. BLSVP8d was highly expressed, representing 40% of total soluble protein (4.85 mg/g fresh tissue). BLSVP8d remained soluble and stable during all stages of plant development and even in lyophilized leaves stored at room temperature. Soluble protein extracts from fresh and lyophilized leaves were able to induce specific neutralizing IgY antibodies in a laying hen model. This work presents BLS as an interesting platform for highly immunogenic injectable, or even oral, subunit vaccines. Lyophilization of transplastomic leaves expressing stable antigenic fusions to BLS would further reduce costs and simplify downstream processing, purification and storage, allowing for more practical vaccines. PMID:26779198

  1. Expression of the multimeric and highly immunogenic Brucella spp. lumazine synthase fused to bovine rotavirus VP8d as a scaffold for antigen production in tobacco chloroplasts

    Directory of Open Access Journals (Sweden)

    Edgardo Federico Alfano

    2015-12-01

    Full Text Available Lumazine synthase from Brucella spp. (BLS is a highly immunogenic decameric protein which can accommodate foreign polypeptides or protein domains fused to its N-termini, markedly increasing their immunogenicity.The inner core domain (VP8d of VP8 spike protein from bovine rotavirus (BRV is responsible for viral adhesion to sialic acid residues and infection. It also displays neutralizing epitopes, making it a good candidate for vaccination.In this work, the BLS scaffold was assessed for the first time in plants for recombinant vaccine development by N-terminally fusing BLS to VP8d and expressing the resulting fusion (BLSVP8d in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern, northern and western blot. BLSVP8d was highly expressed, representing 40% of total soluble protein (TSP (4.85 mg/g fresh tissue. BLSVP8d remained soluble and stable during all stages of plant development and even in lyophilized leaves stored at room temperature. Soluble protein extracts from fresh and lyophilized leaves were able to induce specific neutralizing IgY antibodies in a laying hen model. This work presents BLS as an interesting platform for highly immunogenic injectable, or even oral, subunit vaccines. Lyophilization of transplastomic leaves expressing stable antigenic fusions to BLS would further reduce costs and simplify downstream processing, purification and storage, allowing for more practical vaccines.

  2. Macromolecular Crystallization in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  3. 牛肌腱冻干脱细胞支架的生物力学特性%Biomechanical properties of a decellularized scaffold of lyophilized bovine tendon

    Institute of Scientific and Technical Information of China (English)

    钱闯; 陈雄生; 周盛源; 朱巍

    2015-01-01

    背景:目前的脱细胞方法在去除细胞的同时对细胞外基质存在一定的损伤,降低了脱细胞支架的生物力学性能.目的:分析冻干牛肌腱脱细胞支架的生物力学特性.方法:取新鲜小牛趾伸屈肌腱,去除小牛肌腱表面的滑膜、腱膜及软组织,双蒸水冲洗干净后低压冻干,通过物理方法制备肌腱纤维束60个,随机均分为两组,实验组于无菌操作下置入丝氨酸蛋白酶抑制剂,室温下持续24 h,无菌PBS冲洗后,再移入低浓度胰酶+乙醇混合溶液中,在不破坏细胞外基质的情况下去除细胞壁,室温下持续5 h,再将纤维束移入脱氧核糖核酸酶溶液中持续5 h,最后将已完成脱细胞步骤的支架使用PBS冲洗48 h,无菌室内室温下干燥;对照组不做处置.检测两组材料的弹性模量、耐久性及最大应力.结果与结论:两组耐久性相似,但实验组在相同位移处的应力小于对照组;两组弹性模量比较差异无显著性意义,但实验组最大应力低于对照组(P < 0.01).说明冻干脱细胞支架能够在一定程度上模仿牛肌腱的生物力学功能.%BACKGROUND:Current decelularized methods have the certain damage to the extracelular matrix and reduce the biomechanical properties of acelular scaffolds. OBJECTIVE:To explore the biomechanical properties of decelularized scaffold of lyophilized bovine tendon. METHODS:Sixty lyophilized fiber bundles from fresh flexion tendon of calf toes were randomly divided into two groups: control group and experimental group. In the experimental group, serine protease inhibitors were placed asepticaly for 24 hours at room temperature, then the samples were rinsed with PBS and transferred to the low concentration of trypsin+ethanol mixed solution to remove the cel wal without destruction of the extracelular matrix at room temperature for 5 hours; after that, the fiber bundles were cultured in DNA enzyme solution for 5 hours, finaly the acelular scaffold was

  4. Macromolecular crystallization in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Snell, Edward H [Biophysics Group, NASA Marshall Space Flight Center, Code XD42, Huntsville, AL 35812 (United States); Helliwell, John R [Department of Chemistry, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2005-04-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  5. Microgravity and Macromolecular Crystallography

    Science.gov (United States)

    Kundrot, Craig E.; Judge, Russell A.; Pusey, Marc L.; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Macromolecular crystal growth has been seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, simply operated and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity should be a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. Finally we outline the direction for optimizing the future use of orbiting platforms.

  6. Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine

    Science.gov (United States)

    Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.

    1992-05-01

    We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.

  7. Emergent Property in Macromolecular Motion

    Institute of Scientific and Technical Information of China (English)

    吴嘉麟

    2003-01-01

    In this paper, the model of inverse cascade fractal super-blocks along one direction (in the positive or negative) in the 3-dimensional space is developed to describe the self-similar motion in macromolecular system. Microscopically the cohesive and dispersed states of the motion blocks are co-existent states with vastly different probability of occurrence.Experimental results and theoretical analysis show that the microscopic cohesive state energy and dispersed state energy of each motion block are respectively equal to the macroscopic glassy state energy kT8 and molten state energy kTm of the system. This singularity unveils topologically the nonintegrability, mathematically the anholonomy, and macroscopically the emergent property. This singularity also reveals that the glass, viscoelastic and melt states are three distinct emergent properties of macromolecular motion from a macroscopic viewpoint. The fractal concept of excluded volume is introduced to depict the random motion at various scales in the system. The Hausdorff dimensions of the excluded volune and the motion blocks are both found equal to 3/2.

  8. Data Mining of Macromolecular Structures.

    Science.gov (United States)

    van Beusekom, Bart; Perrakis, Anastassis; Joosten, Robbie P

    2016-01-01

    The use of macromolecular structures is widespread for a variety of applications, from teaching protein structure principles all the way to ligand optimization in drug development. Applying data mining techniques on these experimentally determined structures requires a highly uniform, standardized structural data source. The Protein Data Bank (PDB) has evolved over the years toward becoming the standard resource for macromolecular structures. However, the process selecting the data most suitable for specific applications is still very much based on personal preferences and understanding of the experimental techniques used to obtain these models. In this chapter, we will first explain the challenges with data standardization, annotation, and uniformity in the PDB entries determined by X-ray crystallography. We then discuss the specific effect that crystallographic data quality and model optimization methods have on structural models and how validation tools can be used to make informed choices. We also discuss specific advantages of using the PDB_REDO databank as a resource for structural data. Finally, we will provide guidelines on how to select the most suitable protein structure models for detailed analysis and how to select a set of structure models suitable for data mining.

  9. Macromolecular mimicry of nucleic acid and protein

    DEFF Research Database (Denmark)

    Nautrup Pedersen, Gitte; Nyborg, Jens; Clark, Brian F

    1999-01-01

    of the concept of macromolecular mimicry. Macromolecular mimicry has further been proposed among initiation and release factors, thereby adding a new element to the description of protein synthesis in bacteria. Such mimicry has also been observed in other biological processes such as autoimmunity, DNA repair......, and gene regulation, at both transcriptional and translational levels. Udgivelsesdato: 1999-Jul...

  10. Liver-targeting macromolecular MRI contrast agents

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Macromolecular ligands with liver-targeting group (pyridoxamine, PM) PHEA-DTPA-PM and PAEA-DTPA-PM were prepared by the incorporation of different amount of diethylenetriaminepentaacetic acid monopyridoxamine group (DTPA-PM) into poly-a, b-[N-(2-hydroxyethyl)-L- aspartamide] (PHEA) and poly-a, b-[N-(2-aminoethyl)-L-aspartamide] (PAEA). The macromolecular ligands thus obtained were further complexed with gadolinium chloride to give macromolecular MRI contrast agents with different Gd(Ⅲ) contents. These macromolecular ligands and their gadolinium complexes were characterized by 1H NMR, IR, UV and elementary analysis. Relaxivity studies showed that these polyaspartamide gadolinium complexes possess higher relaxation effectiveness than that of the clinically used Gd-DTPA. Magnetic resonance imaging of the liver in rats and experimental data of biodistribution in mice indicate that these macromolecular MRI contrast agents containing pyridoxamine exhibit liver-targeting property.

  11. Macromolecular crowding for tailoring tissue-derived fibrillated matrices.

    Science.gov (United States)

    Magno, Valentina; Friedrichs, Jens; Weber, Heather M; Prewitz, Marina C; Tsurkan, Mikhail V; Werner, Carsten

    2017-06-01

    Tissue-derived fibrillated matrices can be instrumental for the in vitro reconstitution of multiphasic extracellular microenvironments. However, despite of several advantages, the obtained scaffolds so far offer a rather narrow range of materials characteristics only. In this work, we demonstrate how macromolecular crowding (MMC) - the supplementation of matrix reconstitution media with synthetic or natural macromolecules in ways to create excluded volume effects (EVE) - can be employed for tailoring important structural and biophysical characteristics of kidney-derived fibrillated matrices. Porcine kidneys were decellularized, ground and the obtained extracellular matrix (ECM) preparations were reconstituted under varied MMC conditions. We show that MMC strongly influences the fibrillogenesis kinetics and impacts the architecture and the elastic modulus of the reconstituted matrices, with diameters and relative alignment of fibrils increasing at elevated concentrations of the crowding agent Ficoll400, a nonionic synthetic polymer of sucrose. Furthermore, we demonstrate how MMC modulates the distribution of key ECM molecules within the reconstituted matrix scaffolds. As a proof of concept, we compared different variants of kidney-derived fibrillated matrices in cell culture experiments referring to specific requirements of kidney tissue engineering approaches. The results revealed that MMC-tailored matrices support the morphogenesis of human umbilical vein endothelial cells (HUVECs) into capillary networks and of murine kidney stem cells (KSCs) into highly branched aggregates. The established methodology is concluded to provide generally applicable new options for tailoring tissue-specific multiphasic matrices in vitro. Tissue-derived fibrillated matrices can be instrumental for the in vitro reconstitution of multiphasic extracellular microenvironments. However, despite of several advantages, the obtained scaffolds so far offer a rather narrow range of materials

  12. Analysis of Tagish Lake macromolecular organic material

    OpenAIRE

    Gilmour, I; Pearson, V. K.; Sephton, M.A.

    2001-01-01

    Macromolecular material is, by far, the major organic component of meteorites. Flash pyrolysis GCMS has been used to investigate this organic component in Tagish Lake. It is more condensed, less susbtituted than Murchson.

  13. Automated data collection for macromolecular crystallography.

    Science.gov (United States)

    Winter, Graeme; McAuley, Katherine E

    2011-09-01

    An overview, together with some practical advice, is presented of the current status of the automation of macromolecular crystallography (MX) data collection, with a focus on MX beamlines at Diamond Light Source, UK.

  14. Macromolecular crowding: Macromolecules friend or foe.

    Science.gov (United States)

    Mittal, Shruti; Chowhan, Rimpy Kaur; Singh, Laishram Rajendrakumar

    2015-09-01

    Cellular interior is known to be densely crowded due to the presence of soluble and insoluble macromolecules, which altogether occupy ~40% of the total cellular volume. This results in altered biological properties of macromolecules. Macromolecular crowding is observed to have both positive and negative effects on protein folding, structure, stability and function. Significant data has been accumulated so far on both the aspects. However, most of the review articles so far have focused on the positive aspect of macromolecular crowding and not much attention has been paid on the deleterious aspect of crowding on macromolecules. In order to have a complete knowledge of the effect of macromolecular crowding on proteins and enzymes, it is important to look into both the aspects of crowding to determine its precise role under physiological conditions. To fill the gap in the understanding of the effect of macromolecular crowding on proteins and enzymes, this review article focuses on the deleterious influence of crowding on macromolecules. Macromolecular crowding is not always good but also has several deleterious effects on various macromolecular properties. Taken together, the properties of biological macromolecules in vivo appears to be finely regulated by the nature and level of the intracellular crowdedness in order to perform their biological functions appropriately. The information provided here gives an understanding of the role played by the nature and level of cellular crowdedness in intensifying and/or alleviating the burden of various proteopathies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Energy transfer in macromolecular arrays

    Science.gov (United States)

    Andrews, David L.; Jenkins, Robert D.

    2003-11-01

    Macromolecular systems comprised of many light-sensitive centres (the photosynthetic unit, dendrimers, and other highly symmetric multichromophore arrays) are important structures offering challenges to theoreticians and synthetic chemists alike. Here we outline novel photophysical interactions predicted and observed in such arrays. Using the tools of molecular quantum electrodynamics (QED) we present quantum amplitudes for a variety of higher-order resonance energy transfer (RET) schemes associated with well-known nonlinear optical effects such as two- and three-photon absorption. The initial analysis is extended to account for situations where the participant donor species are identical and exist in a highly symmetric environment, leading to the possible formation of excitons. It emerges from the QED theory that such excitons are closely associated with the higher-order RET processes. General results are interpreted by analyzing particular molecular architectures which offer interesting features such as rate enhancement or limitation and exciton pathway quenching. Applications in the areas of photosynthesis, molecular logic gates and low-intensity fluorescence energy transfer are predicted.

  16. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... implies that genes do not control the life of organisms, they merely scaffold it. The nature-nurture dynamics is thus far more complex and open than is often claimed. Contrary to physically based interactions, semiotic interactions do not depend on any direct causal connection between the sign vehicle...... semiotic scaffolding is not, of course, exclusive for phylogenetic and ontogenetic development, it is also an important dynamical element in cultural evolution....

  17. Effects of macromolecular crowding on genetic networks.

    Science.gov (United States)

    Morelli, Marco J; Allen, Rosalind J; Wolde, Pieter Rein ten

    2011-12-21

    The intracellular environment is crowded with proteins, DNA, and other macromolecules. Under physiological conditions, macromolecular crowding can alter both molecular diffusion and the equilibria of bimolecular reactions and therefore is likely to have a significant effect on the function of biochemical networks. We propose a simple way to model the effects of macromolecular crowding on biochemical networks via an appropriate scaling of bimolecular association and dissociation rates. We use this approach, in combination with kinetic Monte Carlo simulations, to analyze the effects of crowding on a constitutively expressed gene, a repressed gene, and a model for the bacteriophage λ genetic switch, in the presence and absence of nonspecific binding of transcription factors to genomic DNA. Our results show that the effects of crowding are mainly caused by the shift of association-dissociation equilibria rather than the slowing down of protein diffusion, and that macromolecular crowding can have relevant and counterintuitive effects on biochemical network performance.

  18. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  19. Macromolecular mimicry of nucleic acid and protein

    DEFF Research Database (Denmark)

    Nautrup Pedersen, Gitte; Nyborg, Jens; Clark, Brian F

    1999-01-01

    of the concept of macromolecular mimicry. Macromolecular mimicry has further been proposed among initiation and release factors, thereby adding a new element to the description of protein synthesis in bacteria. Such mimicry has also been observed in other biological processes such as autoimmunity, DNA repair......Although proteins and nucleic acids consist of different chemical components, proteins can mimic structures and possibly also functions of nucleic acids. Recently, structural mimicry was observed between two elongation factors in bacterial protein biosynthesis leading to the introduction...

  20. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    Science.gov (United States)

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  1. Using PEG as Progen to Preparate Chitosan Scaffold for Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Qin-hua; Chen Jian-su

    2006-01-01

    Tissue engineering basically made up growing the relevant cell in vitro and extracellular matrix. A major goal of tissue engineering is to preparate porous three dimension scaffold for cell proliferate, migrate, differention and to form the structure of desirable tissue and organ. In this study, the effects of various content and macromolecular weight of PEG to chitosan were investigated and evaluated. The pore morphology of chitosan was controlled by changing the concentration and macromolecular weight of PEG.Chitosan porous scaffold has interconecting porosity. The pore morphology can be controlled with varying PEG concentration and macromolecular weight. The pore size is between 10 ~ 50 um, the degree of swelling in water is 85.70%.

  2. PREPARATION OF BIOACTIVE NANOSTRUCTURE SCAFFOLD WITH IMPROVED COMPRESSIVE STRENGTH

    Directory of Open Access Journals (Sweden)

    R. EMADI

    2011-03-01

    Full Text Available Highly porous scaffolds with open structure are today the best candidates for bone substitution to ensure bone oxygenation and angiogenesis. In this study, we developed a new route to enhance the compressive strength of porous hydroxyapatite scaffold made of natural bone. Briefly, the spongy bone of an adult bovine was extracted, annealed, and coated by a nanostructure bioactive glass layer to be subsequently sintered at different temperatures. The apatite formation ability on the surfaces of the coated scaffolds was investigated by standard procedures. Our results showed that the scaffold and coating microstructure consisted of the grains smaller than 100 nm. These nanostructures improved the compressive strength and bioactivity of highly porous scaffold. The results showed that with increasing the sintering temperature, the compressive strength of scaffolds increased while their in vitro bioactivity decreased.

  3. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... is eventually attained when the embryo acquires the capacity to impose a number of developmental constraints on its constituting parts in a top-down direction. The acquisition of this capacity allows a semiotic threshold to emerge between the living cellular world and the underlying nonliving molecular world...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  4. Statistics of Multiscale Fluctuations in Macromolecular Systems

    CERN Document Server

    Yukalov, V I

    2012-01-01

    An approach is suggested for treating multiscale fluctuations in macromolecular systems. The emphasis is on the statistical properties of such fluctuations. The approach is illustrated by a macromolecular system with mesoscopic fluctuations between the states of atomic orbitals. Strong-orbital and weak-orbital couplings fluctuationally arise, being multiscale in space and time. Statistical properties of the system are obtained by averaging over the multiscale fluctuations. The existence of such multiscale fluctuations causes phase transitions between strong-coupling and weak-coupling states. These transitions are connected with structure and size transformations of macromolecules. An approach for treating density and size multiscale fluctuations by means of classical statistical mechanics is also advanced.

  5. Growth and dissolution of macromolecular Markov chains

    CERN Document Server

    Gaspard, Pierre

    2016-01-01

    The kinetics and thermodynamics of free living copolymerization are studied for processes with rates depending on k monomeric units of the macromolecular chain behind the unit that is attached or detached. In this case, the sequence of monomeric units in the growing copolymer is a kth-order Markov chain. In the regime of steady growth, the statistical properties of the sequence are determined analytically in terms of the attachment and detachment rates. In this way, the mean growth velocity as well as the thermodynamic entropy production and the sequence disorder can be calculated systematically. These different properties are also investigated in the regime of depolymerization where the macromolecular chain is dissolved by the surrounding solution. In this regime, the entropy production is shown to satisfy Landauer's principle.

  6. Growth and Dissolution of Macromolecular Markov Chains

    Science.gov (United States)

    Gaspard, Pierre

    2016-07-01

    The kinetics and thermodynamics of free living copolymerization are studied for processes with rates depending on k monomeric units of the macromolecular chain behind the unit that is attached or detached. In this case, the sequence of monomeric units in the growing copolymer is a kth-order Markov chain. In the regime of steady growth, the statistical properties of the sequence are determined analytically in terms of the attachment and detachment rates. In this way, the mean growth velocity as well as the thermodynamic entropy production and the sequence disorder can be calculated systematically. These different properties are also investigated in the regime of depolymerization where the macromolecular chain is dissolved by the surrounding solution. In this regime, the entropy production is shown to satisfy Landauer's principle.

  7. Dextran: A promising macromolecular drug carrier

    Directory of Open Access Journals (Sweden)

    Dhaneshwar Suneela

    2006-01-01

    Full Text Available Over the past three decades intensive efforts have been made to design novel systems able to deliver the drug more effectively to the target site. The ongoing intense search for novel and innovative drug delivery systems is predominantly a consequence of the well-established fact that the conventional dosage forms are not sufficiently effective in conveying the drug compound to its site of action and once in the target area, in releasing the active agent over a desired period of time. The potential use of macromolecular prodrugs as a means of achieving targeted drug delivery has attracted considerable interest in recent years. Macromolecules such as antibodies, lipoproteins, lectins, proteins, polypeptides, polysaccharides, natural as well as synthetic polymers offer potential applicabilities as high molecular weight carriers for various therapeutically active compounds. Dextrans serve as one of the most promising macromolecular carrier candidates for a wide variety of therapeutic agents due to their excellent physico-chemical properties and physiological acceptance. The present contribution attempts to review various features of the dextran carrier like its source, structural and physico-chemical characteristics, pharmacokinetic fate and its applications as macromolecular carrier with special emphasis on dextran prodrugs.

  8. [Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering].

    Science.gov (United States)

    Li, Ran; Wang, Hong; Leng, Chongyan; Wang, Kuan; Xie, Ying

    2016-05-01

    Natural polymeric materials and their derivatives are organic macromolecular compounds which exist in plants, animals, and micro-organisms. They have been widely used in the preparation of scaffolds for skin tissue engineering recently because of their good histocompatibility and degradability, and low immunogenicity. With the improvement of the preparation technics, composite materials are more commonly used to make scaffolds for dermal tissue engineering. This article summarizes the classification and research status of the commonly used natural polymer materials, their derivatives, and composite scaffold materials, as well as makes a prospect of the research trends of dermal scaffold in the future.

  9. Smoothing techniques for macromolecular global optimization

    Energy Technology Data Exchange (ETDEWEB)

    More, J.J.; Wu, Zhijun

    1995-09-01

    We study global optimization problems that arise in macromolecular modeling, and the solution of these problems via continuation and smoothing. Our results unify and extend the theory associated with the use of the Gaussian transform for smoothing. We show that the, Gaussian transform can be viewed as a special case of a generalized transform and that these generalized transforms share many of the properties of the Gaussian transform. We also show that the smoothing behavior of the generalized transform can be studied in terms of the Fourier transform and that these results indicate that the Gaussian transform has superior smoothing properties.

  10. Celebrating macromolecular crystallography: A personal perspective

    Directory of Open Access Journals (Sweden)

    Abad-Zapatero, Celerino

    2015-04-01

    Full Text Available The twentieth century has seen an enormous advance in the knowledge of the atomic structures that surround us. The discovery of the first crystal structures of simple inorganic salts by the Braggs in 1914, using the diffraction of X-rays by crystals, provided the critical elements to unveil the atomic structure of matter. Subsequent developments in the field leading to macromolecular crystallography are presented with a personal perspective, related to the cultural milieu of Spain in the late 1950’s. The journey of discovery of the author, as he developed professionally, is interwoven with the expansion of macromolecular crystallography from the first proteins (myoglobin, hemoglobin to the ‘coming of age’ of the field in 1971 and the discoveries that followed, culminating in the determination of the structure of the ribosomes at the turn of the century. A perspective is presented exploring the future of the field and also a reflection about the future generations of Spanish scientists.El siglo XX ha sido testigo del increíble avance que ha experimentado el conocimiento de la estructura atómica de la materia que nos rodea. El descubrimiento de las primeras estructuras atómicas de sales inorgánicas por los Bragg en 1914, empleando difracción de rayos X con cristales, proporcionó los elementos clave para alcanzar tal conocimiento. Posteriores desarrollos en este campo, que condujeron a la cristalografía macromolecular, se presentan aquí desde una perspectiva personal, relacionada con el contexto cultural de la España de la década de los 50. La experiencia del descubrimiento científico, durante mi desarrollo profesional, se integra en el desarrollo de la cristalografía macromolecular, desde las primeras proteínas (míoglobina y hemoglobina, hasta su madurez en 1971 que, con los posteriores descubrimientos, culmina con la determinación del la estructura del ribosoma. Asimismo, se explora el futuro de esta disciplina y se

  11. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  12. Characterization of a Deswapped Triple Mutant Bovine Odorant Binding Protein

    Directory of Open Access Journals (Sweden)

    Roberto Favilla

    2011-04-01

    Full Text Available The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.

  13. Multiscale macromolecular simulation: role of evolving ensembles.

    Science.gov (United States)

    Singharoy, A; Joshi, H; Ortoleva, P J

    2012-10-22

    Multiscale analysis provides an algorithm for the efficient simulation of macromolecular assemblies. This algorithm involves the coevolution of a quasiequilibrium probability density of atomic configurations and the Langevin dynamics of spatial coarse-grained variables denoted order parameters (OPs) characterizing nanoscale system features. In practice, implementation of the probability density involves the generation of constant OP ensembles of atomic configurations. Such ensembles are used to construct thermal forces and diffusion factors that mediate the stochastic OP dynamics. Generation of all-atom ensembles at every Langevin time step is computationally expensive. Here, multiscale computation for macromolecular systems is made more efficient by a method that self-consistently folds in ensembles of all-atom configurations constructed in an earlier step, history, of the Langevin evolution. This procedure accounts for the temporal evolution of these ensembles, accurately providing thermal forces and diffusions. It is shown that efficiency and accuracy of the OP-based simulations is increased via the integration of this historical information. Accuracy improves with the square root of the number of historical timesteps included in the calculation. As a result, CPU usage can be decreased by a factor of 3-8 without loss of accuracy. The algorithm is implemented into our existing force-field based multiscale simulation platform and demonstrated via the structural dynamics of viral capsomers.

  14. Macromolecular recognition in the Protein Data Bank

    Energy Technology Data Exchange (ETDEWEB)

    Janin, Joël, E-mail: joel.janin@ibbmc.u-psud.fr [Laboratoire d’Enzymologie et de Biochimie Structurales, UPR9063, CNRS, 91198 Gif-sur-Yvette (France); Institut de Biochimie et Biologie Moléculaire et Cellulaire, UMR8619, Bâtiment 430, Université Paris-Sud, 91405 Orsay (France); Rodier, Francis [Laboratoire d’Enzymologie et de Biochimie Structurales, UPR9063, CNRS, 91198 Gif-sur-Yvette (France); Chakrabarti, Pinak [Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054 (India); Bahadur, Ranjit P. [Institut de Biochimie et Biologie Moléculaire et Cellulaire, UMR8619, Bâtiment 430, Université Paris-Sud, 91405 Orsay (France); Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Calcutta 700 054 (India); Laboratoire d’Enzymologie et de Biochimie Structurales, UPR9063, CNRS, 91198 Gif-sur-Yvette (France)

    2007-01-01

    X-ray structures in the PDB illustrate both the specific recognition of two polypeptide chains in protein–protein complexes and dimeric proteins and their nonspecific interaction at crystal contacts. Crystal structures deposited in the Protein Data Bank illustrate the diversity of biological macromolecular recognition: transient interactions in protein–protein and protein–DNA complexes and permanent assemblies in homodimeric proteins. The geometric and physical chemical properties of the macromolecular interfaces that may govern the stability and specificity of recognition are explored in complexes and homodimers compared with crystal-packing interactions. It is found that crystal-packing interfaces are usually much smaller; they bury fewer atoms and are less tightly packed than in specific assemblies. Standard-size interfaces burying 1200–2000 Å{sup 2} of protein surface occur in protease–inhibitor and antigen–antibody complexes that assemble with little or no conformation changes. Short-lived electron-transfer complexes have small interfaces; the larger size of the interfaces observed in complexes involved in signal transduction and homodimers correlates with the presence of conformation changes, often implicated in biological function. Results of the CAPRI (critical assessment of predicted interactions) blind prediction experiment show that docking algorithms efficiently and accurately predict the mode of assembly of proteins that do not change conformation when they associate. They perform less well in the presence of large conformation changes and the experiment stimulates the development of novel procedures that can handle such changes.

  15. Rotation-Induced Macromolecular Spooling of DNA

    Directory of Open Access Journals (Sweden)

    Tyler N. Shendruk

    2017-07-01

    Full Text Available Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.

  16. Rotation-Induced Macromolecular Spooling of DNA

    Science.gov (United States)

    Shendruk, Tyler N.; Sean, David; Berard, Daniel J.; Wolf, Julian; Dragoman, Justin; Battat, Sophie; Slater, Gary W.; Leslie, Sabrina R.

    2017-07-01

    Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.

  17. The role of macromolecular stability in desiccation tolerance

    NARCIS (Netherlands)

    Wolkers, W.F.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular st

  18. The role of macromolecular stability in desiccation tolerance.

    NARCIS (Netherlands)

    Wolkers, W.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular structures

  19. Biologically inspired growth of hydroxyapatite crystals on bio-organics-defined scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunrong, E-mail: milkhoney3@163.com [Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108 (China); Li, Yuli; Nan, Kaihui [Eye Hospital, Wenzhou Medical College, Wenzhou 325027 (China)

    2013-03-15

    Graphical abstract: Petal-like crystals were observed to form on the surface of the BG/COL/ChS scaffolds. Highlights: ► Porous scaffolds were prepared using bioglass, collagen and chondroitin sulfate. ► Highly oriented HA crystals were grown on scaffolds using simulated body fluids ► The microstructure and orientation of HA were explained by molecular configuration. - Abstract: Several bio-organics-defined composite scaffolds were prepared using 58s-bioglass (BG), collagen (Col) and chondroitin sulfate (ChS). These scaffolds possess highly porous structure. X-ray diffraction of these scaffolds strongly indicated that hydroxyapatite (HA) crystals formed on their surfaces in simulated body fluids within 3 d, and similar formation process of crystals could be obtained on BG/Col and BG/Col/ChS scaffolds. The morphology and structure of the crystals were further examined by scanning electron microscopy. The results obtained indicate that an apatite with petal-like structure similar to that found on BG/Col scaffolds can be produced on BG/Col/ChS scaffolds through biomimetic synthesis, while that on BG/ChS scaffolds took place differently. The differences could be explained by self-assembly processes and the different macromolecular configurations of the Col and ChS fibrils which self-assemble spontaneously into their fibers. On the other hand, the bio-organics-defined composites have good cell biocompability. The results may be applicable to develop tailored biomaterials for peculiar bone substitute.

  20. Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers.

    Science.gov (United States)

    Nair, Ashwin; Thevenot, Paul; Dey, Jagannath; Shen, Jinhui; Sun, Man-Wu; Yang, Jian; Tang, Liping

    2010-02-01

    Polymeric tissue engineering scaffolds prepared by conventional techniques like salt leaching and phase separation are greatly limited by their poor biomolecule-delivery abilities. Conventional methods of incorporation of various growth factors, proteins, and/or peptides on or in scaffold materials via different crosslinking and conjugation techniques are often tedious and may affect scaffold's physical, chemical, and mechanical properties. To overcome such deficiencies, a novel two-step porous scaffold fabrication procedure has been created in which bovine serum albumin microbubbles (henceforth MB) were used as porogen and growth factor carriers. Polymer solution mixed with MB was phase separated and then lyophilized to create porous scaffold. MB scaffold triggered substantially lesser inflammatory responses than salt-leached and conventional phase-separated scaffolds in vivo. Most importantly, the same technique was used to produce insulin-like growth factor-1 (IGF-1)-eluting porous scaffolds, simply by incorporating IGF-1-loaded MB (MB-IGF-1) with polymer solution before phase separation. In vitro such MB-IGF-1 scaffolds were able to promote cell growth to a much greater extent than scaffold soaked in IGF-1, confirming the bioactivity of the released IGF-1. Further, such MB-IGF-1 scaffolds elicited IGF-1-specific collagen production in the surrounding tissue in vivo. This novel growth factor-eluting scaffold fabrication procedure can be used to deliver a range of single or combination of bioactive biomolecules to substantially promote cell growth and function in degradable scaffold.

  1. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  2. Functional Sub-states by High-pressure Macromolecular Crystallography.

    Science.gov (United States)

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  3. Sequential recovery of macromolecular components of the nucleolus.

    Science.gov (United States)

    Bai, Baoyan; Laiho, Marikki

    2015-01-01

    The nucleolus is involved in a number of cellular processes of importance to cell physiology and pathology, including cell stress responses and malignancies. Studies of macromolecular composition of the nucleolus depend critically on the efficient extraction and accurate quantification of all macromolecular components (e.g., DNA, RNA, and protein). We have developed a TRIzol-based method that efficiently and simultaneously isolates these three macromolecular constituents from the same sample of purified nucleoli. The recovered and solubilized protein can be accurately quantified by the bicinchoninic acid assay and assessed by polyacrylamide gel electrophoresis or by mass spectrometry. We have successfully applied this approach to extract and quantify the responses of all three macromolecular components in nucleoli after drug treatments of HeLa cells, and conducted RNA-Seq analysis of the nucleolar RNA.

  4. Scaffold-free approach produces neocartilage tissue of similar quality as the use of HyStem™ and Hydromatrix™ scaffolds.

    Science.gov (United States)

    Ylärinne, Janne H; Qu, Chengjuan; Lammi, Mikko J

    2017-04-01

    Numerous biomaterials are being considered for cartilage tissue engineering, while scaffold-free systems have also been introduced. Thus, it is important to know do the scaffolds improve the formation of manufactured neocartilages. This study compares scaffold-free cultures to two scaffold-containing ones. Six million bovine primary chondrocytes were embedded in HyStem™ or HydroMatrix™ scaffolds, or suspended in scaffold-free chondrocyte culture medium, and then loaded into agarose gel supported culture well pockets. Neocartilages were grown in the presence of hypertonic high glucose DMEM medium for up to 6 weeks. By the end of culture periods, the formed tissues were analyzed by histological staining for proteoglycans (PGs) and type II collagen, gene expression measurements of aggrecan, Sox9, procollagen α1(II), and procollagen α2(I) were performed using quantitative RT-PCR, and analyses of PG contents and structure were conducted by spectrophotometric and agarose gel electrophoretic methods. Histological stainings showed that the PGs and type II collagen were abundantly present in both the scaffold-free and the scaffold-containing tissues. The PG content gradually increased following the culture period. However, the mRNA expression levels of the cartilage-specific genes of aggrecan, procollagen α1(II) and Sox9 gradually decreased following culture period, while procollagen α2(I) levels increased. After 6-week-cultivations, the PG concentrations in neocartilage tissues manufactured with HyStem™ or HydroMatrix™ scaffolds, and in scaffold-free agarose gel-supported cell cultures, were similar to native cartilage. No obvious benefits could be seen on the extracellular matrix assembly in HyStem™ or HydroMatrix™ scaffolds cultures.

  5. BLNK: molecular scaffolding through 'cis'-mediated organization of signaling proteins.

    Science.gov (United States)

    Chiu, Christopher W; Dalton, Mark; Ishiai, Masamichi; Kurosaki, Tomohiro; Chan, Andrew C

    2002-12-02

    Assembly of intracellular macromolecular complexes is thought to provide an important mechanism to coordinate the generation of second messengers upon receptor activation. We have previously identified a B cell linker protein, termed BLNK, which serves such a scaffolding function in B cells. We demonstrate here that phosphorylation of five tyrosine residues within human BLNK nucleates distinct signaling effectors following B cell antigen receptor activation. The phosphorylation of multiple tyrosine residues not only amplifies PLCgamma-mediated signaling but also supports 'cis'-mediated interaction between distinct signaling effectors within a large molecular complex. These data demonstrate the importance of coordinate phosphorylation of molecular scaffolds, and provide insights into how assembly of macromolecular complexes is required for normal receptor function.

  6. An upper limit for macromolecular crowding effects

    Directory of Open Access Journals (Sweden)

    Miklos Andrew C

    2011-05-01

    Full Text Available Abstract Background Solutions containing high macromolecule concentrations are predicted to affect a number of protein properties compared to those properties in dilute solution. In cells, these macromolecular crowders have a large range of sizes and can occupy 30% or more of the available volume. We chose to study the stability and ps-ns internal dynamics of a globular protein whose radius is ~2 nm when crowded by a synthetic microgel composed of poly(N-isopropylacrylamide-co-acrylic acid with particle radii of ~300 nm. Results Our studies revealed no change in protein rotational or ps-ns backbone dynamics and only mild (~0.5 kcal/mol at 37°C, pH 5.4 stabilization at a volume occupancy of 70%, which approaches the occupancy of closely packing spheres. The lack of change in rotational dynamics indicates the absence of strong crowder-protein interactions. Conclusions Our observations are explained by the large size discrepancy between the protein and crowders and by the internal structure of the microgels, which provide interstitial spaces and internal pores where the protein can exist in a dilute solution-like environment. In summary, microgels that interact weakly with proteins do not strongly influence protein dynamics or stability because these large microgels constitute an upper size limit on crowding effects.

  7. Macromolecular components of tomato fruit pectin.

    Science.gov (United States)

    Fishman, M L; Gross, K C; Gillespie, D T; Sondey, S M

    1989-10-01

    Chelate and alkaline-soluble pectin extracted from cell walls of pericarp tissue from mature green, turning, and red ripe (Lycopersicon esculentum Mill.) fruit (cv. Rutgers), were studied by high-performance size-exclusion chromatography. Computer-aided curve fitting of the chromatograms to a series of Gaussian-shaped components revealed that pectin from all fractions was composed of a linear combination of five macromolecular-sized species. The relative sizes of these macromolecules as obtained from their radii of gyration were 1:2:4:8:16. Dialysis against 0.05 M NaCl induced partial dissociation of the biopolymers. Apparently, the weight fraction of smaller sized species increased at the expense of larger ones. Also, the dissociation produced low-molecular-weight fragments. Behavior in the presence of 0.05 M NaCl led to the conclusion that cell wall pectin acted as if it were an aggregated mosaic, held together at least partially through noncovalent interactions.

  8. The solvent component of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Weichenberger, Christian X. [European Academy of Bozen/Bolzano (EURAC), Viale Druso 1, Bozen/Bolzano, I-39100 Südtirol/Alto Adige (Italy); Afonine, Pavel V. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Mail Stop 64R0121, Berkeley, CA 94720 (United States); Kantardjieff, Katherine [California State University, San Marcos, CA 92078 (United States); Rupp, Bernhard, E-mail: br@hofkristallamt.org [k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.

  9. In vitro analysis of PDZ-dependent CFTR macromolecular signaling complexes.

    Science.gov (United States)

    Wu, Yanning; Wang, Shuo; Li, Chunying

    2012-08-13

    has been shown to be of functional significance, suggesting that PDZ scaffold proteins may facilitate formation of CFTR macromolecular signaling complexes for specific/selective and efficient signaling in cells(16-18). Multiple biochemical assays have been developed to study CFTR-involving protein interactions, such as co-immunoprecipitation, pull-down assay, pair-wise binding assay, colorimetric pair-wise binding assay, and macromolecular complex assembly assay(16-19,28,29). Here we focus on the detailed procedures of assembling a PDZ motif-dependent CFTR-containing macromolecular complex in vitro, which is used extensively by our laboratory to study protein-protein or domain-domain interactions involving CFTR(16-19,28,29).

  10. 77 FR 29914 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-05-21

    ... RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products AGENCY... live bovines and products derived from bovines with regard to bovine spongiform encephalopathy. This... with regard to bovine spongiform encephalopathy. Comments on the proposed rule were required to......

  11. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Wang GJ

    2012-04-01

    Full Text Available Hsiao-Wei Wang1, Chung-Wei Cheng2, Ching-Wen Li3, Han-Wei Chang4, Ping-Han Wu2, Gou-Jen Wang 1Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan, 2Laser Application Technology Center, Industrial Technology Research Institute, Tainan County, Taiwan, 3Department of Mechanical Engineering, 4Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, People’s Republic of ChinaAbstract: One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA. This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 µm × 80 µm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks.Keywords: femtosecond laser ablation, pillared microvessel scaffold, polylactic-co-glycolic acid, bovine endothelial cells

  12. Immunoproteomic identification of bovine pericardium xenoantigens

    Science.gov (United States)

    Griffiths, Leigh G.; Choe, Leila H.; Reardon, Kenneth F.; Dow, Steven W.; Orton, E. Christopher

    2008-01-01

    Bovine pericardium is an important biomaterial with current application in glutaraldehyde-fixed bioprosthetic heart valves and possible future application as an unfixed biological scaffold for tissue engineering. The importance of both humoral and cell-mediated rejection responses toward fixed and unfixed xenogeneic tissues has become increasingly apparent. However, the full scope and specific identities of bovine pericardium proteins that can elicit an immune response remain largely unknown. In this study, an immunoproteomic approach was used to survey bovine pericardium proteins for their ability to elicit a humoral immune response in rabbits. A two-stage protein extraction protocol was used to separate bovine pericardium proteins into water- and lipid-soluble fractions. Two-dimensional gel electrophoresis was performed to separate the proteins from each fraction. Western blots were generated from two-dimensional gels of both bovine pericardium protein fractions. These blots were probed with serum from rabbits immunized with bovine pericardium and a secondary antibody was used to assess for IgG positivity. Western blots were compared to duplicate two-dimensional gels and proteins in matched spots were identified by tandem mass spectrometry. Thirty-one putative protein antigens were identified, eight of which are known to be antigenic from previous studies. All of the putative antigens demonstrated progressive staining intensity with increasing days of post-exposure serum. Identified antigenic proteins represented a variety of functional and structural protein types, and included both cellular and matrix proteins. The results of this study have implications for the use of bovine pericardium as a biomaterial in bioprostheses and tissue engineering applications, as well as xenotransplantation in general. PMID:18514307

  13. Macromolecular networks and intelligence in microorganisms

    Directory of Open Access Journals (Sweden)

    Hans V Westerhoff

    2014-07-01

    Full Text Available Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of Information and Communication Technology (ICT: they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call intelligence. Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as human and brain out of the defining features of intelligence, all forms of life – from microbes to humans – exhibit some or all characteristics consistent with intelligence. We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.

  14. Macromolecular networks and intelligence in microorganisms

    Science.gov (United States)

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  15. Macromolecular Topography Leaps into the Digital Age

    Science.gov (United States)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    A low-cost, real-time digital topography system is under development which will replace x-ray film and nuclear emulsion plates. The imaging system is based on an inexpensive surveillance camera that offers a 1000x1000 array of 8 im square pixels, anti-blooming circuitry, and very quick read out. Currently, the system directly converts x-rays to an image with no phosphor. The system is small and light and can be easily adapted to work with other crystallographic equipment. Preliminary images have been acquired of cubic insulin at the NSLS x26c beam line. NSLS x26c was configured for unfocused monochromatic radiation. Six reflections were collected with stills spaced from 0.002 to 0.001 degrees apart across the entire oscillation range that the reflections were in diffracting condition. All of the reflections were rotated to the vertical to reduce Lorentz and beam related effects. This particular CCD is designed for short exposure applications (much less than 1 sec) and so has a relatively high dark current leading to noisy raw images. The images are processed to remove background and other system noise with a multi-step approach including the use of wavelets, histogram, and mean window filtering. After processing, animations were constructed with the corresponding reflection profile to show the diffraction of the crystal volume vs. the oscillation angle as well as composite images showing the parts of the crystal with the strongest diffraction for each reflection. The final goal is to correlate features seen in reflection profiles captured with fine phi slicing to those seen in the topography images. With this development macromolecular topography finally comes into the digital age.

  16. External vibration enhances macromolecular crowding for construction of aligned three-dimensional collagen fibril scaffolds.

    Science.gov (United States)

    Hsu, Hsiao-Ting; Rau, Lih-Rou; Zeng, Yao-Nan; Kang, Yi-Lin; Tsai, Shiao-Wen; Wu, Min-Hsien

    2015-04-17

    There are many techniques for preparing two-dimensional aligned fibril matrices. However, the critical problem associated with these techniques is the destruction of the native structure (e.g., the α-helix) of the proteins. Moreover, most of these techniques cannot create a three-dimensional (3D), aligned reconstituted collagen fibril matrix in one step. In this study, we used a simple device composed of a pneumatic membrane that generates a tunable vibration frequency to apply physical stimulation to fabricate a 3D, aligned collagen fibril matrix with the characteristic D-period structure of collagen in one step. Using second harmonic images, we demonstrated that the aligned, reconstituted collagen fibrils preserve the native collagen D-period structure. The average angular deviation of fibril alignment was reduced to 25.01 ± 4.2° compared with the 39.7 ± 2.19° of alignment observed for the randomly distributed fibril matrix. In addition, the ultimate tensile strength of the aligned matrix when force was applied in the direction parallel to the fiber orientation was higher than that of the randomly oriented matrix. The aligned reconstituted collagen fibril matrix also enhanced the expression of smoothelin (a specific marker of contractile phenotype) of thoracic aortic smooth muscle cell (A7r5) relative to the randomly distributed collagen fibril matrix.

  17. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds.

    Science.gov (United States)

    Sanz-Pintos, Nerea; Pérez-Jiménez, Jara; Buschmann, Alejandro H; Vergara-Salinas, José Rodrigo; Pérez-Correa, José Ricardo; Saura-Calixto, Fulgencio

    2017-02-01

    Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants. © 2017 Institute of Food Technologists®.

  18. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  19. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    Science.gov (United States)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  20. Macromolecular crystallography beamline X25 at the NSLS.

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L; Dvorak, Joseph; Flaks, Leon; Lamarra, Steven; Myers, Stuart F; Orville, Allen M; Robinson, Howard H; Roessler, Christian G; Schneider, Dieter K; Shea-McCarthy, Grace; Skinner, John M; Skinner, Michael; Soares, Alexei S; Sweet, Robert M; Berman, Lonny E

    2014-05-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  1. The dynamics of scaffolding

    NARCIS (Netherlands)

    Van Geert, P. L. C.; Steenbeek, H.W.

    2005-01-01

    In this article we have reinterpreted a relatively standard definition of scaffolding in the context of dynamic systems theory. Our main point is that scaffolding cannot be understood outside the context of a dynamic approach of learning and (formal or informal) teaching. We provide a dynamic system

  2. Generating triangulated macromolecular surfaces by Euclidean Distance Transform.

    Directory of Open Access Journals (Sweden)

    Dong Xu

    Full Text Available Macromolecular surfaces are fundamental representations of their three-dimensional geometric shape. Accurate calculation of protein surfaces is of critical importance in the protein structural and functional studies including ligand-protein docking and virtual screening. In contrast to analytical or parametric representation of macromolecular surfaces, triangulated mesh surfaces have been proved to be easy to describe, visualize and manipulate by computer programs. Here, we develop a new algorithm of EDTSurf for generating three major macromolecular surfaces of van der Waals surface, solvent-accessible surface and molecular surface, using the technique of fast Euclidean Distance Transform (EDT. The triangulated surfaces are constructed directly from volumetric solids by a Vertex-Connected Marching Cube algorithm that forms triangles from grid points. Compared to the analytical result, the relative error of the surface calculations by EDTSurf is <2-4% depending on the grid resolution, which is 1.5-4 times lower than the methods in the literature; and yet, the algorithm is faster and costs less computer memory than the comparative methods. The improvements in both accuracy and speed of the macromolecular surface determination should make EDTSurf a useful tool for the detailed study of protein docking and structure predictions. Both source code and the executable program of EDTSurf are freely available at http://zhang.bioinformatics.ku.edu/EDTSurf.

  3. Two-center-multipole expansion method: application to macromolecular systems

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.;

    2007-01-01

    We propose a theoretical method for the calculation of the interaction energy between macromolecular systems at large distances. The method provides a linear scaling of the computing time with the system size and is considered as an alternative to the well-known fast multipole method. Its...

  4. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin.

    Science.gov (United States)

    Mathew, Thomas V; Kuriakose, Sunny

    2013-01-01

    Colloidal silver nanoparticles were synthesised using sol-gel method and these nanoparticles were stabilised by encapsulated into the scaffolds of bovine serum albumin. Silver nanoparticles and encapsulated products were characterised by FTIR, NMR, XRD, TG, SEM and TEM analyses. Silver nanoparticle encapsulated bovine serum albumin showed highly potent antibacterial activity towards the bacterial strains such as Staphylococcus aureus, Serratia marcescens, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae.

  5. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  6. Macromolecular crowding and the steady-state kinetics of malate dehydrogenase.

    Science.gov (United States)

    Poggi, Christopher G; Slade, Kristin M

    2015-01-20

    To understand how macromolecular crowding affects enzyme activity, we quantified the Michaelis-Menten kinetics of mitochondrial malate dehydrogenase (MDH) in the presence of hen egg white (HEW), lysozyme, bovine serum albumin (BSA), gum arabic, poly(vinylpyrrolidone) (PVP), and dextrans of various molecular weights. Although crowding tended to decrease Km and Vmax values, the magnitude depended on the crowding agent, reaction direction, and isozyme (mitochondrial porcine heart or thermophlic TaqMDH from Thermus flavus). Crowding slowed oxaloacetate reduction more significantly than malate oxidation, which may suggest that mitochondrial enzymes have evolved to function optimally under the crowded constraints in which they are immersed. Since direct comparisons of neutral to charged crowders are underrepresented in the literature, we performed these studies and found that neutral crowding agents lowered Vmax values more than charged crowders of similar size. The exception was hen egg white, a mixture of charged proteins that caused the largest observed decreases in both Km and Vmax. Finally, the data provide insight about the mechanism by corroborating MDH subunit dependence.

  7. Scaffolds in Tendon Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair.

  8. A scaffold-enhanced light-activated surgical adhesive technique: surface selection for enhanced tensile strength in wound repair

    Science.gov (United States)

    Soller, Eric C.; Hoffman, Grant T.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; McNally-Heintzelman, Karen M.

    2004-07-01

    An ex vivo study was conducted to determine the effect of the irregularity of the scaffold surface on the tensile strength of repairs formed using our Scaffold-Enhanced Biological Adhesive (SEBA). Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal submucosa, manufactured by Cook BioTech. The scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The tensile strength of repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung, using the smooth and irregular surfaces of the above scaffold-enhanced materials were measured and the time-to-failure was recorded. The tensile strength of repairs formed using the irregular surfaces of the scaffolds were consistently higher than those formed using the smooth surfaces of the scaffolds. The largest difference was observed on repairs formed on the aorta and small intestine, where the repairs were, on average, 50% stronger using the irregular versus the smooth scaffold surfaces. In addition, the time-to-failure of repairs formed using the irregular surfaces of the scaffolds were between 50% and 100% longer than that achieved using the smooth surfaces of the scaffolds. It has previously been shown that distributing or dispersing the adhesive forces over the increased surface area of the scaffold, either smooth or irregular, produces stronger repairs than albumin solder alone. The increase in the absolute strength and longevity of repairs seen in this new study when the irregular surfaces of the scaffolds are used is thought to be due to the distribution of forces between the many independent micro-adhesions provided by the irregular surfaces.

  9. Stochastic reaction–diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction–diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction–diffusion simulations is investigated. Reaction–diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35–53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  10. Controlled architecture for improved macromolecular memory within polymer networks.

    Science.gov (United States)

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms.

  11. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  12. Temperature-dependent macromolecular X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Weik, Martin, E-mail: martin.weik@ibs.fr; Colletier, Jacques-Philippe [CEA, IBS, Laboratoire de Biophysique Moléculaire, F-38054 Grenoble (France); CNRS, UMR5075, F-38027 Grenoble (France); Université Joseph Fourier, F-38000 Grenoble (France)

    2010-04-01

    The dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. X-ray crystallography provides structural details of biological macromolecules. Whereas routine data are collected close to 100 K in order to mitigate radiation damage, more exotic temperature-controlled experiments in a broader temperature range from 15 K to room temperature can provide both dynamical and structural insights. Here, the dynamical behaviour of crystalline macromolecules and their surrounding solvent as a function of cryo-temperature is reviewed. Experimental strategies of kinetic crystallography are discussed that have allowed the generation and trapping of macromolecular intermediate states by combining reaction initiation in the crystalline state with appropriate temperature profiles. A particular focus is on recruiting X-ray-induced changes for reaction initiation, thus unveiling useful aspects of radiation damage, which otherwise has to be minimized in macromolecular crystallography.

  13. Refinement of macromolecular structures against neutron data with SHELXL2013.

    Science.gov (United States)

    Gruene, Tim; Hahn, Hinrich W; Luebben, Anna V; Meilleur, Flora; Sheldrick, George M

    2014-02-01

    Some of the improvements in SHELX2013 make SHELXL convenient to use for refinement of macromolecular structures against neutron data without the support of X-ray data. The new NEUT instruction adjusts the behaviour of the SFAC instruction as well as the default bond lengths of the AFIX instructions. This work presents a protocol on how to use SHELXL for refinement of protein structures against neutron data. It includes restraints extending the Engh & Huber [Acta Cryst. (1991), A47, 392-400] restraints to H atoms and discusses several of the features of SHELXL that make the program particularly useful for the investigation of H atoms with neutron diffraction. SHELXL2013 is already adequate for the refinement of small molecules against neutron data, but there is still room for improvement, like the introduction of chain IDs for the refinement of macromolecular structures.

  14. The vibron dressing in α-helicoidal macromolecular chains

    Institute of Scientific and Technical Information of China (English)

    D.(C)evizovi(c); S.Galovi(c); A.Reshetnyak; Z.Ivi(c)

    2013-01-01

    We present a study of the physical properties of the vibrational excitation in α-helicoidal macromolecular chains,caused by the interaction with acoustical and optical phonon modes.The influence of the temperature and the basic system parameters on the vibron dressing have been analyzed by employing the simple mean-field approach based on the variational extension of the Lang-Firsov unitary transformation.The applied approach predicts a region in system parameter space where one has an abrupt transition from a partially dressed (light and mobile) to a fully dressed (immobile) vibron state.We found that the boundary of this region depends on system temperature and the type of bond among structural elements in the macromolecular chain.

  15. A macromolecular model for the endothelial surface layer

    Science.gov (United States)

    Harden, James; Danova-Okpetu, Darina; Grest, Gary

    2006-03-01

    The endothelial surface layer (ESL) is a micron-scale macromolecular lining of the luminal side of blood vessels composed of proteoglycans, glycoproteins, polysaccharides and associated plasma proteins all in dynamic equilibrium. It has numerous physiological roles including the regulation of blood flow and microvascular permeability, and active participation in mechanotransduction and stress regulation, coagulation, cell adhesion, and inflammatory response. The dynamic structure and the mechanical properties of the ESL are crucial for many of its physiological properties. We present a topological model for the ESL composed of three basic macromolecular elements: branched proteoglycans, linear polysaccharide chains, and small plasma proteins. The model was studied using non-equilibrium molecular dynamics simulations and compared with scaling theories for associating tethered polymers. We discuss the observed dynamical and mechanical properties of the ESL captured by this model, and the possible physical insight it provides into the physiological behavior of the ESL.

  16. Dynamic compressive properties of bovine knee layered tissue

    Science.gov (United States)

    Nishida, Masahiro; Hino, Yuki; Todo, Mitsugu

    2015-09-01

    In Japan, the most common articular disease is knee osteoarthritis. Among many treatment methodologies, tissue engineering and regenerative medicine have recently received a lot of attention. In this field, cells and scaffolds are important, both ex vivo and in vivo. From the viewpoint of effective treatment, in addition to histological features, the compatibility of mechanical properties is also important. In this study, the dynamic and static compressive properties of bovine articular cartilage-cancellous bone layered tissue were measured using a universal testing machine and a split Hopkinson pressure bar method. The compressive behaviors of bovine articular cartilage-cancellous bone layered tissue were examined. The effects of strain rate on the maximum stress and the slope of stress-strain curves of the bovine articular cartilage-cancellous bone layered tissue were discussed.

  17. A Strategy for the Development of Macromolecular Nonlinear Optical Materials

    Science.gov (United States)

    1990-01-01

    obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain

  18. Facilitating structure determination: workshop on robotics andautomation in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, Corie; Cork, C.W.; McDermott, G.; Earnest, T.N.

    2006-03-28

    As part of the annual Advanced Light Source (ALS) andStanford Synchrotron Radiation Laboratory (SSRL) Users' Meeting inOctober of this year, the macromolecular crystallography staff at bothsynchrotrons held a joint hands-on workshop to address automation issuesin crystal mounting and data collection at the beamline. This paperdescribes the ALS portion of the workshop, while the accompanying paperreviews the SSRL workshop.

  19. Single-particle cryo-electron microscopy of macromolecular assemblies

    OpenAIRE

    Cheng, Kimberley

    2009-01-01

    In this thesis, single-particle cryo-electron microscopy (cryo-EM) was used to study the structure of three macromolecular assemblies: the two hemocyanin isoforms from Rapana thomasiana, the Pyrococcus furiosus chaperonin, and the ribosome from Escherichia coli. Hemocyanins are large respiratory proteins in arthropods and molluscs. Most molluscan hemocyanins exist as two distinct isoforms composed of related polypeptides. In most species the two isoforms differ in terms of their oligomeric st...

  20. 77 FR 20319 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-04-04

    ...; ] DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Correction In proposed rule...

  1. 78 FR 73993 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2013-12-10

    ... Health Inspection Service 9 CFR Parts 92, 93, 94, 95, 96, and 98 RIN 0579-AC68 Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products Corrections In rule document 2013-28228 appearing...

  2. What Macromolecular Crowding Can Do to a Protein

    Science.gov (United States)

    Kuznetsova, Irina M.; Turoverov, Konstantin K.; Uversky, Vladimir N.

    2014-01-01

    The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area. PMID:25514413

  3. REFMAC5 for the refinement of macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Murshudov, Garib N., E-mail: garib@ysbl.york.ac.uk [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Skubák, Pavol [Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden (Netherlands); Lebedev, Andrey A. [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Pannu, Navraj S. [Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden (Netherlands); Steiner, Roberto A. [Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London (United Kingdom); Nicholls, Robert A. [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Winn, Martyn D. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Long, Fei; Vagin, Alexei A. [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom)

    2011-04-01

    The general principles behind the macromolecular crystal structure refinement program REFMAC5 are described. This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization. Reliable models at resolutions at least as low as 4 Å can be achieved thanks to low-resolution refinement tools such as secondary-structure restraints, restraints to known homologous structures, automatic global and local NCS restraints, ‘jelly-body’ restraints and the use of novel long-range restraints on atomic displacement parameters (ADPs) based on the Kullback–Leibler divergence. REFMAC5 additionally offers TLS parameterization and, when high-resolution data are available, fast refinement of anisotropic ADPs. Refinement in the presence of twinning is performed in a fully automated fashion. REFMAC5 is a flexible and highly optimized refinement package that is ideally suited for refinement across the entire resolution spectrum encountered in macromolecular crystallography.

  4. Macromolecular amplification of binding response in superaptamer hydrogels.

    Science.gov (United States)

    Bai, Wei; Gariano, Nicholas A; Spivak, David A

    2013-05-08

    It is becoming more important to detect ultralow concentrations of analytes for biomedical, environmental, and national security applications. Equally important is that new methods should be easy to use, inexpensive, portable, and if possible allow detection by the naked eye. By and large, detection of low concentrations of analytes cannot be achieved directly but requires signal amplification by catalysts, macromolecules, metal surfaces, or supramolecular aggregates. The rapidly progressing field of macromolecular signal amplification has been advanced using conjugated polymers, chirality in polymers, solvating polymers, and polymerization/depolymerization strategies. A new type of aptamer-based hydrogel with specific response to target proteins presented in this report demonstrates an additional category of macromolecular signal amplification. This superaptamer assembly provides the first example of using protein-specific aptamers to create volume-changing hydrogels with amplified response to the target protein. A remarkable aspect of these superaptamer hydrogels is that volume shrinking is visible to the naked eye down to femtomolar concentrations of protein. This extraordinary macromolecular amplification is attributed to a complex interplay between protein-aptamer supramolecular cross-links and the consequential reduction of excluded volume in the hydrogel. Specific recognition is even maintained in biological matrices such as urine and tears. Furthermore, the gels can be dried for long-term storage and regenerated for use without loss of activity. In practice, the ease of this biomarker detection method offers an alternative to traditional analytical techniques that require sophisticated instrumentation and highly trained personnel.

  5. PLGA Microspheres Incorporated Gelatin Scaffold: Microspheres Modulate Scaffold Properties

    OpenAIRE

    Indranil Banerjee; Debasish Mishra; Maiti, Tapas K.

    2009-01-01

    Freeze drying is one of the popular methods of fabrication for poly(lactide-co-glycolide) (PLGA) microspheres incorporated polymer scaffolds. However, the consequence of microspheres incorporation on physical and biological properties of scaffold has not been studied yet. In this study, attempt has been made to characterize the effect of PLGA microsphere incorporation on the physical properties of freeze-dried gelatin scaffold and its influence on cytocompatibility. Scaffolds loaded with va...

  6. Unlocking the bovine genome

    Directory of Open Access Journals (Sweden)

    Worley Kim C

    2009-04-01

    Full Text Available Abstract The draft genome sequence of cattle (Bos taurus has now been analyzed by the Bovine Genome Sequencing and Analysis Consortium and the Bovine HapMap Consortium, which together represent an extensive collaboration involving more than 300 scientists from 25 different countries.

  7. In Vitro Evaluation of Scaffolds for the Delivery of Mesenchymal Stem Cells to Wounds

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Wahl

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been shown to improve tissue regeneration in several preclinical and clinical trials. These cells have been used in combination with three-dimensional scaffolds as a promising approach in the field of regenerative medicine. We compare the behavior of human adipose-derived MSCs (AdMSCs on four different biomaterials that are awaiting or have already received FDA approval to determine a suitable regenerative scaffold for delivering these cells to dermal wounds and increasing healing potential. AdMSCs were isolated, characterized, and seeded onto scaffolds based on chitosan, fibrin, bovine collagen, and decellularized porcine dermis. In vitro results demonstrated that the scaffolds strongly influence key parameters, such as seeding efficiency, cellular distribution, attachment, survival, metabolic activity, and paracrine release. Chick chorioallantoic membrane assays revealed that the scaffold composition similarly influences the angiogenic potential of AdMSCs in vivo. The wound healing potential of scaffolds increases by means of a synergistic relationship between AdMSCs and biomaterial resulting in the release of proangiogenic and cytokine factors, which is currently lacking when a scaffold alone is utilized. Furthermore, the methods used herein can be utilized to test other scaffold materials to increase their wound healing potential with AdMSCs.

  8. Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering.

    Science.gov (United States)

    Nanda, Himansu Sekhar; Chen, Shangwu; Zhang, Qin; Kawazoe, Naoki; Chen, Guoping

    2014-01-01

    Controlled and local release of growth factors and nutrients from porous scaffolds is important for maintenance of cell survival, proliferation, and promotion of tissue regeneration. The purpose of the present research was to design a controlled release porous collagen-microbead hybrid scaffold with controlled pore structure capable of releasing insulin for application to cartilage tissue regeneration. Collagen-microbead hybrid scaffold was prepared by hybridization of insulin loaded PLGA microbeads with collagen using a freeze-drying technique. The pore structure of the hybrid scaffold was controlled by using preprepared ice particulates having a diameter range of 150-250 μ m. Hybrid scaffold had a controlled pore structure with pore size equivalent to ice particulates and good interconnection. The microbeads showed an even spatial distribution throughout the pore walls. In vitro insulin release profile from the hybrid scaffold exhibited a zero order release kinetics up to a period of 4 weeks without initial burst release. Culture of bovine articular chondrocytes in the hybrid scaffold demonstrated high bioactivity of the released insulin. The hybrid scaffold facilitated cell seeding and spatial cell distribution and promoted cell proliferation.

  9. Collagen Scaffolds with Controlled Insulin Release and Controlled Pore Structure for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2014-01-01

    Full Text Available Controlled and local release of growth factors and nutrients from porous scaffolds is important for maintenance of cell survival, proliferation, and promotion of tissue regeneration. The purpose of the present research was to design a controlled release porous collagen-microbead hybrid scaffold with controlled pore structure capable of releasing insulin for application to cartilage tissue regeneration. Collagen-microbead hybrid scaffold was prepared by hybridization of insulin loaded PLGA microbeads with collagen using a freeze-drying technique. The pore structure of the hybrid scaffold was controlled by using preprepared ice particulates having a diameter range of 150–250 μm. Hybrid scaffold had a controlled pore structure with pore size equivalent to ice particulates and good interconnection. The microbeads showed an even spatial distribution throughout the pore walls. In vitro insulin release profile from the hybrid scaffold exhibited a zero order release kinetics up to a period of 4 weeks without initial burst release. Culture of bovine articular chondrocytes in the hybrid scaffold demonstrated high bioactivity of the released insulin. The hybrid scaffold facilitated cell seeding and spatial cell distribution and promoted cell proliferation.

  10. Camel and bovine chymosin

    DEFF Research Database (Denmark)

    Langholm Jensen, Jesper; Mølgaard, Anne; Navarro Poulsen, Jens Christian;

    2013-01-01

    Bovine and camel chymosin are aspartic peptidases that are used industrially in cheese production. They cleave the Phe105-Met106 bond of the milk protein κ-casein, releasing its predominantly negatively charged C-terminus, which leads to the separation of the milk into curds and whey. Despite...... having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards bovine milk. The activities, structures, thermal stabilities and glycosylation patterns of bovine and camel chymosin obtained by fermentation in Aspergillus niger have been examined...... interactions arising from variation in the surface charges and the greater malleability both in domain movements and substrate binding contribute to the better milk-clotting activity of camel chymosin towards bovine milk....

  11. Semiotic scaffolding of multicellularity

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    semiotic scaffoldings had to be invented in order to prevent this. While a unicellular self may go on to live practically forever, the multicellular self most often must run through an individuation process ending in the death of the individual. Due to basic differences in cells of plants, fungi...... of fertilization and thereby the need for a whole new set of elaborate semiotic scaffoldings. Multicellularity also opened the door to the formation symbiotic relations where cells with different genomes might collaborate or at least coexist inside the same body. All in all multicellularity led to an enormous...... diversification both of morphology space and the space of sensomotoric elaborations. New means for scaffolding of this expansion and diversification of possible life forms into functional patterns called for a corresponding growth in the space of semiotic tools (chemical processes, heat, light, sound, volatile...

  12. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  13. [Alternative scaffold proteins].

    Science.gov (United States)

    Petrovskaia, L E; Shingarova, L N; Dolgikh, D A; Kirpichnikov, M P

    2011-01-01

    Review is devoted to the challenging direction in modem molecular biology and bioengineering - the properties of alternative scaffold proteins (ASP) and methods for obtaining ASP binding molecules. ASP molecules incorporate conservative protein core and hypervariable regions, providing for the binding function. Structural classification of ASP includes several types which differ also in their molecular targets and potential applications. Construction of artificial binding proteins on the ASP basis implies a combinatorial library design with subsequent selection of specific binders with the use of phage display or the modem cell-free systems. Alternative binding proteins on non-immunoglobulin scaffolds find broad applications in different fields ofbiotechnology and molecular medicine.

  14. Biocompatibility of various hydoxyapatite scaffolds evaluated by proliferation of rat’s bone marrow mesenchymal stem cells: an in vitro study

    Directory of Open Access Journals (Sweden)

    Achmad F. Kamal

    2013-12-01

    Full Text Available Background: Scaffold (biomaterial biocompatibility test should be performed in vitro prior to in vivo stem cell application in animal or clinical trial. These test consists of direct and indirect toxicity test (MTT assay [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide]. Those tests were used to identify cell morphological changes, cell-substrate adhesion impairment, and reduction in cell proliferation activity.Methods: The tested scaffolds were hydroxyapatite-calcium sulphate (HA-CaSO4 (scaffold I, nano-particular HA paste (scaffold II, synthetic HA granule (scaffold III, bovine HA granule (scaffold IV, and morsellized bovine xenograft (scaffold V. Direct contact toxicity test and MTT assay [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] were performed on those groups. In direct contact toxicity test, we put granules of various scaffolds within plates and incubated together with mesenchymal stem cells (MSCs. In MTT assay we included phenol 20 mg/mL and 100 mg/mL group as positive control. Morphology, cell adhesion impairment, and cell growth were monitored daily until day-7. Cells counting in the direct contact toxicity test was conducted on day-7.Results: There were no changes on 24 hours observation after direct contact. On day-7, an impairment of cell adhesion to plastic substrates, changes in cell morphology, and cell death were observed, especially in scaffold I, scaffold II, and scaffold V. In MTT assay, only scaffold I, phenol 20 mg/mL, and phenol 100 mg/mL showed more than 50% inhibition at 24-hour and 7-day-observation. Extracts from scaffold II, III, IV, and V did not affect the viability and proliferation of bone marrow MSCs (inhibition value < 50%. Scaffold II, III, IV and V were proven non-cytotoxic and have good biocompatibility in vitro,  no statistical significant differences were observed among the scaffold groups (p > 0.05.Conclusion: We understand which scaffold was nontoxic or the least toxic to

  15. Workshop on algorithms for macromolecular modeling. Final project report, June 1, 1994--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Leimkuhler, B.; Hermans, J.; Skeel, R.D.

    1995-07-01

    A workshop was held on algorithms and parallel implementations for macromolecular dynamics, protein folding, and structural refinement. This document contains abstracts and brief reports from that workshop.

  16. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown

  17. Bovine Herpesvirus 4 infections and bovine mastitis

    NARCIS (Netherlands)

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown aetiol

  18. Scaffolding Reading Comprehension Skills

    Science.gov (United States)

    Salem, Ashraf Atta Mohamed Safein

    2017-01-01

    The current study investigates whether English language teachers use scaffolding strategies for developing their students' reading comprehension skills or just for assessing their comprehension. It also tries to demonstrate whether teachers are aware of these strategies or they use them as a matter of habit. A questionnaire as well as structured…

  19. Protein Corona Influences Cell-Biomaterial Interactions in Nanostructured Tissue Engineering Scaffolds.

    Science.gov (United States)

    Serpooshan, Vahid; Mahmoudi, Morteza; Zhao, Mingming; Wei, Ke; Sivanesan, Senthilkumar; Motamedchaboki, Khatereh; Malkovskiy, Andrey V; Gladstone, Andrew B; Cohen, Jeffrey E; Yang, Phillip C; Rajadas, Jayakumar; Bernstein, Daniel; Woo, Y Joseph; Ruiz-Lozano, Pilar

    2015-07-22

    Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g. tissue engineered scaffolds) or biomedical devices (e.g. pacemakers). Once in contact with the physiological environment, nanostructured biomaterials undergo modifications as a result of endogenous proteins binding to their surface. The formation of this macromolecular coating complex, known as 'protein corona', onto the surface of nanoparticles and its effect on cell-particle interactions are currently under intense investigation. In striking contrast, protein corona constructs within nanostructured porous tissue engineering scaffolds remain poorly characterized. As organismal systems are highly dynamic, it is conceivable that the formation of distinct protein corona on implanted scaffolds might itself modulate cell-extracellular matrix interactions. Here, we report that corona complexes formed onto the fibrils of engineered collagen scaffolds display specific, distinct, and reproducible compositions that are a signature of the tissue microenvironment as well as being indicative of the subject's health condition. Protein corona formed on collagen matrices modulated cellular secretome in a context-specific manner ex-vivo, demonstrating their role in regulating scaffold-cellular interactions. Together, these findings underscore the importance of custom-designing personalized nanostructured biomaterials, according to the biological milieu and disease state. We propose the use of protein corona as in situ biosensor of temporal and local biomarkers.

  20. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available BACKGROUND: Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins. METHODOLOGY/PRINCIPAL FINDINGS: As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l. CONCLUSIONS/SIGNIFICANCE: We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of

  1. Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique.

    Science.gov (United States)

    Parhizkar, Maryam; Sofokleous, Panagiotis; Stride, Eleanor; Edirisinghe, Mohan

    2014-11-27

    The purpose of this research was to produce multi-dimensional scaffolds containing biocompatible particles and fibres. To achieve this, two techniques were combined and used: T-Junction microfluidics and electrohydrodynamic (EHD) processing. The former was used to form layers of monodispersed bovine serum albumin (BSA) bubbles, which upon drying formed porous scaffolds. By altering the T-Junction processing parameters, bubbles with different diameters were produced and hence the scaffold porosity could be controlled. EHD processing was used to spray or spin poly(lactic-co-glycolic) (PLGA), polymethysilsesquioxane (PMSQ) and collagen particles/fibres onto the scaffolds during their production and after drying. As a result, multifunctional BSA scaffolds with controlled porosity containing PLGA, PMSQ and collagen particles/fibres were obtained. Product morphology was studied by optical and scanning electron microscopy. These products have potential applications in many advanced biomedical, pharmaceutical and cosmetic fields e.g. bone regeneration, drug delivery, cosmetic cream lathers, facial scrubbing creams etc.

  2. Bringing macromolecular machinery to life using 3D animation.

    Science.gov (United States)

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere.

  3. BLOOD FLOW AND MACROMOLECULAR TRANSPORT IN CURVED BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    WEI Lan; WEN Gong-bi; TAN Wen-chang

    2006-01-01

    A numerical analysis of the steady/pulsatile flow and macromolecular (such as LDL and Albumin) transport in curved blood vessels was carried out. The computational results predict that the vortex of the secondary flow is time-dependent in the aortic arch.The concentration of macromolecule concentrates at the region of sharp curve, and the wall concentration at the outer part is higher than that at the inner part. Atherosclerosis and thrombosis are prone to develop in such regions with sharp flow.

  4. Factorial Study of Compressive Mechanical Properties and Primary In Vitro Osteoblast Response of PHBV/PLLA Scaffolds

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available For bone tissue regeneration, composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramics have been regarded as promising biomimetic systems. Polymer blends of poly(hydroxybutyrate-co-hydroxyvalerate (PHBV and poly(L-lactic acid (PLLA can be used as the polymer matrix to control the degradation rate. In order to render the scaffolds osteoconductive, nano-sized hydroxyapatite (nHA particles can be incorporated into the polymer matrix. In the first part of this study, a factorial design approach to investigate the influence of materials on the initial compressive mechanical properties of the scaffolds was studied. In the second part, the protein adsorption behavior and the attachment and morphology of osteoblast-like cells (Saos-2 of the scaffolds in vitro were also studied. It was observed that nHA incorporated PHBV/PLLA composite scaffolds adsorbed more bovine serum albumin (BSA protein than PHBV or PHBV/PLLA scaffolds. In vitro studies also revealed that the attachment of human osteoblastic cells (SaOS-2 was significantly higher in nHA incorporated PHBV/PLLA composite scaffolds. From the SEM micrographs of nHA incorporated PHBV/PLLA composite scaffolds seeded with SaOS-2 cells after a 7-day cell culture period, it was observed that the cells were well expanded and spread in all directions on the scaffolds.

  5. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.

    Science.gov (United States)

    Agarwal, Tarun; Narayan, Rajan; Maji, Somnath; Behera, Shubhanath; Kulanthaivel, Senthilguru; Maiti, Tapas Kumar; Banerjee, Indranil; Pal, Kunal; Giri, Supratim

    2016-12-01

    The present study delineates the preparation, characterization and application of gelatin-carboxymethyl chitosan scaffolds for dermal tissue engineering. The effect of carboxymethyl chitosan and gelatin ratio was evaluated for variations in their physico-chemical-biological characteristics and drug release kinetics. The scaffolds were prepared by freeze drying method and characterized by SEM and FTIR. The study revealed that the scaffolds were highly porous with pore size ranging between 90 and 170μm, had high water uptake (400-1100%) and water retention capacity (>300%). The collagenase mediated degradation of the scaffolds was dependent on the amount of gelatin present in the formulation. A slight yet significant variation in their biological characteristics was also observed. All the formulations supported adhesion, spreading, growth and proliferation of 3T3 mouse fibroblasts. The cells seeded on the scaffolds also demonstrated expression of collagen type I, HIF1α and VEGF, providing a clue regarding their growth and proliferation along with potential to support angiogenesis during wound healing. In addition, the scaffolds showed sustained ampicillin and bovine serum albumin release, confirming their suitability as a therapeutic delivery vehicle during wound healing. All together, the results suggest that gelatin-carboxymethyl chitosan based scaffolds could be a suitable matrix for dermal tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement.

    Science.gov (United States)

    Li, Zhen; Lang, Gernot; Chen, Xu; Sacks, Hagit; Mantzur, Carmit; Tropp, Udi; Mader, Kerstin T; Smallwood, Thomas C; Sammon, Chris; Richards, R Geoff; Alini, Mauro; Grad, Sibylle

    2016-04-01

    Nucleus pulposus (NP) replacement offers a minimally invasive alternative to spinal fusion or total disc replacement for the treatment of intervertebral disc (IVD) degeneration. This study aimed to develop a cytocompatible NP replacement material, which is feasible for non-invasive delivery and tunable design, and allows immediate mechanical restoration of the IVD. A bi-phasic polyurethane scaffold was fabricated consisting of a core material with rapid swelling property and a flexible electrospun envelope. The scaffold was assessed in a bovine whole IVD organ culture model under dynamic load for 14 days. Nucleotomy was achieved by incision through the endplate without damaging the annulus fibrosus. After implantation of the scaffold and in situ swelling, the dynamic compressive stiffness and disc height were restored immediately. The scaffold also showed favorable cytocompatibility for native disc cells. Implantation of the scaffold in a partially nucleotomized IVD down-regulated catabolic gene expression, increased proteoglycan and type II collagen intensity and decreased type I collagen intensity in remaining NP tissue, indicating potential to retard degeneration and preserve the IVD cell phenotype. The scaffold can be delivered in a minimally invasive manner, and the geometry of the scaffold post-hydration is tunable by adjusting the core material, which allows individualized design.

  7. Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds.

    Science.gov (United States)

    Pilarek, Maciej; Grabowska, Iwona; Senderek, Ilona; Wojasiński, Michał; Janicka, Justyna; Janczyk-Ilach, Katarzyna; Ciach, Tomasz

    2014-09-01

    CP5 bovine chondrocytes were cultured on biodegradable electrospun fibrous polylactide (PLA) scaffolds placed on a flexible interface formed between two immiscible liquid phases: (1) hydrophobic perfluorochemical (PFC) and (2) aqueous culture medium, as a new way of cartilage implant development. Robust and intensive growth of CP5 cells was achieved in our hybrid liquid-solid-liquid culture system consisting of the fibrous PLA scaffolds in contrast to limited growth of the CP5 cells in traditional culture system with PLA scaffold placed on solid surface. The multicellular aggregates of CP5 cells covered the surface of PLA scaffolds and the chondrocytes migrated through and overgrew internal fibers of the scaffolds. Our hybrid culture system simultaneously allows the adhesion of adherent CP5 cells to fibers of PLA scaffolds as well as, due to use of phase of PFC, enhances the mass transfer in the case of supplying/removing of respiratory gases, i.e., O2 and CO2. Our flexible (independent of vessel shape) system is simple, ready-to-use and may utilize a variety of polymer-based scaffolds traditionally proposed for implant development.

  8. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44(+), αSMA(+), Vimentin(+) and CD105(-) human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children.

  9. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shor, Lauren; Gueceri, Selcuk; Chang, Robert; Sun Wei [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA (United States); Gordon, Jennifer; Kang Qian; Hartsock, Langdon; An Yuehuei [Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC (United States)], E-mail: st963bya@drexel.edu, E-mail: guceri@drexel.edu, E-mail: rcc34@drexel.edu, E-mail: sunwei@drexel.edu, E-mail: kangqk@musc.edu, E-mail: hartsock@musc.edu, E-mail: any@musc.edu

    2009-03-01

    Bone tissue engineering is an emerging field providing viable substitutes for bone regeneration. Recent advances have allowed scientists and engineers to develop scaffolds for guided bone growth. However, success requires scaffolds to have specific macroscopic geometries and internal architectures conducive to biological and biophysical functions. Freeform fabrication provides an effective process tool to manufacture three-dimensional porous scaffolds with complex shapes and designed properties. A novel precision extruding deposition (PED) technique was developed to fabricate polycaprolactone (PCL) scaffolds. It was possible to manufacture scaffolds with a controlled pore size of 350 {mu}m with designed structural orientations using this method. The scaffold morphology, internal micro-architecture and mechanical properties were evaluated using scanning electron microscopy (SEM), micro-computed tomography (micro-CT) and mechanical testing, respectively. An in vitro cell-scaffold interaction study was carried out using primary fetal bovine osteoblasts. Specifically, the cell proliferation and differentiation was evaluated by Alamar Blue assay for cell metabolic activity, alkaline phosphatase activity and osteoblast production of calcium. An in vivo study was performed on nude mice to determine the capability of osteoblast-seeded PCL to induce osteogenesis. Each scaffold was implanted subcutaneously in nude mice and, following sacrifice, was explanted at one of a series of time intervals. The explants were then evaluated histologically for possible areas of osseointegration. Microscopy and radiological examination showed multiple areas of osseous ingrowth suggesting that the osteoblast-seeded PCL scaffolds evoke osteogenesis in vivo. These studies demonstrated the viability of the PED process to fabricate PCL scaffolds having the necessary mechanical properties, structural integrity, and controlled pore size and interconnectivity desired for bone tissue engineering.

  10. High resolution radiation hybrid maps of bovine chromosomes 19 and 29: comparison with the bovine genome sequence assembly

    Directory of Open Access Journals (Sweden)

    Womack James E

    2007-09-01

    Full Text Available Abstract Background High resolution radiation hybrid (RH maps can facilitate genome sequence assembly by correctly ordering genes and genetic markers along chromosomes. The objective of the present study was to generate high resolution RH maps of bovine chromosomes 19 (BTA19 and 29 (BTA29, and compare them with the current 7.1X bovine genome sequence assembly (bovine build 3.1. We have chosen BTA19 and 29 as candidate chromosomes for mapping, since many Quantitative Trait Loci (QTL for the traits of carcass merit and residual feed intake have been identified on these chromosomes. Results We have constructed high resolution maps of BTA19 and BTA29 consisting of 555 and 253 Single Nucleotide Polymorphism (SNP markers respectively using a 12,000 rad whole genome RH panel. With these markers, the RH map of BTA19 and BTA29 extended to 4591.4 cR and 2884.1 cR in length respectively. When aligned with the current bovine build 3.1, the order of markers on the RH map for BTA19 and 29 showed inconsistencies with respect to the genome assembly. Maps of both the chromosomes show that there is a significant internal rearrangement of the markers involving displacement, inversion and flips within the scaffolds with some scaffolds being misplaced in the genome assembly. We also constructed cattle-human comparative maps of these chromosomes which showed an overall agreement with the comparative maps published previously. However, minor discrepancies in the orientation of few homologous synteny blocks were observed. Conclusion The high resolution maps of BTA19 (average 1 locus/139 kb and BTA29 (average 1 locus/208 kb presented in this study suggest that by the incorporation of RH mapping information, the current bovine genome sequence assembly can be significantly improved. Furthermore, these maps can serve as a potential resource for fine mapping QTL and identification of causative mutations underlying QTL for economically important traits.

  11. Identifying and visualizing macromolecular flexibility in structural biology

    Directory of Open Access Journals (Sweden)

    Martina Palamini

    2016-09-01

    Full Text Available Structural biology comprises a variety of tools to obtain atomic resolution data for the investigation of macromolecules. Conventional structural methodologies including crystallography, NMR and electron microscopy often do not provide sufficient details concerning flexibility and dynamics, even though these aspects are critical for the physiological functions of the systems under investigation. However, the increasing complexity of the molecules studied by structural biology (including large macromolecular assemblies, integral membrane proteins, intrinsically disordered systems, and folding intermediates continuously demands in-depth analyses of the roles of flexibility and conformational specificity involved in interactions with ligands and inhibitors. The intrinsic difficulties in capturing often subtle but critical molecular motions in biological systems have restrained the investigation of flexible molecules into a small niche of structural biology. Introduction of massive technological developments over the recent years, which include time-resolved studies, solution X-ray scattering, and new detectors for cryo-electron microscopy, have pushed the limits of structural investigation of flexible systems far beyond traditional approaches of NMR analysis. By integrating these modern methods with powerful biophysical and computational approaches such as generation of ensembles of molecular models and selective particle picking in electron microscopy, more feasible investigations of dynamic systems are now possible. Using some prominent examples from recent literature, we review how current structural biology methods can contribute useful data to accurately visualize flexibility in macromolecular structures and understand its important roles in regulation of biological processes.

  12. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  13. Critical review and perspective of macromolecularly imprinted polymers.

    Science.gov (United States)

    Kryscio, David R; Peppas, Nicholas A

    2012-02-01

    Molecular recognition is a fundamental and ubiquitous process that is the driving force behind life. Natural recognition elements - including antibodies, enzymes, nucleic acids, and cells - exploit non-covalent interactions to bind to their targets with exceptionally strong affinities. Due to this unparalleled proficiency, scientists have long sought to mimic natural recognition pathways. One promising approach is molecularly imprinted polymers (MIPs), which are fully synthetic systems formed via the crosslinking of organic polymers in the presence of a template molecule, which results in stereo-specific binding sites for this analyte of interest. Macromolecularly imprinted polymers, those synthesized in the presence of macromolecule templates (>1500 Da), are of particular importance because they open up the field for a whole new set of robust diagnostic tools. Although the specific recognition of small-molecular-weight analytes is now considered routine, extension of these efficacious procedures to the protein regime has, thus far, proved challenging. This paper reviews the main approaches employed, highlights studies of interest with an emphasis on recent work, and offers suggestions for future success in the field of macromolecularly imprinted polymers.

  14. The macromolecular crystallography facility at the advanced light source

    Science.gov (United States)

    Earnest, Thomas; Padmore, Howard; Cork, Carl; Behrsing, Rolf; Kim, Sung-Hou

    1996-10-01

    Synchrotron radiation offers several advantages over the use of rotating anode sources for biological crystallography, which allow for the collection of higher-resolution data, substantially more rapid data collection, phasing by multiwavelength anomalous diffraction (MAD) techniques, and time-resolved experiments using polychromatic radiation (Laue diffraction). The use of synchrotron radiation is often necessary to record useful data from crystals which diffract weakly or have very large unit cells. The high brightness and stability characteristics of the advanced light source (ALS) at Lawrence Berkeley National Laboratory, along with the low emittance and long straight sections to accommodate insertion devices present in third generation synchrotrons like the ALS, lead to several advantages in the field of macromolecular crystallography. We are presently constructing a macromolecular crystallography facility at the ALS which is optimized for user-friendliness and high-throughput data collection, with advanced capabilities for MAD and Laue experiments. The X-rays will be directed to three branchlines. A well-equipped support lab will be available for biochemistry, crystal mounting and sample storage, as well as computer hardware and software available, along with staff support, allowing for the complete processing of data on site.

  15. MMDB and VAST+: tracking structural similarities between macromolecular complexes.

    Science.gov (United States)

    Madej, Thomas; Lanczycki, Christopher J; Zhang, Dachuan; Thiessen, Paul A; Geer, Renata C; Marchler-Bauer, Aron; Bryant, Stephen H

    2014-01-01

    The computational detection of similarities between protein 3D structures has become an indispensable tool for the detection of homologous relationships, the classification of protein families and functional inference. Consequently, numerous algorithms have been developed that facilitate structure comparison, including rapid searches against a steadily growing collection of protein structures. To this end, NCBI's Molecular Modeling Database (MMDB), which is based on the Protein Data Bank (PDB), maintains a comprehensive and up-to-date archive of protein structure similarities computed with the Vector Alignment Search Tool (VAST). These similarities have been recorded on the level of single proteins and protein domains, comprising in excess of 1.5 billion pairwise alignments. Here we present VAST+, an extension to the existing VAST service, which summarizes and presents structural similarity on the level of biological assemblies or macromolecular complexes. VAST+ simplifies structure neighboring results and shows, for macromolecular complexes tracked in MMDB, lists of similar complexes ranked by the extent of similarity. VAST+ replaces the previous VAST service as the default presentation of structure neighboring data in NCBI's Entrez query and retrieval system. MMDB and VAST+ can be accessed via http://www.ncbi.nlm.nih.gov/Structure.

  16. Macromolecular Crowding Enhances Thermal Stability of Rabbit Muscle Creatine Kinase

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiang; HE Huawei; LI Sen

    2008-01-01

    The effect of dextran on the conformation (or secondary structure) and thermal stability of creatine kinase (CK) was studied using the far-ultraviolet (UV) circular dichroism (CD) spectra.The results showed that lower concentrations of dextran (less than 60 g/L) induced formation of the secondary CK structures.However,the secondary structure content of CK decreased when the dextran concentrations exceeded 60 g/L.Thermally induced transition curves were measured for CK in the presence of different concentrations of dextran by far-UV CD.The thermal transition curves were fitted to a two-state model by a nonlinear,least-squares method to obtain the transition temperature of the unfolding transition.An increase in the tran- sition temperature was observed with the increase of the dextran concentration.These observations qualita-tively accord with predictions of a previously proposed model for the effect of intermolecular excluded volume (macromolecular crowding) on protein stability and conformation.These findings imply that the effects of macromolecular crowding can have an important influence on our understanding of how protein folding oc-curs in vivo.

  17. PRIGo: a new multi-axis goniometer for macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Waltersperger, Sandro; Olieric, Vincent, E-mail: vincent.olieric@psi.ch; Pradervand, Claude [Paul Scherrer Institute, Villigen PSI (Switzerland); Glettig, Wayne [Centre Suisse d’Electronique et Microtechnique SA, Neuchâtel 2002 (Switzerland); Salathe, Marco; Fuchs, Martin R.; Curtin, Adrian; Wang, Xiaoqiang; Ebner, Simon; Panepucci, Ezequiel; Weinert, Tobias [Paul Scherrer Institute, Villigen PSI (Switzerland); Schulze-Briese, Clemens [Dectris Ltd, Baden 5400 (Switzerland); Wang, Meitian, E-mail: vincent.olieric@psi.ch [Paul Scherrer Institute, Villigen PSI (Switzerland)

    2015-05-09

    The design and performance of the new multi-axis goniometer PRIGo developed at the Swiss Light Source at Paul Scherrer Institute is described. The Parallel Robotics Inspired Goniometer (PRIGo) is a novel compact and high-precision goniometer providing an alternative to (mini-)kappa, traditional three-circle goniometers and Eulerian cradles used for sample reorientation in macromolecular crystallography. Based on a combination of serial and parallel kinematics, PRIGo emulates an arc. It is mounted on an air-bearing stage for rotation around ω and consists of four linear positioners working synchronously to achieve x, y, z translations and χ rotation (0–90°), followed by a ϕ stage (0–360°) for rotation around the sample holder axis. Owing to the use of piezo linear positioners and active correction, PRIGo features spheres of confusion of <1 µm, <7 µm and <10 µm for ω, χ and ϕ, respectively, and is therefore very well suited for micro-crystallography. PRIGo enables optimal strategies for both native and experimental phasing crystallographic data collection. Herein, PRIGo hardware and software, its calibration, as well as applications in macromolecular crystallography are described.

  18. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics.

    Science.gov (United States)

    Lönn, Peter; Kacsinta, Apollo D; Cui, Xian-Shu; Hamil, Alexander S; Kaulich, Manuel; Gogoi, Khirud; Dowdy, Steven F

    2016-09-08

    Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.

  19. Bovine Herpesvirus 4 infections and bovine mastitis

    OpenAIRE

    Wellenberg, Gerardus Johannus

    2002-01-01

    Mastitis is an often occurring disease in dairy cattle with an enormous economic impact for milk producers worldwide. Despite intensive research, which is historically based on the detection of bacterial udder pathogens, still around 20-35% of clinical cases of bovine mastitis have an unknown aetiology. Due to the high number of unknown causes of clinical mastitis, studies were undertaken to gain more insight into the role of viruses in this important disease. For the first time, we found tha...

  20. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...... objects. The article presents the results of empirical research on tasks given in Danish and British learning materials. This work is based on a further development of my PhD thesis: “Learning materials in the subject of Danish” (Slot 2010). The main focus is how cognitive models (and subsidiary explicit...... learning goals) can help students structure their argumentative and communica-tive learning processes, and how various multimodal representations can give more open-ended learning possibilities for collaboration. The article presents a short introduction of the skills for 21st century learning and defines...

  1. Scaffold: Quantum Programming Language

    Science.gov (United States)

    2012-07-24

    included popular classical high-level imperative programming languages (C/C++, Java) [16, 25, 11], hardware description languages ( Verilog ) [13], C-to...hardware languages (System-C) [14] and existing quantum programming languages (QCL) [23]. • Variant of C and Verilog : Scaffold syntax was chosen to be...very similar to C (and to some extent Verilog HDL.) This reflects our belief that expressing computations in terms of familiar iterative and imperative

  2. Bovine Colostrum Supplementation During Running Training Increases Intestinal Permeability

    Directory of Open Access Journals (Sweden)

    Grant D. Brinkworth

    2009-12-01

    Full Text Available Endurance exercise training can increase intestinal permeability which may contribute to the development of gastrointestinal symptoms in some athletes. Bovine colostrum (BC supplementation reduces intestinal permeability induced by non-steroidal anti-inflammatory drugs. This study aimed to determine whether BC could also reduce intestinal permeability induced by endurance exercise. Thirty healthy adult males (25.0 ± 4.7 yr; mean ± SD completed eight weeks of running three times per week for 45 minutes at their lactate threshold while consuming 60 g/day of BC, whey protein (WP or control (CON. Intestinal permeability was assessed at baseline and after eight weeks by measuring the ratio of urinary lactulose (L and rhamnose (R excretion. After eight weeks the L/R ratio increased significantly more in volunteers consuming BC (251 ± 140% compared with WP (21 ± 35%, P < 0.05 and CON (−7 ± 13%, P < 0.02. The increase in intestinal permeability with BC may have been due to BC inducing greater leakiness of tight junctions between enterocytes or by increasing macromolecular transport as it does in neonatal gut. Further research should investigate the potential for BC to increase intestinal macromolecular transport in adults.

  3. Privileged scaffolds in lead generation.

    Science.gov (United States)

    Zhao, Hongyu; Dietrich, Justin

    2015-07-01

    The term "privileged scaffold" was coined in 1988 and the strategy was to construct high-affinity ligands from core structures that can bind more than one receptor. Since then, the privileged scaffold-based design has evolved from a stand-alone technology to an integral component of various lead generation platforms. In this review, the authors discuss the applications of the privileged scaffold concept in current lead generation. Specifically, the authors cover the role that privileged scaffolds have played in the mass production of compounds to feed high-throughput screening (HTS) and its role in the design of ligands targeting protein-protein interactions, multiple ligands and warhead-based ligands. It is not the intention of the authors to review all privileged scaffolds known to date. Rather, the aim of this review is to highlight the strategic value of the concept of privileged scaffolds in various contemporary lead generation platforms. The privileged scaffolds as described by the original definition proved abundant in the available chemical space. HTS and other screening methods, in addition to greatly enhanced compound collections, make privileged scaffold-based design less relevant in finding high-affinity ligands than originally envisioned. However, the principle of privileged scaffolds has greatly enhanced and empowered current lead generation technologies.

  4. Sexing Bovine Embryos Using PCR Amplification of Bovine SRY Sequence

    Institute of Scientific and Technical Information of China (English)

    曾溢滔; 张美兰; 陈美珏; 周霞娣; 黄英; 任兆瑞; 黄淑帧; 胡明信; 吴学清; 高建明; 张斌; 徐慧如

    1994-01-01

    This study analyses the bovine SRY DNA sequence by direct sequencing procedure, followed by the designation of the PCR primers specific for bovine SRY. Using PCR amplification of bovine SRY gene, the embryo sex was determined. The results of the embryo sex identification were confirmed after the embryo transfer and pregnancies.

  5. Instruction, Cognitive Scaffolding, and Motivational Scaffolding in Writing Center Tutoring

    Science.gov (United States)

    Mackiewicz, Jo; Thompson, Isabelle

    2014-01-01

    In this study, we quantitatively analyze the discourse of experienced writing center tutors in 10 highly satisfactory conferences. Specifically, we analyze tutors' instruction, cognitive scaffolding, and motivational scaffolding, all tutoring strategies identified in prior research from other disciplines as educationally effective. We find that…

  6. PROFESSOR TEJ PAL SINGH: THE LEGEND OF INDIAN MACROMOLECULAR CRYSTALLOGRAPHY

    Directory of Open Access Journals (Sweden)

    Md. Imtaiyaz Hassan

    2013-12-01

    Full Text Available Professor Tej Pal Singh, an internationally recognized Indian scientist par excellence, is one of the pioneers of Indian macromolecular crystallography. He is a person of significant and enduring accomplishments as a teacher, scientist, administrator and family man. He has developed various methods to crystallize wide varieties of proteins. He has successfully determined crystal structures of lactoferrin, phospholipase A2, lactoperoxidase, peptidoglycan recognition proteins, disintegrin, zinc-α2-glycoprotein and several others including various protein-ligand and protein-protein complexes. He has a remarkably high number of structural entries in protein data bank. He received most of the prestigious awards and honors by Indian Government. This article covers most of his research and other achievements which will be a source of inspiration for young scientific community, motivation for peers and joy for his fellow colleagues and friends.

  7. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells

    Science.gov (United States)

    Frangakis, Achilleas S.; Böhm, Jochen; Förster, Friedrich; Nickell, Stephan; Nicastro, Daniela; Typke, Dieter; Hegerl, Reiner; Baumeister, Wolfgang

    2002-01-01

    Electron tomograms of intact frozen-hydrated cells are essentially three-dimensional images of the entire proteome of the cell, and they depict the whole network of macromolecular interactions. However, this information is not easily accessible because of the poor signal-to-noise ratio of the tomograms and the crowded nature of the cytoplasm. Here, we describe a template matching algorithm that is capable of detecting and identifying macromolecules in tomographic volumes in a fully automated manner. The algorithm is based on nonlinear cross correlation and incorporates elements of multivariate statistical analysis. Phantom cells, i.e., lipid vesicles filled with macromolecules, provide a realistic experimental scenario for an assessment of the fidelity of this approach. At the current resolution of ≈4 nm, macromolecules in the size range of 0.5–1 MDa can be identified with good fidelity. PMID:12391313

  8. Detecting stoichiometry of macromolecular complexes in live cells using FRET

    Science.gov (United States)

    Ben-Johny, Manu; Yue, Daniel N.; Yue, David T.

    2016-01-01

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. PMID:27922011

  9. An analysis of fractal geometry of macromolecular gelation

    Institute of Scientific and Technical Information of China (English)

    左榘; 陈天红; 冉少峰; 何炳林; 董宝中; 生文君; 杨恒林

    1996-01-01

    With fractal geometry theory and based on experiments, an analysis of fractal geometry behavior of gelation of macromolecules was carried out. Using the cross-linking copolymerization of styrene-divinylbenzene (DVB) as an example, through the determinations of the evolution of the molecular weight, size and the dependence of scattering intensity on the angle of macromolecules by employing laser and synchrotron small angle X-ray scattering, respectively, this chemical reaction was described quantitatively, its fractal behavior was analyzed and the fractal dimension was also measured. By avoiding the complex theories on gelation, this approach is based on modern physical techniques and theories to perform the analysis of the behavior of fractal geometry of macromolecular gelation and thus is able to reveal the rules of this kind of complicated gelation more essentially and profoundly.

  10. Revealing the macromolecular targets of complex natural products

    Science.gov (United States)

    Reker, Daniel; Perna, Anna M.; Rodrigues, Tiago; Schneider, Petra; Reutlinger, Michael; Mönch, Bettina; Koeberle, Andreas; Lamers, Christina; Gabler, Matthias; Steinmetz, Heinrich; Müller, Rolf; Schubert-Zsilavecz, Manfred; Werz, Oliver; Schneider, Gisbert

    2014-12-01

    Natural products have long been a source of useful biological activity for the development of new drugs. Their macromolecular targets are, however, largely unknown, which hampers rational drug design and optimization. Here we present the development and experimental validation of a computational method for the discovery of such targets. The technique does not require three-dimensional target models and may be applied to structurally complex natural products. The algorithm dissects the natural products into fragments and infers potential pharmacological targets by comparing the fragments to synthetic reference drugs with known targets. We demonstrate that this approach results in confident predictions. In a prospective validation, we show that fragments of the potent antitumour agent archazolid A, a macrolide from the myxobacterium Archangium gephyra, contain relevant information regarding its polypharmacology. Biochemical and biophysical evaluation confirmed the predictions. The results obtained corroborate the practical applicability of the computational approach to natural product ‘de-orphaning’.

  11. Macromolecularly "Caged" Carbon Nanoparticles for Intracellular Trafficking via Switchable Photoluminescence.

    Science.gov (United States)

    Misra, Santosh K; Srivastava, Indrajit; Tripathi, Indu; Daza, Enrique; Ostadhossein, Fatemeh; Pan, Dipanjan

    2017-02-08

    Reversible switching of photoluminescence (PL) of carbon nanoparticles (CNP) can be achieved with counterionic macromolecular caging and decaging at the nanoscale. A negatively charged uncoated, "bare" CNP with high luminescence loses its PL when positively charged macromolecules are wrapped around its surface. Prepared caged carbons could regain their emission only through interaction with anionic surfactant molecules, representing anionic amphiphiles of endocytic membranes. This process could be verified by gel electrophoresis, spectroscopically and in vitro confocal imaging studies. Results indicated for the first time that luminescence switchable CNPs can be synthesized for efficient intracellular tracking. This study further supports the origin of photoluminescence in CNP as a surface phenomenon correlated a function of characteristic charged macromolecules.

  12. On macromolecular refinement at subatomic resolution withinteratomic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Lunin, Vladimir Y.; Urzhumtsev, Alexandre

    2007-11-09

    A study of the accurate electron density distribution in molecular crystals at subatomic resolution, better than {approx} 1.0 {angstrom}, requires more detailed models than those based on independent spherical atoms. A tool conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 {angstrom}, the number of experimental data is insufficient for the full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark datasets gave results comparable in quality with results of multipolar refinement and superior of those for conventional models. Applications to several datasets of both small- and macro-molecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  13. Protein Coevolution and Isoexpression in Yeast Macromolecular Complexes

    Directory of Open Access Journals (Sweden)

    Laurence Ettwiller

    2007-01-01

    Full Text Available Previous studies in the yeast Saccharomyces cerevisiae have shown that genes encoding subunits of macromolecular complexes have similar evolutionary rates (K and expression levels (E. Besides, it is known that the expression of a gene is a strong predictor of its rate of evolution (i.e., E and K are correlated. Here we show that intracomplex variation of subunit expression correlates with intracomplex variation of their evolutionary rates (using two different measures of dispersion. However, a similar trend was observed for randomized complexes. Therefore, using a mathematical transformation, we created new variables capturing intracomplex variation of both E and K. The values of these new compound variables were smaller for real complexes than for randomized ones. This shows that proteins in complexes tend to have closer expressivities (E and K's simultaneously than in the randomly grouped genes. We speculate about the possible implications of this finding.

  14. [Progress in researches on synthetic antimicrobial macromolecular polymers].

    Science.gov (United States)

    Wei, Gang; Yang, Lihua; Chu, Liangyin

    2010-08-01

    Broad-spectrum antimicrobial peptides provide a new way to address the urgent growing problem of bacterial resistance. However, the limited natural resources and the high cost of extraction and purification of natural antimicrobial peptides can not meet the requirements of clinical application. In order to solve this problem, researchers have utilized two basic common structural features (amphiphilic and cationic) for designing and preparing synthetic antimicrobial macromolecular polymers. During the last decade, several kinds of amphiphilic polymers, including arylamide oligomers, phenylene ethynylenes, polymethacrylates, polynorbornenes as well as nylon-3 polymers have been synthesized. In this paper, the structures, antibacterial activities and selectivities of these polymers are reviewed, and the effects of molecular size, polarity and ratio of hydrophobic groups, positive charge density on antibacterial activity and selectivity are also summarized.

  15. Macromolecular Crystallization with Microfluidic Free-Interface Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B

    2005-02-24

    Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having an increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.

  16. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  17. Extracting trends from two decades of microgravity macromolecular crystallization history

    Science.gov (United States)

    Judge, Russell A.; Snell, Edward H.; van der Woerd, Mark J.

    2005-01-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  18. Large-volume protein crystal growth for neutron macromolecular crystallography.

    Science.gov (United States)

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  19. NATO Advanced Study Institute on Evolving Methods for Macromolecular Gystallography

    CERN Document Server

    Read, Randy J

    2007-01-01

    X-ray crystallography is the pre-eminent technique for visualizing the structures of macromolecules at atomic resolution. These structures are central to understanding the detailed mechanisms of biological processes, and to discovering novel therapeutics using a structure-based approach. As yet, structures are known for only a small fraction of the proteins encoded by human and pathogenic genomes. To counter the myriad modern threats of disease, there is an urgent need to determine the structures of the thousands of proteins whose structure and function remain unknown. This volume draws on the expertise of leaders in the field of macromolecular crystallography to illuminate the dramatic developments that are accelerating progress in structural biology. Their contributions span the range of techniques from crystallization through data collection, structure solution and analysis, and show how modern high-throughput methods are contributing to a deeper understanding of medical problems.

  20. Macromolecular and dendrimer-based magnetic resonance contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Bumb, Ambika; Brechbiel, Martin W. (Radiation Oncology Branch, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States)), e-mail: pchoyke@mail.nih.gov; Choyke, Peter (Molecular Imaging Program, National Cancer Inst., National Inst. of Health, Bethesda, MD (United States))

    2010-09-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that can provide an assessment of function or molecular expression in tandem with anatomic detail. Over the last 20-25 years, a number of gadolinium-based MR contrast agents have been developed to enhance signal by altering proton relaxation properties. This review explores a range of these agents from small molecule chelates, such as Gd-DTPA and Gd-DOTA, to macromolecular structures composed of albumin, polylysine, polysaccharides (dextran, inulin, starch), poly(ethylene glycol), copolymers of cystamine and cystine with GD-DTPA, and various dendritic structures based on polyamidoamine and polylysine (Gadomers). The synthesis, structure, biodistribution, and targeting of dendrimer-based MR contrast agents are also discussed

  1. Novel antibacterial nanofibrous PLLA scaffolds.

    Science.gov (United States)

    Feng, Kai; Sun, Hongli; Bradley, Mark A; Dupler, Ellen J; Giannobile, William V; Ma, Peter X

    2010-09-15

    In order to achieve high local bioactivity and low systemic side effects of antibiotics in the treatment of dental, periodontal and bone infections, a localized and temporally controlled delivery system is crucial. In this study, a three-dimensional (3-D) porous tissue engineering scaffold was developed with the ability to release antibiotics in a controlled fashion for long-term inhibition of bacterial growth. The highly soluble antibiotic drug, doxycycline (DOXY), was successfully incorporated into PLGA nanospheres using a modified water-in-oil-in-oil (w/o/o) emulsion method. The PLGA nanospheres (NS) were then incorporated into prefabricated nanofibrous PLLA scaffolds with a well interconnected macro-porous structure. The release kinetics of DOXY from four different PLGA NS formulations on a PLLA scaffold was investigated. DOXY could be released from the NS-scaffolds in a locally and temporally controlled manner. The DOXY release is controlled by DOXY diffusion out of the NS and is strongly dependent upon the physical and chemical properties of the PLGA. While PLGA50-6.5K, PLGA50-64K, and PLGA75-113K NS-scaffolds discharge DOXY rapidly with a high initial burst release, PLGA85-142K NS-scaffold can extend the release of DOXY to longer than 6weeks with a low initial burst release. Compared to NS alone, the NS incorporated on a 3-D scaffold had significantly reduced the initial burst release. In vitro antibacterial tests of PLGA85 NS-scaffold demonstrated its ability to inhibit common bacterial growth (S. aureus and E. coli) for a prolonged duration. The successful incorporation of DOXY onto 3-D scaffolds and its controlled release from scaffolds extends the usage of nano-fibrous scaffolds from the delivery of large molecules such as growth factors to the delivery of small hydrophilic drugs, allowing for a broader application and a more complex tissue engineering strategy. 2010 Elsevier B.V. All rights reserved.

  2. Enzootic bovine leukosis and Bovine leukemia virus

    OpenAIRE

    Amauri Alcindo Alfieri; Alice Fernandes Alfieri; Luis Álvaro Leuzzi Junior

    2004-01-01

    All over de World the Enzootic Bovine Leukosis is a important viral infection in cattle herds. This revision points out topics relative to the etiological agent, clinical signals, diagnosis methods, control and prophylaxis of the infection.A Leucose Enzoótica Bovina é uma infecção viral amplamente disseminada em rebanhos bovinos de todo o mundo. Esta revisão tem por objetivo apresentar tópicos relacionados ao agente etiológico, à doença clínica e aos métodos de diagnóstico, controle e profila...

  3. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Ravelli, Raimond B. G. [Maastricht University, PO Box 616, Maastricht 6200 MD (Netherlands); Carmichael, Ian [University of Notre Dame, Notre Dame, IN 46556 (United States); Kneale, Geoff; McGeehan, John E., E-mail: john.mcgeehan@port.ac.uk [University of Portsmouth, King Henry 1st Street, Portsmouth PO1 2DY (United Kingdom)

    2015-01-30

    Quantitative X-ray induced radiation damage studies employing a model protein–DNA complex revealed a striking partition of damage sites. The DNA component was observed to be far more resistant to specific damage compared with the protein. Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N{sub 1}—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.

  4. Repair of the radial defect of rabbit with polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology

    Institute of Scientific and Technical Information of China (English)

    SUN Liang; HU Yun-yu; XIONG Zhuo; WANG Wan-ming; PAN Yu

    2006-01-01

    Objective: To evaluate the effects of repairing rabbit radial defects with polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology loaded with bovine bone morphogenetic protein (bBMP), and find new carriers for growth factors.Methods: Polyester/tricalcium phosphate scaffolds prepared by rapid prototyping technology loaded with and without bovine BMP were used to repair the 15 mm radial defect in rabbit. Then the results of radiography,histology, scaffolds degrade rates and bone mineral density(BMD) were appraised to examine the effects at the 12th week.Results: At the 12th week postoperatively, all defects treated with bBMP were radiographically repaired. No radius implanted polyester/tricalcium phosphate scaffolds without bBMP showed radiographic and histological union.At experimental groups, longitudinal alignment of lamellar structure was observed histologically at the 12th week,indicating that remodeling of regenerated bone was complete in different degree. Of the three experimental groups, the bony regeneration and remodeling of callus in poly lactide-co-glycolide/tricalcium phosphate (PLGA/TCP) group was the best. The BMD values were beyond 70% of normal value at the 12th week while the PLGA/TCP scaffolds group was the highest, and no abnormalities were observed in the surrounding soft tissue in all groups.Conclusions : Polyester/tricalciumphosphatescaffolds prepared by rapid prototyping technology loaded with bovine BMP can repair a 15 mm radial defect of rabbit. As for the results, the PLGA/TCP scaffold is ideal and better than poly L-lactide-co-D, L-lactide (PDLLA/TCP)scaffold, but the ploy L-lactic acid (PLLA/TCP) is not so good for its low degradation rates.

  5. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning.

    Science.gov (United States)

    Ji, Wei; Yang, Fang; van den Beucken, Jeroen J J P; Bian, Zhuan; Fan, Mingwen; Chen, Zhi; Jansen, John A

    2010-11-01

    The aim of the present study was to fabricate polycaprolactone-based nanofibrous scaffolds with incorporated protein via either the blend or coaxial electrospinning technique. Both techniques were compared with respect to processing set-up and scaffold characteristics as well as the release kinetics and biological activity of the loaded protein. Bovine serum albumin was used as a model protein to determine release profiles, while alkaline phosphatase was used to determine protein activity after the electrospinning process. Coaxial electrospinning resulted in a uniform fiber morphology with a core-shell structure, and a homogeneous protein distribution throughout the core of the fibers. In contrast, blend electrospinning formed bead-like fibers with a heterogeneous protein distribution in the fibers. The coaxial scaffold exhibited more sustained release profiles than the comparative blend scaffold, and the additive poly(ethylene glycol) (PEG) in the coaxial scaffold accelerated protein release. Both electrospinning processes decreased the biological activity of the incorporated protein, but coaxial electrospinning with PEG as an additive showed up to 75% preservation of the initial biological activity. Thus, coaxial electrospinning was demonstrated to be superior to blend electrospinning for the preparation of nanofibrous scaffolds with a uniform fibrous structure and protein distribution and sustained protein release kinetics as well as high preservation of the protein activity.

  6. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  7. Intervet Symposium: bovine neosporosis

    NARCIS (Netherlands)

    Schetters, T.; Dubey, J.P.; Adrianarivo, A.; Frankena, K.; Romero, J.J.; Pérez, E.; Heuer, C.; Nicholson, C.; Russell, D.; Weston, J.

    2004-01-01

    This article summarises the most relevant data of presentations delivered at the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP) held in New Orleans, LA, USA, from 10 to 14 August 2003) in a symposium session on bovine neosporosis. The sy

  8. Intervet Symposium: bovine neosporosis

    NARCIS (Netherlands)

    Schetters, T.; Dubey, J.P.; Adrianarivo, A.; Frankena, K.; Romero, J.J.; Pérez, E.; Heuer, C.; Nicholson, C.; Russell, D.; Weston, J.

    2004-01-01

    This article summarises the most relevant data of presentations delivered at the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP) held in New Orleans, LA, USA, from 10 to 14 August 2003) in a symposium session on bovine neosporosis. The

  9. Bovine milk glycome.

    Science.gov (United States)

    Tao, N; DePeters, E J; Freeman, S; German, J B; Grimm, R; Lebrilla, C B

    2008-10-01

    Bovine milk oligosaccharides have several potentially important biological activities including the prevention of pathogen binding to the intestinal epithelial and as nutrients for beneficial bacteria. It has been suggested that milk oligosaccharides are an important source of complex carbohydrates as supplements for the food and the pharmaceutical industries. However, only a small number of structures of bovine milk oligosaccharides (bMO) are known. There have been no systematic studies on bMO. High-performance mass spectrometry and separation methods are used to evaluate bMO, and nearly 40 oligosaccharides are present in bovine milk. Bovine milk oligosaccharides are composed of shorter oligomeric chains than are those in human milk. They are significantly more anionic with nearly 70%, measured abundances, being sialylated. Additionally, bMO are built not only on the lactose core (as are nearly all human milk oligosaccharides), but also on lactose amines. Sialic acid residues include both N-acetyl and N-glycolylneuraminic acid, although the former is significantly more abundant.

  10. Bovine milk exosome proteome

    Science.gov (United States)

    Exosomes are 40-100 nm membrane vesicles of endocytic origin and are found in blood, urine, amniotic fluid, bronchoalveolar lavage (BAL) fluid, as well as human and bovine milk. Exosomes are extracellular organelles important in intracellular communication/signaling, immune function, and biomarkers ...

  11. Bovine Spongiform Encephalopathy

    Science.gov (United States)

    Bovine spongiform encephalopathy (BSE) is caused by a novel contagion, known to as a prion. Prions are proteins capable of converting a normal cellular protein into a prion, thereby propagating an infection. BSE is the first known prion zoonotic. As such it has attracted broad scientific and, to a r...

  12. Electrospun multifunctional tissue engineering scaffolds

    Science.gov (United States)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  13. Electrospun Nanocomposite Materials, A Novel Synergy of Polyurethane and Bovine Derived Hydroxyapatite

    Science.gov (United States)

    Bozkurt, Y.; Sahin, A.; Sunulu, A.; Aydogdu, M. O.; Altun, E.; Oktar, F. N.; Ekren, N.; Gunduz, O.

    2017-04-01

    Polyurethane (PU) is a synthetic polymer that is used for construction of scaffold in tissue engineering applications in order to obtain desirable mechanical, physical and chemical properties like elasticity and durability. Bovine derived hydroxyapatite (BHAp) is a ceramic based natural polymer that is used as the most preferred implant material in orthopedics and dentistry due to their chemically and biologically similarity to the mineral phase found in the human bone structure. PU and bovine derived hydroxyapatite (BHAp) solutions with different concentrations were prepared with dissolving polyurethane and BHAp in Dimethylformamide (DMF) and Tetrahydrofuran (THF) solutions. Blended PU-BHAp solutions in different concentrations were used for electrospinning technique to create nanofiber scaffolds and new biocomposite material together. SEM, FTIR and physical analysis such as viscosity, electrical conductivity, density measurement and tensile strength measurement tests were carried out after production process.

  14. NMR RELAXIVITY AND IMAGING OF NEUTRAL MACROMOLECULAR POLYESTER GADOLINIUM (Ⅲ) COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Kai-chao Yu; Hong-bing Hu; Mai-li Liu; Han-zhen Yuan; Chao-hui Ye; Ren-xi Zhuo

    1999-01-01

    Five neutral macromolecular polyester gadolinium (Ⅲ) complexes with pendant hydrophobic alkyl and aromatic functional groups were prepared. The longitudinal relaxation rates of these complexes were measured. One of these Gd (Ⅲ) complexes was chosen for the acute toxicity test and T1-weighted imaging measurement. Preliminary results showed that. compared with Gd-DTPA, the neutral macromolecular gadolinium (Ⅲ) complexes provide higher T1 relaxivity enhancement and longer function duration.

  15. Scaffolding Biomaterials for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Zhen Cao

    2014-01-01

    Full Text Available Completely repairing of damaged cartilage is a difficult procedure. In recent years, the use of tissue engineering approach in which scaffolds play a vital role to regenerate cartilage has become a new research field. Investigating the advances in biological cartilage scaffolds has been regarded as the main research direction and has great significance for the construction of artificial cartilage. Native biological materials and synthetic polymeric materials have their advantages and disadvantages. The disadvantages can be overcome through either physical modification or biochemical modification. Additionally, developing composite materials, biomimetic materials, and nanomaterials can make scaffolds acquire better biocompatibility and mechanical adaptability.

  16. Exploring the scaffold universe of kinase inhibitors.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2015-01-08

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  17. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: kedongsong@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Yingchao [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Macedo, Hugo M. [Biological Systems Engineering Laboratory, Department of Chemical Engineering, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom); Jiang, Lili; Li, Chao; Mei, Guanyu [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Dalian R and D Center for Stem Cell and Tissue Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27–55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99 ± 2.51) %, (89.66 ± 0.66) % and (73.77 ± 3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24 ± 0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44 ± 1.81) × 10{sup −2} mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a

  18. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  19. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.

    Science.gov (United States)

    Wang, Zhenbei; Qian, Yuna; Li, Linhao; Pan, Lianhong; Njunge, Lucy W; Dong, Lili; Yang, Li

    2016-01-01

    Wound healing scaffolds provide cells with structural integrity and can also deliver biological agents to establish a skin tissue-specific microenvironment to regulate cell functions and to accelerate the healing process. In this study, we fabricated biodegradable nanofibrous scaffolds with an emulsion electrospinning technique. The scaffolds were composed of polycaprolactone, hyaluronan and encapsulating epidermal growth factor. The morphology and core-sheath structure of the nanofibers were characterized by scanning electron microscopy and transmission electron microscopy. The scaffolds were also characterized for chemical composition and hydrophilicity with a Fourier-transform infrared analysis, energy dispersive spectroscopy and the water contact angle. An in vitro model protein bovine serum albumin and epidermal growth factor release study was conducted to evaluate the sustained release potential of the core-sheath structured nanofibers with and without the hyaluronan component. Additionally, an in vitro cultivation of human skin keratinocytes (HaCaT) and fibroblasts on polycaprolactone/hyaluronan and polycaprolactone/hyaluronan-epidermal growth factor scaffolds showed a significant synergistic effect of hyaluronan and epidermal growth factor on cell proliferation and infiltration. Furthermore, there was an up-regulation of the wound-healing-related genes collagen I, collagen III and TGF-β in polycaprolactone/hyaluronan/epidermal growth factor scaffolds compared with control groups. In the full-thickness wound model, the enhanced regeneration of fully functional skin was facilitated by epidermal regeneration in the polycaprolactone/hyaluronan/epidermal growth factor treatment group. Our findings suggest that bioactivity and hemostasis of the hyaluronan-based nanofibrous scaffolds have the capability to encapsulate and control the release of growth factors that can serve as skin tissue engineering scaffolds for wound healing.

  20. A versatile microparticle-based immunoaggregation assay for macromolecular biomarker detection and quantification.

    Directory of Open Access Journals (Sweden)

    Haiyan Wu

    Full Text Available The rapid, sensitive and low-cost detection of macromolecular biomarkers is critical in clinical diagnostics, environmental monitoring, research, etc. Conventional assay methods usually require bulky, expensive and designated instruments and relative long assay time. For hospitals and laboratories that lack immediate access to analytical instruments, fast and low-cost assay methods for the detection of macromolecular biomarkers are urgently needed. In this work, we developed a versatile microparticle (MP-based immunoaggregation method for the detection and quantification of macromolecular biomarkers. Antibodies (Abs were firstly conjugated to MP through streptavidin-biotin interaction; the addition of macromolecular biomarkers caused the aggregation of Ab-MPs, which were subsequently detected by an optical microscope or optical particle sizer. The invisible nanometer-scale macromolecular biomarkers caused detectable change of micrometer-scale particle size distributions. Goat anti-rabbit immunoglobulin and human ferritin were used as model biomarkers to demonstrate MP-based immunoaggregation assay in PBS and 10% FBS to mimic real biomarker assay in the complex medium. It was found that both the number ratio and the volume ratio of Ab-MP aggregates caused by biomarker to all particles were directly correlated to the biomarker concentration. In addition, we found that the detection range could be tuned by adjusting the Ab-MP concentration. We envision that this novel MP-based immunoaggregation assay can be combined with multiple detection methods to detect and quantify macromolecular biomarkers at the nanogram per milliliter level.

  1. JBluIce-EPICS control system for macromolecular crystallography.

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, S.; Makarov, O.; Hilgart, M.; Pothineni, S.; Urakhchin, A.; Devarapalli, S.; Yoder, D.; Becker, M.; Ogata, C.; Sanishvili, R.; Nagarajan, V.; Smith, J. L.; Fischetti, R. F. (Biosciences Division); (Univ. of Michigan)

    2011-01-01

    The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.

  2. Patch-clamp detection of macromolecular translocation along nuclear pores

    Directory of Open Access Journals (Sweden)

    Bustamante J.O.

    1998-01-01

    Full Text Available The present paper reviews the application of patch-clamp principles to the detection and measurement of macromolecular translocation along the nuclear pores. We demonstrate that the tight-seal 'gigaseal' between the pipette tip and the nuclear membrane is possible in the presence of fully operational nuclear pores. We show that the ability to form a gigaseal in nucleus-attached configurations does not mean that only the activity of channels from the outer membrane of the nuclear envelope can be detected. Instead, we show that, in the presence of fully operational nuclear pores, it is likely that the large-conductance ion channel activity recorded derives from the nuclear pores. We conclude the technical section with the suggestion that the best way to demonstrate that the nuclear pores are responsible for ion channel activity is by showing with fluorescence microscopy the nuclear translocation of ions and small molecules and the exclusion of the same from the cisterna enclosed by the two membranes of the envelope. Since transcription factors and mRNAs, two major groups of nuclear macromolecules, use nuclear pores to enter and exit the nucleus and play essential roles in the control of gene activity and expression, this review should be useful to cell and molecular biologists interested in understanding how patch-clamp can be used to quantitate the translocation of such macromolecules into and out of the nucleus

  3. Timely deposition of macromolecular structures is necessary for peer review

    Energy Technology Data Exchange (ETDEWEB)

    Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Soueidan, Hayssam; Wessels, Lodewyk F. A. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam (Netherlands); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2013-12-01

    Deposition of crystallographic structures should be concurrent with or prior to manuscript submission for peer review, enabling validation and increasing reliability of the PDB. Most of the macromolecular structures in the Protein Data Bank (PDB), which are used daily by thousands of educators and scientists alike, are determined by X-ray crystallography. It was examined whether the crystallographic models and data were deposited to the PDB at the same time as the publications that describe them were submitted for peer review. This condition is necessary to ensure pre-publication validation and the quality of the PDB public archive. It was found that a significant proportion of PDB entries were submitted to the PDB after peer review of the corresponding publication started, and many were only submitted after peer review had ended. It is argued that clear description of journal policies and effective policing is important for pre-publication validation, which is key in ensuring the quality of the PDB and of peer-reviewed literature.

  4. Synchrotron radiation macromolecular crystallography: science and spin-offs

    Directory of Open Access Journals (Sweden)

    John R. Helliwell

    2015-03-01

    Full Text Available A current overview of synchrotron radiation (SR in macromolecular crystallography (MX instrumentation, methods and applications is presented. Automation has been and remains a central development in the last decade, as have the rise of remote access and of industrial service provision. Results include a high number of Protein Data Bank depositions, with an increasing emphasis on the successful use of microcrystals. One future emphasis involves pushing the frontiers of using higher and lower photon energies. With the advent of X-ray free-electron lasers, closely linked to SR developments, the use of ever smaller samples such as nanocrystals, nanoclusters and single molecules is anticipated, as well as the opening up of femtosecond time-resolved diffraction structural studies. At SR sources, a very high-throughput assessment for the best crystal samples and the ability to tackle just a few micron and sub-micron crystals will become widespread. With higher speeds and larger detectors, diffraction data volumes are becoming long-term storage and archiving issues; the implications for today and the future are discussed. Together with the rise of the storage ring to its current pre-eminence in MX data provision, the growing tendency of central facility sites to offer other centralized facilities complementary to crystallography, such as cryo-electron microscopy and NMR, is a welcome development.

  5. New concepts and applications in the macromolecular chemistry of fullerenes.

    Science.gov (United States)

    Giacalone, Francesco; Martín, Nazario

    2010-10-08

    A new classification on the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. Because of their interest and novelty, water-soluble and biodegradable C(60)-polymers are discussed first, followed by polyfullerene-based membranes where unprecedented supramolecular structures are presented. Next are compounds that involve hybrid materials formed from fullerenes and other components such as silica, DNA, and carbon nanotubes (CNTs) where the most recent advances have been achieved. A most relevant topic is still that of C(60)-based donor-acceptor (D-A) polymers. Since their application in photovoltaics D-A polymers are among the most realistic applications of fullerenes in the so-called molecular electronics. The most relevant aspects in these covalently connected fullerene/polymer hybrids as well as new concepts to improve energy conversion efficiencies are presented.The last topics disccused relate to supramolecular aspects that are in involved in C(60)-polymer systems and in the self-assembly of C(60)-macromolecular structures, which open a new scenario for organizing, by means of non-covalent interactions, new supramolecular structures at the nano- and micrometric scale, in which the combination of the hydrofobicity of fullerenes with the versatility of the noncovalent chemistry afford new and spectacular superstructures.

  6. Macromolecular metallurgy of binary mesocrystals via designed multiblock terpolymers.

    Science.gov (United States)

    Xie, Nan; Liu, Meijiao; Deng, Hanlin; Li, Weihua; Qiu, Feng; Shi, An-Chang

    2014-02-26

    Self-assembling block copolymers provide access to the fabrication of various ordered phases. In particular, the ordered spherical phases can be used to engineer soft mesocrystals with domain size at the 5-100 nm scales. Simple block copolymers, such as diblock copolymers, form a limited number of mesocrystals. However multiblock copolymers are capable to form more complex mesocrystals. We demonstrate that designed B1AB2CB3 multiblock terpolymers, in which the A- and C-blocks form spherical domains and the packing of these spheres can be controlled by changing the lengths of the middle and terminal B-blocks, self-assemble into various binary mesocrystals with space group symmetries of a large number of binary ionic crystals, including NaCl, CsCl, ZnS, α-BN, AlB2, CaF2, TiO2, ReO3, Li3Bi, Nb3Sn(A15), and α-Al2O3. This approach can be generalized to other terpolymers as well as to tetrapolymers to obtain ternary mesocrystals. Our study provides a new concept of macromolecular metallurgy for producing crystal phases in a mesoscale and thus makes multiblock copolymers a robust platform for the engineering of functional materials.

  7. Macromolecular Powder Diffraction: Ready for genuine biological problems.

    Science.gov (United States)

    Karavassili, Fotini; Margiolaki, Irene

    2016-01-01

    Knowledge of 3D structures of biological molecules plays a major role in both understanding important processes of life and developing pharmaceuticals. Among several methods available for structure determination, macromolecular X-ray powder diffraction (XRPD) has transformed over the past decade from an impossible dream to a respectable method. XRPD can be employed in biosciences for various purposes such as observing phase transitions, characterizing bulk pharmaceuticals, determining structures via the molecular replacement method, detecting ligands in protein-ligand complexes, as well as combining micro-sized single crystal crystallographic data and powder diffraction data. Studies using synchrotron and laboratory sources in some standard configuration setups are reported in this review, including their respective advantages and disadvantages. Methods presented here provide an alternative, complementary set of tools to resolve structural problems. A variety of already existing software packages for powder diffraction data processing and analysis, some of which have been adapted to large unit cell studies, are briefly described. This review aims to provide necessary elements of theory and current methods, along with practical explanations, available software packages and highlighted case studies.

  8. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    Science.gov (United States)

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  9. Mycotic bovine nasal granuloma.

    Science.gov (United States)

    Conti Díaz, Ismael Alejandro; Vargas, Roberto; Apolo, Ada; Moraña, José Antonio; Pedrana, Graciela; Cardozo, Elena; Almeida, Edgardo

    2003-01-01

    A case of mycotic bovine nasal granuloma in a 10 year-old Jersey cow, produced by Drechslera halodes is presented. Histopathological sections showed abundant hyaline and pigmented extra and intracellular fungal structures together with a polymorphic cellular granuloma formed by neutrophils, lymphocytes, plasmocytes, histiocytes and giant cells of the Langhans type. It is the first case of mycotic bovine nasal granuloma recognized in Uruguay although this disease seems to be frequent according to the opinion of veterinarian specialists. Another similar clinical case also in a Jersey cow from the same dairy house with an intense cellular infiltrate rich in eosinophils without granulomatous image, together with extracellular hyaline and fuliginous fungal forms, is also referred for comparative purposes. Geotrichum sp. was isolated. The need of an early diagnosis and treatment of the disease is stressed.

  10. Infectious bovine keratoconjunctivitis (pinkeye)

    OpenAIRE

    Angelos, JA

    2015-01-01

    Copyright © 2015 Elsevier Inc. All rights reserved. As is the case for controlling other infectious livestock diseases, the most successful efforts to control infectious bovine keratoconjunctivitis (IBK) will include consideration of the host, the environment, herd management, and ongoing surveillance even after the immediate crisis has passed. Research over many years has led to the discovery of a variety of antibiotic treatments and antibiotic regimens that can be effective against IBK. The...

  11. Selenium in bovine spermatozoa.

    Science.gov (United States)

    Niemi, S M; Kuzan, F B; Senger, P L

    1981-05-01

    This study investigated the association of selenium with ejaculated bovine spermatozoa. Over 75% of the radioactive spermatozoa. Over 75% of the radioactive selenium-75 was released after 30 min of incubation in 2 X 10(-3) dithiothreitol. Of the selenium-75 released by dithiothreitol, 85% was associated with spermatozoal protein. Protein containing selenium-75 was found predominantly in a single band after polyacrylamide gel electrophoresis. Molecular weight was approximately 21,500 daltons.

  12. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  13. Functionalizable oligoprolines as molecular scaffolds.

    Science.gov (United States)

    Nagel, Yvonne A; Kuemin, Michael; Wennemers, Helma

    2011-01-01

    Azidoproline (Azp) containing oligoprolines are conformationally well-defined, helical molecular scaffolds that allow for facile functionalization. Within this article we describe the synthesis of Azp-containing oligoprolines and different strategies to introduce functional moieties. In addition, the influence of factors such as substituents at the y-position of proline as well as functional groups at the termini on the conformational stability of the molecular scaffolds are briefly presented.

  14. Diagnostic imaging in bovine orthopedics.

    Science.gov (United States)

    Kofler, Johann; Geissbühler, Urs; Steiner, Adrian

    2014-03-01

    Although a radiographic unit is not standard equipment for bovine practitioners in hospital or field situations, ultrasound machines with 7.5-MHz linear transducers have been used in bovine reproduction for many years, and are eminently suitable for evaluation of orthopedic disorders. The goal of this article is to encourage veterinarians to use radiology and ultrasonography for the evaluation of bovine orthopedic disorders. These diagnostic imaging techniques improve the likelihood of a definitive diagnosis in every bovine patient but especially in highly valuable cattle, whose owners demand increasingly more diagnostic and surgical interventions that require high-level specialized techniques.

  15. Composite Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Wang

    2006-01-01

    Full Text Available Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid and poly(lactic acid-co-glycolic acid are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be either incorporated in the scaffolds as a dispersed secondary phase or form a thin coating on the pore surface of polymer scaffolds. This bioceramic phase renders the scaffolds bioactive and also strengthens the scaffolds. There are a number of methods that can be used to produce bioceramic-polymer composite scaffolds. This paper gives an overview of our efforts in developing composite scaffolds for bone tissue engineering.

  16. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions.

    Science.gov (United States)

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction's mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein-protein interactions or protein-DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1,040,000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43,000 RNA-mediated interactions, and ∼12,000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  17. Scaffolding in Assisted Instruction

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available On-The-Job Training, developed as direct instruction, is one of the earliest forms of training. This method is still widely in use today because it requires only a person who knows how to do the task, and the tools the person uses to do the task. This paper is intended to be a study of the methods used in education in Knowledge Society, with more specific aspects in training the trainers; as a result of this approach, it promotes scaffolding in assisted instruction as a reflection of the digital age for the learning process. Training the trainers in old environment with default techniques and designing the learning process in assisted instruction, as an application of the Vygotskian concept of the zone of proximal development (ZPD to the area of computer literacy for the younger users, generate diversity in educational communities and requires standards for technology infrastructure, standards for the content, developed as a concepts map, and applications for personalized in-struction, based on ZPD theory.

  18. Non-contact luminescence lifetime cryothermometry for macromolecular crystallography.

    Science.gov (United States)

    Mykhaylyk, V B; Wagner, A; Kraus, H

    2017-05-01

    Temperature is a very important parameter when aiming to minimize radiation damage to biological samples during experiments that utilize intense ionizing radiation. A novel technique for remote, non-contact, in situ monitoring of the protein crystal temperature has been developed for the new I23 beamline at the Diamond Light Source, a facility dedicated to macromolecular crystallography (MX) with long-wavelength X-rays. The temperature is derived from the temperature-dependent decay time constant of luminescence from a minuscule scintillation sensor (luminescence lifetime thermometry is presented, the features of the detection method and the choice of temperature sensor are discussed, and it is demonstrated how the temperature monitoring system was integrated within the viewing system of the endstation used for the visualization of protein crystals. The thermometry system was characterized using a Bi4Ge3O12 crystal scintillator that exhibits good responsivity of the decay time constant as a function of temperature over a wide range (8-270 K). The scintillation sensor was calibrated and the uncertainty of the temperature measurements over the primary operation temperature range of the beamline (30-150 K) was assessed to be ±1.6 K. It has been shown that the temperature of the sample holder, measured using the luminescence sensor, agrees well with the expected value. The technique was applied to characterize the thermal performance of different sample mounts that have been used in MX experiments at the I23 beamline. The thickness of the mount is shown to have the greatest impact upon the temperature distribution across the sample mount. Altogether, these tests and findings demonstrate the usefulness of the thermometry system in highlighting the challenges that remain to be addressed for the in-vacuum MX experiment to become a reliable and indispensable tool for structural biology.

  19. A Compact X-Ray System for Macromolecular Crystallography. 5

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  20. A Compact X-Ray System for Macromolecular Crystallography

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  1. Engineering of a polymer layered bio-hybrid heart valve scaffold.

    Science.gov (United States)

    Jahnavi, S; Kumary, T V; Bhuvaneshwar, G S; Natarajan, T S; Verma, R S

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential.

  2. Xenogenic Esophagus Scaffolds Fixed with Several Agents: Comparative In Vivo Study of Rejection and Inflammation

    Directory of Open Access Journals (Sweden)

    Holger Koch

    2012-01-01

    Full Text Available Most infants with long-gap esophageal atresia receive an esophageal replacement with tissue from stomach or colon, because the native esophagus is too short for true primary repair. Tissue-engineered esophageal conducts could present an attractive alternative. In this paper, circular decellularized porcine esophageal scaffold tissues were implanted subcutaneously into Sprague-Dawley rats. Depending on scaffold cross-linking with genipin, glutaraldehyde, and carbodiimide (untreated scaffolds : positive control; bovine pericardium : gold standard, the number of infiltrating fibroblasts, lymphocytes, macrophages, giant cells, and capillaries was determined to quantify the host response after 1, 9, and 30 days. Decellularized esophagus scaffolds were shown to maintain native matrix morphology and extracellular matrix composition. Typical inflammatory reactions were observed in all implants; however, the cellular infiltration was reduced in the genipin group. We conclude that genipin is the most efficient and best tolerated cross-linking agent to attenuate inflammation and to improve the integration of esophageal scaffolds into its surrounding tissue after implantation.

  3. Inflammation-sensitive in situ smart scaffolding for regenerative medicine.

    Science.gov (United States)

    Patra, Hirak K; Sharma, Yashpal; Islam, Mohammad Mirazul; Jafari, Mohammad Javad; Murugan, N Arul; Kobayashi, Hisatoshi; Turner, Anthony P F; Tiwari, Ashutosh

    2016-10-06

    To cope with the rapid evolution of the tissue engineering field, it is now essential to incorporate the use of on-site responsive scaffolds. Therefore, it is of utmost importance to find new 'Intelligent' biomaterials that can respond to the physicochemical changes in the microenvironment. In this present report, we have developed biocompatible stimuli responsive polyaniline-multiwalled carbon nanotube/poly(N-isopropylacrylamide), (PANI-MWCNT/PNIPAm) composite nanofiber networks and demonstrated the physiological temperature coordinated cell grafting phenomenon on its surface. The composite nanofibers were prepared by a two-step process initiated with an assisted in situ polymerization followed by electrospinning. To obtain a smooth surface in individual nanofibers with the thinnest diameter, the component ratios and electrospinning conditions were optimized. The temperature-gated rearrangements of the molecular structure are characterized by FTIR spectroscopy with simultaneous macromolecular architecture changes reflected on the surface morphology, average diameter and pore size as determined by scanning electron microscopy. The stimuli responsiveness of the nanofibers has first been optimized with computational modeling of temperature sensitive components (coil-like and globular conformations) to tune the mechanism for temperature dependent interaction during in situ scaffolding with the cell membrane. The nanofiber networks show excellent biocompatibility, tested with fibroblasts and also show excellent sensitivity to inflammation to combat loco-regional acidosis that delay the wound healing process by an in vitro model that has been developed for testing the proposed responsiveness of the composite nanofiber networks. Cellular adhesion and detachment are regulated through physiological temperature and show normal proliferation of the grafted cells on the composite nanofibers. Thus, we report for the first time, the development of physiological temperature

  4. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  5. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  6. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  7. Cooperative polymerization of α-helices induced by macromolecular architecture

    Science.gov (United States)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  8. Infectious bovine keratoconjunctivitis (pinkeye).

    Science.gov (United States)

    Angelos, John A

    2015-03-01

    As is the case for controlling other infectious livestock diseases, the most successful efforts to control infectious bovine keratoconjunctivitis (IBK) will include consideration of the host, the environment, herd management, and ongoing surveillance even after the immediate crisis has passed. Research over many years has led to the discovery of a variety of antibiotic treatments and antibiotic regimens that can be effective against IBK. The discoveries of Mor bovoculi and reports of IBK associated with Mycoplasma spp without concurrent Mor bovis or Mor bovoculi have raised new questions into the roles that other organisms may play in IBK pathogenesis.

  9. Bovine Virus Diarrhea (BVD)

    OpenAIRE

    Hoar, Bruce R

    2004-01-01

    Bovine virus diarrhea (BVD) is a complicated disease to discuss as it can result in a wide variety of disease problems from very mild to very severe. BVD can be one of the most devastating diseases cattle encounter and one of the hardest to get rid of when it attacks a herd. The viruses that cause BVD have been grouped into two genotypes, Type I and Type II. The disease syndrome caused by the two genotypes is basically the same, however disease caused by Type II infection is often more severe...

  10. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    Directory of Open Access Journals (Sweden)

    Julian C.-H. Chen

    2017-01-01

    Full Text Available The Protein Crystallography Station (PCS, located at the Los Alamos Neutron Scattering Center (LANSCE, was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER for 13 years (2002–2014. The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  11. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography.

    Science.gov (United States)

    Chen, Julian C-H; Unkefer, Clifford J

    2017-01-01

    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.

  12. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    2017-02-01

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed.

  13. Proteomic Analysis of Bovine Nucleolus

    Institute of Scientific and Technical Information of China (English)

    Amrutlal K.Patel; Doug Olson; Suresh K. Tikoo

    2010-01-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eu-karyotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells,we analyzed the proteomie composition of the bovine nueleoli. The nucleoli were isolated from Madin Darby bo-vine kidney cells and subjected to proteomie analysis by LC-MS/MS after fractionation by SDS-PAGE and strongcation exchange chromatography. Analysis of the data using the Mascot database search and the GPM databasesearch identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in theproteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggestedthat the bovine nueleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional,translational and post-translational regulation, transport, and structural organization.

  14. Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage.

    Science.gov (United States)

    Chien, Chi-Sheng; Ho, Hsiu-O; Liang, Yu-Chih; Ko, Pai-Hung; Sheu, Ming-Thau; Chen, Chien-Ho

    2012-05-01

    The goal of this study was to assess the incorporation of exudates of human platelet-rich fibrin (hPRF) that is abundant in platelet cytokines and growth factors into biodegradable fibrin (FB) scaffolds as a regeneration matrix for promoting chondrocyte proliferation and re-differentiation. hPRF was obtained from human blood by centrifugation without an anticoagulant, and the exudate of hPRF was collected and mixed with bovine fibrinogen, and then thrombin was added to form the FB scaffold. Proliferation and differentiation of human primary chondrocytes and a human chondrosarcoma cell line, the SW-1353, embedded in the three-dimensional (3D) scaffolds and on the two-dimensional (2D) surface of the FB scaffolds so produced were evaluated in comparison with an agarose (AG) scaffold serving as the control. Results demonstrated that the amounts of these cytokines and growth factors in hPRF exudates were higher than those in the blood-derived products except for TGF-β1. Chondrocytes and SW1353 cells on the 2D and 3D FB scaffolds with the addition of the exudates of PRF exhibited more-available proliferation and differentiation than cells on 2D and 3D FB and AG scaffolds. It was concluded that FB scaffolds can provide an appropriate environment for chondrocyte proliferation and re-differentiation, and it could be improved by adding exudates of hPRF. These 3D scaffolds have great promise for cartilage tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  15. Metacognitive scaffolding in an innovative learning arrangement

    NARCIS (Netherlands)

    Molenaar, I.; Boxtel, C.A.M. van; Sleegers, P.J.C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing

  16. Synthesis of the TACO scaffold as a new selectively deprotectable conformationally restricted triazacyclophane based scaffold

    NARCIS (Netherlands)

    Brouwer, Arwin J; van de Langemheen, Helmus; Ciaffoni, Adriano; Schilder, Kitty E; Liskamp, Rob M J

    2014-01-01

    The synthesis of a new triazacyclophane scaffold (TACO scaffold) containing three selectively deprotectable amines is described. The TACO scaffold is conformationally more constrained than our frequently used TAC scaffold, due to introduction of a substituent on the para position of the benzoic acid

  17. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    function. At the molecular level PICK1 contains both a BAR and a PDZ domain making it quite unique. Especially the specificity and promiscuity of the PICK1 PDZ domain seems to be more complicated than normally seen for PDZ domains. Also, the ability of PICK1 to form dimeric structures via its central BAR...... by the spatial architecture of the synapse itself. In this thesis, the molecular scaffolding mechanisms of PICK1 have been investigated in both isolated and near native conditions. Our findings have significantly benefitted the general understanding of how PICK1 and PDZ domain scaffolding works. In the first......-inhibitory mechanism of PICK1 and allows the N-BAR domains or the PDZ domains themselves to cluster and shape membranes. Finally, we utilized our in-solution structural knowledge to investigate the scaffolding events in context of a native cell membrane. We initially showed that we were able to qualitatively assess...

  18. Synthesis and characterization of miktoarm star copolymer of styrene and butadiene using multifunctional macromolecular initiator

    Institute of Scientific and Technical Information of China (English)

    Hai Yan Zhang; Xing Ying Zhang

    2009-01-01

    A new kind of multifunctional macromolecular initiator with Sn-C bonds and polydiene arms was synthesized by living anionic polymerization.At first,polydiene-stannum chloride(PD-SnCl3)was prepared by the reaction of n-butyl-Li(n-BuLi),stannic chloride(SnCl4)and diene.Then PD-SnCl3 was used to react with the dilithium initiator to prepare the multifunctional organic macromolecular initiators.The result suggested that the initiators had a remarkable yield by GPC,nearly 90%.By using these multifunctional macromolecular initiators,styrene and butadiene were effectively polymerized via anionic polymerization,which gave birth to novel miktoarm star copolymers.The relative molecular weight and polydispersity index,microstructure contents,copolymerization components,glass transition temperature(Tg)and morphology of the miktoarm star copolymers were investigated by GPC-UV,1H NMR,DSC and TEM,respectively.

  19. Use of Site-Specifically Tethered Chemical Nucleases to Study Macromolecular Reactions

    Directory of Open Access Journals (Sweden)

    Mukherjee Srabani

    2003-01-01

    Full Text Available During a complex macromolecular reaction multiple changes in molecular conformation and interactions with ligands may occur. X-ray crystallography may provide only a limited set of snapshots of these changes. Solution methods can augment such structural information to provide a more complete picture of a macromolecular reaction. We analyzed the changes in protein conformation and protein:nucleic acid interactions which occur during transcription initiation by using a chemical nuclease tethered to cysteines introduced site-specifically into the RNA polymerase of bacteriophage T7 (T7 RNAP. Changes in cleavage patterns as the polymerase steps through transcription reveal a series of structural transitions which mediate transcription initiation. Cleavage by tethered chemical nucleases is seen to be a powerful method for revealing the conformational dynamics of macromolecular reactions, and has certain advantages over cross-linking or energy transfer approaches.

  20. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  1. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Jianfei Hu

    Full Text Available Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process.

  2. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or

  3. Viral infections and bovine mastitis: a review

    NARCIS (Netherlands)

    Wellenberg, G.J.; Poel, van der W.H.M.; Oirschot, van J.T.

    2002-01-01

    This review deals with the role of viruses in the aetiology of bovine mastitis. Bovine herpesvirus 1, bovine herpesvirus 4, foot-and-mouth disease virus, and parainfluenza 3 virus have been isolated from milk from cows with clinical mastitis. Intramammary inoculations of bovine herpesvirus 1 or para

  4. Biomaterials & scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Fergal J. O'Brien

    2011-03-01

    Full Text Available Every day thousands of surgical procedures are performed to replace or repair tissue that has been damaged through disease or trauma. The developing field of tissue engineering (TE aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates for tissue regeneration, to guide the growth of new tissue. This article describes the functional requirements, and types, of materials used in developing state of the art of scaffolds for tissue engineering applications. Furthermore, it describes the challenges and where future research and direction is required in this rapidly advancing field.

  5. The release properties of silver ions from Ag-nHA/TiO{sub 2}/PA66 antimicrobial composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xia; Li Jidong; Wang Li; Huang Di; Zuo Yi; Li Yubao, E-mail: nic7504@scu.edu.c [Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064 (China)

    2010-08-01

    Implant-associated bacterial infection can jeopardize the clinical success of implants and result in loss of supporting bone. The purpose of this study was to develop a novel porous scaffold with long-term antibacterial activity for bone repair or regeneration. Porous nano-hydroxyapatite/titania/polyamide66 scaffolds containing different amounts of silver ions (Ag-nHA/TiO{sub 2}/PA66) were prepared by a phase inversion technique. The release of silver ions from the porous scaffolds in simulated body fluid (SBF) and in the F12 cell culture medium was evaluated via atomic absorption spectrometry. The results showed that the release of Ag{sup +} was time and concentration dependent, increasing with the immersion time and the silver content in the scaffolds. On the other hand, the release property of Ag{sup +} was also influenced by the immersion medium. The cumulative Ag{sup +} release in the F12 medium with time increase parabolically, different from the linear increase or the zero-order release kinetics in the SBF medium. Compared to the slight fluctuation of the Ag{sup +} release rate in SBF during the whole immersion period, the initial fast release rate and the later sustained release rate of Ag{sup +} in the F12 medium could be more helpful for preventing implant-associated infection. Since the Ag-nHA/TiO{sub 2} particles were embedded in the PA66 matrix, the long-term-sustained release should be related both to the relaxation of PA macromolecular chains due to the penetration of water and to the slow release of the substituted Ag{sup +} ions in the HA lattice. The sustained Ag{sup +} release with time indicates that the composite scaffold is suitable for a long-term antimicrobial application during the scaffold-assisted bone repair or regeneration.

  6. Viral exploitation of actin:force-generation and scaffolding functions in viral infection

    Institute of Scientific and Technical Information of China (English)

    Mark Spear; Yuntao Wu

    2014-01-01

    As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efifcacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Speciifcally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surifng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

  7. Macromolecular Hydrogen Sulfide Donors Trigger Spatiotemporally Confined Changes in Cell Signaling.

    Science.gov (United States)

    Ercole, Francesca; Mansfeld, Friederike M; Kavallaris, Maria; Whittaker, Michael R; Quinn, John F; Halls, Michelle L; Davis, Thomas P

    2016-01-11

    Hydrogen sulfide (H2S) is involved in a myriad of cell signaling processes that trigger physiological events ranging from vasodilation to cell proliferation. Moreover, disturbances to H2S signaling have been associated with numerous pathologies. As such, the ability to release H2S in a cellular environment and stimulate signaling events is of considerable interest. Herein we report the synthesis of macromolecular H2S donors capable of stimulating cell signaling pathways in both the cytosol and at the cell membrane. Specifically, copolymers having pendent oligo(ethylene glycol) and benzonitrile groups were synthesized, and the benzonitrile groups were subsequently transformed into primary aryl thioamide groups via thionation using sodium hydrosulfide. These thioamide moieties could be incorporated into a hydrophilic copolymer or a block copolymer (i.e., into either the hydrophilic or hydrophobic domain). An electrochemical sensor was used to demonstrate release of H2S under simulated physiological conditions. Subsequent treatment of HEK293 cells with a macromolecular H2S donor elicited a slow and sustained increase in cytosolic ERK signaling, as monitored using a FRET-based biosensor. The macromolecular donor was also shown to induce a small, fast and sustained increase in plasma membrane-localized PKC activity immediately following addition to cells. Studies using an H2S-selective fluorescent probe in live cells confirmed release of H2S from the macromolecular donor over physiologically relevant time scales consistent with the signaling observations. Taken together, these results demonstrate that by using macromolecular H2S donors it is possible to trigger spatiotemporally confined cell signaling events. Moreover, the localized nature of the observed signaling suggests that macromolecular donor design may provide an approach for selectively stimulating certain cellular biochemical pathways.

  8. Composition of chitosan-hydroxyapatite-collagen composite scaffold evaluation after simulated body fluid immersion as reconstruction material

    Science.gov (United States)

    Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.

    2017-08-01

    Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.

  9. The Joint Structural Biology Group beam lines at the ESRF: Modern macromolecular crystallography

    CERN Document Server

    Mitchell, E P

    2001-01-01

    Macromolecular crystallography has evolved considerably over the last decade. Data sets in under an hour are now possible on high throughput beam lines leading to electron density and, possibly, initial models calculated on-site. There are five beam lines currently dedicated to macromolecular crystallography: the ID14 complex and BM-14 (soon to be superseded by ID-29). These lines handle over five hundred projects every six months and demand is increasing. Automated sample handling, alignment and data management protocols will be required to work efficiently with this demanding load. Projects developing these themes are underway within the JSBG.

  10. Aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes as revealed by microscopic radioautography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuji [Shinshu University, Matsumoto (Japan). Dept. of Anatomy and Cell Biology

    2007-07-01

    This mini-review reports aging changes of macromolecular synthesis in the mitochondria of mouse hepatocytes. We have observed the macromolecular synthesis, such as DNA, RNA and proteins, in the mitochondria of various mammalian cells by means of electron microscopic radioautography technique developed in our laboratory. The number of mitochondria per cell, number of labeled mitochondria per cell with 3H-thymidine, 3H-uridine and 3H-leucine, precursors for DNA, RNA and proteins, respectively, were counted and the labeling indices at various ages, from fetal to postnatal early days and several months to 1 and 2 years in senescence, were calculated, which showed variations due to aging. (author)

  11. THE STEADY/PULSATILE FLOW AND MACROMOLECULAR TRANSPORT IN T-BIFURCATION BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    李丁; 温功碧

    2003-01-01

    A numerical analysis of the steady and pulsatile, macromolecular( such as lowdensity lipopotein ( LDL ), Albumin ) transport in T-bifurcation was proposed. Theinfluence of Reynolds number and mass flow ratio etc. parameters on the velocity field andmass transport were calculated. The computational results predict that the blood flow factorsaffect the macromolecular distribution and the transport across the wall, it shows thathemodynamic play an important role in the process of atherosclerosis . The LDL and Albuminconcentration on the wall varies most greatly in flow bifurcation area where the wall shearstress varies greatly at the branching vessel and the atherosclerosis often appears there.

  12. Accounting for large amplitude protein deformation during in silico macromolecular docking.

    Science.gov (United States)

    Bastard, Karine; Saladin, Adrien; Prévost, Chantal

    2011-02-22

    Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA. We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success.

  13. Influence of protein crowder size on hydration structure and dynamics in macromolecular crowding

    Science.gov (United States)

    Wang, Po-hung; Yu, Isseki; Feig, Michael; Sugita, Yuji

    2017-03-01

    We investigate the effects of protein crowder sizes on hydration structure and dynamics in macromolecular crowded systems by all-atom MD simulations. The crowded systems consisting of only small proteins showed larger total surface areas than those of large proteins at the same volume fractions. As a result, more water molecules were trapped within the hydration shells, slowing down water diffusion. The simulation results suggest that the protein crowder size is another factor to determine the effect of macromolecular crowding and to explain the experimental kinetic data of proteins and DNAs in the presence of crowding agents.

  14. Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking

    Science.gov (United States)

    Bastard, Karine; Saladin, Adrien; Prévost, Chantal

    2011-01-01

    Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA. We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success. PMID:21541061

  15. Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking

    Directory of Open Access Journals (Sweden)

    Chantal Prévost

    2011-02-01

    Full Text Available Rapid progress of theoretical methods and computer calculation resources has turned in silico methods into a conceivable tool to predict the 3D structure of macromolecular assemblages, starting from the structure of their separate elements. Still, some classes of complexes represent a real challenge for macromolecular docking methods. In these complexes, protein parts like loops or domains undergo large amplitude deformations upon association, thus remodeling the surface accessible to the partner protein or DNA.We discuss the problems linked with managing such rearrangements in docking methods and we review strategies that are presently being explored, as well as their limitations and success.

  16. Phase Sensitive X-Ray Diffraction Imaging of Defects in Biological Macromolecular Crystals

    Science.gov (United States)

    Hu, Z. W.; Lai, B.; Chu, Y. S.; Cai, Z.; Mancini, D. C.; Thomas, B. R.; Chernov, A. A.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Characterization of defects and/or disorder in biological macromolecular crystals presents much greater challenges than in conventional small-molecule crystals. The lack of sufficient contrast of defects is often a limiting factor in x-ray diffraction topography of protein crystals. This has seriously hampered efforts to understand mechanisms and origins of formation of imperfections, and the role of defects as essential entities in the bulk of macromolecular crystals. In this report, we employ a phase sensitive x-ray diffraction imaging approach for augmenting the contrast of defects in protein crystals.

  17. Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra.

    Science.gov (United States)

    Chen, Teng-Hao; Wang, Le; Trueblood, Jonathan V; Grassian, Vicki H; Cohen, Seth M

    2016-08-03

    A new strategy was developed by using a polymer ligand, poly(isophthalic acid)(ethylene oxide), to modulate the growth of metal-organic polyhedra (MOP) crystals. This macromolecular modulator can effectively control the crystal habit of several different Cu24L24 (L = isophthalic acid derivatives) MOPs. The polymer also directed the formation of MOP structures under reaction conditions that only produce metal-organic frameworks in the absence of modulator. Moreover, the polymer also enabled the deposition of MOP crystals on glass surfaces. This macromolecular modulator strategy provides an innovative approach to control the morphology and assembly of MOP particles.

  18. Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction

    Indian Academy of Sciences (India)

    Manish Agrawal; S B Santra; Rajat Anand; Rajaram Swaminathan

    2008-08-01

    The cytoplasm of a living cell is crowded with several macromolecules of different shapes and sizes. Molecular diffusion in such a medium becomes anomalous due to the presence of macromolecules and diffusivity is expected to decrease with increase in macromolecular crowding. Moreover, many cellular processes are dependent on molecular diffusion in the cell cytosol. The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some of the experimental observations.

  19. Scaffold-independent Patterning of Cells using Magnetic Nanoparticles

    Science.gov (United States)

    Ghosh, Suvojit; Biswas, Moanaro; Elankumaran, Subbiah; Puri, Ishwar

    2013-03-01

    Spatial patterning of cells in vitro relies on direct contact of cells on to solid surfaces. Scaffold independent patterning of cells has never been achieved so far. Patterning of cells has wide applications including stem cell biology, tissue architecture and regenerative medicine besides fundamental biology. Magnetized cells in a suspension can be manipulated using an externally applied magnetic field enabling directed patterning. We magnetized mammalian cells by internalization of superparamagnetic nanoparticles coated with bovine serum albumin (BSA). A magnetic field is then used to arrange cells in a desired pattern on a substrate or in suspension. The control strategy is derived from the self-assembly of magnetic colloids in a liquid considering magnetostatic interactions. The range of achievable structural features promise novel experimental methods investigating the influence of tissue shape and size on cell population dynamics wherein Fickian diffusion of autocrine growth signals are known to play a significant role. By eliminating the need for a scaffold, intercellular adhesion mechanics and the effects of temporally regulated signals can be investigated. The findings can be applied to novel tissue engineering methods.

  20. Intervet symposium: bovine neosporosis.

    Science.gov (United States)

    Schetters, T; Dubey, J P; Adrianarivo, A; Frankena, K; Romero, J J; Pérez, E; Heuer, C; Nicholson, C; Russell, D; Weston, J

    2004-10-28

    This article summarises the most relevant data of presentations delivered at the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP)held in New Orleans, LA, USA, from 10 to 14 August 2003) in a symposium session on bovine neosporosis. The symposium was organised by Juan Muñoz-Bielsa,Wicher Holland, Enzo Foccoliand Theo Schetters (chairman). The focus was on the present state of knowledge of the biology, epidemiology(presented by J.P. Dubey) and immunology of Neospora infection (presented by A. Adrianarivo),with special emphasis on the prospects of vaccination of cattle against Neospora-induced abortion (presentations of K. Frankena (Costa Rican trial) and C. Heuer (New Zealand trial)).

  1. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis

    OpenAIRE

    2007-01-01

    International audience; Bovine herpesvirus 1 (BoHV-1), classified as an alphaherpesvirus, is a major pathogen of cattle. Primary infection is accompanied by various clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis, and systemic infection in neonates. When animals survive, a life-long latent infection is established in nervous sensory ganglia. Several reactivation stimuli can lead to viral re-excretion, which is responsible for the...

  2. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins.

    Science.gov (United States)

    Schüller-Ravoo, Sigrid; Teixeira, Sandra M; Feijen, Jan; Grijpma, Dirk W; Poot, André A

    2013-12-01

    The aim of this study is to investigate the applicability of flexible and elastic poly(trimethylene carbonate) (PTMC) structures prepared by stereolithography as scaffolds for cartilage tissue engineering. A three-armed methacrylated PTMC macromer with a molecular weight of 3100 g mol(-1) is used to build designed scaffolds with a pore diameter of 350 ± 12 μm and a porosity of 54.0 ± 2.2%. Upon seeding of bovine chondrocytes in the scaffolds, the cells adhere and spread on the PTMC surface. After culturing for 6 weeks, also cells with a round morphology are present, indicative of the differentiated chondrocyte phenotype. Sulphated glycosaminoglycans and fibrillar collagens are deposited by the cells. During culturing for 6 weeks, the compression moduli of the constructs increases 50% to approximately 100 kPa.

  3. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen

    Science.gov (United States)

    Wang, Tong; Li, Qing; Zhang, Gui-feng; Zhou, Gang; Yu, Xin; Zhang, Jing; Wang, Xiu-mei; Tang, Zhi-hui

    2016-06-01

    Bone scaffolds are critical in current implant and periodontal regeneration approaches. In this study, we prepared a novel composite type-I collagen and hydroxyapatite (HA)/β-tricaleium phosphate (TCP) scaffold (CHTS) by incorporating type-I collagen and bovine calcined bone granules, prepared as a mixture of 50% HA and 50% TCP, by freeze drying. We then characterized the CHTS and determined its cytotoxic effects. Additionally, ridge preservation experiments were carried out to evaluate the clinical effects of the CHTS. The results demonstrated that the composite scaffolds had good surface morphology and no cytotoxicity. Additionally, an in vivo experiment in an animal model showed that the CHTS performed equally as well as Bio-Oss Collagen, a widely used bone graft in ridge preservation. These findings revealed that the CHTS, which contained natural constituents of bone, could be used as a scaffold for bone regeneration and clinical use.

  4. Coaching Conversations: Enacting Instructional Scaffolding

    Science.gov (United States)

    Gibson, Sharan A.

    2011-01-01

    This study analyzed coaching conversations and interviews of four coach/teacher partnerships for specific ways in which kindergarten and first-grade teachers, and coaches, conceptualized instructional scaffolding for guided reading. Interview transcripts were coded for coaches' and teachers' specific hypotheses/ ideas regarding instructional…

  5. Enzyme-Mediated Ring-Opening Polymerization of Pentadecalactone to Obtain Biodegradable Polymer for Fabrication of Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    V. A. Korzhikov

    2013-01-01

    Full Text Available The optimization of enzyme-mediated polymerization of pentadecalactone (PDL was performed to obtain macromolecular products suitable for generation of 3D cell supports (scaffolds for bone tissue engineering. Such parameters as temperature, monomer/enzyme ratio, and monomer concentration were studied. The maximum molecular weight of synthesized polymers was about 90,000. Methods allowing the introduction of reactive double bonds into polypentadecalactone (polyPDL structure were developed. The macroporous matrices were obtained by modification of thermoinduced phase separation method.

  6. Chitin Scaffolds in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Tetsuya Furuike

    2011-03-01

    Full Text Available Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine.

  7. Scaffolding to Support Better Achievement in Mathematics

    Directory of Open Access Journals (Sweden)

    Nila Mareta Murdiyani

    2013-06-01

    Full Text Available According to the National Science Education Standards, teachers should emphasize students’ interests, needs, experiences, inquiry, collaboration and understanding in their classrooms. One of the characteristics of inquiry is using scaffolding. Because of the benefits, it is important to investigate the effect of scaffolding on achievement in mathematics. Based on some relevant previous studies, scaffolding can be used to support better achievement in mathematics. In scaffolding, teacher’s guidance decreases gradually and student’s autonomy increases gradually. By giving guidance, teacher revises student’s misconceptions; while by giving autonomy, teacher supports student’s motivation in learning. Minimizing misconceptions and maximizing motivation can lead students to better achievement in mathematics. Many studies in this paper emphasize the importance of teachers' contribution in giving scaffolding to their students. Further research should be conducted to investigate the role of other people surrounding the students, such as parent and peer, in supporting effective scaffolding. Keywords: scaffolding, achievement in mathematics, misconceptions, motivation

  8. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model

    Science.gov (United States)

    Hoffman, Grant T.; Soller, Eric C.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Gilmour, Travis M.; Gonnerman, Krista N.; McNally-Heintzelman, Karen M.

    2004-07-01

    Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.

  9. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data.

    Science.gov (United States)

    Varin, Thibault; Schuffenhauer, Ansgar; Ertl, Peter; Renner, Steffen

    2011-07-25

    Identification of meaningful chemical patterns in the increasing amounts of high-throughput-generated bioactivity data available today is an increasingly important challenge for successful drug discovery. Herein, we present the scaffold network as a novel approach for mapping and navigation of chemical and biological space. A scaffold network represents the chemical space of a library of molecules consisting of all molecular scaffolds and smaller "parent" scaffolds generated therefrom by the pruning of rings, effectively leading to a network of common scaffold substructure relationships. This algorithm provides an extension of the scaffold tree algorithm that, instead of a network, generates a tree relationship between a heuristically rule-based selected subset of parent scaffolds. The approach was evaluated for the identification of statistically significantly active scaffolds from primary screening data for which the scaffold tree approach has already been shown to be successful. Because of the exhaustive enumeration of smaller scaffolds and the full enumeration of relationships between them, about twice as many statistically significantly active scaffolds were identified compared to the scaffold-tree-based approach. We suggest visualizing scaffold networks as islands of active scaffolds.

  10. [STUDY ON MODIFICATION OF BIOMATERIALS OF ACELLULAR BOVINE PERICARDIUM WITH DIFFERENT CROSSLINKING REAGENTS].

    Science.gov (United States)

    Xiao, Hongtao; Tian, Shemin; Zha, Xinjian; Wei, Ying; Huang, Hongjun; Li, Yun; Yang, Huanna; Xia, Chengde; Niu, Xihua

    2015-10-01

    To investigate the effects of modification of acellular bovine pericardium with 1-ethyl-3-(3- dinethylami-nopropyl) carbodimide (EDC)/N-hydroxysuccininide (NHS) or genipin and find out the best crosslinking reagent. The cellular components of the bovine pericardiums were removed. The effects of decellularization were tested by HE staining. The acellular bovine pericardiums were crosslinked with EDC/NHS (EDC/NHS group) or genipin (genipin group). The properties of the crosslinked acellular matrix were evaluated by scanning electron microscope (SEM), matrix thickness, crosslinking index, mechanical property, denaturation temperature, enzymatic degradation, and cytotoxicity test before and after the crosslinking. Acellular bovine pericardium (ABP group) or normal bovine pericardium (control group) were harvested as controls. SEM showed that collagen fibers were reticulated in bovine pericardial tissues after crosslinked by EDC/NHS or genipin, and relative aperture of the collagen fiber was from 10 to 20 μm. The thickness and denaturation temperature of the scaffolds were increased significantly after crosslinking with EDC/NHS or genipin (P 0.05). The difference had no statistical significance in crosslinking index between EDC/NHS group and genipin group (t = 0.205, P = 0.218). The degradation rate in EDC/NHS group and genipin group was significantly lower than that in ABP group and control group (P 0.05). The break elongation in EDC/NHS group and genipin group were significantly increased than those in ABP group and control group (P 0.05). Cytotoxicity of genipin crosslinked tissue (grade 1) were much lower than that of EDC/NHS (grade 2) at 5 days. Acellular bovine pericardium crosslinked with genipin has better biocompatibility than EDC/NHS.

  11. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

      In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular crow

  12. A kinetic type extended model for dense gases and macromolecular fluids

    Directory of Open Access Journals (Sweden)

    M. Cristina Carrisi

    2005-05-01

    Full Text Available Extended thermodynamics is an important theory which is appreciated from mathematicians and physicists. Following its ideas and considering the macroscopic approach with suggestions from the kinetic one, we find in this paper, the solution of an interesting model: the model for dense gases and macromolecular fluids.

  13. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DEFF Research Database (Denmark)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    2017-01-01

    Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many...

  14. Isolation and chemical characterization of resistant macromolecular constituents in microalgae and marine sediments

    NARCIS (Netherlands)

    Gelin, F.

    1996-01-01

    The recognition of novel, insoluble and non-hydrolysable macromolecular constituents in protective tissues of fresh-water algae and higher plants has had a major impact on our understanding of the origin and fate of sedimentary organic matter (OM) in terrestrial and lacustrine deposits. The investig

  15. Researches, Publications and Achievements 2007-2011, Department of Macromolecular Science and Engineering

    OpenAIRE

    All teaching staffs at Department of Macromolecular Science and Engineering (19 members)

    2012-01-01

    Recent researches, publications and achievements are presented, which were made during these five years (2007-2011) by 19 members at Department of Macromolecular Science and Engineering. Listed publications include original papers, books, reviews and reports. Achievements such as invited lectures, patents, funds and financial supports, and awards are also listed.

  16. Synergy of DNA-bending nucleoid proteins and macromolecular crowd-condensing DNA

    NARCIS (Netherlands)

    Bessa Ramos, E.; Wintraecken, C.H.J.M.; Geerling, A.C.M.; Vries, de R.J.

    2007-01-01

    Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that

  17. The Postgraduate Study of Macromolecular Sciences at the University of Zagreb (1971-1980

    Directory of Open Access Journals (Sweden)

    Kunst, B.

    2008-07-01

    Full Text Available The postgraduate study of macromolecular sciences (PSMS was established at the University of Zagreb in 1971 as a university study in the time of expressed interdisciplinary permeation of natural sciences - physics, chemistry and biology, and application of their achievements in technologicaldisciplines. PSMS was established by a group of prominent university professors from the schools of Science, Chemical Technology, Pharmacy and Medicine, as well as from the Institute of Biology. The study comprised basic fields of macromolecular sciences: organic chemistry of synthetic macromolecules, physical chemistry of macromolecules, physics of macromolecules, biological macromolecules and polymer engineering with polymer application and processing, and teaching was performed in 29 lecture courses lead by 30 professors with their collaborators. PSMS ceased to exist with the change of legislation in Croatia in 1980, when the attitude prevailed to render back postgraduate studies to the university schools. During 9 years of existence of PSMS the MSci grade was awarded to 37 macromolecular experts. It was assessed that the PSMS some thirty years ago was an important example of modern postgraduate education as compared with the international postgraduate development. In concordance with the recent introduction of similar interdisciplinary studies in macromolecular sciences elsewhere in the world, the establishment of a modern interdisciplinary study in the field would be of importance for further development of these sciences in Croatia.

  18. Macromolecular Crowding Modulates Folding Mechanism of α/β Protein Apoflavodoxin

    Science.gov (United States)

    Homouz, D.; Stagg, L.; Wittungstafshede, P.; Cheung, M.

    2009-01-01

    Protein dynamics in cells may be different from that in dilute solutions in vitro since the environment in cells is highly concentrated with other macromolecules. This volume exclusion due to macromolecular crowding is predicted to affect both equilibrium and kinetic processes involving protein conformational changes. To quantify macromolecular crowding effects on protein folding mechanisms, here we have investigated the folding energy landscape of an alpha/beta protein, apoflavodoxin, in the presence of inert macromolecular crowding agents using in silico and in vitro approaches. By coarse-grained molecular simulations and topology-based potential interactions, we probed the effects of increased volume fraction of crowding agents (phi_c) as well as of crowding agent geometry (sphere or spherocylinder) at high phi_c. Parallel kinetic folding experiments with purified Desulfovibro desulfuricans apoflavodoxin in vitro were performed in the presence of Ficoll (sphere) and Dextran (spherocylinder) synthetic crowding agents. In conclusion, we have identified in silico crowding conditions that best enhance protein stability and discovered that upon manipulation of the crowding conditions, folding routes experiencing topological frustrations can be either enhanced or relieved. The test-tube experiments confirmed that apoflavodoxin's time-resolved folding path is modulated by crowding agent geometry. We propose that macromolecular crowding effects may be a tool for manipulation of protein folding and function in living cells.

  19. Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites

    Science.gov (United States)

    Sephton, Mark A.; Love, Gordon D.; Meredith, Will; Snape, Colin E.; Sun, Cheng-Gong; Watson, Jonathan S.

    2005-10-01

    The carbonaceous chondrite meteorites are fragments of asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. The major organic component in these meteorites is a macromolecular phase that is resistant to solvent extraction. The information contained within macromolecular material can be accessed by degradative techniques such as pyrolysis. Hydropyrolysis refers to pyrolysis assisted by high hydrogen gas pressures and a dispersed sulphided molybdenum catalyst. Hydropyrolysis of the Murchison macromolecular material successfully releases much greater quantities of hydrocarbons than traditional pyrolysis techniques (twofold greater than hydrous pyrolysis) including significant amounts of high molecular weight polyaromatic hydrocarbons (PAH) such as phenanthrene, carbazole, fluoranthene, pyrene, chrysene, perylene, benzoperylene and coronene units with varying degrees of alkylation. When hydropyrolysis products are collected using a silica trap immersed in liquid nitrogen, the technique enables the solubilisation and retention of compounds with a wide range of volatilities (i.e. benzene to coronene). This report describes the hydropyrolysis method and the information it can provide about meteorite macromolecular material constitution.

  20. Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold

    Directory of Open Access Journals (Sweden)

    Takeshi Ikeda

    2014-01-01

    Full Text Available Cells, growth factors, and scaffolds are the three main factors required to create a tissue-engineered construct. After the appearance of bovine spongiform encephalopathy (BSE, considerable attention has therefore been focused on nonbovine materials. In this study, we examined the properties of a chitosan porous scaffold. A porous chitosan sponge was prepared by the controlled freezing and lyophilization of different concentrations of chitosan solutions. The materials were examined by scanning electron microscopy, and the porosity, tensile strength, and basic fibroblast growth factor (bFGF release profiles from chitosan sponge were examined in vitro. The morphology of the chitosan scaffolds presented a typical microporous structure, with the pore size ranging from 50 to 200 μm. The porosity of chitosan scaffolds with different concentrations was approximately 75–85%. A decreasing tendency for porosity was observed as the concentration of the chitosan increased. The relationship between the tensile properties and chitosan concentration indicated that the ultimate tensile strength for the sponge increased with a higher concentration. The in vitro bFGF release study showed that the higher the concentration of chitosan solution became, the longer the releasing time of the bFGF from the chitosan sponge was.

  1. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    Science.gov (United States)

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.

  2. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-01-01

    Aim: Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. Materials & methods: From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Results: Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. Conclusion: A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base.

  3. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry.

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-12-01

    Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base.

  4. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    Science.gov (United States)

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of D-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications.

  5. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  6. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  7. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions.

    Science.gov (United States)

    Nita, L E; Chiriac, A P; Bercea, M; Asandulesa, M; Wolf, Bernhard A

    2017-02-01

    Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37°C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential determination, as well as in solid state by AFM microscopy and dielectric spectroscopy. The experimental data have shown that the interpolymer complex formation occurs for a PAS/BSA molar ratio around 0.541.

  8. The flexibility of hydrated bovine serum albumin investigated by THz spectroscopy and molecular modeling

    Science.gov (United States)

    Mernea, Maria; Calborean, Octavian; Petrescu, Livia; Dinca, Mihai P.; Leca, Aurel; Apostol, Dan; Dascalu, Traian; Mihailescu, Dan

    2010-05-01

    The native cellular environment represents a crowded system comprising high concentrations of soluble molecules that interact mostly in a nonspecific manner. Some of the macromolecular crowding effects occurring in biological media are conformational changes and macromolecular associations. Most of our knowledge on protein folding and protein-protein interactions was acquired from experiments on proteins in dilute solutions or from theoretical models of isolated proteins in either explicit or implicit solvent. Here we present a 50% w/w bovine serum albumin (BSA) solution model that comprises two solute molecules included in a single water box. We determined the vibration spectrum of the 50% w/w BSA solution using THz spectroscopy and we calculated the theoretical THz spectrum. We observed a good correlation between the experimental and theoretical spectra for the frequency range of 0.3 - 1.5 THz. We also investigated the contribution of each BSA molecule to the solution THz spectrum by simulating THz spectra of the two BSA molecules from the solution model and water, each accounting for a 50% w/w BSA solution. The spectra appear to be similar. As the two molecules in our solution model have different conformations, we investigated the importance of the apparently insignificant differences between simulated THz spectra of the two proteins. We found that the differences should be considered significant, as they reflect differences between the flexibility of the two BSA molecules.

  9. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    function. At the molecular level PICK1 contains both a BAR and a PDZ domain making it quite unique. Especially the specificity and promiscuity of the PICK1 PDZ domain seems to be more complicated than normally seen for PDZ domains. Also, the ability of PICK1 to form dimeric structures via its central BAR...... by the spatial architecture of the synapse itself. In this thesis, the molecular scaffolding mechanisms of PICK1 have been investigated in both isolated and near native conditions. Our findings have significantly benefitted the general understanding of how PICK1 and PDZ domain scaffolding works. In the first...... later in evolution to accommodate increasingly diverse PDZ domain ligands. Our findings provide basis for development of new and more specific peptide inhibitors. In the second study, we utilized SAXS, NMR spectroscopy, MD simulations and various other biochemical methods, to construct a full...

  10. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    Science.gov (United States)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  11. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Science.gov (United States)

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  12. Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors

    Science.gov (United States)

    Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...

  13. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Science.gov (United States)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  14. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.

    Science.gov (United States)

    Ozkizilcik, Asya; Tuzlakoglu, Kadriye

    2014-03-01

    Tissue engineering using scaffolds and growth factors is a crucial approach in bone regeneration and repair. The combination of bioactive agents carrying microparticles with porous scaffolds can be an efficient solution when controlled release of bio-signalling molecules is required. The present study was based on a recent approach using a biodegradable scaffold and protein-loaded microparticles produced in an innovative manner in which protein loss is minimized during the loading process. Bovine serum albumin (BSA)-loaded gelatin microparticles were obtained by grinding freeze-dried membranes of gelatin and BSA. Porous scaffolds (250-355 µm pore size) produced from a polyactide (PLLA) and polycaprolactone (PCL) blend by salt leaching/supercritical CO₂ methods were used for the experiments. Gelatin microparticles containing three different BSA amounts were incorporated into the porous scaffolds by using a surfactant. In vitro release profiles showed up to 90% protein loading efficiency. This novel method appears to be an effective approach for producing particles that can minimize protein loss during the loading process.

  15. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  16. Oriented Collagen Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shohta Kodama

    2012-03-01

    Full Text Available Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines.

  17. Scaffolding in teacher-student interaction: a decade of research

    NARCIS (Netherlands)

    van de Pol, J.; Volman, M.; Beishuizen, J.

    2010-01-01

    Although scaffolding is an important and frequently studied concept, much discussion exists with regard to its conceptualizations, appearances, and effectiveness. Departing from the last decade’s scaffolding literature, this review scrutinizes these three areas of scaffolding. First, contingency, fa

  18. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture.

    Science.gov (United States)

    Ye, Lin; Cao, Jie; Chen, Lamei; Geng, Xue; Zhang, Ai-Ying; Guo, Lian-Rui; Gu, Yong-Quan; Feng, Zeng-Guo

    2015-12-01

    A continuous electrospinning technique was applied to fabricate double layer tubular tissue engineering vascular graft (TEVG) scaffold. The luminal layer was made from poly(ɛ-caprolac-tone)(PCL) ultrafine fibers via common single axial electrospinning followed by the outer layer of core-shell structured nanofibers via coaxial electrospinning. For preparing the outer layernano-fibers, the PCL was electrospun into the shell and both bovine serum albumin (BSA) and tetrapeptide val-gal-pro-gly (VAPG) were encapsulated into the core. The core-shell structure in the outer layer fibers was observed by transmission electron microscope (TEM). The in vitro release tests exhibited the sustainable release behavior of BSA and VAPG so that they provided a better cell growth environment in the interior of tubular scaffold wall. The in vitro culture of smooth muscle cells (SMCs) demonstrated their potential to penetrate into the scaffold wall for the 3D cell culture. Subsequently, 3D cell coculture was conducted. First, SMCs were seeded on the luminal surface of the scaffold and cultured for 5 days, and then endothelial cells (ECs) were also seeded on the luminal surface and cocultured with SMCs for another 2 days. After stained with antibodies, 3D cell distribution on the scaffold was revealed by confocal laser scanning microscopy (CLSM) where ECs were mainly located on the luminal surface whereas SMCs penetrated into the surface and distributed inside the scaffold wall. This double layer tubular scaffold with 3D cell distribution showed the promise to develop it into a novel TEVG for clinical trials in the near future.

  19. Metacognitive scaffolding during collaborative learning: a promising combination

    OpenAIRE

    Molenaar, Inge; Sleegers, Peter; Boxtel, van, M.

    2014-01-01

    This article explores the effect of computerized scaffolding with different scaffolds (structuring vs. problematizing) on intra-group metacognitive interaction. In this study, we investigate 4 types of intra-group social metacognitive activities; namely ignored, accepted, shared and co-constructed metacognitive activities in 18 triads (6 control groups; no scaffolds and 12 experimental groups; 6 structuring scaffolds and 6 problematizing scaffolds).We found that groups receiving scaffolding s...

  20. Advances in electron microscopy: A qualitative view of instrumentation development for macromolecular imaging and tomography.

    Science.gov (United States)

    Schröder, Rasmus R

    2015-09-01

    Macromolecular imaging and tomography of ice embedded samples has developed into a mature imaging technology, in structural biology today widely referred to simply as cryo electron microscopy.(1) While the pioneers of the technique struggled with ill-suited instruments, state-of-the-art cryo microscopes are now readily available and an increasing number of groups are producing excellent high-resolution structural data of macromolecular complexes, of cellular organelles, or the morphology of whole cells. Instrumentation developers, however, are offering yet more novel electron optical devices, such as energy filters and monochromators, aberration correctors or physical phase plates. Here we discuss how current instrumentation has already changed cryo EM, and how newly available instrumentation - often developed in other fields of electron microscopy - may further develop the use and applicability of cryo EM to the imaging of single isolated macromolecules of smaller size or molecules embedded in a crowded cellular environment.

  1. Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects.

    Science.gov (United States)

    Vazquez, Alexei

    2010-05-21

    Macromolecules occupy between 34% and 44% of the cell cytoplasm, about half the maximum packing density of spheres in three dimension. Yet, there is no clear understanding of what is special about this value. To address this fundamental question we investigate the effect of macromolecular crowding on cell metabolism. We develop a cell scale flux balance model capturing the main features of cell metabolism at different nutrient uptakes and macromolecular densities. Using this model we show there are two metabolic regimes at low and high nutrient uptakes. The latter regime is characterized by an optimal cytoplasmatic density where the increase of reaction rates by confinement and the decrease by diffusion slow-down balance. More important, the predicted optimal density is in the range of the experimentally determined density of Escherichia coli.

  2. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, S.B.; Harrison, B.

    1987-05-01

    Macromolecular crowding extends the range of ionic conditions supporting high DNA polymerase reaction rates. Reactions tested were nick translation and gap-filling by DNA polymerase I of E. coli, nuclease and polymerase activities of the large fragment of that polymerase, and polymerization by the T4 DNA polymerase. For all of these reactions, high concentrations of nonspecific polymers increased enzymatic activity under otherwise inhibitory conditions resulting from relatively high ionic strength. The primary mechanism of the polymer effect seems to be to increase the binding of polymerase to DNA. They suggest that this effect of protein-DNA complexes is only one example of a general metabolic buffering action of crowded solutions on a variety of macromolecular interactions.

  3. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ursby, Thomas, E-mail: thomas.ursby@maxlab.lu.se; Unge, Johan; Appio, Roberto [Lund University, POB 118, Lund SE-221 00 (Sweden); Logan, Derek T. [Lund University, POB 124, Lund SE-221 00 (Sweden); Fredslund, Folmer; Svensson, Christer; Larsson, Krister; Labrador, Ana [Lund University, POB 118, Lund SE-221 00 (Sweden); Thunnissen, Marjolein M. G. M. [Lund University, POB 124, Lund SE-221 00 (Sweden)

    2013-07-01

    The updated macromolecular crystallography beamline I911-3 at the MAX II storage ring is described. The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010–2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.

  4. Romp: The Method of Choice for Precise Macromolecular Engineering and Synthesis of Smart Materials

    Science.gov (United States)

    Khosravi, Ezat; Castle, Thomas C.; Kujawa, Margaret; Leejarkpai, Jan; Hutchings, Lian R.; Hine, Peter J.

    The recent advances in olefin metathesis highlight the impact of Ring Opening Metathesis Polymerisation (ROMP) as a powerful technique for macromolecular engineering and synthesis of smart materials with well-defined structures. ROMP has attracted a considerable research attention recently particularly by industry largely due to the development of well-defined metal complexes as initiators and also because of the award of the Noble Prize for Chemistry in 2005 to three scientists (Chauvin, Grubbs, Schrock) for their contributions in this area. This chapter discusses several interesting examples in order to demonstrate that ROMP is a power tool in macromolecular engineering and that it allows the design and synthesis of polymers with novel topologies.

  5. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    Science.gov (United States)

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  6. 3DEM Loupe: Analysis of macromolecular dynamics using structures from electron microscopy.

    Science.gov (United States)

    Nogales-Cadenas, R; Jonic, S; Tama, F; Arteni, A A; Tabas-Madrid, D; Vázquez, M; Pascual-Montano, A; Sorzano, C O S

    2013-07-01

    Electron microscopy (EM) provides access to structural information of macromolecular complexes in the 3-20 Å resolution range. Normal mode analysis has been extensively used with atomic resolution structures and successfully applied to EM structures. The major application of normal modes is the identification of possible conformational changes in proteins. The analysis can throw light on the mechanism following ligand binding, protein-protein interactions, channel opening and other functional macromolecular movements. In this article, we present a new web server, 3DEM Loupe, which allows normal mode analysis of any uploaded EM volume using a user-friendly interface and an intuitive workflow. Results can be fully explored in 3D through animations and movies generated by the server. The application is freely available at http://3demloupe.cnb.csic.es.

  7. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Aller, Pierre [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz; Cameron, Alex [Imperial College, London SW7 2AZ (United Kingdom); Axford, Danny; Owen, Robin L. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Armour, Wes [Oxford e-Research Centre (OeRC), Keble Road, Oxford OX1 3QG (United Kingdom); Waterman, David G. [Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2013-08-01

    A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained. The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.

  8. Material Properties of Inorganic Bovine Cancellous Bovine: Nukbone

    Science.gov (United States)

    Piña, Cristina; Palma, Benito; Munguía, Nadia

    2006-09-01

    In this work, inorganic cancellous bovine bone implants prepared in the Instituto de Investigaciones en Materiales — UNAM were characterized. Elementary chemical analysis was made, toxic elements concentration were measured and the content of organic matter also. These implants fulfill all the requirements of the ASTM standards, and therefore it is possible their use in medical applications.

  9. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    Science.gov (United States)

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix.

  10. STUDIES ON PAN MACROMOLECULAR SEMICONDUCTING FIBER 1. PREPARATION OF PAN CONDUCTING FIBER TREATED BY STANNIC CHLORIDE AND ITS SEMICONDUCTING BEHAVIOUR

    Institute of Scientific and Technical Information of China (English)

    WANG Dexi; CUI Dayuan; LUO Boliang; WANG Xiugang; WU Renjie

    1984-01-01

    The PAN fiber treated by Lewis acid (e.g. stannic chloride) could be transformed into a macromolecular conducting fiber by further thermal treatment. Depending on thermal treatment condition the resistance of the fiber varied from 103 to 1012 Ω and kept stable after hydrolysis. The fiber has enough strength to be processed by various means. This is a new kind of macromolecular semiconducting fiber having some characteristics similar to those of organic semiconductors.

  11. STUDY ON HYDROLYSIS OF MACROMOLECULAR GELATIN WITH ENZYMES IN COMBINATION MODE

    Institute of Scientific and Technical Information of China (English)

    Ya-qin Huang; Rui Guan; Ming-zhi Huang

    2004-01-01

    The enzymatic hydrolysis of macromolecular gelatin with AS1.398 neutral protease, bromelain and their combinations was studied by estimating the molecular weights of their hydrolytic products. It was discovered that the products hydrolyzed by using combination enzymes had lower molecular weight than those obtained by using single ones,and the kind of enzymes, their combination mode and addition sequence are effective ways to control the molecular weights of gelatin hydrolyzates.

  12. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination.

    Science.gov (United States)

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel

    2016-10-03

    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  13. CplexA: a Mathematica package to study macromolecular-assembly control of gene expression

    OpenAIRE

    Vilar, J. M. G.; Saiz, L

    2010-01-01

    Summary: Macromolecular assembly vertebrates essential cellular processes, such as gene regulation and signal transduction. A major challenge for conventional computational methods to study these processes is tackling the exponential increase of the number of configurational states with the number of components. CplexA is a Mathematica package that uses functional programming to efficiently compute probabilities and average properties over such exponentially large number of states from the en...

  14. Controlling Macromolecular Topology with Genetically Encoded SpyTag-SpyCatcher Chemistry

    OpenAIRE

    Zhang, Wen-Bin; Sun, Fei; Tirrell, David A.; Arnold, Frances H.

    2013-01-01

    Control of molecular topology constitutes a fundamental challenge in macromolecular chemistry. Here we describe the synthesis and characterization of artificial elastin-like proteins (ELPs) with unconventional nonlinear topologies including circular, tadpole, star, and H-shaped proteins using genetically encoded SpyTag–SpyCatcher chemistry. SpyTag is a short polypeptide that binds its protein partner SpyCatcher and forms isopeptide bonds under physiological conditions. Sequences encoding SpyT...

  15. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    Science.gov (United States)

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

  16. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation.

    Science.gov (United States)

    Man, Zhentao; Yin, Ling; Shao, Zhenxing; Zhang, Xin; Hu, Xiaoqing; Zhu, Jingxian; Dai, Linghui; Huang, Hongjie; Yuan, Lan; Zhou, Chunyan; Chen, Haifeng; Ao, Yingfang

    2014-06-01

    Electrospinning is a promising technology for the fabrication of scaffolds in cartilage tissue engineering. Two other important elements for tissue engineering are seed cells and bioactive factors. Bone marrow-derived stem cells (BMSCs) and rhTGF-β1 are extensively studied for cartilage regeneration. However, little is known about scaffolds that can both specifically enrich BMSCs and release rhTGF-β1 to promote chondrogenic differentiation of the incorporated BMSCs. In this study, we first fabricated coaxial electrospun fibers using a polyvinyl pyrrolidone/bovine serum albumin/rhTGF-β1 composite solution as the core fluid and poly(ε-caprolactone) solution as the sheath fluid. Structural analysis revealed that scaffold fibers were relatively uniform with a diameter of 674.4 ± 159.6 nm; the core-shell structure of coaxial fibers was homogeneous and proteins were evenly distributed in the core. Subsequently, the BMSC-specific affinity peptide E7 was conjugated to the coaxial electrospun fibers to develop a co-delivery system of rhTGF-β1 and E7. The results of (1)H nuclear magnetic resonance indicate that the conjugation between the E7 and scaffolds was covalent. The rhTGF-β1 incorporated in E7-modified scaffolds could maintain sustained release and bioactivity. Cell adhesion, spreading, and DNA content analyses indicate that the E7 promoted BMSC initial adhesion, and that the scaffolds containing both E7 and rhTGF-β1 (CBrhTE) were the most favorable for BMSC survival. Meanwhile, CBrhTE scaffolds could promote the chondrogenic differentiation ability of BMSCs. Overall, the CBrhTE scaffold could synchronously improve all three of the basic components required for cartilage tissue engineering in vitro, which paves the road for designing and building more efficient tissue scaffolds for cartilage repair.

  17. In Vitro and In Vivo Evaluation of Microparticulate Drug Delivery Systems Composed of Macromolecular Prodrugs

    Directory of Open Access Journals (Sweden)

    Yoshiharu Machida

    2008-08-01

    Full Text Available Macromolecular prodrugs are very useful systems for achieving controlled drug release and drug targeting. In particular, various macromolecule-antitumor drug conjugates enhance the effectiveness and improve the toxic side effects. Also, polymeric micro- and nanoparticles have been actively examined and their in vivo behaviors elucidated, and it has been realized that their particle characteristics are very useful to control drug behavior. Recently, researches based on the combination of the concepts of macromolecular prodrugs and micro- or nanoparticles have been reported, although they are limited. Macromolecular prodrugs enable drugs to be released at a certain controlled release rate based on the features of the macromolecule-drug linkage. Micro- and nanoparticles can control in vivo behavior based on their size, surface charge and surface structure. These merits are expected for systems produced by the combination of each concept. In this review, several micro- or nanoparticles composed of macromolecule-drug conjugates are described for their preparation, in vitro properties and/or in vivo behavior.

  18. Macromolecular (pro)drugs with concurrent direct activity against the hepatitis C virus and inflammation.

    Science.gov (United States)

    Wohl, Benjamin M; Smith, Anton A A; Jensen, Bettina E B; Zelikin, Alexander N

    2014-12-28

    Macromolecular prodrugs (MPs) are a powerful tool to alleviate side-effects and improve the efficacy of the broad-spectrum antiviral agent ribavirin. In this work, we sought an understanding of what makes an optimal formulation within the macromolecular parameter space--nature of the polymer carrier, average molar mass, drug loading, or a good combination thereof. A panel of MPs based on biocompatible synthetic vinylic and (meth)acrylic polymers was tested in an anti-inflammatory assay with relevance to alleviating inflammation in the liver during hepatitis C infection. Pristine polymer carriers proved to have a pronounced anti-inflammatory activity, a notion which may prove significant in developing MPs for antiviral and anticancer treatments. With conjugated ribavirin, MPs revealed enhanced activity but also higher toxicity. Therapeutic windows and therapeutic indices were determined and discussed to reveal the most potent formulation and those with optimized safety. Polymers were also tested as inhibitors of replication of the hepatitis C viral RNA using a subgenomic viral replicon system. For the first time, negatively charged polymers are revealed to have an intracellular activity against hepatitis C virus replication. Concerted activity of the polymer and ribavirin afforded MPs which significantly increased the therapeutic index of ribavirin-based treatment. Taken together, the systematic investigation of the macromolecular space identified lead candidates with high efficacy and concurrent direct activity against the hepatitis C virus and inflammation.

  19. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics

    Science.gov (United States)

    Moffatt, Ryan; Ma, Buyong; Nussinov, Ruth

    2016-01-01

    Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts. PMID:27124275

  20. Implementation of remote monitoring and diffraction evaluation systems at the Photon Factory macromolecular crystallography beamlines

    Science.gov (United States)

    Yamada, Yusuke; pHonda, Nobuo; Matsugaki, Naohiro; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi

    2008-01-01

    Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client–server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system. PMID:18421163

  1. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.

    Directory of Open Access Journals (Sweden)

    Tatiana Maximova

    2016-04-01

    Full Text Available Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.

  2. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination.

    Science.gov (United States)

    Wlodawer, Alexander; Minor, Wladek; Dauter, Zbigniew; Jaskolski, Mariusz

    2013-11-01

    The number of macromolecular structures deposited in the Protein Data Bank now approaches 100,000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation.

  3. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    , structures the students' activity, and interactively supports subject learning. A PracSIP facilitates students' development of complex competencies, and at the same time it supports the students' development of skills defined in the curriculum. The paper introduces the concept, presents the theoretical......A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  4. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  5. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  6. Information Scaffolding: Application to Technical Animation

    Science.gov (United States)

    Newman, Catherine Claire

    2010-01-01

    Information Scaffolding is a user-centered approach to information design; a method devised to aid "everyday" authors in information composition. Information Scaffolding places a premium on audience-centered documents by emphasizing the information needs and motivations of a multimedia document's intended audience. The aim of this…

  7. Teaching language teachers scaffolding professional learning

    CERN Document Server

    Maggioli, Gabriel Diaz

    2012-01-01

    Teaching Language Teachers: Scaffolding Professional Learning provides an updated view of as well as a reader-friendly introduction to the field of Teaching Teachers, with special reference to language teaching. By taking a decidedly Sociocultural perspective, the book addresses the main role of the Teacher of Teachers (ToT) as that of scaffolding the professional learning of aspiring teachers.

  8. Composite scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Moutos, Franklin T; Guilak, Farshid

    2008-01-01

    Tissue engineering remains a promising therapeutic strategy for the repair or regeneration of diseased or damaged tissues. Previous approaches have typically focused on combining cells and bioactive molecules (e.g., growth factors, cytokines and DNA fragments) with a biomaterial scaffold that functions as a template to control the geometry of the newly formed tissue, while facilitating the attachment, proliferation, and differentiation of embedded cells. Biomaterial scaffolds also play a crucial role in determining the functional properties of engineered tissues, including biomechanical characteristics such as inhomogeneity, anisotropy, nonlinearity or viscoelasticity. While single-phase, homogeneous materials have been used extensively to create numerous types of tissue constructs, there continue to be significant challenges in the development of scaffolds that can provide the functional properties of load-bearing tissues such as articular cartilage. In an attempt to create more complex scaffolds that promote the regeneration of functional engineered tissues, composite scaffolds comprising two or more distinct materials have been developed. This paper reviews various studies on the development and testing of composite scaffolds for the tissue engineering of articular cartilage, using techniques such as embedded fibers and textiles for reinforcement, embedded solid structures, multi-layered designs, or three-dimensionally woven composite materials. In many cases, the use of composite scaffolds can provide unique biomechanical and biological properties for the development of functional tissue engineering scaffolds.

  9. Teaching Writing: A Multilayered Participatory Scaffolding Practice

    Science.gov (United States)

    Dix, Stephanie

    2016-01-01

    This article adds to the research on teachers' writing pedagogy. It reviews and challenges the research literature on scaffolding as an instructional practice and presents a more inclusive framework for analysis. As student participation and voice were absent from much of the literature, a participatory scaffolding framework was developed to…

  10. Diprosopia em bovino Bovine diprosopus

    Directory of Open Access Journals (Sweden)

    I.T. Rotta

    2008-04-01

    Full Text Available This work describes a malformation in one newborn female bovine, with two faces and two skull fused, showing one single head. Duplications of the nasal and oral structures, tetraofthalmy, two brains, one single cerebellum, and pons were observed. The right thyroid was hypertrophic and the other organs had normal morphology. Every change observed in this case was compatibles with diprosopus.

  11. Bovine spongiform encephalopathy in sheep?

    NARCIS (Netherlands)

    Schreuder, B.E.C.; Somerville, R.A.

    2003-01-01

    Bovine spongiform encephalopathy (BSE) in sheep has not been identified under natural conditions at the time of writing and remains a hypothetical issue. However, rumours about the possible finding of a BSE-like isolate in sheep have led to great unrest within the sheep industry, among the general p

  12. Nanofibrous scaffolds for dental and craniofacial applications.

    Science.gov (United States)

    Gupte, M J; Ma, P X

    2012-03-01

    Tissue-engineering solutions often harness biomimetic materials to support cells for functional tissue regeneration. Three-dimensional scaffolds can create a multi-scale environment capable of facilitating cell adhesion, proliferation, and differentiation. One such multi-scale scaffold incorporates nanofibrous features to mimic the extracellular matrix along with a porous network for the regeneration of a variety of tissues. This review will discuss nanofibrous scaffold synthesis/fabrication, biological effects of nanofibers, their tissue- engineering applications in bone, cartilage, enamel, dentin, and periodontium, patient-specific scaffolds, and incorporated growth factor delivery systems. Nanofibrous scaffolds cannot only further the field of craniofacial regeneration but also advance technology for tissue-engineered replacements in many physiological systems.

  13. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications

    Science.gov (United States)

    Liang, Dehai; Hsiao, Benjamin S.; Chu, Benjamin

    2009-01-01

    Functional nanofibrous scaffolds produced by electrospinning have great potential in many biomedical applications, such as tissue engineering, wound dressing, enzyme immobilization and drug (gene) delivery. For a specific successful application, the chemical, physical and biological properties of electrospun scaffolds should be adjusted to match the environment by using a combination of multi-component compositions and fabrication techniques where electrospinning has often become a pivotal tool. The property of the nanofibrous scaffold can be further improved with innovative development in electrospinning processes, such as two-component electrospinning and in-situ mixing electrospinning. Post modifications of electrospun membranes also provide effective means to render the electrospun scaffolds with controlled anisotropy and porosity. In this review, we review the materials, techniques and post modification methods to functionalize electrospun nanofibrous scaffolds suitable for biomedical applications. PMID:17884240

  14. The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase

    Science.gov (United States)

    Rajapaksha Mudalige, Ajith Rathnaweera

    Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40

  15. 77 FR 15847 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Science.gov (United States)

    2012-03-16

    ... more than 150 tissue and bodily fluid samples are collected from each animal and analyzed by... been fed ruminant protein, other than milk protein, during their lifetime; The bovines from which the... from animals that are not known to have been fed ruminant protein, other than milk protein,...

  16. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Hwang, Yongsung; Sangaj, Nivedita; Varghese, Shyni

    2010-10-01

    Macroporous networks of poly(ethylene glycol) (PEG) with interconnected pores can be created by cryogelation techniques. In this study, we describe the potential application of such PEG cryogels as scaffolds for cartilage tissue engineering. Three-dimensional macroporous cryogels were evaluated for chondrocyte growth and production of cartilage-specific extracellular matrix (ECM). Seeded primary bovine chondrocytes showed homogeneous distribution throughout the cryogels. DNA content suggests continuous cell proliferation over 4 weeks of in vitro culture. Analysis of the composition of cell-secreted ECM showed a culture-time-dependent increase in the amount of glycosaminoglycan and collagen. The production of ECM by chondrocytes was confirmed using scanning electron microscopy analysis. Further histological and immunohistological analysis of the cell-laden scaffold confirmed the presence of accumulated cartilage-specific ECM within the scaffold. The interconnected macroporous network promoted diffusion of cell-secreted matrix within the cryogels. Our results indicated that interconnected macroporous PEG cryogels successfully supported attachment, viability, proliferation, and biosynthetic activity of seeded chondrocytes.

  17. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  18. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  19. Scaffolding for Argumentation in Hypothetical and Theoretical Biology Concepts

    Science.gov (United States)

    Weng, Wan-Yun; Lin, Yu-Ren; She, Hsiao-Ching

    2017-01-01

    The present study investigated the effects of online argumentation scaffolding on students' argumentation involving hypothetical and theoretical biological concepts. Two types of scaffolding were developed in order to improve student argumentation: continuous scaffolding and withdraw scaffolding. A quasi-experimental design was used with four…

  20. A second generation radiation hybrid map to aid the assembly of the bovine genome sequence

    Directory of Open Access Journals (Sweden)

    Janitz Michal

    2006-11-01

    Full Text Available Abstract Background Several approaches can be used to determine the order of loci on chromosomes and hence develop maps of the genome. However, all mapping approaches are prone to errors either arising from technical deficiencies or lack of statistical support to distinguish between alternative orders of loci. The accuracy of the genome maps could be improved, in principle, if information from different sources was combined to produce integrated maps. The publicly available bovine genomic sequence assembly with 6× coverage (Btau_2.0 is based on whole genome shotgun sequence data and limited mapping data however, it is recognised that this assembly is a draft that contains errors. Correcting the sequence assembly requires extensive additional mapping information to improve the reliability of the ordering of sequence scaffolds on chromosomes. The radiation hybrid (RH map described here has been contributed to the international sequencing project to aid this process. Results An RH map for the 30 bovine chromosomes is presented. The map was built using the Roslin 3000-rad RH panel (BovGen RH map and contains 3966 markers including 2473 new loci in addition to 262 amplified fragment-length polymorphisms (AFLP and 1231 markers previously published with the first generation RH map. Sequences of the mapped loci were aligned with published bovine genome maps to identify inconsistencies. In addition to differences in the order of loci, several cases were observed where the chromosomal assignment of loci differed between maps. All the chromosome maps were aligned with the current 6× bovine assembly (Btau_2.0 and 2898 loci were unambiguously located in the bovine sequence. The order of loci on the RH map for BTA 5, 7, 16, 22, 25 and 29 differed substantially from the assembled bovine sequence. From the 2898 loci unambiguously identified in the bovine sequence assembly, 131 mapped to different chromosomes in the BovGen RH map. Conclusion Alignment of the

  1. Semiotic Scaffolding in Living Systems

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2008-01-01

    The apparently purposeful nature of living systems is obtained through a sophisticated network of semiotic controls whereby biochemical, physiological and behavioral processes become tuned to the needs of the system. The operation of these semiotic controls takes place and is enabled across...... a diversity of levels. Such semiotic controls may be distinguished from ordinary deterministic control mechanisms through an inbuilt anticipatory capacity based on a distinct kind of causation that I call here "semiotic causation" to denote the bringing about of changes under the guidance of interpretation...... in a local .context. Anticipation through the skilled interpretation of indicators of temporal relations in the context of a particular survival project (or life strategy) guides organismic behavior towards local ends. This network of semiotic controls establishes an enormously complex semiotic scaffolding...

  2. Scaffolding With and Through Videos

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2012-01-01

    In New Zealand and internationally claims are being made about the potential for information and communication technologies (ICTs) to transform teaching and learning. However, the theoretical underpinnings explaining the complex interplay between the content, pedagogy and technology a teacher needs...... to consider must be expanded. This article explicates theoretical and practical ideas related to teachers’ application of their ICT technology, pedagogy, and content knowledge (TPACK) in science. The article unpacks the social and technological dimensions of teachers’ use of TPACK when they use digital videos...... to scaffold learning. It showcases the intricate interplay between teachers’ knowledge about content, digital video technology, and students’ learning needs based on a qualitative study of two science teachers and their students in a New Zealand primary school....

  3. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library.

    Science.gov (United States)

    Zhao, Ning; Schmitt, Margaret A; Fisk, John D

    2016-04-01

    Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that may be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins that may serve as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the S. solfataricus protein Sso7d scaffold. Sso7d is a small cysteine-free DNA-binding protein (approximately 7 kDa, 63 amino acids), with a melting temperature of nearly 100 °C. Tight-binding Sso7d variants were selected for a diverse set of protein targets from a 10(10) member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely related human, bovine and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context. Furthermore, phage-displayed Sso7d variants retain their binding affinity after exposure to temperatures up to 70 °C. Taken together, our results suggest that the Sso7d scaffold will be a complementary addition to the range of non-antibody scaffold proteins that may be utilized in phage display. Variants of hyperthermostable binding proteins have potential applications in diagnostics and therapeutics for environments with extreme conditions of storage and deployment.

  4. Analytical and experimental bearing capacities of system scaffolds

    Institute of Scientific and Technical Information of China (English)

    Jui-lin PENG; Tsong YEN; Ching-chi KUO; Siu-lai CHAN

    2009-01-01

    We investigated the structural behavior and bearing capacity of system scaffolds. The research showed that the critical load of a system scaffold structure without diagonal braces is similar to that of a door-shaped steel scaffold structure. Joint stiffness between vertical props in system scaffolds can be defined based on a comparison between analytical and experimental results. When the number of scaffold stories increases, the critical loads of system scaffolds decrease. Diagonal braces markedly enhance the critical load of system scaffolds. The coupling joint position between vertical props should be kept away from story-to-story joints to prevent a reduction in critical loads. The critical load of a system scaffold decreases as the quantity of extended vertical props at the bottom of the structure increases. A large Christmas tree set up by system scaffolds under various loads was used as an example for analysis and to check the design of system scaffolds.

  5. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... ligands of three different protein targets relevant for drug discovery using a rational approach based on statistical experimental design. Five out of eight and seven out of eight thrombin scaffolds and all seven HIV protease scaffolds were recovered within the top 10 and 31 out of 31 neuraminidase...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  6. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  7. Bovine cysticercosis situation in Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Augusto Marques Rossi

    2014-02-01

    Full Text Available The taeniasis-cysticercosis complex is a long known zoonotic parasitosis characteristic of underdeveloped countries. In addition to its public health significance, this parasitosis is cause of economic losses to the beef production chain, and synonymous of technical inadequacy in relation to the adoption of Good Agricultural Practices. The occurrences of both human teniasis and bovine cysticercosis could and should be controlled with basic sanitary measures. However, there is much variation in the occurrence of the disease in cattle, characterizing a low rate of technical development as well as problems related to the adoption of basic sanitation measures. This review describes, in details, the causative agent and its epidemiological chain, besides raising current information about the occurrence of bovine cysticercosis in different regions of Brazil, aiming at the adoption of prophylactic measures by different segments responsible.

  8. Conjunctival structural and functional reconstruction using acellular bovine pericardium graft (Normal GEN®) in rabbits.

    Science.gov (United States)

    Huang, Danping; Xu, Bing; Yang, Xiaonan; Xu, Binbin; Zhao, Jing

    2016-04-01

    To evaluate the effectiveness of acellular bovine pericardium grafts (Normal GEN®) used as scaffolds for conjunctival reconstruction. The acellular bovine pericardium graft and the amnion graft were implanted into the bulbar conjunctival defects of adult rabbits. Conjunctival samples of implanted materials and blank defect controls were observed at day 3, 7, 14, 21, 28, and 56 postoperatively. Histological examination was observed at day 14, 28, and 56 of surgery, including hematoxylin-eosin staining, periodic acid-Schiff staining, and Masson's trichrome staining, while immunofluorescent microscopy was observed at 14 days and 28 days after surgery. Results were compared among the Normal GEN®, amnion, and blank defect controls. All three groups showed complete conjunctival reconstruction. Wounds that were not grafted closed by formation of conjunctival scar characterized by a linear array of densely packed collagen fibers in Tenon's capsule. Subepithelial tissue in the grafted groups comprised a loosely organized network of randomly oriented collagen that resembled that of the normal bulbar conjunctiva. However, there was a dense layer of aligned collagen between the conjunctival Tenon's capsule and the sclera in the NormalGEN® group, about 250 μm in thickness. Implantation of the NormalGEN® graft promoted the formation of conjunctiva as a kind of scaffold both in structure and in function. It had more advantageous mechanical properties than the amnion, strong and elastic, during the period of conjunctival reconstruction.

  9. Infectious bovine keratoconjunctivitis: a review.

    Science.gov (United States)

    Brown, M H; Brightman, A H; Fenwick, B W; Rider, M A

    1998-01-01

    The economic impact of infectious bovine keratoconjunctivitis (IBK) warrants continued investigation of the mechanisms by which Moraxella bovis survives on and colonizes the corneal surface. Virulent strains of M bovis produce hemolysin and exhibit different plasmid profiles than nonvirulent strains. Interactions among host, environment, vector, season, and concurrent infection influence the prevalence of IBK. Mycoplasma sp. or infectious bovine rhinotracheitis virus may enhance or hasten the disease process. The manifestations of IBK may range from mild conjunctivitis to severe ulceration, corneal perforation, and blindness. Treatment of IBK is dictated by economic considerations, intended animal use, and feasibility of administration. Antibiotic therapy is aimed at achieving drug concentrations in tears to meet or exceed the minimum inhibitory concentration for prolonged periods. At present, IBK is not a preventable disease. Affected animals must be separated from the herd and vector control vigorously instituted. Carrier animals must be identified and removed from the herd. Vaccination trials have been unsuccessful because of pili antigen cross-reactivity, variable strains, and uncontrolled environmental factors. Recent investigations have determined that M bovis may utilize host iron sources via iron-repressible outer membrane proteins and siderophores for growth. Elucidation of normal defense mechanisms of the bovine eye may lead to new strategies to enhance the immune response against M bovis.

  10. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application.

    Science.gov (United States)

    Zhou, Rong; Xu, Wei; Chen, Feng; Qi, Chao; Lu, Bing-Qiang; Zhang, Hao; Wu, Jin; Qian, Qi-Rong; Zhu, Ying-Jie

    2014-11-01

    Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Science.gov (United States)

    Ó Conchúir, Shane; Barlow, Kyle A; Pache, Roland A; Ollikainen, Noah; Kundert, Kale; O'Meara, Matthew J; Smith, Colin A; Kortemme, Tanja

    2015-01-01

    The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  12. Enhanced delivery of the RAPTA-C macromolecular chemotherapeutic by conjugation to degradable polymeric micelles.

    Science.gov (United States)

    Blunden, Bianca M; Lu, Hongxu; Stenzel, Martina H

    2013-12-09

    Macromolecular ruthenium complexes are a promising avenue to better and more selective chemotherapeutics. We have previously shown that RAPTA-C [RuCl2(p-cymene)(PTA)], with the water-soluble 1,3,5-phosphaadamantane (PTA) ligand, could be attached to a polymer moiety via nucleophilic substitution of an available iodide with an amide in the PTA ligand. To increase the cell uptake of this macromolecule, we designed an amphiphilic block copolymer capable of self-assembling into polymeric micelles. The block copolymer was prepared by ring-opening polymerization of d,l-lactide (3,6-dimethyl-1,4-dioxane-2,5-dione) using a RAFT agent with an additional hydroxyl functionality, followed by the RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and 2-chloroethyl methacrylate (CEMA). The Finkelstein reaction and reaction with PTA led to polymers that can readily react with the dimer of RuCl2(p-cymene) to create a macromolecular RAPTA-C drug. RAPTA-C conjugation, micellization, and subsequent cytotoxicity and cell uptake of these polymeric moieties was tested on ovarian cancer A2780, A2780cis, and Ovcar-3 cell lines. Confocal microscopy images confirmed cell uptake of the micelles into the lysosome of the cells, indicative of an endocytic pathway. On average, a 10-fold increase in toxicity was found for the macromolecular drugs when compared to the RAPTA-C molecule. Furthermore, the cell uptake of ruthenium was analyzed and a significant increase was found for the micelles compared to RAPTA-C. Notably, micelles prepared from the polymer containing fewer HEA units had the highest cytotoxicity, the best cell uptake of ruthenium and were highly effective in suppressing the colony-forming ability of cells.

  13. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Shane Ó Conchúir

    Full Text Available The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  14. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Coquel

    2013-04-01

    Full Text Available Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian. Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on

  15. D3, the new diffractometer for the macromolecular crystallography beamlines of the Swiss Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Brookhaven National Laboratory, Mail Stop 745, Upton, NY 11973 (United States); Pradervand, Claude; Thominet, Vincent; Schneider, Roman; Panepucci, Ezequiel; Grunder, Marcel; Gabadinho, Jose; Dworkowski, Florian S. N.; Tomizaki, Takashi; Schneider, Jörg; Mayer, Aline; Curtin, Adrian; Olieric, Vincent; Frommherz, Uli; Kotrle, Goran; Welte, Jörg; Wang, Xinyu; Maag, Stephan [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Schulze-Briese, Clemens [DECTRIS Ltd, Neuenhoferstrasse 107, 5400 Baden (Switzerland); Wang, Meitian [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2014-02-04

    A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. A new diffractometer for microcrystallography has been developed for the three macromolecular crystallography beamlines of the Swiss Light Source. Building upon and critically extending previous developments realised for the high-resolution endstations of the two undulator beamlines X06SA and X10SA, as well as the super-bend dipole beamline X06DA, the new diffractometer was designed to the following core design goals. (i) Redesign of the goniometer to a sub-micrometer peak-to-peak cylinder of confusion for the horizontal single axis. Crystal sizes down to at least 5 µm and advanced sample-rastering and scanning modes are supported. In addition, it can accommodate the new multi-axis goniometer PRIGo (Parallel Robotics Inspired Goniometer). (ii) A rapid-change beam-shaping element system with aperture sizes down to a minimum of 10 µm for microcrystallography measurements. (iii) Integration of the on-axis microspectrophotometer MS3 for microscopic sample imaging with 1 µm image resolution. Its multi-mode optical spectroscopy module is always online and supports in situ UV/Vis absorption, fluorescence and Raman spectroscopy. (iv) High stability of the sample environment by a mineral cast support construction and by close containment of the cryo-stream. Further features are the support for in situ crystallization plate screening and a minimal achievable detector distance of 120 mm for the Pilatus 6M, 2M and the macromolecular crystallography group’s planned future area detector Eiger 16M.

  16. Optimized beamline design for macromolecular crystallography at the Cornell High Energy Synchrotron Source (CHESS) (abstract)

    Science.gov (United States)

    Schildkamp, Wilfried; Bilderback, Donald; Moffat, Keith

    1989-07-01

    The A1 station on the CHESS wiggler beamline has been the workhorse for most macromolecular crystallographic experiments. This station is equipped with a fixed energy focusing germanium (111) monochromator and a focusing total reflection mirror. Our macromolecular crystallographers made full use of the high flux of more than 1012 photons/s/mm2 and the stable beam conditions, both in position and energy resolution. As a result, the A1 station was heavily oversubscribed. CHESS is presently expanding its capabilities and a new diffraction station for macromolecular crystallography is under construction. This beamline will be powered by a 24-pole hybrid permanent magnet wiggler with a critical energy of 25 keV. A focusing monochromator, which handles a specific heat load of 10 W/mm2, will have a range of tunability which covers all relevant absorption edges from 7 to 15 keV using a Ge(111) crystal. The energy resolution and the focusing properties remain constant within a factor of 2 over the entire tunability range. We expect a brilliance of about 1013 photons/s/mm2/mrad2/0.1% bandpass. The diffraction station will be equipped with an oscillation camera which can be used with x-ray film of 5×5 or 8×10 in. size or alternatively with Kodak storage phosphors. A wide variety of clamp-on accessories, like crystal coolers, fast shutters, helium pathways, polarimeter, etc. are available. The station will contain a beampipe system, which can also be used for small angle scattering experiments with sample-to-detector distances of up to 3000 mm. The entire diffraction station, its control area, a biological preparation area, and a darkroom are to be embedded in a biological safety containment of the level BL3. This will allow diffraction studies of virulent strains of viruses and other biohazards, which could not previously be studied at synchrotron radiation sources before without causing major disruption to the normal laboratory procedure.

  17. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect.

    Science.gov (United States)

    Coquel, Anne-Sophie; Jacob, Jean-Pascal; Primet, Mael; Demarez, Alice; Dimiccoli, Mariella; Julou, Thomas; Moisan, Lionel; Lindner, Ariel B; Berry, Hugues

    2013-04-01

    Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of "soft" intracellular structuring (based on macromolecular

  18. The "macromolecular tourist": universal temperature dependence of thermal diffusion in aqueous colloidal suspensions.

    Science.gov (United States)

    Iacopini, S; Rusconi, R; Piazza, R

    2006-01-01

    By performing measurements on a large class of macromolecular and colloidal systems, we show that thermophoresis (particle drift induced by thermal gradients) in aqueous solvents displays a distinctive universal dependence on temperature. For systems of particles interacting via temperature-independent forces, this behavior is strictly related to the solvent thermal expansivity, while an additional, T-independent term is needed to account for the behavior of "thermophilic" (migrating to the warmth) particles. The former relation between thermophoresis and thermal expansion may be exploited to envisage other fruitful studies of colloidal diffusion in inhomogeneous fluids.

  19. Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique

    Science.gov (United States)

    Peters, J. H.; Klein, R.; Delle Site, L.

    2016-08-01

    We extend the application of the adaptive resolution technique (AdResS) to liquid systems composed of alkane chains of different lengths. The aim of the study is to develop and test the modifications of AdResS required in order to handle the change of representation of large molecules. The robustness of the approach is shown by calculating several relevant structural properties and comparing them with the results of full atomistic simulations. The extended scheme represents a robust prototype for the simulation of macromolecular systems of interest in several fields, from material science to biophysics.

  20. INFLUENCE OF THE SOLVENT SWELLING ON MACROMOLECULAR CHOLESTERIC LIQUID CRYSTALLINE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Jia Zeng; Yong Huang

    1999-01-01

    Ethyl-cyanoethyl cellulose [(E-CE)C]/cross-linked polyacrylic acid [PAA] molecular composites with cholesteric order were prepared. It was found that the macromolecular cholesteric structure was changed with the swelling of PAA in the composites. The selective reflection of the cholesteric phase shifted to the longer wavelength and the X-ray diffraction angle shifted to the high angle direction during swelling, which suggested that the cholesteric pitch and the number of the layers of ordered (E-CE)C chains in the cholesteric phase were increased.

  1. A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influence of extracellular polymeric substances

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2009-01-01

    The vibrating membrane bioreactor (VMBR) system facilitates the possibility of conducting a separation of macromolecules (BSA) from larger biological components (yeast cells) with a relatively high and stable macromolecular transmission at sub-critical flux. This is not possible to achieve...... for a static non-vibrating membrane module. A BSA transmission of 74% has been measured in the separation of 4g/L BSA from 8 g/L dry weight yeast cells in suspension at sub-critical flux (20L/(m(2) h)). However, this transmission is lower than the 85% BSA transmission measured for at pure 4g/L BSA solution...

  2. Chirality as a physical aspect of structure formation in biological macromolecular systems

    Science.gov (United States)

    Malyshko, E. V.; Tverdislov, V. A.

    2016-08-01

    A novel regularity of hierarchical structures is found in the formation of chiral biological macromolecular systems. The formation of structures with alternating chirality (helical structures) serves as an instrument of stratification. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development through a series of chiral bifurcations. In the course of biological evolution, the helical structures became basic elements of the molecular machines in the cell. The discreteness of structural levels allowed the mechanical degrees of freedom formation in the molecular machines in the cell.

  3. Bovine Chymosin: A Computational Study of Recognition and Binding of Bovine κ-Casein

    DEFF Research Database (Denmark)

    Palmer, David S.; Christensen, Anders Uhrenholt; Sørensen, Jesper

    2010-01-01

    Bovine chymosin is an aspartic protease that selectively cleaves the milk protein κ-casein. The enzyme is widely used to promote milk clotting in cheese manufacturing. We have developed models of residues 97-112 of bovine κ-casein complexed with bovine chymosin, using ligand docking, conformational...

  4. Nanostructured scaffolds for bone tissue engineering.

    Science.gov (United States)

    Li, Xiaoming; Wang, Lu; Fan, Yubo; Feng, Qingling; Cui, Fu-Zhai; Watari, Fumio

    2013-08-01

    It has been demonstrated that nanostructured materials, compared with conventional materials, may promote greater amounts of specific protein interactions, thereby more efficiently stimulating new bone formation. It has also been indicated that, when features or ingredients of scaffolds are nanoscaled, a variety of interactions can be stimulated at the cellular level. Some of those interactions induce favorable cellular functions while others may leads to toxicity. This review presents the mechanism of interactions between nanoscaled materials and cells and focuses on the current research status of nanostructured scaffolds for bone tissue engineering. Firstly, the main requirements for bone tissue engineering scaffolds were discussed. Then, the mechanism by which nanoscaled materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  5. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds.

    Science.gov (United States)

    Fisher, Matthew B; Henning, Elizabeth A; Söegaard, Nicole; Bostrom, Marc; Esterhai, John L; Mauck, Robert L

    2015-06-01

    Despite advances in tissue engineering for the knee meniscus, it remains a challenge to match the complex macroscopic and microscopic structural features of native tissue, including the circumferentially and radially aligned collagen bundles essential for mechanical function. To mimic this structural hierarchy, this study developed multi-lamellar mesenchymal stem cell (MSC)-seeded nanofibrous constructs. Bovine MSCs were seeded onto nanofibrous scaffolds comprised of poly(ε-caprolactone) with fibers aligned in a single direction (0° or 90° to the scaffold long axis) or circumferentially aligned (C). Multi-layer groups (0°/0°/0°, 90°/90°/90°, 0°/90°/0°, 90°/0°/90°, and C/C/C) were created and cultured for a total of 6 weeks under conditions favoring fibrocartilaginous tissue formation. Tensile testing showed that 0° and C single layer constructs had stiffness values several fold higher than 90° constructs. For multi-layer groups, the stiffness of 0°/0°/0° constructs was higher than all other groups, while 90°/90°/90° constructs had the lowest values. Data for collagen content showed a general positive interactive effect for multi-layers relative to single layer constructs, while a positive interaction for stiffness was found only for the C/C/C group. Collagen content and cell infiltration occurred independent of scaffold alignment, and newly formed collagenous matrix followed the scaffold fiber direction. Structural hierarchies within multi-lamellar constructs dictated biomechanical properties, and only the C/C/C constructs with non-orthogonal alignment within layers featured positive mechanical reinforcement as a consequence of the layered construction. These multi-layer constructs may serve as functional substitutes for the meniscus as well as test beds to understand the complex mechanical principles that enable meniscus function.

  6. Scaffolding Instruction on Business English Writing Teaching

    Institute of Scientific and Technical Information of China (English)

    邱迪

    2014-01-01

    The scaffolding instruction is to help students probe into knowledge learning independently, and achieve the construction of knowledge and information finally by constructing a series of appropriate conceptual frameworks and concrete teaching circumstances. This instruction has been extensively applied and has been proved to be very effective in teaching in western countries. But in China very few empirical studies have been carried out on the scaffolding instruction, especial y in the field of teaching Business English writing.

  7. Scaffolds in regenerative endodontics: A review.

    Science.gov (United States)

    Gathani, Kinjal M; Raghavendra, Srinidhi Surya

    2016-09-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. 'A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria 'Platelet rich plasma', 'Platelet rich fibrin', 'Stem cells', 'Natural and artificial scaffolds' from 1982-2015'. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon.

  8. The Nanogel-Based Scaffold in Endodontics

    Science.gov (United States)

    Kheirieh, Sanam

    Aim: The purpose of this study was to evaluate a degradable nanogel-based scaffold with antibacterial content. Methods: This nanogel design consisted of the cross-linker, polyethyleneglycol (PEG 4600) with 3-dimensional network. This polymer degrades over time ( 30 days), delivering a controlled release of antibiotic. Amoxicillin was added to the scaffold with 25 wt% (n=26). Nanogel-scaffold only and amoxicillin only were used as controls. Agar diffusion test against E. faecalis was performed at eight time intervals (days 1, 3, 5, 7, 10, 14, 21, 30). One-Way ANOVA was used to compare the antibacterial properties of experimental groups at the eight different times. Results: The antibacterial properties for experimental plates, at the different times, were not significantly different (F=.624, p=.74). Based on the profile, the scaffold-only group showed a smaller inhibition zone compared to the two other groups. The antibacterial profiles for the experimental group and the antibiotic-only group were similar. Conclusion: This particular scaffold presented antibacterial properties. Findings suggest that nanogel-modified scaffolds may have potential use for drug-delivery in endodontics..

  9. Antimicrobial Cu-bearing stainless steel scaffolds.

    Science.gov (United States)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B; Yang, Ke

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels.

  10. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages.

  11. Signs, dispositions, and semiotic scaffolding.

    Science.gov (United States)

    Fernández, Eliseo

    2015-12-01

    scaffolding. These interactions transpire between energetic causal chains and a wide range of converging semiotic transactions unfolding within each individual organism and between organisms and their environment. The perspective advanced here helps elucidate the manner in which physical and semiotic causation cooperate in an orchestrated fashion, giving rise to an ever-expanding profusion of scaffolding structures and processes. Using simple examples I outline some mechanisms that bring about this orchestration as well as the resultant channeling activities that eventually merge and find their culmination in the enactment of goal-oriented behavior.

  12. Macromolecular liquids

    Energy Technology Data Exchange (ETDEWEB)

    Safinya, C.R.; Safran, S.A. (Exxon Research and Engineering Co., Annandale, NJ (US)); Pincus, P.A. (Univ. of California at Santa Barbara, Santa Barbara, CA (US))

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  13. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    Science.gov (United States)

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo.

  14. A NEW UNSTEADY THREE DIMENSIONAL MODEL FOR MACROMOLECULAR TRANSPORT AND WATER FILTRATION ACROSS THE ARTERIAL WALL

    Institute of Scientific and Technical Information of China (English)

    黄浩; 温功碧

    2001-01-01

    A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules ; LDL,HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.

  15. A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits.

    Science.gov (United States)

    Jaskolski, Mariusz; Dauter, Zbigniew; Wlodawer, Alexander

    2014-09-01

    As a contribution to the celebration of the year 2014, declared by the United Nations to be 'The International Year of Crystallography', the FEBS Journal is dedicating this issue to papers showcasing the intimate union between macromolecular crystallography and structural biology, both in historical perspective and in current research. Instead of a formal editorial piece, by way of introduction, this review discusses the most important, often iconic, achievements of crystallographers that led to major advances in our understanding of the structure and function of biological macromolecules. We identified at least 42 scientists who received Nobel Prizes in Physics, Chemistry or Medicine for their contributions that included the use of X-rays or neutrons and crystallography, including 24 who made seminal discoveries in macromolecular sciences. Our spotlight is mostly, but not only, on the recipients of this most prestigious scientific honor, presented in approximately chronological order. As a summary of the review, we attempt to construct a genealogy tree of the principal lineages of protein crystallography, leading from the founding members to the present generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  16. Force interacts with macromolecular structure in activation of TGF-β.

    Science.gov (United States)

    Dong, Xianchi; Zhao, Bo; Iacob, Roxana E; Zhu, Jianghai; Koksal, Adem C; Lu, Chafen; Engen, John R; Springer, Timothy A

    2017-02-02

    Integrins are adhesion receptors that transmit force across the plasma membrane between extracellular ligands and the actin cytoskeleton. In activation of the transforming growth factor-β1 precursor (pro-TGF-β1), integrins bind to the prodomain, apply force, and release the TGF-β growth factor. However, we know little about how integrins bind macromolecular ligands in the extracellular matrix or transmit force to them. Here we show how integrin αVβ6 binds pro-TGF-β1 in an orientation biologically relevant for force-dependent release of TGF-β from latency. The conformation of the prodomain integrin-binding motif differs in the presence and absence of integrin binding; differences extend well outside the interface and illustrate how integrins can remodel extracellular matrix. Remodelled residues outside the interface stabilize the integrin-bound conformation, adopt a conformation similar to earlier-evolving family members, and show how macromolecular components outside the binding motif contribute to integrin recognition. Regions in and outside the highly interdigitated interface stabilize a specific integrin/pro-TGF-β orientation that defines the pathway through these macromolecules which actin-cytoskeleton-generated tensile force takes when applied through the integrin β-subunit. Simulations of force-dependent activation of TGF-β demonstrate evolutionary specializations for force application through the TGF-β prodomain and through the β- and not α-subunit of the integrin.

  17. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION.

    Science.gov (United States)

    Bharat, Tanmay A M; Scheres, Sjors H W

    2016-11-01

    Electron cryo-tomography (cryo-ET) is a technique that is used to produce 3D pictures (tomograms) of complex objects such as asymmetric viruses, cellular organelles or whole cells from a series of tilted electron cryo-microscopy (cryo-EM) images. Averaging of macromolecular complexes found within tomograms is known as subtomogram averaging, and this technique allows structure determination of macromolecular complexes in situ. Subtomogram averaging is also gaining in popularity for the calculation of initial models for single-particle analysis. We describe herein a protocol for subtomogram averaging from cryo-ET data using the RELION software (http://www2.mrc-lmb.cam.ac.uk/relion). RELION was originally developed for cryo-EM single-particle analysis, and the subtomogram averaging approach presented in this protocol has been implemented in the existing workflow for single-particle analysis so that users may conveniently tap into existing capabilities of the RELION software. We describe how to calculate 3D models for the contrast transfer function (CTF) that describe the transfer of information in the imaging process, and we illustrate the results of classification and subtomogram averaging refinement for cryo-ET data of purified hepatitis B capsid particles and Saccharomyces cerevisiae 80S ribosomes. Using the steps described in this protocol, along with the troubleshooting and optimization guidelines, high-resolution maps can be obtained in which secondary structure elements are resolved subtomogram.

  18. Importance of gastrointestinal ingestion and macromolecular antigens in the vein for oral tolerance induction

    Science.gov (United States)

    Wakabayashi, Ayako; Kumagai, Yoshihiro; Watari, Eiji; Shimizu, Masumi; Utsuyama, Masanori; Hirokawa, Katsuiku; Takahashi, Hidemi

    2006-01-01

    Oral administration of a certain dose of antigen can generally induce immunological tolerance against the same antigen. In this study, we showed the temporal appearance of ovalbumin (OVA) antigens in both portal and peripheral blood of mice after the oral administration of OVA. Furthermore, we detected 45 000 MW OVA in mouse serum 30 min after the oral administration of OVA. Based on this observation, we examined whether the injection of intact OVA into the portal or peripheral vein induces immunological tolerance against OVA. We found that the intravenous injection of intact OVA did not induce immunological tolerance but rather enhanced OVA-specific antibody production in some subclasses, suggesting that OVA antigens via the gastrointestinal tract but not intact OVA may contribute to establish immunological tolerance against OVA. Therefore, we examined the effects of digesting intact OVA in the gastrointestinal tract on the induction of oral tolerance. When mice were orally administered or injected into various gastrointestinal organs, such as the stomach, duodenum, ileum, or colon and boosted with intact OVA, OVA-specific antibody production and delayed-type hypersensitivity (DTH) response were significantly enhanced in mice injected into the ileum or colon, compared with orally administered mice. These results suggest that although macromolecular OVA antigens are detected after oral administration of OVA in tolerant-mouse serum, injection of intact OVA cannot contribute to tolerance induction. Therefore, some modification of macromolecular OVA in the gastrointestinal tract and ingestion may be essential for oral tolerance induction. PMID:16796692

  19. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    Science.gov (United States)

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties.

  20. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Doshi, Pankaj; Lele, Ashish [CSIR-National Chemical Laboratory, Pune, Maharashtra (India); Thete, Sumeet [Purdue University, West Lafayette, Indiana (United States)

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)

  1. X-ray Diffraction of Cotton Treated with Neutralized Vegetable Oil-based Macromolecular Crosslinkers

    Directory of Open Access Journals (Sweden)

    James W. Rawlins, Ph.D.

    2010-03-01

    Full Text Available Maleinized soybean oil (MSO has been investigated as a flexible, macromolecular crosslinker for cotton fabrics. The ability of MSO to penetrate crystalline cellulose and crosslink aligned cellulose chains upon cure has been in question. This study compares the penetration capability of MSO to dimethyloldihydroxyethyleneurea (DMDHEU, which is the commercial standard for durable press finishing and is an efficient cellulose crosslinker. X-ray diffraction was employed to characterize changes in the crystalline morphology upon heating un-mercerized cotton fabrics treated with aqueous DMDHEU and soybean oil derivatives. Displacement of characteristic interplanar spacings and the genesis/elimination of diffraction intensities from quintessential planes were evidence of structural modification. The penetration of ammonia neutralized MSO (acid value 230.00 mg KOH/g into the microstructure of cotton cellulose is similar to that of DMDHEU in terms of expanding the interplanar spacings of characteristic planes. Moreover, polymorphism of cotton and mercerized cotton occurred upon treatment with aqueous solutions of MSO. These findings suggest that macromolecular reagents can diffuse into cellulose fibrils if they are sufficiently hydrated or enshrouded by more favored penetrants.

  2. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments.

    Science.gov (United States)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J; Hall, David R; Lavault, Bernard; McCarthy, Andrew A; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B G; Thibault, Xavier; Walsh, Martin A; Leonard, Gordon A; McSweeney, Sean M

    2010-09-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.

  3. Translational diffusion of macromolecular assemblies measured using transverse-relaxation-optimized pulsed field gradient NMR.

    Science.gov (United States)

    Horst, Reto; Horwich, Arthur L; Wüthrich, Kurt

    2011-10-19

    In structural biology, pulsed field gradient (PFG) NMR spectroscopy for the characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution conditions as used for NMR structure determination or for crystallization trials. This paper describes two transverse-relaxation-optimized (TRO) (15)N-filtered PFG stimulated-echo (STE) experiments for studies of macromolecular translational diffusion in solution, (1)H-TRO-STE and (15)N-TRO-STE, which include CRINEPT and TROSY elements. Measurements with mixed micelles of the Escherichia coli outer membrane protein X (OmpX) and the detergent Fos-10 were used for a systematic comparison of (1)H-TRO-STE and (15)N-TRO-STE with conventional (15)N-filtered STE experimental schemes. The results provide an extended platform for evaluating the NMR experiments available for diffusion measurements in structural biology projects involving molecular particles with different size ranges. An initial application of the (15)N-TRO-STE experiment with very long diffusion delays showed that the tedradecamer structure of the 800 kDa Thermus thermophilus chaperonin GroEL is preserved in aqueous solution over the temperature range 25-60 °C.

  4. Translational diffusion of macromolecular assemblies measured using transverse relaxation-optimized PFG-NMR

    Science.gov (United States)

    Horst, Reto; Horwich, Arthur L.

    2012-01-01

    In structural biology, pulsed field gradient (PFG) NMR for characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution conditions as used for NMR structure determination or for crystallization trials. This paper describes two transverse relaxation-optimized (TRO) 15N-filtered PFG stimulated-echo (STE) experiments for studies of macromolecular translational diffusion in solution, 1H-TRO-STE and 15N-TRO-STE, which include CRINEPT and TROSY elements. Measurements with mixed micelles of the Escherichia coli outer membrane protein X (OmpX) and the detergent Fos-10 were used for a systematic comparison of 1H-TRO-STE and 15N-TRO-STE with conventional 15N-filtered STE experimental schemes. The results provide an extended platform for evaluating the NMR experiments available for diffusion measurements in structural biology projects with molecular particles of different size ranges. An initial application of the 15N-TRO-STE experiment with very long diffusion delays showed that the tedradecamer structure of the 800 kDa Thermus thermophilus chaperonin GroEL is preserved in aqueous solution over the temperature range 25–60°C. PMID:21919531

  5. Macromolecular Crowding Studies of Amino Acids Using NMR Diffusion Measurements and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Amninder S Virk

    2015-02-01

    Full Text Available Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction. Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.

  6. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?

    Directory of Open Access Journals (Sweden)

    Iborra Francisco J

    2007-04-01

    Full Text Available Abstract Background The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. Results The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin scattered within domains rich in fast components (protein/RNA. Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. Conclusion I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.

  7. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J.; Gee, Christine; Harrop, Stephen J.; Mudie, Nathan; Panjikar, Santosh; Price, Jason R.; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom, E-mail: tom.caradoc-davies@synchrotron.org.au [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-01

    The macromolecular crystallography beamline MX1 at the Australian Synchrotron is described. MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  8. Genomic analysis reveals extensive gene duplication within the bovine TRB locus

    Directory of Open Access Journals (Sweden)

    Law Andy

    2009-04-01

    Full Text Available Abstract Background Diverse TR and IG repertoires are generated by V(DJ somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. Results The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically

  9. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  10. Scaffold Seeking: A Reverse Design of Scaffolding in Computer-Supported Word Problem Solving

    Science.gov (United States)

    Cheng, Hercy N. H.; Yang, Euphony F. Y.; Liao, Calvin C. Y.; Chang, Ben; Huang, Yana C. Y.; Chan, Tak-Wai

    2015-01-01

    Although well-designed scaffolding may assist students to accomplish learning tasks, its insufficient capability to dynamically assess students' abilities and to adaptively support them may result in the problem of overscaffolding. Our previous project has also shown that students using scaffolds to solve mathematical word problems for a long time…

  11. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  12. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    Science.gov (United States)

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-03-10

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  13. In vitro production of bovine embryos

    DEFF Research Database (Denmark)

    Stroebech, L.; Mazzoni, Gianluca; Pedersen, Hanne Skovsgaard

    2015-01-01

    In vitro production (IVP) of bovine embryos has become a widespread technology implemented in cattle breeding and production. The implementation of genomic selection and systems biology adds great dimensions to the impact of bovine IVP. The physical procedures included in the IVP process can still...

  14. In vitro production of bovine embryos

    DEFF Research Database (Denmark)

    Stroebech, L.; Mazzoni, Gianluca; Pedersen, Hanne Skovsgaard;

    2015-01-01

    In vitro production (IVP) of bovine embryos has become a widespread technology implemented in cattle breeding and production. The implementation of genomic selection and systems biology adds great dimensions to the impact of bovine IVP. The physical procedures included in the IVP process can still...

  15. Scaffolding the "Scaffolding" Metaphor: From Inspiration to a Practical Tool for Kindergarten Teachers

    Science.gov (United States)

    Eshach, Haim; Dor-Ziderman, Yair; Arbel, Yael

    2011-10-01

    The present research aims shifting `scaffolding' from an inspiring metaphor to a practical tool to be used by kindergarten teachers when conducting scientific activities. It identifies scaffolding strategies that three experienced kindergarten teachers, ones acknowledged as excelling in science teaching, implicitly used when conducting science activities. For this end 20 whole-day observations were recorded in each of the three kindergartens and transcribed verbatim. The scaffolding strategies were identified through an inductive analysis performed on the observations and through the relevant literature. The strategies yielded from the analysis were grouped into affective and cognitive domains, each divided into categories and subcategories. The complete set of identified strategies was termed the scaffolding scheme. The scaffolding scheme can assist kindergarten and primary school teachers, as well as researchers, in analyzing scientific activities conducted in the kindergarten and judging how efficient the employed strategies are, what strategies to eliminate, and what other strategies might be needed.

  16. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface.

  17. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  18. Maltodextrin enhances biofilm elimination by electrochemical scaffold.

    Science.gov (United States)

    Sultana, Sujala T; Call, Douglas R; Beyenal, Haluk

    2016-10-26

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at -600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density.

  19. Engineering functionally graded tissue engineering scaffolds.

    Science.gov (United States)

    Leong, K F; Chua, C K; Sudarmadji, N; Yeong, W Y

    2008-04-01

    Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS.

  20. Stratified scaffold design for engineering composite tissues.

    Science.gov (United States)

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H

    2015-08-01

    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers.

  1. Maltodextrin enhances biofilm elimination by electrochemical scaffold

    Science.gov (United States)

    Sultana, Sujala T.; Call, Douglas R.; Beyenal, Haluk

    2016-01-01

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at −600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density. PMID:27782161

  2. Comparison of scaffold-enhanced albumin and n-butyl-cyanoacrylate adhesives for joining of tissue in a porcine model

    Science.gov (United States)

    McNally-Heintzelman, Karen M.; Riley, Jill N.; Heintzelman, Douglas L.

    2003-06-01

    An ex vivo study was conducted to compare the tensile strength of tissue samples repaired using three different techniques: (i) application of a scaffold-enhanced light-activated albumin protein solder, (ii) application of a scaffold-enhanced n-butyl-cyanoacrylate adhesive, and (iii) repair via conventional suture technique. Biodegradable polymer scaffolds of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) and salt particles using a solvent-casting and particulate-leaching technique. Group I porous scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. Group II scaffolds were doped with n-butyl-cyanoacrylate, and required no light-activation. No stay sutures were required for Group I or II experiments. Group III repairs were performed using a single 4-0 suture. Thirteen organs were tested ranging from skin to liver to the small intestine, as well as the coronary, pulmonary, carotid, femoral and splenic arteries. Acute breaking strengths were measured and the data were analyzed by Student"s T-test. Using the protein solder of Group I, repairs formed on the ureter were most successful followed by small intestine, sciatic nerve, spleen, atrium, kidney, muscle, skin and ventricle. The strongest vascular repairs were achieved in the carotid artery and femoral artery. Overall, the tensile strength of Group III repairs performed via suture techniques were equivalent in magnitude to that of Group I repairs, however, a larger variance was observed in the suture repair group. Group II repairs utilizing the cyanoacrylate-doped scaffold all performed extremely well. Bonds formed using the Group II adhesive were approximately 30% stronger than Group I and III organ repairs and approximately 20% stronger than Group I and III vascular repairs. Application of the polymer scaffold assists in tissue alignment and reduces

  3. Development of rheological characterization and twin-screw extrusion/spiral winding processing methods for functionally-graded tissue engineering scaffolds and characterization of cell/biomaterial interactions

    Science.gov (United States)

    Ozkan, Seher

    Tissue engineering involves the fabrication of biodegradable scaffolds, on which various types of cells are grown, to provide tissue constructs for tissue repair/regeneration. Native tissues have complex structures, with functions and properties changing spatially and temporally, and require special tailoring of tissue engineering scaffolds to allow mimicking of their complex elegance. The understanding of the rheological behavior of the biodegradable polymer and the thermo-mechanical history that the polymer experiences during processing is critical in fabricating scaffolds with appropriate microstructural distributions. This study has first focused on the rheological material functions of various gel-like fluids including biofluids and hydrogels, which can emulate the viscoelastic behavior of biofluids. Viscoplasticity and wall slip were recognized as key attributes of such systems. Furthermore, a new technology base involving twin-screw extrusion/spiral winding (TSESW) process was developed for the shaping of functionally-graded scaffolds. This novel scaffold fabrication technology was applied to the development of polycaprolactone (PCL) scaffolds, incorporated with tricalcium phosphate nanoparticles and various porogens in graded fashion. The protein encapsulation and controlled release capabilities of the TSESW process was also demonstrated by dispersing bovine serum albumin (BSA) protein into the PCL matrix. Effects of processing conditions and porosity distributions on compressive properties, surface topography, encapsulation efficiency, release profiles and the secondary structure of BSA were investigated. The PCL scaffolds were determined to be biocompatible, with the proliferation rates of human fetal osteoblast cells (hFOB) increasing with increasing porosity and decreasing concentration of TCP. BSA proteins were determined to be denatured to a greater extent with melt extrusion in the 80-100°C range (in comparison to wet extrusion using organic

  4. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration.

    Science.gov (United States)

    Annibali, Susanna; Cicconetti, Andrea; Cristalli, Maria Paola; Giordano, Guido; Trisi, Paolo; Pilloni, Andrea; Ottolenghi, Livia

    2013-05-01

    Bone regeneration and bone fixation strategies in dentistry utilize scaffolds containing regenerating-competent cells as a replacement of the missing bone portions and gradually replaced by autologous tissues. Mesenchymal stem cells represent an ideal cell population for scaffold-based tissue engineering. Among them, dental pulp stem cells (DPSCs) and periosteal stem cells (PeSCs) have the potential to differentiate into a variety of cell types including osteocytes, suggesting that they can be used with this purpose. However, data on bone regeneration properties of these types of cells in scaffold-based tissue engineering are yet insufficient.In this study, we evaluated temporal dynamic bone regeneration (measured as a percentage of bone volume on the total area of the defect) induced by DPSCs or PeSCs when seeded with different scaffolds to fill critical calvarial defects in SCID Beige nude mice. Two commercially available scaffolds (granular deproteinized bovine bone with 10% porcine collagen and granular β;-tricalcium phosphate) and one not yet introduced on the market (a sponge of agarose and nanohydroxyapatite) were used. The results showed that tissue-engineered constructs did not significantly improve bone-induced regeneration process when compared with the effect of scaffolds alone. In addition, the data also showed that the regeneration induced by β;-tricalcium phosphate alone was higher after 8 weeks than that of scaffold seeded with the 2 stem cell lines. Altogether these findings suggest that further studies are needed to evaluate the potential of DPSCs and PeSCs in tissue construct and identify the appropriate conditions to generate bone tissue in critical-size defects.

  5. Bovine milk antibodies for health.

    Science.gov (United States)

    Korhonen, H; Marnila, P; Gill, H S

    2000-11-01

    The immunoglobulins of bovine colostrum provide the major antimicrobial protection against microbial infections and confer a passive immunity to the newborn calf until its own immune system matures. The concentration in colostrum of specific antibodies against pathogens can be raised by immunising cows with these pathogens or their antigens. Immune milk products are preparations made of such hyperimmune colostrum or antibodies enriched from it. These preparations can be used to give effective specific protection against different enteric diseases in calves and suckling pigs. Colostral immunoglobulin supplements designed for farm animals are commercially available in many countries. Also, some immune milk products containing specific antibodies against certain pathogens have been launched on the market. A number of clinical studies are currently in progress to evaluate the efficacy of immune milks in the prevention and treatment of various human infections, including those caused by antibiotic resistant bacteria. Bovine colostrum-based immune milk products have proven effective in prophylaxis against various infectious diseases in humans. Good results have been obtained with products targeted against rotavirus, Shigella flexneri, Escherichia coli, Clostridium difficile, Streptococcus mutans, Cryptosporidium parvum and Helicobacter pylori. Some successful attempts have been made to use immune milk in balancing gastrointestinal microbial flora. Immune milk products are promising examples of health-promoting functional foods, or nutraceuticals. This review summarises the recent progress in the development of these products and evaluates their potential as dietary supplements and in clinical nutrition.

  6. [Toxinology of bovine paraplegic syndrome].

    Science.gov (United States)

    Sevcik, C; Brito, J C; D'Suze, G; Mijares, A J; Domínguez, M G

    1993-01-01

    A clinical entity named "Bovine Paraplegic Syndrome" ("Síndrome Parapléjico de los Bovinos") has spread alarmingly, in the cattle growing areas of the central and eastern plains of Venezuela. Approximately four million cattle are bread in the area were the disease occurs. The mortality index due to the disease ranges 5 to 25% of the animals at risk, mostly cows, pregnant or lactating. The principal characteristic of the bovine paraplegic syndrome is decubitus, ventral or sternal, in animals that make vane efforts to stand when stimulated. The diagnosis is established ruling out, clinically and with laboratory findings, that the animals are suffering known diseases with similar symptoms such as paralytic rabies, botulism and blood parasites such Trypanosoma sp., Babesia sp., and Anaplasma sp.. Death occurs always, usually after few days, and to this date there is no known treatment able to save the sick cows. In this work, we describe results that suggest the presence of a toxin in the cattle suffering and prone to suffer the syndrome; it is a natural toxin produced by ruminal bacteria. In squid giant axons under voltage clamp conditions, this toxin is very specific to block sodium current during nerve electrical activity.

  7. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  8. Morphological Change of Heat Treated Bovine Bone: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Noor Azuan Abu Osman

    2012-12-01

    Full Text Available In this work, untreated bovine cortical bones (BCBs were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp crystals. Rectangular specimens (10 mm × 10 mm × 3–5 mm of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD, and scanning electron microscopy (SEM attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.

  9. Constructive tissue remodeling of biologic scaffolds: A phenomenon associated with scaffold characteristics and distinctive macrophage phenotypes

    Science.gov (United States)

    Brown, Bryan Nicklaus

    Scaffolds composed of extracellular matrix (ECM) have been shown to promote formation of site-specific, functional host tissue following implantation in a number of preclinical and clinical settings. However, the exact mechanisms by which ECM scaffolds are able to promote this type of "constructive tissue remodeling" are unknown. Further, the ability of ECM scaffolds to promote constructive tissue remodeling appears to be dependent on the methods used in their production and the applications in which they are utilized. Therefore, a comprehensive understanding of ECM scaffold characteristics and their effects upon the host response and subsequent tissue remodeling outcome is essential to the design of intelligent scaffolds for specific clinical applications. The present work investigated the effects of tissue source and chemical cross-linking upon the resulting ECM scaffolds, showing that ECM scaffold materials have distinct ultrastructural and compositional characteristics which are dependant on the anatomic location from which the scaffolds are derived and the methods used in their production. These characteristics were associated with distinct patterns of cell behavior in vitro. Distinct tissue remodeling outcomes were observed following implantation of a subset of these scaffold materials in a rat abdominal wall musculature reconstruction model. Acellular, non-cross-linked ECM was associated with constructive tissue remodeling while scaffolds that contained cellular components or were chemically cross-linked resulted in dense connective tissue deposition or encapsulation, respectively. Despite differences in the tissue remodeling outcome, a histologically similar population of macrophages was observed following implantation in each of these cases. Therefore, the phenotype of the macrophage population participating in the host response was investigated. It was shown that scaffolds which resulted in constructive tissue remodeling were associated with an increase

  10. Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold

    Directory of Open Access Journals (Sweden)

    Christophe Leterrier

    2015-12-01

    Full Text Available The axon initial segment (AIS, located within the first 30 μm of the axon, has two essential roles in generating action potentials and maintaining axonal identity. AIS assembly depends on a ßIV-spectrin/ankyrin G scaffold, but its macromolecular arrangement is not well understood. Here, we quantitatively determined the AIS nanoscale architecture by using stochastic optical reconstruction microscopy (STORM. First, we directly demonstrate that the 190-nm periodicity of the AIS submembrane lattice results from longitudinal, head-to-head ßIV-spectrin molecules connecting actin rings. Using multicolor 3D-STORM, we resolve the nanoscale organization of ankyrin G: its amino terminus associates with the submembrane lattice, whereas the C terminus radially extends (∼32 nm on average toward the cytosol. This AIS nano-architecture is highly resistant to cytoskeletal perturbations, indicating its role in structural stabilization. Our findings provide a comprehensive view of AIS molecular architecture and will help reveal the crucial physiological functions of this compartment.

  11. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    Science.gov (United States)

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds.

  12. Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism

    Directory of Open Access Journals (Sweden)

    Devin G. Barrett

    2009-10-01

    Full Text Available Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, α-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.

  13. Scaffolds in regenerative endodontics: A review

    Directory of Open Access Journals (Sweden)

    Kinjal M Gathani

    2016-01-01

    Full Text Available Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ′A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ′Platelet rich plasma′, ′Platelet rich fibrin′, ′Stem cells′, ′Natural and artificial scaffolds′ from 1982-2015′. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon.

  14. Scaffolds in regenerative endodontics: A review

    Science.gov (United States)

    Gathani, Kinjal M.; Raghavendra, Srinidhi Surya

    2016-01-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762

  15. SCAFFOLD: TISSUE ENGINEERING AND REGENERATIVE MEDICINE

    Directory of Open Access Journals (Sweden)

    Garg Tarun

    2011-12-01

    Full Text Available Scaffolds are the central components, which are used to deliver the cells, drug and gene into the body. Polymeric scaffolds may be prepared as typical 3-D porous matrix, nanofibrous matrix, thermo sensitive sol-gel transition hydrogel or porous microsphere, which provide suitable substrate for cell attachment, cell proliferation, differentiated function, and cell migration. Scaffold matrices have specific advantage over other novel drug delivery systems by achieving high drug loading. This study has been conducted to illustrate the various fabrication techniques of scaffold like Particulate leaching, freeze-drying, Supercritical fluid technology, thermally induced phase separation, Rapid prototyping, powder compaction, sol-gel, melt moulding etc. These techniques allow the preparation of porous structures with regular porosity. The main conclusion of this study is Scaffold provides adequate signals (e.g., through the use of adhesion peptides and growth factors to the cells, to induce and maintain them in their desired differentiation stage and for their survival and growth and their successful utilisation in various fields like bone formation, joint pain inflammation, tumor, periodontal regeneration, In-vivo generation of dental pulp, diabetes, osteochondrogenesis, wound dressing, inhibit bacterial growth, heart disease, repair of nasal and auricular malformation, cartilage development, regulated non-viral gene delivery, as artificial corneas, as heart valve, antiepileptic effect, tendon repair, ligament replacement, plasmid delivery, etc.

  16. Biomimetic collagen scaffolds with anisotropic pore architecture.

    Science.gov (United States)

    Davidenko, N; Gibb, T; Schuster, C; Best, S M; Campbell, J J; Watson, C J; Cameron, R E

    2012-02-01

    Sponge-like matrices with a specific three-dimensional structural design resembling the actual extracellular matrix of a particular tissue show significant potential for the regeneration and repair of a broad range of damaged anisotropic tissues. The manipulation of the structure of collagen scaffolds using a freeze-drying technique was explored in this work as an intrinsically biocompatible way of tailoring the inner architecture of the scaffold. The research focused on the influence of temperature gradients, imposed during the phase of crystallisation of collagen suspensions, upon the degree of anisotropy in the microstructures of the scaffolds produced. Moulding technology was employed to achieve differences in heat transfer rates during the freezing processes. For this purpose various moulds with different configurations were developed with a view to producing uniaxial and multi-directional temperature gradients across the sample during this process. Scanning electron microscopy analysis of different cross-sections (longitudinal and horizontal) of scaffolds revealed that highly aligned matrices with axially directed pore architectures were obtained where single unidirectional temperature gradients were induced. Altering the freezing conditions by the introduction of multiple temperature gradients allowed collagen scaffolds to be produced with complex pore orientations, and anisotropy in pore size and alignment.

  17. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues

    Science.gov (United States)

    Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S.; Lieber, Charles M.

    2012-11-01

    The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Furthermore, we show the integrated sensory capability of the nanoES by real-time monitoring of the local electrical activity within 3D nanoES/cardiomyocyte constructs, the response of 3D-nanoES-based neural and cardiac tissue models to drugs, and distinct pH changes inside and outside tubular vascular smooth muscle constructs.

  18. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  19. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  20. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    Science.gov (United States)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes. PMID:27478033

  1. Errors in macromolecular synthesis after stress : a study of the possible protective role of the small heat shock proteins

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  2. An optimal strategy for X-ray data collection on macromolecular crystals with position-sensitive detectors

    NARCIS (Netherlands)

    Vicković, Ivan; Kalk, Kor H.; Drenth, Jan; Dijkstra, Bauke W.

    1994-01-01

    X-ray data collection on macromolecular crystals is preferably done with minimum exposure time and high completeness. A Fortran procedure - DCS - has been written in the environment of the MADNES program to predict the completeness of data before the start of actual data collection. In addition, the

  3. Probing the Interplay of Size, Shape, and Solution Environment in Macromolecular Diffusion Using a Simple Refraction Experiment

    Science.gov (United States)

    Mankidy, Bijith D.; Coutinho, Cecil A.; Gupta, Vinay K.

    2010-01-01

    The diffusion coefficient of polymers is a critical parameter in biomedicine, catalysis, chemical separations, nanotechnology, and other industrial applications. Here, measurement of macromolecular diffusion in solutions is described using a visually instructive, undergraduate-level optical refraction experiment based on Weiner's method. To…

  4. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    Science.gov (United States)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-08-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.

  5. Proceedings of a one-week course on exploiting anomalous scattering in macromolecular structure determination (EMBO'07)

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.S.; Shepard, W.; Dauter, Z.; Leslie, A.; Diederichs, K.; Evans, G.; Svensson, O.; Schneider, T.; Bricogne, G.; Dauter, Z.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Leslie, A.; Kabsch, W.; Flensburg, C.; Terwilliger, T.; Lamzin, V.; Read, R.; Panjikar, S.; Pannu, N.S.; Dauter, Z.; Weiss, M.S.; McSweeney, S

    2007-07-01

    This course, which was directed to young scientists, illustrated both theoretical and practical aspects of macromolecular crystal structure solution using synchrotron radiation. Some software dedicated to data collection, processing and analysis were presented. This document gathers only the slides of the presentations.

  6. Lipase-catalyzed Regioselective Synthesis of Vinyl Ester Derivatives of Thiamphenicol: Novel Thiamphenicol Monomers for Preparation of Macromolecular Antibiotic

    Institute of Scientific and Technical Information of China (English)

    Yu Zhen SHI; Zhi Chun CHEN; Na WANG; Qi WU; Xian Fu LIN

    2005-01-01

    Three polymerizable vinyl thiamphenicol esters with different acyl donor carbon chain length (C4, C6, C10) were regioselectivly synthesized by Lipozyme(R) (immobilized from mucor miehei) in acetone at 50 ℃ for 12 h to give 73%, 81%, 63% yield, respectively. The products were valuable monomers for preparation of macromolecular antibiotic.

  7. Force Spectroscopy of Individual Stimulus-Responsive Poly(ferrocenyldimethylsilane) Chains: Towards a Redox-Driven Macromolecular Motor

    NARCIS (Netherlands)

    Zou, Shan; Hempenius, Mark A.; Schönherr, Holger; Vancso, G. Julius

    2006-01-01

    Progress in the development of a redox-driven macromolecular motor and the characterization of its redox-mechanical cycle using electrochemical AFM-based single-molecule force spectroscopy (SMFS) is described. The elasticities of individual neutral and oxidized poly(ferrocenyldimethylsilane) (PFS) m

  8. 21 CFR 184.1034 - Catalase (bovine liver).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Catalase (bovine liver). 184.1034 Section 184.1034... Listing of Specific Substances Affirmed as GRAS § 184.1034 Catalase (bovine liver). (a) Catalase (bovine liver) (CAS Reg. No. 81457-95-6) is an enzyme preparation obtained from extracts of bovine liver. It is...

  9. 29 CFR (non - mandatory) Appendix A to Subpart L of Part 1926-Scaffold Specifications

    Science.gov (United States)

    2010-07-01

    ... feet in height, components for heavy-duty horse scaffolds, components made with other materials, and... scaffolds. (f) Horse scaffolds. (g) Form scaffolds and carpenters' bracket scaffolds. (h) Roof bracket... members (except planks) of the scaffold are a minimum of 1,500 lb-f/in2 (stress grade) construction...

  10. Scaffolding in tissue engineering: general approaches and tissue-specific considerations.

    Science.gov (United States)

    Chan, B P; Leong, K W

    2008-12-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.

  11. Novel Scaffolds Fabricated Using Oleuropein for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hui Fan

    2014-01-01

    Full Text Available We investigated the feasibility of oleuropein as a cross-linking agent for fabricating three-dimensional (3D porous composite scaffolds for bone tissue engineering. Human-like collagen (HLC and nanohydroxyapatite (n-HAp were used to fabricate the composite scaffold by way of cross-linking. The mechanical tests revealed superior properties for the cross-linked scaffolds compared to the uncross-linked scaffolds. The as-obtained composite scaffold had a 3D porous structure with pores ranging from 120 to 300 μm and a porosity of 73.6±2.3%. The cross-linked scaffolds were seeded with MC3T3-E1 Subclone 14 mouse osteoblasts. Fluorescence staining, the Cell Counting Kit-8 (CCK-8 assay, and scanning electron microscopy (SEM indicated that the scaffolds enhanced cell adhesion and proliferation. Our results indicate the potential of these scaffolds for bone tissue engineering.

  12. Effects of Teacher Scaffolding on Students' Oral Reading Fluency ...

    African Journals Online (AJOL)

    This study examined the effects of an English teacher's scaffolding on students' passage reading fluency in Dona Berber Primary School, Ethiopia. ... to examine changes in their reading strategies and fluency as a result of teacher scaffolding.

  13. Scaffolding of small groups’ metacognitive activities with an avatar

    NARCIS (Netherlands)

    Molenaar, I.; Chiu, M.M.; Sleegers, P.; van Boxtel, C.A.M.

    2011-01-01

    Metacognitive scaffolding in a computer-supported learning environment can influence students’ metacognitive activities, metacognitive knowledge and domain knowledge. In this study we analyze how metacognitive activities mediate the relationships between different avatar scaffolds on students’ learn

  14. Scaffolding of small groups' metacognitive activities with an avatar

    NARCIS (Netherlands)

    Molenaar, I.; Chiu, M.M.; Sleegers, P.J.C.; Boxtel, C.A.M. van

    2011-01-01

    Metacognitive scaffolding in a computer-supported learning environment can influence students' metacognitive activities, metacognitive knowledge and domain knowledge. In this study we analyze how metacognitive activities mediate the relationships between different avatar scaffolds on students' learn

  15. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  16. Knowledge scaffolding visualizations: A guiding framework

    Directory of Open Access Journals (Sweden)

    Elitsa Alexander

    2015-06-01

    Full Text Available In this paper we provide a guiding framework for understanding and selecting visual representations in the knowledge management (KM practice. We build on an interdisciplinary analogy between two connotations of the notion of “scaffolding”: physical scaffolding from an architectural-engineering perspective and scaffolding of the “everyday knowing in practice” from a KM perspective. We classify visual structures for knowledge communication in teams into four types of scaffolds: grounded (corresponding e.g., to perspectives diagrams or dynamic facilitation diagrams, suspended (e.g., negotiation sketches, argument maps, panel (e.g., roadmaps or timelines and reinforcing (e.g., concept diagrams. The article concludes with a set of recommendations in the form of questions to ask whenever practitioners are choosing visualizations for specific KM needs. Our recommendations aim at providing a framework at a broad-brush level to aid choosing a suitable visualization template depending on the type of KM endeavour.

  17. Scaffolding for Three-Dimensional Embryonic Vasculogenesis

    Science.gov (United States)

    Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.

    Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.

  18. Jellyfish collagen scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Hoyer, Birgit; Bernhardt, Anne; Lode, Anja; Heinemann, Sascha; Sewing, Judith; Klinger, Matthias; Notbohm, Holger; Gelinsky, Michael

    2014-02-01

    Porous scaffolds were engineered from refibrillized collagen of the jellyfish Rhopilema esculentum for potential application in cartilage regeneration. The influence of collagen concentration, salinity and temperature on fibril formation was evaluated by turbidity measurements and quantification of fibrillized collagen. The formation of collagen fibrils with a typical banding pattern was confirmed by atomic force microscopy and transmission electron microscopy analysis. Porous scaffolds from jellyfish collagen, refibrillized under optimized conditions, were fabricated by freeze-drying and subsequent chemical cross-linking. Scaffolds possessed an open porosity of 98.2%. The samples were stable under cyclic compression and displayed an elastic behavior. Cytotoxicity tests with human mesenchymal stem cells (hMSCs) did not reveal any cytotoxic effects of the material. Chondrogenic markers SOX9, collagen II and aggrecan were upregulated in direct cultures of hMSCs upon chondrogenic stimulation. The formation of typical extracellular matrix components was further confirmed by quantification of sulfated glycosaminoglycans.

  19. [Scaffold-based Bone Tissue Engineering].

    Science.gov (United States)

    Holzapfel, B M; Rudert, M; Hutmacher, D W

    2017-08-01

    Tissue engineering provides the possibility of regenerating damaged or lost osseous structures without the need for permanent implants. Within this context, biodegradable and bioresorbable scaffolds can provide structural and biomechanical stability until the body's own tissue can take over their function. Additive biomanufacturing makes it possible to design the scaffold's architectural characteristics to specifically guide tissue formation and regeneration. Its nano-, micro-, and macro-architectural properties can be tailored to ensure vascularization, oxygenation, nutrient supply, waste exchange, and eventually ossification not only in its periphery but also in its center, which is not in direct contact with osteogenic elements of the surrounding healthy tissue. In this article we provide an overview about our conceptual design and process of the clinical translation of scaffold-based bone tissue engineering applications.

  20. Postsynaptic scaffolds for nicotinic receptors on neurons

    Institute of Scientific and Technical Information of China (English)

    Robert A NEFF III; David GOMEZ-VARELA; Catarina C FERNANDES; Darwin K BERG

    2009-01-01

    Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses. Recent studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses on neurons. PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors (nAChRs) and mediate downstream signaling in the neurons. The PDZ-proteins also promote functional nicotinic innerva- tion of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 recep- tor. In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface. This review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role of nAChR trafficking.

  1. Scaffolding Advanced Writing through Writing Frames

    Directory of Open Access Journals (Sweden)

    Sara Salehpour

    2014-05-01

    Full Text Available Mastering writing has always proved an almost insurmountable barrier to EFL learners. In an attempt to alleviate problems advanced EFL learners have with writing, this study aimed at investigating the effect of scaffolded instruction through writing frames constructed from extended prefabricated lexical bundles. 40 female advanced English students, selected out of a population of 65, were randomly assigned into experimental and control groups. The participants of both groups were assigned a writing pre-test prior to any instruction, and a writing post-test following the twenty-session scaffolded instruction in both groups. The results revealed that the participants in the experimental group outperformed their counterparts in the control group as a result of the writing frames they were provided with. Overall, it is concluded that scaffolded instruction through writing frames can be a useful means of helping advanced students to improve their writing quality.

  2. Research Diary: A Tool for Scaffolding

    Directory of Open Access Journals (Sweden)

    Marion Engin Ed.D

    2011-09-01

    Full Text Available Diaries have long been seen as tools for reflection in learning languages, and learning about teaching. Despite this recognition of the importance of narratives in diary writing, little attention has been paid to the role of research diaries in the process of learning about research, and learning how to be a researcher. During the author's own research into the construction of teaching knowledge by pre-service trainees, she became aware that her research diary was scaffolding her own construction of research knowledge. In this article the author discusses the role of a research diary based on a socio-cultural theory of learning. The diary acts as the expert other in the scaffolding of research knowledge by the novice researcher. The discussion of the nature of the scaffolding and the role of diary writing draws on examples from the author's research diary written during her doctoral studies.

  3. A mixed method for measuring low-frequency acoustic properties of macromolecular materials

    Institute of Scientific and Technical Information of China (English)

    LIU; Hongwei; YAO; Lei; ZHAO; Hong; ZHANG; Jichuan; XUE; Zhaohong

    2006-01-01

    A mixed method for measuring low-frequency acoustic properties of macromolecular materials is presented.The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequencies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis.To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method.While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorption coefficients is obtained between the calculations and measurements in the acoustic pipe.

  4. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  5. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    Science.gov (United States)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.; Thiele, Ines; Palsson, Bernhard O.; Saunders, Michael A.

    2017-01-01

    Constraint-Based Reconstruction and Analysis (COBRA) is currently the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We have developed a quadruple-precision version of our linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.

  6. Phenix - a comprehensive python-based system for macromolecular structure solution

    Energy Technology Data Exchange (ETDEWEB)

    Terwilliger, Thomas C [Los Alamos National Laboratory; Hung, Li - Wei [Los Alamos National Laboratory; Adams, Paul D [UC BERKELEY; Afonine, Pavel V [UC BERKELEY; Bunkoczi, Gabor [UNIV OF CAMBRIDGE; Chen, Vincent B [DUKE UNIV; Davis, Ian [DUKE UNIV; Echols, Nathaniel [LBNL; Headd, Jeffrey J [DUKE UNIV; Grosse Kunstleve, Ralf W [LBNL; Mccoy, Airlie J [UNIV OF CAMBRIDGE; Moriarty, Nigel W [LBNL; Oeffner, Robert [UNIV OF CAMBRIDGE; Read, Randy J [UNIV OF CAMBRIDGE; Richardson, David C [DUKE UNIV; Richardson, Jane S [DUKE UNIV; Zwarta, Peter H [LBNL

    2009-01-01

    Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages, and the repeated use of interactive three-dimensional graphics. Phenix has been developed to provide a comprehensive system for crystallographic structure solution with an emphasis on automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand, and finally the development of a framework that allows a tight integration between the algorithms.

  7. Syntheses of Macromolecular Ruthenium Compounds: A New Approach for the Search of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Andreia Valente

    2014-03-01

    Full Text Available The continuous rising of the cancer patient death rate undoubtedly shows the pressure to find more potent and efficient drugs than those in clinical use. These agents only treat a narrow range of cancer conditions with limited success and are associated with serious side effects caused by the lack of selectivity. In this frame, innovative syntheses approaches can decisively contribute to the success of “smart compounds” that might be only selective and/or active towards the cancer cells, sparing the healthy ones. In this scope, ruthenium chemistry is a rising field for the search of proficient metallodrugs by the use of macromolecular ruthenium complexes (dendrimers and dendronized polymers, coordination-cage and protein conjugates, nanoparticles and polymer-“ruthenium-cyclopentadienyl” conjugates that can take advantage of the singularities of tumor cells (vs. healthy cells.

  8. Recent Major Improvements to the ALS Sector 5 MacromolecularCrystallography Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Morton, Simon A.; Glossinger, James; Smith-Baumann, Alexis; McKean, John P.; Trame, Christine; Dickert, Jeff; Rozales, Anthony; Dauz,Azer; Taylor, John; Zwart, Petrus; Duarte, Robert; Padmore, Howard; McDermott, Gerry; Adams, Paul

    2007-07-01

    Although the Advanced Light Source (ALS) was initially conceived primarily as a low energy (1.9GeV) 3rd generation source of VUV and soft x-ray radiation it was realized very early in the development of the facility that a multipole wiggler source coupled with high quality, (brightness preserving), optics would result in a beamline whose performance across the optimal energy range (5-15keV) for macromolecular crystallography (MX) would be comparable to, or even exceed, that of many existing crystallography beamlines at higher energy facilities. Hence, starting in 1996, a suite of three beamlines, branching off a single wiggler source, was constructed, which together formed the ALS Macromolecular Crystallography Facility. From the outset this facility was designed to cater equally to the needs of both academic and industrial users with a heavy emphasis placed on the development and introduction of high throughput crystallographic tools, techniques, and facilities--such as large area CCD detectors, robotic sample handling and automounting facilities, a service crystallography program, and a tightly integrated, centralized, and highly automated beamline control environment for users. This facility was immediately successful, with the primary Multiwavelength Anomalous Diffraction beamline (5.0.2) in particular rapidly becoming one of the foremost crystallographic facilities in the US--responsible for structures such as the 70S ribosome. This success in-turn triggered enormous growth of the ALS macromolecular crystallography community and spurred the development of five additional ALS MX beamlines all utilizing the newly developed superconducting bending magnets ('superbends') as sources. However in the years since the original Sector 5.0 beamlines were built the performance demands of macromolecular crystallography users have become ever more exacting; with growing emphasis placed on studying larger complexes, more difficult structures, weakly diffracting or

  9. Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders

    Science.gov (United States)

    Mittal, Jeetain; Best, Robert B.

    2010-01-01

    We investigate the effect of macromolecular crowding on protein folding, using purely repulsive crowding particles and a self-organizing polymer model of protein folding. We find that the variation in folding stability with crowder size for typical α-, β-, and α/β-proteins is well described by an adaptation of the scaled particle theory. The native state, the transition state, and the unfolded protein are treated as effective hard spheres, with the folded and transition state radii independent of the size and concentration of the crowders. Remarkably, we find that, as the effective unfolded state radius is very weakly dependent on the crowder concentration, it can also be approximated by a single size. The same model predicts the effect of crowding on the folding barrier and therefore refolding rates with no adjustable parameters. A simple extension of the scaled-particle theory model, assuming additivity, can also describe the behavior of mixtures of crowding particles. PMID:20338853

  10. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    Science.gov (United States)

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  11. C1 Polymerization: a unique tool towards polyethylene-based complex macromolecular architectures

    KAUST Repository

    Wang, De

    2017-05-09

    The recent developments in organoborane initiated C1 polymerization (chain grows by one atom at a time) of ylides opens unique horizons towards well-defined/perfectly linear polymethylenes (equivalent to polyethylenes, PE) and PE-based complex macromolecular architectures. The general mechanism of C1 polymerization (polyhomologation) involves the formation of a Lewis complex between a methylide (monomer) and a borane (initiator), followed by migration/insertion of a methylene into the initiator and after oxidation/hydrolysis to afford OH-terminated polyethylenes. This review summarizes efforts towards conventional and newly discovered borane-initiators and ylides (monomers), as well as a combination of polyhomologation with other polymerization methods. Initial efforts dealing with C3 polymerization and the synthesis of the first C1/C3 copolymers are also given. Finally, some thoughts for the future of these polymerizations are presented.

  12. Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

    Directory of Open Access Journals (Sweden)

    Marius Schmidt

    2013-01-01

    Full Text Available Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source.

  13. Phase behaviour of macromolecular liquid crystalline materials. Computational studies at the molecular level

    CERN Document Server

    Stimson, L M

    2003-01-01

    Molecular simulations provide an increasingly useful insight into the static and dynamic characteristics of materials. In this thesis molecular simulations of macro-molecular liquid crystalline materials are reported. The first liquid crystalline material that has been investigated is a side chain liquid crystal polymer (SCLCP). In this study semi-atomistic molecular dynamics simulations have been conducted at a range of temperatures and an aligning potential has been applied to mimic the effect of a magnetic field. In cooling the SCLCP from an isotropic melt, microphase separation was observed yielding a domain structure. The application of a magnetic field to this structure aligns the domains producing a stable smectic mesophase. This is the first study in which mesophases have been observed using an off-lattice model of a SCLCP. The second material that has been investigated is a dendrimer with terminal mesogenic functionalization. Here, a multi-scale approach has been taken with Monte Carlo studies of a s...

  14. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao, E-mail: lixiao1228@163.com; Ji, Guanghua, E-mail: ghji@bnu.edu.cn; Zhang, Hui, E-mail: hzhang@bnu.edu.cn

    2015-02-15

    We use the stochastic Cahn–Hilliard equation to simulate the phase transitions of the macromolecular microsphere composite (MMC) hydrogels under a random disturbance. Based on the Flory–Huggins lattice model and the Boltzmann entropy theorem, we develop a reticular free energy suit for the network structure of MMC hydrogels. Taking the random factor into account, with the time-dependent Ginzburg-Landau (TDGL) mesoscopic simulation method, we set up a stochastic Cahn–Hilliard equation, designated herein as the MMC-TDGL equation. The stochastic term in the equation is constructed appropriately to satisfy the fluctuation-dissipation theorem and is discretized on a spatial grid for the simulation. A semi-implicit difference scheme is adopted to numerically solve the MMC-TDGL equation. Some numerical experiments are performed with different parameters. The results are consistent with the physical phenomenon, which verifies the good simulation of the stochastic term.

  15. Functionalization of Planet-Satellite Nanostructures Revealed by Nanoscopic Localization of Distinct Macromolecular Species

    KAUST Repository

    Rossner, Christian

    2016-09-26

    The development of a straightforward method is reported to form hybrid polymer/gold planet-satellite nanostructures (PlSNs) with functional polymer. Polyacrylate type polymer with benzyl chloride in its backbone as a macromolecular tracer is synthesized to study its localization within PlSNs by analyzing the elemental distribution of chlorine. The functionalized nanohybrid structures are analyzed by scanning transmission electron microscopy, electron energy loss spectroscopy, and spectrum imaging. The results show that the RAFT (reversible addition-fragmentation chain transfer) polymers\\' sulfur containing end groups are colocalized at the gold cores, both within nanohybrids of simple core-shell morphology and within higher order PlSNs, providing microscopic evidence for the affinity of the RAFT group toward gold surfaces. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA., Weinheim.

  16. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  17. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenjie [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Wang, Heyun [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002 (China); Yang, Dazhi [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); An, Bo [Department of Orthopedics, Affiliated Hospital of Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Zhang, Wencheng [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-10-15

    The electrospun scaffolds are potential application in vascular tissue engineering since they can mimic the nano-sized dimension of natural extracellular matrix (ECM). We prepared a fibrous scaffold from polycarbonateurethane (PCU) by electrospinning technology. In order to improve the hydrophilicity and hemocompatibility of the fibrous scaffold, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto the fiber surface by surface-initiated atom transfer radical polymerization (SI-ATRP) method. Although SI-ATRP has been developed and used for surface modification for many years, there are only few studies about the modification of electrospun fiber by this method. The modified fibrous scaffolds were characterized by SEM, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The scaffold morphology showed no significant difference when PEGMA was grafted onto the scaffold surface. Based on the water contact angle measurement, the surface hydrophilicity of the scaffold surface was improved significantly after grafting hydrophilic PEGMA (P = 0.0012). The modified surface showed effective resistance for platelet adhesion compared with the unmodified surface. Activated partial thromboplastin time (APTT) of the PCU-g-PEGMA scaffold was much longer than that of the unmodified PCU scaffold. The cyto-compatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells (HUVECs). The images of 7-day cultured cells on the scaffold surface were observed by SEM. The modified scaffolds showed high tendency to induce cell adhesion. Moreover, the cells reached out pseudopodia along the fibrous direction and formed a continuous monolayer. Hemolysis test showed that the grafted chains of PEGMA reduced blood coagulation. These results indicated that the modified electrospun nanofibrous scaffolds were potential application as artificial blood vessels. Highlights: • Electrospun nanofibrous scaffolds were successfully

  18. PURY: a database of geometric restraints of hetero compounds for refinement in complexes with macromolecular structures.

    Science.gov (United States)

    Andrejasic, Miha; Praaenikar, Jure; Turk, Dusan

    2008-11-01

    The number and variety of macromolecular structures in complex with ;hetero' ligands is growing. The need for rapid delivery of correct geometric parameters for their refinement, which is often crucial for understanding the biological relevance of the structure, is growing correspondingly. The current standard for describing protein structures is the Engh-Huber parameter set. It is an expert data set resulting from selection and analysis of the crystal structures gathered in the Cambridge Structural Database (CSD). Clearly, such a manual approach cannot be applied to the vast and ever-growing number of chemical compounds. Therefore, a database, named PURY, of geometric parameters of chemical compounds has been developed, together with a server that accesses it. PURY is a compilation of the whole CSD. It contains lists of atom classes and bonds connecting them, as well as angle, chirality, planarity and conformation parameters. The current compilation is based on CSD 5.28 and contains 1978 atom classes and 32,702 bonding, 237,068 angle, 201,860 dihedral and 64,193 improper geometric restraints. Analysis has confirmed that the restraints from the PURY database are suitable for use in macromolecular crystal structure refinement and should be of value to the crystallographic community. The database can be accessed through the web server http://pury.ijs.si/, which creates topology and parameter files from deposited coordinates in suitable forms for the refinement programs MAIN, CNS and REFMAC. In the near future, the server will move to the CSD website http://pury.ccdc.cam.ac.uk/.

  19. A 3D image filter for parameter-free segmentation of macromolecular structures from electron tomograms.

    Directory of Open Access Journals (Sweden)

    Rubbiya A Ali

    Full Text Available 3D image reconstruction of large cellular volumes by electron tomography (ET at high (≤ 5 nm resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters-the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms.

  20. A 3D image filter for parameter-free segmentation of macromolecular structures from electron tomograms.

    Science.gov (United States)

    Ali, Rubbiya A; Landsberg, Michael J; Knauth, Emily; Morgan, Garry P; Marsh, Brad J; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤ 5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters-the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms.

  1. Transition modes in Ising networks: an approximate theory for macromolecular recognition.

    Science.gov (United States)

    Keating, S; Di Cera, E

    1993-07-01

    For a statistical lattice, or Ising network, composed of N identical units existing in two possible states, 0 and 1, and interacting according to a given geometry, a set of values can be found for the mean free energy of the 0-->1 transition of a single unit. Each value defines a transition mode in an ensemble of nu N = 3N - 2N possible values and reflects the role played by intermediate states in shaping the energetics of the system as a whole. The distribution of transition modes has a number of intriguing properties. Some of them apply quite generally to any Ising network, regardless of its dimension, while others are specific for each interaction geometry and dimensional embedding and bear on fundamental aspects of analytical number theory. The landscape of transition modes encapsulates all of the important thermodynamic properties of the network. The free energy terms defining the partition function of the system can be derived from the modes by simple transformations. Classical mean-field expressions can be obtained from consideration of the properties of transition modes in a rather straightforward way. The results obtained in the analysis of the transition mode distributions have been used to develop an approximate treatment of the problem of macromolecular recognition. This phenomenon is modeled as a cooperative process that involves a number of recognition subsites across an interface generated by the binding of two macromolecular components. The distribution of allowed binding free energies for the system is shown to be a superposition of Gaussian terms with mean and variance determined a priori by the theory. Application to the analysis of the biologically interaction of thrombin with hirudin has provided some useful information on basic aspects of the interaction, such as the number of recognition subsites involved and the energy balance for binding and cooperative coupling among them. Our results agree quite well with information derived independently

  2. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    Science.gov (United States)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  3. Clinical applications of bovine colostrum therapy

    DEFF Research Database (Denmark)

    Rathe, Mathias; Müller, Klaus; Sangild, Per Torp

    2014-01-01

    to populations, outcomes, and methodological quality, as judged by the Jadad assessment tool. Many studies used surrogate markers to study the effects of bovine colostrum. Studies suggesting clinical benefits of colostrum supplementation were generally of poor methodological quality, and results could...... not be confirmed by other investigators. Bovine colostrum may provide gastrointestinal and immunological benefits, but further studies are required before recommendations can be made for clinical application. Animal models may help researchers to better understand the mechanisms of bovine colostrum supplementation......, the dosage regimens required to obtain clinical benefits, and the optimal methods for testing these effects in humans....

  4. 29 CFR 1910.28 - Safety requirements for scaffolding.

    Science.gov (United States)

    2010-07-01

    ... intended. (8) All load-carrying timber members of scaffold framing shall be a minimum of 1,500 f. (Stress... displacement. (7) Scaffolds shall be level and set upon a firm foundation. (m) Horse scaffolds. (1) Horse... the horses shall be not less than those specified in Table D-19. (3) Horses shall be spaced not...

  5. Development of Composite Scaffolds for Load Bearing Segmental Bone Defects

    Science.gov (United States)

    2013-07-01

    composite scaffolds designed to serve as bone regenerative therapies . We analyzed the benefits and drawbacks of different composite scaffold...related to fractures, sport and blast injuries. Diseases include bone cancer (osteosarcoma), tumor resection and reconstruction, osteoporosis ...selection for the scaffold has a direct impact on the biological and physical properties of the construct, there are some factors contributing to the

  6. Scaffolding as a Tool for Environmental Education in Early Childhood

    Science.gov (United States)

    Zurek, Alex; Torquati, Julia; Acar, Ibrahim

    2014-01-01

    This paper describes the process of "scaffolding" as a teaching strategy in early childhood education, and demonstrates how scaffolding can promote children's learning about the natural environment. Examples of scaffolding are provided from seventy-four running record observations made over a two-year period in a nature-based preschool…

  7. Design, fabrication and application of tissue engineering used cells scaffold

    Institute of Scientific and Technical Information of China (English)

    WANG Shenguo; BEI Jianzhong

    2001-01-01

    @@ FUNCTIONS OF CELLS SCAFFOLD IN THE TISSUE ENGINEERINGCell, cells scaffold and the construction of tissue and organ are three main factors for the Tissue Engineering. A main function of cells scaffold in tissue engineering is to provide an environment for cells propagation.

  8. Synthetic, biological and composite scaffolds for abdominal wall reconstruction.

    Science.gov (United States)

    Meintjes, Jennifer; Yan, Sheng; Zhou, Lin; Zheng, Shusen; Zheng, Minghao

    2011-03-01

    The reconstruction of abdominal wall defects remains a huge surgical challenge. Tension-free repair is proven to be superior to suture repair in abdominal wall reconstruction. Scaffolds are essential for tension-free repair. They are used to bridge a defect or reinforce the abdominal wall. A huge variety of scaffolds are now commercially available. Most of the synthetic scaffolds are composed of polypropylene. They provide strong tissue reinforcement, but cause a foreign body reaction, which can result in serious complications. Absorbable synthetic scaffolds, such as Dexon™ (polyglycolic acid) and Vicryl™ (polyglactin 910), are not suitable for abdominal wall reconstruction as they usually require subsequent surgeries to repair recurrent hernias. Composite scaffolds combine the strength of nonabsorbable synthetic scaffolds with the antiadhesive properties of the absorbable scaffold, but require long-term follow-up. Biological scaffolds, such as Permacol™, Surgisis(®) and Alloderm(®), are derived from acellular mammalian tissues. Non-cross-linked biological scaffolds show excellent biocompatibility and degrade slowly over time. However, remnant DNA has been found in several products and the degradation leads to recurrence. Randomized controlled trials with long-term follow-up studies are lacking for all of the available scaffolds, particularly those derived from animal tissue. This article provides an overview of the different types of scaffolds available, and presents the key clinical studies of the commercially available synthetic, composite and biological scaffolds for abdominal wall reconstruction.

  9. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...

  10. Immunoprophylaxis of bovine respiratory syndrome

    Directory of Open Access Journals (Sweden)

    Rogan Dragan

    2010-01-01

    Full Text Available Bovine Respiratory Syndrome (BRS is a multifactorial disease caused by the interaction of infective agents, the environment and the individual immunological response of animals in the herd. Despite five decades of research on BRS, no clear understanding of how environmental factors influence pathogenic outcomes of the disease has been defined. As such, the development of immunoprophylaxis and vaccine programmes to prevent outbreaks of BRS in cattle has not been successful. The current paper discusses vaccination programmes for all categories of cattle and presents a review of existing vaccines being used for immunoprophylaxis of respiratory syndrome in cattle and discusses the advantages and disadvantages of the currently used vaccines and vaccination programmes. Lastly, a discussion detailing the design of future perfect vaccines is presented.

  11. Bovine Mastitis: Frontiers in Immunogenetics

    Directory of Open Access Journals (Sweden)

    Kathleen eThompson-Crispi

    2014-10-01

    Full Text Available Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow’s natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the High Immune Response (HIR technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity+TM sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favourable production levels to feed a growing

  12. Bovine Mastitis: Frontiers in Immunogenetics

    Science.gov (United States)

    Thompson-Crispi, Kathleen; Atalla, Heba; Miglior, Filippo; Mallard, Bonnie A.

    2014-01-01

    Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow’s natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the high immune response (HIR) technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk, and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity+™ sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favorable production levels to feed a growing population. PMID

  13. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    Energy Technology Data Exchange (ETDEWEB)

    Higashiura, Akifumi, E-mail: hgsur-a@protein.osaka-u.ac.jp [Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Kazunori; Masaki, Mika; Sato, Masaru [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Inaka, Koji [Maruwa Foods and Biosciences Inc., Nara 639-1123 (Japan); Tanaka, Hiroaki [Confocal Science Inc., Tokyo 101-0032 (Japan); Nakagawa, Atsushi [Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-11-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  14. Biomechanical properties of Achilles tendon repair augmented with a bioadhesive-coated scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Michael; Vollenweider, Laura; Murphy, John L; Xu Fangmin; Lyman, Arinne; Lew, William D; Lee, Bruce P, E-mail: b-lee@nerites.com [Nerites Corporation, 505 S. Rosa Road, Suite 123, Madison, WI 53719 (United States)

    2011-02-15

    The Achilles tendon is the most frequently ruptured tendon. Both acute and chronic (neglected) tendon ruptures can dramatically affect a patient's quality of life, and require a prolonged period of recovery before return to pre-injury activity levels. This paper describes the use of an adhesive-coated biologic scaffold to augment primary suture repair of transected Achilles tendons. The adhesive portion consisted of a synthetic mimic of mussel adhesive proteins that can adhere to various surfaces in a wet environment, including biologic tissues. When combined with biologic scaffolds such as bovine pericardium or porcine dermal tissues, these adhesive constructs demonstrated lap shear adhesive strengths significantly greater than that of fibrin glue, while reaching up to 60% of the strength of a cyanoacrylate-based adhesive. These adhesive constructs were wrapped around transected cadaveric porcine Achilles tendons repaired with a combination of parallel and three-loop suture patterns. Tensile mechanical testing of the augmented repairs exhibited significantly higher stiffness (22-34%), failure load (24-44%), and energy to failure (27-63%) when compared to control tendons with suture repair alone. Potential clinical implications of this novel adhesive biomaterial are discussed.

  15. Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: Effects on nuclear and cytoplasmic maturation and embryonic development in vitro.

    Science.gov (United States)

    Ambrogi, M; Dall'Acqua, P C; Rocha-Frigoni, Nas; Leão, Bcs; Mingoti, G Z

    2017-06-01

    We investigated whether supplementing the medium used to transport bovine oocytes with different macromolecules [foetal calf serum (FCS) or bovine serum albumin (BSA)] or a mixture of antioxidants (cysteine, cysteamine and catalase) affects their nuclear and cytoplasmic maturation and thereby affects their subsequent embryonic development and cryotolerance. Oocytes were transported for 6 hr in a portable incubator and then subjected to standard in vitro maturation (IVM) for 18 hr. The oocytes in the control groups were cultured (standard IVM) for 24 hr in medium containing 10% FCS (Control FCS) or 10% FCS and the antioxidant mixture (Control FCS+Antiox). The intracellular concentrations of reactive oxygen species (ROS) at the end of IVM period were lower in the oocytes subjected to simulated transport in the presence of a macromolecular supplement or the antioxidant mixture than that of the control group (FCS: 0.62 and BSA: 0.66 vs. Control FCS: 1.00, p  .05) by the treatments. In conclusion, supplementing the medium in which bovine oocytes are transported with antioxidants or different macromolecules did not affect their in vitro production of embryos or their cryotolerance. © 2017 Blackwell Verlag GmbH.

  16. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    Science.gov (United States)

    Erisken, Cevat

    with adipose derived stromal cells (h-ADSCs). Analysis of resulting tissue constructs revealed chondrocytic differentiation of h-ADSCs, with both the chondrocytic cell concentration and mineralization varying as a function of distributions of concentrations of insulin and beta-GP, respectively. The investigation also covered characterization of biomechanical properties of native bovine osteochondral tissue samples, which were then compared with biomechanical properties of tissue constructs at different stages of development. The hybrid technology developed in this thesis should provide another enabling platform for the fabrication of functionally graded scaffolds that aim to mimic the elegant gradations found in myriad native tissues.

  17. Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite–gelatin–polyvinyl alcohol macroporous scaffold

    Directory of Open Access Journals (Sweden)

    Sanjaya Kumar Swain

    2014-09-01

    Full Text Available Freeze casting and cryogenic treatment both low temperature process have been employed to fabricate nanobiocomposite hydroxyapatite (HA–gelatin–polyvinyl alcohol (PVA macroporous scaffolds from synthesized three different spherical, rod and fibrous HA nanoparticles and composition optimized vis-á-vis porosity architecture, content and compressive strength. A critical HA morphology, solid loading and liquid nitrogen interaction time have a significant effect to enhance the mechanical response of developed scaffolds. Cryo-treated 40 wt.% nanorod HA–gelatin–PVA scaffold posses interconnected pore structure with 80 vol.% porosity, average pore diameter 50–200 μm and highest 5.8 MPa compressive strength. Different degree of the apatite deposition phenomenon in simulated body fluid solution at 37 °C and pH ∼ 7.4 varies with respect to time. In vitro cytotoxicity and L929 mouse fibroblast cell culture in the presence of Dulbecco's Modified Eagle Medium and 10% Fetal Bovine Serum at 37 °C and 5% CO2 atmosphere exhibit excellent cytocompatibility and cell viability at low extract concentration up to 25%.

  18. Models of bovine babesiosis including juvenile cattle.

    Science.gov (United States)

    Saad-Roy, C M; Shuai, Zhisheng; van den Driessche, P

    2015-03-01

    Bovine Babesiosis in cattle is caused by the transmission of protozoa of Babesia spp. by ticks as vectors. Juvenile cattle (Babesiosis, rarely show symptoms, and acquire immunity upon recovery. Susceptibility to the disease varies between breeds of cattle. Models of the dynamics of Bovine Babesiosis transmitted by the cattle tick that include these factors are formulated as systems of ordinary differential equations. Basic reproduction numbers are calculated, and it is proved that if these numbers are below the threshold value of one, then Bovine Babesiosis dies out. However, above the threshold number of one, the disease may approach an endemic state. In this case, control measures are suggested by determining target reproduction numbers. The percentage of a particular population (for example, the adult bovine population) needed to be controlled to eradicate the disease is evaluated numerically using Columbia data from the literature.

  19. Internalization of 125I-human choriogonadotropin in bovine luteal slices. A biochemical study.

    Science.gov (United States)

    Chegini, N; Rao, C V; Carman, F R

    1984-04-01

    Various intracellular organelles as well as outer cell membranes of bovine corpora lutea intrinsically contain gonadotropin receptors (Rao et al., J biol chem 256 (1981) 2628 [5]). In order to investigate whether exogenously added human choriogonadotropin (hCG) can internalize and bind to the intracellular sites, bovine luteal slices that had been carefully checked with respect to structural and functional integrity were incubated with 0.1 nM 125I-hCG. Following incubation, specific radioactivity was found to be associated with various intracellular organelles, but not with cytosol. The order of radioactivity uptake by subcellular organelles following a 2-h incubation was: Golgi medium greater than Golgi heavy greater than Golgi light greater than plasma membranes = rough endoplasmic reticulum greater than mitochondria-lysosomes- greater than nuclei. The 5'-nucleotidase activity and electron microscopic examination of the fractions revealed that the presence of radioactivity in the intracellular organelles cannot be attributed solely to plasma membrane contamination. The internalization and intracellular binding of 125I-hCG was time and temperature-dependent. Only excess unlabeled hCG and hLH (but not hCG subunits, FSH and PRL) competed with 125I-hCG for internalization in luteal slices. Very little or no 125I-hCG added was internalized in liver or kidney slices; luteal, liver and kidney slices accumulated neither 125I-BSA nor 125I. The radioactivity eluted from various luteal subcellular organelles was able to rebind to fresh corresponding organelles and came off Sepharose 6B columns in a position corresponding to native 125I-hCG. The gel filtration profile of detergent-solubilized radioactivity revealed that 125I-hCG was macromolecular bound. The degraded and altered 125I-hCG was found in the incubation media.

  20. Enhancing Student Learning through Scaffolded Client Projects

    Science.gov (United States)

    Tomlinson, Elizabeth

    2017-01-01

    This article reports on the current status of client projects (CPs) in business communication courses, provides a scaffolded model for implementing CP, and assesses student learning in CPs. Using a longitudinal mixed method research design, survey data and qualitative materials from six semesters are presented. The instructor survey indicated need…

  1. Comparison of TALEN scaffolds in Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2013-11-01

    Transcription activator-like effector nucleases (TALENs are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis, we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-side manner: a basic TALEN, a scaffold with the same truncated N- and C-terminal domains as GoldyTALEN, a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain, and a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric Sharkey nuclease domain. The strongest phenotype and targeted somatic gene mutation were induced by the injection of TALEN mRNAs containing the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain. The obligate heterodimeric TALENs exhibited reduced toxicity compared to the homodimeric TALENs, and the homodimeric GoldyTALEN-type scaffold showed both a high activity of somatic gene modification and high toxicity. The Sharkey mutation in the heterodimeric nuclease domain reduced the TALEN-mediated somatic mutagenesis.

  2. Comparison of TALEN scaffolds in Xenopus tropicalis.

    Science.gov (United States)

    Nakajima, Keisuke; Yaoita, Yoshio

    2013-12-15

    Transcription activator-like effector nucleases (TALENs) are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis), we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-side manner: a basic TALEN, a scaffold with the same truncated N- and C-terminal domains as GoldyTALEN, a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain, and a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric Sharkey nuclease domain. The strongest phenotype and targeted somatic gene mutation were induced by the injection of TALEN mRNAs containing the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain. The obligate heterodimeric TALENs exhibited reduced toxicity compared to the homodimeric TALENs, and the homodimeric GoldyTALEN-type scaffold showed both a high activity of somatic gene modification and high toxicity. The Sharkey mutation in the heterodimeric nuclease domain reduced the TALEN-mediated somatic mutagenesis.

  3. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  4. Joining the Conversation: Scaffolding and Tutoring Mathematics

    Science.gov (United States)

    Valkenburg, Jim

    2010-01-01

    Tutoring is one of those skills which require the ability to communicate an in-depth understanding of the subject. This article is about scaffolding while tutoring, and the tutoring talents described can be applied across the curriculum. Lev Vygotsky's ideas about communication and education play a key role in the development of scaffolding…

  5. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  6. Engineered biopolymeric scaffolds for chronic wound healing

    Directory of Open Access Journals (Sweden)

    Laura E Dickinson

    2016-08-01

    Full Text Available Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves towards precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  7. Engineered Biopolymeric Scaffolds for Chronic Wound Healing.

    Science.gov (United States)

    Dickinson, Laura E; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  8. Bioactive nanofibrous scaffolds for regenerative endodontics.

    Science.gov (United States)

    Bottino, M C; Kamocki, K; Yassen, G H; Platt, J A; Vail, M M; Ehrlich, Y; Spolnik, K J; Gregory, R L

    2013-11-01

    Here we report the synthesis, materials characterization, antimicrobial capacity, and cytocompatibility of novel antibiotic-containing scaffolds. Metronidazole (MET) or Ciprofloxacin/(CIP) was mixed with a polydioxanone (PDS)polymer solution at 5 and 25 wt% and processed into fibers. PDS fibers served as a control. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and high-performance liquid chromatography (HPLC) were used to assess fiber morphology, chemical structure, mechanical properties, and drug release, respectively. Antimicrobial properties were evaluated against those of Porphyromonas gingivalis/Pg and Enterococcus faecalis/Ef. Cytotoxicity was assessed in human dental pulp stem cells (hDPSCs). Statistics were performed, and significance was set at the 5% level. SEM imaging revealed a submicron fiber diameter. FTIR confirmed antibiotic incorporation. The tensile values of hydrated 25 wt% CIP scaffold were significantly lower than those of all other groups. Analysis of HPLC data confirmed gradual, sustained drug release from the scaffolds over 48 hrs. CIP-containing scaffolds significantly (p regenerative endodontics.

  9. Towards improved scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Nandakumar, A.

    2012-01-01

    Tissue engineering aims to restore, maintain or improve tissue function of damaged tissues. In a classical set-up, a scaffold functions as a supporting structure and a carrier for growth factors and/or cells. Human mesenchymal stromal cells (hMSCs) have the ability to differentiate into bone, cartil

  10. Scaffolding of cystine-stabilized miniproteins

    NARCIS (Netherlands)

    Sankaran, S.; Stojanovic, Ivan; Barendregt, A.; Heck, A.J.R.; Schasfoort, Richardus B.M.; Jonkheijm, Pascal

    2016-01-01

    Biomolecular scaffolds were engineered by genetically fusing robust miniproteins in a sequence, like a chain. By fusing these miniprotein chains to a teal fluorescent protein (TFP), an efficient strategy was devised for their production in E. coli. Miniproteins that bind β-trypsin, VEGF and HIV-1

  11. A conceptualisation of whole-class scaffolding

    NARCIS (Netherlands)

    Smit, J.; van Eerde, H.A.A.; Bakker, A.

    2013-01-01

    The concept of scaffolding refers to temporary and adaptive support, originally in dyadic adult– child interaction. It has become widely used, also in whole-class settings, but often in loose ways. The aim of this paper is to theoretically and empirically ground a conceptualisation of whole-class sc

  12. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide strat...

  13. Membrane supported scaffold : architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli, Narasimha Murthy Srivatsa

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficie

  14. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pego, Ana Paula; Poot, André A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more r

  15. Work Related Musculoskeletal Disorders in Scaffolders

    NARCIS (Netherlands)

    L.A.M. Elders (Leo)

    2003-01-01

    textabstractIn many occupational populations, musculoskeletal disorders constitute an important source of morbidity, sickness absence, and disability and attribute to a substantial social and economic burden for society. This is certainly applicable to scaffolders, the study population in this thesi

  16. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    Science.gov (United States)

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  17. Scaffolding English Language Learners' Reading Performance

    Science.gov (United States)

    McKenzie, Lolita D.

    2011-01-01

    English language learners (ELLs) spend a majority of their instructional time in mainstream classrooms with mainstream teachers. Reading is an area with which many ELLs are challenged when placed within mainstream classrooms. Scaffolding has been identified as one of the best teaching practices for helping students read. ELL students in a local…

  18. Scaffolding English Language Learners' Reading Performance

    Science.gov (United States)

    McKenzie, Lolita D.

    2011-01-01

    English language learners (ELLs) spend a majority of their instructional time in mainstream classrooms with mainstream teachers. Reading is an area with which many ELLs are challenged when placed within mainstream classrooms. Scaffolding has been identified as one of the best teaching practices for helping students read. ELL students in a local…

  19. Using Scaffolding to Scale-up Justifications

    Science.gov (United States)

    James, Carolyn; Casas, Ana; Grant, Douglas

    2016-01-01

    Open-ended mathematical tasks provide great opportunities for students to engage in authentic mathematical practices, such as conjecturing, generalizing, and justifying. Supporting students in open-ended tasks can be challenging. Appropriate scaffolding of a task has been linked to more opportunities for student learning and better student…

  20. Gestures: Silent Scaffolding within Small Groups

    Science.gov (United States)

    Carter, Glenda; Wiebe, Eric N.; Reid-Griffin, Angela

    2006-01-01

    This paper describes how gestures are used to enhance scaffolding that occurs in small group settings. Sixth and eighth grade students participated in an elective science course focused on earth science concepts with a substantial spatial visualization component. Gestures that students used in small group discussions were analyzed and four…

  1. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  2. Preparation and cytocompatibility of silk fibroin /chitosan scaffolds

    Institute of Scientific and Technical Information of China (English)

    Zhen-ding SHE; Wei-qiang LIU; Qing-ling FENG

    2009-01-01

    One challenge in soft tissue engineering is to find an applicable scaffold, not only having suitable mechanical properties, porous structures, and biodegradable properties, but also being abundant in active groups and having good biocompatibility. In this study, a threedimensional silk fibroin/chitosan (SFCS) scaffold was successfully prepared with interconnected porous structure, excellent hydrophilicity, and proper mechanical properties. Compared with polylactic glycolic acid (PLGA) scaffold, the SFCS scaffold further facilitated the growth of HepG2 cells (human hepatoma cell line). Keeping the good cytocompatibility and combining the advantages of both fibroin and chitosan, the SFCS scaffold should be a prominent candidate for soft tissue engineering, for example, liver.

  3. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications.

    Science.gov (United States)

    Guo, Hong-Feng; Li, Zhen-Sheng; Dong, Shi-Wu; Chen, Wei-Jun; Deng, Ling; Wang, Yu-Fei; Ying, Da-Jun

    2012-08-01

    Previous studies have shown that piezoelectric materials may be used to prepare bioactive electrically charged surfaces. In the current study, polyurethane/polyvinylidene fluoride (PU/PVDF) scaffolds were prepared by electrospinning. The mechanical property and piezoelectric property of the scaffolds were evaluated. The crystalline phase of PVDF in the scaffolds was characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). In vitro cell culture was performed to investigate cytocompatibility of the scaffolds. Wound-healing assay, cell-adhesion assay, quantitative RT-PCR and Western blot analyses were performed to investigate piezoelectric effect of the scaffolds on fibroblast activities. Further, the scaffolds were subcutaneously implanted in Sprague-Dawley (SD) rats to investigate their biocompatibility and the piezoelectric effect on fibrosis in vivo. The results indicated that the electrospinning process had changed PVDF crystalline phase from the nonpiezoelectric α phase to the piezoelectric β phase. The fibroblasts cultured on the scaffolds showed normal morphology and proliferation. The fibroblasts cultured on the piezoelectric-excited scaffolds showed enhanced migration, adhesion and secretion. The scaffolds that were subcutaneously implanted in SD rats showed higher fibrosis level due to the piezoelectrical stimulation, which was caused by random animal movements followed by mechanical deformation of the scaffolds. The scaffolds are potential candidates for wound healing applications.

  5. Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.

    Science.gov (United States)

    Kanungo, Biraja P; Silva, Emilio; Van Vliet, Krystyn; Gibson, Lorna J

    2008-05-01

    Mineralized collagen-glycosaminoglycan scaffolds designed for bone regeneration have been synthesized via triple co-precipitation in the absence of a titrant phase. Here, we characterize the microstructural and mechanical properties of these newly developed scaffolds with 50 and 75 wt.% mineral content. The 50 wt.% scaffold had an equiaxed pore structure with isotropic mechanical properties and a Ca-P-rich mineral phase comprised of brushite; the 75 wt.% scaffold had a bilayer structure with a pore size varying in the through-thickness direction and a mineral phase comprised of 67% brushite and 33 wt.% monetite. The compressive stress-strain response of the scaffolds was characteristic of low-density open-cell foams with distinct linear elastic, collapse plateau and densification regimes. The elastic modulus and strength of individual struts within the scaffolds were measured using an atomic force microscopy cantilevered beam-bending technique and compared with the composite response under indentation and unconfined compression. Cellular solids models, using the measured strut properties, overestimated the overall mechanical properties for the scaffolds; the discrepancy arises from defects such as disconnected pore walls within the scaffold. As the scaffold stiffness and strength decreased with increasing overall mineral content and were less than that of natural, mineralized collagen scaffolds, these microstructural/mechanical relations will be used to further improve scaffold design for bone regeneration applications.

  6. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Science.gov (United States)

    Kundanati, Lakshminath; Singh, Saket K.; Mandal, Biman B.; Murthy, Tejas G.; Gundiah, Namrata; Pugno, Nicola M.

    2016-01-01

    Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions. PMID:27681725

  7. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Directory of Open Access Journals (Sweden)

    Lakshminath Kundanati

    2016-09-01

    Full Text Available Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

  8. Influence of scaffold design on 3D printed cell constructs.

    Science.gov (United States)

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  9. Fabrication of polymeric scaffolds with a controlled distribution of pores.

    Science.gov (United States)

    Capes, J S; Ando, H Y; Cameron, R E

    2005-12-01

    The design of tissue engineering scaffolds must take into account many factors including successful vascularisation and the growth of cells. Research has looked at refining scaffold architecture to promote more directed growth of tissues through well-defined anisotropy in the pore structure. In many cases it is also desirable to incorporate therapeutic ingredients, such as growth factors, into the scaffold so that their release occurs as the scaffold degrades. Therefore, scaffold fabrication techniques must be found to precisely control, not only the overall porosity of scaffolds, but also the pore size, shape and spatial distribution. This work describes the use of a regularly shaped porogen, sugar spheres, to manufacture polymeric scaffolds. Results show that pre-assembling the spheres created scaffolds with a constant porosity of 60%, but with varying pores sizes from 200-800 microm, leading to a variation in the surface area and likely degradation rate of the scaffolds. Employing different polymer impregnation techniques tailored the number of pores present with a diameter of less than 100 microm to suit different functions, and altering the packing structure of the sugar spheres created scaffolds with novel layered porosity. Replacing sugar spheres with sugar strands formed scaffolds with pores aligned in one direction.

  10. Porous Three-Dimensional Carbon Nanotube Scaffolds for Tissue Engineering

    Science.gov (United States)

    Lalwani, Gaurav; Gopalan, Anu; D’Agati, Michael; Sankaran, Jeyantt Srinivas; Judex, Stefan; Qin, Yi-Xian; Sitharaman, Balaji

    2015-01-01

    Assembly of carbon nanomaterials into three-dimensional (3D) architectures is necessary to harness their unique physiochemical properties for tissue engineering and regenerative medicine applications. Herein, we report the fabrication and comprehensive cytocompatibility assessment of 3D chemically crosslinked macro-sized (5–8 mm height and 4–6 mm diameter) porous carbon nanotube (CNT) scaffolds. Scaffolds prepared via radical initiated thermal crosslinking of single- or multi- walled CNTs (SWCNTs and MWCNTs) possess high porosity (>80%), and nano-, micro- and macro-scale interconnected pores. MC3T3 pre-osteoblast cells on MWCNT and SWCNT scaffolds showed good cell viability comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds after 5 days. Confocal live cell and immunofluorescence imaging showed that MC3T3 cells were metabolically active and could attach, proliferate and infiltrate MWCNT and SWCNT scaffolds. SEM imaging corroborated cell attachment and spreading and suggested that cell morphology is governed by scaffold surface roughness. MC3T3 cells were elongated on scaffolds with high surface roughness (MWCNTs) and rounded on scaffolds with low surface roughness (SWCNTs). The surface roughness of scaffolds may be exploited to control cellular morphology, and in turn govern cell fate. These results indicate that crosslinked MWCNTs and SWCNTs scaffolds are cytocompatible, and open avenues towards development of multifunctional all-carbon scaffolds for tissue engineering applications. PMID:25788440

  11. Recent developments in scaffold-guided cartilage tissue regeneration.

    Science.gov (United States)

    Liao, Jinfeng; Shi, Kun; Ding, Qiuxia; Qu, Ying; Luo, Feng; Qian, Zhiyong

    2014-10-01

    Articular cartilage repair is one of the most challenging problems in biomedical engineering because the regenerative capacity of cartilage is intrinsically poor. The lack of efficient treatment modalities motivates researches into cartilage tissue engineering such as combing cells, scaffolds and growth factors. In this review we summarize the current developments on scaffold systems available for cartilage tissue engineering. The factors that are critical to successfully design an ideal scaffold for cartilage regeneration were discussed. Then we present examples of selected material types (natural polymers and synthetic polymers) and fabricated forms of the scaffolds (three-dimensional scaffolds, micro- or nanoparticles, and their composites). In the end of review, we conclude with an overview of the ways in which biomedical nanotechnology is widely applied in cartilage tissue engineering, especially in the design of composite scaffolds. This review attempts to provide recommendations on the combination of qualities that would produce the ideal scaffold system for cartilage tissue engineering.

  12. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  13. Preparation of bioactive porous HA/PCL composite scaffolds

    Science.gov (United States)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  14. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds.

    Science.gov (United States)

    de Paula, Ana Cláudia Chagas; Zonari, Alessandra Arcoverde Cavalcanti; Martins, Thaís Maria da Mata; Novikoff, Silviene; da Silva, Alexandra Rodrigues Pereira; Correlo, Vitor Manuel; Reis, Rui L; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2013-01-01

    Human adipose-derived stem cells (hASCs) are currently a point of focus for bone tissue engineering applications. However, the ex vivo expansion of stem cells before clinical application remains a challenge. Fetal bovine serum (FBS) is largely used as a medium supplement and exposes the recipient to infections and immunological reactions. In this study, we evaluated the osteogenic differentiation process of hASCs in poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) scaffolds with the osteogenic medium supplemented with pooled allogeneic human serum (aHS). The hASCs grown in the presence of FBS or aHS did not show remarkable differences in morphology or immunophenotype. The PHB-HV scaffolds, which were developed by the freeze-drying technique, showed an adequate porous structure and mechanical performance as observed by micro-computed tomography, scanning electron microscopy (SEM), and compression test. The three-dimensional structure was suitable for allowing cell colonization, which was revealed by SEM micrographs. Moreover, these scaffolds were not toxic to cells as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation capacity of hASCs seeded on scaffolds was confirmed by the reduction of the proliferation, the alkaline phosphatase (AP) activity, expression of osteogenic gene markers (AP, collagen type I, Runx2, and osteocalcin), and the expression of bone markers, such as osteopontin, osteocalcin, and collagen type I. The osteogenic capacity of hASCs seeded on PHB-HV scaffolds indicates that this scaffold is adequate for cell growth and differentiation and that aHS is a promising supplement for the in vitro expansion of hASCs. In conclusion, this strategy seems to be useful and safe for application in bone tissue engineering.

  15. Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis.

    Science.gov (United States)

    Nakayama, Karina H; Hong, Guosong; Lee, Jerry C; Patel, Jay; Edwards, Bryan; Zaitseva, Tatiana S; Paukshto, Michael V; Dai, Hongjie; Cooke, John P; Woo, Y Joseph; Huang, Ngan F

    2015-07-28

    The objective of this study was to enhance the angiogenic capacity of endothelial cells (ECs) using nanoscale signaling cues from aligned nanofibrillar scaffolds in the setting of tissue ischemia. Thread-like nanofibrillar scaffolds with porous structure were fabricated from aligned-braided membranes generated under shear from liquid crystal collagen solution. Human ECs showed greater outgrowth from aligned scaffolds than from nonpatterned scaffolds. Integrin α1 was in part responsible for the enhanced cellular outgrowth on aligned nanofibrillar scaffolds, as the effect was abrogated by integrin α1 inhibition. To test the efficacy of EC-seeded aligned nanofibrillar scaffolds in improving neovascularization in vivo, the ischemic limbs of mice were treated with EC-seeded aligned nanofibrillar scaffold; EC-seeded nonpatterned scaffold; ECs in saline; aligned nanofibrillar scaffold alone; or no treatment. After 14 days, laser Doppler blood spectroscopy demonstrated significant improvement in blood perfusion recovery when treated with EC-seeded aligned nanofibrillar scaffolds, in comparison to ECs in saline or no treatment. In ischemic hindlimbs treated with scaffolds seeded with human ECs derived from induced pluripotent stem cells (iPSC-ECs), single-walled carbon nanotube (SWNT) fluorophores were systemically delivered to quantify microvascular density after 28 days. Near infrared-II (NIR-II, 1000-1700 nm) imaging of SWNT fluorophores demonstrated that iPSC-EC-seeded aligned scaffolds group showed significantly higher microvascular density than the saline or cells groups. These data suggest that treatment with EC-seeded aligned nanofibrillar scaffolds improved blood perfusion and arteriogenesis, when compared to treatment with cells alone or scaffold alone, and have important implications in the design of therapeutic cell delivery strategies.

  16. SCAFFOLDING DALAM MICROTEACHING KIMIA BERBASIS PEMBELAJARAN LANGSUNG DAN SIKLUS BELAJAR

    Directory of Open Access Journals (Sweden)

    Abdullatif Nusu

    2014-09-01

    Full Text Available Abstract: Scaffolding in Chemistry Microteaching Utilizing  Direct Instruction and Learning Cycle. This study concerns developing students’ competence in conducting microteaching in chemistry, especially in preparing lesson plans using direct instruction and learning cycle and in implementing the lesson plans in peer teaching. The microteaching skills of 26 students are enhanced using scaffolding, implemented gradually and integratedly. The scaffolding comprises three stages: orientation of the task, revising the lesson plan, and carrying out peer teaching. Scaffolding is found to enable the students to develop lesson plans and to realize the lesson plans in peer teaching, as can be seen from their scores on the two aspects. In addi­tion, the students respond positively to the use of scaffolding in microteaching. Keywords: scaffolding, lesson plan writing, peer teaching, chemistry microteaching Abstrak: Scaffolding dalam Microteaching Kimia Berbasis Pembelajaran Langsung dan Siklus Be­lajar. Penelitian tentang kemampuan mahasiswa dalam melaksanakan microteaching kimia, khususnya dalam menulis rencana pelaksanaan pembelajaran berbasis pembelajaran langsung dan siklus belajar serta menerapkannya dalam peer teaching, telah dilakukan terhadap 26 mahasiswa Program Studi Pendidikan Kimia Universitas Haluoleo di Kendari, Sulawesi Tenggara. Kemampuan melaksanakan microteaching mahasiswa ditingkatkan dengan menggunakan scaffolding yang dilakukan secara bertahap dan terpadu. Scaffolding tersebut terdiri dari tiga tahap yaitu orientasi tugas dan memodelkan cara menggunakan sum­ber scaffolding, revisi Rencana Pelaksanaan Pembelajaran (RPP melalui artikulasi dan refleksi untuk menghasilkan RPP kelompok, dan melaksanakan peer teaching. Keberhasilan scaffolding dalam micro­teaching kimia ditunjukkan dengan tercapainya skor penulisan RPP dan skor pelaksanaan peer teaching yang memenuhi kriteria ketuntasan minimal. Hasil penelitian menunjukkan bahwa

  17. Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yuyang; Li, Jun; Huang, Zhenzhen; He, Ke; Zhuang, Jiaqi; Yang, Wensheng, E-mail: wsyang@jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry (China)

    2013-11-15

    The using of macromolecular additives is known to be a simple and effective way to improve the activity of immobilized enzymes on solid support, yet the mechanism has not been well understood. Taking horseradish peroxidase (HRP) as an example, only 30 % of its catalytic activity was kept after being immobilized on the surface of 25-nm Au nanoparticles, mainly attributed to the conformational change of the heme-containing active site. The catalytic activity of HRP was significantly improved to 80 % when a certain amount of bovine serum albumin (BSA) was added at the initial stage of the immobilization. Systematic spectral investigation indicated that the addition of BSA inhibited the tertiary structure change around the active site, which was a prerequisite for improved activity of the immobilized HRP. Steady-state kinetic analyses revealed that the introduction of BSA could effectively improve the turnover rate of substrate to product in spite of slight reduced affinity to substrates, which also contributed to the improved catalytic activity.

  18. Improved activity of immobilized horseradish peroxidase on gold nanoparticles in the presence of bovine serum albumin

    Science.gov (United States)

    Ni, Yuyang; Li, Jun; Huang, Zhenzhen; He, Ke; Zhuang, Jiaqi; Yang, Wensheng

    2013-11-01

    The using of macromolecular additives is known to be a simple and effective way to improve the activity of immobilized enzymes on solid support, yet the mechanism has not been well understood. Taking horseradish peroxidase (HRP) as an example, only 30 % of its catalytic activity was kept after being immobilized on the surface of 25-nm Au nanoparticles, mainly attributed to the conformational change of the heme-containing active site. The catalytic activity of HRP was significantly improved to 80 % when a certain amount of bovine serum albumin (BSA) was added at the initial stage of the immobilization. Systematic spectral investigation indicated that the addition of BSA inhibited the tertiary structure change around the active site, which was a prerequisite for improved activity of the immobilized HRP. Steady-state kinetic analyses revealed that the introduction of BSA could effectively improve the turnover rate of substrate to product in spite of slight reduced affinity to substrates, which also contributed to the improved catalytic activity.

  19. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  20. Solid-state NMR in macromolecular systems: insights on how molecular entities move.

    Science.gov (United States)

    Hansen, Michael Ryan; Graf, Robert; Spiess, Hans Wolfgang

    2013-09-17

    The function of synthetic and natural macromolecularsystems critically depends on the packing and dynamics of the individual components of a given system. Not only can solid-state NMR provide structural information with atomic resolution, but it can also provide a way to characterize the amplitude and time scales of motions over broad ranges of length and time. These movements include molecular dynamics, rotational and translational motions of the building blocks, and also the motion of the functional species themselves, such as protons or ions. This Account examines solid-state NMR methods for correlating dynamics and function in a variety of chemical systems. In the early days, scientists thought that the rotationalmotions reflected the geometry of the moving entities. They described these phenomena as jumps about well-defined axes, such as phenyl flips, even in amorphous polymers. Later, they realized that conformational transitions in macromolecules happen in a much more complex way. Because the individual entities do not rotate around well-defined axes, they require much less space. Only recently researchers have appreciated the relative importance of large angle fluctuations of polymers over rotational jumps. Researchers have long considered that cooperative motions might be at work, yet only recently they have clearly detected these motions by NMR in macromolecular and supramolecular systems. In correlations of dynamics and function, local motions do not always provide the mechanism of long-range transport. This idea holds true in ion conduction but also applies to chain transport in polymer melts and semicrystalline polymers. Similar chain motions and ion transport likewise occur in functional biopolymers, systems where solid-state NMR studies are also performed. In polymer science, researchers have appreciated the unique information on molecular dynamics available from advanced solid-state NMR at times, where their colleagues in the biomacromolecular