WorldWideScience

Sample records for macroenvironmental conditions physiological

  1. Strategic planning for public health practice using macroenvironmental analysis.

    Science.gov (United States)

    Ginter, P M; Duncan, W J; Capper, S A

    1991-01-01

    Macroenvironmental analysis is the initial stage in comprehensive strategic planning. The authors examine the benefits of this type of analysis when applied to public health organizations and present a series of questions that should be answered prior to committing resources to scanning, monitoring, forecasting, and assessing components of the macroenvironment. Using illustrations from the public and private sectors, each question is examined with reference to specific challenges facing public health. Benefits are derived both from the process and the outcome of macroenvironmental analysis. Not only are data acquired that assist public health professionals to make decisions, but the analytical process required assures a better understanding of potential external threats and opportunities as well as an organization's strengths and weaknesses. Although differences exist among private and public as well as profit and not-for-profit organizations, macroenvironmental analysis is seen as more essential to the public and not-for-profit sectors than the private and profit sectors. This conclusion results from the extreme dependency of those areas on external environmental forces that cannot be significantly influenced or controlled by public health decision makers. PMID:1902305

  2. Macroenvironmental factors including GDP per capita and physical activity in Europe

    NARCIS (Netherlands)

    Cameron, Adrian J.; van Stralen, Maartje M.; Kunst, Anton E.; te Velde, Saskia J.; van Lenthe, Frank J.; Salmon, Jo; Brug, Johannes

    2013-01-01

    Socioeconomic inequalities in physical activity at the individual level are well reported. Whether inequalities in economic development and other macroenvironmental variables between countries are also related to physical activity at the country level is comparatively unstudied. We examined the

  3. Macroenvironmental Factors Including GDP per Capita and Physical Activity in Europe

    NARCIS (Netherlands)

    Cameron, A.J.; van Stralen, M.M.; Kunst, A.E.; te Velde, S.J.; Lenthe, F.J.; Salmon, J.; Brug, J.

    2013-01-01

    Purpose: Socioeconomic inequalities in physical activity at the individual level are well reported. Whether inequalities in economic development and other macroenvironmental variables between countries are also related to physical activity at the country level is comparatively unstudied. Methods: We

  4. Macro-environmental policy: Principles and design

    International Nuclear Information System (INIS)

    Huppes, G.

    1993-01-01

    The central theme of this book is how macro-environmental policy can be developed, which does not prescribe or suggest specific technologies and products bu realizes the environmental quality desired by changing the general context. The publication is composed of four main parts. The framework for analysis and the normative principles for policy design and evaluation, the first two parts, form the analytic core. The framework for analysis gives a classification of instruments in terms of permutations of a limited number of defining elements. The normative principles guide choices in instrument design and, as the flexible response strategy, guide their application in specific policies. Detailing two main new instruments (the standard method for life cycle analysis and the substance deposit, and applying the instrument strategy as developed to the cases make up the next two parts

  5. Context-Dependent Effects of Genome-Wide Association Study Genotypes and Macro-Environmental Factors on Time to Biochemical (PSA) Failure after Prostatectomy

    Science.gov (United States)

    Rebbeck, Timothy R.; Weber, Anita L.; Walker, Amy H.; Stefflova, Klara; Tran, Teo V.; Spangler, Elaine; Chang, Bao-Li; Zeigler-Johnson, Charnita M.

    2010-01-01

    Background Disparities in cancer defined by race, age, or gender are well established. However, demographic metrics are surrogates for the complex contributions of genotypes, exposures, health care, socioeconomic and sociocultural environment, and many other factors. Macro-environmental factors represent novel surrogates for exposures, lifestyle and other factors that are difficult to measure but may influence cancer outcomes. Methods We applied a “multilevel molecular epidemiology” approach using a prospective cohort of 444 White prostate cancer cases who underwent prostatectomy and were followed until biochemical failure (BF) or censoring without BF. We applied Cox regression models to test for joint effects of 86 genome-wide association study-identified genotypes and macro-environmental contextual effects after geocoding all cases to their residential census tracts. All analyses were adjusted for age at diagnosis and tumor aggressiveness. Results Residents living in macroenvironments with a high proportion of older single heads of household, high rates of vacant housing, or high unemployment had shorter time until BF post-surgery after adjustment for patient age and tumor aggressiveness. After correction for multiple testing, genotypes alone did not predict time to BF, but interactions predicting time to BF were observed for MSMB (rs10993994) and percent of older single head of households (p=0.0004), and for HNF1B/TCF2 (rs4430796) and macroenvironment per capita income (p=0.0002). Conclusions Context-specific macro-environmental effects of genotype may improve the ability to identify groups that may experience poor prostate cancer outcomes. Impact Risk estimation and clinical translation of genotype information may require an understanding of both individual-level and macroenvironmental context. PMID:20826827

  6. Macroenvironmental factors including GDP per capita and physical activity in Europe.

    Science.gov (United States)

    Cameron, Adrian J; Van Stralen, Maartje M; Kunst, Anton E; Te Velde, Saskia J; Van Lenthe, Frank J; Salmon, Jo; Brug, Johannes

    2013-02-01

    Socioeconomic inequalities in physical activity at the individual level are well reported. Whether inequalities in economic development and other macroenvironmental variables between countries are also related to physical activity at the country level is comparatively unstudied. We examined the relationship between country-level data on macroenvironmental factors (gross domestic product (GDP) per capita, public sector expenditure on health, percentage living in urban areas, and cars per 1000 population) with country-level physical activity prevalence obtained from previous pan-European studies. Studies that assessed leisuretime physical activity (n = 3 studies including 27 countries in adults, n = 2 studies including 28 countries in children) and total physical activity (n = 3 studies in adults including 16 countries) were analyzed separately as were studies among adults and children. Strong and consistent positive correlations were observed between country prevalence of leisure-time physical activity and country GDP per capita in adults (average r = 0.70; all studies, P G 0.05). In multivariate analysis, country prevalence of leisure-time physical activity among adults remained associated with country GDP per capita (two of three studies) but not urbanization or educational attainment. Among school-age populations, no association was found between country GDP per capita and country prevalence of leisure-time physical activity. In those studies that assessed total physical activity (which also includes occupational and transport physical activity), no association with country GDP per capita was observed. Clear differences in national leisure-time physical activity levels throughout Europe may be a consequence of economic development. Lack of economic development of some countries in Europe may make increasing leisure-time physical activity more difficult. Further examination of the link between country GDP per capita and national physical activity levels (across

  7. Macro-environmental factors associated with leisure-time physical activity: a cross-national analysis of EU countries.

    Science.gov (United States)

    Van Tuyckom, Charlotte

    2011-06-01

    Although there is a growing agreement among researchers that the modern environment contributes to the current trend of decreasing leisure-time physical activity (LTPA), there are very few studies addressing environmental and policy correlates of LTPA within a cross-national European context. This study describes LTPA patterns across the European Union and identifies some macro-environmental factors associated with LTPA rates at a national level. Data on LTPA and indicators of the economic, physical, and policy environment were assembled from international databases for the 27 European member states. To examine the association of each of the independent macro-environmental variables and LTPA as a continuous dependent variable, bivariate linear regression models were employed. Separate analyses were done for the overall, male, and female groups. With respect to LTPA, striking differences between European member states and genders were found, with higher rates in Western and Northern European countries, and among males. Statistical significant associations were observed between overall LTPA and variables from the economic (GDP, real GDP, and public expenditures on health), food (available fat, available fruit, and vegetables), urbanisation (urban population, total and new passenger cars), and policy (all governance indicators) domains. Associations for male and female LTPA were similar, except that for males available fruit and vegetables, and for females available fat and urban population were not significant. This exploratory study seeks to plead for the need for cross-nationally comparable LTPA data and more sophisticated research in order to understand the role of macro-economic environments, with a special focus on policy-related variables and gender-specific differences.

  8. Capturing a DNA duplex under near-physiological conditions

    Science.gov (United States)

    Zhang, Huijuan; Xu, Wei; Liu, Xiaogang; Stellacci, Francesco; Thong, John T. L.

    2010-10-01

    We report in situ trapping of a thiolated DNA duplex with eight base pairs into a polymer-protected gold nanogap device under near-physiological conditions. The double-stranded DNA was captured by electrophoresis and covalently attached to the nanogap electrodes through sulfur-gold bonding interaction. The immobilization of the DNA duplex was confirmed by direct electrical measurements under near-physiological conditions. The conductance of the DNA duplex was estimated to be 0.09 μS. We also demonstrate the control of DNA dehybridization by heating the device to temperatures above the melting point of the DNA.

  9. Effects of changes in micro- and macro-environmental factors on the supply of hospitals services.

    Science.gov (United States)

    Kassaye, W W; Tseng, K C

    1990-01-01

    The failures, marketing difficulties and financial hardships hospitals have experienced raises a question as to whether they have been responsive to the changes in the micro and macro-environmental factors. To determine how responsive hospitals have been to these changes, we investigate the impact of a number of selected factors on the supply of hospital services during 1972 through 1978. The findings indicate that despite the fact that the economy went through recessionary periods, and the demographic distribution exhibited both a shift and a change in the aging and birth rates of the nation, the changes in hospitals' responsiveness have been less than satisfactory. It appears that hospitals readily respond to the changes in the micro-environment than to the changes in macro-environment. Their response to the changes in the macro-environment. Their response to the changes in the macro-environment may be characterized as an effort to create a higher level of production whose goal is to create a still higher level of needs and wants.

  10. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  11. Magnesium degradation under physiological conditions - Best practice.

    Science.gov (United States)

    Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank

    2018-06-01

    This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  12. Role of hypoxia and hypoxia inducible factor in physiological and pathological conditions

    Directory of Open Access Journals (Sweden)

    Mozhgan Jahani

    2017-11-01

    Full Text Available Introduction: Organisms are exposed to oxygen deprivation (Hypoxia in various physiological and pathological conditions. There are different conserve evolutionary responses to counterview with this stress that primary transcriptional response to stress related to hypoxia is interceded by hypoxia-inducible factor (HIF-1 in mammals. This factor can regulate different genes that have essential roles in adaptation to this condition. In this review, the role of this factor in physiological and pathological conditions under hypoxic condition has been evaluated after examining structural features and regulation characteristics of HIF-1. Methods: First, articles related to the keywords of hypoxia and HIF-1 (from 1991-2016 were searched from valid databases such as Springer Link, Google Scholar, PubMed and Science direct. Then, the articles correlated with hypoxia, HIF-1 and their roles in physiological and pathological conditions (120 articles were searched and just 64 articles were selected for this study. Result: According to studies, there are different genes in cells and organs that can be regulated by HIF-1. Activation of genes expression by this protein occurs through its linkage to cis-acting of 50 base pair hypoxia response element (HRE region located in their promotor and enhancer. Depending on circumstances, activation of these genes can be beneficial or harmful. Conclusion: Activation of different genes in hypoxia by HIF-1 has different effects on physiological and pathological conditions. Therefore, HIF-1, as a hypoxia-inducible factor in hypoxic conditions, plays an essential role in the adaptation of cells and organs to changes related to the presence of oxygen.

  13. Host physiological condition regulates parasitic plant performance: Arceuthobium vaginatum subsp. cryptopodum on Pinus ponderosa.

    Science.gov (United States)

    Bickford, Christopher P; Kolb, Thomas E; Geils, Brian W

    2005-12-01

    Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or delta13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.

  14. PHYSIOLOGICAL AND SANITARY QUALITIES OF MAIZE LANDRACE SEEDS STORED UNDER TWO CONDITIONS

    Directory of Open Access Journals (Sweden)

    Raquel Stefanello

    2015-08-01

    Full Text Available The preservation of seed quality during the storage period depends not only on the conditions during production and harvesting but also on the storage and maintenance of appropriate storage product conditions. Thus, the aim of this study was to evaluate the physiological and sanitary qualities of maize landrace seeds stored under two conditions. The maize seed batch varieties Oito carreiras, Cabo roxo and Lombo baio were used. Tests included germination, first count, cold test, accelerated aging and sanity. Based on the results it was concluded that the physiological quality of these seed varieties decreased with the storage period. The major fungi identified in the maize seeds during storage were from the genera Aspergillus, Fusarium and Penicillium, which caused deterioration and reduction of the physiological quality. Storage using a paper bag at a temperature of 10 °C did not prevent the deterioration of maize seeds but was more effective at preserving the quality of the seed compared with a plastic bag at room temperature.

  15. Real-time Continuous Assessment Method for Mental and Physiological Condition using Heart Rate Variability

    Science.gov (United States)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.

  16. Magnesium degradation under physiological conditions – Best practice

    Directory of Open Access Journals (Sweden)

    Jorge Gonzalez

    2018-06-01

    Full Text Available This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.

  17. Habitat and sex differences in physiological condition of breeding Southwestern Willow Flycatchers (Empidonax traillii extimus)

    Science.gov (United States)

    Owen, J.C.; Sogge, M.K.; Kern, M.D.

    2005-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus; here- after “flycatcher”) is a federally listed endangered species that breeds in densely vegetated riparian habitats dominated by native and exotic plants, including introduced monotypic saltcedar (Tamarix ramosissima). Some workers have theorized that saltcedar is unsuitable habitat for the flycatcher, primarily because it generally supports a smaller and less diverse invertebrate community (the flycatcher's food base) than native habitats (e.g. Salix spp.). However, differences in insect communities between native and saltcedar habitats are not proof that saltcedar habitats are inferior. The only way to evaluate whether the habitats differ in dietary or energetic quality is to document actual food limitation or its manifestations. Measurements of an individual's body condition and metabolic state can serve as indicators of environmental stressors, such as food limitation and environmental extremes. We captured 130 flycatchers breeding in native and saltcedar habitats in Arizona and New Mexico and measured 12 variables of physiological condition. These variables included body mass, fat level, body condition index, hematocrit, plasma triglycerides, plasma free fatty acids and glycerol, plasma glucose and beta-hydroxybutyrate, plasma uric acid, total leukocyte count, and heterophil-to-lymphocyte ratio. We found substantial sex-based differences in the condition of male and female flycatchers. Ten of the 12 measures of physiological condition differed significantly between the sexes. In all cases where male and female condition differed (except mass), the differences suggest that males were in poorer condition than females. We found few habitat-based differences in flycatcher condition. Only 3 of the 12 physiological condition indices differed significantly between habitats. Our data show that, at least in some parts of the flycatcher's range, there is no evidence that flycatchers breeding in

  18. Pathways of the Maillard reaction under physiological conditions.

    Science.gov (United States)

    Henning, Christian; Glomb, Marcus A

    2016-08-01

    Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer's disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

  19. Homologous Basal Ganglia Network Models in Physiological and Parkinsonian Conditions

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2017-08-01

    Full Text Available The classical model of basal ganglia has been refined in recent years with discoveries of subpopulations within a nucleus and previously unknown projections. One such discovery is the presence of subpopulations of arkypallidal and prototypical neurons in external globus pallidus, which was previously considered to be a primarily homogeneous nucleus. Developing a computational model of these multiple interconnected nuclei is challenging, because the strengths of the connections are largely unknown. We therefore use a genetic algorithm to search for the unknown connectivity parameters in a firing rate model. We apply a binary cost function derived from empirical firing rate and phase relationship data for the physiological and Parkinsonian conditions. Our approach generates ensembles of over 1,000 configurations, or homologies, for each condition, with broad distributions for many of the parameter values and overlap between the two conditions. However, the resulting effective weights of connections from or to prototypical and arkypallidal neurons are consistent with the experimental data. We investigate the significance of the weight variability by manipulating the parameters individually and cumulatively, and conclude that the correlation observed between the parameters is necessary for generating the dynamics of the two conditions. We then investigate the response of the networks to a transient cortical stimulus, and demonstrate that networks classified as physiological effectively suppress activity in the internal globus pallidus, and are not susceptible to oscillations, whereas parkinsonian networks show the opposite tendency. Thus, we conclude that the rates and phase relationships observed in the globus pallidus are predictive of experimentally observed higher level dynamical features of the physiological and parkinsonian basal ganglia, and that the multiplicity of solutions generated by our method may well be indicative of a natural

  20. Comparative study; physiological and biochemical parameters of normal and induced dehydrated condition of rabbits

    International Nuclear Information System (INIS)

    Bashir, S.; Bukhari, I.

    2008-01-01

    Biochemical and physiological parameters like body weight, blood pH. Blood glucose, total lipids total protein, globulin, albumin and albumin/globulin ratio were determined in twelve rabbits each normal and after the induction of diseased condition i.e. dehydration. Statistically significant differences were identified when the comparison made between normal rabbits and their respective dehydrated group. Blood glucose total lipid packed cell. Volume and globulin increased significantly where where as body weight, albumin and albumin/globulin ratio decreased significantly. These differences in the physiological and biochemical parameters in disease induced condition require the necessity for analyzing this condition for the changes in the pharmacokinetics parameter like, absorption distribution metabolism and excretion leading to alteration in the pharmacokinetics of drug. (author)

  1. Physiological basis of barley yield under near optimal and stress conditions

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2004-01-01

    Full Text Available Average barley yield fall below its potential due to incidence of stresses. Water stress is the main environmental factor limiting yield. The component a priori more sensitive to most stresses is the amount of radiation absorbed. The effect of stresses influence on the total amount of radiation absorbed by barley crop during its vegetation and the photosynthetic efficiency of radiation conversion. Growth inhibition is accompanied by reductions in leaf and cell wall extensibility. Grain yield under drought conditions is source limited. Supply of assimilates to the developing inflorescence plays a critical role in establishing final grain number and grain size. Grain weight is negatively affected by drought, high temperature, and any other factors that may reduce grain filling duration and grain filling rate. Awns and glaucousness confer better performance of barley under drought stress conditions. Barley responds with an increased accumulation of a number of proteins when subjected to different stress inducing cell dehydration. Screening techniques that are able to identify desirable genotypes based on the evaluation of physiological traits related to stress evasion and stress resistance maybe useful in breeding barley for resistance to stress, particularly drought stress. Crop management and breeding can reduce the incidence of stress on yield. The effect of these practices is sustained by an understanding of their physiology. In this paper the physiological basis of the processes determining barley yield and the incidence of stresses on photosynthetic metabolism that determine grain yield of barley is discussed. .

  2. Salt- and pH-Triggered Helix-Coil Transition of Ionic Polypeptides under Physiology Conditions.

    Science.gov (United States)

    Yuan, Jingsong; Zhang, Yi; Sun, Yue; Cai, Zhicheng; Yang, Lijiang; Lu, Hua

    2018-06-11

    Controlling the helix-coil transition of polypeptides under physiological conditions is an attractive way toward smart functional materials. Here, we report the synthesis of a series of tertiary amine-functionalized ethylene glycol (EG x )-linked polypeptide electrolytes with their secondary structures tunable under physiological conditions. The resultant polymers, denoted as P(EG x DMA-Glu) ( x = 1, 2, and 3), show excellent aqueous solubility (>20 mg/mL) regardless of their charge states. Unlike poly-l-lysine that can form a helix only at pH above 10, P(EG x DMA-Glu) undergo a pH-dependent helix-coil switch with their transition points within the physiological range (pH ∼5.3-6.5). Meanwhile, P(EG x DMA-Glu) exhibit an unusual salt-induced helical conformation presumably owing to the unique properties of EG x linkers. Together, the current work highlights the importance of fine-tuning the linker chemistry in achieving conformation-switchable polypeptides and represents a facile approach toward stimuli-responsive biopolymers for advanced biological applications.

  3. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    Science.gov (United States)

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  4. Effects of Ionizing Irradiation on Mushrooms as Influenced by Physiological and Environmental Conditions

    DEFF Research Database (Denmark)

    Skou, Jens-Peder; Bech, K.; Lundsten, K.

    1974-01-01

    The effects of irradiation with β (10 MeV fast electrons)- and γ-rays were studied on several characters in strains of the cultured mushroom under different physiological and environmental conditions, including uncut and cut mushrooms, tightness of packing, and relative humidity. Weight loss was ...

  5. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  6. The link between antioxidant enzymes catalase and glutathione S-transferase and physiological condition of a control population of terrestrial isopod (Porcellio scaber).

    Science.gov (United States)

    Jemec, Anita; Lešer, Vladka; Drobne, Damjana

    2012-05-01

    The aim of this work was to investigate if the activities of catalase and glutathione S-transferase in a control population of terrestrial isopods (Porcellio scaber) are correlated with the physiological condition of the isopods. For this purpose, the activities of these enzymes were analysed in isopods from a stock population and in parallel, the physiological condition of the same specimens was assessed using a histological approach based on epithelial thickness and lipid droplets. We found a correlation between antioxidant enzymes and the physiological condition of the isopods. This implies that these enzymes could be used as predictive indicators of the physiological condition in a stock population before comprehensive toxicological studies are conducted and also in control group after the experiment. When a control group is found to be very heterogeneous in terms of physiological condition, the experiment should be repeated with a larger number of experimental animals. The findings of this study will contribute to more accurate experimental design of toxicity tests when using biomarkers. This should encourage other researchers to increase their effort to know the physiological state of their test organisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Milk Production, Physiological Condition and Performance of Etawa Crossbreed Goats Feed by Ration Supplemented with Mangosteen Peel Flour

    Science.gov (United States)

    Dzarnisa; Rachmadi, D.; Azhar, A.; Fakhrur Riza, R.; Hidayati, A.

    2018-02-01

    Study on the effect of the addition of mangosteen (Garcinia mangostana L.) peel flour on physiological condition and performance of Etawa crossbreed goats was done. This was to grant the use of mangosteen peel flour that rich of antioxidants and has variety good benefits for health as feed additive for cattle. This study used a Complete Randomized Block Design consisting of 4 treatment groups and 4 replications each. Subjects were 16 female Etawa crossbreed goats randomly designed into treatments group based on lactation periods. Subjects were feed with traditional rations (control, A), traditional rations and 2.5% mangosteen peel flour (B), tradition rations and 5% mangosteen peel flour (C), and traditional rations and 7,5 % mangosteen peel flour (D). Data on performance (milk production) and physiological condition (respiratory frequency, rectal temperature, and heart rate) obtained were analyzed using analysis of variance (ANOVA). The results showed that the addition of mangosteen peel flour as food additive in the rations resulted in variations in the milk production, physiological condition (rectal temperature, heart rate and respiration frequency) and performances (daily weigh gain, food consumption, ration conversion and breast volume) of Etawa crossbreed goats, but significant effect was only observed in the respiration frequency. The addition of 2.5% mangosteen peel flour in the ration caused the best, expected effects on milk production physiological condition and performance of Etawa crossbreed goats.

  8. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation.

    Directory of Open Access Journals (Sweden)

    Garth Herring

    Full Text Available The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba and white ibises (Eudocimus albus to changing prey availability, hydrology (water depth, recession rate, and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index and fecal corticosterone levels (medium-term were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70 in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  9. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  10. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Gawlik, Dale E; Beerens, James M; Ackerman, Joshua T

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  11. MR features of physiologic and benign conditions of the ovary

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, Ken; Saga, Tsuneo; Kido, Aki; Kataoka, Masako; Umeoka, Shigeaki; Togashi, Kaori [Kyoto University, Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto (Japan); Koyama, Takashi [Kyoto University Hospital, Department of Radiology, Kyoto (Japan); Fujii, Shingo [Kyoto University, Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto (Japan)

    2006-12-15

    In reproductive women, various physiologic conditions can cause morphologic changes of the ovary, resembling pathologic conditions. Benign ovarian diseases can also simulate malignancies. Magnetic resonance imaging (MRI) can play an important role in establishing accurate diagnosis. Functional cysts should not be confused with cystic neoplasms. Corpus luteum cysts typically have a thick wall and are occasionally hemorrhagic. Multicystic lesions that may mimic cystic neoplasms include hyperreactio luteinalis, ovarian hyperstimulation syndrome, and polycystic ovary syndrome. Recognition of clinical settings can help establish diagnosis. In endometrial cysts, MRI usually provides specific diagnosis; however, decidual change during pregnancy should not be confused with secondary neoplasm. Peritoneal inclusion cysts can be distinguished from cystic neoplasms by recognition of their characteristic configurations. Ovarian torsion and massive ovarian edema may mimic solid malignant tumors. Recognition of normal follicles and anatomic structures is useful in diagnosing these conditions. In pelvic inflammatory diseases, transfascial spread of the lesion should not be confused with invasive malignant tumors. Radiologic identification of abscess formation can be a diagnostic clue. Many benign tumors, including teratoma, Brenner tumor, and sex-cord stromal tumor, frequently show characteristic MRI features. Knowledge of MRI features of these conditions is essential in establishing accurate diagnosis and determining appropriate treatment. (orig.)

  12. MR features of physiologic and benign conditions of the ovary

    International Nuclear Information System (INIS)

    Tamai, Ken; Saga, Tsuneo; Kido, Aki; Kataoka, Masako; Umeoka, Shigeaki; Togashi, Kaori; Koyama, Takashi; Fujii, Shingo

    2006-01-01

    In reproductive women, various physiologic conditions can cause morphologic changes of the ovary, resembling pathologic conditions. Benign ovarian diseases can also simulate malignancies. Magnetic resonance imaging (MRI) can play an important role in establishing accurate diagnosis. Functional cysts should not be confused with cystic neoplasms. Corpus luteum cysts typically have a thick wall and are occasionally hemorrhagic. Multicystic lesions that may mimic cystic neoplasms include hyperreactio luteinalis, ovarian hyperstimulation syndrome, and polycystic ovary syndrome. Recognition of clinical settings can help establish diagnosis. In endometrial cysts, MRI usually provides specific diagnosis; however, decidual change during pregnancy should not be confused with secondary neoplasm. Peritoneal inclusion cysts can be distinguished from cystic neoplasms by recognition of their characteristic configurations. Ovarian torsion and massive ovarian edema may mimic solid malignant tumors. Recognition of normal follicles and anatomic structures is useful in diagnosing these conditions. In pelvic inflammatory diseases, transfascial spread of the lesion should not be confused with invasive malignant tumors. Radiologic identification of abscess formation can be a diagnostic clue. Many benign tumors, including teratoma, Brenner tumor, and sex-cord stromal tumor, frequently show characteristic MRI features. Knowledge of MRI features of these conditions is essential in establishing accurate diagnosis and determining appropriate treatment. (orig.)

  13. Chemical method of labelling proteins with the radionuclides of technetium at physiological condition

    International Nuclear Information System (INIS)

    Wong, D.W.

    1983-01-01

    A novel rapid chemical method of labeling plasma proteins, other compounds and/or substances containing protein with radionuclides of technetium such as sup(95m)Tc, sup(99m)Tc or sup(99)Tc at physiologic pH 7.4 condition, producing a sterile non-pyrogenic radioactive tracer material suitable for biological and medical uses. These radiolabeled protein substances are not denatured by the labeling process but retain their natural physiological and immunological properties. This novel labeling technique provides a simple and rapid means of labeling plasma proteins such as human serum albumin, fibrinogen, antibodies, hormones and enzymes with sup(95m)Tc or sup(99m)Tc for scintigraphic imaging which may allow visualization of thrombi, emboli, myocardial infarcts, infectious lesions or tumors

  14. Intraspecific Variation in Physiological Condition of Reef-Building Corals Associated with Differential Levels of Chronic Disturbance

    Science.gov (United States)

    Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S.

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, pzooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B =  −7386077, p = 0.01). Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching. PMID:24626395

  15. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    Science.gov (United States)

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  16. NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions

    International Nuclear Information System (INIS)

    Gil, S.; Kummerle, S.; Hosek, T.; Pierattelli, R.; Felli, I.C.; Solyom, Z.; Brutscher, B.

    2013-01-01

    We have shown here that 13 C-start 13 -C detected experiments do not suffer from fast hydrogen exchange between amide and solvent protons in IDP samples studied at close to physiological conditions, thus enabling us to recover information that would be difficult or even impossible to obtain through amide 1 H-detected experiments. Furthermore, in favourable cases the fast hydrogen exchange rates can even be turned into a spectroscopic advantage. By combining longitudinal 1 H relaxation optimized BEST-type techniques with 13 C-direct detection pulse schemes, important sensitivity improvements can be achieved, and experimental times can be significantly reduced. This opens up new applications for monitoring chemical shift changes in IDPs upon interaction to a binding partner, chemical modification, or by changing the environment, under sample conditions that were inaccessible by conventional techniques. (authors)

  17. Life under Multiple Extreme Conditions: Diversity and Physiology of the Halophilic Alkalithermophiles

    Science.gov (United States)

    Wiegel, Juergen

    2012-01-01

    Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435

  18. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions

    Directory of Open Access Journals (Sweden)

    Camila Hirotsu

    2015-11-01

    Full Text Available Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic–pituitary–adrenal (HPA axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances.

  19. The use of thermovision camera to observe physiological and pathological conditions of oral cavity mucous membrane

    Science.gov (United States)

    Dąbrowski, M.; Dulski, R.; Żmuda, S.; Zaborowski, P.; Pogorzelski, C.

    2002-06-01

    This article presents initial results of investigations of the temperature distribution changes in oral cavity mucous membrane. The investigations aimed to prepare a model of temperature changes existing within mucosal membrane in physiological conditions and to compare those changes with those under pathological conditions. Our investigations were carried out using an infrared imaging system. A representative group of patients was tested.

  20. Interoception: the sense of the physiological condition of the body.

    Science.gov (United States)

    Craig, A D

    2003-08-01

    Converging evidence indicates that primates have a distinct cortical image of homeostatic afferent activity that reflects all aspects of the physiological condition of all tissues of the body. This interoceptive system, associated with autonomic motor control, is distinct from the exteroceptive system (cutaneous mechanoreception and proprioception) that guides somatic motor activity. The primary interoceptive representation in the dorsal posterior insula engenders distinct highly resolved feelings from the body that include pain, temperature, itch, sensual touch, muscular and visceral sensations, vasomotor activity, hunger, thirst, and 'air hunger'. In humans, a meta-representation of the primary interoceptive activity is engendered in the right anterior insula, which seems to provide the basis for the subjective image of the material self as a feeling (sentient) entity, that is, emotional awareness.

  1. Effects of acclimation on poststocking dispersal and physiological condition of age-1 pallid sturgeon

    Science.gov (United States)

    Oldenburg, E.W.; Guy, C.S.; Cureton, E.S.; Webb, M.A.H.; Gardner, W.M.

    2011-01-01

    The objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 hatchery-reared pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and controls had no acclimation (reared under traditional conservation propagation protocol). During both years, fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach as compared to control fish. In 2006, pallid sturgeon dispersed similarly among treatments and the number of fish remaining in the Missouri River reach was similar among all treatments. Differences in poststocking dispersal between years were related to fin curl which was present in all fish in 2005 and only 26% in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments. However, acclimation to flow (i.e., exercise conditioning) prevented fat accumulation from rupturing hepatocytes. Acclimation conditions used in this study did not benefit pallid sturgeon unless physiological maladies were present. Overriding all treatment effects was stocking location; thus, natural resource agencies need to consider stocking location carefully to reduce poststocking dispersal. ?? 2011 Blackwell Verlag, Berlin.

  2. Evaluation by fluorescence resonance energy transfer of the stability of nonviral gene delivery vectors under physiological conditions.

    Science.gov (United States)

    Itaka, Keiji; Harada, Atsushi; Nakamura, Kozo; Kawaguchi, Hiroshi; Kataoka, Kazunori

    2002-01-01

    The stability in physiological medium of polyplex- and lipoplex-type nonviral gene vectors was evaluated by detecting the conformational change of complexed plasmid DNA (pDNA) labeled simultaneously with fluorescein (energy donor) and X-rhodamine (energy acceptor) through fluorescence resonance energy transfer (FRET). Upon mixing with cationic components, such as LipofectAMINE, poly(L-lysine), and poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLys), the fluorescence spectrum of doubly labeled pDNA underwent a drastic change due to the occurrence of FRET between the donor-acceptor pair on pDNA taking a globular conformation (condensed state) through complexation. The measurement was carried out also in the presence of 20% serum, under which conditions FRET from condensed pDNA was clearly monitored without interference from coexisting components in the medium, allowing evaluation of the condensed state of pDNA in nonviral gene vectors under physiological conditions. Serum addition immediately induced a sharp decrease in FRET for the LipofectAMINE/pDNA (lipoplex) system, which was consistent with the sharp decrease in the transfection efficiency of the lipoplex system in serum-containing medium. In contrast, the PEG-PLys/pDNA polyplex (polyion complex micelle) system maintained appreciable transfection efficiency even in serum-containing medium, and FRET efficiency remained constant for up to 12 h, indicating the high stability of the polyion complex micelle under physiological conditions.

  3. Intraspecific variation in physiological condition of reef-building corals associated with differential levels of chronic disturbance.

    Directory of Open Access Journals (Sweden)

    Chiara Pisapia

    Full Text Available Even in the absence of major disturbances (e.g., cyclones, bleaching, corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis, subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, p<0.02, B =  -121255, p = 0.03 and total lipid content increased (r2 = 14, df = 5,42, p = 0.01, B = 0.9, p = 0.01 with increasing distance from exposed crests. Moreover, zooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, p<0.02, B =  -7386077, p = 0.01. Conversely, P. damicornis exhibited very limited intraspecific variation in physiological condition, despite marked differences in levels of partial mortality. This is the first study to relate intraspecific variation in the condition of corals to localized differences in chronic disturbance regimes. The next step is to ascertain whether these differences have further ramifications for susceptibility to periodic acute disturbances, such as climate-induced coral bleaching.

  4. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    Science.gov (United States)

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran

    Science.gov (United States)

    Daneshvar, Mohammad Reza Mansouri; Bagherzadeh, Ali; Tavousi, Taghi

    2013-03-01

    In this study thermal comfort conditions are analyzed to determine possible thermal perceptions during different months in Iran through the Physiologically Equivalent Temperature (PET). The monthly PET values produced using the RayMan Model ranged from -7.6°C to 46.8°C. Over the winter months the thermal comfort condition (18-23°C) were concentrated in southern coastal areas along the Persian Gulf and Oman Sea. Most of the country experienced comfort conditions during the spring months, in particular in April, while during the summer months of July and August no thermal comfort conditions were observed. In November coastal areas of the Caspian Sea had the same physiological stress level of thermal comfort as April. The map produced showing mean annual PET conditions demonstrated the greatest spatial distribution of comfortable levels in the elevation range from 1000 to 2000 meter a.s.l., with annual temperatures of 12-20°C and annual precipitation of under 200 mm. The statistical relationship between PET conditions and each controlling parameter revealed a significant correlation in areas above 2000 meter, annual temperature over 20°C and annual precipitation of 200-400 mm with a correlation coefficient ( R 2) of 0.91, 0.97 and 0.96, respectively.

  6. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    Science.gov (United States)

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Five Conditions Commonly Used to Down-regulate Tor Complex 1 Generate Different Physiological Situations Exhibiting Distinct Requirements and Outcomes*

    Science.gov (United States)

    Tate, Jennifer J.; Cooper, Terrance G.

    2013-01-01

    Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc13 localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc13 localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal. PMID:23935103

  8. The relationships between environmental and physiological heat stress indices in Muslim women under the controlled thermal conditions

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2015-01-01

    Full Text Available Aims: The aim of this study was to evaluate the relationship between environmental and physiological heat stress indices based on heart rate (HR, oral temperature for the estimation of heat strain, in veiled women in hot-dry condition in the climate chamber. Materials and Methods: The experimental study was carried out on 36 healthy Muslim women in hot-dry climatic conditions (wet bulb globe temperature (WBGT = 22-32°C in low workload for 2 h. The HR, oral temperature and WBGT index were measured. The obtained data were analyzed using descriptive statistics and Pearson correlation tests. Results: The results of the Pearson test indicated that physiological strain index was a high correlation (r = 0.975 with WBGT index (P < 0.05. Also, there was a good correlation among WBGT and HR (r = 0.779 and oral temperature (r = 0.981. Conclusion: The findings of this study illustrated that there is a good correlation between environmental and physiological heat stress indices in veiled women with Islamic clothing at the low workload over the action limit (WBGT = 31°C. So that it can be concluded that the WBGT 22-32°C is a good indicator of the heat strain in veiled women with Islamic clothing.

  9. Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum.

    Science.gov (United States)

    Melani, Alessia; Corti, Francesca; Stephan, Holger; Müller, Christa E; Donati, Chiara; Bruni, Paola; Vannucchi, Maria Giuliana; Pedata, Felicita

    2012-01-01

    In the central nervous system (CNS) ATP and adenosine act as transmitters and neuromodulators on their own receptors but it is still unknown which part of extracellular adenosine derives per se from cells and which part is formed from the hydrolysis of released ATP. In this study extracellular concentrations of adenosine and ATP from the rat striatum were estimated by the microdialysis technique under in vivo physiological conditions and after focal ischemia induced by medial cerebral artery occlusion. Under physiological conditions, adenosine and ATP concentrations were in the range of 130 nmol/L and 40 nmol/L, respectively. In the presence of the novel ecto-ATPase inhibitor, PV4 (100 nmol/L), the extracellular concentration of ATP increased 12-fold to ~360 nmol/L but the adenosine concentration was not altered. This demonstrates that, under physiological conditions, adenosine is not a product of extracellular ATP. In the first 4h after ischemia, adenosine increased to ~690 nmol/L and ATP to ~50 nmol/L. In the presence of PV4 the extracellular concentration of ATP was in the range of 450 nmol/L and a significant decrease in extracellular adenosine (to ~270 nmol/L) was measured. The contribution of extracellular ATP to extracellular adenosine was maximal in the first 20 min after ischemia onset. Furthermore we demonstrated, by immunoelectron microscopy, the presence of the concentrative nucleoside transporter CNT2 on plasma and vesicle membranes isolated from the rat striatum. These results are in favor that adenosine is transported in vesicles and is released in an excitation-secretion manner under in vivo physiological conditions. Early after ischemia, extracellular ATP is hydrolyzed by ecto-nucleotidases which significantly contribute to the increase in extracellular adenosine. To establish the contribution of extracellular ATP to adenosine might constitute the basis for devising a correct putative purinergic strategy aimed at protection from ischemic damage

  10. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    Science.gov (United States)

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  11. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.

    Science.gov (United States)

    Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This

  12. Intraspecific variation in physiological condition of reef-building corals associated with differential levels of chronic disturbance.

    Science.gov (United States)

    Pisapia, Chiara; Anderson, Kristen; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are subject to high levels of partial or whole-colony mortality, often caused by chronic and small-scale disturbances. Depending on levels of background mortality, these chronic disturbances may undermine individual fitness and have significant consequences on the ability of colonies to withstand subsequent acute disturbances or environmental change. This study quantified intraspecific variations in physiological condition (measured based on total lipid content and zooxanthellae density) through time in adult colonies of two common and widespread coral species (Acropora spathulata and Pocillopora damicornis), subject to different levels of biological and physical disturbances along the most disturbed reef habitat, the crest. Marked intraspecific variation in the physiological condition of A. spathulata was clearly linked to differences in local disturbance regimes and habitat. Specifically, zooxanthellae density decreased (r2 = 26, df = 5,42, pzooxanthellae density was strongly and negatively correlated with the individual level of partial mortality (r2 = 26, df = 5,42, pclimate-induced coral bleaching.

  13. The role of performing life support courses in rural areas in improving pre-hospital physiologic condition of patients with penetrating injuries

    International Nuclear Information System (INIS)

    Naffisi, N.; Mohebbi, H.A.; Moharamzadeh, Y.

    2008-01-01

    To evaluate the impact of animal model based medical training courses for village healthcare workers on prehospital physiologic condition and prognosis of patients with penetrating injuries. Seventy-six village healthcare workers were trained and equipped to deliver in-field medical first cares. First group (226 patients) consisted of those who received this cares by the trained group and second group (245 patients) were those who received no in-field cares and were transported directly to the trauma center in provincial capital, Ilam. Physiologic Severity Score (PSS) was calculated to determine the physiologic condition of patients in both groups. Results: The most prevalent cause of trauma in both groups was car accidents (61.6%). Controlling of hemorrhage was the most frequent provided initial medical care (40.6%). A significant improvement regarding the PSS score was observed in the first group of patients compared to the second group (7.505 vs. 6.799, 95% CI for difference: 0.3 to 0.9). The mortality rates of the first and second group of patients were 3% and 7.3%, respectively (p=0.051). Performing life support courses in rural areas of low-income countries where there is no pre-hospital triage and emergency medical system and provision of classic resuscitative measures are limited, has a significant impact on improvement of pre-hospital physiologic condition and prognosis of patients with penetrating injuries. (author)

  14. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?

    Science.gov (United States)

    Hanson, M. A.; Gluckman, P. D.

    2014-01-01

    Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859

  15. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  16. Gonadotropins studies in female egyptian subjects under different physiological conditions

    International Nuclear Information System (INIS)

    El-Nabarawy, F.S.; Megahed, Y.M.; Ibrahim, M.

    2002-01-01

    This study is concerned with the role of the hypothalamic hypophyseal regulatory hormonal mechanisms in the control of gonadal secretions in a selected normal egyptian female subjects with varying ages under different physiological conditions. The study allowed precise definition of the modulator influence of a number of key factors triggering appropriate alteration in circulating serum levels of FSH and LH determined by IRMA technique in pre-pubertal female children (9-11), post-pubertal adolescents females (13-16). Adult married females (27-33) and post-menopausal (58-63). The levels of FSH and LH were increased markedly with age but children less than 11 years old had only nocturnal increase in levels of FSH (p.O.I) and LH(P< 0.001). post-pubertal aged girls had significant nocturnal elevation only of LH levels (P< 0.001), adult married females did not exhibit significant difference in gonadotropin concentrations. whereas significant elevation in FSH and LH levels (P<0.001) in post-menopausal females were observed

  17. Effect of Propolis Oral Intake on Physiological Condition of Young Worker Honey Bees, Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Damiani Natalia

    2017-12-01

    Full Text Available Honey bees collect resin from various plant species and transform it into propolis that is incorporated into the nest. The role of resins in the bee health field is poorly understood. The aim was to evaluate the effects of forced consumption of propolis on the physiological condition and short-term survival of Apis mellifera worker bees. It was tested if the number of circulating hemocytes in hemolymph, the abdominal fat bodies and the hypopharyngeal glands development were affected by the feeding with propolis extracts in laboratory conditions during the warm and the cold seasons. Propolis added to sugar candy was consumed by workers for fourteen days without affecting the bee survival. The number of circulating hemocytes in hemolymph remained constant despite the differential diet during the experiment. However, the development of fat bodies and hypopharyngeal glands was altered by propolis ingestion. The abdominal fat body development in winter bees diminished after fourteen days of propolis consumption, while it increased in summer bees. The hypopharyngeal gland development decreased for the assayed period in workers from both seasons. Our results encourage us to continue exploring this research field and learn how long-term forced ingestion of a plant-derived compound, a non-nutritive substance, can modify physiological bee parameters. A broader understanding of the multiple roles of propolis in the health of the honey bee colonies could be obtained by studying the ways in which it is processed and metabolized and the effect that generates in another physiological responses.

  18. Entering adulthood in a recession tempers later narcissism.

    Science.gov (United States)

    Bianchi, Emily C

    2014-07-01

    Despite widespread interest in narcissism, relatively little is known about the conditions that encourage or dampen it. Drawing on research showing that macroenvironmental conditions in emerging adulthood can leave a lasting imprint on attitudes and behaviors, I argue that people who enter adulthood during recessions are less likely to be narcissistic later in life than those who come of age in more prosperous times. Using large samples of American adults, Studies 1 and 2 showed that people who entered adulthood during worse economic times endorsed fewer narcissistic items as older adults. Study 3 extended these findings to a behavioral manifestation of narcissism: the relative pay of CEOs. CEOs who came of age in worse economic times paid themselves less relative to other top executives in their firms. These findings suggest that macroenvironmental experiences at a critical life stage can have lasting implications for how unique, special, and deserving people believe themselves to be. © The Author(s) 2014.

  19. The effects of extended nap periods on cognitive, physiological and subjective responses under simulated night shift conditions.

    Science.gov (United States)

    Davy, Jonathan; Göbel, Matthias

    2018-02-01

    Extended nap opportunities have been effective in maintaining alertness in the context of extended night shifts (+12 h). However, there is limited evidence of their efficacy during 8-h shifts. Thus, this study explored the effects of extended naps on cognitive, physiological and perceptual responses during four simulated, 8-h night shifts. In a laboratory setting, 32 participants were allocated to one of three conditions. All participants completed four consecutive, 8-h night shifts, with the arrangements differing by condition. The fixed night condition worked from 22h00 to 06h00, while the nap early group worked from 20h00 to 08h00 and napped between 00h00 and 03h20. The nap late group worked from 00h00 to 12h00 and napped between 04h00 and 07h20. Nap length was limited to 3 hours and 20 minutes. Participants performed a simple beading task during each shift, while also completing six to eight test batteries roughly every 2 h. During each shift, six test batteries were completed, in which the following measures were taken. Performance indicators included beading output, eye accommodation time, choice reaction time, visual vigilance, simple reaction time, processing speed and object recognition, working memory, motor response time and tracking performance. Physiological measures included heart rate and tympanic temperature, whereas subjective sleepiness and reported sleep length and quality while outside the laboratory constituted the self reported measures. Both naps reduced subjective sleepiness but did not alter the circadian and homeostatic-related changes in cognitive and physiological measures, relative to the fixed night condition. Additionally, there was evidence of sleep inertia following each nap, which resulted in transient reductions in certain perceptual cognitive performance measures. The present study suggested that there were some benefits associated with including an extended nap during 8-h night shifts. However, the effects of sleep inertia

  20. Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines.

    Science.gov (United States)

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2015-01-01

    Matrix land-use intensification is a relatively recent and novel landscape change that can have important influences on the biota within adjacent habitat patches. While there are immediate local changes that it brings about, the influences on individual animals occupying adjacent habitats may be less evident initially. High-intensity land use could induce chronic stress in individuals in nearby remnants, leading ultimately to population declines. We investigated how physiological indicators and body condition measures of tropical forest-dependent birds differ between forest adjacent to surface mining sites and that near farmlands at two distances from remnant edge in southwest Ghana. We used mixed effects models of several condition indices including residual body mass and heterophil to lymphocyte (H/L) ratios (an indicator of elevated chronic stress) to explore the effect of matrix intensity on forest-dependent passerines classed as either sedentary area-sensitive habitat specialists or nomadic generalists. Individual birds occupying tropical forest remnants near surface mining sites were in poorer condition, as indicated by lower residual body mass and elevated chronic stress, compared to those in remnants near agricultural lands. The condition of the sedentary forest habitat specialists white-tailed alethe, Alethe diademata and western olive sunbird, Cyanomitra obscura was most negatively affected by high-intensity surface mining land-use adjacent to remnants, whereas generalist species were not affected. Land use intensification may set in train a new trajectory of faunal relaxation beyond that expected based on habitat loss alone. Patterns of individual condition may be useful in identifying habitats where species population declines may occur before faunal relaxation has concluded.

  1. Plasticity in physiological condition of female brown bears across diverse ecosystems

    Science.gov (United States)

    Hilderbrand, Grant V.; Gustine, David; Mangipane, Buck A.; Joly, Kyle; Leacock, William; Mangipane, Lindsey; Erlenbach, Joy; Sorum, Mathew; Cameron, Matthew; Belant, Jerrold L.; Cambier, Troy

    2018-01-01

    Variation in life history strategies facilitates the near global distribution of mammals by expanding realized niche width. We investigated physiological plasticity in the spring body composition of adult female brown bears (Ursus arctos) across 4 diverse Alaskan ecosystems. Brown bears are a highly intelligent omnivore with a historic range spanning much of North America, Europe, and Asia. We hypothesized that body mass, fat mass, lean mass, and total caloric content would increase across populations with increasing food resource availability. Throughout their range, brown bears enter a period of torpor during winter months, decreasing their metabolic rate as an adaptation to this period of reduced food availability. They also give birth to and nourish offspring during this time. Due to this specific life history strategy, we further hypothesized that proportional body fat and the proportion of total calories derived from fat would be consistent across populations. Our results supported our first hypothesis: body, fat, and lean masses, and caloric content of bears across populations increased with the quality and abundance of available food. However, the proportional body fat content and proportion of calories from fat differed across populations indicating population-specific strategies to meet the demands of reduced seasonal food availability, offspring production and rearing, and climate as well as some plasticity to respond to environmental change or ecosystem perturbations. Investigations of body condition and energetics benefit from combined assessments of absolute, proportional, and caloric metrics to understand the nuances of brown bear physiological dynamics across and within populations.

  2. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  3. Training for Translocation: Predator Conditioning Induces Behavioral Plasticity and Physiological Changes in Captive Eastern Hellbenders (Cryptobranchus alleganiensis alleganiensis (Cryptobranchidae, Amphibia

    Directory of Open Access Journals (Sweden)

    Erin K. Kenison

    2018-03-01

    Full Text Available Translocations are stressful, especially when captive animals are naïve to natural stimuli. Captive eastern hellbenders (Cryptobranchus alleganiensis alleganiensis identify predatory fish as threats, but may be more vulnerable to predation and stress because of inexperience with them. We investigated the use of predator conditioning to prepare hellbenders, behaviorally and physiologically, for the presence of a common predator, largemouth bass (Micropterus salmoides. We reared hellbenders for 30 d with and without continuous exposure to largemouth bass kairomones and heterospecific alarm cues and found conditioned hellbenders became less active compared to unconditioned individuals (p = 0.017. After conditioning, we exposed hellbenders to water, a low concentration of kairomones, or a high concentration of kairomones in a closed respirometer system. We measured activity within respirometer chambers and routine metabolic rate. We found unconditioned hellbenders exposed to low and high concentrations of kairomones were 41% and 119% more active than conditioned animals (p = 0.002 and p < 0.001. Moreover, conditioned individuals had on average 6.5% lower metabolic rates across all three kairomone concentrations compared to unconditioned individuals (p = 0.017. Our data suggest that predator conditioning induces behavioral avoidance tactics and physiological changes that could improve future translocation efforts for hellbenders and other imperiled species.

  4. The role of performing life support courses in rural areas in improving pre-hospital physiologic conditions of patients with penetrating injuries.

    Science.gov (United States)

    Nia, Masoud Saghafi; Naffisi, Nahid; Mohebbi, Hassan Ali; Moharamzadeh, Yashar

    2008-09-01

    To evaluate the impact of animal model based medical training courses for village healthcare workers on prehospital physiologic condition and prognosis of patients with penetrating injuries. Experimental study. This study was carried out in Mehran city and its neighbouring rural districts in western part of Iran from 2002 to 2004. Seventy-six village healthcare workers were trained and equipped to deliver in-field medical first cares. First group (226 patients) consisted of those who received this cares by the trained group and second group (245 patients) were those who received no in-field cares and were transported directly to the trauma center in provincial capital, Ilam. Physiologic Severity Score (PSS) was calculated to determine the physiologic condition of patients in both groups. The most prevalent cause of trauma in both groups was car accidents (61.6%). Controlling of hemorrhage was the most frequent provided initial medical care (40.6%). A significant improvement regarding the PSS score was observed in the first group of patients compared to the second group (7.505 vs. 6.799, 95% CI for difference: 0.3 to 0.9). The mortality rates of the first and second group of patients were 3% and 7.3%, respectively (p=0.051). Performing life support courses in rural areas of low-income countries where there is no pre-hospital triage and emergency medical system and provision of classic resuscitative measures are limited, has a significant impact on improvement of pre-hospital physiologic condition and prognosis of patients with penetrating injuries.

  5. Matrix Intensification Affects Body and Physiological Condition of Tropical Forest-Dependent Passerines.

    Directory of Open Access Journals (Sweden)

    Justus P Deikumah

    Full Text Available Matrix land-use intensification is a relatively recent and novel landscape change that can have important influences on the biota within adjacent habitat patches. While there are immediate local changes that it brings about, the influences on individual animals occupying adjacent habitats may be less evident initially. High-intensity land use could induce chronic stress in individuals in nearby remnants, leading ultimately to population declines. We investigated how physiological indicators and body condition measures of tropical forest-dependent birds differ between forest adjacent to surface mining sites and that near farmlands at two distances from remnant edge in southwest Ghana. We used mixed effects models of several condition indices including residual body mass and heterophil to lymphocyte (H/L ratios (an indicator of elevated chronic stress to explore the effect of matrix intensity on forest-dependent passerines classed as either sedentary area-sensitive habitat specialists or nomadic generalists. Individual birds occupying tropical forest remnants near surface mining sites were in poorer condition, as indicated by lower residual body mass and elevated chronic stress, compared to those in remnants near agricultural lands. The condition of the sedentary forest habitat specialists white-tailed alethe, Alethe diademata and western olive sunbird, Cyanomitra obscura was most negatively affected by high-intensity surface mining land-use adjacent to remnants, whereas generalist species were not affected. Land use intensification may set in train a new trajectory of faunal relaxation beyond that expected based on habitat loss alone. Patterns of individual condition may be useful in identifying habitats where species population declines may occur before faunal relaxation has concluded.

  6. The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions.

    Science.gov (United States)

    Aragón, C; Carvalho, L; González, J; Escalona, M; Amancio, S

    2012-04-01

    Many plant species grown under in vitro controlled conditions can be used as models for the study of physiological processes. Adult pineapple can display CAM physiology while in vitro it functions as a C3 plant. Ex vitro Ananas comosus has plastic morphology and physiology, both easy to modify from C3 to CAM by changing the environmental conditions. The yield of survival for a rentable propagation protocol of pineapple is closely related with the C3/CAM shift and the associated physiological characteristics. In the present work, ex vitro pineapple plants were divided in two sets and subjected to C3 and CAM-inducing environmental conditions, determined by light intensity and relative humidity, respectively, 40 μmol m(-2) s(-1)/85% and 260 μmol m(-2) s(-1)/50%. The results demonstrated that the stress imposed by the environmental conditions switched pineapple plants from C3 to CAM behavior. Comparing to CAM induced, C3-induced pineapple plants showed substandard growth parameters and morphological leaf characteristics but a better rooting process and a higher ABA production, a phenotype closer to adult plants, which are expected to produce fruits in a normal production cycle. We conclude that the upholding of these characteristics is conditioned by low light intensity plus high relative humidity, especially during the first 8 weeks of ex vitro growth. It is expected that the better understanding of pineapple acclimatization will contribute to the design of a protocol to apply as a rentable tool in the pineapple agronomic industry. © Springer-Verlag 2011

  7. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions

    DEFF Research Database (Denmark)

    Happel, Christoph M.; Thrane, Lars; Thommes, Jan

    2011-01-01

    High-resolution in vivo imaging of higher vertebrate embryos over short or long time periods under constant physiological conditions is a technically challenging task for researchers working on cardiovascular development. In chick embryos, for example, various studies have shown that without...... significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT......) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof...

  8. Alternate furrow irrigation of four fresh-market tomato cultivars under semi-arid condition of Ethiopia – Part II: Physiological response

    Directory of Open Access Journals (Sweden)

    Ashinie Bogale

    2016-11-01

    Full Text Available Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2 to moderate water deficit induced by alternate furrow irrigation (AFI and deficit irrigation (DI under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’, relative water content (RWC and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE, g_s, chlorophyll content (Chl_SPAD, normal difference vegetation index (NDVI, leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.

  9. Qualidade fisiológica de sementes de soja submetidas ao hidrocondicionamento = Soybean seed physiological quality after hydro-conditioning

    Directory of Open Access Journals (Sweden)

    Maria Izabel Krüger Giurizatto

    2008-12-01

    Full Text Available A técnica de hidratação controlada de sementes vem sendo utilizada como método de condicionamento fisiológico, tanto para sementes deterioradas como para sementes altamente sensíveis à embebição rápida, ou a interação entre ambas, objetivando melhorar o desempenho destas no campo. A hidratação pode ser seguida por secagem, se assementes não tiverem atingido a fase III da germinação, facilitando, assim, o subseqüente manuseio, armazenamento e semeadura no campo. O objetivo do presente trabalho foi avaliar os efeitos do hidrocondicionamento na qualidade fisiológica de sementes de soja,sendo estas sementes hidrocondicionadas por períodos de 0, 20 e 24h, secas e armazenadas por 0, 90, 180 e 270 dias em câmara seca, com umidade e temperatura controladas. O hidrocondicionamento teve efeito benéfico na qualidade fisiológica das sementes de soja,suas vantagens se tornaram mais evidentes com o envelhecimento natural das sementes durante o armazenamento.Controlled hydration of seeds has been used as a physiological conditioning method, both for deteriorated seeds as well as seeds that are highly sensitive to soaking, or an interaction among both, aiming to improving their performance after sowing in the field. Thehydration must be followed by drying, in case the seeds have not reached yet phase III of germination, thus facilitating subsequent handling, storage and sowing operations. This work aimed to evaluate the hydro-conditioning effect (0, 20 and 24 hours, followed by seeddrying on the physiological quality of soybean seeds, stored in dry chamber under controlled conditions (relative humidity and temperature during 0, 90, 180 and 270 days. Hydro-conditioning has revealed positive effects on the physiological quality of those seedsand its advantage became more evident according to natural aging of the seeds during the storage.

  10. Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalez-Dugo

    2015-10-01

    Full Text Available There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI, but using approaches related with the crop physiology are rare. High-resolution hyperspectral remote sensing imagery provides optical indices related to physiological condition through the quantification of photosynthetic pigment and chlorophyll fluorescence emission. This study demonstrates the use of narrow-band indicators of stress as a potential tool for phenotyping under rainfed conditions using two airborne datasets acquired over a wheat experiment with 150 plots comprising two species and 50 varieties (bread and durum wheat. The flights were performed at the early stem elongation stage and during the milking stage. Physiological measurements made at the time of flights demonstrated that the second flight was made during the terminal stress, known to largely determine final yield under rainfed conditions. The hyperspectral imagery enabled the extraction of thermal, radiance, and reflectance spectra from 260 spectral bands from each plot for the calculation of indices related to photosynthetic pigment absorption in the visible and red-edge regions, the quantification of chlorophyll fluorescence emission, as well as structural indices related to canopy structure. Under the conditions of this study, the structural indices (i.e., NDVI did not show a good performance at predicting yield, probably because of the large effects of terminal water stress. Thermal indices, indices related to chlorophyll fluorescence (calculated using the FLD method, and carotenoids pigment indices (PRI and CAR demonstrated to be better suited for screening complex traits such as crop yield. The study concludes that the indicators derived from high

  11. A modular open platform for systematic functional studies under physiological conditions

    Science.gov (United States)

    Mulholland, Christopher B.; Smets, Martha; Schmidtmann, Elisabeth; Leidescher, Susanne; Markaki, Yolanda; Hofweber, Mario; Qin, Weihua; Manzo, Massimiliano; Kremmer, Elisabeth; Thanisch, Katharina; Bauer, Christina; Rombaut, Pascaline; Herzog, Franz; Leonhardt, Heinrich; Bultmann, Sebastian

    2015-01-01

    Any profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination. We used these functional modules to study protein interactions and their spatio-temporal dynamics as well as gene expression and specific mutations during cellular differentiation and in response to external stimuli. Our genome engineering strategy provides a versatile open platform for efficient generation of multiple isogenic cell lines to study gene function under physiological conditions. PMID:26007658

  12. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    Science.gov (United States)

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  14. A physiological model for the investigation of esophageal motility in healthy and pathologic conditions.

    Science.gov (United States)

    Carniel, Emanuele Luigi; Frigo, Alessandro; Costantini, Mario; Giuliani, Tommaso; Nicoletti, Loredana; Merigliano, Stefano; Natali, Arturo N

    2016-07-15

    Recent technological advances in esophageal manometry allowed the definition of new classification methods for the diagnosis of disorders of esophageal motility and the implementation of innovative computational tools for the autonomic, reliable and unbiased detection of different disorders. Computational models can be developed aiming to interpret the mechanical behavior and functionality of the gastrointestinal tract and to summarize the results from clinical measurements, as high-resolution manometry pressure plots, into model parameters. A physiological model was here developed to interpret data from esophageal high-resolution manometry. Such model accounts for parameters related to specific physiological properties of the biological structures involved in the peristaltic mechanism. The identification of model parameters was performed by minimizing the discrepancy between clinical data from high-resolution manometry and model results. Clinical data were collected from both healthy volunteers (n = 35) and patients with different motor disorders, such as achalasia patterns 1 (n = 13), 2 (n = 20) and 3 (n = 5), distal esophageal spasm (n = 69), esophago-gastric junction outflow obstruction (n = 25), nutcracker esophagus (n = 11) and normal motility (n = 42). The physiological model that was formulated in this work can properly explain high-resolution manometry data, as confirmed by the evaluation of the coefficient of determination R 2  = 0.83 - 0.96. The study finally led to identify the statistical distributions of model parameters for each healthy or pathologic conditions considered, addressing the applicability of the achieved results for the implementation of autonomic diagnosis procedures to support the medical staff during the traditional diagnostic process. © IMechE 2016.

  15. Positive impact of bio-stimulators on growth and physiological activity of willow in climate change conditions

    Science.gov (United States)

    Piotrowski, Krzysztof; Romanowska-Duda, Zdzisława

    2018-04-01

    The aim of this research was to evaluate the physiological activity and growth of willow (Salix viminalis L.) plants cultivated under the conditions of adverse temperature and soil moisture content, and to assess the effect of the foliar application of Biojodis (1.0%) and Asahi SL (0.03%) bio-stimulators, or a mixture of Microcistis aeruginosa MKR 0105 and Anabaena PCC 7120 cyanobacteria under such changing growth conditions. The obtained results showed different reactions to the applied constant or periodically changed temperature and soil moisture content. The plants which grew at periodically changed adverse temperature (from -5 to 40oC) or in scantily (20% m.c.) or excessively (60% m.c.) watered soils, grew slowly, in comparison with those growing at 20oC and in optimally moistened soil (30% m.c.). Foliar application of Biojodis and Asahi SL cyanobacteria increased the growth of willow at optimal and adverse temperature or in scantily and excessively moistened soil. The changes in plant growth were associated with the changes in electrolyte leakage, activity of acid or alkaline phosphatases, RNase, index of chlorophyll content in leaves and gas exchange. The above indicates that the foliar application of the studied cyanobacteria and bio-stimulators partly alleviates the harmful impact of adverse temperature and water stress on growth and physiological activity of willow plants

  16. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions

    International Nuclear Information System (INIS)

    Manzoor, K.; Ilyas, N.; Batool, N.; Arshad, M.; Ahmad, B.

    2015-01-01

    Salicylic acid (SA) is a naturally occurring signaling molecule and growth regulator that enhances plant growth particularly in stress conditions. The present study was planned to evaluate the effects of different levels of SA on maize growth under drought and salt stress conditions. An experiment was conducted to test the morphological, physiological and biochemical changes in two cultivar of maize D-1184 and TG-8250. Varying levels of salicylic acid, i.e. 5mM, 10mM and 15mM were applied through foliar method. Exogenous applications of salicylic acid were done after 20 days of germination of the maize plants. Salicylic acid significantly affects root and shoot dry matter under drought and salt stress. Foliar application of SA significantly increased proline concentration (11 percentage and 12 percentage), amino acid accumulation (25 percentage and 18 percentage), relative water (17 percentage and 14 percentage) and Chlorophyll content. Overall, it can be concluded that SA at lower concentration is effective to minimize the effect of stress conditions. Maize cultivar TG-8250 showed better tolerance under drought and salt stress condition as compared to D-1184 cultivar. (author)

  17. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions.

    Science.gov (United States)

    Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław

    2017-08-01

    The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.

  18. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    Science.gov (United States)

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  19. Physiological responses to variations in grazing and light conditions in native and invasive fucoids.

    Science.gov (United States)

    Olabarria, Celia; Arenas, Francisco; Fernández, Ángela; Troncoso, Jesús S; Martínez, Brezo

    2018-08-01

    Poor physiological acclimatization to climate change has led to shifts in the distributional ranges of various species and to biodiversity loss. However, evidence also suggests the relevance of non-climatic physical factors, such as light, and biotic factors, which may act in interactive or additive way. We used a mechanistic approach to evaluate the ecophysiological responses of four seaweed species (three dominant intertidal fucoids, Fucus serratus, Ascophyllum nodosum, Bifurcaria bifurcata, and the invasive Sargassum muticum) to different conditions of grazing, light irradiance and ultraviolet (UV) radiation. We performed a large-scale mesocosm experiment with a total of 800 individual thalli of macroalgae. The factorial experimental design included major algal traits, photoacclimation, nutrient stoichiometry and chemical defence as response variables. Few significant effects of the factors acting alone or in combination were observed, suggesting a good capacity for acclimatization in all four species. The significant effects were generally additive and there were no potentially deleterious synergistic effects between factors. Fucus serratus, a species currently undergoing a drastic contraction of its southern distribution limit in Europe, was the most strongly affected species, showing overall lower photosynthetic efficiency than the other species. The growth rate of F. serratus decreased when UV radiation was filtered out, but only in the presence of grazers. Moreover, more individuals of this species tended to reach maturity in the absence of grazers, and the nitrogen content of tissues decreased under full-spectrum light. Only the phlorotannin content of tissues of B. bifurcata and of exudates of A. nodosum, both slow-growing species, were positively affected by respectively removal of UVB radiation and the presence of grazers. The findings for S. muticum, a well-established invasive seaweed across European coasts, suggested similar physiological response of

  20. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions

    Directory of Open Access Journals (Sweden)

    Alefsi David Sanchez-Reinoso

    2014-12-01

    Full Text Available Heat stress due to high daytime temperatures is one of the main limiting factors in rice (Oryza sativa L. yield in Colombia. Thus, the objective of the present research was to analyze the effect of three different daytime temperatures (25, 35, and 40 °C on the physiological responses of three Colombian rice cultivars (F60, F733, and F473, thereby contributing to the knowledge of rice acclimation mechanisms. For 10 d, eight plants of each of the three cultivars were subjected daily to 5 h periods of 35 and 40 °C. The control treatment corresponded to normal growth conditions (25 °C. Thermal stress was assessed based on a series of physiological and biochemical parameters. The 35 °C treatment produced photosynthetic and respiratory differences in all three cultivars. At 40 °C, 'F60' displayed the lowest photosynthetic rate and the highest respiratory rate. Although this cultivar experienced particularly strong electrolyte leakage and changes in proline when subjected to the high-temperature treatments, similar trends were observed in 'F733' and 'F473'. At 40 °C, the concentration of malondialdehyde (MDA was lower in 'F473' than in the other cultivars. These results may explain the poor agronomic performance of 'F60' in the field under daytime heat stress. The methodologies employed in the present work may be useful in Colombian rice breeding programs, particularly for the selection of heat-tolerant breeding stocks.

  1. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    Science.gov (United States)

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adding sleep restriction to the equation: impact on wildland firefighters' work performance and physiology in hot conditions.

    Science.gov (United States)

    Vincent, Grace E; Ferguson, Sally; Larsen, Brianna; Ridgers, Nicola D; Snow, Rod; Aisbett, Brad

    2018-04-06

    To examine the effects of sleep restriction on firefighters' physical task performance, physical activity, and physiological and perceived exertion during simulated hot wildfire conditions. 31 firefighters were randomly allocated to either the hot (n = 18, HOT; 33 °C, 8-h sleep opportunity) or hot and sleep restricted (n = 13, HOT + SR; 33 °C, 4-h sleep opportunity) condition. Intermittent, self-paced work circuits of six firefighting tasks were performed for 3 days. Firefighters self-reported ratings of perceived exertion. Heart rate, core temperature, and physical activity were measured continuously. Fluids were consumed ad libitum, and all food and fluids consumed were recorded. Urine volume and urine specific gravity (USG) were analysed and sleep was assessed using polysomnography (PSG). There were no differences between the HOT and HOT + SR groups in firefighters' physical task performance, heart rate, core temperature, USG, or fluid intake. Ratings of perceived exertion were higher (p HOT + SR group for two of the six firefighting tasks. The HOT group spent approximately 7 min more undertaking moderate physical activity throughout the 2-h work circuits compared to the HOT + SR group. Two nights of sleep restriction did not influence firefighters' physical task performance or physiological responses during 3 days of simulated wildfire suppression. Further research is needed to explore firefighters' pacing strategies during real wildfire suppression.

  3. CHANGES IN PHYSIOLOGICAL TREMOR RESULTING FROM SLEEP DEPRIVATION UNDER CONDITIONS OF INCREASING FATIGUE DURING PROLONGED MILITARY TRAINING

    OpenAIRE

    A. Tomczak; J. Gajewski; J Mazur–Różycka

    2015-01-01

    The aim of the study was to define the changes of the characteristics of physiological postural tremor under conditions of increasing fatigue and lack of sleep during prolonged military training (survival).The subjects of the study were 15 students of the Polish Air Force Academy in Dęblin. The average age was 19.9±1.3 years. During the 36-hour-long continuous military training (survival) the subjects were deprived of sleep. Four tremor measurements were carried out for each of the subjects: ...

  4. Physiological responses and physical performance during football in the heat

    DEFF Research Database (Denmark)

    Mohr, Magni; Nybo, Lars; Grantham, Justin

    2012-01-01

    To examine the impact of hot ambient conditions on physical performance and physiological responses during football match-play.......To examine the impact of hot ambient conditions on physical performance and physiological responses during football match-play....

  5. Effect of Olive Pulpe Levels in The Diet of Buffalo Calves on Physiological Body Functions and Productive Traits Under Heat Stress Conditions

    International Nuclear Information System (INIS)

    Gad, A.E.

    2013-01-01

    The present study was planned to investigate the changes that occur in growth and some physiological traits in buffalo calves as a result of using olive pulp levels (20 or 40%) under different conditions in Egypt. The study was carried out on 30 male growing buffalo calves aged 14-16 months with average body weight 309 kg and including two experiments; the 1st was carried out under mild climate in winter season on 15 calves while the 2nd was conducted during heat stress conditions of summer season on another 15 calves. In each of the two periods, animals were divided into three equal groups (5 buffalo calves in each). The first group was considered as control to olive pulp levels of 0% . The second and third groups receive olive pulp with 20 and 40% of the ingredient ration, respectively. The results showed that heat stress conditions of hot period induced significant decreases in the levels of final live body weight (FLBW), daily body weight gain (DBWG), total body weight gain (TBWG), total protein, albumin, total lipids, total cholesterol, Ca, inorganic P and thyroid hormones level (T4 and T3). On the other hand, significant increase in urea-N, creatinine, GOT and GPT as compared with animals under mild conditions was recorded. Olive pulp levels in the diet affected significantly the total body gain, daily body weight gain, total cholesterol and thyroid hormones (T4 or T3). The values were lower in the group received 40% olive pulp than in the two groups received 0 and 20.0 % olive pulp. In addition, animals received 40% olive pulp showed significant increase in urea-N, creatinine, GPT, total lipids and Ca. It could be concluded that heat stress conditions of summer period induced significant depression in daily body weight gain and changed most blood components and thyroid hormones which related to physiological functions in buffalo calves. Concerning added olive pulp to the ration of buffalo calves, it could be concluded that daily body gain of buffalo calves

  6. Physicochemical characterization of engineered nanoparticles under physiological conditions: effect of culture media components and particle surface coating.

    Science.gov (United States)

    Fatisson, Julien; Quevedo, Ivan R; Wilkinson, Kevin J; Tufenkji, Nathalie

    2012-03-01

    The use of engineered nanoparticles (ENPs) in commercial products has increased substantially over the last few years. Some research has been conducted in order to determine whether or not such materials are cytotoxic, but questions remain regarding the role that physiological media and sera constituents play in ENP aggregation or stabilization. In this study, several characterization methods were used to evaluate the particle size and surface potential of 6 ENPs suspended in a number of culture media and in the presence of different culture media constituents. Dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) were employed for size determinations. Results were interpreted on the basis of ENP surface potentials evaluated from particle electrophoretic mobilities (EPM). Measurements made after 24h of incubation at 37°C showed that the cell culture medium constituents had only moderate impact on the physicochemical properties of the ENP, although incubation in bovine serum albumin destabilized the colloidal system. In contrast, most of the serum proteins increased colloidal stabilization. Moreover, the type of ENP surface modification played a significant role in ENP behavior whereby the complexity of interactions between the ENPs and the medium components generally decreased with increasing complexity of the particle surface. This investigation emphasizes the importance of ENP characterization under conditions that are representative of cell culture media or physiological conditions for improved assessments of nanoparticle cytotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Market research of window units and doors industry in Russia

    OpenAIRE

    Grishankova, Elena

    2010-01-01

    The purpose of this research is to analyze macro-environmental and competitive forces in the Russian market and to determine possible entry modes for a new company. Some practical information on legal issues and regulatory organizations is also included in the paper in order to create a comprehensive overview of any potentially influential factors. The conceptual framework is based on the macro-environmental market research approach, Michael Porter’s five forces framework and internationa...

  8. Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions

    Directory of Open Access Journals (Sweden)

    Emanuelle Ferreira Melo

    2014-02-01

    Full Text Available Due to the weather changes prognostic for the coming years, the understanding of water deficit and physiological responses of plants to drought becomes an important requirement in order to develop technologies such as mechanisms to assist plants to cope with longer drought periods, which will be essential to maintenance of Brazilian and worldwide production. This study aimed to evaluate ecophysiological and anatomical aspects as well as the nitrate reductase activity in Siriema coffee seedlings subjected to four treatments: Daily irrigated, non-irrigated, re-irrigated 24 hours and re-irrigated 48 hours after different stress periods. Non-irrigation promoted a reduction in leaf water potential being accented from the ninth day of evaluation onwards. Re-irrigation promoted a partial recovery of the plant water potential. Non-irrigated plants showed an increase in stomatal resistance and reduction of transpiration and nitrate reductase activity. In the roots, there was a decrease in nitrate reductase activity under water stress. Leaf anatomical modifications were significant only for the adaxial surface epidermis and palisade parenchyma thickness, this latter characteristic being higher in control plants. Stomatal density and polar and equatorial diameter ratios showed the highest values in plants under water stress. In the roots, differences only in the cortex thickness being bigger in the non-irrigated treatment could be observed. Therefore, Siriema coffee plants under water stress show physiological, biochemical and anatomical modifications that contribute to the tolerance of this genotype to these conditions.

  9. 21 CFR 870.2910 - Radiofrequency physiological signal transmitter and receiver.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiofrequency physiological signal transmitter... Devices § 870.2910 Radiofrequency physiological signal transmitter and receiver. (a) Identification. A radiofrequency physiological signal transmitter and receiver is a device used to condition a physiological signal...

  10. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects.

    Science.gov (United States)

    Chacaroun, Samarmar; Borowik, Anna; Morrison, Shawnda A; Baillieul, Sébastien; Flore, Patrice; Doutreleau, Stéphane; Verges, Samuel

    2016-01-01

    Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m -2 ) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO 2 ), continuously adjusted to reach arterial oxygen saturations (SpO 2 ) of 70-80% for 1 h. IH sessions consisted of 5 min with reduced FiO 2 (SpO 2 = 70-80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results : Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min -1 ) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (-8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH -6 ± 5%, IH -3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (-13 ± 3% vs. -6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in heart

  11. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    Science.gov (United States)

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  12. Effects of hydroxocobalamin on carboxyhemoglobin measured under physiologic and pathologic conditions.

    Science.gov (United States)

    Pace, R; Bon Homme, M; Hoffman, R S; Lugassy, D

    2014-08-01

    Pre-hospital administration of hydroxocobalamin (B12a) is used for empiric treatment of cyanide poisoning because cyanide poisoning is difficult to identify and requires immediate treatment. B12a interferes with the accuracy of several blood laboratory tests. This study aimed to explore how B12a affects carboxyhemoglobin (COHb) measurements in human blood at both physiologic and pathologic COHb levels. Several clinically relevant concentrations of B12a were added to human blood samples containing physiologic (∼ 3%) and pathologic (30% and 50%) COHb levels. We then measured the COHb levels of the samples using two different co-oximeters, the Radiometer ABL 700 and the Rapidpoint 500, and compared to their actual baseline COHb levels. B12a had minimal effects on the COHb measured at both physiologic and pathologic levels when measured on the Radiometer. In contrast, the Rapidpoint B12a caused a dose-dependent decrease in the COHb measured, especially of pathologic COHb levels (∼ 30 and 50%). The magnitude of B12a interference on measured COHb is dependent upon the specific co-oximeter used, the actual COHb level and the serum B12a concentration. These errors may potentially influence clinical decision making and thus affect patient outcomes. Our findings emphasize the importance of measuring COHb levels on blood samples collected prior to B12a administration.

  13. Physiological age at harvest regulates the variability in postharvest ripening, sensory and nutritional characteristics of mango (Mangifera indica L.) cv. Coghshall due to growing conditions.

    Science.gov (United States)

    Joas, Jacques; Vulcain, Emmanuelle; Desvignes, Claire; Morales, Emeline; Léchaudel, Mathieu

    2012-04-01

    Climacteric fruits are harvested at the green-mature stage and ripen during their marketing cycle. However, growing conditions induce variability into the maturity stage of mangoes at harvest, with an impact on their final quality. Assuming that the physiological age can be correctly evaluated by a criterion based on the variable chlorophyll fluorescence of the skin (F(v)) and that differences in physiological age depend on growing conditions, controlled stress experiments were carried out on mango fruit by manipulating either the leaf/fruit ratio or the light environment. Delays from 9 to 30 days were observed, depending on stress level and harvest stage, to obtain the same F(v) value. For moderate stress, fruit composition after ripening was partially compensated for, with little or no difference in sugar, dry matter, carotenoid and aroma contents. For more pronounced stress, the major metabolites were not particularly affected, but the synthesis capacity of carotenoids and aromas was lower after maturity. The ripening ability of a fruit is acquired on the tree and defines its postharvest changes. Control of the physiological age at harvest can minimise the variability observed under natural conditions and guarantee fruit batches whose postharvest changes will be relatively homogeneous. Copyright © 2011 Society of Chemical Industry.

  14. The influence of antioxidants 'TIOFAN' and 'FANTOX 11-1' on physiological growth of broilers in conditions of intoxication with lead and cadmium salts

    International Nuclear Information System (INIS)

    Koval, Yu.I.; Bokova, T.I.; Kandalintseva, N.V.

    2008-01-01

    The purpose of research is to study the influence of antioxidants 'TIOFAN' and 'FANTOX 11-1' on physiological growth of broilers in conditions of intoxication with lead and cadmium salts. The growth and development of bird in conditions of intoxication with heavy metals and by using of antioxidants as detoxicant is studied. The biochemical blood values on application of antioxidants and without them in conditions of intoxication are determined. The most effective preparation raising of birds productivity and it's optimal concentration is established.

  15. Automatic duress alarms through physiological response monitoring

    International Nuclear Information System (INIS)

    Roehrig, S.C.

    1977-07-01

    Physiological response monitoring under controlled conditions can provide an effective means for passively determining if the wearer is under moderate to severe stresses. By monitoring the heart rate (HR) and galvanic skin response (GSR) of an individual, it is possible to detect in real time the increase in heart rate and GSR levels due to physiological reactions to mental duress. With existing physiological monitoring equipment, however, the work load of the wearer must be well defined since it is impossible, without additional data, to distinguish mental duress responses from those resulting from moderate physical exertion. Similarly, environmental conditions should be constrained within set limits to avoid masking increases in GSR levels due to metntal stress from those associated with increased perspiration. These constraints should not prove overly restrictive and would allow an integrated security system utilizing physiological monitoring equipment to provide an effective real time, automated early warning system for detection of mental duress or death of the wearer

  16. Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions.

    Science.gov (United States)

    Turgeman, Tidhar; Ben Asher, Jiftach; Roth-Bejerano, Nurit; Kagan-Zur, Varda; Kapulnik, Yoram; Sitrit, Yaron

    2011-10-01

    The host plant Helianthemum sessiliflorum was inoculated with the mycorrhizal desert truffle Terfezia boudieri Chatin, and the subsequent effects of the ectomycorrhizal relationship on host physiology were determined. Diurnal measurements revealed that mycorrhizal (M) plants had higher rates of photosynthesis (35%), transpiration (18%), and night respiration (49%) than non-mycorrhizal (NM) plants. Consequently, M plants exhibited higher biomass accumulation, higher shoot-to-root ratios, and improved water use efficiency compared to NM plants. Total chlorophyll content was higher in M plants, and the ratio between chlorophyll a to chlorophyll b was altered in M plants. The increase in chlorophyll b content was significantly higher than the increase in chlorophyll a content (2.58- and 1.52-fold, respectively) compared to control. Calculation of the photosynthetic activation energy indicated lower energy requirements for CO(2) assimilation in M plants than in NM plants (48.62 and 61.56 kJ mol(-1), respectively). Continuous measurements of CO(2) exchange and transpiration in M plants versus NM plants provided a complete picture of the daily physiological differences brought on by the ectomycorrhizal relationships. The enhanced competence of M plants to withstand the harsh environmental conditions of the desert is discussed in view of the mycorrhizal-derived alterations in host physiology. © Springer-Verlag 2011

  17. Thermal, physiological strain index and perceptual responses in Iranian Muslim women under Thermal Condition in order to Guide in Prevention of Heat Stress

    Directory of Open Access Journals (Sweden)

    Peymaneh Habibi

    2014-09-01

    Full Text Available Heat stress risk assessment, as a harmful agent at workplace, is essential for controlling heat strain. The purpose of this study was relation between physiological and perceptual heat strain responses in Iranian veiled women under laboratory thermal conditions. This experimental study was carried out on 36 healthy females (age 22.3 ± 2.0 yr, height 162.76±5. 57cm, weight 55.82 ± 9.27kg in sitting state under thermal conditions (27 - 38° C in the hot-dry climatic condition for 120 min. In order to calculate the physiological strain index (PSI, oral temperature and heart rate were measured every 5 min. Physiological factors, and Heat Strain Score Index (HSSI questionnaires are simultaneous measurements taken at any 5 min during the exposure and physiological factors, and Heat Strain Score Index (HSSI questionnaires are the initial measurements. The data were analyzed using correlation and line regression by test spss16. The results showed that the average heart rate and oral temperature at resting and sitting were between 83.06 ±9.41bpm, 87.91 ±7.87 bpm and 36.7° C, 37. 1° C respectively. Also, the results have revealed a direct and significant and direct correlation among HSSI with WBGT (R2 = 0.97, P< 0.001, PSI (R2 = 0.96, P< 0.001, oral temperature (R2 = 0.96, P< 0.001 and heart rate (R2 = 0.62, P< 0.01 indices. The results have shown that simultaneously with the increase in valid indices of heat stress evaluation such as WBGT and PSI indices, the amount of HSSI index has also increased with high power. Therefore, it can be conclude that when there is no access to a reliable heat stress method such as WBGT or PSI indices, HSSI index, an objective and subjective heat strain method, can be used as a simple, fast and inexpensive method for evaluating the heat strain in women.

  18. Intragroup Emotions: Physiological Linkage and Social Presence.

    Science.gov (United States)

    Järvelä, Simo; Kätsyri, Jari; Ravaja, Niklas; Chanel, Guillaume; Henttonen, Pentti

    2016-01-01

    We investigated how technologically mediating two different components of emotion-communicative expression and physiological state-to group members affects physiological linkage and self-reported feelings in a small group during video viewing. In different conditions the availability of second screen text chat (communicative expression) and visualization of group level physiological heart rates and their dyadic linkage (physiology) was varied. Within this four person group two participants formed a physically co-located dyad and the other two were individually situated in two separate rooms. We found that text chat always increased heart rate synchrony but HR visualization only with non-co-located dyads. We also found that physiological linkage was strongly connected to self-reported social presence. The results encourage further exploration of the possibilities of sharing group member's physiological components of emotion by technological means to enhance mediated communication and strengthen social presence.

  19. Comparative investigation of physiological responses of field-grown ...

    African Journals Online (AJOL)

    An important consideration in designing and managing forage systems is the knowledge of the physiological response mechanisms to cutting, especially when water deficit conditions are prevailing. The objective of this study was to determine the physiological response of Medicago sativa and Festuca arundinacea to ...

  20. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions.

    Science.gov (United States)

    Counihan, Katrina L

    2018-06-01

    Increasing oil development around Alaska and other Arctic regions elevates the risk for another oil spill. Dispersants are used to mitigate the impact of an oil spill by accelerating natural degradation processes, but the reduced hydrophobicity of dispersed oil may increase its bioavailability to marine organisms. There is limited research on the effect of dispersed oil on cold water species and ecosystems. Therefore, spiked exposure tests were conducted with bay mussels (Mytilus trossulus) in seawater with non-dispersed oil, Corexit 9500 and oil dispersed with different concentrations of Corexit 9500. After three weeks of exposure, acute and chronic physiological impacts were determined. The majority of physiological responses occurred during the first seven days of exposure, with mussels exhibiting significant cytochrome P450 activity, superoxide dismutase activity and heat shock protein levels. Mussels exposed to non-dispersed oil also experienced immune suppression, reduced transcription and higher levels of mortality. After 21 days, mussels in all treatments exhibited evidence of genetic damage, tissue loss and a continued stress response. Bay mussels are useful as indicators of ecosystem health and recovery, and this study was an important step in understanding how non-dispersed oil, dispersant and dispersed oil affect the physiology of this sentinel species in Arctic/subarctic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Intragroup emotions: physiological linkage and social presence

    Directory of Open Access Journals (Sweden)

    Simo eJärvelä

    2016-02-01

    Full Text Available We investigated how technologically mediating two different components of emotion – communicative expression and physiological state – to group members affects physiological linkage and self-reported feelings in a small group during video viewing. In different conditions the availability of second screen text chat (communicative expression and visualization of group level physiological heart rates and their dyadic linkage (physiology was varied. Within this four person group two participants formed a physically co-located dyad and the other two were individually situated in two separate rooms. We found that text chat always increased heart rate synchrony but HR visualization only with non-co-located dyads. We also found that physiological linkage was strongly connected to self-reported social presence. The results encourage further exploration of the possibilities of sharing group member’s physiological components of emotion by technological means to enhance mediated communication and strengthen social presence.

  2. Intragroup Emotions: Physiological Linkage and Social Presence

    Science.gov (United States)

    Järvelä, Simo; Kätsyri, Jari; Ravaja, Niklas; Chanel, Guillaume; Henttonen, Pentti

    2016-01-01

    We investigated how technologically mediating two different components of emotion—communicative expression and physiological state—to group members affects physiological linkage and self-reported feelings in a small group during video viewing. In different conditions the availability of second screen text chat (communicative expression) and visualization of group level physiological heart rates and their dyadic linkage (physiology) was varied. Within this four person group two participants formed a physically co-located dyad and the other two were individually situated in two separate rooms. We found that text chat always increased heart rate synchrony but HR visualization only with non-co-located dyads. We also found that physiological linkage was strongly connected to self-reported social presence. The results encourage further exploration of the possibilities of sharing group member's physiological components of emotion by technological means to enhance mediated communication and strengthen social presence. PMID:26903913

  3. Physiological and Environmental Sensor Skin Stamp

    Data.gov (United States)

    National Aeronautics and Space Administration — Future exploration missions will require astronauts to autonomously monitor physiological and atmospheric conditions. Recent technological advances in the developing...

  4. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    Science.gov (United States)

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  5. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA and Its Carbamate Adducts at Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    David Zimmerman

    Full Text Available Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC is associated with β-methylamino-L-alanine (BMAA, a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY. The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin.

  6. Evaluating the Effect of Seed Treatment with Hydrogen Peroxide on Anatomical and Physiological Characteristics of Wheat under Dry Condition

    Directory of Open Access Journals (Sweden)

    T Jafarian

    2017-12-01

    Full Text Available Introduction Water deficit is the major abiotic factor limiting plant growth and crop productivity around the world. In all agricultural regions, yields of rain-fed crops are periodically reduced by drought. Among various strategies, pre-sowing treatment and priming of seeds are easy, low cost, low risk and effective approaches to overcome the environmental stress problems. Various priming strategies include osmopriming, halopriming, hormonal priming or hydropriming, etc. Hydrogen peroxide, a stress signal molecule, was evaluated as seed treatment to produce the metabolic changes, which could lead to improved drought tolerance in wheat. The interaction of signals conferring stress tolerance in accomplishing better crop growth and yield is a priority area of research. Here we report some anatomical, physiological and biochemical changes induced by Hydrogen peroxide during seed treatment and their involvement in conferring drought tolerance upon wheat. Materials and Methods A field study was conducted out at the research farm of agricultural collage of Ilam university during 2014-2015 cropping season. This study was aimed to investigate the priming seed with hydrogen peroxide on two wheat genotypes (Cross Sabalan (bread wheat and Saji (durum wheat, under dryland farming system condition. Experimental design was factorial, arranged in randomized complete block, with three replications. Two main factors were wheat genotypes and four soaking treatments of seeds with different concentration (zero, 25, 50 and 80 Mm of Hydrogen Peroxide. Seeds of each genotype were sown at 6 rows of 3 m length with lines space of 20 cm in depth 5 cm. At heading stage physiological traits were measured on selected leaves and then samples were taken to determine leaf area, Leaf rolling, number and length of Stomata on the epidermis, RWC, electrolyte leakage, photosynthetic pigments concentrations (Chla, b and carotenoid and antioxidant enzyme contents (catalase, ascorbate

  7. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions

    DEFF Research Database (Denmark)

    Stærk, Kristian; Kolmos, Hans Jørn; Khandige, Surabhi

    2016-01-01

    were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS:  Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations...... with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations....... enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. CONCLUSION:  Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions...

  8. Proton-coupled electron transfer promotes the reduction of ferrylmyoglobin by uric acid under physiological conditions

    DEFF Research Database (Denmark)

    de Zawadzki, Andressa; Cardoso, Daniel R.; Skibsted, Leif Horsfelt

    2017-01-01

    The hypervalent muscle pigment ferrylmyoglobin, MbFe(IV)]O, is not reduced by urate monoanions at physiological conditions despite a strong driving force of around 30 kJ mol1 while for low pH, uric acid was found to reduce protonated ferrylmyoglobin, MbFe(IV)]O,H+, efficiently in a bimolecular...... reaction with k1 ¼ 1.1 0.1 103 L mol1 s1, DH‡ ¼ 66.1 0.1 kJ mol1 and DS‡ ¼ 35.2 0.2 J mol1 K1. For intermediate pH, like for anaerobic muscles and for meat, proton-oupled electron transfer occurs in a transition state, {MbFe(IV)]O/H+/urate}‡, which is concluded to be formed from uric acid and Mb...... in uric acid concentration may serve as an inherent protection against radical formation by ferrylmyoglobin...

  9. Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring.

    Science.gov (United States)

    Xue, Ning; Wang, Chao; Liu, Cunxiu; Sun, Jianhai

    2018-01-02

    In this paper, a highly monolithic-integrated multi-modality sensor is proposed for intracorporeal monitoring. The single-chip sensor consists of a solid-state based temperature sensor, a capacitive based pressure sensor, and an electrochemical oxygen sensor with their respective interface application-specific integrated circuits (ASICs). The solid-state-based temperature sensor and the interface ASICs were first designed and fabricated based on a 0.18-μm 1.8-V CMOS (complementary metal-oxide-semiconductor) process. The oxygen sensor and pressure sensor were fabricated by the standard CMOS process and subsequent CMOS-compatible MEMS (micro-electromechanical systems) post-processing. The multi-sensor single chip was completely sealed by the nafion, parylene, and PDMS (polydimethylsiloxane) layers for biocompatibility study. The size of the compact sensor chip is only 3.65 mm × 1.65 mm × 0.72 mm. The functionality, stability, and sensitivity of the multi-functional sensor was tested ex vivo. Cytotoxicity assessment was performed to verify that the bio-compatibility of the device is conforming to the ISO 10993-5:2009 standards. The measured sensitivities of the sensors for the temperature, pressure, and oxygen concentration are 10.2 mV/°C, 5.58 mV/kPa, and 20 mV·L/mg, respectively. The measurement results show that the proposed multi-sensor single chip is suitable to sense the temperature, pressure, and oxygen concentration of human tissues for intracorporeal physiological condition monitoring.

  10. Physiological responses in barley to applications of lanthanum

    International Nuclear Information System (INIS)

    Reddy, N.; Maheswaran, J.; Peverill, K.; Meehan, B.

    1998-01-01

    Full text: Chinese research and glasshouse investigations carried out in Victoria by the authors have shown that several plant species, when treated with Rare Earth Elements (REEs), retain greater amounts of moisture under water stressed conditions. The physiological adaptation of the plant to retain moisture in response to REE treatment however, has not been investigated. A glasshouse trial is currently in progress to study the physiological and agronomic responses of barley (cv. Schooner) grown in pots to application of lanthanum (0, 5 and 10 kg/ha), at a concentration of 0.05%, under well-watered (field capacity) and water-deficit (25 - 30% field capacity) conditions. Lanthanum was applied both directly to the soil and as a foliar spray. The physiological measurements include, photosynthetic rate, leaf water potential, osmotic potential, relative water content, stomatal conductance and water use efficiency. Measured agronomic parameters include plant height, tiller production, leaf area development, total grain weight, total biomass, root and shoot ratio and harvest index. Analysis of plant tissue for N, P, K, Ca, Mg, Zn and La to study the relationship between application of REE and nutrient uptake is also being carried out. The paper discusses physiological and agronomic changes in barley plants in response to treatment with lanthanum, under conditions of water stress

  11. Perinatal broiler physiology between hatching and chick collection in 2 hatching systems

    NARCIS (Netherlands)

    Ven, van de L.J.F.; Wagenberg, van A.V.; Decuypere, E.; Kemp, B.; Brand, van den H.

    2013-01-01

    Little is known about physiological responses of early- versus late-hatching chicks to early posthatch conditions in broiler practice. We investigated effects of hatching time on perinatal broiler physiology in 2 hatching systems, differing in conditions: a conventional hatcher, where chicks are

  12. Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions

    DEFF Research Database (Denmark)

    Montes, Ruth; Ahyayauch, Hasna; Ibarguren, Maitane

    2010-01-01

    Giant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols...... for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry. Here we show how to prepare GUVs using a new protocol based on the electroformation method either from...... native membranes or organic lipid mixtures at physiological ionic strength. Additionally, we describe methods to test whether membrane proteins and glycosphingolipids preserve their natural orientation after electroformation of GUVs composed of native membranes...

  13. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  14. Lymphocytes Mitochondrial Physiology as Biomarker of Energy Metabolism during Fasted and Fed Conditions

    Directory of Open Access Journals (Sweden)

    Erika Cortez

    2012-01-01

    Full Text Available Mitochondria are central coordinators of energy metabolism, and changes of their physiology have long been associated with metabolic disorders. Thus, observations of energy dynamics in different cell types are of utmost importance. Therefore, tools with quick and easy handling are needed for consistent evaluations of such interventions. In this paper, our main hypothesis is that during different nutritional situations lymphocytes mitochondrial physiology could be associated with the metabolism of other cell types, such as cardiomyocytes, and consequently be used as metabolic biomarker. Blood lymphocytes and heart muscle fibers were obtained from both fed and 24 h-fasted mice, and mitochondrial analysis was assessed by high-resolution respirometry and western blotting. Carbohydrate-linked oxidation and fatty acid oxidation were significantly higher after fasting. Carnitine palmitoil transferase 1 and uncouple protein 2 contents were increased in the fasted group, while the glucose transporters 1 and 4 and the ratio phosphorylated AMP-activated protein kinase/AMPK did not change between groups. In summary, under a nutritional status modification, mitochondria demonstrated earlier adaptive capacity than other metabolic sensors such as glucose transporters and AMPK, suggesting the accuracy of mitochondria physiology of lymphocytes as biomarker for metabolic changes.

  15. High resolution NMR spectroscopy of physiological fluids: from metabolism to physiology

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Nicoli, F.; Torri, G.; Torri, J.; Kriat, M.; Sciaky, M.; Davin, A.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.

    1992-01-01

    High resolution NMR spectroscopy of physiological fluids provides quantitative, qualitative and dynamic information on the metabolic status of the interstitial and plasma compartments under a variety of pathophysiological conditions. The simultaneous detection and quantitation by NMR spectroscopy of numerous compounds of the intermediary metabolism offers a new insight in the understanding of the 'milieu interieur'.NMR spectroscopy of physiological fluids offers a unique way to define and monitor the global metabolic homeostasis in humans. The development of this analytical approach is still limited by the scarcity of pluridisciplinary teams able to fully exploit the wealth of information present on the NMR spectrum of a fluid. While application in pharmacology and toxicology is already established, the main areas of current development are cancer, hereditary metabolic disorders, organ transplantation and neurological diseases

  16. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... changes in growth, physiology and nutrient concentration in response to two watering regimes (well-watered and water-stress conditions) and ... from 32 Countries:.

  17. The Physiology of Adventitious Roots1

    Science.gov (United States)

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  18. Physiologic changes associated with violence and abuse exposure: an examination of related medical conditions.

    Science.gov (United States)

    Keeshin, Brooks R; Cronholm, Peter F; Strawn, Jeffrey R

    2012-01-01

    Although the extant evidence is replete with data supporting linkages between exposure to violence or abuse and the subsequent development of medical illnesses, the underlying mechanisms of these relationships are poorly defined and understood. Physiologic changes occurring in violence- or abuse-exposed individuals point to potentially common biological pathways connecting traumatic exposures with medical outcomes. Herein, the evidence describing the long-term physiologic changes in abuse- and violence-exposed populations and associated medical illnesses are reviewed. Current data support that (a) specific neurobiochemical changes are associated with exposure to violence and abuse; (b) several biological pathways have the potential to lead to the development of future illness; and (c) common physiologic mechanisms may moderate the severity, phenomenology, or clinical course of medical illnesses in individuals with histories of exposure to violence or abuse. Importantly, additional work is needed to advance our emerging understanding of the biological mechanisms connecting exposure to violence and abuse and negative health outcomes.

  19. PHYSIOLOGY OF ACID BASE BALANCE

    Directory of Open Access Journals (Sweden)

    Awati

    2014-12-01

    Full Text Available Acid-base, electrolyte, and metabolic disturbances are common in the intensive care unit. Almost all critically ill patients often suffer from compound acid-base and electrolyte disorders. Successful evaluation and management of such patients requires recognition of common patterns (e.g., metabolic acidosis and the ability to dissect one disorder from another. The intensivists needs to identify and correct these condition with the easiest available tools as they are the associated with multiorgan failure. Understanding the elements of normal physiology in these areas is very important so as to diagnose the pathological condition and take adequate measures as early as possible. Arterial blood gas analysis is one such tool for early detection of acid base disorder. Physiology of acid base is complex and here is the attempt to simplify it in our day to day application for the benefit of critically ill patients.

  20. Physiological responses at short distances from a parametric speaker

    Directory of Open Access Journals (Sweden)

    Lee Soomin

    2012-06-01

    Full Text Available Abstract In recent years, parametric speakers have been used in various circumstances. In our previous studies, we verified that the physiological burden of the sound of parametric speaker set at 2.6 m from the subjects was lower than that of the general speaker. However, nothing has yet been demonstrated about the effects of the sound of a parametric speaker at the shorter distance between parametric speakers the human body. Therefore, we studied this effect on physiological functions and task performance. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-minute quiet period as a baseline, a 30-minute mental task period with general speakers or parametric speakers, and a 20-minute recovery period. We measured electrocardiogram (ECG photoplethysmogram (PTG, electroencephalogram (EEG, systolic and diastolic blood pressure. Four experiments, one with a speaker condition (general speaker and parametric speaker, the other with a distance condition (0.3 m and 1.0 m, were conducted respectively at the same time of day on separate days. To examine the effects of the speaker and distance, three-way repeated measures ANOVA (speaker factor x distance factor x time factor were conducted. In conclusion, we found that the physiological responses were not significantly different between the speaker condition and the distance condition. Meanwhile, it was shown that the physiological burdens increased with progress in time independently of speaker condition and distance condition. In summary, the effects of the parametric speaker at the 2.6 m distance were not obtained at the distance of 1 m or less.

  1. Transforming Water: Social Influence Moderates Psychological, Physiological, and Functional Response to a Placebo Product.

    Science.gov (United States)

    Crum, Alia J; Phillips, Damon J; Goyer, J Parker; Akinola, Modupe; Higgins, E Tory

    2016-01-01

    This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, "AquaCharge Energy Water," falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water.

  2. Measurement of palmitoylethanolamide and other N-acylethanolamines during physiological and pathological conditions

    NARCIS (Netherlands)

    Balvers, M.G.J.; Verhoeckx, K.C.M.; Meijerink, J.; Wortelboer, H.M.; Witkamp, R.F.

    2013-01-01

    Palmitoylethanolamide (PEA) belongs to the N-acyl ethanolamines (NAEs), a group of endogenous compounds involved in a variety of physiological processes, including energy homeostasis and inflammation. This review focuses on the analysis of PEA in plasma and tissues and discusses effects of diet and

  3. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  4. Extracellular Membrane Vesicles as Vehicles for Brain Cell-to-Cell Interactions in Physiological as well as Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Gabriella Schiera

    2015-01-01

    Full Text Available Extracellular vesicles are involved in a great variety of physiological events occurring in the nervous system, such as cross talk among neurons and glial cells in synapse development and function, integrated neuronal plasticity, neuronal-glial metabolic exchanges, and synthesis and dynamic renewal of myelin. Many of these EV-mediated processes depend on the exchange of proteins, mRNAs, and noncoding RNAs, including miRNAs, which occurs among glial and neuronal cells. In addition, production and exchange of EVs can be modified under pathological conditions, such as brain cancer and neurodegeneration. Like other cancer cells, brain tumours can use EVs to secrete factors, which allow escaping from immune surveillance, and to transfer molecules into the surrounding cells, thus transforming their phenotype. Moreover, EVs can function as a way to discard material dangerous to cancer cells, such as differentiation-inducing proteins, and even drugs. Intriguingly, EVs seem to be also involved in spreading through the brain of aggregated proteins, such as prions and aggregated tau protein. Finally, EVs can carry useful biomarkers for the early diagnosis of diseases. Herein we summarize possible roles of EVs in brain physiological functions and discuss their involvement in the horizontal spreading, from cell to cell, of both cancer and neurodegenerative pathologies.

  5. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions

    Science.gov (United States)

    Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu

    2013-06-01

    The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size

  6. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  7. Physiology of in vitro culture

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cañal

    2001-01-01

    Full Text Available The culture procedures described up to the eighties, did not made any mention to the environmental control of in vitro plant development. However, growth rate, development and many of the physiologic-morphologic features of the in vitro grown plants are influenced by the culture vessel. The increasing knowledge about the environmental control of culture vessels under sterile conditions, is helping to change micorpropagation procedures. The in vitro environment with lower rate ventilation, brings about low flow rates of matter and energy, with minimum variations of temperature, high relative humidity and large daily changes of the concentration of CO2 inside the culture vessel. The type of culture vessel (size, shape, fabric and closing system can influence the evolution of the atmosphere along the time of culture. Although submitted to different stresses factors plant can be grown in vitro, but plants can be faulty in their anatomy, morphology and physiology. As a consequence, these plants shown a phenotype unable to survive to ex vitro conditions. Different strategies can be used to control the atmosphere along the different phases of micropropagation, in heterotrophic, mixotrophic or autotrophic cultures. The election of the best strategy will be based on different factors as species, number of transplantes required, or quality-price relationship. enviromental control, tissue culture, micropropagation Keywords: in vitro enviromental, characteristic physiology,

  8. Implantable Nanosensors: Towards Continuous Physiologic Monitoring

    OpenAIRE

    Ruckh, Timothy T.; Clark', Heather A.

    2013-01-01

    Continuous physiologic monitoring would add greatly to both home and clinical medical treatment for chronic conditions. Implantable nanosensors are a promising platform for designing continuous monitoring systems. This feature reviews design considerations and current approaches towards such devices.

  9. Study on Driver Visual Physiological Characteristics in Urban Traffic

    Directory of Open Access Journals (Sweden)

    Fengyuan Wang

    2014-01-01

    Full Text Available In the integrated traffic environment, human factor is always a main factor of the three elementary factors, besides the vehicle and road factor. The driver physiological and psychological characteristics have an important impact especially on traffic safety in urban road traffic conditions. Some typical traffic scenes in condition of urban road, such as light signal control at intersection, overtaking, and passing, are selected for condition analysis. An eye movement apparatus was used to obtain driver eye closure, blink frequency, and other visual physiological indicators in the traffic conditions of urban road. The regular patterns of driver visual characteristics in the corresponding scenes were analyzed in detail to provide data and theoretical support for the further research on traffic safety of urban environment from the viewpoint of driver psychology and behavior.

  10. Physiological response of invasive mussel Limnoperna fortunei (Dunker, 1857 (Bivalvia: Mytilidae submitted to transport and experimental conditions

    Directory of Open Access Journals (Sweden)

    N. I. S. Cordeiro

    Full Text Available Abstract Successful animal rearing under laboratory conditions for commercial processes or laboratory experiments is a complex chain that includes several stressors (e.g., sampling and transport and incurs, as a consequence, the reduction of natural animal conditions, economic losses and inconsistent and unreliable biological results. Since the invasion of the bivalve Limnoperna fortunei (Dunker, 1857 in South America, several studies have been performed to help control and manage this fouling pest in industrial plants that use raw water. Relatively little attention has been given to the laboratory rearing procedure of L. fortunei, its condition when exposed to a stressor or its acclimation into laboratory conditions. Considering this issue, the aims of this study are to (i investigate L. fortunei physiological responses when submitted to the depuration process and subsequent air transport (without water/dry condition at two temperatures, based on glycogen concentrations, and (ii monitor the glycogen concentrations in different groups when maintained for 28 days under laboratory conditions. Based on the obtained results, depuration did not affect either of the groups when they were submitted to approximately eight hours of transport. The variation in glycogen concentration among the specimens that were obtained from the field under depurated and non-depurated conditions was significant only in the first week of laboratory growth for the non-depurated group and in the second week for the depurated group. In addition, the tested temperature did not affect either of the groups that were submitted to transport. The glycogen concentrations were similar to those of the specimens that were obtained from the field in third week, which suggests that the specimens acclimated to laboratory conditions during this period of time. Thus, the results indicate that the air transport and acclimation time can be successfully incorporated into experimental studies

  11. Morpho-physiological characterization of Indian wheat genotypes ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... Key words: Wheat, morphological parameters, physiological growth attributes, proline. INTRODUCTION ... few years, climatic conditions have been drastically changed and ..... Poster presented in the XXVIIIth Meeting of the.

  12. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  13. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  14. Physiological correlates and emotional specificity of human piloerection.

    Science.gov (United States)

    Benedek, Mathias; Kaernbach, Christian

    2011-03-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Human factors estimation methods using physiological informations

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Nakasa, Hiroyasu

    1984-01-01

    To enhance the operational safety in the nuclear power plant, it is necessary to decrease abnormal phenomena due to human errors. Especially, it is essential to basically understand human behaviors under the work environment for plant maintenance workers, inspectors, and operators. On the above stand point, this paper presents the results of literature survey on the present status of human factors engineering technology applicable to the nuclear power plant and also discussed the following items: (1) Application fields where the ergonomical evaluation is needed for workers safety. (2) Basic methodology for investigating the human performance. (3) Features of the physiological information analysis among various types of ergonomical techniques. (4) Necessary conditions for the application of in-situ physiological measurement to the nuclear power plant. (5) Availability of the physiological information analysis. (6) Effectiveness of the human factors engineering methodology, especially physiological information analysis in the case of application to the nuclear power plant. The above discussions lead to the demonstration of high applicability of the physiological information analysis to nuclear power plant, in order to improve the work performance. (author)

  16. Physiological indices of seawater readiness in postspawning steelhead kelts

    Science.gov (United States)

    Buelow, Jessica; Moffitt, Christine M.

    2015-01-01

    Management goals to improve the recovery of steelhead (Oncorhynchus mykiss) stocks at risk of extinction include increasing the proportion of postspawning fish that survive and spawn again. To be successful, postspawning steelhead (kelts) migrating downstream to the ocean must prepare physiologically and physically for a seawater transition. We sampled blood, gill filaments, and evaluated the external condition of migrating kelts from an ESA-listed population in the Snake/Columbia River system over two consecutive years to evaluate their physiological readiness for transition to seawater. We chose attributes often considered as measures of preparation for seawater in juveniles, including gill Na+,K+ ATPase activity, plasma electrolytes and hormones to consider factors related to external condition, size and sex. We found kelts in good external condition had plasma profiles similar to downstream-migrating smolts. In addition, we found more than 80% of kelts ranked in good external condition had smolt-like body silvering. We compared measures from migrating kelts with samples obtained from hatchery fish at the time of spawning to confirm that Na+, K+ ATPase activity in kelts was significantly elevated over spawning fish. We found significant differences in gill Na+, K+ ATPase activity in migrating kelts between the years of sampling, but little indication of influence of fish condition. We conclude that the postspawning steelhead sampled exhibited a suite of behaviours, condition and physiology characteristic of fish prepared for successful transition to a seawater environment.

  17. Clinical usefulness of physiological components obtained by factor analysis

    International Nuclear Information System (INIS)

    Ohtake, Eiji; Murata, Hajime; Matsuda, Hirofumi; Yokoyama, Masao; Toyama, Hinako; Satoh, Tomohiko.

    1989-01-01

    The clinical usefulness of physiological components obtained by factor analysis was assessed in 99m Tc-DTPA renography. Using definite physiological components, another dynamic data could be analyzed. In this paper, the dynamic renal function after ESWL (Extracorporeal Shock Wave Lithotripsy) treatment was examined using physiological components in the kidney before ESWL and/or a normal kidney. We could easily evaluate the change of renal functions by this method. The usefulness of a new analysis using physiological components was summarized as follows: 1) The change of a dynamic function could be assessed in quantity as that of the contribution ratio. 2) The change of a sick condition could be morphologically evaluated as that of the functional image. (author)

  18. The emergence of Applied Physiology within the discipline of Physiology.

    Science.gov (United States)

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  19. Physiologically based pharmacokinetics model for estimating urinary excretion of short half-life nuclides in nuclear medicine

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Konishi, E.; Kusama, T.; Aoki, Y.

    1995-01-01

    The biokinetic model in ICRP 53 is used for calculating absorbed dose to each organ of a patient in nuclear medicine. The ICRP model is a simple compartment model based on human data; however, the model cannot produce the biokinetics of radiopharmaceuticals under various physiological conditions. On the other hand, a physiologically based pharmacokinetics model (PBPK model) can describe the flow of radiopharmaceuticals as a compartment model for any physiological conditions theoretically. The PBPK model was applied especially for the kidney-bladder dynamics, and similar results obtained compared with the ICRP model. This suggests the possibility of the PBPK model for predicting the biokinetics of radiopharmaceuticals under various physiological conditions. (Author)

  20. Physiological and biochemical response to Omega-3 plus as a dietary supplement to growing goats under hot summer conditions

    Directory of Open Access Journals (Sweden)

    Fatma Edrees Ibrahim Teama

    2016-04-01

    Full Text Available ABSTRACT The objective of the present study was to assess the effect of dietary supplementation of Omega-3 plus on some the physiological and biochemical traits in growing Baladi goats under hot summer conditions. Thirty-four growing male goats (4-5 months old were randomly divided into two equal groups. Animals in group 1 were fed a concentrate feed mixture (CFM, which was the control group. Goats in group 2 (the experimental group were offered Omega-3 plus (1,000 mg/animal day-1 (30% fish oil, containing 18% eicosapentaenoic acid and 12% docosahexaenoic acid + 100 mg wheat germ oil (0.22% tocopherols daily in addition to the basal diet for four months (the experimental period during the hot summer season. Body weight (BW changes of both groups were recorded monthly during the experiment. Blood samples were collected monthly, and total protein, immunoglobulin G (IgG, total cholesterol, triglycerides, liver enzymes (AST and ALT, blood urea nitrogen, serum creatinine, and thyroid hormones (T3 and T4 were estimated. A significant increase in the live BW of growing goats was recorded as a result of dietary supplementation of Omega-3 plus. Total protein, IgG, and T3 levels were higher than those obtained with control. In contrast, total cholesterol, triglycerides, urea, ALT, and AST levels were significantly reduced. The serum concentration of creatinine and T4 levels was indistinguishable from those of control. Addition of Omega-3 plus as a dietary supplement to growing goats under hot summer conditions increases their daily weight gain and improves their general physiological and biochemical status by decreasing total cholesterol, triglycerides, urea, ALT, and AST. It is thus suggested that Omega-3 plus should be used as a supplement in the growth period of goats.

  1. Benefits derived by a major South African retailer through collaboration and innovation within its supply chain

    Directory of Open Access Journals (Sweden)

    M. A.O. dos Santos

    2010-11-01

    Full Text Available Current trends in the macro-environment, such as increased obesity within human populations, the damaging impact of human activity on the natural environment, the worldwide recession and the resultant changes in consumer behaviour, are all receiving increased attention by relevant stakeholders around the world. As the negative impact of these macro-environmental trends continue to be felt, increased pressure will be placed on the business community to help mitigate their consequences. This study demonstrates how innovation and collaboration within a retailer’s supply chain enable it to profitably use some of these macro-environmental trends to create differential and competitive advantage in a saturated business sector.

  2. Effect of fabric stuff of work clothing on the physiological strain index at hot conditions in the climatic chamber

    Directory of Open Access Journals (Sweden)

    Habibollah Dehghan

    2014-01-01

    Full Text Available Aims: The purpose of the present study was to evaluate the effect of fabric stuff of work clothing that are widely used in Iran industries on the physiological strain index (PSI at hot conditions in the climatic chamber. Materials and Methods: This interventional study was performed upon 18 male students in 16 trials, which included combination of four kinds of work clothing (13.7% viscose (VIS 86.3% polyester(PES, 30.2% cotton [CT]-69.8% PES, 68.5% CT-31.5% PES, 100% CT, two activity levels (light and moderate and two kinds of climatic conditions included hot-wet (T a = 35, RH = 70% and hot-dry (T a = 38, RH = 40%. During each trial, the RH and core temperature was recorded once a minute and then PSI was calculated. Data were analyzed by using SPSS-16 software. Results: The results showed that in hot-wet conditions, the least value of PSI in light and moderate activities was related to 100% CT clothing and 30.2% CT-69.8% PES clothing, respectively. In hot-dry conditions, the least value of PSI in both of activities was related to 30.2% CT-69.8% PES clothing. The mean value of PSI in hot-wet conditions, during moderate activity had significant difference for various clothing types (P = 0.044. Conclusion: The research findings showed that for a heat strain reduction in hot-wet conditions at light activity level, 100% CT clothing is suitable. Furthermore, at moderate activity level, 30.2% CT-69.8% PES clothing and in hot-dry conditions, 30.2% CT-69.8% PES is suitable.

  3. Physiological and lactation responses of Egyptian dairy Baladi goats to natural thermal stress under subtropical environmental conditions.

    Science.gov (United States)

    El-Tarabany, Mahmoud S; El-Tarabany, Akram A; Atta, Mostafa A

    2017-01-01

    The objective of this study was to evaluate the impact of thermal stress on milk production and physiological traits of Baladi goats under subtropical Egyptian conditions. Sixty dairy Baladi goats were exposed to three different levels of temperature-humidity index (THI), including low (less than 70), moderate (over 70 and up to 80), and high levels (over 80). The influence of THI on the milk composition and physiological, hematological, and biochemical traits was investigated. Rectal temperature and respiration rate were significantly greater at the higher THI than at low and moderate THI (p = 0.016 and 0.002, respectively). Baladi goats had decreased daily milk yield in a rate of 27.3 and 19.3 % at high THI level, compared with low and moderate THI, respectively (p = 0.031). On the contrary, no significant differences have been reported in protein, fat, and total solids percentages at different THI levels. Total leucocyte count, serum glucose, and total protein were significantly reduced at high THI in comparison with low and moderate THI levels (p = 0.043, 0.001, and 0.001, respectively). However, dairy goats maintained relatively stable estimates for erythrocytes count, hemoglobin, serum triglycerides, cholesterol, catalase, total antioxidant capacity, and triiodothyronine at different THI levels. Our results indicate that dairy Baladi goats can tolerate THI levels up to 80; however, variable reduction in milk yield and few biochemical (serum total protein and glucose) and hematological (leucocytes count) parameters have been reported at a THI level higher than 80.

  4. Employee subjective well-being and physiological functioning: An integrative model

    Directory of Open Access Journals (Sweden)

    Lauren Kuykendall

    2015-06-01

    Full Text Available Research shows that worker subjective well-being influences physiological functioning—an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.

  5. Employee subjective well-being and physiological functioning: An integrative model.

    Science.gov (United States)

    Kuykendall, Lauren; Tay, Louis

    2015-01-01

    Research shows that worker subjective well-being influences physiological functioning-an early signal of poor health outcomes. While several theoretical perspectives provide insights on this relationship, the literature lacks an integrative framework explaining the relationship. We develop a conceptual model explaining the link between subjective well-being and physiological functioning in the context of work. Integrating positive psychology and occupational stress perspectives, our model explains the relationship between subjective well-being and physiological functioning as a result of the direct influence of subjective well-being on physiological functioning and of their common relationships with work stress and personal resources, both of which are influenced by job conditions.

  6. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  7. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    Science.gov (United States)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  8. Physiological Plausibility and Boundary Conditions of Theories of Risk Sensitivity

    DEFF Research Database (Denmark)

    Marchiori, Davide; Elqayam, Shira

    2012-01-01

    dilatation, which in turn positively correlates with a risk aversion behavior. They hypothesize that participants’ attention is increased in decision problems involving losses, which trigger an innate prudent behavior in situations entailing danger and/or hazard. Interestingly, Y&T find that the nature...... of attention is not selective, i.e., when losses are present, participants are shown to devote more attention to the task as a whole rather than to the single negative outcomes, in contrast to Prospect Theory's loss aversion....... and physiological underpinnings of one of the central topics in judgment and decision-making (JDM) research – choice behavior in decisions from experience. Y&T successfully contributes to this goal by demonstrating a novel effect that losses increase experimental participants’ arousal as measured by pupil...

  9. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  10. Conceptual design of wearpack with physiology detector feature based on wearable instrumentation

    Science.gov (United States)

    Sukirman, Melani; Laksono, Pringgo Widyo; Priadythama, Ilham; Susmartini, Susy; Suhardi, Bambang

    2017-11-01

    Every company in Indonesia is responsible for their worker health and safety condition as mentioned in UU No I year 1970. In manufacturing industries, there are many manual tasks dealing with high work load and risk, so that they require excellent concentration and physical condition. There is no ideal way to guarantee worker safety without a real time physiological monitoring. This paper reports our ongoing study in conceptual design development of worker's clothing which is equipped with a wearable instrumentation system. The system is designed to detect and measure body temperature and pulse in real time. Some electrical components such as, LCD (liquid crystal display), LEDs (light emitting diode), batteries, and physiological sensors were assembled. All components are controlled by a wearable on board controller. LEDs is used as alert which can indicate abnormal physical conditions. The LCD was added to provide more detail information. TMP 36 and XD-58C were selected as the physiological sensors. Finally, an Arduino Lilypad was chosen for the controller. This instrumentation system was verified by accurately detected and inform physiological condition of 3 subjects. Further we are going to attach the system to a worker's clothing which was specifically designed to simplify and comfortable usage.

  11. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo

    2014-01-01

    ) within a dihaploid potato (Solanum tuberosum L.) mapping population under well-watered (WW) and drought-stress (DS) conditions. The factorial dependency of WUEi on several plant bio-physiological traits was analyzed, and clonal difference of WUEi was compared. Significant differences in WUEi were found......Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi...

  12. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  13. Imaging of small amounts of pleural fluid. Part two - physiologic pleural fluid

    International Nuclear Information System (INIS)

    Kocijancic, I.

    2006-01-01

    Background. There are only a few articles reporting the possibility of radiographic and sonographic detection of physiologic pleural fluid in healthy individuals. In the last decade the advent of sonographic equipments enables the detection of small amounts of physiologic pleural fluid in about 20% of healthy individuals. In certain physiologic conditions (i.e. pregnancy) the physiologic pleural fluid could be detected more frequently by chest ultrasonography. Conclusions. A positive result, if detected, should not be taken as a sign of the occult thoracic disease. (author)

  14. Megamarketing strategies for health care services.

    Science.gov (United States)

    Mobley, M F; Elkins, R L

    1990-01-01

    Megamarketing, as coined by Kotler (1968), is a strategic way of thinking which takes an enlarged view of the skills and resources needed to enter and operate in obstructed or protected markets. The concept of megamarketing emphasizes the mastering and coordination of economic, psychological, political, and public relation skills and suggest that organizations can take a proactive stance in shaping macroenvironmental conditions. As health care delivery is characterized by a highly regulated environment, this marketing approach has definite applications for the health care marketer.

  15. Gastrointestinal physiology and digestive disorders in sleep.

    Science.gov (United States)

    Kanaly, Travis; Shaheen, Nicholas J; Vaughn, Bradley V

    2009-11-01

    The dynamic interplay of the digestive system and sleep is an excellent example of brain-body interaction. New advances in measuring techniques provide an opportunity to evaluate physiology that is dependent upon the sleep/wake state or circadian rhythm and potentially differentiate between normal and pathological conditions. Sleep-related changes in gastrointestinal physiology create vulnerabilities to digestive issues such as reflux, whereas disorders such as duodenal ulcers raise the importance of circadian variations in digestive system function. Advances in the area of normal sleep physiology have furthered our understanding of the underlying cause of irritable bowel syndrome, and the mechanisms by which sleep disruption may aggravate inflammatory bowel disease. Additionally, important early work has shown that the treatment of digestive disorders such as reflux can improve sleep quality just as the improvement in sleep may aid in the treatment of digestive disorders. For the clinician, these forward steps in our knowledge mark the start of an era in which understanding the effects of the sleep/wake state and circadian rhythms on gastrointestinal physiology promise to yield novel diagnostic and therapeutic opportunities.

  16. Impact of human emotions on physiological characteristics

    Science.gov (United States)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  17. Systems physiology in dairy cattle: nutritional genomics and beyond.

    Science.gov (United States)

    Loor, Juan J; Bionaz, Massimo; Drackley, James K

    2013-01-01

    Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattle has already advanced knowledge of the simultaneous functional adaptations in liver, adipose, and mammary tissue.

  18. Corticotropin-releasing factor: effect on cerebral blood flow in physiologic and ischaemic conditions.

    Science.gov (United States)

    De Michele, Manuela; Touzani, Omar; Foster, Alan C; Fieschi, Cesare; Sette, Giuliano; McCulloch, James

    2005-09-01

    The expression of corticotrophin-releasing factor (CRF) receptors in cerebral arteries and arterioles suggests that CRF may modulate cerebral blood flow (CBF). In the present study, the effects of CRF, CRF-like peptides and the CRF broad spectrum antagonist DPhe-CRF on CBF have been investigated under normal physiologic conditions and in the margins of focal ischaemic insult. The experiments were carried out in anaesthetised and ventilated rats. Changes in CBF after subarachnoid microapplication of CRF and related peptides were assessed with a laser-Doppler flowmetry (LDF) probe. In the ischaemic animals, agents were injected approximately 60 minutes after permanent middle cerebral artery occlusion (MCAo). Microapplication of CRF and related peptides in normal rats into the subarachnoid space produced sustained concentration-dependent increases in CBF. This effect was attenuated by co-application with DPhe-CRF, which did not alter CBF itself. A second microapplication of CRF 30 min after the first failed to produce increases in CBF in normal animals. Microapplication of CRF in the subarachnoid space overlying the ischaemic cortex effected minor increases in CBF whereas D-Phe-CRF had no significant effect on CBF. Activation of the CRF peptidergic system increases CBF in the rat. Repeated activation of CRF receptors results in tachyphylaxis of the vasodilator response. CRF vasodilator response is still present after MCAo in the ischaemic penumbra, suggesting that the CRF peptidergic system may modulate CBF in ischaemic stroke.

  19. Role of environmental stress in the physiological response to chemical toxicants

    International Nuclear Information System (INIS)

    Gordon, C.J.

    2003-01-01

    Environmental physiology is the study of the physiological mechanisms that allow animals to cope with and adapt to changes in temperature, humidity, atmospheric pressure, and other natural factors of their physical environment. Nearly all toxicological and pharmacological studies are performed in resting (i.e., non exercising) experimental animals acclimatized to standard environmental conditions that are usually considered ideal to the animal's physiological well-being. These ideal test conditions are clearly not representative of the fluctuations in the natural environment encountered by humans and other animals on a day-to-day basis. It behooves the toxicologist, especially those interested in extrapolating experimental data from laboratory animals to humans, to consider how variations in the natural environment will alter physiological responses to toxicants. Temperature and exercise are the two most well-studied parameters in the fields of environmental physiology and toxicology. In general, high temperatures exacerbate the toxic effects of many environmental toxicants. Moreover, exercising subjects are generally more vulnerable to airborne toxic agents. The prospect of global warming also warrants a better assessment of how higher environmental temperatures may impact on the response of humans and other species to toxic chemicals. Hence, this paper and accompanying papers from the proceedings of a symposium focus on the salient aspects of the interaction between environmental stress and physiological response to toxic agents with particular emphasis on temperature and exercise

  20. Influence of microclimatic conditions under high tunnels on the physiological and productive responses in blueberry 'O'Neal'

    Directory of Open Access Journals (Sweden)

    Jorge Retamal-Salgado

    2015-09-01

    Full Text Available Blueberry (Vaccinium corymbosum L. production under tunnels has spread in recent years. However, there is little information on the productive and physiological responses of blueberry grown under high tunnels. The objective of this research was to evaluate the effect of high tunnel microclimate on the physiological and productive responses of blueberries. A total of 1296 plants of highbush blueberry 'O'Neal' were grown in high tunnels, leaving the same amount of plants under open fields (control. Environmental temperature (T, °C and relative humidity (RH, %, diffuse and total photosynthetically active radiation (PARdiffuse and PARtotal, /conditions under tunnels would favor higher leaf stomatal conductance in this crop.

  1. Metabolic-flux dependent regulation of microbial physiology.

    Science.gov (United States)

    Litsios, Athanasios; Ortega, Álvaro D; Wit, Ernst C; Heinemann, Matthias

    2018-04-01

    According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions

    Science.gov (United States)

    Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.

    2009-10-01

    Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.

  3. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  4. Physiological Assessment of Water Stress in Potato Using Spectral Information.

    Science.gov (United States)

    Romero, Angela P; Alarcón, Andrés; Valbuena, Raúl I; Galeano, Carlos H

    2017-01-01

    Water stress in potato ( Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H 2 Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs.

  5. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  6. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  7. BrainSignals Revisited: Simplifying a Computational Model of Cerebral Physiology.

    Directory of Open Access Journals (Sweden)

    Matthew Caldwell

    Full Text Available Multimodal monitoring of brain state is important both for the investigation of healthy cerebral physiology and to inform clinical decision making in conditions of injury and disease. Near-infrared spectroscopy is an instrument modality that allows non-invasive measurement of several physiological variables of clinical interest, notably haemoglobin oxygenation and the redox state of the metabolic enzyme cytochrome c oxidase. Interpreting such measurements requires the integration of multiple signals from different sources to try to understand the physiological states giving rise to them. We have previously published several computational models to assist with such interpretation. Like many models in the realm of Systems Biology, these are complex and dependent on many parameters that can be difficult or impossible to measure precisely. Taking one such model, BrainSignals, as a starting point, we have developed several variant models in which specific regions of complexity are substituted with much simpler linear approximations. We demonstrate that model behaviour can be maintained whilst achieving a significant reduction in complexity, provided that the linearity assumptions hold. The simplified models have been tested for applicability with simulated data and experimental data from healthy adults undergoing a hypercapnia challenge, but relevance to different physiological and pathophysiological conditions will require specific testing. In conditions where the simplified models are applicable, their greater efficiency has potential to allow their use at the bedside to help interpret clinical data in near real-time.

  8. Quantifying Physiological, Behavioral and Ecological Consequences of Hypoxic Events in Kelp Forest

    Science.gov (United States)

    Litvin, S. Y.; Beers, J. M.; Woodson, C. B.; Leary, P.; Fringer, O. B.; Goldbogen, J. A.; Micheli, F.; Monismith, S. G.; Somero, G. N.

    2016-02-01

    Rocky reef kelp forests that extend along the coast of central California, like many habitats in upwelling systems, often experience inundations of low dissolved oxygen (DO) or hypoxic waters. These events have the potential to influence the structure and function of coastal ecosystems. The ecological consequences of hypoxia for these systems will be mediated by physiological thresholds and behavioral responses of resident organisms in the context of the spatial and temporal variability of DO, and other potential stressors. Our research focuses on Sebastes (i.e. rockfish) because of their commercial, recreational and ecological importance, high abundance across near shore habitats and the potentially severe impacts of physiological stress due to hypoxia. In the lab, to investigate how hypoxic events physiologically effect rockfish, we exposed young of the year (YOY) of 5 species and two life stages of blue rockfish, S. mystinus (YOY and 1+), to DO concentrations representative of upwelling conditions and measured a suite of whole organisms and tissue level responses including metabolic rate, ventilation, tissue-level metabolism, and blood biochemistry. Results demonstrate species and life stage specific differences in physiological stress under upwelling driven hypoxic conditions and suggest YOY rockfishes may currently be living near their physiological limits. In the laboratory we further explored if physiological impacts result in behavioral consequences by examining the startle response of YOY rockfish, a relative measure of predator avoidance ability, under a range of DO concentrations and exposure durations. To further explore behavioral responses of rockfish to low in DO within the kelp forest we are using two approaches, monitoring the vertical distribution of fish communities across the water column using an acoustic imaging camera (ARIS 3000, Soundmetrics Inc.) and acoustic tagging, with 3-D positioning ability (VPS, VEMCO Inc.), of larger blue rockfish

  9. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-08-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  10. Physiological characterisation of acuB deletion in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; De Jongh, Willem Adriaan; Olsson, Lisbeth

    2009-01-01

    The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed...... that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production...... were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic...

  11. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    International Nuclear Information System (INIS)

    Hoffmann, George R.; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J.

    2007-01-01

    noncovalent association with DNA, altered BLM access to DNA, and modulation of physiological conditions

  12. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)], E-mail: ghoffmann@holycross.edu; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)

    2007-10-01

    noncovalent association with DNA, altered BLM access to DNA, and modulation of physiological conditions.

  13. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  14. Decision support for redesigning wastewater treatment technologies.

    Science.gov (United States)

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  15. Evaluation of physiological screening techniques for drought ...

    African Journals Online (AJOL)

    This paper summarizes the results of a project aimed to evaluate the use of physiological traits (such as canopy temperature and chlorophyll content) in determining drought tolerance of durum wheat genotypes under a variety of environmental conditions. Six durum wheat genotypes were planted in rainfed and ...

  16. Physiological parameters for oral delivery and in vitro testing.

    Science.gov (United States)

    Mudie, Deanna M; Amidon, Gordon L; Amidon, Gregory E

    2010-10-04

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro-in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro-in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance.

  17. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.

    Science.gov (United States)

    Suarez-Mendez, Camilo A; Sousa, Andre; Heijnen, Joseph J; Wahl, Aljoscha

    2014-05-15

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments).

  18. A physiologically based pharmacokinetic model of vitamin D

    Science.gov (United States)

    Despite the plethora of studies discussing the benefits of vitamin D on physiological functioning, few mathematical models of vitamin D predict the response of the body on low-concentration supplementation of vitamin D under sunlight-restricted conditions. This study developed a ...

  19. Singular value decomposition based feature extraction technique for physiological signal analysis.

    Science.gov (United States)

    Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C

    2012-06-01

    Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.

  20. Effect of Shading on Physiological, Biochemical and Behaviour Changes in Crossbred Calves Under Hot Climatic Conditions

    International Nuclear Information System (INIS)

    Teama, F.E.I.; Gad, A.E.; El-Tarabany, A.A.

    2012-01-01

    The purpose of this study was to investigate the importance and the effect of shading and non-shading house on physiological changes, body weight (BW), average daily gain (ADG), total antioxidant and thyroid hormones in crossbred calves under hot conditions. Thirty six growing crossbred calves (Friesian x Baladi) aged 8-10 months were divided into two groups (each 18 calves); the first group was maintained in shaded house and the second in house without shade (climatic house). The period of study was 79 days during hot conditions. Performance variables (BW, ADG) were measured and the blood samples were collected to assess some biochemical parameters including antioxidants such as total antioxidant (TA), catalase (CAT), total protein, thyroid hormones (T3, T4) and immunoglobulin factor (IgG). Respiration rates and behaviour parameters (feeding, drinking, standing, lying and agonistic) were also measured during the study. The data indicated that the shaded calves had higher ADG (P<0.05) and final BW than non-shaded ones. Also, a significant improvement in total protein levels and globulins were recorded in shaded house calves as compared to non-shaded ones. The same result was obtained for T3 level whereas non-significant changes were observed for T4 level as well as the level of IgG at different times. The present data indicated that using shaded house will decrease the effect of heat stress on calves which will increase the animal performance through improving BW and ADG as well as some biochemical parameters in addition to T3 hormonal level.

  1. [Physiology and disease of the endocrine function of the pancreas (author's transl)].

    Science.gov (United States)

    Stubbe, P

    1980-12-01

    Qualitative and quantitative immunocytochemistry, electronmicroscopy and radio-immuno-assays led to the discovery of 5 pancreatic polypeptide hormones under physiological conditions. The active endocrine cells and the produced hormones are termed A, B, D, D1, and PP cell and glucagon, insulin, somatostatin, vasoactive intestinal polypeptide (VIP) and pancreatic polypeptide (PP) respectively. Beside the physiology of secretion and action a survey of pathological conditions in the paediatric age group is given. Insulin is the most important of pancreatic hormones in childhood. Therefore diagnosis and treatment of hyperinsulinism are described in extension.

  2. Adropin – physiological and pathophysiological role

    Directory of Open Access Journals (Sweden)

    Natalia Marczuk

    2016-09-01

    Full Text Available Adropin is a peptide hormone that was discovered in 2008 by Kumar et al. This protein consists of 76 amino acids, and it was originally described as a secreted peptide, with residues 1-33 encoding a secretory signal peptide sequence. The amino acid sequence of this protein in humans, mice and rats is identical. While our knowledge of the exact physiological roles of this poorly understood peptide continues to evolve, recent data suggest a role in energy homeostasis and the control of glucose and fatty acid metabolism. This protein is encoded by the Enho gene, which is expressed primarily in the liver and the central nervous system. The regulation of adropin secretion is controversial. Adropin immunoreactivity has been reported by several laboratories in the circulation of humans, non-human primates and rodents. However, more recently it has been suggested that adropin is a membrane-bound protein that modulates cell-cell communication. Moreover, adropin has been detected in various tissues and body fluids, such as brain, cerebellum, liver, kidney, heart, pancreas, small intestine, endothelial cells, colostrum, cheese whey and milk. The protein level, as shown by previous research, changes in various physiological and pathophysiological conditions. Adropin is involved in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. The knowledge of this interesting protein, its exact role and mechanism of action is insufficient. This article provides an overview of the existing literature about the role of adropin, both in physiological and pathophysiological conditions.

  3. Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning.

    Science.gov (United States)

    Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M

    2017-06-01

    We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Misophonia: physiological investigations and case descriptions

    Directory of Open Access Journals (Sweden)

    Miren eEdelstein

    2013-06-01

    Full Text Available Misophonia is a relatively unexplored chronic condition in which a person experiences autonomic arousal (analogous to an involuntary fight-or-flight response to certain innocuous or repetitive sounds such as chewing, pen clicking and lip smacking. Misophonics report anxiety, panic and rage when exposed to trigger sounds, compromising their ability to complete everyday tasks and engage in healthy and normal social interactions. Across two experiments, we measured behavioral and physiological characteristics of the condition. Interviews (Experiment 1 with misophonics showed that the most problematic sounds are generally related to other people's behavior (pen clicking, chewing sounds. Misophonics are however not bothered when they produce these trigger sounds themselves, and some report mimicry as a coping strategy. Next, (Experiment 2 we tested the hypothesis that misophonics’ subjective experiences evoke an anomalous physiological response to certain auditory stimuli. Misophonic individuals showed heightened ratings and skin conductance responses to auditory, but not visual stimuli, relative to a group of typically developed controls, supporting this general viewpoint and indicating that misophonia is a disorder that produces distinct autonomic effects not seen in typically developed individuals.

  5. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Sruti Shiva

    2013-01-01

    Full Text Available Nitrite, long considered a biologically inert metabolite of nitric oxide (NO oxidation, is now accepted as a physiological storage pool of NO that can be reduced to bioactive NO in hypoxic conditions to mediate a spectrum of physiological responses in blood and tissue. This graphical review will provide a broad overview of the role of nitrite in physiology, focusing on its formation and reduction to NO as well as its regulation of the mitochondrion—an emerging subcellular target for its biological actions in tissues.

  6. Bioactive lipids in kidney physiology and pathophysiology

    Directory of Open Access Journals (Sweden)

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  7. Physiological and biochemical relationship under drought stress in ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... Some statistical procedures like correlation, stepwise regression, factor analysis and cluster analysis were used to study the relationship between wheat grain yield and some physiological parameters under drought conditions. Results reveal that the ratio fv/fm of chlorophyll fluorescence is the most.

  8. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica.

    Science.gov (United States)

    Wahl, O; Ulm, K

    1983-08-01

    In two consecutive years heavy bee mortality at end April/early May followed the use of pesticides classed as harmless for bees along road verges. It was thought that old weak winter bees had succumbed to a preparation otherwise innocuous. Extensive tests to reveal any links between the bees' physiological condition and pesticide sensitivity involved 6 hormone herbicides, 11 fungicides and 2 insecticides, all approved harmless for bees and functioning on them wholly or mainly as stomach poisons. As a rule bee sensitivity was measured as LD 50 per os, in smaller tests as percentage mortality. Amount and quality of pollen ingested in the first days of life affected the pesticide sensitivity of young and older bees. Bees fed adequate high quality pollen are less sensitive than counterparts fed inadequate or inferior pollen or pollen substitute; such differences persisted if the LD 50 was calculated for the same body weight. Pesticides containing manganese are an exception. To these, bees fed inadequate pollen are no more or even less sensitive than comparable well-fed bees. Pesticide sensitivity decreases generally from early to late summer. Quality of pollen available for larvae has no effect on poison sensitivity of imagines. Food supply conditions however exert a clear influence: tested with the same pesticides, hive bees from colonies having had a rich early food supply, and young bees bred then, are less sensitive than their counterparts having had moderate or no early food supply. Poison sensitivity of summer bees increases with age; most sensitive are old winter bees which had practiced broodcare in early spring.Inadequate pollen intake can be regarded as causing protein deficiency. Investigation of this in mammals and man indicate that the higher poison sensitivity in bees results from inhibition of the enzymatic decomposition of pesticides. For practical bee protection it is important that all organic fungicides tested are effectively harmless. Hormone

  9. Anatomy and physiology of genital organs - women.

    Science.gov (United States)

    Graziottin, Alessandra; Gambini, Dania

    2015-01-01

    "Anatomy is destiny": Sigmund Freud viewed human anatomy as a necessary, although not a sufficient, condition for understanding the complexity of human sexual function with a solid biologic basis. The aim of the chapter is to describe women's genital anatomy and physiology, focusing on women's sexual function with a clinically oriented vision. Key points include: embryology, stressing that the "female" is the anatomic "default" program, differentiated into "male" only in the presence of androgens at physiologic levels for the gestational age; sex determination and sex differentiation, describing the interplay between anatomic and endocrine factors; the "clitoral-urethral-vaginal" complex, the most recent anatomy reading of the corpora cavernosa pattern in women; the controversial G spot; the role of the pelvic floor muscles in modulating vaginal receptivity and intercourse feelings, with hyperactivity leading to introital dyspareunia and contributing to provoked vestibulodynia and recurrent postcoital cystitis, whilst lesions during delivery reduce vaginal sensations, genital arousability, and orgasm; innervation, vessels, bones, ligaments; and the physiology of women's sexual response. Attention to physiologic aging focuses on "low-grade inflammation," genital and systemic, with its impact on women sexual function, especially after the menopause, if the woman does not or cannot use hormone replacement therapy. © 2015 Elsevier B.V. All rights reserved.

  10. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  11. Physiological and biochemical relationship under drought stress in ...

    African Journals Online (AJOL)

    Some statistical procedures like correlation, stepwise regression, factor analysis and cluster analysis were used to study the relationship between wheat grain yield and some physiological parameters under drought conditions. Results reveal that the ratio fv/fm of chlorophyll fluorescence is the most effective parameter to ...

  12. Radioanatomy and physiology of liver and biliary tract

    International Nuclear Information System (INIS)

    Antochanu, V.A.

    1988-01-01

    Peculiarities of the structure and functioning of liver and biliary tract are considered. Comparison with anatomy and physiology of these healthy organs is carried out. The know ledge of radioanatomy of the given organs is shown to be the necessary condition of right interpretation of roentgenological data

  13. The influence of low frequency magnetic field upon cultivable plant physiology

    International Nuclear Information System (INIS)

    Rochalska, M.

    2008-01-01

    The 16 Hz frequency and 5 mT magnetic flux density as well as alternating magnetic field influence the field germination physiological yield-forming features and the yield of sugar have been investigated. The profitable influence of the investigated factor at physiological yield-forming features, causing an increase in sugar beet root and leaf yield, was shown. The beneficial influence on the yield is especially clear in unfavourable weather conditions. (author)

  14. Assessing interactions among multiple physiological systems during walking outside a laboratory: An Android based gait monitor

    Science.gov (United States)

    Sejdić, E.; Millecamps, A.; Teoli, J.; Rothfuss, M. A.; Franconi, N. G.; Perera, S.; Jones, A. K.; Brach, J. S.; Mickle, M. H.

    2015-01-01

    Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal distractions. In patients with subclinical physiological abnormalities, these conditions may not provide enough stress on their ability to adapt to walking. The introduction of challenging walking conditions in gait can induce responses in physiological systems in addition to the locomotor system. There is a need for a device that is capable of monitoring multiple physiological systems in various walking conditions. To address this need, an Android-based gait-monitoring device was developed that enabled the recording of a patient's physiological systems during walking. The gait-monitoring device was tested during self-regulated overground walking sessions of fifteen healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and respiratory rate. The data is stored on an Android phone and is analyzed offline through the extraction of features in the time, frequency and time-frequency domains. The analysis of the data depicted multisystem physiological interactions during overground walking in healthy subjects. These interactions included locomotion-electrodermal, locomotion-respiratory and cardiolocomotion couplings. The current results depicting strong interactions between the locomotion system and the other considered systems (i.e., electrodermal, respiratory and cardivascular systems) warrant further investigation into multisystem interactions during walking, particularly in challenging walking conditions with older adults. PMID:26390946

  15. Effect of oxygen levels on the physiology of dendritic cells: implications for adoptive cell therapy.

    Science.gov (United States)

    Futalan, Diahnn; Huang, Chien-Tze; Schmidt-Wolf, Ingo G H; Larsson, Marie; Messmer, Davorka

    2011-01-01

    Dendritic cell (DC)-based adoptive tumor immunotherapy approaches have shown promising results, but the incidence of tumor regression is low and there is an evident call for identifying culture conditions that produce DCs with a more potent Th1 potential. Routinely, DCs are differentiated in CO(2) incubators under atmospheric oxygen conditions (21% O(2)), which differ from physiological oxygen levels of only 3-5% in tissue, where most DCs reside. We investigated whether differentiation and maturation of DCs under physiological oxygen levels could produce more potent T-cell stimulatory DCs for use in adoptive immunotherapy. We found that immature DCs differentiated under physiological oxygen levels showed a small but significant reduction in their endocytic capacity. The different oxygen levels did not influence their stimuli-induced upregulation of cluster of differentiation 54 (CD54), CD40, CD83, CD86, C-C chemokine receptor type 7 (CCR7), C-X-C chemokine receptor type 4 (CXCR4) and human leukocyte antigen (HLA)-DR or the secretion of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in response to lipopolysaccharide (LPS) or a cytokine cocktail. However, DCs differentiated under physiological oxygen level secreted higher levels of IL-12(p70) after exposure to LPS or CD40 ligand. Immature DCs differentiated at physiological oxygen levels caused increased T-cell proliferation, but no differences were observed for mature DCs with regard to T-cell activation. In conclusion, we show that although DCs generated under atmospheric or physiological oxygen conditions are mostly similar in function and phenotype, DCs differentiated under physiological oxygen secrete larger amounts of IL-12(p70). This result could have implications for the use of ex vivo-generated DCs for clinical studies, since DCs differentiated at physiological oxygen could induce increased Th1 responses in vivo.

  16. Effect of Elevated CO2 in Different Fertilizer Conditions on Physiological Traits in Lemon Balm (Melissa officinalis at Greenhouse

    Directory of Open Access Journals (Sweden)

    M Shoor

    2012-07-01

    Full Text Available Increasing atmospheric CO2 concentrations and nutrients supply are generally expected to enhance photosynthesis and growth of crops as a result considerably increase yields. The present study aims to investigate effects of elevated CO2 and different fertilizer conditions on physiological traits in Lemon balm. A factorial experiment was conducted based on completely randomized design with three replications and nine treatments at the greenhouse in 2010. The experiment factors were included three CO2 concentrations (380, 700 and 1050 ppm and three kinds of conditions fertilizer (no fertilizer, manure fertilizer and nitrogen fertilizer. The results indicated that increasing of CO2 from 380 to 1050 ppm led to improve in leaf area, plant height, relative growth ratio, total dry matter and final yield of individual plant. The highest and the lowest amount of measured traits related to with and without nitrogen fertilizer, respectively. Impact of elevated CO2 in conjunction with nitrogen and manure fertilizers increased. These effects were more on total dry matter and final yield than other growth indices. Therefore, it can be concluded that, whereas increase of temperature caused by rising CO2 is not considered or there is not any limitation for resources, CO2 enrichment will be improved lemon balm production.

  17. Conservation physiology of marine fishes: state of the art and prospects for policy

    DEFF Research Database (Denmark)

    McKenzie, David J.; Axelsson, Michael; Chabot, Denis

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes...... broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however......, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change...

  18. Oxidative Stress in Early Life: Associations with Sex, Rearing Conditions, and Parental Physiological Traits in Nestling Pied Flycatchers.

    Science.gov (United States)

    López-Arrabé, Jimena; Cantarero, Alejandro; Pérez-Rodríguez, Lorenzo; Palma, Antonio; Moreno, Juan

    2016-01-01

    Conditions experienced during juvenile development can affect the fitness of an organism. During early life, oxidative stress levels can be particularly high as a result of the increased metabolism and the relatively immature antioxidant system of the individual, and this may have medium- and long-term fitness consequences. Here we explore variation in levels of oxidative stress measured during early life in relation to sex, rearing conditions (hatching date and brood size), and parental condition and levels of oxidative markers in a wild population of the pied flycatcher (Ficedula hypoleuca) followed for 2 yr. A marker of total antioxidant status (TAS) in plasma and total levels of glutathione (GSH) in red blood cells, as well as a marker of oxidative damage in plasma lipids (malondialdehyde [MDA]), were assessed simultaneously. Our results show that nestling total GSH levels were associated with parental oxidative status, correlating negatively with maternal MDA and positively with total GSH levels of both parents, with a high estimated heritability. This suggests that parental physiology and genes could be determinants for endogenous components of the antioxidant system of the offspring. Moreover, we found that total GSH levels were higher in female than in male nestlings and that hatching date was positively associated with antioxidant defenses (higher TAS and total GSH levels). These results suggest that different components of oxidative balance are related to a variety of environmental and intrinsic--including parental--influencing factors. Future experimental studies must disentangle the relative contribution of each of these on nestling oxidative status and how the resulting oxidative stress at early phases shape adult phenotype and fitness.

  19. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae

    Science.gov (United States)

    Suarez-Mendez, Camilo A.; Sousa, Andre; Heijnen, Joseph J.; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism’s physiology under dynamic conditions. We found that the biomass yield was slightly reduced (−5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  20. Physiological and psychological assessment of sound

    Science.gov (United States)

    Yanagihashi, R.; Ohira, Masayoshi; Kimura, Teiji; Fujiwara, Takayuki

    The psycho-physiological effects of several sound stimulations were investigated to evaluate the relationship between a psychological parameter, such as subjective perception, and a physiological parameter, such as the heart rate variability (HRV). Eight female students aged 21-22 years old were tested. Electrocardiogram (ECG) and the movement of the chest-wall for estimating respiratory rate were recorded during three different sound stimulations; (1) music provided by a synthesizer (condition A); (2) birds twitters (condition B); and (3) mechanical sounds (condition C). The percentage power of the low-frequency (LF; 0.05<=0.15 Hz) and high-frequency (HF; 0.15<=0.40 Hz) components in the HRV (LF%, HF%) were assessed by a frequency analysis of time-series data for 5 min obtained from R-R intervals in the ECG. Quantitative assessment of subjective perception was also described by a visual analog scale (VAS). The HF% and VAS value for comfort in C were significantly lower than in either A and/or B. The respiratory rate and VAS value for awakening in C were significantly higher than in A and/or B. There was a significant correlation between the HF% and the value of the VAS, and between the respiratory rate and the value of the VAS. These results indicate that mechanical sounds similar to C inhibit the para-sympathetic nervous system and promote a feeling that is unpleasant but alert, also suggesting that the HRV reflects subjective perception.

  1. Physiological characteristics of bacteria isolated from water brines within permafrost

    Science.gov (United States)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  2. Intra-articular sodium hyaluronate 2 mL versus physiological saline 20 mL versus physiological saline 2 mL for painful knee osteoarthritis: a randomized clinical trial

    DEFF Research Database (Denmark)

    Lundsgaard, C.; Dufour, N.; Fallentin, E.

    2008-01-01

    , Knee Injury and Osteoarthritis Outcome Score (KOOS), Osteoarthritis Research Society International (OARSI) criteria, and global assessment of the patient's condition. Results: The mean age of the patients was 69.4 years; 55% were women. The effects of hyaluronate 2 mL, physiological saline 20 m......Objective: Methodological constraints weaken previous evidence on intra-articular viscosupplementation and physiological saline distention for osteoarthritis. We conducted a randomized, patient- and observer-blind trial to evaluate these interventions in patients with painful knee osteoarthritis....... Methods: We centrally randomized 251 patients with knee ostcoarthritis to four weekly intra-articular injections of sodium hyaluronate 2 mL (Hyalgan(R) 10.3 mg/mL) versus physiological saline 20 mL (distention) versus physiological saline 2 mL (placebo) and followed patients for 26 weeks. Inclusion...

  3. Chemostat Culture for Yeast Physiology.

    Science.gov (United States)

    Kerr, Emily O; Dunham, Maitreya J

    2017-07-05

    The use of chemostat culture facilitates the careful comparison of different yeast strains growing in well-defined conditions. Variations in physiology can be measured by examining gene expression, metabolite levels, protein content, and cell morphology. In this protocol, we show how a combination of sample types can be collected during harvest from a single 20-mL chemostat in a ministat array, with special attention to coordinating the handling of the most time-sensitive sample types. © 2017 Cold Spring Harbor Laboratory Press.

  4. Physiological and haematological indices of two Nigerian goat ...

    African Journals Online (AJOL)

    Introducing an indigenous or exotic breed to unfamiliar environment paves way for livestock improvement. This study examined the physiological and haematological indices of 24Red Sokoto (RS) and West African Dwarf (WAD) goats reared under uniform condition in Ilorin, to determine adaptability of RS goats over a ...

  5. Physiological responses of Vallisneria spiraslis L. induced by ...

    African Journals Online (AJOL)

    A two-flume experiment with submerged plant Vallisneria spiraslis L. was conducted to investigate the effects of different hydraulic conditions on physiological responses when exposed to water polluted with copper (Cu) and nitrogen (N). Plants were divided into two groups and grown for 120 h in hydrodynamic and ...

  6. Understanding the physiology of Lactobacillus plantarum at zero growth

    NARCIS (Netherlands)

    Goffin, P.; van de Bunt, B.; Giovane, M.; Leveau, J.H.J.; Höppener-Ogawa, S.; Teusink, B.; Hugenholtz, J.

    2010-01-01

    Situations of extremely low substrate availability, resulting in slow growth, are common in natural environments. To mimic these conditions, Lactobacillus plantarum was grown in a carbon-limited retentostat with complete biomass retention. The physiology of extremely slow-growing L. plantarum—as

  7. PHYSIOLOGICAL MATURATION IN SEEDS OF SWEET SOGHUM FOR FOLIAR FERTILISATION WITH SILICATE

    Directory of Open Access Journals (Sweden)

    BRUNO FRANÇA DA TRINDADE LESSA

    2017-01-01

    Full Text Available The aim of this study was to evaluate physiological quality in seeds of sweet sorghum grown under semi-arid conditions, and to determine the age of physiological maturity of the seeds as a function of the foliar application of potassium silicate. The experiment was carried out at the Curu Valley Experimental Farm, in Pentecoste in the state of Ceará, during the rainy seasons of 2014 and 2015. The BRS 506 and BRS 511 varieties were used, under foliar fertilisation with potassium silicate at doses of 500, 1000 and 1500 mL.ha -1, in addition to the control lots (with no application; harvesting was at four periods, 30, 37, 44 and 51 days after full bloom (DAB. The percentage and speed of germination were evaluated, together with the accelerated ageing test and seedling growth. The seeds presented greater than 90% germination from 37 DAB, reaching high seedling vigour at 51 DAB. Foliar fertilisation with potassium silicate under the conditions of the experiment resulted in an increase in the physiological quality of the seeds. The BRS 506 and BRS 511 cultivars displayed the highest physiological quality between 49 and 53 DAF.

  8. Impact of Different Personal Protective Clothing on Wildland Firefighters' Physiological Strain

    OpenAIRE

    Carballo-Leyenda, Belén; Villa, José G.; López-Satué, Jorge; Rodríguez-Marroyo, Jose A.

    2017-01-01

    Wildfire firefighting is an extremely demanding occupation performed under hot environment. The use of personal protective clothing (PPC) is needed to protect subjects from the thermal exposure. However, the additional use of PPC may increase the wildland firefighters' physiological strain, and consequently limit their performance. The aim of this study was to analyze the effect of four different PPC on the physiological strain of wildland firefighters under moderate conditions (30?C and 30% ...

  9. Influence of Urbanization on Body Size, Condition, and Physiology in an Urban Exploiter: A Multi-Component Approach.

    Directory of Open Access Journals (Sweden)

    Alizée Meillère

    Full Text Available Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability. In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus. We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows' nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds.

  10. Influence of Urbanization on Body Size, Condition, and Physiology in an Urban Exploiter: A Multi-Component Approach.

    Science.gov (United States)

    Meillère, Alizée; Brischoux, François; Parenteau, Charline; Angelier, Frédéric

    2015-01-01

    Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability). In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus). We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging) and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels) between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows' nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds.

  11. Anorectal physiology measurements are of no value in clinical practice. True or false?

    Science.gov (United States)

    Carty, N. J.; Moran, B.; Johnson, C. D.

    1994-01-01

    This article examines whether there is any clinical value in anorectal physiology measurements. The function of the human rectum is poorly understood and the factors which affect function of the anal sphincters are complex. Several laboratories have reported results of anorectal physiology measurements, but there is extensive variation between normal values in different laboratories. It is argued that anorectal physiology measurements fail to meet the criteria of a useful clinical test: 1. It is not widely available to clinicians; 2. It is not possible to establish a reproducible normal range; 3. Abnormal measurements do not correlate with disease entities or explain symptoms; 4. The results are often unhelpful in diagnosis and management; 5. Clinical outcome after intervention does not correlate with alteration in the measurements obtained. On the other hand it can be argued that anorectal physiology measurements do provide information that assists in the management of conditions such as constipation, anismus, Hirschsprung's disease, faecal incontinence and tenesmus. Management based on biofeedback modification of physiological responses requires these techniques as part of the biofeedback system. There is evidence that this may be appropriate in anismus and solitary rectal ulcer syndrome. However, the assessment of these difficult conditions and the interpretation of the results are probably at present best confined to specialist units. PMID:8074392

  12. Physiological blunting during pregnancy extends to induced relaxation.

    Science.gov (United States)

    DiPietro, Janet A; Mendelson, Tamar; Williams, Erica L; Costigan, Kathleen A

    2012-01-01

    There is accumulating evidence that pregnancy is accompanied by hyporesponsivity to physical, cognitive, and psychological challenges. This study evaluates whether observed autonomic blunting extends to conditions designed to decrease arousal. Physiological and psychological responsivity to an 18-min guided imagery relaxation protocol in healthy pregnant women during the 32nd week of gestation (n=54) and non-pregnant women (n=28) was measured. Data collection included heart period (HP), respiratory sinus arrhythmia (RSA), tonic and phasic measures of skin conductance (SCL and NS-SCR), respiratory period (RP), and self-reported psychological relaxation. As expected, responses to the manipulation included increased HP, RSA, and RP and decreased SCL and NS-SCR, followed by post-manipulation recovery. However, responsivity was attenuated for all physiological measures except RP in pregnant women, despite no difference in self-reported psychological relaxation. Findings support non-specific blunting of physiological responsivity during pregnancy. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Integrative Evaluation of Automated Massage Combined with Thermotherapy: Physical, Physiological, and Psychological Viewpoints

    Directory of Open Access Journals (Sweden)

    Do-Won Kim

    2016-01-01

    Full Text Available Various types of massages are reported to relieve stress, pain, and anxiety which are beneficial for rehabilitation; however, more comprehensive studies are needed to understand the mechanism of massage therapy. In this study, we investigated the effect of massage therapy, alone or in combination with infrared heating, on 3 different aspects: physical, physiological, and psychological. Twenty-eight healthy university students were subjected to 3 different treatment conditions on separate days, one condition per day: control, massage only, or massage with infrared heating. Physical (trunk extension [TE]; maximum power of erector spinae, physiological (heart-rate variability [HRV]; electroencephalogram [EEG], and psychological (state-trait anxiety inventory [STAI]; visual analogue scale [VAS] measurements were evaluated and recorded before and after each treatment condition. The results showed that massage therapy, especially when combined with infrared heating, significantly improved physical functioning, increased parasympathetic response, and decreased psychological stress and anxiety. In the current study, we observed that massage therapy contributes to various physical, physiological, and psychological changes, where the effect increases with thermotherapy.

  14. Integrative Evaluation of Automated Massage Combined with Thermotherapy: Physical, Physiological, and Psychological Viewpoints.

    Science.gov (United States)

    Kim, Do-Won; Lee, Dae Woon; Schreiber, Joergen; Im, Chang-Hwan; Kim, Hansung

    2016-01-01

    Various types of massages are reported to relieve stress, pain, and anxiety which are beneficial for rehabilitation; however, more comprehensive studies are needed to understand the mechanism of massage therapy. In this study, we investigated the effect of massage therapy, alone or in combination with infrared heating, on 3 different aspects: physical, physiological, and psychological. Twenty-eight healthy university students were subjected to 3 different treatment conditions on separate days, one condition per day: control, massage only, or massage with infrared heating. Physical (trunk extension [TE]; maximum power of erector spinae), physiological (heart-rate variability [HRV]; electroencephalogram [EEG]), and psychological (state-trait anxiety inventory [STAI]; visual analogue scale [VAS]) measurements were evaluated and recorded before and after each treatment condition. The results showed that massage therapy, especially when combined with infrared heating, significantly improved physical functioning, increased parasympathetic response, and decreased psychological stress and anxiety. In the current study, we observed that massage therapy contributes to various physical, physiological, and psychological changes, where the effect increases with thermotherapy.

  15. Aberdeen polygons: computer displays of physiological profiles for intensive care.

    Science.gov (United States)

    Green, C A; Logie, R H; Gilhooly, K J; Ross, D G; Ronald, A

    1996-03-01

    The clinician in an intensive therapy unit is presented regularly with a range of information about the current physiological state of the patients under care. This information typically comes from a variety of sources and in a variety of formats. A more integrated form of display incorporating several physiological parameters may be helpful therefore. Three experiments are reported that explored the potential use of analogue, polygon diagrams to display physiological data from patients undergoing intensive therapy. Experiment 1 demonstrated that information can be extracted readily from such diagrams comprising 8- or 10-sided polygons, but with an advantage for simpler polygons and for information displayed at the top of the diagram. Experiment 2 showed that colour coding removed these biases for simpler polygons and the top of the diagram, together with speeding the processing time. Experiment 3 used polygons displaying patterns of physiological data that were consistent with typical conditions observed in the intensive care unit. It was found that physicians can readily learn to recognize these patterns and to diagnose both the nature and severity of the patient's physiological state. These polygon diagrams appear to have some considerable potential for use in providing on-line summary information of a patient's physiological state.

  16. Study on human physiological parameters for monitoring of mental works in the nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Ishii, Keiichiro; Nakasa, Hiroyasu; Shigeta, Sadayoshi.

    1982-01-01

    To prevent outbreaks of the wrong operation and judgement in the nuclear power plant, human conditions of body and mind should be taken into consideration particularly for the mental works such as inspection and monitoring. To estimate human conditions quantitatively by the measurement of human physiological parameters, this paper presents the following experimental results. (1) Physiological parameters are estimated from both sides of biological meanings and the applicability to field works. (2) Time variation of the parameters is investigated in mental simulation tests in order to select a good indicator of mental fatigue. (3) Correlation analysis between mental fatigue indexes and physiological parameters shows that the heart rate is a best indicator. (author)

  17. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    Science.gov (United States)

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. © The Author(s) 2013.

  18. Interpretation of physiological indicators of motivation: Caveats and recommendations.

    Science.gov (United States)

    Richter, Michael; Slade, Kate

    2017-09-01

    Motivation scientists employing physiological measures to gather information about motivation-related states are at risk of committing two fundamental errors: overstating the inferences that can be drawn from their physiological measures and circular reasoning. We critically discuss two complementary approaches, Cacioppo and colleagues' model of psychophysiological relations and construct validation theory, to highlight the conditions under which these errors are committed and provide guidance on how to avoid them. In particular, we demonstrate that the direct inference from changes in a physiological measure to changes in a motivation-related state requires the demonstration that the measure is not related to other relevant psychological states. We also point out that circular reasoning can be avoided by separating the definition of the motivation-related state from the hypotheses that are empirically tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The effect of the organizational socialization on organizational commitment and turnover intention with regard to moderate effect of career aspirations intention

    Directory of Open Access Journals (Sweden)

    Hossein Vazifehdust

    2014-02-01

    Full Text Available This paper discusses the influence of the Organizational socialization, on Organizational commitment and turnover intention with regard to moderate effect of career aspirations intention. Data were collected via a questionnaire from employees of east branches of social security organization of Tehran. Path analysis of data from 155 respondents was used to test 5 hypotheses. The results show organizational socialization has positive effect on organizational commitment, but negative effect on turnover intention moreover organizational commitment and career aspiration intention have positive effect on turnover intention. Further research should examine the different dimensions of macro-environmental condition on turnover intention.

  20. Physiology of bile secretion.

    Science.gov (United States)

    Esteller, Alejandro

    2008-10-07

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bile-duct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  1. Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods

    International Nuclear Information System (INIS)

    Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.

    2010-01-01

    The mechanism of interaction of an antidepressant, fluoxetine hydrochloride (FLX) with bovine serum albumin (BSA) has been studied by different spectroscopic techniques under physiological conditions. FLX was found to quench the intrinsic fluorescence of protein by static quenching mechanism. The binding constant 'K' was found to be 7.06x10 3 M -1 at 296 K. The value of 'n' close to unity revealed that the BSA has a single class of binding site for FLX. Based on thermodynamic parameters, hydrogen bonding and van der Waals forces were proposed to operate between BSA and FLX. The change in conformation of protein was noticed upon its interaction with the drug. From displacement studies it was concluded that the FLX bound to protein at site I. The effects of various common metals ions on the binding were also investigated.

  2. Physiological correlates of psychopathy, antisocial personality disorder, habitual aggression, and violence.

    Science.gov (United States)

    Patrick, Christopher J

    2014-01-01

    This chapter reviews the existing literature on physiological correlates of psychopathy, antisocial personality disorder, and persistent violence/aggression. Coverage is provided of findings from studies utilizing peripheral, electrocortical, and neuroimaging measures. The review begins with a discussion of how psychopathy and antisocial personality are defined, and how these conditions relate to one another and to violent behavior. A case is made that the relationships psychopathy and ASPD show with violent and aggressive behavior, and similarities and differences in associations of each with physiological measures of various types can be understood in terms of symptomatic features these conditions have in common versus features that distinguish them. Following this, an overview is provided of major lines of evidence emerging from psychophysiological and neuroimaging studies conducted to date on these conditions. The final section of the chapter summarizes what has been learned from these existing studies and discusses implications and directions for future research.

  3. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  4. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    Science.gov (United States)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  5. Mechanistic species distribution modelling as a link between physiology and conservation.

    Science.gov (United States)

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and

  6. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  7. The Power of an Infant's Smile: Maternal Physiological Responses to Infant Emotional Expressions.

    Directory of Open Access Journals (Sweden)

    Sanae Mizugaki

    Full Text Available Infant emotional expressions, such as distress cries, evoke maternal physiological reactions. Most of which involve accelerated sympathetic nervous activity. Comparatively little is known about effects of positive infant expressions, such as happy smiles, on maternal physiological responses. This study investigated how physiological and psychological maternal states change in response to infants' emotional expressions. Thirty first-time mothers viewed films of their own 6- to 7-month-old infants' affective behavior. Each observed a video of a distress cry followed by a video showing one of two expressions (randomly assigned: a happy smiling face (smile condition or a calm neutral face (neutral condition. Both before and after the session, participants completed a self-report inventory assessing their emotional states. The results of the self-report inventory revealed no effects of exposure to the infant videos. However, the mothers in the smile condition, but not in the neutral condition, showed deceleration of skin conductance. These findings demonstrate that the mothers who observed their infants smiling showed decreased sympathetic activity. We propose that an infant's positive emotional expression may affect the branch of the maternal stress-response system that modulates the homeostatic balance of the sympathetic and parasympathetic nervous systems.

  8. Physiological Factors Contributing to Postflight Changes in Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R

  9. Strategic Analysis and Plan for Implementing Telemedicine at Fort Greely

    Science.gov (United States)

    2003-03-01

    system. Situational Analysis: The Environment ( Macroenvironment ) Alaska now reimburses via Medicaid for teleconsults (S. Ferguson, Personal...referral types allows for steep pricing of services c. Macroenvironmental factors. 1) Fairbanks Memorial Hospital and Interior Alaska Region is

  10. Coral physiology and microbiome dynamics under combined warming and ocean acidification.

    Directory of Open Access Journals (Sweden)

    Andréa G Grottoli

    Full Text Available Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm and treatment (29.0°C and pCO2 of 750 μatm conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a. Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically

  11. Coral physiology and microbiome dynamics under combined warming and ocean acidification.

    Science.gov (United States)

    Grottoli, Andréa G; Dalcin Martins, Paula; Wilkins, Michael J; Johnston, Michael D; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with

  12. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation

    DEFF Research Database (Denmark)

    Mcintyre, Mhairi; Breum, J.; Arnau, J.

    2002-01-01

    Mucor circinelloides is being investigated as a possible host for the production of heterologous proteins. Thus, the environmental conditions defining the physiology and morphology of this dimorphic fungus have been investigated in submerged batch cultivation. The optimal conditions for growth...

  13. Human physiological models of insomnia.

    Science.gov (United States)

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  14. Growth and physiological aspects of bell pepper ( Capsicum annuum )

    African Journals Online (AJOL)

    This study aimed to evaluate growth and physiological aspects of 'All Big' bell pepper, under saline stress and exogenous application of proline on the leaves. The research was conducted in pots adapted as drainage lysimeters under greenhouse conditions, using sandy-loam eutrophic Regolithic Neosol, in the ...

  15. water deficit effects on morpho-physiologicals parameters in durum ...

    African Journals Online (AJOL)

    S. Chahbar

    1 sept. 2016 ... ABSTRACT. Various morpho-physiological characters r rate water loss, stomatal density, stomata genotypes under two hydrous conditions strategies develops by each genotype have present an appreciable variability intrasp related to the adaptation to the water defici for relative water content who is ...

  16. Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Katrahalli, Umesha [Department of Chemistry, Karnatak University, Dharwad 580 003 (India); Jaldappagari, Seetharamappa, E-mail: j_seetharam@rediffmail.co [Department of Chemistry, Karnatak University, Dharwad 580 003 (India); Kalanur, Shankara S. [Department of Chemistry, Karnatak University, Dharwad 580 003 (India)

    2010-02-15

    The mechanism of interaction of an antidepressant, fluoxetine hydrochloride (FLX) with bovine serum albumin (BSA) has been studied by different spectroscopic techniques under physiological conditions. FLX was found to quench the intrinsic fluorescence of protein by static quenching mechanism. The binding constant 'K' was found to be 7.06x10{sup 3} M{sup -1} at 296 K. The value of 'n' close to unity revealed that the BSA has a single class of binding site for FLX. Based on thermodynamic parameters, hydrogen bonding and van der Waals forces were proposed to operate between BSA and FLX. The change in conformation of protein was noticed upon its interaction with the drug. From displacement studies it was concluded that the FLX bound to protein at site I. The effects of various common metals ions on the binding were also investigated.

  17. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows.

    Science.gov (United States)

    Krause, Jesse S; Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C

    2017-08-01

    For wild free-living animals the availability of food resources can be greatly affected by environmental perturbations such as weather events. In response to environmental perturbations, animals activate the hypothalamic-pituitary-adrenal (HPA) axis to adjust physiology and behavior. The literature asserts that during weather events food intake declines leading to changes in HPA axis activity, as measured by both baseline and stress-induced glucocorticoid concentrations. Here we investigated how body condition, locomotor activity, and stress physiology were affected by varying lengths of a fast (1, 2, 6, and 24h; similar to that experienced by free-living birds) compared to when food was provided ad libitum in captive wintering male white-crowned sparrows, Zonotrichia leucophrys gambelii, exposed to a short day photoperiod. Baseline corticosterone concentrations were increased for all fasting durations but were highest in 6 and 24h fasted birds. Stress-induced corticosterone was elevated in 1h fasted birds with a trend for the 2h of fast; no other differences were found. Baseline corticosterone concentrations were negatively related to both total fat scores and body mass. All birds lost body mass regardless of fast length but birds fasted for 24h lost the most. Fat scores declined in the 6 and 24h groups, and no measureable changes were detected in pectoralis muscle profile. Locomotor activity was increased over the entire period in which food was removed regardless of fasting duration. Together this suggests that reduced food availability is responsible, at least in part, for the rapid elevation both baseline corticosterone under any duration of fast and stress-induced concentrations during short-term fasts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. On the Determination of Magnesium Degradation Rates under Physiological Conditions.

    Science.gov (United States)

    Nidadavolu, Eshwara Phani Shubhakar; Feyerabend, Frank; Ebel, Thomas; Willumeit-Römer, Regine; Dahms, Michael

    2016-07-28

    The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.

  19. A physiologically based kinetic model for bacterial sulfide oxidation.

    Science.gov (United States)

    Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H

    2013-02-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Radiation oncology: radiobiological and physiological perspectives

    International Nuclear Information System (INIS)

    Awwad, H.K.

    1990-01-01

    This book deals with the normal tissue and tumor radiation-induced responses in terms of the underlying radiobiological and physiological process. Coverage includes the following topics: Functional test for normal tissue responses. Relation to the underlying target cell, Clinical structural end-points, e.g., increased lung density in CT-scan. Conditions and parameters of the LQ-model in clinical applications. An NSD-type of formalism is still clinically applicable. Clinical importance of the kinetics of recovery. The notion of normal tissue tolerance and tumor control. The steepness of the response curve. How accurate radiotherpy should be. The volume effect: clinical, biological and physiological perspectives. The tumor bed effect, residual damage and the problems of reirradiation. Radiation-induced perturbations of the immune response. Clinical consequences. Exploitation to a therapeutic benefit. Hypoxia in human solid tumors. Probing and methods of control. Growth of human tumors. Parameters, measurement and clinical implications. The dose-rate effect. The optimum use of low dose rate irradiation in human cancer

  1. Is physiological performance a good predictor for fitness? Insights from an invasive plant species.

    Directory of Open Access Journals (Sweden)

    Marco A Molina-Montenegro

    Full Text Available Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i the maximum quantum yield is a good predictor for seed-output ii whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii if this relationship has an adaptive consequence for T. officinale individuals from different localities. Overall, we found a significant positive relationship between the maximum quantum yield and fitness for all localities evaluated, but this relationship decreased in T. officinale individuals from localities with greater environmental heterogeneity. Finally, we found that those individuals from localities where environmental conditions are highly seasonal performed better under heterogeneous environmental conditions. Contrarily, under homogeneous controlled conditions, those individuals from localities with low environmental seasonality performed much better. In conclusion, our results suggest that the maximum quantum yield seem to be good predictors for plant fitness. We suggest that rapid measurements, such as those obtained from the maximum quantum yield, could provide a straightforward proxy of individual's fitness in changing environments.

  2. Suppression of enhanced physiological tremor via stochastic noise: initial observations.

    Directory of Open Access Journals (Sweden)

    Carlos Trenado

    Full Text Available Enhanced physiological tremor is a disabling condition that arises because of unstable interactions between central tremor generators and the biomechanics of the spinal stretch reflex. Previous work has shown that peripheral input may push the tremor-related spinal and cortical systems closer to anti-phase firing, potentially leading to a reduction in tremor through phase cancellation. The aim of the present study was to investigate whether peripherally applied mechanical stochastic noise can attenuate enhanced physiological tremor and improve motor performance. Eight subjects with enhanced physiological tremor performed a visuomotor task requiring the right index finger to compensate a static force generated by a manipulandum to which Gaussian noise (3-35 Hz was applied. The finger position was displayed on-line on a monitor as a small white dot which the subjects had to maintain in the center of a larger green circle. Electromyogram (EMG from the active hand muscles and finger position were recorded. Performance was measured by the mean absolute deviation of the white dot from the zero position. Tremor was identified by the acceleration in the frequency range 7-12 Hz. Two different conditions were compared: with and without superimposed noise at optimal amplitude (determined at the beginning of the experiment. The application of optimum noise reduced tremor (accelerometric amplitude and EMG activity and improved the motor performance (reduced mean absolute deviation from zero. These data provide the first evidence of a significant reduction of enhanced physiological tremor in the human sensorimotor system due to application of external stochastic noise.

  3. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability

    Directory of Open Access Journals (Sweden)

    Margarida S. Afonso

    2015-03-01

    Full Text Available Resveratrol is a plant secondary metabolite commonly found in peanuts and grapevines with significant health benefits. Recombinant organisms can produce large amounts of resveratrol and, in this work, Escherichia coli BW27784 was used to produce resveratrol in bioreactors while monitoring cell physiology and plasmid stability through flow cytometry and real-time qPCR, respectively. Initially, the influence of culture conditions and precursor addition was evaluated in screening assays and the data gathered was used to perform the bioreactor assays, allowing the production of 160 μg/mL of resveratrol. Cellular physiology and plasmid instability affected the final resveratrol production, with lower viability and plasmid copy numbers associated with lower yields. In sum, this study describes new tools to monitor the bioprocess, evaluating the effect of culture conditions, and its correlation with cell physiology and plasmid segregational stability, in order to define a viable and scalable bioprocess to fulfill the need for larger quantities of resveratrol.

  4. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  5. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  6. Personalized physiological medicine.

    Science.gov (United States)

    Ince, Can

    2017-12-28

    This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.

  7. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  8. Major component analysis of dynamic networks of physiologic organ interactions

    International Nuclear Information System (INIS)

    Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P

    2015-01-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)

  9. Physiological demands of downhill mountain biking.

    Science.gov (United States)

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  10. Multiple Days of Heat Exposure on Firefighters' Work Performance and Physiology.

    Science.gov (United States)

    Larsen, Brianna; Snow, Rod; Vincent, Grace; Tran, Jacqueline; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological responses

  11. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Weizbauer, Andreas, E-mail: weizbauer.andreas@mh-hannover.de [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Seitz, Jan-Marten [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Werle, Peter [ABB AG, Trafoweg 4, 06112 Halle (Germany); Hegermann, Jan [Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover (Germany); Willbold, Elmar [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School, Feodor-Lynen-Str. 31, 30625 Hannover (Germany); Eifler, Rainer [Institute of Materials Science, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen (Germany); Windhagen, Henning [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany); Reifenrath, Janin [Small Animal Clinic, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover (Germany); Waizy, Hazibullah [Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover (Germany)

    2014-08-01

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly.

  12. Novel magnesium alloy Mg–2La caused no cytotoxic effects on cells in physiological conditions

    International Nuclear Information System (INIS)

    Weizbauer, Andreas; Seitz, Jan-Marten; Werle, Peter; Hegermann, Jan; Willbold, Elmar; Eifler, Rainer; Windhagen, Henning; Reifenrath, Janin; Waizy, Hazibullah

    2014-01-01

    Using several different in vitro assays, a new biodegradable magnesium alloy Mg–2La, composed of 98% magnesium and 2% lanthanum, was investigated as a possible implant material for biomedical applications. An in vitro cytotoxicity test, according to EN ISO 10993-5/12, with L929 and human osteoblastic cells identified no toxic effects on cell viability at physiological concentrations (at 50% dilutions and higher). The metabolic activity of human osteoblasts in the 100% extract was decreased to < 70% and was therefore rated as cytotoxic. The degradation rates of Mg–2La were evaluated in phosphate buffered saline and four different cell culture media. The degradation rates were shown to be influenced by the composition of the solution, and the addition of fetal bovine serum slightly accelerated the corrosive process. The results of these in vitro experiments suggest that Mg–2La is a promising candidate for use as an orthopedic implant material. - Highlights: • A new magnesium alloy (Mg–2La) has been developed. • Magnesium alloy Mg–2La revealed no toxic effect in physiological concentrations. • Degradation rates were influenced by the corrosion media. • The addition of fetal bovine serum increased the corrosive process slightly

  13. Effect of terminal drought stress on morpho-physiological traits of wheat genotypes

    International Nuclear Information System (INIS)

    Baloch, M.J.; Chandio, I.A.

    2016-01-01

    Development of wheat varieties with low moisture requirements and their ability to withstand moisture stress may cope-up well with the on-coming peril of drought conditions. Ten wheat genotypes including two new strains, PBGST-3, Hero, Bhittai, Marvi, Inqlab, Sarsabz, Abadgar, Kiran, Khirman and PBGST-4 were sown in split plot design with factorial arrangement in four replications at Experimental Field, Department of Plant Breeding and Genetics, Sindh Agricutlure University, Pakistan during 2012-13. The results revealed that water stress caused significant reductions in all morpho-physiological traits. The genotypes differed significantly for all the yield and physiological traits. The interaction of treatments * genotypes were also significant for all the traits except plant height, productive tillers/plant, grains/spike and harvest index, were non-significant which indicated that cultivars responded variably over the stress treatments suggesting that breeders can select the promising genotypes for both stress and non-stress environments. Among the genotypes evaluated Bhittai, Kiran-95, PBGST-3 and Sarsabz showed good performance as minimum reductions occurred under terminal stress conditions for all the traits studied. Hence, above mentioned genotypes were considered as drought tolerant group. The high positive correlations of physiological traits like chlorophyll content and relative water content with almost all yield traits indicated that these physiological traits could serve as reliable criteria for breeding drought tolerance in wheat. The negative correlations of electrolyte leakage with several important yield traits indicated that though this physiological trait has adverse effect on yield attributes, yet it could reliably be used to distinguish between drought tolerant and susceptible wheat genotypes. (author)

  14. Bridging the gap between chemistry, physiology, and evolution: Quantifying the functionality of sperm whale myoglobin mutants

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Kepp, Kasper Planeta

    2011-01-01

    This work merges a large set of previously reported thermochemical data for myoglobin (Mb) mutants with a physiological model of O2-transport and -storage. The model allows a quantification of the functional proficiency of myoglobin (Mb) mutants under various physiological conditions, i.e. O2-con...

  15. The effect of the menstrual cycle and water consumption on physiological responses during prolonged exercise at moderate intensity in hot conditions.

    Science.gov (United States)

    Hashimoto, Hideki; Ishijima, Toshimichi; Suzuki, Katsuhiko; Higuchi, Mitsuru

    2016-09-01

    Reproductive hormones are likely to be involved in thermoregulation through body fluid dynamics. In the present study, we aimed to investigate the effect of the menstrual cycle and water consumption on physiological responses to prolonged exercise at moderate intensity in hot conditions. Eight healthy young women with regular menstrual cycles performed cycling exercise for 90 minutes at 50% V̇O2peak intensity during the low progesterone (LP) level phase and high progesterone (HP) level phase, with or without water consumption, under hot conditions (30°C, 50% relative humidity). For the water consumption trials, subjects ingested water equivalent to the loss in body weight that occurred in the earlier non-consumption trial. For all four trials, rectal temperature, cardiorespiratory responses, and ratings of perceived exertion (RPE) were measured. Throughout the 90-minute exercise period, rectal temperatures during HP were higher than during LP by an average of 0.4 °C in the non-consumption trial (Pwater consumption trial (Pwater consumption affected the changes in rectal temperature and heat rate (HR) during HP, but it did not exert these effects during LP. Furthermore, we found a negative correlation between estradiol levels and rectal temperature during LP. During prolonged exercise at moderate intensity under hot conditions, water consumption is likely to be useful for suppressing the associated increase in body temperature and HR, particularly during HP, whereas estradiol appears to be useful for suppressing the increase in rectal temperature during LP.

  16. Monitoring physiology and behavior using Android in phobias.

    Science.gov (United States)

    Cruz, Telmo; Brás, Susana; Soares, Sandra C; Fernandes, José Maria

    2015-08-01

    In this paper, we present an Android-based system Application - AWARE - for the assessment of the person's physiology and behavior outside of the laboratory. To accomplish this purpose, AWARE delivers context dependent audio-visual stimuli, embedded into the subject's real-world perception, via marker/vision-based augmented reality (AR) technology. In addition, it employs external measuring resources connected via Bluetooth, as well as the smartphone's integrated resources. It synchronously acquires the experiment's video (camera input with AR overlay), physiologic responses (with a dedicated ECG measuring device) and behavior (through movement and location, with accelerometer/gyroscope and GPS, respectively). Psychological assessment is heavily based on laboratory procedures, even though it is known that these settings disturb the subjects' natural reactions and condition. The major idea of this application is to evaluate the participant condition, mimicking his/her real life conditions. Given that phobias are rather context specific, they represent the ideal candidate for assessing the feasibility of a mobile system application. AWARE allowed presenting AR stimuli (e.g., 3D spiders) and quantifying the subjects' reactions non-intrusively (e.g., heart rate variation) - more emphatic in the phobic volunteer when presented with spider vs non phobic stimulus. Although still a proof of concept, AWARE proved to be flexible, and straightforward to setup, with the potential to support ecologically valid monitoring experiments.

  17. The use of a physiologically-based extraction test to assess relationships between bioaccessible metals in urban soil and neurodevelopmental conditions in children

    International Nuclear Information System (INIS)

    Hong, Jie; Wang, Yinding; McDermott, Suzanne; Cai, Bo; Aelion, C. Marjorie; Lead, Jamie

    2016-01-01

    Intellectual disability (ID) and cerebral palsy (CP) are serious neurodevelopment conditions and low birth weight (LBW) is correlated with both ID and CP. The actual causes and mechanisms for each of these child outcomes are not well understood. In this study, the relationship between bioaccessible metal concentrations in urban soil and these child conditions were investigated. A physiologically based extraction test (PBET) mimicking gastric and intestinal processes was applied to measure the bio-accessibility of four metals (cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb)) in urban soil, and a Bayesian Kriging method was used to estimate metal concentrations in geocoded maternal residential sites. The results showed that bioaccessible metal concentrations of Cd, Ni, and Pb in the intestinal phase were statistically significantly associated with the child outcomes. Lead and nickel were associated with ID, lead and cadmium was associated with LBW, and cadmium was associated with CP. The total concentrations and stomach concentrations were not correlated to significant effects in any of the analyses. For lead, an estimated threshold value was found that was statistically significant in predicting low birth weight. The change point test was statistically significant (p value = 0.045) at an intestine threshold level of 9.2 mg/kg (95% confidence interval 8.9–9.4, p value = 0.0016), which corresponds to 130.6 mg/kg of total Pb concentration in the soil. This is a narrow confidence interval for an important relationship. - Highlights: • Correlation between bioavailable metals and child development were investigated. • Cd, Ni, and Pb in the intestinal phase significantly affect neurodevelopment. • Pb has a threshold value 130.6 mg/kg (of whole soil) for low birth weight. - Based on physiologically based extraction test, the 130.6 mg/kg of total Pb concentration in the soil may cause low birth weight of baby.

  18. Regulatory Physiology

    Science.gov (United States)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  19. Nigerian Journal of Physiological Sciences

    African Journals Online (AJOL)

    Nigerian Journal of Physiological Sciences (Niger. J. Physiol. Sci.) is a biannual publication of the Physiological Society of Nigeria. It covers diverse areas of research in physiological sciences, publishing reviews in current research areas and original laboratory and clinical research in physiological sciences. Other websites ...

  20. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  1. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  2. Effect of induced body condition score differences on physiological response, productive and reproductive performance of Malpura ewes kept in a hot, semi-arid environment.

    Science.gov (United States)

    Sejian, V; Maurya, V P; Naqvi, S M K; Kumar, D; Joshi, A

    2010-04-01

    This study was undertaken to study the influence of induced body condition score (BCS) differences on physiological response, productive and reproductive performance of Malpura ewes to optimise BCS for these ewes for maximising production making it economically viable. The study was conducted for a period of 1 year using thirty healthy Malpura ewes (2-4 year old). The animals were randomly divided and different BCS was induced within three groups named Group I (BCS 2.5; n = 10), Group II (BCS 3.0-3.5; n = 10) and Group III (BCS 4.0; n = 10). The parameters included in the study were allometric measurements, physiological response, wool yield and reproductive performance. BCS had a significant influence on allometric measurements, respiration rate and different reproductive parameters studied, while wool production differed significantly during spring and non-significantly during autumn. The results revealed that the reproductive performance of Malpura ewes with a BCS of 3.0-3.5 was better in comparison with the groups with lower and higher BCS. It may be concluded from this study that an active management of breeding sheep flock to achieve a BCS of 3.0-3.5 may prove to result in an economically viable return from these flocks.

  3. Physiological responses of Daphnia pulex to acid stress

    Directory of Open Access Journals (Sweden)

    Pirow Ralph

    2009-04-01

    Full Text Available Abstract Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2, circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0 and circumneutral (pH 7.8 conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia. The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23, a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism. pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport

  4. Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes.

    Science.gov (United States)

    Streit, Fernanda; Athès, Violaine; Bchir, Amine; Corrieu, Georges; Béal, Catherine

    2011-02-01

    This work aimed at analyzing the effect of microfiltration conditions (cross-flow velocity and transmembrane pressure) on the quality of frozen Lactobacillus bulgaricus CFL1 starters produced on pilot scale. Microfiltered cells were less resistant during the concentration process than centrifuged cells. In contrast, bacterial cryotolerance during freezing was improved after microfiltration, in a range of 28-88%, depending on the microfiltration conditions. During frozen storage, cell resistance was also affected by microfiltration conditions, either positively or negatively, compared to centrifugation. The best cryotolerance was obtained for cells microfiltered at a cross-flow velocity of 2 m/s and a transmembrane pressure of 0.15 MPa. This improvement was explained by considering membrane fatty acid composition of Lb. bulgaricus CFL1. This condition increased unsaturated to saturated and cyclic to saturated fatty acid ratios, which enhanced membrane fluidity, thus helping the cells to better resist freezing and frozen storage.

  5. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Directory of Open Access Journals (Sweden)

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  6. No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Jensen, Anders Asbjørn

    2009-01-01

    GPRC6A is a seven transmembrane receptor mediating signaling by a wide range of L-alpha-amino-acids, a signaling augmented by the divalent cations Ca2+ and Mg2+. GPRC6A transcripts are detected in numerous mammalian tissues, but the physiological role of the receptor is thus far elusive. Analogou...

  7. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model

    Science.gov (United States)

    Devine, Erin E.; Hoffman, Matthew R.; McCulloch, Timothy M.; Jiang, Jack J.

    2016-01-01

    Objective Type II thyroplasty is an alternative treatment for spasmodic dysphonia, addressing hyperadduction by incising and lateralizing the thyroid cartilage. We quantified the effect of lateralization width on phonatory physiology using excised canine larynges. Methods Normal closure, hyperadduction, and type II thyroplasty (lateralized up to 5mm at 1mm increments with hyperadducted arytenoids) were simulated in excised larynges (N=7). Aerodynamic, acoustic, and videokymographic data were recorded at three subglottal pressures relative to phonation threshold pressure (PTP). One-way repeated measures ANOVA assessed effect of condition on aerodynamic parameters. Random intercepts linear mixed effects models assessed effects of condition and subglottal pressure on acoustic and videokymographic parameters. Results PTP differed across conditions (p<0.001). Condition affected percent shimmer (p<0.005) but not percent jitter. Both pressure (p<0.03) and condition (p<0.001) affected fundamental frequency. Pressure affected vibratory amplitude (p<0.05) and intra-fold phase difference (p<0.05). Condition affected phase difference between the vocal folds (p<0.001). Conclusions Hyperadduction increased PTP and worsened perturbation compared to normal, with near normal physiology restored with 1mm lateralization. Further lateralization deteriorated voice quality and increased PTP. Acoustic and videokymographic results indicate that normal physiologic relationships between subglottal pressure and vibration are preserved at optimal lateralization width, but then degrade with further lateralization. The 1mm optimal width observed here is due to the small canine larynx size. Future human trials would likely demonstrate a greater optimal width, with patient-specific value potentially determined based on larynx size and symptom severity. PMID:27223665

  8. Physiological seed quality of varieties of Ocimum produced under conditions of Valle del Cauca, Colombia

    Directory of Open Access Journals (Sweden)

    Leila Aceneth Durán Gaviria

    2016-01-01

    Full Text Available The genus Ocimum with over 150 species is characterized by high morphological variability and Chemotypes of great value in the industries of perfumery, cosmetics, food and pharmaceutical features. In order to evaluate the physiological quality of the seeds, in the Experimental Center and the Laboratory of Plant Physiology at the National University of Colombia at Palmira, germination and viability tests were performed with 2,3,5 triphenyl tetrazolium, TTZ. In trials, using a factorial design with five varieties of seeds, three treatments and three replications, the effect of imbibing the seeds for five minutes in Potassium nitrate 0.2% KNO3 and gibberellic acid GA3 250 ppm and 500 ppm respectively as first irrigation and a control (water was evaluated. The results showed that the seeds from the species O. selloi had the highest percentage (90% of viability in TTZ and germination (46.2%. The seeds soaked in 0.2% KNO3 showed the highest values of seed germination in three of the five varieties tested. The best responses were obtained with germination seeds O.selloi species (70% and O. micranthum (58%, followed by Ocimum sp. (26%. The results showed the presence of varying levels of latency, which was partially overcome by the application of potassium nitrate (KNO 3 0.2%.

  9. From Physiology to Prevention: Further remarks on a physiological imperative

    Directory of Open Access Journals (Sweden)

    B Jouanjean

    2012-05-01

    Full Text Available Physiology, is the fundamental and functional expression of life. It is the study of all the representative functions of Man in all his capacities, and in particular, his capacity to work. It is very possible to establish a link between a physiological and physiopathological state, the capacity of work and the economy, which can be understood as the articulation between the physiological capacities of Man and the production of work. If these functions are innately acquired by Man they are likewise maintained by regulatory functions throughout life. The stability of these regulatory mechanisms represent the state of good health. The management of this state, constitutes Primary Prevention where both chronic and acute physiopathology defines an alteration in these regulatory mechanisms. We deduce from this reasoning that a tripartite management adapted to the physiological situation is viable and that by choosing parameters specific to individual and collective behavior, it is possible to inject, and combine, at each level and to each demand in order to budget a healthcare system in a more balanced and equitable way. 

  10. The role of physiology in the development of golf performance.

    Science.gov (United States)

    Smith, Mark F

    2010-08-01

    The attainment of consistent high performance in golf requires effective physical conditioning that is carefully designed and monitored in accordance with the on-course demands the player will encounter. Appreciating the role that physiology plays in the attainment of consistent performance, and how a player's physicality can inhibit performance progression, supports the notion that the application of physiology is fundamental for any player wishing to excel in golf. With cardiorespiratory, metabolic, hormonal, musculoskeletal and nutritional demands acting on the golfer within and between rounds, effective physical screening of a player will ensure physiological and anatomical deficiencies that may influence performance are highlighted. The application of appropriate golf-specific assessment methods will ensure that physical attributes that have a direct effect on golf performance can be measured reliably and accurately. With the physical development of golf performance being achieved through a process of conditioning with the purpose of inducing changes in structural and metabolic functions, training must focus on foundation whole-body fitness and golf-specific functional strength and flexibility activities. For long-term player improvement to be effective, comprehensive monitoring will ensure the player reaches an optimal physical state at predetermined times in the competitive season. Through continual assessment of a player's physical attributes, training effectiveness and suitability, and the associated adaptive responses, key physical factors that may impact most on performance success can be determined.

  11. CaMKII in sinoatrial node physiology and dysfunction

    Directory of Open Access Journals (Sweden)

    Yuejin eWu

    2014-03-01

    Full Text Available The calcium and calmodulin dependent protein kinase II (CaMKII is present in sinoatrial node (SAN pacemaker cells and is required for physiological fight or flight SAN beating rate responses. Inhibition of CaMKII in SAN does not affect baseline heart rate, but reduces heart rate increases in response to physiological stress. CaMKII senses intracellular calcium (Ca2+ changes, oxidation status and hyperglycemia to phosphorylate substrates that regulate Ca2+-sensitive proteins, such as L-type Ca2+ channels, phospholamban (PLN, and cardiac ryanodine receptors (RyR2. All of these substrates are involved in the SAN pacemaking mechanism. Excessive CaMKII activity, as occurs under pathological conditions such as heart failure, ischemia and diabetes, can promote intracellular Ca2+ overload and reactive oxygen species (ROS production. Oxidation of CaMKII (ox-CaMKII locks CaMKII into a constitutively active configuration that contributes to SAN cell apoptosis and fibrosis. This ox-CaMKII-mediated loss of functional SAN cells contributes to sinoatrial node dysfunction (SND and sudden death. Thus, CaMKII has emerged as a central regulator of physiological SAN responses and a key determinant of SND.

  12. Physiological responses of planting frozen and thawed Douglas-fir seedlings

    Science.gov (United States)

    M. Anisul Islam; Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2008-01-01

    We studied the short-term (7-day) physiological responses of planting thawed and frozen root plugs of Douglas-fir (Pseudotsuga menziesii) seedlings in 2 separate experiments under cool-moist and warm-dry growing conditions, respectively. Our results showed that shoot water potential, root hydraulic conductance, net photosynthesis (A), and...

  13. The composition and impact of stakeholders' agendas on U.S. ethanol production

    NARCIS (Netherlands)

    Talamini, E.; Dewes, H.; Padula, A.D.; Wubben, E.F.M.

    2012-01-01

    This paper aims to identify the macro-environmental dimensions under which journalists, scientists and policy-makers have framed the liquid biofuels in the US over time. The number of publications concerning liquid biofuels from mass media, scientific community and government with ethanol production

  14. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    Science.gov (United States)

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  15. Physiological and Molecular Response of Ostrich to the Seasonal and Diurnal Variations in Egyptian conditions

    International Nuclear Information System (INIS)

    Khalil, M.H.; Khalifa, H.H; Elaroussi, M.A.; Elsayed, M.A.; Basuony, H.A.

    2013-01-01

    Twelve immature ostrich›s birds, 7 months old were used to evaluate the effect of ambient temperature variation and diurnal effect on response changes of some physiological and chemical parameters. All birds were reared out doors and exposed to daily ambient temperatures fluctuations during summer and winter. Blood samples were taken twice, one in the morning at 7 Am and once in the afternoon at 3 Pm during a representative 7 hot days of June (summer) (40±2ºC) and the 7 cold days of January (winter) (18±2ºC). Serum calcium, inorganic phosphorus, sodium, potassium, uric acid concentrations and aldosterone level were determined. The amount of total body water (TBW) and serum heat shock proteins (HSP) were estimated. Serum calcium, phosphorus, sodium and potassium concentrations in ostrich were significantly decreased, while uric acid concentration and aldosterone hormone level were significantly increased in summer as compared in winter during both at morning and at afternoon periods. Concerning the diurnal variation, serum calcium, phosphorus, sodium and potassium concentrations and aldosterone hormone level in ostrich were significantly increased, while uric acid concentration was significantly decreased at morning as compared at afternoon during both summer and winter seasons. TBW was significantly higher in summer season by 15.04% than winter season. It is concluded from the present study that heat or cold stress has a negative effect on most of the parameters studied and we recommend must be supplement diet with some nutrients like vitamins C, and E, sodium bicarbonate or yeast to overcome the negative effect and to better perform under such conditions

  16. A physiological perspective on the neuroscience of eating.

    Science.gov (United States)

    Geary, Nori

    2014-09-01

    I present the thesis that 'being physiological,' i.e., analyzing eating under conditions that do not perturb, or minimally perturb, the organism's endogenous processes, should be a central goal of the neuroscience of eating. I describe my understanding of 'being physiological' based on [i] the central neural-network heuristic of CNS function that traces back to Cajal and Sherrington, [ii] research on one of the simpler problems in the neuroscience of eating, identification of endocrine signals that control eating. In this context I consider natural meals, physiological doses and ranges, and antagonist studies. Several examples involve CCK. Next I describe my view of the cutting edge in the molecular neuroscience of eating as it has evolved from the discovery of leptin signaling through the application of optogenetic and pharmacogenetic methods. Finally I describe some novel approaches that may advance the neuroscience of eating in the foreseeable future. I conclude that [i] the neuroscience of eating may soon be able to discern 'physiological' function in the operation of CNS networks mediating eating, [ii] the neuroscience of eating should capitalize on methods developed in other areas of neuroscience, e.g., improved methods to record and manipulate CNS function in behaving animals, identification of canonical regional circuits, use of population electrophysiology, etc., and [iii] subjective aspects of eating are crucial aspects of eating science, but remain beyond mechanistic understanding. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Physiological quality of soybean seeds produced in four edaphoclimatic regions of Santa Catarina

    OpenAIRE

    Frandoloso,Volmir; Meneghello,Géri Eduardo; André,Maria Ângela; Deuner,Cristiane; Menegaz,Winicius

    2015-01-01

    Abstract:The production of soybeans in the state of Santa Catarina is quite significant in the national context, since the state is recognized for producing seeds with high standards of physiological quality, due to the use of modern technologies and favorable climatic conditions. The aim of this study was to evaluate the physiological quality of soybean seeds produced by major companies in the state of Santa Catarina, analyzed in three seasons: harvesting (reception at UBS), after processing...

  18. The IBO germination quantitative trait locus encodes a phosphatase 2C-related variant with a nonsynonymous amino acid change that interferes with abscisic acid signaling.

    Science.gov (United States)

    Amiguet-Vercher, Amélia; Santuari, Luca; Gonzalez-Guzman, Miguel; Depuydt, Stephen; Rodriguez, Pedro L; Hardtke, Christian S

    2015-02-01

    Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  20. Physiological Striae Atrophicae of Adolescence with Involvement of the Upper Back

    Directory of Open Access Journals (Sweden)

    Alexander K. C. Leung

    2013-01-01

    Full Text Available We report a 13-year-old boy with multiple purplish, atrophic, horizontal linear striae in the thoracic area. He reported a growth spurt in the preceding 12 months. His past health was unremarkable, and he took no medications. To our knowledge, physiological striae atrophicae of adolescence where idiopathic striae were restricted to the upper back have rarely been reported. Physiological striae atrophicae of adolescence may, on occasions, be mistaken for child abuse. It is important that child care professionals recognize this condition so that false accusations of child abuse will not be made.

  1. Circadian rhythm and sleep influences on digestive physiology and disorders

    Directory of Open Access Journals (Sweden)

    Vaughn BV

    2014-09-01

    Full Text Available Bradley V Vaughn, Sean Rotolo, Heidi L Roth Division of Sleep Medicine, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Circadian rhythms and sleep influence a variety of physiological functions, including the digestive system. The digestive system also has intrinsic rhythms that interact dynamically with circadian rhythms. New advances in understanding the interaction of these rhythms and sleep provide the prospect of evaluating their role in normal physiology and the link of their disruption to pathological conditions. Recent work has demonstrated that sleep and circadian factors influence appetite, nutrient absorption, and metabolism. Disruption of sleep and circadian rhythms may increase vulnerability to digestive disorders, including reflux, ulcers, inflammatory bowel issues, irritable bowel disease, and gastrointestinal cancer. As our knowledge of the link between circadian timing and gastrointestinal physiology grows, so do our opportunities to provide promising diagnostic and therapeutic approaches for gastrointestinal disorders. Keywords: digestion, digestive diseases, gastrointestinal reflux, sleep, circadian rhythm 

  2. Complexity and network dynamics in physiological adaptation: an integrated view.

    Science.gov (United States)

    Baffy, György; Loscalzo, Joseph

    2014-05-28

    Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.

  3. 14-3-3 proteins in plant physiology.

    Science.gov (United States)

    Denison, Fiona C; Paul, Anna-Lisa; Zupanska, Agata K; Ferl, Robert J

    2011-09-01

    Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    Science.gov (United States)

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. Copyright © 2016. Published by Elsevier B.V.

  5. Physiological blunting during pregnancy extends to induced relaxation

    OpenAIRE

    DiPietro, Janet A.; Mendelson, Tamar; Williams, Erica L.; Costigan, Kathleen A.

    2011-01-01

    There is accumulating evidence that pregnancy is accompanied by hyporesponsivity to physical, cognitive, and psychological challenges. This study evaluates whether observed autonomic blunting extends to conditions designed to decrease arousal. Physiological and psychological responsivity to an 18-minute guided imagery relaxation protocol in healthy pregnant women during the 32nd week of gestation (n = 54) and non-pregnant women (n = 28) was measured. Data collection included heart period (HP)...

  6. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  7. Physiological roles of CNS muscarinic receptors gained from knockout mice

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Sørensen, Gunnar; Dencker, Ditte

    2017-01-01

    receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains......, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics...

  8. Hatching system and time effects on broiler physiology and posthatch growth

    NARCIS (Netherlands)

    Ven, van de L.J.F.; Wagenberg, van A.V.; Debonne, M.; Decuypere, E.; Kemp, B.; Brand, van den H.

    2011-01-01

    A multilevel housing system for broilers was developed, named Patio (Vencomatic BV, Eersel, the Netherlands), in which the hatching and brooding phase are combined. In a Patio system, climate conditions differ from those provided in the hatchers currently in use. We compared the physiology of

  9. Physiological Event Prediction in Evaluations of Underwater Breathing Apparatus

    Science.gov (United States)

    2016-10-25

    Navy Experimental Diving Unit TA 15-02 321 Bullfinch Rd. NEDU TR 16-04 Panama City, FL 32407-7015 October 2016 Physiological...Diving unit 321 Bullfinch Road Panama City, Florida 32407-7015 NEDU TR 16-04 9. SPONSORING / MONITORING AGENCY...varying dive conditions. The so-called maximum respiratory impedance model was calibrated on Navy manned dive results, and this paper describes the use

  10. Multiple Days of Heat Exposure on Firefighters' Work Performance and Physiology.

    Directory of Open Access Journals (Sweden)

    Brianna Larsen

    Full Text Available This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36 were matched and allocated to either the CON (19°C or HOT (33°C condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc, and skin temperature (Tsk were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of

  11. Multiple Days of Heat Exposure on Firefighters’ Work Performance and Physiology

    Science.gov (United States)

    Larsen, Brianna; Snow, Rod; Vincent, Grace; Tran, Jacqueline; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants’ doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants’ work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological

  12. Effects of low temperature and drought on the physiological and ...

    African Journals Online (AJOL)

    To find out how oil palm adapts to the environmental conditions, the dynamics of a series of important physiological components derived from the leaves of potted oil palm seedlings under drought stress (DS) (water with holding) and low temperature stress (LTS) (10°C) were studied. The results showed that low temperature ...

  13. Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor

  14. The physiology of the normal human breast: an exploratory study.

    Science.gov (United States)

    Mills, Dixie; Gordon, Eva J; Casano, Ashley; Lahti, Sarah Michelle; Nguyen, Tinh; Preston, Alex; Tondre, Julie; Wu, Kuan; Yanase, Tiffany; Chan, Henry; Chia, David; Esfandiari, Mahtash; Himmel, Tiffany; Love, Susan M

    2011-12-01

    The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.

  15. The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions.

    Science.gov (United States)

    Glick, Matthew; Biddle, Perry; Jantzi, Josh; Weaver, Samantha; Schirch, Doug

    2014-09-12

    Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A modular, programmable measurement system for physiological and spaceflight applications

    Science.gov (United States)

    Hines, John W.; Ricks, Robert D.; Miles, Christopher J.

    1993-02-01

    The NASA-Ames Sensors 2000] Program has developed a small, compact, modular, programmable, sensor signal conditioning and measurement system, initially targeted for Life Sciences Spaceflight Programs. The system consists of a twelve-slot, multi-layer, distributed function backplane, a digital microcontroller/memory subsystem, conditioned and isolated power supplies, and six application-specific, physiological signal conditioners. Each signal condition is capable of being programmed for gains, offsets, calibration and operate modes, and, in some cases, selectable outputs and functional modes. Presently, the system has the capability for measuring ECG, EMG, EEG, Temperature, Respiration, Pressure, Force, and Acceleration parameters, in physiological ranges. The measurement system makes heavy use of surface-mount packaging technology, resulting in plug in modules sized 125x55 mm. The complete 12-slot system is contained within a volume of 220x150x70mm. The system's capabilities extend well beyond the specific objectives of NASA programs. Indeed, the potential commercial uses of the technology are virtually limitless. In addition to applications in medical and biomedical sensing, the system might also be used in process control situations, in clinical or research environments, in general instrumentation systems, factory processing, or any other applications where high quality measurements are required.

  17. Physiological and Technical Demands of No Dribble Game Drill in Young Basketball Players.

    Science.gov (United States)

    Conte, Daniele; Favero, Terence G; Niederhausen, Meike; Capranica, Laura; Tessitore, Antonio

    2015-12-01

    This study assessed the physiological and technical demands of no dribble game drill (NDGD) in comparison with a regular drill (RD). Twenty-three young basketball players performed RDs and NDGDs in a random order. All basketball rules were followed for RDs, whereas dribbling was not permitted for NDGDs. The independent variable was the drill condition, and the dependent variables were percentage of maximal heart rate (%HRmax), rate of perceived exertion (RPE), Edwards training load (TL), and the following technical actions (TAs): pass (total, correct, wrong, and percent of correct passes), shot (total, scored, missed, and percent of made shots), interception, steal, turnover, and rebound. Wilcoxon signed-rank tests were applied to assess differences between NDGD and RD conditions for each dependent variable, and the level of statistical significance was set at p ≤ 0.05. Results showed higher values for %HRmax (p = 0.007), Edwards TL (p = 0.006), and RPE (p = 0.027) in NDGD compared with RD condition. Technical action analysis revealed higher values in NDGD than RD for total (p = 0.000), correct (p = 0.000), and wrong pass (p = 0.005), and interception (p = 0.001), whereas no significant differences were found for the other TAs. The main finding of this study was that NDGD condition elicited a greater physiological demand and a higher number of passes and interceptions than the RD one. Basketball coaches should consider the NDGD as a viable method to increase the physiological load of their training sessions and to teach passing skills in a game-based situation.

  18. Competitive active video games: Physiological and psychological responses in children and adolescents.

    Science.gov (United States)

    Lisón, Juan F; Cebolla, Ausias; Guixeres, Jaime; Álvarez-Pitti, Julio; Escobar, Patricia; Bruñó, Alejandro; Lurbe, Empar; Alcañiz, Mariano; Baños, Rosa

    2015-10-01

    Recent strategies to reduce sedentary behaviour in children include replacing sedentary screen time for active video games. Active video game studies have focused principally on the metabolic consumption of a single player, with physiological and psychological responses of opponent-based multiplayer games to be further evaluated. To determine whether adding a competitive component to playing active video games impacts physiological and psychological responses in players. Sixty-two healthy Caucasian children and adolescents, nine to 14 years years of age, completed three conditions (8 min each) in random order: treadmill walking, and single and opponent-based Kinect active video games. Affect, arousal, rate of perceived exertion, heart rate and percentage of heart rate reserve were measured for each participant and condition. Kinect conditions revealed significantly higher heart rate, percentage of heart rate reserve, rate of perceived exertion and arousal when compared with treadmill walking (Pvideo games improved children's psychological responses (affect and rate of perceived exertion) compared with single play, providing a solution that may contribute toward improved adherence to physical activity.

  19. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing.

    Science.gov (United States)

    Cenni, Vittoria; D'Apice, Maria Rosaria; Garagnani, Paolo; Columbaro, Marta; Novelli, Giuseppe; Franceschi, Claudio; Lattanzi, Giovanna

    2018-03-01

    Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Similar acute physiological responses from effort and duration matched leg press and recumbent cycling tasks

    Directory of Open Access Journals (Sweden)

    James Steele

    2018-02-01

    Full Text Available The present study examined the effects of exercise utilising traditional resistance training (leg press or ‘cardio’ exercise (recumbent cycle ergometry modalities upon acute physiological responses. Nine healthy males underwent a within session randomised crossover design where they completed both the leg press and recumbent cycle ergometer conditions. Conditions were approximately matched for effort and duration (leg press: 4 × 12RM using a 2 s concentric and 3 s eccentric repetition duration controlled with a metronome, thus each set lasted  60 s; recumbent cycle ergometer: 4 × 60 s bouts using a resistance level permitting 80–100 rpm but culminating with being unable to sustain the minimum cadence for the final 5–10 s. Measurements included VO2, respiratory exchange ratio (RER, blood lactate, energy expenditure, muscle swelling, and electromyography. Perceived effort was similar between conditions and thus both were well matched with respect to effort. There were no significant effects by ‘condition’ in any of the physiological responses examined (all p > 0.05. The present study shows that, when both effort and duration are matched, resistance training (leg press and ‘cardio’ exercise (recumbent cycle ergometry may produce largely similar responses in VO2, RER, blood lactate, energy expenditure, muscle swelling, and electromyography. It therefore seems reasonable to suggest that both may offer a similar stimulus to produce chronic physiological adaptations in outcomes such as cardiorespiratory fitness, strength, and hypertrophy. Future work should look to both replicate the study conducted here with respect to the same, and additional physiological measures, and rigorously test the comparative efficacy of effort and duration matched exercise of differing modalities with respect to chronic improvements in physiological fitness.

  2. Hydration status and physiological workload of UAE construction workers: A prospective longitudinal observational study

    Directory of Open Access Journals (Sweden)

    Schneider John

    2008-09-01

    Full Text Available Abstract Background The objective of the study was to investigate the physiological responses of construction workers labouring in thermally stressful environments in the UAE using Thermal Work Limit (TWL as a method of environmental risk assessment. Methods The study was undertaken in May 2006. Aural temperature, fluid intake, and urine specific gravity were recorded and continuous heart rate monitoring was used to assess fatigue. Subjects were monitored over 3 consecutive shifts. TWL and WBGT were used to assess the thermal stress. Results Most subjects commenced work euhydrated and maintained this status over a 12-hour shift. The average fluid intake was 5.44 L. There were no changes in core temperature or average heart rate between day 1 and day 3, nor between shift start and finish, despite substantial changes in thermal stress. The results obtained indicated that the workers were not physiologically challenged despite fluctuating harsh environmental conditions. Core body temperatures were not elevated suggesting satisfactory thermoregulation. Conclusion The data demonstrate that people can work, without adverse physiological effects, in hot conditions if they are provided with the appropriate fluids and are allowed to self-pace. The findings suggested that workers will self-pace according to the conditions. The data also demonstrated that the use of WBGT (a widely used risk assessment tool as a thermal index is inappropriate for use in Gulf conditions, however TWL was found to be a valuable tool in assessing thermal stress.

  3. Physiological Based Simulator Fidelity Design Guidance

    Science.gov (United States)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  4. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    Science.gov (United States)

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Physiological reactivity in a community sample of sexually aggressive young men: a test of competing hypotheses.

    Science.gov (United States)

    Peterson, Zoë D; Janssen, Erick; Goodrich, David; Heiman, Julia R

    2014-01-01

    Men's sexually aggressive behavior potentially could relate to either physiological hyporeactivity or hyperreactivity, and these two different physiological profiles could be associated with different underlying causes of sexual aggression. Thus, measurement of physiological reactivity could provide insight into mechanisms relevant to the etiology of sexual aggression. The relationship between sexual aggression and physiological reactivity was investigated in 78 community men (38 sexually aggressive and 40 non-aggressive men). In a laboratory protocol, the men were exposed to neutral, negative-affect-inducing, and positive-affect-inducing stimuli. Men's salivary cortisol concentrations and electrodermal activity (EDA) were measured throughout the laboratory procedure. Sexually aggressive men demonstrated (1) lower overall cortisol levels and (2) lower EDA reactivity in some conditions as compared to non-aggressive men. Results of this study were consistent with the idea that men's sexual aggression is associated with physiological hyporeactivity, a physiological profile that has been found to be associated with externalizing behaviors and psychopathic traits. © 2013 Wiley Periodicals, Inc.

  6. Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Davis, Randall W.; Kepp, Kasper Planeta

    2013-01-01

    This paper presents an integrated model of convective O2-transport, aerobic dive limits (ADL), and thermochemical data for oxygen binding to mutant myoglobin (Mb), used to quantify the impact of mutations in Mb on the dive limits of Weddell seals (Leptonychotes weddellii). We find that wild-type ...... that such conditions are mostly selected upon in seals. The model is capable of roughly quantifying the physiological impact of single-protein mutations and thus bridges an important gap between animal physiology and molecular (protein) evolution.......This paper presents an integrated model of convective O2-transport, aerobic dive limits (ADL), and thermochemical data for oxygen binding to mutant myoglobin (Mb), used to quantify the impact of mutations in Mb on the dive limits of Weddell seals (Leptonychotes weddellii). We find that wild-type Mb...... traits are only superior under specific behavioral and physiological conditions that critically prolong the ADL, action radius, and fitness of the seals. As an extreme example, the mutations in the conserved His-64 reduce ADL up to 14±2 min for routine aerobic dives, whereas many other mutations...

  7. Factors influencing physiological FDG uptake in the intestine

    International Nuclear Information System (INIS)

    Yasuda, Seiei; Takahashi, Wakoh; Takagi, Shigeharu; Fujii, Hirofumi; Ide, Michiru; Shohtsu, Akira

    1998-01-01

    The intestine is a well-known site of physiological 18 F-fluorodeoxyglucose (FDG) accumulation in positron emission tomography (PET). To identify factors influencing physiological FDG uptake in the intestine, the intensity of FDG uptake was evaluated in a total of 1,068 healthy adults. Non-attenuation-corrected whole-body PET images were obtained for all subjects and visually evaluated. Subjects were then classified into two groups according to the intensity of intestinal FDG uptake. Sex, age, presence or absence of constipation, and serum glucose, hemoglobin A 1 c, and free fatty acid levels were compared between the two groups. High intestinal FDG uptake was observed at an overall rate of 11.0%. Sex (female), age, and bowel condition (constipation) were found to affect intestinal FDG uptake. The factors we identified lead to further questions the relationship between intestinal motility and glucose uptake that warrant further study. (author)

  8. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  9. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    Science.gov (United States)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  10. The role of physiological active substances implant adaptation to stress

    International Nuclear Information System (INIS)

    Voronina, L.; Morachevskaya, E.

    2009-01-01

    It is known, that brassinosteroids are capable in small quantities (10 - 12-10 - 7M) to optimize physiology-biochemical processes in plants in stressful conditions. the aim of this study was to investigate the role of anti stress and protective properties of phyto hormone 24-epibrassinolide (24-epiBS). in view of its functional features and biological activity. (Author)

  11. Conservation physiology of marine fishes

    DEFF Research Database (Denmark)

    Jørgensen, Christian; Peck, Myron A.; Antognarelli, Fabio

    2012-01-01

    At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology...... to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity...

  12. Parasitism and Physiological Trade-Offs in Stressed Capybaras

    Science.gov (United States)

    Eberhardt, Ayelen T.; Costa, Sebastián A.; Marini, M. Rocío; Racca, Andrea; Baldi, Cecilia J.; Robles, M. Rosario; Moreno, Pablo G.; Beldomenico, Pablo M.

    2013-01-01

    Parasites play a key role in regulating wildlife population dynamics, but their impact on the host appears to be context-dependent. Evidence indicates that a synergistic interaction between stress, host condition and parasites is implicated in this phenomenon, but more studies are needed to better understand this context-dependency. With the goal to assess the net effect of two types of chronic stress on various host-parasite interactions, we conducted an experiment in capybaras to evaluate the impact of food restriction and physical restraint on the infection intensity of specific gastrointestinal nematodes and coccidia, and how these stressors affected the growth, body condition, and some immuno-physiological parameters. Our hypothesis was that both forms of stress would result in an alteration in the host-parasite interactions, with deteriorated condition and reduced immunological investment leading to high parasite burdens and vice versa. Stressed capybaras had significantly higher coccidia infection intensities; but among individuals that were smaller, those stressed consistently showed lower helminth burdens than controls. Both stress treatments had a marked negative impact on growth and body condition, but concomitantly they had a significant positive effect on some components of the immune system. Our results suggest, on the one hand, that during prolonged periods of stress capybaras preventatively invest in some components of their immunity, such as innate humoural defenses and cells that combat helminths, which could be considered a stress-dependent prophylaxis. On the other hand, stress was found to cause greater infection intensities of protozoans but lower burdens of nematodes, indicating that the relationship between stress, physiological trade-offs and infection depends on the type of parasite in question. Moreover, both findings might be related in a causal way, as one of the immunological parameters enhanced in stressed capybaras is associated with

  13. Physiological and behavioral responses to the social environment

    International Nuclear Information System (INIS)

    Davis, D.E.

    1978-01-01

    Physiological and behavioral reactions to the social environment are mediated in nature principally through aggressive interactions, although in some cases other aspects of the environment such as temperature or predators are important. Observations from 1946-50 of changes in populations of rats after alteration of social conditions suggested the hypothesis that changes in birth and mortality rates followed aggressive interactions. The pituitary-adrenal-gonadal mechanism provided a process that could be tested in three types of conditions: laboratory, simulated field, and field. Changes in social environment can result from: seasonal changes in conditions; appearance of transients; habitat changes due to succession; and increase of population. It became apparent from laboratory research that a physiological feedback from aggressive behavior could reduce birth rates and increase mortality rates. Studies in nature showed that a reduction of Norway rat population by 38 percent was followed by a reduction of adrenal weight by 32 percent. Also as the population of rats increased the weight of the adrenals increased. A comprehensive study of woodchucks, started in 1957, showed that the alteration of age composition and the increase in immigration was associated with increased adrenal function. Research by others on lemmings shows that the adrenals at the peak of a population fluctuation are larger and produce more hormones than at the low point. No evidence was obtained to support the hypothesis that genetic selection for aggressive behavior within the population occurs during the increase or decline of a population. The changes occur within an individual. The future of studies of responses to the social environment will require experimental programs in nature that last for a decade or more, long enough to monitor changes in numbers under a variety of conditions

  14. Physiological and psychological responses to expressions of emotion and empathy in post-stress communication.

    Science.gov (United States)

    Ono, Makiko; Fujita, Mizuho; Yamada, Shigeyuki

    2009-01-01

    The effects of communicating during and after expressing emotions and receiving empathy after exposure to stress were investigated for 18 female students (9 pairs). After mental and physical tasks, a subject spoke to a listener about the stress task. In Experiment 1, responses to speaking about negative emotions aroused by the task (the "with emotion" condition) were compared to speaking about only objective facts about the task (the control). In Experiment 2, responses to empathetic reactions from the listener (the "with empathy" condition) were compared to no reaction (the control). Electroencephalograms were recorded, and heart rate variability (HRV) was calculated from electrocardiogram data. Subjective stress was estimated by a visual analog scale. Experiment 1 demonstrated that expressing emotions activated the left temporal region (T3) in the "with emotion" condition. In Experiment 2, physiological responses depended on cognition of different elements of empathy. During communication, feeling that the listener had the same emotion decreased the subject's T3 activity and sympathetic activity balance indicated by HRV. After communication, feeling that the listener understood her emotions decreased bilateral frontal and temporal activity. On the other hand, subjective stress did not differ between conditions in both experiments. These findings indicate that the comfort of having shared a message reduced physiological activity, especially in the "with empathy" condition. Conversely, even in the "with empathy" condition, not sharing a message can result in more discomfort or stress than the control. Sharing might be associated with cognition of the degree of success of communication, which reflected in the physiological responses. In communication, therefore, expressing emotions and receiving empathy did not in themselves reduce stress, and the level of cognition of having shared a message is a key factor in reducing stress.

  15. Oximetry: A Reflective Tool for the Detection of Physiological Expression of Emotions in a Science Education Classroom

    Science.gov (United States)

    Calderón, Olga

    2016-01-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation--SpO[subscript 2]); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying…

  16. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

    NARCIS (Netherlands)

    Bantz, C.; Koshkina, O.; Lang, T.; Galla, H.J.; Kirkpatrick, C.J.; Stauber, R.H.; Maskos, M.

    2014-01-01

    Due to the recent widespread application of nanomaterials to biological systems, a careful consideration of their physiological impact is required. This demands an understanding of the complex processes at the bio-nano interface. Therefore, a comprehensive and accurate characterization of the

  17. Physiological pseudomyopia.

    Science.gov (United States)

    Jones, R

    1990-08-01

    Objective refraction through plus fogging lenses and base-in prisms revealed that normally accommodation is not completely relaxed when the stimulus to accommodation is zero. The myopic shift in the refractive error due to this focus error of accommodation was defined as physiological pseudomyopia. Two previously established features of accommodation are responsible for this behavior: (1) accommodation acts as a proportional control system for steady-state responses; and (2) the rest focus of accommodation is nonzero. It is proposed that the hyperopic shift in refraction observed in cycloplegia is the result of elimination of physiological pseudomyopia.

  18. Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history.

    Science.gov (United States)

    Crino, Ondi L; Johnson, Erin E; Blickley, Jessica L; Patricelli, Gail L; Breuner, Creagh W

    2013-06-01

    Roads have been associated with behavioral and physiological changes in wildlife. In birds, roads decrease reproductive success and biodiversity and increase physiological stress. Although the consequences of roads on individuals and communities have been well described, the mechanisms through which roads affect birds remain largely unexplored. Here, we examine one mechanism through which roads could affect birds: traffic noise. We exposed nestling mountain white-crowned sparrows (Zonotrichia leucophrys oriantha) to experimentally elevated traffic noise for 5 days during the nestling period. Following exposure to traffic noise we measured nestling stress physiology, immune function, body size, condition and survival. Based on prior studies, we expected the traffic noise treatment to result in elevated stress hormones (glucocorticoids), and declines in immune function, body size, condition and survival. Surprisingly, nestlings exposed to traffic noise had lower glucocorticoid levels and improved condition relative to control nests. These results indicate that traffic noise does affect physiology and development in white-crowned sparrows, but not at all as predicted. Therefore, when evaluating the mechanisms through which roads affect avian populations, other factors (e.g. edge effects, pollution and mechanical vibration) may be more important than traffic noise in explaining elevated nestling stress responses in this species.

  19. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    Directory of Open Access Journals (Sweden)

    Richard Sauerheber

    2013-01-01

    Full Text Available The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  20. Physiologic conditions affect toxicity of ingested industrial fluoride.

    Science.gov (United States)

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  1. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  2. Modulation of GABAergic Transmission in Development and Neurodevelopmental Disorders: Investigating Physiology and Pathology to Gain Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Gabriele eDeidda

    2014-05-01

    Full Text Available During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis.The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.

  3. The Physical, Chemical and Physiological Limits of Life

    Directory of Open Access Journals (Sweden)

    Dirk Schulze-Makuch

    2015-07-01

    Full Text Available Life on Earth displays an incredible diversity in form and function, which allows it to survive not only physical extremes, but also periods of time when it is exposed to non-habitable conditions. Extreme physiological adaptations to bridge non-habitable conditions include various dormant states, such as spores or tuns. Here, we advance the hypothesis that if the environmental conditions are different on some other planetary body, a deviating biochemistry would evolve with types of adaptations that would manifest themselves with different physical and chemical limits of life. In this paper, we discuss two specific examples: putative life on a Mars-type planet with a hydrogen peroxide-water solvent and putative life on a Titan-type planetary body with liquid hydrocarbons as a solvent. Both examples would have the result of extending the habitable envelope of life in the universe.

  4. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    Science.gov (United States)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  5. 14{sup C}-Metampicillin stability in several physiological

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno, F; Casas, F; Carriazo, D

    1981-07-01

    Degradation of 14{sup C}-metampicillin incorporated to several physiological sera for medical uses has been studied. Influence of environmental conditions as well as possible interaction with the solvent have been specially analyzed. Degradation level of the labelled multiplication has been determined and its degradation products have been separated by using chromatographic and radiochemical methods. Likewise, the 14{sup C}-metam picill synthesis has been described. Finally, the results obtained have been discussed and evaluated. (Author) 9 refs.

  6. 14C-Metampicillin stability in several physiological sera

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.; Casas Medica, F.; Carriazo Tovar, D.

    1981-01-01

    Degradation of 14 C -metampicillin incorporated to several physiological sera for medical uses has been studied. Influence of environmental conditions as well as possible interaction with the solvent have been specially analyzed. Degradation level of the labelled multiplication has been determined and its degradation products have been separated by using chromatographic and radiochemical methods. Likewise, the 14 C -metam picill synthesis has been described. Finally, the results obtained have been discussed and evaluated. (Author) 9 refs

  7. Effect of rearing conditions on behavioural and physiological responses of pigs to preslaughter handling and mixing at transport

    NARCIS (Netherlands)

    Jong, de I.C.; Prelle, I.T.; Burgwal, van de J.A.; Lambooij, E.; Korte, S.M.; Blokhuis, H.J.; Koolhaas, J.M.

    2000-01-01

    The physiological and behavioural responses of slaughter pigs reared in either a barren environment or in an enriched environment (larger pens with straw bedding) to preslaughter handling and mixing at transport were studied. Enriched-reared pigs had higher salivary cortisol concentrations in the

  8. Effects of rearing conditions on behavioural and physiological responses of pigs to preslaughter handling and mixing at transport

    NARCIS (Netherlands)

    de Jong, I.C; Prelle, I.T.; Lambooij, E.; Korte, S.M.; Blokhuis, H.J; Koolhaas, J.M.

    The physiological and behavioural responses of slaughter pigs reared in either a barren environment or in an enriched environment (larger pens with straw bedding) to preslaughter handling and mixing at transport were studied. Enriched-reared pigs had higher salivary cortisol concentrations in the

  9. Clinical usefulness of physiological components obtained by factor analysis. Application to /sup 99m/Tc-DTPA renography

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Eiji; Murata, Hajime; Matsuda, Hirofumi; Yokoyama, Masao; Toyama, Hinako; Satoh, Tomohiko.

    1989-01-01

    The clinical usefulness of physiological components obtained by factor analysis was assessed in /sup 99m/Tc-DTPA renography. Using definite physiological components, another dynamic data could be analyzed. In this paper, the dynamic renal function after ESWL (Extracorporeal Shock Wave Lithotripsy) treatment was examined using physiological components in the kidney before ESWL and/or a normal kidney. We could easily evaluate the change of renal functions by this method. The usefulness of a new analysis using physiological components was summarized as follows: (1) The change of a dynamic function could be assessed in quantity as that of the contribution ratio. (2) The change of a sick condition could be morphologically evaluated as that of the functional image.

  10. Qualidade fisiológica de sementes de soja tratadas e armazenadas - Physiological quality of treated and stored soybean seeds.

    Directory of Open Access Journals (Sweden)

    Gustavo Cruvinel Rocha

    2017-07-01

    During storage as seeds or grains may suffer in their chemical composition, because of the storage environment. In view of this, a production of high quality physiological seeds will depend on the sum of all genetic, physical, physiological and sanitary attributes. However, little is known about the effects of seeds by harvesting, drying, processing and storage for long periods of time. Therefore, it was conducted in the seed laboratory of the University of Rio Verde, in order to evaluate a physiological quality of seeds treated under different storage conditions. The experimental design was used for the completely randomized 2x5x7, two storage conditions (conventional and air conditioned warehouse, five seed treatments and seven evaluation periods, with four replications. At 0, 20, 40, 60, 80, 100, 120 days after an imposition of treatments for evaluated germination, emergence speed index, accelerated aging and root length. The chemical treatments applied in soybean seeds (cultivar M 7739 IPRO reduced seed vigor. Keywords: Glycine max, germination, vigor.

  11. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  12. Scanning the macro-environment for liquid biofuels: A comparative analysis from public pocies in Brazil, United States and Germany

    NARCIS (Netherlands)

    Talamini, E.; Wubben, E.F.M.; Padula, A.D.; Dewes, H.

    2013-01-01

    Purpose – Macro-environmental scanning is a first step in strategic planning, which is essential in an emerging industry such as liquid biofuels. The purpose of this paper is to identify the dimensions within which the governments of Brazil, the USA and Germany have constructed the macro-environment

  13. Chapter 6 - Links between land cover and lichen species richness at large scales in forested ecosystems across the United States.

    Science.gov (United States)

    Susan Will-Wolf; Randall S. Morin; Mark J. Ambrose; Kurt Riitters; Sarah Jovan

    2014-01-01

    Lichen community composition is well known for exhibiting response to air pollution, and to macroenvironmental and microenvironmental variables. Lichens are useful indicators of air quality impact, forest health, and forest ecosystem integrity across the United States (McCune 2000, reviews in Nimis and others 2002, USDA Forest Service 2007).

  14. Studies of Place Perception in Elementary and Pre-School Education. Vol. I. Final Report.

    Science.gov (United States)

    Blaut, J. M.

    A research project of environmental learning in children is discussed. Most of the studies conducted during the research involved observation of children aged 3-12, in mapping and free environmental behavior, and in curricular experiments using perceptual surrogates for map-learning and macro-environmental conceptualization in the lower elementary…

  15. The effects of early age thermal conditioning and vinegar supplementation of drinking water on physiological responses of female and male broiler chickens reared under summer Mediterranean temperatures

    Science.gov (United States)

    Berrama, Zahra; Temim, Soraya; Djellout, Baya; Souames, Samir; Moula, Nassim; Ain Baziz, Hassina

    2018-02-01

    The effects of early age thermal conditioning (ETC), vinegar supplementation (VS) of drinking water, broilers' gender, and their interactions on respiratory rate, body temperature, and blood parameters (biochemical, hematological, and thyroid hormones) of broiler chickens reared under high ambient temperatures were determined. A total of 1100 1-day-old chicks were divided into four treatments: the "control" which were non-conditioned and non-supplemented; "heat-conditioned" which were exposed to 38 ± 1 °C for 24 h at 5 days of age; "vinegar supplemented" which were given drinking water supplemented with 0.2% of commercial vinegar from 28 to 49 days of age; and "combined" which were both heat conditioned and vinegar supplemented. All groups were exposed to the natural fluctuations of summer ambient temperature (average diurnal ambient temperature of about 30 ± 1 °C and average relative humidity of 58 ± 5%). ETC and broiler gender did not affect the respiratory rate or body temperature of chronic heat-exposed chickens. VS changed the body temperature across time (d35, d42, d49) (linear and quadratic effects, P physiological responses induced by ETC and VS, separately or in association, on chronically heat-stressed chickens were observed. However, the expected cumulative positive responses when the two treatments were combined were not evident.

  16. Cardio-respiratory Physiology of the European Eel (em>Agunilla anguilla)em> in Extreme Environments

    DEFF Research Database (Denmark)

    Methling, Caroline

    The main objective of this PhD thesis was to study the cardio-respiratory capabilities of the European eel (Anguilla anguilla) under extreme conditions. Three environmental conditions were studied i.e. temperature, dissolved oxygen and carbon dioxide, while a fourth condition was physiological an......), body wave speed (v) and Strouhal number (St). The results demonstrate that energy expenditure, swimming performance and efficiency all are significantly affected in migrating eels fitted with external tags....

  17. Using the reactive scope model to understand why stress physiology predicts survival during starvation in Galápagos marine iguanas.

    Science.gov (United States)

    Romero, L Michael

    2012-05-01

    Even though the term "stress" is widely used, a precise definition is notoriously difficult. Notwithstanding this difficulty, stress continues to be an important concept in biology because it attempts to describe how animals cope with environmental change under emergency conditions. Without a precise definition, however, it becomes nearly impossible to make testable a priori predictions about how physiological and hormonal systems will respond to emergency conditions and what the ultimate impact on the animal will be. The reactive scope model is a recent attempt to formulate testable predictions. This model provides a physiological basis to explain why corticosterone negative feedback, but not baseline corticosterone concentrations, corticosterone responses to acute stress, or the interrenal capacity to secrete corticosterone, is correlated with survival during famine conditions in Galápagos marine iguanas. Reactive scope thus provides a foundation for interpreting and predicting physiological stress responses. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Automated microdialysis-based system for in situ microsampling and investigation of lead bioavailability in terrestrial environments under physiologically based extraction conditions.

    Science.gov (United States)

    Rosende, María; Magalhães, Luis M; Segundo, Marcela A; Miró, Manuel

    2013-10-15

    In situ automatic microdialysis sampling under batch-flow conditions is herein proposed for the first time for expedient assessment of the kinetics of lead bioaccessibility/bioavailability in contaminated and agricultural soils exploiting the harmonized physiologically based extraction test (UBM). Capitalized upon a concentric microdialysis probe immersed in synthetic gut fluids, the miniaturized flow system is harnessed for continuous monitoring of lead transfer across the permselective microdialysis membrane to mimic the diffusive transport of metal species through the epithelium of the stomach and of the small intestine. Besides, the addition of the UBM gastrointestinal fluid surrogates at a specified time frame is fully mechanized. Distinct microdialysis probe configurations and membranes types were investigated in detail to ensure passive sampling under steady-state dialytic conditions for lead. Using a 3-cm-long polysulfone membrane with averaged molecular weight cutoff of 30 kDa in a concentric probe and a perfusate flow rate of 2.0 μL min(-1), microdialysis relative recoveries in the gastric phase were close to 100%, thereby omitting the need for probe calibration. The automatic leaching method was validated in terms of bias in the analysis of four soils with different physicochemical properties and containing a wide range of lead content (16 ± 3 to 1216 ± 42 mg kg(-1)) using mass balance assessment as a quality control tool. No significant differences between the mass balance and the total lead concentration in the suite of analyzed soils were encountered (α = 0.05). Our finding that the extraction of soil-borne lead for merely one hour in the GI phase suffices for assessment of the bioavailable fraction as a result of the fast immobilization of lead species at near-neutral conditions would assist in providing risk assessment data from the UBM test on a short notice.

  19. The Effects Of An Exercise Physiology Program on Physical Fitness Variables, Body Satisfaction, and Physiology Knowledge.

    Science.gov (United States)

    Perry, Arlette C.; Rosenblatt, Evelyn S.; Kempner, Lani; Feldman, Brandon B.; Paolercio, Maria A.; Van Bemden, Angie L.

    2002-01-01

    Examined the effects of an exercise physiology program on high school students' physical fitness, body satisfaction, and physiology knowledge. Intervention students received exercise physiology theory and active aerobic and resistance exercise within their biology course. Data from student surveys and measurements indicated that the integrated…

  20. Predicting of Physiological Changes through Personality Traits and Decision Making Styles

    Directory of Open Access Journals (Sweden)

    Saeed Imani

    2016-12-01

    Full Text Available Background and Objective: One of the important concepts of social psychology is cognitive dissonance. When our practice is in conflict with our previous attitudes often change our attitude so that we will operate in concert with; this is cognitive dissonance. The aim of this study was evaluation of relation between decision making styles, personality traits and physiological components of cognitive dissonance and also offering a statistical model about them.Materials and Methods: In this correlation study, 130 students of Elmi-Karbordi University of Safadasht were invited and they were asked to complete Scott & Bruce Decision-Making Styles Questionnaire and Gray-Wilson Personality Questionnaire. Before and after distributing those questionnaires, their physiological conditions were receded. Cognitive dissonance was induced by writing about reducing amount of budget which deserved to orphans and rating the reduction of interest of lovely character that ignore his or her fans. Data analysis conducted through regression and multi vitiate covariance.Results: There were correlation between cognitive styles (Avoidant, dependent, logical and intuitive and also personality variables (Flight and Approach, active avoidance, Fight and Extinction with cognitive dissonance. The effect of cognitive (decision making styles and personality variables on physiological components was mediate indirectly through cognitive dissonance, in levels of P=0.01 and P=0.05 difference, was significant. Conclusion: Decision making styles and personality traits are related to cognitive dissonance and its physiological components, and also predict physiological components of cognitive dissonance.

  1. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  2. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    Science.gov (United States)

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  3. Physiological responses of red mangroves to the climate in the Florida Everglades

    Science.gov (United States)

    Barr, Jordan G.; Fuentes, Jose D.; Engel, Vic; Zieman, Joseph C.

    2009-06-01

    This manuscript reports the findings of physiological studies of red mangrove (Rhizophora mangle L.) conducted from June to August 2001 and from May to June 2003 in the Florida Everglades. In situ physiological measurements were made using environmentally controlled gas exchange systems. The field investigations were carried out to define how regional climate constrains mangrove physiology and ecosystem carbon assimilation. In addition, maximum carboxylation and photosynthetic active radiation (PAR) limited carbon assimilation capacities were investigated during the summer season to evaluate whether ecophysiological models developed for mesophyte plant species can be applied to mangroves. Under summertime conditions in the Florida Everglades, maximum foliar carbon dioxide (CO2) assimilation rates reached 18 μmol CO2 m-2 s-1. Peak molar stomatal conductance to water vapor (H2O) diffusion reached 300 mmol H2O m-2 s-1. Maximum carboxylation and PAR-limited carbon assimilation rates at the foliage temperature of 30°C attained 76.1 ± 23.4 μmol CO2 m-2 s-1 and 128.1 ± 32.9 μmol (e-) m-2 s-1, respectively. Environmental stressors such as the presence of hypersaline conditions and high solar irradiance loading (>500 W m-2 or >1000 μmoles of photons m-2 s-1 of PAR) imposed sharp reductions in carbon assimilation rates and suppressed stomatal conductance. On the basis of both field observations and model analyses, it is also concluded that existing ecophysiological models need to be modified to consider the influences of hypersaline and high radiational loadings on the physiological responses of red mangroves.

  4. Network Physiology: How Organ Systems Dynamically Interact

    Science.gov (United States)

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  5. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  6. Physiologic AV valvular insufficiency in cine MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yoon Hyung; Kang, Eun Joo; Baik, Seung Kug; Ahn, Woo Hyun; Choi, Han Yong; Kim, Bong Gi [Wallace Memorial Baptist Hospital, Pusan (Korea, Republic of)

    1994-05-15

    To give a help in the interpretation of cardiac cine-MR examination, the extent, shape, and timing of appearance of signal void regions near atrioventricular(A-V) valve prospectively evaluate in the healthy population. Using an axial gradient-echo technique with small flip angle, repetition time(TR) of 36 msec and echo time(TE) of 22 msec, 20 volunteers without known valvular abnormalities undertook cardiac cine-MR imaging including atrioventricular valve areas. Transient signal void was observed within the near the tricuspid(13/20 = 65%) and mitral valves(9/20 = 45%), respectively, which is so called {sup p}hysioloic atrioventricular valvular insufficiency{sup .} Eight subjects revealed the signal void areas near both tricuspid and mitral valves but, 5 subjects did not show any evidence of physiologic insufficiency. This physiologic condition does not extend more than 1 cm proximal to A-V valve plane and is generally observed only during early systole. Its morphology is semilunar or triangular configuration with the base to the valve plane in most cases of normal tricuspid insufficiency and small globular appearance in most cases of normal mitral insufficiency. Awareness of normal signal void areas near the A-V valve and their characteristics is critical in the interpretation of cardiac cine MR examinations and maybe helpful in the study of the normal cardiac physiology.

  7. Physiologic AV valvular insufficiency in cine MR imaging

    International Nuclear Information System (INIS)

    Jang, Yoon Hyung; Kang, Eun Joo; Baik, Seung Kug; Ahn, Woo Hyun; Choi, Han Yong; Kim, Bong Gi

    1994-01-01

    To give a help in the interpretation of cardiac cine-MR examination, the extent, shape, and timing of appearance of signal void regions near atrioventricular(A-V) valve prospectively evaluate in the healthy population. Using an axial gradient-echo technique with small flip angle, repetition time(TR) of 36 msec and echo time(TE) of 22 msec, 20 volunteers without known valvular abnormalities undertook cardiac cine-MR imaging including atrioventricular valve areas. Transient signal void was observed within the near the tricuspid(13/20 = 65%) and mitral valves(9/20 = 45%), respectively, which is so called p hysioloic atrioventricular valvular insufficiency . Eight subjects revealed the signal void areas near both tricuspid and mitral valves but, 5 subjects did not show any evidence of physiologic insufficiency. This physiologic condition does not extend more than 1 cm proximal to A-V valve plane and is generally observed only during early systole. Its morphology is semilunar or triangular configuration with the base to the valve plane in most cases of normal tricuspid insufficiency and small globular appearance in most cases of normal mitral insufficiency. Awareness of normal signal void areas near the A-V valve and their characteristics is critical in the interpretation of cardiac cine MR examinations and maybe helpful in the study of the normal cardiac physiology

  8. Using ecology to inform physiology studies: implications of high population density in the laboratory.

    Science.gov (United States)

    Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah

    2015-03-15

    Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.

  9. Physiological constraints and latitudinal breeding season in the Canidae.

    Science.gov (United States)

    Valdespino, Carolina

    2007-01-01

    Physiological strategies that maximize reproductive success may be phylogenetically constrained or might have a plastic response to different environmental conditions. Among mammals, Canidae lend themselves to the study of these two influences on reproductive physiology because all the species studied to date have been characterized as monestrous (i.e., a single ovulatory event per breeding season), suggesting a phylogenetic effect. Greater flexibility could be associated with environments that are less seasonal, such as the tropics; however, little is known for many of the species from this region. To compensate for this lack of data, two regressions were done on the length of the reproductive season relative to the latitudinal distribution of a species: one with raw data and another with phylogenetically independent contrasts. There was a significant negative relationship, independent of phylogeny, with canids that have longer breeding seasons occurring at lower latitudes. In contrast, the pervasiveness of monestrus within Canidae appears to be phylogenetically constrained by their pairing/packing life and is most likely associated with monogamy. The persistence of the monestrous condition is supported by a captive study where a tropical canid, the fennec fox, Vulpes zerda, never exhibited polyestrous cycles despite a constant photoperiod (12L : 12D).

  10. Trace conditioning in insects-keep the trace!

    Science.gov (United States)

    Dylla, Kristina V; Galili, Dana S; Szyszka, Paul; Lüdke, Alja

    2013-01-01

    Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination-a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.

  11. "Physiology in the News": Using Press Releases to Enhance Lay Communication and Introduce Current Physiology Research to Undergraduates

    Science.gov (United States)

    Kelly, Kevin L.; Poteracki, James M.; Steury, Michael D.; Wehrwein, Erica A.

    2015-01-01

    Michigan State University's senior-level undergraduate physiology capstone laboratory uses a simple exercise termed "Physiology in the News," to help students explore the current research within the field of physiology while also learning to communicate science in lay terms. "Physiology in the News" is an activity that charges…

  12. Assessment of daytime physiologic comfort, its perception and coping strategies among people in tertiary institutions in Nigeria

    Directory of Open Access Journals (Sweden)

    Oyenike Mary Eludoyin

    2015-12-01

    Full Text Available Adequate understanding of the extreme thermal condition is as important as that of the averages for planners and policy makers. A significant knowledge gap exists in the physiologic comfort in many developing countries, particularly in the tropical region where thermal stress can pose significant threat to life because of inadequate infrastructure. This study examines the hourly variations in the physiologic comfort of Nigeria using the effective temperature, temperature–humidity and relative strain indices (ETI, THI and RSI, respectively. It also examines the perceptions of a selected sample of Nigerians, and their coping strategies to extreme conditions of cold and heat stress. The results showed that physiologic comfort in Nigeria exhibits variations across the different latitudinal locations; shows seasonal variations and is affected by local geography. Perception of the comfortable climate exhibits variation based on the latitudinal location of the respondents but the coping strategies vary with the wealth of individuals. The study showed that physiologic discomfort is severe in many parts of Nigeria (especially in the climate regions outside the montane climate but the infrastructure to cope with the thermal stress is either poorly known or unaffordable for the majority of the people.

  13. Effects of activity-rest schedules on physiological strain and spinal load in hospital-based porters.

    Science.gov (United States)

    Beynon, C; Burke, J; Doran, D; Nevill, A

    2000-10-01

    Workers in physically demanding occupations require rest breaks to recover from physiological stress and biomechanical loading. Physiological stress can increase the risk of developing musculoskeletal disorders and repeated loading of the spine may increase the potential for incurring back pain. The aim of the study was to assess the impact of an altered activity-rest schedule on physiological and spinal loading in hospital-based porters. An existing 4-h activity-rest schedule was obtained from observations on eight male porters. This schedule formed the normal trial, which included two 5- and one 15-min breaks. An alternative 4-h schedule was proposed (experimental condition) that had two breaks each of 12.5 min. It was hypothesized that the experimental trial is more effective in promoting recovery from physiological strain and spinal shrinkage than the normal trial, due to the 5-min breaks being insufficient to allow physiological variables to return to resting levels or the intervertebral discs to reabsorb fluid. Ten males performed both test conditions and oxygen uptake VO2, heart rate, minute ventilation VE, perceived exertion and spinal shrinkage were recorded. There were no significant differences in any of the measured variables between the two trials (p > 0.05). Median heart rates were 78 (range 71-93) and 82 (71-90) beats.min(-1) for the normal trial and the experimental trial respectively, indicating that the activity was of low intensity. The light intensity was corroborated by the oxygen uptakes (0.75, range 0.65-0.94 1.min(-1)). Spinal shrinkage occurred to the same extent in the two trials (2.12 +/- 3.16 mm and 2.88 +/- 2.92 mm in the normal trial and the experimental trial respectively). Varying the length and positioning of the rest breaks did not significantly affect the physiological responses or magnitude of spinal shrinkage between the two trials. More physically demanding work than the porters' schedule should induce greater physiological

  14. Physiologic stress interventions in cardiac imaging

    International Nuclear Information System (INIS)

    Buda, A.J.

    1985-01-01

    Physiologic stress interventions are designed to assess the reserve capability of coronary flow and myocardial function. In the normal individual, a sufficiently intense physiologic stress may increase coronary flow and cardiac output by 500% to 600%. However, in patients with cardiac disease, these reserve responses may be absent, or considerably blunted. Thus, physiologic stress testing has proved extremely helpful in detecting cardiac abnormalities when resting cardiac function appears normal. Although dynamic exercise remains the standard approach to physiologic stress testing, a number of other interventions have been used, including: (1) isometric exercise, (2) atrial pacing, (3) cold pressor testing, (4) postextrasystolic potentiation, (5) volume loading, and (6) negative intrathoracic pressure. Each of these may be considered an alternative physiologic intervention whenever dynamic exercise is not feasible. These alternative approaches are important since, in our experience, 20% to 30% of subjects are unable to perform dynamic exercise, or exercise inadequately to produce a sufficiently intense cardiac stress. This chapter reviews physiologic considerations, indications, contraindications, protocols, and results of these physiologic stress interventions when used in combination with cardiac radionuclide procedures

  15. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  16. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Science.gov (United States)

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  17. Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.

    Science.gov (United States)

    Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro

    2017-08-01

    Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.

  18. An online formative assessment tool to prepare students for summative assessment in physiology

    Directory of Open Access Journals (Sweden)

    Samantha Kerr

    2016-05-01

    Full Text Available Background. The didactic approach to teaching physiology in our university has traditionally included the delivery of lectures to large groups, illustrating concepts and referencing recommended textbooks. Importantly, at undergraduate level, our assessments demand a level of application of physiological mechanisms to recognised pathophysiological conditions. Objective. To bridge the gap between lectured material and the application of physiological concepts to pathophysiological conditions, we developed a technological tool approach that augments traditional teaching. Methods. Our e-learning initiative, eQuip, is a custom-built e-learning platform specifically created to align question types included in the program to be similar to those used in current assessments. We describe our formative e-learning system and present preliminary results after the first year of introduction, reporting on the performances and perceptions of 2nd-year physiology students. Results. Students who made use of eQuip for at least three of the teaching blocks achieved significantly better results than those who did not use the program (p=0.0032. Questionnaire feedback was positive with regard to the administration processes and usefulness of eQuip. Students reported particularly liking the ease of access to information; however, <60% of them felt that eQuip motivated them to learn. Conclusion. These results are consistent with the literature, which shows that students who made use of an online formative assessment tool performed better in summative assessment tasks. Despite the improved performance of students, the questionnaire results showed that student motives for using online learning tools indicated that they lack self-directed learning skills and seek easy access to information.

  19. Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey; Posukh, Vitaly

    2011-01-01

    Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)-the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.

  20. Physiological Characterization of Fungal Inoculum for Biotechnological Remediation of Soils

    Directory of Open Access Journals (Sweden)

    Nara Ballaminut

    2014-08-01

    Full Text Available The aim of this work was to study the bioremediating potential of Lentinus crinitus CCIBt2611 according to the physiological condition of the inoculum. Inoculum was prepared using sugarcane ground husk (C:N 90, at several physiological ages and applied in soil contaminated with pentachlorophenol. The inoculum's potential was assessed by evaluating the mycelium's vigor at soil's colonization, determination of peroxidase and phenoloxidase activities, in vitro degradation of Remazol Brilliant Blue R and in vivo degradation of pentachlorophenol. The results showed that the assessed parameters were relevant to identify the quality of the inoculum. For L. crinitus, 10 day old inoculum showed good soil-colonization speed with significant enzymatic activities, indicating the role of Manganese-dependent peroxidase and laccase in degradation, and efficient degradation of pentachlorophenol.

  1. Beyond Fractals and 1/f Noise: Multifractal Analysis of Complex Physiological Time Series

    Science.gov (United States)

    Ivanov, Plamen Ch.; Amaral, Luis A. N.; Ashkenazy, Yosef; Stanley, H. Eugene; Goldberger, Ary L.; Hausdorff, Jeffrey M.; Yoneyama, Mitsuru; Arai, Kuniharu

    2001-03-01

    We investigate time series with 1/f-like spectra generated by two physiologic control systems --- the human heartbeat and human gait. We show that physiological fluctuations exhibit unexpected ``hidden'' structures often described by scaling laws. In particular, our studies indicate that when analyzed on different time scales the heartbeat fluctuations exhibit cascades of branching patterns with self-similar (fractal) properties, characterized by long-range power-law anticorrelations. We find that these scaling features change during sleep and wake phases, and with pathological perturbations. Further, by means of a new wavelet-based technique, we find evidence of multifractality in the healthy human heartbeat even under resting conditions, and show that the multifractal character and nonlinear properties of the healthy heart are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure. In contrast to the heartbeat, we find that the interstride interval time series of healthy human gait, a voluntary process under neural regulation, is described by a single fractal dimension (such as classical 1/f noise) indicating monofractal behavior. Thus our approach can help distinguish physiological and physical signals with comparable frequency spectra and two-point correlations, and guide modeling of their control mechanisms.

  2. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  3. Organic and Inorganic Nitrogen Fertilization Effects on Some Physiological and Agronomical Traits of Chickpea (Cicer arietinum L. in Irrigated Condition

    Directory of Open Access Journals (Sweden)

    Ali Namvar

    2013-09-01

    Full Text Available The effects of organic and inorganic nitrogen fertilization on some physiological and agronomical traits of chickpea (Cicer arietinum L. cv. ILC 482, investigated at the Experimental Farm of the Agriculture Faculty, University of Mohaghegh Ardabili. The trial was laid out in spilt plot design based on randomized complete block with four replications. Experimental factors were mineral nitrogen fertilizer at four levels (0, 50, 75 and 100 kg urea/ha in the main plots, and two levels of inoculation with Rhizobium bacteria (with and without inoculation as sub plots. N application and Rh. inoculation showed positive effects on physiological and agronomical traits of chickpea. The highest value of leaf RWC recorded in 50 kg urea/ha that was statistically in par with 75 kg urea/ha application while, usage of 75 kg urea/ha showed the maximum stem RWC. The maximum CMS obtained form application of 75 kg urea/ha. Chlorophyll content, leaf area index and grains protein content showed their maximum values in the highest level of nitrogen usage (100 kg urea/ha. Moreover, inoculated plants had the highest magnitudes of all physiological traits. In the case of agronomical traits, the highest values of plant height, number of primary and secondary branches, number of pods per plant, number of grains per plant, grain and biological yield were obtained from the highest level of nitrogen fertilizer (100 kg urea/ha and Rh. inoculation. Application of 75 kg urea/ha was statistically in par with 100 kg urea/ha in all of these traits. The results pointed out that some N fertilization (i.e. between 50 and 75 kg urea/ha as starter can be beneficial to improve growth, development, physiological traits and total yield of inoculated chickpea.

  4. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    Science.gov (United States)

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  5. Physiological measurement platform using wireless network with Android application

    Directory of Open Access Journals (Sweden)

    Swagata Devi

    Full Text Available Currently, many people suffer from arrhythmia or hypoxia, which are abnormal health conditions. Arrhythmia occurs when a person has an irregular or abnormal heart rate, while hypoxia is realized when there is a deficiency in oxygen reaching the tissues. When a person suffers from arrhythmia, there is the possibility that the person has cardiovascular disease. A low oxygen level eventually leads to organ failure, which can result in death. To prevent such conditions, a mobile physiological measurement platform has been proposed in this paper. This system will continuously monitor the heart rate and the oxygen level of a patient. The proposed system is mainly beneficial because the medical staff or the caregiver can provide care to patients without being in close proximity. In this way, multiple numbers of patients can be treated by the physician at the same time. In this paper, two main physiological signals: the electrocardiogram (ECG and the photoplethysmogram (PPG are recorded, to measure the heart rate (in beats per minute and the peripheral capillary oxygen saturation level or SpO2 (in percentage of the patient. This is done by using a convenient graphical user interface (GUI in the Matrix Laboratory (MATLAB. Pre-processing of the bio-medical signals is done in the GUI and the calculated results are saved as text files in the current directory of MATLAB. We further propose an Android application, which will display the physiological parameters after the text files have been accessed via a wireless network. The heart rate and the oxygen level can both be monitored via this application. In case the results show an abnormal reading, the physician is notified immediately via text messaging. Keywords: ECG, PPG, SpO2, GUI, MATLAB, Android, Android App

  6. Physiological responses to salinity in solanum lycopersicum l. varieties

    International Nuclear Information System (INIS)

    Amador, B.M.; Montiel, L.G.H.; Perez, J.J.R.; Puente, E.O.R.

    2017-01-01

    Worldwide over 30% of irrigated and 7% of rainfed agriculture has been limited by salinity stress. Tolerance of crops to salinity varies and negatively affects agricultural productivity. Despite the plethora of information on NaCl tolerance mechanisms, it is still not completely elucidated. The purpose of this research was to determine NaCl tolerance of eight tomato varieties (Tropic, Feroz, Ace, Super Rio Grande, Yaqui, Missouri, Vita and Floradade) by evaluating their physiological traits. These varieties were exposed to salinity stress by the addition of NaCl (0, 50, 100, 150 and 200 mM). The physiological variables measured were stomatal conductance, water potential, chlorophyll a, b, total, indirect chlorophyll content, leaf temperature, transpiration and relative water content. The results showed differences in tolerance between varieties in terms of NaCl concentrations and there was interaction between varieties * NaCl in the majority of physiological variables. Symptoms of NaCl stress in the tomato plants were leaf wilting, desiccation, necrosis, and death. All measured variables decreased as salinity increased, except for relative water content and leaf temperature, values of both these variables increased with higher concentrations of NaCl. Physiological traits may be used as an effective means for screening for salinity tolerance in tomato varieties. Amongst the tomato varieties evaluated were Missouri the most tolerant, and Rio Grande the least tolerant. The results indicate that the varieties best tolerant to NaCl conditions from most to least tolerant in successive orderare: Missouri, followed by Ace, Yaqui, Tropic, Floradade, Feroz, Vita and Rio Grande. (author)

  7. Physiology Applied to Everyday: The Practice of Professional Contextualization of Physiology Concepts as a Way of Facilitating Learning

    Science.gov (United States)

    Borges, Sidnei; Mello-Carpes, Pâmela Billig

    2014-01-01

    The teaching of Physiology is indispensable in many biological and health disciplines. Physiology is one of the major components of the curriculum in a number of life science courses, including the study of life, cells, tissues, and organisms as well as their functions. A bigger challenge for physiology teachers is to make physiological concepts…

  8. ALTERNATIVE FOR REDUCING PHYSIOLOGICAL DISORDERS IN ‘BARTLETT’ PEARS

    Directory of Open Access Journals (Sweden)

    MOISES ZUCOLOTO

    2016-01-01

    Full Text Available ABSTRACT ‘Bartlett’ pears from different harvest dates were assessed regarding to cold storage potential and reduction of physiological disorder incidence. Three harvests, the first (HD1, second (HD2, and third (HD3, were carried out at weekly intervals. The pears were assessed after the harvest, with no exposition to the temperature conditioning, after 20, 40, 60, 80, 100 and 120 days at 0 ± 1 °C and 90 ± 5% RH and after three and six days at room temperature (20 ± 1 °C. Fruit from the early harvest (HD1 showed the smallest incidence of physiological disorder during both cold and room temperature storage. The disorder symptoms became apparent in HD1 fruit after 20 days at cold storage followed by three days at 20 °C, whereas HD2 and HD3 fruit showed the symptoms before being kept in a cold room. ‘Bartlett’ pears harvested at 70.75 N flesh firmness can be stored at 0 ± 1 °C for up to 40 days and preferably commercialized within three days, when they reach the firmness for eating. The extension of cold storage as well as the trade period can result in higher physiological disorder incidence and loss of sensorial quality.

  9. Physiological changes in largemouth bass exposed to paper mill effluents under laboratory and field conditions

    Science.gov (United States)

    Sepulveda, M.S.; Gallagher, E.P.; Gross, T.S.

    2004-01-01

    We report here on studies designed to asses the effects of paper mill effluents on non-reproductive functions of free-ranging and captive Florida largemouth bass (Micropterus salmoides floridanus) This was accomplished by conducting an outdoor tank study, in which fish were exposed to well water or to 10%, 20%, 40%, and 80% full strength effluent for 28 or 56 days, and by sampling largemouth bass from sites within the St. Johns River, Florida, upstream and downstream from a paper mill plant. Blood and plasma samples from fish from the tank study and from fish sampled from the ambient sites were analyzed for over 20 variables. We also determined liver and spleen weights and examined them histologically. The most significant finding from the tank study was an increase in the concentration of albumin and hepatosomatic index for bass exposed to ???20% effluents for 56 days. Spleenosomatic index and number of melanomacrophage centers were decreased in bass from effluent-dominated sites (Palatka and Rice Creek), whereas concentrations of calcium, phosphorous, glucose, and creatinine were elevated in fish from these sites, compared to fish from reference streams. Fish from Rice Creek also had fewer red blood cells, and male bass from Palatka had lower concentrations of cholesterol. Plasma concentrations of albumin and hepatic concentrations of glutathione were elevated in males from Palatka, and both females and males from Rice Creek had higher concentrations of globulin. These results indicate a complex pattern of effects of paper mill effluents on several physiological functions. However, despite the myriad of treatment and site-related effects, most physiological parameters fell within normal ranges when compared to reports on largemouth bass and other freshwater species.

  10. Environmental stressors influencing hormones and systems physiology in cattle

    Science.gov (United States)

    2014-01-01

    Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges. PMID:24996419

  11. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  12. Nigerian Journal of Physiological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Nigerian Journal of Physiological Sciences (Niger. J. Physiol. Sci.) is a biannual publication of the Physiological Society of Nigeria. It covers diverse areas of research in physiological sciences, publishing reviews in current research areas and original laboratory and clinical research in physiological ...

  13. Effects of Modified Multistage Field Test on Performance and Physiological Responses in Wheelchair Basketball Players

    Science.gov (United States)

    Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie

    2015-01-01

    A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; P physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841

  14. Physiological responses to hypothermia.

    Science.gov (United States)

    Wood, Thomas; Thoresen, Marianne

    2015-04-01

    Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. TheEffect of Salicylic Acid Application on Some Morphological and Physiological Characteristics of Grape Cultivars (Vitisvinifera L. Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Nasser Abbaspour

    2017-12-01

    Full Text Available Introduction: Water stress is considered as a main environmental factor limiting crop growth and yield, including grape in Mediterranean areas.Selection for drought-tolerantvarieties is possible through investigation of their performance under stress conditions. The estimation of physiological characteristics as reliable indices can be used as a tool to select tolerant plants. For this reason, varieties and genotypes of one plant species are usually investigated through physiological characteristics and its relation to drought tolerance. Investigation of the effects of water stress on some growth and physiological characteristics in grape plants has revealed that plant height, number of leaves and nodes, leaf area and the percentage of dry weightdecreased under increasing drought stress. Salicylic Acid is a naturally occurring plant hormone whichinfluences various morphological and physiological functions in plant. It can act as an important signaling molecule and has diverse effects on biotic and abiotic stresses tolerance capacity. Materials and Methods: In this research, two-yearold grapesplanted in plastic pots containingingredients of humus, soil and sand (1:2:1 were used. The experiment was conducted using a factorial based on randomized complete block design with three factors including irrigation periods (every 5, 10 and 15 days, salicylic acid concentrations (0, 1 and 2 mM and grape cultivars (Rasheh andBidanesefid with 3 replications in thegreenhouse of faculty of agricultureinUrmia University. Plant height, stem diameter and leaf area and chlorophyll indicesweremeasuredby usingruler, digital caliper (Model22855 NO: Z, leaf Area Meter (ModelAM200 and SPAD-502 chlorophyll meter (Minolta Crop, Japan,respectively. In order to determine proline content, malondialdehyde (MDA, total protein and total soluble sugars, spectrophotometric methods [51,25,6and28] were utilized,respectively. Results and Discussion: Based on comparing the averages

  16. PHYSIOLOGICAL RESPONSES OF ELITE JUNIOR AUSTRALIAN RULES FOOTBALLERS DURING MATCH-PLAY

    Directory of Open Access Journals (Sweden)

    James P. Veale

    2009-09-01

    Full Text Available Australian Football (AF is Australia's major football code. Despite research in other football codes, to date, no data has been published on the physiological responses of AF players during match play. Fifteen athletes (17.28 ± 0.76 yrs participated in four pre-season matches, sanctioned by Australian Football League (AFL Victoria, investigating Heart Rate (HR, Blood Lactate (BLa, Core Temperature (Tcore, and Hydration status. Match HR was measured continuously using HR monitors. BLa was measured via finger prick lancet at the end of each quarter of play. Tcore was measured by use of ingestible temperature sensor and measured wirelessly at the end of each quarter of play. Hydration status was measured using refractometry, measuring urine specific gravity, and body weight pre and post-match. Environmental conditions were measured continuously during matches. Results of HR responses showed a high exertion of players in the 85-95% maximum HR range. Elevated mean BLa levels, compared to rest, were observed in all players over the duration of the matches (p = 0.007. Mean Tcore rose 0.68 °C between start and end of matches. Mean USG increased between 0.008 g/ml (p = 0.001 with mean body weight decreasing 1.88 kg (p = 0.001. This study illustrates physiological responses in junior AF players playing in the heat as well as providing physiological data for consideration by AF coaching staff when developing specific training programs. Continued research should consider physiological measurements under varying environments, and at all playing levels of AF, to ascertain full physiological responses during AF matches.

  17. Independence among physiological traits suggests flexibility in the face of ecological demands on phenotypes

    NARCIS (Netherlands)

    Buehler, D.M.; Vézina, F.; Goymann, W.; Schwabl, I.; Versteegh, M.; Tieleman, B.I.; Piersma, T.

    2012-01-01

    Phenotypic flexibility allows animals to adjust their physiology to diverse environmental conditions encountered over the year. Examining how these varying traits covary gives insights into potential constraints or freedoms that may shape evolutionary trajectories. In this study, we examined

  18. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L. under Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    Fahim Nawaz

    2016-09-01

    Full Text Available Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium (Se supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L. under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity and water stress (60% field capacity conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing and was repeated after one week, whereas water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41% and enhanced relative water contents (30%, total chlorophyll (53%, carotenoid contents (60%, accumulation of total free amino acids (40% and activities of superoxide dismutase (53%, catalase (30%, peroxidase (27% and ascorbate peroxidase (27% with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15% and increased crude protein (47%, fibre (10%, nitrogen free extract (10% and Se content (36% but did not affect crude ash content in water stressed maize plants. We propose

  19. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y.; Tahir, Muhammad N.; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N.; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize (Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L-1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that Se

  20. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions.

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Ashraf, Muhammad Y; Tahir, Muhammad N; Zulfiqar, Bilal; Salahuddin, Muhammad; Shabbir, Rana N; Aslam, Muhammad

    2016-01-01

    Climate change is one of the most complex challenges that pose serious threats to livelihoods of poor people who rely heavily on agriculture and livestock particularly in climate-sensitive developing countries of the world. The negative effects of water scarcity, due to climate change, are not limited to productivity food crops but have far-reaching consequences on livestock feed production systems. Selenium (Se) is considered essential for animal health and has also been reported to counteract various abiotic stresses in plants, however, understanding of Se regulated mechanisms for improving nutritional status of fodder crops remains elusive. We report the effects of exogenous selenium supply on physiological and biochemical processes that may influence green fodder yield and quality of maize ( Zea mays L.) under drought stress conditions. The plants were grown in lysimeter tanks under natural conditions and were subjected to normal (100% field capacity) and water stress (60% field capacity) conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days after sowing) and was repeated after 1 week, whereas, water spray was used as a control. Drought stress markedly reduced the water status, pigments and green fodder yield and resulted in low forage quality in water stressed maize plants. Nevertheless, exogenous Se application at 40 mg L -1 resulted in less negative leaf water potential (41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid contents (60%), accumulation of total free amino acids (40%) and activities of superoxide dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%) with respect to control under water deficit conditions. Consequently, Se regulated processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%), nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content in water stressed maize plants. We propose that

  1. Physical and physiological attributes of female volleyball players--a review.

    Science.gov (United States)

    Lidor, Ronnie; Ziv, Gal

    2010-07-01

    The main objective of this article was to review a series of studies (n = 31) on physical attributes, physiological attributes, and on-court performances of female volleyball players. Empirical and practical knowledge emerging from studies on training-related issues in volleyball, such as body mass, fat-free mass, aerobic profile, strength, and agility and speed, should be integrated and applied when planning annual training programs for volleyball players. Based on our review, it was found that (a) players of a higher skill level are taller, somewhat heavier, and have higher vertical jump values than players of a lower level; (b) the aerobic profile of female volleyball players is similar to that of female basketball players; (c) ballistic resistance training can increase vertical jump values in female volleyball players; and (d) preseason conditioning should be conducted to prevent fatigue and reduced performance at the beginning of the season. Among the research concerns discussed in the article are that there is a lack data for on-court performance and time-motion analysis in female volleyball players and that more experimental/manipulative studies are needed to examine the effectiveness of different training programs on physiological attributes of female volleyball players. Two practical implications are suggested for volleyball and strength and conditioning coaches: (a) functional and nonfunctional overreaching should be carefully monitored when planning strength and conditioning programs, and (b) volleyball programs should include ballistic-type training.

  2. The integumentary system: anatomy, physiology and function of skin.

    Science.gov (United States)

    McLafferty, Ella; Hendry, Charles; Alistair, Farley

    This article, which forms part of the life sciences series, examines the anatomy and physiology of skin, also termed the integumentary system. Skin is composed of two main layers, the epidermis and dermis. The structure of the epidermis and dermis are described and their functions are discussed. Accessory structures, such as nails and hair are also considered. Although many diseases of the skin exist, two common conditions--psoriasis and decubitus ulcers--are described in this article.

  3. Gut Melatonin in Vertebrates: Chronobiology and Physiology

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2015-07-01

    Full Text Available Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s as its synchronizer. Based on mammalian findings, physiological significance of gut derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini-review is to summarize existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  4. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses......Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged...... by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner...

  5. Food availability is expressed through physiological stress indicators in nestling white ibis: A food supplementation experiment

    Science.gov (United States)

    Herring, G.; Cook, Mark I.; Gawlik, D.E.; Call, Erynn M.

    2011-01-01

    Physiological responses to environmental stress such as adrenocortical hormones and cellular stress proteins have recently emerged as potentially powerful tools for investigating physiological effects of avian food limitation. However, little is known about the physiological stress responses of free-living nestling birds to environmental variation in food availability. We experimentally tested how hydrologically mediated changes in food availability affect the physiological stress responses of juvenile white ibises Eudocimus albus in a fluctuating wetland. We provided supplementary food to free-living nestlings during 2years with contrasting hydrologic and food availability conditions, and used plasma (PCORT) and faecal (FCORT) corticosterone and heat shock proteins (HSP60 and HSP70) from first-hatched (A-nestlings) and second-hatched (B-nestlings) to detect relatively short- to long-term responses to food limitation. Nestling physiological stress responses were relatively low in all treatments during the year with optimal food availability, but PCORT, FCORT and HSP60 levels increased during the poor food year. FCORT and HSP60 responses were clearly due to nutritional condition as elevated concentrations were evident primarily in control nestlings. Significant year by hatch order interactions for both FCORT and HSP60 revealed that these increases were largely incurred by B-nestlings. FCORT and HSP60 responses were also well developed early in neonatal development and remained elevated for the duration of the experiment suggesting a chronic stress response. PCORT and HSP70 were less informative stress responses. The nutritionally mediated increases in FCORT and HSP60 provide compelling evidence that white ibis nestlings can be physiologically affected by environmental food levels. FCORT and HSP60 are effective indicators of nutritional mediated stress for nestling white ibises and potentially for other species prone to capture or handling stress. ?? 2010 The Authors

  6. Physiological aspects of forest disease

    International Nuclear Information System (INIS)

    Ziegler, H.

    1986-01-01

    Many kinds of forest disease having the most varied causes are currently classified as 'forest die-back'. These include for one part diseases of obvious etiology: infectious diseases, damage from frost and drought, as well as harmful effects of defined air pollutants from known sources. But apart from this, a fast growing tendency is noted for extensive damage to appear whose origin is not yet clearly elucidated and which are probably the result of many factors, in other words, which can be termed as 'chain disease'. A striking fact is that any scientist who has so far attributed that last-mentioned disease condition of forests to any single decisive cause, has chosen one from his own specific scientific field. Physiologic-biochemical analysis of the damage symptoms is impaired by the fact that trees are, for obvious biological reasons, difficult objects for providing precise data. Yet reliable statements can be made on the paths by which wet and dry depositions penetrate into the plant organs, the penetration of pollutants into the cell, their points of attack in cells and tissue (above all photosynthesis, material transport, and hormone balance), and their influence on the correlations between the individual organs. Particular attention should be paid to possible or indirect effects on the mycorrhiza of forest trees, i.e. on the symbiosis between roots and fungi. The physiologic-biochemical investigations and considerations reported provide circumstantial evidence, but no proof regarding the causes hitherto unexplained. (orig.) [de

  7. The XIIIth International Physiological Congress in Boston in 1929: American physiology comes of age.

    Science.gov (United States)

    Rall, Jack A

    2016-03-01

    In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological Congress occurred in 1889 in Switzerland with an emphasis on experimental demonstrations. The XIIIth Congress, the first to be held outside of Europe, took place in Boston, MA, in 1929. It was a watershed meeting and indicated that American physiology had come of age. Meticulously organized, it was the largest congress to date, with over 1,200 participants from more than 40 countries. Getting to the congress was a cultural adventure, especially for the 400 scientists and their families from over 20 European countries, who sailed for 10 days on the S.S. Minnekahda. Many of the great physiologists of the world were in attendance, including 22 scientists who were either or would become Nobel Laureates. There were hundreds of platform presentations and many experimental demonstrations. The meeting was not without controversy as a conflict, still not completely settled, arose over the discovery of ATP. After the meeting, hundreds of participants made a memorable trip to the Marine Biological Laboratory at Woods Hole, MA, which culminated in a "good old fashioned Cape Cod Clambake." Although not as spectacular as the 1929 congress, the physiological congresses have continued with goals similar to those established more than a century ago. Copyright © 2016 The American Physiological Society.

  8. Physiological Responses and Hedonics During Prolonged Physically Interactive Videogame Play.

    Science.gov (United States)

    Santo, Antonio S; Barkley, Jacob E; Hafen, Paul S; Navalta, James

    2016-04-01

    This study was designed to assess physiologic responses and hedonics (i.e., liking) during prolonged physically interactive videogame play. Participants (n = 24) completed three 30-minute videogame conditions on separate days in a random order. During two of the conditions participants played physically interactive videogames (Nintendo of America, Inc. [Redmond, WA] "Wii™ Fit" "Basic Run" and "Basic Step"). During the third condition participants played a traditional/sedentary game ("Tanks!"), which required minimal physical movement for gameplay. Oxygen consumption (VO2) was assessed using indirect calorimetry throughout each condition and averaged every 5 minutes. Liking was assessed via visual analog scale at the 15- and 30-minute time points during each condition. Mean VO2 was significantly (P videogame (5.39 ± 1.0 mL/kg/minute, 1.5 ± 0.1 METs). "Basic Step" was also greater (P videogame conditions. Furthermore, because liking was similar across all gaming conditions, participants may be willing to substitute the physically interactive videogames in place of the traditional/sedentary game.

  9. Physiology of excitable membranes: proceedings of the 28th International Congress of Physiological Sciences, Budapest, 1980

    National Research Council Canada - National Science Library

    Salánki, J; Meves, H

    1981-01-01

    ... - - - - - - - - - - - - - - - - - - - - - Regulatory Functions of the CNS. Principles of Motion and Organization Regulatory Functions of the CNS. Subsystems Physiology of Non-excitable Cells Physiology...

  10. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  11. [Individual physical performance capacity with physiological and biochemical indicators of stress].

    Science.gov (United States)

    Bergert, K D; Nestler, K; Böttger, H; Schettler, R

    1989-09-01

    22 health male subjects were exposed by a combination of physical exercises and heat. Strain related physiological and biochemical parameters were measured. Different individual reactions were obtained under controlled conditions. In dependence on the individual performance an increased mobilisation of lactat, free fatty acids and catecholamines were found. The determination of aerob physical performance can be applied for the evaluation of working capacity.

  12. Physiological joint line total knee arthroplasty designs are especially sensitive to rotational placement - A finite element analysis.

    Science.gov (United States)

    Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N

    2018-01-01

    Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.

  13. A Physiological Case Study of a Paralympic Wheelchair Tennis Player: Reflective Practise

    Science.gov (United States)

    Diaper, Nicholas J.; Goosey-Tolfrey, Victoria L.

    2009-01-01

    This study was designed to examine the physiological changes caused by long-term training in a world class female tennis player in preparation for a major championship. Additionally, we aim to describe the training interventions and determine a suitable cooling strategy that was to be used at the 2004 Paralympic Games. The athlete underwent regular physiological assessment during 2003-2004. Physiological measures involved body composition, submaximal and peak oxygen uptake and key variables associated with maximal sprinting. In addition, a suitable match-play cooling intervention and hydration strategy was also explored. Body composition improved over the course of the study. Aerobic capacity fell by 21%, yet the submaximal physiological variables such as lactate profile and pushing economy improved. The trade off of aerobic capacity was perhaps noticeably counter-balanced with the maintenance of the peak sprinting speed and improvement found in the fatigue profile across ten repeated sprints. The extensive training programme was responsible for these changes and these adaptations resulted in a more confident athlete, in peak physical condition leading into the Paralympic Games. It is difficult to appreciate the extent to which this work had an impact on tennis performance given the skill requirements of wheelchair tennis and this warrants future attention. Key points Physiological adaptations were apparent over the two-year training period. The training emphasis resulted in a reduction in aerobic capacity, yet an improvement in repetitive sprint performance was seen leading into the Major competition. An effective cooling technique was identified that could be used during wheelchair tennis performance. The athlete and coaches were complimentary to the physiological support provided, which resulted in a more confident athlete at the Paralympic Games. PMID:24149542

  14. Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. PMID:24732070

  15. Translational physiology: from molecules to public health.

    Science.gov (United States)

    Seals, Douglas R

    2013-07-15

    The term 'translational research' was coined 20 years ago and has become a guiding influence in biomedical research. It refers to a process by which the findings of basic research are extended to the clinical research setting (bench to bedside) and then to clinical practice and eventually health policy (bedside to community). It is a dynamic, multidisciplinary research approach. The concept of translational physiology applies the translational research model to the physiological sciences. It differs from the traditional areas of integrative and clinical physiology by its broad investigative scope of basic research to community health. Translational physiology offers exciting opportunities, but presently is under-developed and -utilized. A key challenge will be to expand physiological research by extending investigations to communities of patients and healthy (or at risk) individuals. This will allow bidirectional physiological investigation throughout the translational continuum: basic research observations can be studied up to the population level, and mechanisms can be assessed by 'reverse translation' in clinical research settings and preclinical models based on initial observations made in populations. Examples of translational physiology questions, experimental approaches, roadblocks and strategies for promotion are discussed. Translational physiology provides a novel framework for physiology programs and an investigational platform for physiologists to study function from molecular events to public health. It holds promise for enhancing the completeness and societal impact of our work, while further solidifying the critical role of physiology in the biomedical research enterprise.

  16. Physiology of High-Altitude Acclimatization

    Indian Academy of Sciences (India)

    Author Affiliations. Sonam Chawla1 Shweta Saxena2. Defence Institute of Physiology and Allied Sciences, Delhi; Experimental Biology Division Defence Institute of Physiology and Allied Sciences Defence Research and Development Organisation Lucknow Road, Timarpur Delhi 110054 ...

  17. Developing Physiologic Models for Emergency Medical Procedures Under Microgravity

    Science.gov (United States)

    Parker, Nigel; O'Quinn, Veronica

    2012-01-01

    Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI s patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.

  18. Conservation physiology of animal migration

    Science.gov (United States)

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  19. A PHYSIOLOGICAL CASE STUDY OF A PARALYMPIC WHEELCHAIR TENNIS PLAYER: REFLECTIVE PRACTISE

    Directory of Open Access Journals (Sweden)

    Nicholas J. Diaper

    2009-06-01

    Full Text Available This study was designed to examine the physiological changes caused by long-term training in a world class female tennis player in preparation for a major championship. Additionally, we aim to describe the training interventions and determine a suitable cooling strategy that was to be used at the 2004 Paralympic Games. The athlete underwent regular physiological assessment during 2003-2004. Physiological measures involved body composition, submaximal and peak oxygen uptake and key variables associated with maximal sprinting. In addition, a suitable match-play cooling intervention and hydration strategy was also explored. Body composition improved over the course of the study. Aerobic capacity fell by 21%, yet the submaximal physiological variables such as lactate profile and pushing economy improved. The trade off of aerobic capacity was perhaps noticeably counter-balanced with the maintenance of the peak sprinting speed and improvement found in the fatigue profile across ten repeated sprints. The extensive training programme was responsible for these changes and these adaptations resulted in a more confident athlete, in peak physical condition leading into the Paralympic Games. It is difficult to appreciate the extent to which this work had an impact on tennis performance given the skill requirements of wheelchair tennis and this warrants future attention

  20. Physiology of fish endocrine pancreas.

    Science.gov (United States)

    Plisetskaya, E M

    1989-06-01

    From the very beginning of physiological studies on the endocine pancreas, fish have been used as experimental subjects. Fish insulin was one of the first vertebrate insulins isolated and one of the first insulins whose primary and then tertiary structures were reported. Before a second pancreatic hormone, glucagon, was characterized, a physiologically active 'impurity', similar to that in mammalian insulin preparations, was found in fish insulins.Fish have become the most widely used model for studies of biosynthesis and processing of the pancreatic hormones. It seems inconceivable, therefore, that until the recent past cod and tuna insulins have been the only purified piscine islet hormones available for physiological experiments. The situation has changed remarkably during the last decade.In this review the contemporary status of physiological studies on the fish pancreas is outlined with an emphasis on the following topics: 1) contents of pancreatic peptides in plasma and in islet tissue; 2) actions of piscine pancreatic hormones in fish; 3) specific metabolic consequences of an acute insufficiency of pancreatic peptides; 4) functional interrelations among pancreatic peptides which differ from those of mammals. The pitfalls, lacunae and the perspectives of contemporary physiological studies on fish endocrine pancreas are outlined.

  1. The Face of Physiology

    Directory of Open Access Journals (Sweden)

    Paul White

    2008-10-01

    Full Text Available This article explores the relationship between the physiology of the emotions and the display of character in Victorian Britain. Charles Bell and others had begun to link certain physiological functions, such as respiration, with the expression of feelings such as fear, regarding the heart and other internal organs as instruments by which the emotions were made visible. But a purely functional account of the emotions, which emerged through the development of reflex physiology during the second half of the century, would dramatically alter the nature of feelings and the means of observing them. At the same time, instinctual or acquired sympathy, which had long underpinned the accurate reading of expressions, became a problem to be surmounted by new 'objectively'. Graphic recording instruments measuring a variety of physiological functions and used with increasing frequency in clinical diagnostics became of fundamental importance for tracing the movement of feelings during the period prior to the development of cinematography. They remained, in the form of devices such as the polygraph, a crucial and controversial means of measuring affective states, beneath the potentially deceptive surface of the body.

  2. Application of meta-transcriptomics and –proteomics to analysis of in situ physiological state

    Directory of Open Access Journals (Sweden)

    Allan eKonopka

    2012-05-01

    Full Text Available Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. In particular, global proteomics reflect expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III-reducing populations has been tracked over time. Members of a subsurface clade within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i temporal changes in anabolism and catabolism of acetate, (ii the onset of N2 fixation when N became limiting, and (iii expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.

  3. 10 Ways to Improve Instructor Effectiveness in an Undergraduate Exercise Physiology Course

    Science.gov (United States)

    Acquaviva, John

    2015-01-01

    The purpose of this article is to present a variety of teaching strategies in one of the most difficult courses undergraduates are required to take: exercise physiology. This course is unique because it challenges students to constantly recall and apply complex concepts to a variety of exercise modes, intensities, and conditions. Further, both the…

  4. Trace conditioning in insects – Keep the trace!

    Directory of Open Access Journals (Sweden)

    Kristina V Dylla

    2013-08-01

    Full Text Available Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS and an unconditioned stimulus (US following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination – a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase, which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning.

  5. Impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries heifers

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2017-09-01

    Full Text Available Aim: The present investigation was undertaken to study the impact of heat stress and hypercapnia on physiological, hematological, and behavioral profile of Tharparkar and Karan Fries (KF heifers. Materials and Methods: The animals of both the breeds of Tharparkar and KF were exposed at different temperatures and CO2 levels. Exposure conditions of 25°C, 400 ppm CO2 level, and 60% relative humidity (RH were taken as a control condition. The exposure conditions 40°C with two levels of CO2 500 ppm and 600 ppm with RH 55±5% and exposure conditions 42°C with two levels of CO2 500 ppm and 600 ppm with RH 55±5% were taken as treatments. The exposure period in each condition was 4 h daily for 5 consecutive days. Results: Physiological responses (respiration rate [RR], pulse rate [PR], and rectal temperature [RT] were significantly (p<0.01 higher and different during all exposure conditions compared to control condition in both the breeds of cattle. KF heifers had higher RR, PR, and RT than Tharparkar heifers. Hematological parameters, namely, red blood cell, hemoglobin, and packed cell volume were significantly higher and different during all exposure condition than control in both the breeds, whereas no significant changes were observed in total leukocyte count and differential leukocyte count. Blood pH increased with increase in temperature and CO2 levels and was significantly higher than control conditions. PCO2 and base excess were significantly (p<0.05 lower, and PO2 was higher during different exposure conditions than control in both breeds. Restlessness and excitement signs were observed in all the exposure conditions as compared to control condition in both the breeds. Conclusion: Changes in physiological responses, behavioral pattern, and hematological parameters reflect the current functional status of the body system, and it can be used as an index for assessing the adaptation capacity of cattle to predict changes occurring in climate

  6. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  7. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  8. Assessment of Smolt Condition for Travel Time Analysis Project, 1987-1997 Project Review.

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Robin M.; Hans, Karen M.; Beeman, John W. [US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA

    1997-12-01

    The assessment of Smolt Condition for Travel Time Analysis Project (Bonneville Power Administration Project 87-401) monitored attributes of salmonid smolt physiology in the Columbia and Snake River basins from 1987 to 1997, under the Northwest Power Planning Council Fish and Wildlife Program, in cooperation with the Smolt Monitoring Program of the Fish Passage Center. The primary goal of the project was to investigate the physiological development of juvenile salmonids related to migration rates. The assumption was made that the level of smolt development, interacting with environmental factos such as flow, would be reflected in travel times. The Fish Passage Center applied the physiological measurements of smolt condition to Water Budget management, to regulate flows so as to decrease travel time and increase survival.

  9. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  10. Physiological responding to stress in middle-aged males enriched for longevity

    DEFF Research Database (Denmark)

    Jansen, Steffy W M; van Heemst, Diana; van der Grond, Jeroen

    2016-01-01

    Individuals enriched for familial longevity display a lower prevalence of age-related diseases, such as cardiovascular- and metabolic diseases. Since these diseases are associated with stress and increased cortisol levels, one of the underlying mechanisms that may contribute to healthy longevity...... might be a more adaptive response to stress. To investigate this, male middle-aged offspring from long-lived families (n = 31) and male non-offspring (with no familial history of longevity) (n = 26) were randomly allocated to the Trier Social Stress Test or a control condition in an experimental design......-offspring and showed a trend towards lower heart rate. Offspring from long-lived families might thus be less stressed prior to potentially stressful events and consequently show overall lower levels in physiological responses. Although attenuated physiological responding cannot be ruled out, lower starting points...

  11. The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature.

    Science.gov (United States)

    Du, Wei-Guo; Shine, Richard

    2015-02-01

    Temperature profoundly affects the rate and trajectory of embryonic development, and thermal extremes can be fatal. In viviparous species, maternal behaviour and physiology can buffer the embryo from thermal fluctuations; but in oviparous animals (like most reptiles and all birds), an embryo is likely to encounter unpredictable periods when incubation temperatures are unfavourable. Thus, we might expect natural selection to have favoured traits that enable embryos to maintain development despite those fluctuations. Our review of recent research identifies three main routes that embryos use in this way. Extreme temperatures (i) can be avoided (e.g. by accelerating hatching, by moving within the egg, by cooling the egg by enhanced rates of evaporation, or by hysteresis in rates of heating versus cooling); (ii) can be tolerated (e.g. by entering diapause, by producing heat-shock proteins, or by changing oxygen use); or (iii) the embryo can adjust its physiology and/or developmental trajectory in ways that reduce the fitness penalties of unfavourable thermal conditions (e.g. by acclimating, by exploiting brief windows of favourable conditions, or by producing the hatchling phenotype best suited to those incubation conditions). Embryos are not simply passive victims of ambient conditions. Like free-living stages of the life cycle, embryos exhibit behavioural and physiological plasticity that enables them to deal with unpredictable abiotic challenges. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  12. Physiologic effects of bowel preparation

    DEFF Research Database (Denmark)

    Holte, Kathrine; Nielsen, Kristine Grubbe; Madsen, Jan Lysgård

    2004-01-01

    PURPOSE: Despite the universal use of bowel preparation before colonoscopy and colorectal surgery, the physiologic effects have not been described in a standardized setting. This study was designed to investigate the physiologic effects of bowel preparation. METHODS: In a prospective study, 12...

  13. Behavioural and physiological effects of finely balanced decision-making in chickens.

    Science.gov (United States)

    Davies, Anna C; Nicol, Christine J; Persson, Mia E; Radford, Andrew N

    2014-01-01

    In humans, more difficult decisions result in behavioural and physiological changes suggestive of increased arousal, but little is known about the effect of decision difficulty in other species. A difficult decision can have a number of characteristics; we aimed to monitor how finely balanced decisions, compared to unbalanced ones, affected the behaviour and physiology of chickens. An unbalanced decision was one in which the two options were of unequal net value (1 (Q1) vs. 6 (Q6) pieces of sweetcorn with no cost associated with either option); a finely balanced decision was one in which the options were of equal net value (i.e. hens were "indifferent" to both options). To identify hens' indifference, a titration procedure was used in which a cost (electromagnetic weight on an access door) was applied to the Q6 option, to find the individual point at which hens chose this option approximately equally to Q1 via a non-weighted door. We then compared behavioural and physiological indicators of arousal (head movements, latency to choose, heart-rate variability and surface body temperature) when chickens made decisions that were unbalanced or finely balanced. Significant physiological (heart-rate variability) and behavioural (latency to pen) differences were found between the finely balanced and balanced conditions, but these were likely to be artefacts of the greater time and effort required to push through the weighted doors. No other behavioural and physiological measures were significantly different between the decision categories. We suggest that more information is needed on when best to monitor likely changes in arousal during decision-making and that future studies should consider decisions defined as difficult in other ways.

  14. Behavioural and physiological effects of finely balanced decision-making in chickens.

    Directory of Open Access Journals (Sweden)

    Anna C Davies

    Full Text Available In humans, more difficult decisions result in behavioural and physiological changes suggestive of increased arousal, but little is known about the effect of decision difficulty in other species. A difficult decision can have a number of characteristics; we aimed to monitor how finely balanced decisions, compared to unbalanced ones, affected the behaviour and physiology of chickens. An unbalanced decision was one in which the two options were of unequal net value (1 (Q1 vs. 6 (Q6 pieces of sweetcorn with no cost associated with either option; a finely balanced decision was one in which the options were of equal net value (i.e. hens were "indifferent" to both options. To identify hens' indifference, a titration procedure was used in which a cost (electromagnetic weight on an access door was applied to the Q6 option, to find the individual point at which hens chose this option approximately equally to Q1 via a non-weighted door. We then compared behavioural and physiological indicators of arousal (head movements, latency to choose, heart-rate variability and surface body temperature when chickens made decisions that were unbalanced or finely balanced. Significant physiological (heart-rate variability and behavioural (latency to pen differences were found between the finely balanced and balanced conditions, but these were likely to be artefacts of the greater time and effort required to push through the weighted doors. No other behavioural and physiological measures were significantly different between the decision categories. We suggest that more information is needed on when best to monitor likely changes in arousal during decision-making and that future studies should consider decisions defined as difficult in other ways.

  15. Energetic Physiology Mediates Individual Optimization of Breeding Phenology in a Migratory Arctic Seabird.

    Science.gov (United States)

    Hennin, Holly L; Bêty, Jöel; Legagneux, Pierre; Gilchrist, H Grant; Williams, Tony D; Love, Oliver P

    2016-10-01

    The influence of variation in individual state on key reproductive decisions impacting fitness is well appreciated in evolutionary ecology. Rowe et al. (1994) developed a condition-dependent individual optimization model predicting that three key factors impact the ability of migratory female birds to individually optimize breeding phenology to maximize fitness in seasonal environments: arrival condition, arrival date, and ability to gain in condition on the breeding grounds. While empirical studies have confirmed that greater arrival body mass and earlier arrival dates result in earlier laying, no study has assessed whether individual variation in energetic management of condition gain effects this key fitness-related decision. Using an 8-year data set from over 350 prebreeding female Arctic common eiders (Somateria mollissima), we tested this component of the model by examining whether individual variation in two physiological traits influencing energetic management (plasma triglycerides: physiological fattening rate; baseline corticosterone: energetic demand) predicted individual variation in breeding phenology after controlling for arrival date and body mass. As predicted by the optimization model, individuals with higher fattening rates and lower energetic demand had the earliest breeding phenology (shortest delays between arrival and laying; earliest laying dates). Our results are the first to empirically determine that individual flexibility in prebreeding energetic management influences key fitness-related reproductive decisions, suggesting that individuals have the capacity to optimally manage reproductive investment.

  16. Selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children

    Science.gov (United States)

    Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.

    2014-11-01

    In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.

  17. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    Science.gov (United States)

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Physiologic and behavioral effects of papoose board on anxiety in dental patients with special needs.

    Science.gov (United States)

    Chen, Hsin-Yung; Yang, Hsiang; Chi, Huang-Ju; Chen, Hsin-Ming

    2014-02-01

    Anxiety induced by dental treatment can become a serious problem, especially for patients with special needs. Application of deep touch pressure, which is a sensory adaptation technique, may ameliorate anxiety in disabled patients. However, few empiric studies have investigated the possible links between the clinical effects of deep touch pressure and its behavioral and physiologic aspects. Equally little progress has been made concerning theoretical development. The current study is a crossover intervention trial to investigate the behavioral and physiological effects of deep touch pressure for participants receiving dental treatment. Nineteen disabled participants, who were retrospectively subclassified for positive trend or negative trend, were recruited to receive the papoose board as an application of deep touch pressure. Quantitative analyses of behavioral assessments and physiological measurements, including electrodermal activity and heart rate variability, were conducted. We sought to understand the modulation of the autonomic nervous system and the orchestration of sympathetic and parasympathetic (PsNS) nervous systems. Behavioral assessments reported that higher levels of anxiety were induced by the dental treatment for participants with both groups of positive and negative trends. Although no significant differences were found in the SNS activity, physiologic responses indicated that significantly changes of PsNS activity were observed under the stress condition (dental treatment) when deep touch pressure intervention was applied, especially for participants in the group of positive trend. Our results suggest that the PsNS activation plays a critical role in the process of ANS modulation. This study provides not only physiologic evidence for the modulation effects of deep touch pressure on stressful conditions in dental environments but also the evidence that the application of papoose board, as a sensory adaptation technique, is not harmful for dental

  19. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. CH2 - Lighting and Physiology

    Directory of Open Access Journals (Sweden)

    Sergio Altomonte

    2012-11-01

    Full Text Available This paper explains the designed performances of the new CH2 building in Melbourne, Australia. CH2 is an environmentally significant project that involves biomimicry of natural systems to produce indoor conditions that are conducive to user comfort, health and productivity. This paper focuses on lighting and physiology and examines the solutions chosen for artificial and natural lighting and the likely effects these will have on building occupants. The purpose of the paper is to critically comment on the adopted strategy and, cognisance of contemporary thinking in lighting design, to judge the effectiveness of this aspect of the project with a view to later verification and post-occupancy review. The paper concludes that CH2 is an exemplar of lighting innovation that provides valuable lessons to designers of office buildings, particularly in the Melbourne CSD.

  1. Experimental study on physiological responses and thermal comfort under various ambient temperatures.

    Science.gov (United States)

    Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi

    2008-01-28

    This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.

  2. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  3. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    Science.gov (United States)

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  4. Physiology of Ramadan fasting

    OpenAIRE

    Shokoufeh Bonakdaran

    2016-01-01

    Considering the emphasis of Islam on the importance of fasting, Muslims attempt to fast from dawn until sunset during the holy month of Ramadan. Fasting is associated with several benefits for normal and healthy individuals. However, it could pose high risks to the health of diabetic patients due to certain physiological changes. This study aimed to compare the physiological changes associated with fasting in healthy individuals and diabetic patients during Ramadan. Furthermore, we reviewed t...

  5. Targeting the redox balance in inflammatory skin conditions

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Carels, C.E.L.; Lundvig, D.M.S.

    2013-01-01

    Reactive oxygen species (ROS) can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative

  6. A valuation method on physiological functionality of food materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-15

    This reports is about valuation method on physiological functionality of food materials. It includes ten reports: maintenance condition of functional foods in Korea by Kim, Byeong Tae, management plan and classification of functional foods by Jung, Myeong Seop, measurement method vitality of functional foods for preventing diabetes, measurement way of aging delayed activation by Lee, Jae Yong, improvement on effectiveness of anti hypertension by functional foods by Park, Jeon Hong, and practice case for the method of test on anti gastritis antiulcer by Lee, Eun Bang.

  7. A valuation method on physiological functionality of food materials

    International Nuclear Information System (INIS)

    2001-10-01

    This reports is about valuation method on physiological functionality of food materials. It includes ten reports: maintenance condition of functional foods in Korea by Kim, Byeong Tae, management plan and classification of functional foods by Jung, Myeong Seop, measurement method vitality of functional foods for preventing diabetes, measurement way of aging delayed activation by Lee, Jae Yong, improvement on effectiveness of anti hypertension by functional foods by Park, Jeon Hong, and practice case for the method of test on anti gastritis antiulcer by Lee, Eun Bang.

  8. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization.

    Directory of Open Access Journals (Sweden)

    Samia Dhahri

    Full Text Available We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.

  9. In-Situ Determination of the Mechanical Properties of Gliding or Non-Motile Bacteria by Atomic Force Microscopy under Physiological Conditions without Immobilization

    Science.gov (United States)

    Dhahri, Samia; Ramonda, Michel; Marlière, Christian

    2013-01-01

    We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions. PMID:23593493

  10. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  11. Role of Ergothioneine in Microbial Physiology and Pathogenesis.

    Science.gov (United States)

    Cumming, Bridgette M; Chinta, Krishna C; Reddy, Vineel P; Steyn, Adrie J C

    2018-02-20

    L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments. In particular, ergothioneine enables pathogenic microbes, such as Mycobacterium tuberculosis (Mtb), to withstand hostile environments within the host to establish infection. Recent Advances: Ergothioneine has been reported to maintain bioenergetic homeostasis in Mtb and protect Mtb against oxidative stresses, thereby enhancing the virulence of Mtb in a mouse model. Furthermore, ergothioneine augments the resistance of Mtb to current frontline anti-TB drugs. Recently, an opportunistic fungus, Aspergillus fumigatus, which infects immunocompromised individuals, has been found to produce ergothioneine, which is important in conidial health and germination, and contributes to the fungal resistance against redox stresses. The molecular mechanisms of the functions of ergothioneine in microbial physiology and pathogenesis are poorly understood. It is currently not known if ergothioneine is used in detoxification or antioxidant enzymatic pathways. As ergothioneine is involved in bioenergetic and redox homeostasis and antibiotic susceptibility of Mtb, it is of utmost importance to advance our understanding of these mechanisms. A clear understanding of the role of ergothioneine in microbes will advance our knowledge of how this thione enhances microbial virulence and resistance to the host's defense mechanisms to avoid complete eradication. Antioxid. Redox Signal. 28, 431-444.

  12. The future bioclimatic conditions in Austria under the aspect of climate change scenarios

    Science.gov (United States)

    Rudel, E.; Matzarakis, A.; Neumke, R.; Endler, Ch,; Koch, E.

    2009-09-01

    The IPCC quantifies Heat Stress as a combination of air temperature and air humidity. In order to describe the future bioclimatic conditions in a human-biometeorological manner the analysis a modern thermal index has been chosen. The PET (Physiologically Equivalent Temperature) allows the assessment of the effect of the thermal environment based on the energy balance of humans including thermo-physiological information. The data for the calculation of the PET came from climate models. The required data are for the climatic parameters air temperature, relative humidity, wind velocity and mean cloud cover as the necessary inputs for Physiologically Equivalents Temperature. Regarding future climatic changes PET calculations for the time slices 1961 and 1990 and also 2070 and 2100 have been run in 0.5 ° resolution. By the use of statistical regression for the 0.5 ° resolution the results have been downscaled to 1 km resolution in order to identify and quantify the areas in Austria, which will be more affected bioclimatologically. The constructed maps present current and future climatic conditions and also differences for the different time slices and SRES-scenarios of the IPCC. Maps of the difference between the Physiological Equivalent temperature and air temperature have been constructed to show that the used thermal indices, which have been applied by the IPCC underestimate the expected thermal bioclimate conditions for future climate. The results offer fundamental information for tourism and recreation authorities for present and expected climatic and bioclimatic conditions.

  13. Physiological mechanisms of the effect of weightlessness on the body

    Science.gov (United States)

    Kasyan, I. I.; Kopanev, V. I.

    1975-01-01

    Experimental data show that physiological reactions observed under weightlessness conditions are caused by: (1) The direct effect of weightlessness, as a consequence of decrease (""disappearance'') of the weight of body tissues and organs; and (2) the mediated effect of weightlessness, as a result of changes in the functional state of the central nervous system and the cooperative work of the analyzers. The human body adopts to weightless conditions under the prolonged effects of it. In this case, four periods can be distinguished: The first period, a transitional process lasting from 1 to 24 hours; second period, initial adaptation to conditions of weightlessness and readjustment of all functional systems of the body; the third period, adaptation to the unusual mechanical conditions of the external environment, lasting from 3 to 8 days and more; and the fourth period, the stage of possible imbalance of the functions and the systems of some astronauts, as a result of the prolonged effect of weightlessness.

  14. Comparative study on agro-physiology of sugarcane (saccharum officinarum l.) genotypes at different irrigation co-efficient values

    International Nuclear Information System (INIS)

    Farooq, Z.; Mehmood, S.

    2015-01-01

    Drought is the primary factor limiting sugarcane growth and physiological development under the climatic conditions of Pakistan; especially in those areas where without supplemental irrigation, productivity is not possible. Lack of detailed information regarding the performance of cane varieties under drought during formative stage and poor selection breeding program played key role in limiting cane productivity. The proposed study was conducted to investigate the genetic response of different cultivars viz., CSSG-676, CSSG-668, HoSG-795, HoSG-529, NSG-59 and HSF- 240 (standard) regarding the physiological development of sugarcane and its productivity at different irrigation co-efficient levels (100%, 80% and 60%). This study elucidates that moisture has a pronounced impact on the physiological attributes of sugarcane and proper irrigation scheduling with 20 no. of irrigations were reported best in-term of better germination (69.65%), leaf area index (7.13), crop growth rate (8.44), net assimilation rate (1.06) and chlorophyll contents (5.98). Similarly in case of genomic response, NSG-59 was reported significant best as compared to all other test cultivars in term of better physiological performance, showing significant higher leaf area index, crop growth rate, chlorophyll contents and water use efficiency that maximized the crop growth and resulted in higher net assimilation rate. Higher proline contents (1.59) produced in NSG-59 also made it best under drought conditions. (author)

  15. Behavioral and physiological reactions in dogs to a veterinary examination: Owner-dog interactions improve canine well-being.

    Science.gov (United States)

    Csoltova, Erika; Martineau, Michaël; Boissy, Alain; Gilbert, Caroline

    2017-08-01

    In order to improve well-being of dogs during veterinary visits, we aimed to investigate the effect of human social interactions on behavior and physiology during routine examination. Firstly, we assessed the impact of a standardized veterinary examination on behavioral and physiological indicators of stress in dogs. Secondly, we examined whether the owner's tactile and verbal interactions with the dog influenced behavioral and physiological stress-associated parameters. A randomized within-subjects crossover design was used to examine behavior (n=33), rectal temperature (n=33), heart rate (HR) (n=18), maximal ocular surface temperature (max OST) (n=13) and salivary cortisol concentrations (n=10) in healthy privately owned pet dogs. The study consisted of two experimental conditions: a) "contact" - owner petting and talking to the dog during the examination; b) "non-contact" - owner present during the examination but not allowed to interact with the dog. Our findings showed that the veterinary examinations produced acute stress responses in dogs during both "contact" and "non-contact" conditions, with significant increases in lip licking, HR, and max OST. A significant decrease in attempts to jump off the examination table (p=0.002) was observed during the examination in the "contact" compared to the "non-contact" condition. In addition, interactions of owners showed an attenuating effect on HR (p=0.018) and max OST (p=0.011) in their dogs. The testing order (first vs. second visit) had no impact on behavioral and physiological parameters, suggesting that dogs did not habituate or sensitize to the examination procedure. Moreover, the duration of the owner-dog interactions had no significant impact on the behavioral and physiological responses of their dogs. This study demonstrates that owner-dog interactions improve the well-being of dogs during a veterinary examination. Future research may assist in further understanding the mechanisms associated with reducing

  16. CHANGES IN PHYSIOLOGICAL TREMOR RESULTING FROM SLEEP DEPRIVATION UNDER CONDITIONS OF INCREASING FATIGUE DURING PROLONGED MILITARY TRAINING

    Directory of Open Access Journals (Sweden)

    A. Tomczak

    2015-01-01

    Full Text Available The aim of the study was to define the changes of the characteristics of physiological postural tremor under conditions of increasing fatigue and lack of sleep during prolonged military training (survival.The subjects of the study were 15 students of the Polish Air Force Academy in Dęblin. The average age was 19.9±1.3 years. During the 36-hour-long continuous military training (survival the subjects were deprived of sleep. Four tremor measurements were carried out for each of the subjects: Day 1 – morning, after rest (measurement 0; Day 2 – morning, after overnight physical exercise (measurement 1; afternoon, after continuous sleep deprivation (measurement 2; Day 3 – morning, after a full night sleep (measurement 3. The accelerometric method using an acceleration measuring kit was applied to analyse tremor. A significant difference between mean values of the index evaluating tremor power in low frequencies L2-4 in measurement 0 and measurement 3 was observed (p<0.01. No significant differences were found in mean values of index L10-20. Mean frequencies F2-4 differed significantly from each other (F 2,42 =4.53; p<0.01. Their values were 2.94±0.11, 2.99±0.9, 2.93±0.07 and 2.91±0.07 for successive measurements. A gradual, significant decrease of F 8-14 was observed (F 2,42 =5.143; p<0.01. Prolonged sleep deprivation combined with performing tasks demanding constant physical effort causes long-lasting (over 24 hours changes of the amplitude of low-frequency tremor changes. This phenomenon may significantly influence psychomotor performance, deteriorating the ability to perform tasks requiring movement precision.

  17. The Impact of Heat Exposure and Sleep Restriction on Firefighters' Work Performance and Physiology during Simulated Wildfire Suppression.

    Science.gov (United States)

    Vincent, Grace E; Aisbett, Brad; Larsen, Brianna; Ridgers, Nicola D; Snow, Rod; Ferguson, Sally A

    2017-02-12

    This study was designed to examine the effects of ambient heat on firefighters' physical task performance, and physiological and perceptual responses when sleep restricted during simulated wildfire conditions. Thirty firefighters were randomly allocated to the sleep restricted ( n = 17, SR; 19 °C, 4-h sleep opportunity) or hot and sleep restricted ( n = 13, HOT + SR; 33 °C, 4-h sleep opportunity) condition. Firefighters performed two days of simulated, intermittent, self-paced work circuits comprising six firefighting tasks. Heart rate, and core temperature were measured continuously. After each task, firefighters reported their rating of perceived exertion and thermal sensation. Effort sensation was also reported after each work circuit. Fluids were consumed ad libitum. Urine volume and urine specific gravity were analysed. Sleep was monitored using polysomnography. There were no differences between the SR and HOT + SR groups in firefighters' physiological responses, hydration status, ratings of perceived exertion, motivation, and four of the six firefighting tasks (charged hose advance, rake, hose rolling, static hose hold). Black out hose and lateral repositioning were adversely affected in the HOT + SR group. Working in hot conditions did not appear to consistently impair firefighters work performance, physiology, and perceptual responses. Future research should determine whether such findings remain true when individual tasks are performed over longer durations.

  18. Diffuse optical tomography with physiological and spatial a priori constraints

    International Nuclear Information System (INIS)

    Intes, Xavier; Maloux, Clemence; Guven, Murat; Yazici, Birzen; Chance, Britton

    2004-01-01

    Diffuse optical tomography is a typical inverse problem plagued by ill-condition. To overcome this drawback, regularization or constraining techniques are incorporated in the inverse formulation. In this work, we investigate the enhancement in recovering functional parameters by using physiological and spatial a priori constraints. More accurate recovery of the two main functional parameters that are the blood volume and the relative saturation is demonstrated through simulations by using our method compared to actual techniques. (note)

  19. Eco-physiological adaptation of the land snail Achatina achatina (Gastropoda: Pulmonata in tropical agro-ecosystem

    Directory of Open Access Journals (Sweden)

    Christian O. Chukwuka

    2014-03-01

    Full Text Available The survival of land snails in an adverse environmental condition depends on the integral physiological, morphological and behavioural adaptations. These adaptations are essential in understanding the species-specific habitat requirements and in predicting their environmental responses. In this study, the monthly and the periodic patterns of eco-physiological adaptation of land snail, Achatina achatina in Nsukka tropical agro-ecosystem were assessed from December 2012 to July 2013. Standard methods were employed in sampling the land snail and determination of the water content, biochemical fuel reserves and enzyme concentrations of the samples. The present results showed that lipids were high at the beginning of aestivation and depleted as the aestivation progressed. Glycogen was significantly low throughout the aestivation months (December–March and increased in the active months (April–July. Protein content recorded a definite pattern all through the months studied. Catabolism of lactate and a decrease in activity of LDH during aestivation and substantial increase upon activation were observed. Data showed that transaminase and aspartate enzymes depleted during the aestivation months indicating that the snails may have developed potential cell injury due to oxidative stress and thermal heat. A disassociation between the physiological responses and climatic data was recorded. The physiological adaptation of A. achatina ensures regular adjustment under extreme conditions and compensates for its metabolic regulation in the tropics. It is concluded that survival of A. achatina is not environmentally predicted; rather it depends on the species-specific inherent process in predicting responses for survival.

  20. Involvement of microRNAs in physiological and pathological processes in the lung

    Directory of Open Access Journals (Sweden)

    Kriegova Eva

    2010-11-01

    Full Text Available Abstract To date, at least 900 different microRNA (miRNA genes have been discovered in the human genome. These short, single-stranded RNA molecules originate from larger precursor molecules that fold to produce hairpin structures, which are subsequently processed by ribonucleases Drosha/Pasha and Dicer to form mature miRNAs. MiRNAs play role in the posttranscriptional regulation of about one third of human genes, mainly via degradation of target mRNAs. Whereas the target mRNAs are often involved in the regulation of diverse physiological processes ranging from developmental timing to apoptosis, miRNAs have a strong potential to regulate fundamental biological processes also in the lung compartment. However, the knowledge of the role of miRNAs in physiological and pathological conditions in the lung is still limited. This review, therefore, summarizes current knowledge of the mechanism, function of miRNAs and their contribution to lung development and homeostasis. Besides the involvement of miRNAs in pulmonary physiological conditions, there is evidence that abnormal miRNA expression may lead to pathological processes and development of various pulmonary diseases. Next, the review describes current state-of-art on the miRNA expression profiles in smoking-related diseases including lung cancerogenesis, in immune system mediated pulmonary diseases and fibrotic processes in the lung. From the current research it is evident that miRNAs may play role in the posttranscriptional regulation of key genes in human pulmonary diseases. Further studies are, therefore, necessary to explore miRNA expression profiles and their association with target mRNAs in human pulmonary diseases.

  1. Biophysics and cell physiology

    International Nuclear Information System (INIS)

    Mazur, P.

    1975-01-01

    Progress is reported on research activities in the fields of physiology and low-temperature biology of mammalian embryos; effects of sub-zero temperatures on eggs and embryos of sea urchins; survival of frozen-thawed human red cells; effects of radiation on physiology of Escherichia coli; transfer of triplet electronic energy in dinucleotides; effects of x radiation on DNA degradation; energy deposition by neutrons; photosynthesis; excision repair of uv-induced pyrimidine dimers in DNA of plant cells

  2. Physiological Parameters Database for Older Adults

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Physiological Parameters Database for Older Adults is available for download and contains physiological parameters values for healthy older human adults (age 60...

  3. Selective attention reduces physiological noise in the external ear canals of humans. I: Auditory attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. PMID:24732069

  4. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    Science.gov (United States)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  5. COGNITIVE AND PHYSIOLOGICAL INITIAL RESPONSES DURING COOL WATER IMMERSION

    Directory of Open Access Journals (Sweden)

    Alex Buoite Stella

    2014-12-01

    Full Text Available The initial responses during water immersion are the first mechanisms reacting to a strong stimulation of superficial nervous cold receptors. Cold shock induces tachycardia, hypertension, tachypnea, hyperventilation, and reduced end-tidal carbon dioxide fraction. These initial responses are observed immediately after the immersion, they last for about 3 min and have been also reported in water temperatures up to 25 °C. the aim of the present study was to observe cognitive and physiological functions during immersion in water at cool temperature. Oxygen consumption, ventilation, respiratory frequency, heart rate and expired fraction of oxygen were measured during the experiment. A code substitution test was used to evaluate executive functions and, specifically, working memory. This cognitive test was repeated consecutively 6 times, for a total duration of 5 minutes. Healthy volunteers (n = 9 performed the test twice in a random order, once in a dry thermoneutral environment and once while immersed head-out in 18 °C water. The results indicated that all the physiological parameters were increased during cool water immersion when compared with the dry thermoneutral condition (p < 0.05. Cognitive performance was reduced during the cool water immersion when compared to the control condition only during the first 2 min (p < 0.05. Our results suggest that planning the best rescue strategy could be partially impaired not only because of panic, but also because of the cold shock.

  6. Archives: Nigerian Journal of Physiological Sciences

    African Journals Online (AJOL)

    Items 1 - 19 of 19 ... Archives: Nigerian Journal of Physiological Sciences. Journal Home > Archives: Nigerian Journal of Physiological Sciences. Log in or Register to get access to full text downloads.

  7. Physiological intracellular crowdedness is defined by perimeter to area ratio of subcellular compartments

    Directory of Open Access Journals (Sweden)

    Noriko eHiroi

    2012-07-01

    Full Text Available The intracellular environment is known to be a crowded and inhomogeneous space. Such an in vivo environment differs from a well-diluted, homogeneous environment for biochemical reactions. However, the effects of both crowdedness and the inhomogeneity of environment on the behavior of a mobile particle have not yet been investigated sufficiently. As described in this paper, we constructed artificial reaction spaces with fractal models, which are assumed to be non-reactive solid obstacles in a reaction space with crevices that function as operating ranges for mobile particles threading the space. Because of the homogeneity of the structures of artificial reaction spaces, the models succeeded in reproducing the physiological fractal dimension of solid structures with a smaller number of non-reactive obstacles than in the physiological condition. This incomplete compatibility was mitigated when we chose a suitable condition of a perimeter-to-area ratio of the operating range to our model. Our results also show that a simulation space is partitioned into convenient reaction compartments as an in vivo environment with the exact amount of solid structures estimated from TEM images. The characteristics of these compartments engender larger mean square displacement of a mobile particle than that of particles in smaller compartments. Subsequently, the particles start to show confined particle-like behavior. These results are compatible with our previously presented results, which predicted that a physiological environment would produce quick-response and slow-exhaustion reactions.

  8. The physiological challenges of the 1952 Copenhagen poliomyelitis epidemic and a renaissance in clinical respiratory physiology

    Science.gov (United States)

    West, John B.

    2005-01-01

    The 1952 Copenhagen poliomyelitis epidemic provided extraordinary challenges in applied physiology. Over 300 patients developed respiratory paralysis within a few weeks, and the ventilator facilities at the infectious disease hospital were completely overwhelmed. The heroic solution was to call upon 200 medical students to provide round-the-clock manual ventilation using a rubber bag attached to a tracheostomy tube. Some patients were ventilated in this way for several weeks. A second challenge was to understand the gas exchange and acid-base status of these patients. At the onset of the epidemic, the only measurement routinely available in the hospital was the carbon dioxide concentration in the blood, and the high values were initially misinterpreted as a mysterious “alkalosis.” However, pH measurements were quickly instituted, the PCO2 was shown to be high, and modern clinical respiratory acid-base physiology was born. Taking a broader view, the problems highlighted by the epidemic underscored the gap between recent advances made by physiologists and their application to the clinical environment. However, the 1950s ushered in a renaissance in clinical respiratory physiology. In 1950 the coverage of respiratory physiology in textbooks was often woefully inadequate, but the decade saw major advances in topics such as mechanics and gas exchange. An important development was the translation of the new knowledge from departments of physiology to the clinical setting. In many respects, this period was therefore the beginning of modern clinical respiratory physiology. PMID:16020437

  9. Three-dimensional printing physiology laboratory technology.

    Science.gov (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  10. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  11. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    Science.gov (United States)

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra

    2017-10-23

    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  12. Foundations of Intonational Meaning: Anatomical and Physiological Factors.

    Science.gov (United States)

    Gussenhoven, Carlos

    2016-04-01

    Like non-verbal communication, paralinguistic communication is rooted in anatomical and physiological factors. Paralinguistic form-meaning relations arise from the way these affect speech production, with some fine-tuning by the cultural and linguistic context. The effects have been classified as "biological codes," following the terminological lead of John Ohala's Frequency Code. Intonational morphemes, though arguably non-arbitrary in principle, are in fact heavily biased toward these paralinguistic meanings. Paralinguistic and linguistic meanings for four biological codes are illustrated. In addition to the Frequency Code, the Effort Code, and the Respiratory Code, the Sirenic Code is introduced here, which is based on the use of whispery phonation, widely seen as being responsible for the signaling and perception of feminine attractiveness and sometimes used to express interrogativity in language. In the context of the evolution of language, the relations between physiological conditions and the resulting paralinguistic and linguistic meanings will need to be clarified. Copyright © 2016 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  13. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    Science.gov (United States)

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  14. Face and voice as social stimuli enhance differential physiological responding in a Concealed Information Test

    Directory of Open Access Journals (Sweden)

    Wolfgang eAmbach

    2012-11-01

    Full Text Available Attentional, intentional, and motivational factors are known to influence the physiological responses in a Concealed Information Test (CIT. Although concealing information is essentially a social action closely related to motivation, CIT studies typically rely on testing participants in an environment lacking of social stimuli: Subjects interact with a computer while sitting alone in an experimental room. To address this gap, we examined the influence of social stimuli on the physiological responses in a CIT.Seventy-one participants underwent a mock-crime experiment with a modified CIT. In a between-subjects design, subjects were either questioned acoustically by a pre-recorded male voice presented together with a virtual male experimenter’s uniform face or by a text field on the screen, which displayed the question devoid of face and voice. Electrodermal activity (EDA, respiration line length (RLL, phasic heart rate (pHR, and finger pulse waveform length (FPWL were registered. The Psychopathic Personality Inventory - Revised (PPI-R was administered in addition. The differential responses of RLL, pHR, and FPWL to probe vs. irrelevant items were greater in the condition with social stimuli than in the text condition; interestingly, the differential responses of EDA did not differ between conditions. No modulatory influence of the PPI-R sum or subscale scores was found.The results emphasize the relevance of social aspects in the process of concealing information and in its detection. Attentional demands as well as the participants’ motivation to avoid detection might be the important links between social stimuli and physiological responses in the CIT.

  15. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    Science.gov (United States)

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO 2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  16. Effects of music tempo on performance, psychological, and physiological variables during 20 km cycling in well-trained cyclists.

    Science.gov (United States)

    2013-10-01

    Few studies have investigated the effects of music on trained athletes during high intensity endurance tasks. Therefore, this study investigated the effects of different music tempi on performance, psychological, and physiological responses of well-trained cyclists to time trial cycling. 10 male road cyclists (M age = 35 yr., SD = 7), with a minimum of three years racing experience, performed four 20-km time trials on a Computrainer Pro 3D indoor cycle trainer over a period of four weeks. The time-trials were spaced one week apart. The music conditions for each trial were randomised between fast-tempo (140 bpm), medium-tempo (120 bpm), slow-tempo (100 bpm), and no music. Performance (completion time, power output, average speed and cadence), physiological (heart rate, oxygen consumption, breathing frequency and respiratory exchange ratio), psychophysical (RPE), and psychological (mood states) data were collected for each trial. Results indicated no significant changes in performance, physiological, or psychophysical variables. Total mood disturbance and tension increased significantly in the fast-tempo trial when compared with medium and no-music conditions.

  17. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark. Copyright © 2016, American Association for the Advancement of Science.

  18. Nobel Prize in Physiology or Medicine

    Science.gov (United States)

    ... Educational - Medicine Prize Related The Nobel Prize in Physiology or Medicine has been awarded to people and ... this page MLA style: "The Nobel Prize in Physiology or Medicine – Educational". Nobelprize.org. Nobel Media ...

  19. Anatomy and physiology of the esophagus.

    Science.gov (United States)

    Gavaghan, M

    1999-02-01

    Modern diagnosis and treatment of esophageal disease is a result of progress in assessing the anatomy and physiology of the esophagus, as well as refinements in anesthetic and surgical techniques. Esophageal carcinoma spreads rapidly and metastasizes easily. The tendency for early spread and the absence of symptoms result in late diagnosis that reduces treatment options and cure rates. Lifestyle (i.e., use of alcohol and tobacco), nutritional deficiencies, ingestion of nitrosamines, and mutagen-inducing fungi are blamed for cancer of the esophagus. Other pathologic conditions (e.g., achalasia, Barrett's epithelium, gastric reflux, hiatal hernia) are potential contributors to the development of carcinoma. Nurses are in key positions to identify the existence of factors contributing to premalignant or malignant lesions and to educate patients and make the appropriate referrals.

  20. Success stories and emerging themes in conservation physiology.

    Science.gov (United States)

    Madliger, Christine L; Cooke, Steven J; Crespi, Erica J; Funk, Jennifer L; Hultine, Kevin R; Hunt, Kathleen E; Rohr, Jason R; Sinclair, Brent J; Suski, Cory D; Willis, Craig K R; Love, Oliver P

    2016-01-01

    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause-effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of 'conservation physiology', to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and management

  1. Towards Individualized Physiology Lecturing in Africa

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    1 (1): 13 - 16. Journal of African Association of Physiological Sciences ... import from validated text format question series and seamless use of any computer program or internet .... Silverthorn D U, Human Physiology, an Integrated. Approach ...

  2. The Physiologic and Behavioral Implications of Playing Active and Sedentary Video Games in a Seated and Standing Position.

    Science.gov (United States)

    Sanders, Gabriel J; Rebold, Michael; Peacock, Corey A; Williamson, Meagan L; Santo, Antonio S; Barkley, Jacob E

    Previous studies have assessed physiologic response while playing video games per manufacturer instructions with participants standing during active video game play and seated during sedentary game play. It is not known whether an assigned seated or standing position affects positional preference and oxygen consumption (VO2) while gaming. The purpose of the study was to assess VO2 and preference of playing active and sedentary video games in a seated and standing position. VO2 was assessed in 25 participants during four, 20-minute conditions; resting, PlayStation 2 Madden NFL Football 2011, Nintendo Wii-Sports Boxing and Nintendo Wii Madden NFL Football 2011. Each condition was divided into two positional conditions (10 minutes seated, 10 minutes standing) and each participant indicated their positional preference after each 20-minute condition. Standing VO2 (4.4 ± 0.2 ml • kg-1 • min-1 PS2, 4.6 ± 0.1 ml • kg-1 • min-1 Wii Madden, 6.8 ± 0.3 ml • kg-1 • min-1Wii Boxing) was significantly (p ≤ 0.001) greater than seated VO2 (4.0 ± 0.1 ml • kg-1 • min-1 PS2, 4.2 ± 0.1 ml • kg-1 • min-1 Wii Madden, 6.1 ± 0.3 ml • kg-1 • min-1Wii Boxing) for each gaming condition. Participants preferred (p ≤ 0.001) to sit for all gaming conditions except Wii Boxing. Playing video games while standing increases VO2 to a greater extent than playing the same games in a seated position. Standing was only preferred for the most physiologically challenging game, Wii Boxing. Gaming position should be considered when assessing the physiologic and behavioral outcomes of playing video games.

  3. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (Betta splendens and Trichopodus trichopterus).

    Science.gov (United States)

    Mendez-Sanchez, Jose F; Burggren, Warren W

    2017-08-01

    Developmental plasticity of cardiorespiratory physiology in response to chronic hypoxia is poorly understood in larval fishes, especially larval air-breathing fishes, which eventually in their development can at least partially "escape" hypoxia through air breathing. Whether the development air breathing makes these larval fishes less or more developmentally plastic than strictly water breathing larval fishes remains unknown. Consequently, developmental plasticity of cardiorespiratory physiology was determined in two air-breathing anabantid fishes ( Betta splendens and Trichopodus trichopterus ). Larvae of both species experienced an hypoxic exposure that mimicked their natural environmental conditions, namely chronic nocturnal hypoxia (12 h at 17 kPa or 14 kPa), with a daily return to diurnal normoxia. Chronic hypoxic exposures were made from hatching through 35 days postfertilization, and opercular and heart rates measured as development progressed. Opercular and heart rates in normoxia were not affected by chronic nocturnal hypoxic. However, routine oxygen consumption M˙O2 (~4  μ mol·O 2 /g per hour in normoxia in larval Betta ) was significantly elevated by chronic nocturnal hypoxia at 17 kPa but not by more severe (14 kPa) nocturnal hypoxia. Routine M˙O2 in Trichopodus (6-7  μ mol·O 2 /g per hour), significantly higher than in Betta , was unaffected by either level of chronic hypoxia. P Crit , the PO 2 at which M˙O2 decreases as ambient PO 2 falls, was measured at 35 dpf, and decreased with increasing chronic hypoxia in Betta , indicating a large, relatively plastic hypoxic tolerance. However, in contrast, P Crit in Trichopodus increased as rearing conditions grew more hypoxic, suggesting that hypoxic acclimation led to lowered hypoxic resistance. Species-specific differences in larval physiological developmental plasticity thus emerge between the relatively closely related Betta and Trichopodus Hypoxic rearing increased hypoxic tolerance in

  4. Bengt Saltin and exercise physiology: a perspective.

    Science.gov (United States)

    Joyner, Michael J

    2017-01-01

    This perspective highlights some of the key contributions of Professor Bengt Saltin (1935-2014) to exercise physiology. The emergence of exercise physiology from work physiology as his career began is discussed as are his contributions in a number of areas. Saltin's open and question-based style of leadership is a model for the future of our field.

  5. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  6. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    Science.gov (United States)

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  7. Calcitonin serum levels in normal and in pathological conditions

    International Nuclear Information System (INIS)

    Ziliotto, D.; Luisetto, G.; Zanatta, G.P.; Cataldi, F.; Zangari, M.; Gangemi, M.; Melanotte, P.L.; Caira, S.

    1985-01-01

    Radioimmunoassay of calcitonin (CT) gives variable results because of differences in sensitivity and specificity of antibody preparations and because of the known immunoheterogeneity of circulating CT. The difficulties in interpretation of data has hindered our understanding of normal and abnormal CT physiology. The authors separated the biologically active CT monomer (CTm) from the higher molecular weight biologically inactive forms before RIA. It makes it possible to re-evaluate the behaviour of CT in physiological conditions and to study its changes in diseases in which bone and mineral metabolism are in some way compromised. (Auth.)

  8. International Union of Physiological Sciences Physiology Teaching Workshop, March 31-April 1, 2012, Arabian Gulf University, Kingdom of Bahrain

    Science.gov (United States)

    Subhan, M. M. F.

    2013-01-01

    Since 2009, the Department of Physiology had planned an International Union of Physiological Sciences Physiology Teaching Workshop at Arabian Gulf University. The date was set for March 5-6, 2011; however, due to civil unrest, the workshop was postponed to March 31-April 1, 2012. The workshop was a success, bringing together 92 speakers and…

  9. Physiologic Reference Ranges for Captive Black-Tailed Prairie Dogs (Cynomys ludovicianus)

    Science.gov (United States)

    Keckler, M Shannon; Gallardo-Romero, Nadia F; Langham, Gregory L; Damon, Inger K; Karem, Kevin L; Carroll, Darin S

    2010-01-01

    The black-tailed prairie dog (Cynomys ludovicianus) is a member of the order Rodentia and the family Sciuridae. Ecologically, prairie dogs are a keystone species in prairie ecology. This species is used as an animal model for human gallbladder disease and diseases caused by infection with Clostridium difficile, Yersinia pestis, Francisella tularensis, and most recently, Orthopoxvirus. Despite increasing numbers of prairie dogs used in research and kept as pets, few data are available on their baseline physiology in animal facility housing conditions. To establish baseline physiologic reference ranges, we designed a study using 18 wild-caught black-tailed prairie dogs. Telemetry data were analyzed to establish circadian rhythms for activity and temperature. In addition, hematologic and serum chemistry analyses were performed. Baseline measurements were used to establish the mean for each animal, which then were compiled and analyzed to determine the reference ranges. Here we present physiologic data on serum chemistry and hematology profiles, as well as weight, core body temperature, and daily activity patterns for black-tailed prairie dogs. These results reflect the use of multiple measurements from species- and age-matched prairie dogs and likely will be useful to ecologists, scientists interested in using this animal model in research, and veterinarians caring for pet prairie dogs. PMID:20587156

  10. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina japonica (Laminariales, Phaeophyta)

    Science.gov (United States)

    Kang, Jin Woo; Chung, Ik Kyo

    2018-04-01

    Environmental challenges such as ocean acidification and eutrophication influence the physiology of kelp species. We investigated their interactive effects on Saccharina japonica (Laminariales, Phaeophyta) under two pH conditions [Low, 7.50; High (control), 8.10] and three NH4 +concentrations (Low, 4; Medium, 60; High, 120 μM). The degree of variation of pH values in the culture medium and inhibition rate of photosynthetic oxygen evolution by acetazolamide were affected by pH treatments. Relative growth rates, carbon, nitrogen, and the C:N ratio in tissue samples were influenced by higher concentrations of NH4 + . Rates of photosynthetic oxygen evolution were enhanced under elevated CO2 or NH4 +conditions, independently, but these two factors did not show an interactive effect. However, rates of NH4 +uptake were influenced by the interactive effect of increased CO2 under elevated NH4 +treatment. Although ocean acidification and eutrophication states had an impact on physiological performance, chlorophyll fluorescence was not affected by those conditions. Our results indicated that the physiological reactions by this alga were influenced to some extent by a rise in the levels of CO2 and NH4 + . Therefore, we expect that the biomass accumulation of S. japonica may well increase under future scenarios of ocean acidification and eutrophication.

  11. Physiological response and productivity of safflower lines under water deficit and rehydration.

    Science.gov (United States)

    Bortolheiro, Fernanda P A P; Silva, Marcelo A

    2017-01-01

    Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  12. Physiological response and productivity of safflower lines under water deficit and rehydration

    Directory of Open Access Journals (Sweden)

    FERNANDA P.A.P. BORTOLHEIRO

    2017-12-01

    Full Text Available ABSTRACT Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L., a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  13. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bent...

  14. Physiological actions of corticosterone and its modulation by an immune challenge in reptiles.

    Science.gov (United States)

    Meylan, Sandrine; Haussy, Claudy; Voituron, Yann

    2010-11-01

    Hormones are an important interface between genome and environment, because of their ability to modulate the animal's phenotype. In particular, corticosterone, the stress hormone in lizards, is known to reallocate energy from non-essential functions to affect morphological, physiological and behavioral traits that help the organism to deal with acute or chronic stressors. However, the effects of corticosterone on life history stages are still unclear primarily because of the dependence of life history stages on both internal and external factors. Using a cross-design, we tested the effect of elevated levels of exogenous corticosterone on the physiology of pregnant females in different immune contexts in a wild population of common lizards (Lacerta vivipara). Immune challenge was induced by the injection of sheep red blood cells (SRBC) and corticosterone levels were increased using a transdermal administration of corticosterone. Thereafter, reproductive traits, metabolism and cellular immune responses were measured. The elevation of corticosterone in pregnant females significantly altered reproductive and physiological performance. The corticosterone treatment decreased clutch success, juvenile size and body condition, but enhanced measures of physiological performance, such as metabolism and catalase activity. These first results reinforce the understanding of the physiological actions of corticosterone in reptiles. The data also demonstrated different direct impacts of immune challenge by SRBC on inflammatory response and antioxidant activity. The injection of SRBC stimulated the SOD activity in larger females. Finally, we demonstrated experimentally the modulation of the corticosterone action by the immune challenge on stamina and hatching date. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. The citius end: world records progression announces the completion of a brief ultra-physiological quest.

    Directory of Open Access Journals (Sweden)

    Geoffroy Berthelot

    2008-02-01

    Full Text Available World records (WR in sports illustrate the ultimate expression of human integrated muscle biology, through speed or strength performances. Analysis and prediction of man's physiological boundaries in sports and impact of external (historical or environmental conditions on WR occurrence are subject to scientific controversy. Based on the analysis of 3263 WR established for all quantifiable official contests since the first Olympic Games, we show here that WR progression rate follows a piecewise exponential decaying pattern with very high accuracy (mean adjusted r(2 values = 0.91+/-0.08 (s.d.. Starting at 75% of their estimated asymptotic values in 1896, WR have now reached 99%, and, present conditions prevailing, half of all WR will not be improved by more than 0,05% in 2027. Our model, which may be used to compare future athletic performances or assess the impact of international antidoping policies, forecasts that human species' physiological frontiers will be reached in one generation. This will have an impact on the future conditions of athlete training and on the organization of competitions. It may also alter the Olympic motto and spirit.

  16. Experimental stress during molt suggests the evolution of condition-dependent and condition-independent ornaments in the king penguin.

    Science.gov (United States)

    Schull, Quentin; Robin, Jean-Patrice; Dobson, F Stephen; Saadaoui, Hédi; Viblanc, Vincent A; Bize, Pierre

    2018-01-01

    Sexual selection and social selection are two important theories proposed for explaining the evolution of colorful ornamental traits in animals. Understanding signal honesty requires studying how environmental and physiological factors during development influence the showy nature of sexual and social ornaments. We experimentally manipulated physiological stress and immunity status during the molt in adult king penguins ( Aptenodytes patagonicus ), and studied the consequences of our treatments on colourful ornaments (yellow-orange and UV beak spots and yellow-orange auricular feather patches) known to be used in sexual and social contexts in this species. Whereas some ornamental features showed strong condition-dependence (yellow auricular feather chroma, yellow and UV chroma of the beak), others were condition-independent and remained highly correlated before and after the molt (auricular patch size and beak UV hue). Our study provides a rare examination of the links between ornament determinism and selection processes in the wild. We highlight the coexistence of ornaments costly to produce that may be honest signals used in mate choice, and ornaments for which honesty may be enforced by social mediation or rely on genetic constraints.

  17. Interaction between physiological and cognitive determinants of emotions: experimental studies on Schachter's theory of emotions.

    Science.gov (United States)

    Erdmann, G; Janke, W

    1978-01-01

    This study investigated the interaction between physiological arousal and situation-derived cognitions in the determination of feeling states that is proposed in Schachter's theory of emotions. The degree of bodily arousal was varied by disguised oral administration of a placebo or the sympathicomimetic agent ephedrine. The situational circumstances were varied by instructions offering cues for (a) no emotions ('neutral' control), or the feeling states called (b) 'anger', (c) 'happiness', and (d) anxiety'. The subjects were 72 male students. The dependent variables were blood pressure, heart rate, a list of bodily symptoms, and an adjective check list. The results within the 'anger' and 'happiness' condition were in accordance with Schachter's theory: depending on the type of situation, ephedrine-induced arousal either decreased or increased positive descriptions of mood. The emotional effects of the 'anxiety' condition, however, were independent of the drug-induced arousal level. Contrary to Schachter's theory, anxiety reactions occured also in a state of low physiological arousal and did not increase with increasing arousal.

  18. Report of the special committee for the study of physiological effects of radon in human

    International Nuclear Information System (INIS)

    1998-01-01

    This report outlines the activities of the committee for the study of physiological effects of radon in human based on the presentation in the meetings by the members in the period, 1996-1998. The methods to estimate the exposed dose of radon (Rn) have been considerably improved now. But it is necessary to consider living conditions such as housing conditions, respiratory ratio as well as physical measurements such as Rn concentration, its balance factor, the ratio of non-absorbed component, for accurate evaluation of the physiological effects of Rn. This committee was established aiming to investigate the physiological effects of Rn in human bodies and solve the problems in this area. In a period from 1996 to 1998, meeting was held nine times by the committee. The respective main themes were as follows: the purpose of this committee and the plans of activities in future for the first meeting, indoor Rn level and balance factor for the second, outdoor Rn level and aerosol of its daughter nuclides for the third, respiratory air movement model for the 4th, Rn inhalation, epidemiological study of Rn for the 5th, epidemiological study of Rn for the 6th, problems in Rn level survey for the 7th, behaviors of Rn and its daughter nuclides in occupational environment for 9th, and variance in dose calibration factor and biological effects of α-ray for 10th. At present, dose evaluation and risk evaluation for Rn exposure include considerable uncertainty. Accurate dose evaluation for Rn is necessary to determine the limitation dose for human bodies to repress the physiological effects. (M.N.)

  19. Recognition of American Physiological Society members whose research publications had a significant impact on the discipline of physiology.

    Science.gov (United States)

    Tipton, Charles M

    2013-03-01

    Society members whose research publication during the past 125 yr had an important impact on the discipline of physiology were featured at the American Physiological Society (APS)'s 125th Anniversary symposium. The daunting and challenging task of identifying and selecting significant publications was assumed by the Steering Committee of the History of Physiology Interest Group, who requested recommendations and rationales from all Sections, select Interest Groups, and active senior APS members. The request resulted in recommendations and rationales from nine Sections, one Interest Group, and 28 senior members, identifying 38 publications and 43 members for recognition purposes. The publication recommendations included 5 individuals (Cournand, Erlanger, Gasser, Hubel, and Wiesel) whose research significantly contributed to their selection for the Nobel Prize in Medicine or Physiology, 4 individuals who received multiple recommendations [i.e., Cannon (3), Curran (2), Fenn (3), and Hamilton (2)], and 11 members who had been APS Presidents. Of the recommended articles, 33% were from the American Journal of Physiology, with the earliest being published in 1898 (Cannon) and the latest in 2007 (Sigmund). For the brief oral presentations, the History of Physiology Steering Committee selected the first choices of the Sections or Interest Group, whereas rationales and representation of the membership were used for the presentations by senior members.

  20. Exercise Effects on Sleep Physiology

    Directory of Open Access Journals (Sweden)

    Sunao eUchida

    2012-04-01

    Full Text Available This mini-review focuses on the effects of exercise on sleep. In its early days, sleep research largely focused on central nervous system (CNS physiology using standardized tabulations of several sleep-specific landmark electroencephalogram (EEG waveforms. Though coarse, this method has enabled the observation and inspection of numerous uninterrupted sleep phenomena. Thus, research on the effects of exercise on sleep began, in the 1960’s, with a focus primarily on sleep EEG (CNS sleep changes. Those early studies found only small effects of exercise on sleep. More recent sleep research has explored not only CNS functioning, but somatic physiology as well. As physical exercise mostly affects somatic functions, endocrine and autonomic nervous system (ANS changes that occur during sleep should be affected by daytime exercise. Since endocrinological, metabolic and autonomic changes can be measured during sleep, it should be possible to assess exercise effects on somatic physiology in addition to CNS sleep quality, building from standard polysomnographic (PSG techniques. Incorporating measures of somatic physiology in the quantitative assessment of sleep could further our understanding of sleep's function as an auto-regulatory, global phenomenon.

  1. Effects of salinity on the physiology of the red macroalga, Acanthophora spicifera (Rhodophyta, Ceramiales

    Directory of Open Access Journals (Sweden)

    Débora Tomazi Pereira

    2017-09-01

    Full Text Available ABSTRACT Salinity is an important abiotic factor since it is responsible for the local and/or regional distribution of algae. In coastal regions, salinity changes with prevailing winds, precipitation and tide, and particularly in extreme intertidal conditions. Acanthophora spicifera is a red seaweed that occurs in the supratidal region in which changes in abiotic conditions occur frequently. This study evaluated the effects of salinity on the metabolism and morphology of A. spicifera. Algae were acclimatized under culture conditions with sterilized seawater for seven days. Experiments used different salinities (15 to 50 psu for seven days, followed by metabolic analyses. This study demonstrates that extreme salinities affect physiological parameters of A. spicifera, such as decrease in growth rate, as well as morphological parameters and concentrations of secondary metabolites. Acanthophora spicifera exhibited high tolerance to 25 to 40 psu, with little change in physiology, which favors the occurrence of this species in diverse environments. However, 15, 20, 45 and 50 psu were the most damaging and led to loss of biomass, depigmentation of apices, and the highest concentrations of antioxidant metabolites. The 50 psu treatment caused the greatest changes in general, greatly reducing a biomass and chlorophyll content, and facilitating the presence of endophytes.

  2. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter

    Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...... be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.51 to 0.......77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity. These findings...

  3. Success stories and emerging themes in conservation physiology

    Science.gov (United States)

    Madliger, Christine L.; Cooke, Steven J.; Crespi, Erica J.; Funk, Jennifer L.; Hultine, Kevin R.; Hunt, Kathleen E.; Rohr, Jason R.; Sinclair, Brent J.; Suski, Cory D.; Willis, Craig K. R.; Love, Oliver P.

    2016-01-01

    The potential benefits of physiology for conservation are well established and include greater specificity of management techniques, determination of cause–effect relationships, increased sensitivity of health and disturbance monitoring and greater capacity for predicting future change. While descriptions of the specific avenues in which conservation and physiology can be integrated are readily available and important to the continuing expansion of the discipline of ‘conservation physiology’, to date there has been no assessment of how the field has specifically contributed to conservation success. However, the goal of conservation physiology is to foster conservation solutions and it is therefore important to assess whether physiological approaches contribute to downstream conservation outcomes and management decisions. Here, we present eight areas of conservation concern, ranging from chemical contamination to invasive species to ecotourism, where physiological approaches have led to beneficial changes in human behaviour, management or policy. We also discuss the shared characteristics of these successes, identifying emerging themes in the discipline. Specifically, we conclude that conservation physiology: (i) goes beyond documenting change to provide solutions; (ii) offers a diversity of physiological metrics beyond glucocorticoids (stress hormones); (iii) includes approaches that are transferable among species, locations and times; (iv) simultaneously allows for human use and benefits to wildlife; and (v) is characterized by successes that can be difficult to find in the primary literature. Overall, we submit that the field of conservation physiology has a strong foundation of achievements characterized by a diversity of conservation issues, taxa, physiological traits, ecosystem types and spatial scales. We hope that these concrete successes will encourage the continued evolution and use of physiological tools within conservation-based research and

  4. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    Science.gov (United States)

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.

  5. On the language and physiology of dormancy and quiescence in plants.

    Science.gov (United States)

    Considine, Michael J; Considine, John A

    2016-05-01

    The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being

  6. Physiological responses induced by pleasant stimuli.

    Science.gov (United States)

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  7. Klismaphilia--a physiological perspective.

    Science.gov (United States)

    Agnew, J

    1982-10-01

    Dr. Joanne Denko coined the work klismaphilia to describe the practices of some of her patients who enjoyed the use of enemas as a sexual stimulant. Since then questions occasionally appear in the professional literature asking about the relationship between enemas and sexual pleasure. This paper considers some of the physiological aspects of the human sexual apparatus that relate to anal sensitivity and explores why klismaphilia can be sexually grafifying. The paper starts with a discussion of the physiological basis for anal sensitivity and anal masturbation in both the human male and the human female. The paper then goes on to relate all this to the sexual sensations received from an enema, and discusses the similarities and differences between all these types of stimulation. Some of the psychological aspects of klismaphilia are also considered in relationship to the physiology involved. The paper concludes with a brief discussion of masked anal masturbation among the population at large. A comprehensive list of references from the literature is given to support these findings.

  8. Endogenous Pyrogen Physiology.

    Science.gov (United States)

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  9. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    Science.gov (United States)

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  10. Influence of Population Variation of Physiological Parameters in Computational Models of Space Physiology

    Science.gov (United States)

    Myers, J. G.; Feola, A.; Werner, C.; Nelson, E. S.; Raykin, J.; Samuels, B.; Ethier, C. R.

    2016-01-01

    The earliest manifestations of Visual Impairment and Intracranial Pressure (VIIP) syndrome become evident after months of spaceflight and include a variety of ophthalmic changes, including posterior globe flattening and distension of the optic nerve sheath. Prevailing evidence links the occurrence of VIIP to the cephalic fluid shift induced by microgravity and the subsequent pressure changes around the optic nerve and eye. Deducing the etiology of VIIP is challenging due to the wide range of physiological parameters that may be influenced by spaceflight and are required to address a realistic spectrum of physiological responses. Here, we report on the application of an efficient approach to interrogating physiological parameter space through computational modeling. Specifically, we assess the influence of uncertainty in input parameters for two models of VIIP syndrome: a lumped-parameter model (LPM) of the cardiovascular and central nervous systems, and a finite-element model (FEM) of the posterior eye, optic nerve head (ONH) and optic nerve sheath. Methods: To investigate the parameter space in each model, we employed Latin hypercube sampling partial rank correlation coefficient (LHSPRCC) strategies. LHS techniques outperform Monte Carlo approaches by enforcing efficient sampling across the entire range of all parameters. The PRCC method estimates the sensitivity of model outputs to these parameters while adjusting for the linear effects of all other inputs. The LPM analysis addressed uncertainties in 42 physiological parameters, such as initial compartmental volume and nominal compartment percentage of total cardiac output in the supine state, while the FEM evaluated the effects on biomechanical strain from uncertainties in 23 material and pressure parameters for the ocular anatomy. Results and Conclusion: The LPM analysis identified several key factors including high sensitivity to the initial fluid distribution. The FEM study found that intraocular pressure and

  11. The use of stable isotopes for studies on the physiology of plants

    International Nuclear Information System (INIS)

    Moyse, Alexis.

    1982-01-01

    The use of the stable isotopes 15 N, 18 O, 13 C for studies on the physiology of plants especially of plants grown under natural environment conditions is reviewed. Analysis of isotopic discrimination give estimates of the various patterns of carbon and nitrogen nutrition and of the rate of water circulation. The method can also be used for paleoclimatology and for the detection of frauds in food products [fr

  12. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  13. Physiology and biochemistry of honey bees

    Science.gov (United States)

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  14. Alterations in physiology and anatomy during pregnancy.

    Science.gov (United States)

    Tan, Eng Kien; Tan, Eng Loy

    2013-12-01

    Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Application of 14C to physiological studies of insects

    International Nuclear Information System (INIS)

    Yamashita, Okitsugu

    1977-01-01

    The specificity of insects which has been resolved as a result of using tracers such as 14 C etc. and the metabolic ground of vital condition which is not observed in other biotic groups were discussed. As for carbohydrate metabolism, trehalose metabolism, the relation between formation of polyhydric alcohol and quiescence, and energy production system were mentioned. As for lipid metabolism, mobilization of diglyceride among tissues, purification and properties of diglyceride-carrying lipoprotein, and the physiological action of lipoprotein were cited. The specific metabolisms of insects were summarized from the viewpoints of energy production and its distribution mechanism in vivo. (Ichikawa, K.)

  16. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine.

    Science.gov (United States)

    Culen, Martin; Rezacova, Anna; Jampilek, Josef; Dohnal, Jiri

    2013-09-01

    Development of new pharmaceutical compounds and dosage forms often requires in vitro dissolution testing with the closest similarity to the human gastrointestinal (GI) tract. To create such conditions, one needs a suitable dissolution apparatus and the appropriate data on the human GI physiology. This review discusses technological approaches applicable in biorelevant dissolutions as well as the physiology of stomach and small intestine in both fasted and fed state, that is, volumes of contents, transit times for water/food and various solid oral dosage forms, pH, osmolality, surface tension, buffer capacity, and concentrations of bile salts, phospholipids, enzymes, and Ca(2+) ions. The information is aimed to provide clear suggestions on how these conditions should be set in a dynamic biorelevant dissolution test. Copyright © 2013 Wiley Periodicals, Inc.

  17. Effects of Drought Stress and Rewatering on some Morphological and Physiological Properties of Three Grapevine Cultivars

    Directory of Open Access Journals (Sweden)

    Mehdi Aran

    2017-12-01

    Full Text Available Introduction: Most plants have developed morphological and physiological mechanisms which allow them to cope with drought stress. Almost all the studies conducted on grapevines (Vitisvinifera L. responses to drought conditions have focused on physiological responses such as stomatal reactions, photosynthesis and osmotic adjustment, and biochemical responses like carbohydrates and proline. According to these studies, physiological and biochemical responses of grapevines to water stress are quite variable. This variability could be related to cultivar, time of the year, previous water stress level, intensity of stress, and environmental conditions. Osmotic adjustment in terms of compatible solutes accumulation has been considered as an important physiological adaptation for plant to resist drought, which facilitates the extraction of water from dry soils and maintenance of cell turgor, gas exchange and growth in very dry environments. Acting as compatible solutes as well as antioxidants, a significant rise in proline amount was observed in grapevine leaves under water stress conditions, suggesting that this amino acid has a protective role against the formation of excessive reactive oxygen species (ROS. Plants, in order to overcome oxidative stress, have developed enzymatic and non-enzymatic antioxidant defense mechanisms against scavenge ROS. Materials and Methods: This research was conducted to assess the effect of different levels of irrigation on some characteristics of three cultivars of grapevine (Yaghooti, Bidanesefid and Askari, as a factorial based on a randomized complete block design in two years with four replications. The experiment started in June 21, 2014 and 2015. Water treatments were applied in four levels including: control plant (100% FC, moderate stress (60% FC, severe stress (30% FC and rewatering treatment after severe stress treatment. Increase height, leaf number, stem diameter, leaf fresh and dry weight, stem dry weight

  18. Southern Ocean phytoplankton physiology in a changing climate.

    Science.gov (United States)

    Petrou, Katherina; Kranz, Sven A; Trimborn, Scarlett; Hassler, Christel S; Ameijeiras, Sonia Blanco; Sackett, Olivia; Ralph, Peter J; Davidson, Andrew T

    2016-09-20

    The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO 2 ), potentially harbouring even greater potential for additional sequestration of CO 2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO 2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.

    Science.gov (United States)

    Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A

    2013-01-01

    Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.

  20. [THE HYGIENIC CONDITIONS OF THE INTERNAL ENVIRONMENT OF SYLVINITE CHAMBERS OF VARIOUS MODIFICATIONS].

    Science.gov (United States)

    Barannikov, V G; Kirichenko, L V; Rusanova, E A; Dement'ev, S V; Vaĭsman, Ia I

    2015-01-01

    The performed comparative physiological-hygienic assessment of the conditions of the internal environment of salt sylvinite structures allowed to establish the complex of physical factors that have a favorable influence on the functional condition of the basic systems of the organism of patients.