WorldWideScience

Sample records for macro-selection evolutionary algorithm

  1. ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

    Directory of Open Access Journals (Sweden)

    I. A. Petrova

    2016-05-01

    Full Text Available Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.

  2. An Improved SPEA2 Algorithm with Adaptive Selection of Evolutionary Operators Scheme for Multiobjective Optimization Problems

    Directory of Open Access Journals (Sweden)

    Fuqing Zhao

    2016-01-01

    Full Text Available A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.

  3. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  4. An evolutionary algorithm for model selection

    Energy Technology Data Exchange (ETDEWEB)

    Bicker, Karl [CERN, Geneva (Switzerland); Chung, Suh-Urk; Friedrich, Jan; Grube, Boris; Haas, Florian; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan; Ryabchikov, Dimitry [Technische Univ. Muenchen (Germany)

    2013-07-01

    When performing partial-wave analyses of multi-body final states, the choice of the fit model, i.e. the set of waves to be used in the fit, can significantly alter the results of the partial wave fit. Traditionally, the models were chosen based on physical arguments and by observing the changes in log-likelihood of the fits. To reduce possible bias in the model selection process, an evolutionary algorithm was developed based on a Bayesian goodness-of-fit criterion which takes into account the model complexity. Starting from systematically constructed pools of waves which contain significantly more waves than the typical fit model, the algorithm yields a model with an optimal log-likelihood and with a number of partial waves which is appropriate for the number of events in the data. Partial waves with small contributions to the total intensity are penalized and likely to be dropped during the selection process, as are models were excessive correlations between single waves occur. Due to the automated nature of the model selection, a much larger part of the model space can be explored than would be possible in a manual selection. In addition the method allows to assess the dependence of the fit result on the fit model which is an important contribution to the systematic uncertainty.

  5. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  6. A Multiagent Evolutionary Algorithm for the Resource-Constrained Project Portfolio Selection and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yongyi Shou

    2014-01-01

    Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.

  7. Evolutionary modelling of the macro-economic impacts of catastrophic flood events

    NARCIS (Netherlands)

    Safarzynska, K.E.; Brouwer, R.; Hofkes, M.

    2013-01-01

    This paper examines the possible contribution of evolutionary economics to macro-economic modelling of flood impacts to provide guidance for future economic risk modelling. Most macro-economic models start from a neoclassical economic perspective and focus on equilibrium outcomes, either in a static

  8. A standard deviation selection in evolutionary algorithm for grouper fish feed formulation

    Science.gov (United States)

    Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul

    2016-10-01

    Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.

  9. An efficient macro-cell placement algorithm

    NARCIS (Netherlands)

    Aarts, E.H.L.; Bont, de F.M.J.; Korst, J.H.M.; Rongen, J.M.J.

    1991-01-01

    A new approximation algorithm is presented for the efficient handling of large macro-cell placement problems. The algorithm combines simulated annealing with new features based on a hierarchical approach and a divide-and-conquer technique. Numerical results show that these features can lead to a

  10. Analog Circuit Design Optimization Based on Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Mansour Barari

    2014-01-01

    Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.

  11. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  12. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  13. The mixing evolutionary algorithm : indepedent selection and allocation of trials

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1997-01-01

    textabstractWhen using an evolutionary algorithm to solve a problem involving building blocks we have to grow the building blocks and then mix these building blocks to obtain the (optimal) solution. Finding a good balance between the growing and the mixing process is a prerequisite to get a reliable

  14. Species co-evolutionary algorithm: a novel evolutionary algorithm based on the ecology and environments for optimization

    DEFF Research Database (Denmark)

    Li, Wuzhao; Wang, Lei; Cai, Xingjuan

    2015-01-01

    and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...

  15. Industrial Applications of Evolutionary Algorithms

    CERN Document Server

    Sanchez, Ernesto; Tonda, Alberto

    2012-01-01

    This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the

  16. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  17. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.

  18. A Note on Evolutionary Algorithms and Its Applications

    Science.gov (United States)

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  19. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    Science.gov (United States)

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case

  20. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  1. Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm

    Directory of Open Access Journals (Sweden)

    Carolina Lagos

    2014-01-01

    Full Text Available Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP, the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric.

  2. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  3. An Evolutionary Algorithm for Multiobjective Fuzzy Portfolio Selection Models with Transaction Cost and Liquidity

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-01-01

    Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.

  4. Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods

    Directory of Open Access Journals (Sweden)

    B. Y. Qu

    2017-01-01

    Full Text Available Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultaneously. The complexity of the optimal asset allocation problem increases with an increase in the number of assets available to select from for investing. The optimization problem becomes computationally challenging when there are more than a few hundreds of assets to select from. To reduce the complexity of large-scale portfolio optimization, two asset preselection procedures that consider return and risk of individual asset and pairwise correlation to remove assets that may not potentially be selected into any portfolio are proposed in this paper. With these asset preselection methods, the number of assets considered to be included in a portfolio can be increased to thousands. To test the effectiveness of the proposed methods, a Normalized Multiobjective Evolutionary Algorithm based on Decomposition (NMOEA/D algorithm and several other commonly used multiobjective evolutionary algorithms are applied and compared. Six experiments with different settings are carried out. The experimental results show that with the proposed methods the simulation time is reduced while return-risk trade-off performances are significantly improved. Meanwhile, the NMOEA/D is able to outperform other compared algorithms on all experiments according to the comparative analysis.

  5. Portfolio selection using genetic algorithms | Yahaya | International ...

    African Journals Online (AJOL)

    In this paper, one of the nature-inspired evolutionary algorithms – a Genetic Algorithms (GA) was used in solving the portfolio selection problem (PSP). Based on a real dataset from a popular stock market, the performance of the algorithm in relation to those obtained from one of the popular quadratic programming (QP) ...

  6. Infrastructure system restoration planning using evolutionary algorithms

    Science.gov (United States)

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  7. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    Science.gov (United States)

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  8. Multi-objective mixture-based iterated density estimation evolutionary algorithms

    NARCIS (Netherlands)

    Thierens, D.; Bosman, P.A.N.

    2001-01-01

    We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability

  9. A kNN method that uses a non-natural evolutionary algorithm for ...

    African Journals Online (AJOL)

    We used this algorithm for component selection of a kNN (k Nearest Neighbor) method for breast cancer prognosis. Results with the UCI prognosis data set show that we can find components that help improve the accuracy of kNN by almost 3%, raising it above 79%. Keywords: kNN; classification; evolutionary algorithm; ...

  10. Evaluation of models generated via hybrid evolutionary algorithms ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.

  11. Comparison of some evolutionary algorithms for optimization of the path synthesis problem

    Science.gov (United States)

    Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna

    2018-01-01

    The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.

  12. Design and selection of load control strategies using a multiple objective model and evolutionary algorithms

    International Nuclear Information System (INIS)

    Gomes, Alvaro; Antunes, Carlos Henggeler; Martins, Antonio Gomes

    2005-01-01

    This paper aims at presenting a multiple objective model to evaluate the attractiveness of the use of demand resources (through load management control actions) by different stakeholders and in diverse structure scenarios in electricity systems. For the sake of model flexibility, the multiple (and conflicting) objective functions of technical, economical and quality of service nature are able to capture distinct market scenarios and operating entities that may be interested in promoting load management activities. The computation of compromise solutions is made by resorting to evolutionary algorithms, which are well suited to tackle multiobjective problems of combinatorial nature herein involving the identification and selection of control actions to be applied to groups of loads. (Author)

  13. A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2014-01-01

    Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.

  14. Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking

    Science.gov (United States)

    Poluyan, Sergey; Ershov, Nikolay

    2018-02-01

    In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.

  15. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  16. EvAg: A Scalable Peer-to-Peer Evolutionary Algorithm

    NARCIS (Netherlands)

    Laredo, J.L.J.; Eiben, A.E.; van Steen, M.R.; Merelo, J.J.

    2010-01-01

    This paper studies the scalability of an Evolutionary Algorithm (EA) whose population is structured by means of a gossiping protocol and where the evolutionary operators act exclusively within the local neighborhoods. This makes the algorithm inherently suited for parallel execution in a

  17. Synthesis of logic circuits with evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    JONES,JAKE S.; DAVIDSON,GEORGE S.

    2000-01-26

    In the last decade there has been interest and research in the area of designing circuits with genetic algorithms, evolutionary algorithms, and genetic programming. However, the ability to design circuits of the size and complexity required by modern engineering design problems, simply by specifying required outputs for given inputs has as yet eluded researchers. This paper describes current research in the area of designing logic circuits using an evolutionary algorithm. The goal of the research is to improve the effectiveness of this method and make it a practical aid for design engineers. A novel method of implementing the algorithm is introduced, and results are presented for various multiprocessing systems. In addition to evolving standard arithmetic circuits, work in the area of evolving circuits that perform digital signal processing tasks is described.

  18. Evolutionary Algorithms Application Analysis in Biometric Systems

    Directory of Open Access Journals (Sweden)

    N. Goranin

    2010-01-01

    Full Text Available Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement.

  19. Hybridizing Evolutionary Algorithms with Opportunistic Local Search

    DEFF Research Database (Denmark)

    Gießen, Christian

    2013-01-01

    There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...

  20. Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System

    CERN Document Server

    Tydrichova, Magdalena

    2017-01-01

    In this project, various available multi-objective optimization evolutionary algorithms were compared considering their performance and distribution of solutions. The main goal was to select the most suitable algorithms for applications in cancer hadron therapy planning. For our purposes, a complex testing and analysis software was developed. Also, many conclusions and hypothesis have been done for the further research.

  1. Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf

    of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...

  2. A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Shan Li

    2014-01-01

    Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  3. Evolutionary Algorithm for Optimal Vaccination Scheme

    International Nuclear Information System (INIS)

    Parousis-Orthodoxou, K J; Vlachos, D S

    2014-01-01

    The following work uses the dynamic capabilities of an evolutionary algorithm in order to obtain an optimal immunization strategy in a user specified network. The produced algorithm uses a basic genetic algorithm with crossover and mutation techniques, in order to locate certain nodes in the inputted network. These nodes will be immunized in an SIR epidemic spreading process, and the performance of each immunization scheme, will be evaluated by the level of containment that provides for the spreading of the disease

  4. Economic modeling using evolutionary algorithms : the effect of binary encoding of strategies

    NARCIS (Netherlands)

    Waltman, L.R.; Eck, van N.J.; Dekker, Rommert; Kaymak, U.

    2011-01-01

    We are concerned with evolutionary algorithms that are employed for economic modeling purposes. We focus in particular on evolutionary algorithms that use a binary encoding of strategies. These algorithms, commonly referred to as genetic algorithms, are popular in agent-based computational economics

  5. Self-organized modularization in evolutionary algorithms.

    Science.gov (United States)

    Dauscher, Peter; Uthmann, Thomas

    2005-01-01

    The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).

  6. A Clustal Alignment Improver Using Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Thomsen, Rene; Fogel, Gary B.; Krink, Thimo

    2002-01-01

    Multiple sequence alignment (MSA) is a crucial task in bioinformatics. In this paper we extended previous work with evolutionary algorithms (EA) by using MSA solutions obtained from the wellknown Clustal V algorithm as a candidate solution seed of the initial EA population. Our results clearly show...

  7. A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2013-01-01

    Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.

  8. Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach

    Directory of Open Access Journals (Sweden)

    Daniel Peralta

    2015-01-01

    Full Text Available Nowadays, many disciplines have to deal with big datasets that additionally involve a high number of features. Feature selection methods aim at eliminating noisy, redundant, or irrelevant features that may deteriorate the classification performance. However, traditional methods lack enough scalability to cope with datasets of millions of instances and extract successful results in a delimited time. This paper presents a feature selection algorithm based on evolutionary computation that uses the MapReduce paradigm to obtain subsets of features from big datasets. The algorithm decomposes the original dataset in blocks of instances to learn from them in the map phase; then, the reduce phase merges the obtained partial results into a final vector of feature weights, which allows a flexible application of the feature selection procedure using a threshold to determine the selected subset of features. The feature selection method is evaluated by using three well-known classifiers (SVM, Logistic Regression, and Naive Bayes implemented within the Spark framework to address big data problems. In the experiments, datasets up to 67 millions of instances and up to 2000 attributes have been managed, showing that this is a suitable framework to perform evolutionary feature selection, improving both the classification accuracy and its runtime when dealing with big data problems.

  9. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  11. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Leilei Cao

    2016-01-01

    Full Text Available A Guiding Evolutionary Algorithm (GEA with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  12. The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.

    Science.gov (United States)

    Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos

    2017-04-01

    This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks

    Directory of Open Access Journals (Sweden)

    Guoqiang Chen

    2013-01-01

    Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.

  14. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Rafał Dreżewski

    2017-08-01

    Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.

  15. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  16. δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms

    Science.gov (United States)

    Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi

    In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.

  17. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm

    Science.gov (United States)

    Wang, Chun; Ji, Zhicheng; Wang, Yan

    2017-07-01

    In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.

  18. Exploitation of linkage learning in evolutionary algorithms

    CERN Document Server

    Chen, Ying-ping

    2010-01-01

    The exploitation of linkage learning is enhancing the performance of evolutionary algorithms. This monograph examines recent progress in linkage learning, with a series of focused technical chapters that cover developments and trends in the field.

  19. Evolutionary algorithms applied to Landau-gauge fixing

    International Nuclear Information System (INIS)

    Markham, J.F.

    1998-01-01

    Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)

  20. Variants of Evolutionary Algorithms for Real-World Applications

    CERN Document Server

    Weise, Thomas; Michalewicz, Zbigniew

    2012-01-01

    Evolutionary Algorithms (EAs) are population-based, stochastic search algorithms that mimic natural evolution. Due to their ability to find excellent solutions for conventionally hard and dynamic problems within acceptable time, EAs have attracted interest from many researchers and practitioners in recent years. This book “Variants of Evolutionary Algorithms for Real-World Applications” aims to promote the practitioner’s view on EAs by providing a comprehensive discussion of how EAs can be adapted to the requirements of various applications in the real-world domains. It comprises 14 chapters, including an introductory chapter re-visiting the fundamental question of what an EA is and other chapters addressing a range of real-world problems such as production process planning, inventory system and supply chain network optimisation, task-based jobs assignment, planning for CNC-based work piece construction, mechanical/ship design tasks that involve runtime-intense simulations, data mining for the predictio...

  1. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  2. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

    Directory of Open Access Journals (Sweden)

    Zhiming Song

    2015-01-01

    Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.

  3. When do evolutionary algorithms optimize separable functions in parallel?

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten

    2013-01-01

    is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...

  4. Analysis for Performance of Symbiosis Co-evolutionary Algorithm

    OpenAIRE

    根路銘, もえ子; 遠藤, 聡志; 山田, 孝治; 宮城, 隼夫; Nerome, Moeko; Endo, Satoshi; Yamada, Koji; Miyagi, Hayao

    2000-01-01

    In this paper, we analyze the behavior of symbiotic evolution algorithm for the N-Queens problem as benchmark problem for search methods in the field of aritificial intelligence. It is shown that this algorithm improves the ability of evolutionary search method. When the problem is solved by Genetic Algorithms (GAs), an ordinal representation is often used as one of gene conversion methods which convert from phenotype to genotype and reconvert. The representation can hinder occurrence of leth...

  5. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...

  6. Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm

    Science.gov (United States)

    2009-03-10

    xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences

  7. Sounds unheard of evolutionary algorithms as creative tools for the contemporary composer

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2004-01-01

    Evolutionary algorithms are studied as tools for generating novel musical material in the form of musical scores and synthesized sounds. The choice of genetic representation defines a space of potential music. This space is explored using evolutionary algorithms, in search of useful musical mater...... composed with the tools described in the thesis are presented....

  8. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  9. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation.

    Science.gov (United States)

    Mace, Ruth; Jordan, Fiona M

    2011-02-12

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity.

  10. Food processing optimization using evolutionary algorithms | Enitan ...

    African Journals Online (AJOL)

    Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...

  11. Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Lvjiang Yin

    2016-12-01

    Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.

  12. Tag SNP selection via a genetic algorithm.

    Science.gov (United States)

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  13. The (1+λ) evolutionary algorithm with self-adjusting mutation rate

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Witt, Carsten; Gießen, Christian

    2017-01-01

    We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then upd......We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate...... is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the (1 + A) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the (1 + A) EA finds the optimum in an expected optimization...... time (number of fitness evaluations) of O(nA/log A + n log n). This time is asymptotically smaller than the optimization time of the classic (1 + A) EA. Previous work shows that this performance is best-possible among all A-parallel mutation-based unbiased black-box algorithms. This result shows...

  14. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    Science.gov (United States)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  15. Prospective Algorithms for Quantum Evolutionary Computation

    OpenAIRE

    Sofge, Donald A.

    2008-01-01

    This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, primarily focused on ...

  16. Evolutionary algorithm for vehicle driving cycle generation.

    Science.gov (United States)

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

  17. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture series

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...

  18. Nash evolutionary algorithms : Testing problem size in reconstruction problems in frame structures

    OpenAIRE

    Greiner, D.; Periaux, Jacques; Emperador, J.M.; Galván, B.; Winter, G.

    2016-01-01

    The use of evolutionary algorithms has been enhanced in recent years for solving real engineering problems, where the requirements of intense computational calculations are needed, especially when computational engineering simulations are involved (use of finite element method, boundary element method, etc). The coupling of game-theory concepts in evolutionary algorithms has been a recent line of research which could enhance the efficiency of the optimum design procedure and th...

  19. A Distributed Dynamic Super Peer Selection Method Based on Evolutionary Game for Heterogeneous P2P Streaming Systems

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2013-01-01

    Full Text Available Due to high efficiency and good scalability, hierarchical hybrid P2P architecture has drawn more and more attention in P2P streaming research and application fields recently. The problem about super peer selection, which is the key problem in hybrid heterogeneous P2P architecture, is becoming highly challenging because super peers must be selected from a huge and dynamically changing network. A distributed super peer selection (SPS algorithm for hybrid heterogeneous P2P streaming system based on evolutionary game is proposed in this paper. The super peer selection procedure is modeled based on evolutionary game framework firstly, and its evolutionarily stable strategies are analyzed. Then a distributed Q-learning algorithm (ESS-SPS according to the mixed strategies by analysis is proposed for the peers to converge to the ESSs based on its own payoff history. Compared to the traditional randomly super peer selection scheme, experiments results show that the proposed ESS-SPS algorithm achieves better performance in terms of social welfare and average upload rate of super peers and keeps the upload capacity of the P2P streaming system increasing steadily with the number of peers increasing.

  20. Selective evolutionary generation systems: Theory and applications

    Science.gov (United States)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  1. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    Science.gov (United States)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  2. Strength Pareto Evolutionary Algorithm using Self-Organizing Data Analysis Techniques

    Directory of Open Access Journals (Sweden)

    Ionut Balan

    2015-03-01

    Full Text Available Multiobjective optimization is widely used in problems solving from a variety of areas. To solve such problems there was developed a set of algorithms, most of them based on evolutionary techniques. One of the algorithms from this class, which gives quite good results is SPEA2, method which is the basis of the proposed algorithm in this paper. Results from this paper are obtained by running these two algorithms on a flow-shop problem.

  3. International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems

    CERN Document Server

    Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

      The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  4. An Evolutionary Algorithm to Mine High-Utility Itemsets

    Directory of Open Access Journals (Sweden)

    Jerry Chun-Wei Lin

    2015-01-01

    Full Text Available High-utility itemset mining (HUIM is a critical issue in recent years since it can be used to reveal the profitable products by considering both the quantity and profit factors instead of frequent itemset mining (FIM of association rules (ARs. In this paper, an evolutionary algorithm is presented to efficiently mine high-utility itemsets (HUIs based on the binary particle swarm optimization. A maximal pattern (MP-tree strcutrue is further designed to solve the combinational problem in the evolution process. Substantial experiments on real-life datasets show that the proposed binary PSO-based algorithm has better results compared to the state-of-the-art GA-based algorithm.

  5. Reinforcement Learning for Online Control of Evolutionary Algorithms

    NARCIS (Netherlands)

    Eiben, A.; Horvath, Mark; Kowalczyk, Wojtek; Schut, Martijn

    2007-01-01

    The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). We are running an RL procedure and the EA simultaneously and the RL is changing the EA parameters on-the-fly. We

  6. Models for Evolutionary Algorithms and Their Applications in System Identification and Control Optimization

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    population and many generations, which essentially turns the problem into a series of related static problems. To our surprise, the control problem could easily be solved when optimized like this. To further examine this, we compared the EA with a particle swarm and a local search approach, which we...... simulate an evolutionary process where the goal is to evolve solutions by means of crossover, mutation, and selection based on their quality (fitness) with respect to the optimization problem at hand. Evolutionary algorithms (EAs) are highly relevant for industrial applications, because they are capable...... of handling problems with non-linear constraints, multiple objectives, and dynamic components – properties that frequently appear in real-world problems. This thesis presents research in three fundamental areas of EC; fitness function design, methods for parameter control, and techniques for multimodal...

  7. Use of multiple objective evolutionary algorithms in optimizing surveillance requirements

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Villanueva, J.F.; Sanchez, A.I; Galvan, B.; Salazar, D.; Cepin, M.

    2006-01-01

    This paper presents the development and application of a double-loop Multiple Objective Evolutionary Algorithm that uses a Multiple Objective Genetic Algorithm to perform the simultaneous optimization of periodic Test Intervals (TI) and Test Planning (TP). It takes into account the time-dependent effect of TP performed on stand-by safety-related equipment. TI and TP are part of the Surveillance Requirements within Technical Specifications at Nuclear Power Plants. It addresses the problem of multi-objective optimization in the space of dependable variables, i.e. TI and TP, using a novel flexible structure of the optimization algorithm. Lessons learnt from the cases of application of the methodology to optimize TI and TP for the High-Pressure Injection System are given. The results show that the double-loop Multiple Objective Evolutionary Algorithm is able to find the Pareto set of solutions that represents a surface of non-dominated solutions that satisfy all the constraints imposed on the objective functions and decision variables. Decision makers can adopt then the best solution found depending on their particular preference, e.g. minimum cost, minimum unavailability

  8. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    Science.gov (United States)

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  9. Non-linear algorithms solved with the help of the GIBIANE macro-language

    International Nuclear Information System (INIS)

    Ebersolt, L.; Combescure, A.; Millard, A.; Verpeaux, P.

    1987-01-01

    Non linear finite element problems are often solved with the help of iteratives procedures. In the finite element program CASTEM 2000, the syntax of the dataset permits the user to derive his own algorithm and tune it to his problem. These basic ideas, simple to imagine, needed a proper frame to be materialized in a general purpose finite element program, and three concepts emerged: Operators, the Gibiane macro-language. In the two first paragraphs, we will detail these concepts, in the third paragraph, we will describe the different possibilities of the program, in the fourth paragraph, we will show, by combining operators in a proper order, how to obtain the desired algorithm. (orig./GL)

  10. Physical Mapping Using Simulated Annealing and Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Vesterstrøm, Jacob Svaneborg

    2003-01-01

    optimization method when searching for an ordering of the fragments in PM. In this paper, we applied an evolutionary algorithm to the problem, and compared its performance to that of SA and local search on simulated PM data, in order to determine the important factors in finding a good ordering of the segments....... The analysis highlights the importance of a good PM model, a well-correlated fitness function, and high quality hybridization data. We suggest that future work in PM should focus on design of more reliable fitness functions and on developing error-screening algorithms....

  11. Extrapolating Weak Selection in Evolutionary Games

    Science.gov (United States)

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  12. An Extensible Component-Based Multi-Objective Evolutionary Algorithm Framework

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2017-01-01

    The ability to easily modify the problem definition is currently missing in Multi-Objective Evolutionary Algorithms (MOEA). Existing MOEA frameworks do not support dynamic addition and extension of the problem formulation. The existing frameworks require a re-specification of the problem definition...

  13. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    Science.gov (United States)

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  14. Implementation of an evolutionary algorithm in planning investment in a power distribution system

    Directory of Open Access Journals (Sweden)

    Carlos Andrés García Montoya

    2011-06-01

    Full Text Available The definition of an investment plan to implement in a distribution power system, is a task that constantly faced by utilities. This work presents a methodology for determining the investment plan for a distribution power system under a shortterm, using as a criterion for evaluating investment projects, associated costs and customers benefit from its implementation. Given the number of projects carried out annually on the system, the definition of an investment plan requires the use of computational tools to evaluate, a set of possibilities, the one that best suits the needs of the present system and better results. That is why in the job, implementing a multi objective evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm, which, based on the principles of Pareto optimality, it deliver to the planning expert, the best solutions found in the optimization process. The performance of the algorithm is tested using a set of projects to determine the best among the possible plans. We analyze also the effect of operators on the performance of evolutionary algorithm and results.

  15. Fast stochastic algorithm for simulating evolutionary population dynamics

    Science.gov (United States)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  16. A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems

    DEFF Research Database (Denmark)

    Vesterstrøm, Jacob Svaneborg; Thomsen, Rene

    2004-01-01

    Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance...... in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally...... outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA....

  17. The Research of Disease Spots Extraction Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Kangshun Li

    2017-01-01

    Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.

  18. Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutations

    DEFF Research Database (Denmark)

    Kratsch, Stefan; Lehre, Per Kristian; Neumann, Frank

    2011-01-01

    Evolutionary algorithms have been shown to be very successful for a wide range of NP-hard combinatorial optimization problems. We investigate the NP-hard problem of computing a spanning tree that has a maximal number of leaves by evolutionary algorithms in the context of fixed parameter tractabil...... two common mutation operators, we show that an operator related to spanning tree problems leads to an FPT running time in contrast to a general mutation operator that does not have this property....

  19. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  20. Evolutionary Algorithms For Neural Networks Binary And Real Data Classification

    Directory of Open Access Journals (Sweden)

    Dr. Hanan A.R. Akkar

    2015-08-01

    Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.

  1. Analog Group Delay Equalizers Design Based on Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    M. Laipert

    2006-04-01

    Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.

  2. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  3. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    Science.gov (United States)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  4. EFFICIENT MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR JOB SHOP SCHEDULING

    Institute of Scientific and Technical Information of China (English)

    Lei Deming; Wu Zhiming

    2005-01-01

    A new representation method is first presented based on priority rules. According to this method, each entry in the chromosome indicates that in the procedure of the Giffler and Thompson (GT) algorithm, the conflict occurring in the corresponding machine is resolved by the corresponding priority rule. Then crowding-measure multi-objective evolutionary algorithm (CMOEA) is designed,in which both archive maintenance and fitness assignment use crowding measure. Finally the comparisons between CMOEA and SPEA in solving 15 scheduling problems demonstrate that CMOEA is suitable to job shop scheduling.

  5. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    Science.gov (United States)

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  6. Expert-guided evolutionary algorithm for layout design of complex space stations

    Science.gov (United States)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  7. AN EVOLUTIONARY ALGORITHM FOR FAST INTENSITY BASED IMAGE MATCHING BETWEEN OPTICAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    P. Fischer

    2018-04-01

    Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.

  8. Harmonic elimination in diode-clamped multilevel inverter using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Barkati, Said [Laboratoire d' analyse des Signaux et Systemes (LASS), Universite de M' sila, BP. 166, rue Ichbilia 28000 M' sila (Algeria); Baghli, Lotfi [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN), CNRS UMR 7030, Universite Henri Poincare Nancy 1, BP. 239, 54506 Vandoeuvre-les-Nancy (France); Berkouk, El Madjid; Boucherit, Mohamed-Seghir [Laboratoire de Commande des Processus (LCP), Ecole Nationale Polytechnique, BP. 182, 10 Avenue Hassen Badi, 16200 El Harrach, Alger (Algeria)

    2008-10-15

    This paper describes two evolutionary algorithms for the optimized harmonic stepped-waveform technique. Genetic algorithms and particle swarm optimization are applied to compute the switching angles in a three-phase seven-level inverter to produce the required fundamental voltage while, at the same time, specified harmonics are eliminated. Furthermore, these algorithms are also used to solve the starting point problem of the Newton-Raphson conventional method. This combination provides a very effective method for the harmonic elimination technique. This strategy is useful for different structures of seven-level inverters. The diode-clamped topology is considered in this study. (author)

  9. General upper bounds on the runtime of parallel evolutionary algorithms.

    Science.gov (United States)

    Lässig, Jörg; Sudholt, Dirk

    2014-01-01

    We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.

  10. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    Science.gov (United States)

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a

  12. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  13. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  14. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.

    Directory of Open Access Journals (Sweden)

    Marta Scalfi

    Full Text Available Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst, at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale, and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale. At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F(ST-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F(ST-outlier methods detected together 11 F(ST-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale and 38 SNPs (macro-geographic scale significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F(ST-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also

  15. Micro- and macro-geographic scale effect on the molecular imprint of selection and adaptation in Norway spruce.

    Science.gov (United States)

    Scalfi, Marta; Mosca, Elena; Di Pierro, Erica Adele; Troggio, Michela; Vendramin, Giovanni Giuseppe; Sperisen, Christoph; La Porta, Nicola; Neale, David B

    2014-01-01

    Forest tree species of temperate and boreal regions have undergone a long history of demographic changes and evolutionary adaptations. The main objective of this study was to detect signals of selection in Norway spruce (Picea abies [L.] Karst), at different sampling-scales and to investigate, accounting for population structure, the effect of environment on species genetic diversity. A total of 384 single nucleotide polymorphisms (SNPs) representing 290 genes were genotyped at two geographic scales: across 12 populations distributed along two altitudinal-transects in the Alps (micro-geographic scale), and across 27 populations belonging to the range of Norway spruce in central and south-east Europe (macro-geographic scale). At the macrogeographic scale, principal component analysis combined with Bayesian clustering revealed three major clusters, corresponding to the main areas of southern spruce occurrence, i.e. the Alps, Carpathians, and Hercynia. The populations along the altitudinal transects were not differentiated. To assess the role of selection in structuring genetic variation, we applied a Bayesian and coalescent-based F(ST)-outlier method and tested for correlations between allele frequencies and climatic variables using regression analyses. At the macro-geographic scale, the F(ST)-outlier methods detected together 11 F(ST)-outliers. Six outliers were detected when the same analyses were carried out taking into account the genetic structure. Regression analyses with population structure correction resulted in the identification of two (micro-geographic scale) and 38 SNPs (macro-geographic scale) significantly correlated with temperature and/or precipitation. Six of these loci overlapped with F(ST)-outliers, among them two loci encoding an enzyme involved in riboflavin biosynthesis and a sucrose synthase. The results of this study indicate a strong relationship between genetic and environmental variation at both geographic scales. It also suggests that an

  16. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    Science.gov (United States)

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  17. An Improved Multiobjective Optimization Evolutionary Algorithm Based on Decomposition for Complex Pareto Fronts.

    Science.gov (United States)

    Jiang, Shouyong; Yang, Shengxiang

    2016-02-01

    The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.

  18. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    Science.gov (United States)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  19. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  20. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  1. Parameterless evolutionary algorithm applied to the nuclear reload problem

    International Nuclear Information System (INIS)

    Caldas, Gustavo Henrique Flores; Schirru, Roberto

    2008-01-01

    In this work, an evolutionary algorithm with no parameters called FPBIL (parameter free PBIL) is developed based on PBIL (population-based incremental learning). Moreover, the analysis reveals how the parameters from PBIL can be replaced by self-adaptable mechanisms which appear from the radically different form by which the evolution is processed. Despite the advantages, the FPBIL reveals itself compact and relatively modest in the use of computational resources. The FPBIL is then applied to the nuclear reload problem. The experimental results observed are compared to those of other works and corroborate to affirm the superiority of the new algorithm

  2. Identification of Water Diffusivity of Inorganic Porous Materials Using Evolutionary Algorithms

    Czech Academy of Sciences Publication Activity Database

    Kočí, J.; Maděra, J.; Jerman, M.; Keppert, M.; Svora, Petr; Černý, R.

    2016-01-01

    Roč. 113, č. 1 (2016), s. 51-66 ISSN 0169-3913 Institutional support: RVO:61388980 Keywords : Evolutionary algorithms * Water transport * Inorganic porous materials * Inverse analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.205, year: 2016

  3. An encoding technique for multiobjective evolutionary algorithms applied to power distribution system reconfiguration.

    Science.gov (United States)

    Guardado, J L; Rivas-Davalos, F; Torres, J; Maximov, S; Melgoza, E

    2014-01-01

    Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD) technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Nondominated Sorting Genetic Algorithm II (NSGA-II). The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.

  4. A New Manufacturing Service Selection and Composition Method Using Improved Flower Pollination Algorithm

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    2016-01-01

    Full Text Available With an increasing number of manufacturing services, the means by which to select and compose these manufacturing services have become a challenging problem. It can be regarded as a multiobjective optimization problem that involves a variety of conflicting quality of service (QoS attributes. In this study, a multiobjective optimization model of manufacturing service composition is presented that is based on QoS and an environmental index. Next, the skyline operator is applied to reduce the solution space. And then a new method called improved Flower Pollination Algorithm (FPA is proposed for solving the problem of manufacturing service selection and composition. The improved FPA enhances the performance of basic FPA by combining the latter with crossover and mutation operators of the Differential Evolution (DE algorithm. Finally, a case study is conducted to compare the proposed method with other evolutionary algorithms, including the Genetic Algorithm, DE, basic FPA, and extended FPA. The experimental results reveal that the proposed method performs best at solving the problem of manufacturing service selection and composition.

  5. A study on genetic variation and selective effect of principal characters of hybrid progenies of macro-mutants in peanut

    International Nuclear Information System (INIS)

    Qiu Qingrong

    1990-01-01

    In order to make good use of macro-mutants, we have studied the law of genetic variation and selective effect on the hybrid progenies of original varieties and of two macro-mutants with steady phenotypes. The results show that the hybrid progenies of the two experimental macro-mutants in the broad-sense heritability and the genetic advance of their main economical characters as well as the effect on selection are better than those of the hybrid progenies of the two original varieties. The selection rate from the macro-mutant hybrid progenies is 72.2% which is higher than that of the hybrid progenies of the two original varieties, and and a new prospecting strain has been obtained

  6. DNA evolutionary algorithm (DNAEA) for source term identification in convection-diffusion equation

    International Nuclear Information System (INIS)

    Yang, X-H; Hu, X-X; Shen, Z-Y

    2008-01-01

    The source identification problem is changed into an optimization problem in this paper. This is a complicated nonlinear optimization problem. It is very intractable with traditional optimization methods. So DNA evolutionary algorithm (DNAEA) is presented to solve the discussed problem. In this algorithm, an initial population is generated by a chaos algorithm. With the shrinking of searching range, DNAEA gradually directs to an optimal result with excellent individuals obtained by DNAEA. The position and intensity of pollution source are well found with DNAEA. Compared with Gray-coded genetic algorithm and pure random search algorithm, DNAEA has rapider convergent speed and higher calculation precision

  7. Evolutionary algorithms for the Vehicle Routing Problem with Time Windows

    NARCIS (Netherlands)

    Bräysy, Olli; Dullaert, Wout; Gendreau, Michel

    2004-01-01

    This paper surveys the research on evolutionary algorithms for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from a single depot to a set of geographically scattered points. The routes must be designed in such a way

  8. Opportunistic Relay Selection with Cooperative Macro Diversity

    Directory of Open Access Journals (Sweden)

    Yu Chia-Hao

    2010-01-01

    Full Text Available We apply a fully opportunistic relay selection scheme to study cooperative diversity in a semianalytical manner. In our framework, idle Mobile Stations (MSs are capable of being used as Relay Stations (RSs and no relaying is required if the direct path is strong. Our relay selection scheme is fully selection based: either the direct path or one of the relaying paths is selected. Macro diversity, which is often ignored in analytical works, is taken into account together with micro diversity by using a complete channel model that includes both shadow fading and fast fading effects. The stochastic geometry of the network is taken into account by having a random number of randomly located MSs. The outage probability analysis of the selection differs from the case where only fast fading is considered. Under our framework, distribution of the received power is formulated using different Channel State Information (CSI assumptions to simulate both optimistic and practical environments. The results show that the relay selection gain can be significant given a suitable amount of candidate RSs. Also, while relay selection according to incomplete CSI is diversity suboptimal compared to relay selection based on full CSI, the loss in average throughput is not too significant. This is a consequence of the dominance of geometry over fast fading.

  9. A Novel Evolutionary Algorithm Inspired by Beans Dispersal

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    2013-02-01

    Full Text Available Inspired by the transmission of beans in nature, a novel evolutionary algorithm-Bean Optimization Algorithm (BOA is proposed in this paper. BOA is mainly based on the normal distribution which is an important continuous probability distribution of quantitative phenomena. Through simulating the self-adaptive phenomena of plant, BOA is designed for solving continuous optimization problems. We also analyze the global convergence of BOA by using the Solis and Wetsarsquo; research results. The conclusion is that BOA can converge to the global optimization solution with probability one. In order to validate its effectiveness, BOA is tested against benchmark functions. And its performance is also compared with that of particle swarm optimization (PSO algorithm. The experimental results show that BOA has competitive performance to PSO in terms of accuracy and convergence speed on the explored tests and stands out as a promising alternative to existing optimization methods for engineering designs or applications.

  10. XTALOPT: An open-source evolutionary algorithm for crystal structure prediction

    Science.gov (United States)

    Lonie, David C.; Zurek, Eva

    2011-02-01

    The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely

  11. An efficient non-dominated sorting method for evolutionary algorithms.

    Science.gov (United States)

    Fang, Hongbing; Wang, Qian; Tu, Yi-Cheng; Horstemeyer, Mark F

    2008-01-01

    We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.

  12. An Encoding Technique for Multiobjective Evolutionary Algorithms Applied to Power Distribution System Reconfiguration

    Directory of Open Access Journals (Sweden)

    J. L. Guardado

    2014-01-01

    Full Text Available Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2 and the Nondominated Sorting Genetic Algorithm II (NSGA-II. The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.

  13. Macro-Micro Interlocked Simulator

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    2005-01-01

    Simulation Science is now standing on a turning point. After the appearance of the Earth Simulator, HEC is struggling with several severe difficulties due to the physical limit of LSI technologies and the so-called latency problem. In this paper I would like to propose one clever way to overcome these difficulties from the simulation algorithm viewpoint. Nature and artificial products are usually organized with several nearly autonomously working internal systems (organizations, or layers). The Earth Simulator has gifted us with a really useful scientific tool that can deal with the entire evolution of one internal system with a sufficient soundness. In order to make a leap jump of Simulation Science, therefore, it is desired to design an innovative simulator that enables us to deal with simultaneously and as consistently as possible a real system that evolves cooperatively with several internal autonomous systems. Three years experience of the Earth Simulator Project has stimulated to come up with one innovative simulation algorithm to get rid of the technological barrier standing in front of us, which I would like to call 'Macro-Micro Interlocked Algorithm', or 'Macro-Micro Multiplying Algorithm', and present a couple of such examples to validate the proposed algorithm. The first example is an aurora-arc formation as a result of the mutual interaction between the macroscopic magnetosphere-ionosphere system and the microscopic field-aligned electron and ion system. The second example is the local heavy rain fall resulting from the interaction between the global climate evolution and the microscopic raindrop growth process. Based on this innovative feasible algorithm, I came up with a Macro-Micro Multiplying Simulator

  14. A New Evolutionary Algorithm Based on Bacterial Evolution and Its Application for Scheduling A Flexible Manufacturing System

    Directory of Open Access Journals (Sweden)

    Chandramouli Anandaraman

    2012-01-01

    Full Text Available A new evolutionary computation algorithm, Superbug algorithm, which simulates evolution of bacteria in a culture, is proposed. The algorithm is developed for solving large scale optimization problems such as scheduling, transportation and assignment problems. In this work, the algorithm optimizes machine schedules in a Flexible Manufacturing System (FMS by minimizing makespan. The FMS comprises of four machines and two identical Automated Guided Vehicles (AGVs. AGVs are used for carrying jobs between the Load/Unload (L/U station and the machines. Experimental results indicate the efficiency of the proposed algorithm in its optimization performance in scheduling is noticeably superior to other evolutionary algorithms when compared to the best results reported in the literature for FMS Scheduling.

  15. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

    Science.gov (United States)

    Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard

    2012-06-07

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.

  16. A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Hu

    2014-01-01

    Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

  17. The Application of Fitness Sharing Method in Evolutionary Algorithm to Optimizing the Travelling Salesman Problem (TSP

    Directory of Open Access Journals (Sweden)

    Nurmaulidar Nurmaulidar

    2015-04-01

    Full Text Available Travelling Salesman Problem (TSP is one of complex optimization problem that is difficult to be solved, and require quite a long time for a large number of cities. Evolutionary algorithm is a precise algorithm used in solving complex optimization problem as it is part of heuristic method. Evolutionary algorithm, like many other algorithms, also experiences a premature convergence phenomenon, whereby variation is eliminated from a population of fairly fit individuals before a complete solution is achieved. Therefore it requires a method to delay the convergence. A specific method of fitness sharing called phenotype fitness sharing has been used in this research. The aim of this research is to find out whether fitness sharing in evolutionary algorithm is able to optimize TSP. There are two concepts of evolutionary algorithm being used in this research. the first one used single elitism and the other one used federated solution. The two concepts had been tested to the method of fitness sharing by using the threshold of 0.25, 0.50 and 0.75. The result was then compared to a non fitness sharing method. The result in this study indicated that by using single elitism concept, fitness sharing was able to give a more optimum result for the data of 100-1000 cities. On the other hand, by using federation solution concept, fitness sharing can yield a more optimum result for the data above 1000 cities, as well as a better solution of data-spreading compared to the method without fitness sharing.

  18. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  19. A chaos-based evolutionary algorithm for general nonlinear programming problems

    International Nuclear Information System (INIS)

    El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.

    2016-01-01

    In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.

  20. Swarm, genetic and evolutionary programming algorithms applied to multiuser detection

    Directory of Open Access Journals (Sweden)

    Paul Jean Etienne Jeszensky

    2005-02-01

    Full Text Available In this paper, the particles swarm optimization technique, recently published in the literature, and applied to Direct Sequence/Code Division Multiple Access systems (DS/CDMA with multiuser detection (MuD is analyzed, evaluated and compared. The Swarm algorithm efficiency when applied to the DS-CDMA multiuser detection (Swarm-MuD is compared through the tradeoff performance versus computational complexity, being the complexity expressed in terms of the number of necessary operations in order to reach the performance obtained through the optimum detector or the Maximum Likelihood detector (ML. The comparison is accomplished among the genetic algorithm, evolutionary programming with cloning and Swarm algorithm under the same simulation basis. Additionally, it is proposed an heuristics-MuD complexity analysis through the number of computational operations. Finally, an analysis is carried out for the input parameters of the Swarm algorithm in the attempt to find the optimum parameters (or almost-optimum for the algorithm applied to the MuD problem.

  1. Virus evolutionary genetic algorithm for task collaboration of logistics distribution

    Science.gov (United States)

    Ning, Fanghua; Chen, Zichen; Xiong, Li

    2005-12-01

    In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.

  2. Chaos Enhanced Differential Evolution in the Task of Evolutionary Control of Selected Set of Discrete Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Roman Senkerik

    2014-01-01

    Full Text Available Evolutionary technique differential evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of set of different chaotic systems. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used also as the chaotic pseudorandom number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudorandom sequences given by chaotic map to help differential evolution algorithm search for the best controller settings for the very same chaotic system. The optimizations were performed for three different chaotic systems, two types of case studies and developed cost functions.

  3. System optimization for HVAC energy management using the robust evolutionary algorithm

    International Nuclear Information System (INIS)

    Fong, K.F.; Hanby, V.I.; Chow, T.T.

    2009-01-01

    For an installed centralized heating, ventilating and air conditioning (HVAC) system, appropriate energy management measures would achieve energy conservation targets through the optimal control and operation. The performance optimization of conventional HVAC systems may be handled by operation experience, but it may not cover different optimization scenarios and parameters in response to a variety of load and weather conditions. In this regard, it is common to apply the suitable simulation-optimization technique to model the system then determine the required operation parameters. The particular plant simulation models can be built up by either using the available simulation programs or a system of mathematical expressions. To handle the simulation models, iterations would be involved in the numerical solution methods. Since the gradient information is not easily available due to the complex nature of equations, the traditional gradient-based optimization methods are not applicable for this kind of system models. For the heuristic optimization methods, the continual search is commonly necessary, and the system function call is required for each search. The frequency of simulation function calls would then be a time-determining step, and an efficient optimization method is crucial, in order to find the solution through a number of function calls in a reasonable computational period. In this paper, the robust evolutionary algorithm (REA) is presented to tackle this nature of the HVAC simulation models. REA is based on one of the paradigms of evolutionary algorithm, evolution strategy, which is a stochastic population-based searching technique emphasized on mutation. The REA, which incorporates the Cauchy deterministic mutation, tournament selection and arithmetic recombination, would provide a synergetic effect for optimal search. The REA is effective to cope with the complex simulation models, as well as those represented by explicit mathematical expressions of

  4. A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems

    Directory of Open Access Journals (Sweden)

    White Michael S

    2003-01-01

    Full Text Available A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods.

  5. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  6. A Novel Evolutionary Algorithm for Designing Robust Analog Filters

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.

  7. Comparing the Robustness of Evolutionary Algorithms on the Basis of Benchmark Functions

    Directory of Open Access Journals (Sweden)

    DENIZ ULKER, E.

    2013-05-01

    Full Text Available In real-world optimization problems, even though the solution quality is of great importance, the robustness of the solution is also an important aspect. This paper investigates how the optimization algorithms are sensitive to the variations of control parameters and to the random initialization of the solution set for fixed control parameters. The comparison is performed of three well-known evolutionary algorithms which are Particle Swarm Optimization (PSO algorithm, Differential Evolution (DE algorithm and the Harmony Search (HS algorithm. Various benchmark functions with different characteristics are used for the evaluation of these algorithms. The experimental results show that the solution quality of the algorithms is not directly related to their robustness. In particular, the algorithm that is highly robust can have a low solution quality, or the algorithm that has a high quality of solution can be quite sensitive to the parameter variations.

  8. Multi-objective optimization of HVAC system with an evolutionary computation algorithm

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Tang, Fan; Xu, Guanglin

    2011-01-01

    A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.

  9. Equilibrium Selection in Games with Macroeconomic Complementarities

    NARCIS (Netherlands)

    Kaarboe, Oddvar M.; Tieman, Alexander F.

    1999-01-01

    We apply the stochastic evolutionary approach of equilibrium selection tomacroeconomic models in which a complementarity at the macro level ispresent. These models often exhibit multiple Pareto-ranked Nash equilibria,and the best response-correspondence of an individual increases with ameasure of

  10. Academic Training: Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms - Lecture serie

    CERN Multimedia

    Françoise Benz

    2004-01-01

    ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...

  11. An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints

    Directory of Open Access Journals (Sweden)

    Jinmo Sung

    2014-01-01

    Full Text Available Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments.

  12. Comparative Study of Evolutionary Multi-objective Optimization Algorithms for a Non-linear Greenhouse Climate Control Problem

    DEFF Research Database (Denmark)

    Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard

    2015-01-01

    Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...

  13. Ni-MH batteries state-of-charge prediction based on immune evolutionary network

    International Nuclear Information System (INIS)

    Cheng Bo; Zhou Yanlu; Zhang Jiexin; Wang Junping; Cao Binggang

    2009-01-01

    Based on clonal selection theory, an improved immune evolutionary strategy is presented. Compared with conventional evolutionary strategy algorithm (CESA) and immune monoclonal strategy algorithm (IMSA), experimental results show that the proposed algorithm is of high efficiency and can effectively prevent premature convergence. A three-layer feed-forward neural network is presented to predict state-of-charge (SOC) of Ni-MH batteries. Initially, partial least square regression (PLSR) is used to select input variables. Then, five variables, battery terminal voltage, voltage derivative, voltage second derivative, discharge current and battery temperature, are selected as the inputs of NN. In order to overcome the weakness of BP algorithm, the new algorithm is adopted to train weights. Finally, under the state of dynamic power cycle, the predicted SOC and the actual SOC are compared to verify the proposed neural network with acceptable accuracy (5%).

  14. An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Yushan Zhang

    2015-01-01

    Full Text Available Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP. This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.

  15. Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Kuo-Yang Wu

    2013-01-01

    Full Text Available We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS in the Flexible Manufacturing System (FMS used in modern industrial production. Three types of evolutionary algorithms, the Genetic Algorithm (GA, the Immune Genetic Algorithm (IGA, and the Particle Swarm Optimization (PSO algorithm, are implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval time travelled by the Storage and Retrieval (S/R machine. Simulation results and comparisons show the advantages and feasibility of the proposed methods.

  16. Chaotic Multiobjective Evolutionary Algorithm Based on Decomposition for Test Task Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2014-01-01

    Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.

  17. An improved shuffled frog leaping algorithm based evolutionary framework for currency exchange rate prediction

    Science.gov (United States)

    Dash, Rajashree

    2017-11-01

    Forecasting purchasing power of one currency with respect to another currency is always an interesting topic in the field of financial time series prediction. Despite the existence of several traditional and computational models for currency exchange rate forecasting, there is always a need for developing simpler and more efficient model, which will produce better prediction capability. In this paper, an evolutionary framework is proposed by using an improved shuffled frog leaping (ISFL) algorithm with a computationally efficient functional link artificial neural network (CEFLANN) for prediction of currency exchange rate. The model is validated by observing the monthly prediction measures obtained for three currency exchange data sets such as USD/CAD, USD/CHF, and USD/JPY accumulated within same period of time. The model performance is also compared with two other evolutionary learning techniques such as Shuffled frog leaping algorithm and Particle Swarm optimization algorithm. Practical analysis of results suggest that, the proposed model developed using the ISFL algorithm with CEFLANN network is a promising predictor model for currency exchange rate prediction compared to other models included in the study.

  18. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems

    Science.gov (United States)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2018-04-01

    Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods

  19. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  20. Development and evaluation of a micro-macro algorithm for the simulation of polymer flow

    International Nuclear Information System (INIS)

    Feigl, Kathleen; Tanner, Franz X.

    2006-01-01

    A micro-macro algorithm for the calculation of polymer flow is developed and numerically evaluated. The system being solved consists of the momentum and mass conservation equations from continuum mechanics coupled with a microscopic-based rheological model for polymer stress. Standard finite element techniques are used to solve the conservation equations for velocity and pressure, while stochastic simulation techniques are used to compute polymer stress from the simulated polymer dynamics in the rheological model. The rheological model considered combines aspects of reptation, network and continuum models. Two types of spatial approximation are considered for the configuration fields defining the dynamics in the model: piecewise constant and piecewise linear. The micro-macro algorithm is evaluated by simulating the abrupt planar die entry flow of a polyisobutylene solution described in the literature. The computed velocity and stress fields are found to be essentially independent of mesh size and ensemble size, while there is some dependence of the results on the order of spatial approximation to the configuration fields close to the die entry. Comparison with experimental data shows that the piecewise linear approximation leads to better predictions of the centerline first normal stress difference. Finally, the computational time associated with the piecewise constant spatial approximation is found to be about 2.5 times lower than that associated with the piecewise linear approximation. This is the result of the more efficient time integration scheme that is possible with the former type of approximation due to the pointwise incompressibility guaranteed by the choice of velocity-pressure finite element

  1. Eigenvector Subset Selection Using Bayesian Optimization Algorithm%基于贝叶斯优化算法的脸面特征向量子集选择

    Institute of Scientific and Technical Information of China (English)

    郭卫锋; 林亚平; 罗光平

    2002-01-01

    Eigenvector subset selection is the key to face recognition. In this paper ,we propose ESS-BOA, a newrandomized, population-based evolutionary algorithm which deals with the Eigenvector Subset Selection (ESS)prob-lem on face recognition application. In ESS-BOA ,the ESS problem, stated as a search problem ,uses the BayesianOptimization Algorithm (BOA) as searching engine and the distance degree as the object function to select eigenvec-tor. Experimental results show that ESS-BOA outperforms the traditional the eigenface selection algorithm.

  2. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2016-06-01

    Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.

  3. Synthesis of Steered Flat-top Beam Pattern Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    D. Mandal

    2016-12-01

    Full Text Available In this paper a pattern synthesis method based on Evolutionary Algorithm is presented. A Flat-top beam pattern has been generated from a concentric ring array of isotropic elements by finding out the optimum set of elements amplitudes and phases using Differential Evolution algorithm. The said pattern is generated in three predefined azimuth planes instate of a single phi plane and also verified for a range of azimuth plane for the same optimum excitations. The main beam is steered to an elevation angle of 30 degree with lower peak SLL and ripple. Dynamic range ratio (DRR is also being improved by eliminating the weakly excited array elements, which simplify the design complexity of feed networks.

  4. An evolutionary algorithm technique for intelligence, surveillance, and reconnaissance plan optimization

    Science.gov (United States)

    Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad

    2008-04-01

    To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology

  5. A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting

    International Nuclear Information System (INIS)

    Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo

    2008-01-01

    In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)

  6. Genome-wide detection of selection and other evolutionary forces

    DEFF Research Database (Denmark)

    Xu, Zhuofei; Zhou, Rui

    2015-01-01

    As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen–host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed...... to scan genome-wide alignments for evidence of positive Darwinian selection, recombination, and other evolutionary forces operating on the coding regions. In this chapter, we describe an integrative analysis pipeline and its application to tracking featured evolutionary trajectories on the genome...

  7. ANTQ evolutionary algorithm applied to nuclear fuel reload problem

    International Nuclear Information System (INIS)

    Machado, Liana; Schirru, Roberto

    2000-01-01

    Nuclear fuel reload optimization is a NP-complete combinatorial optimization problem where the aim is to find fuel rods' configuration that maximizes burnup or minimizes the power peak factor. For decades this problem was solved exclusively using an expert's knowledge. From the eighties, however, there have been efforts to automatize fuel reload. The first relevant effort used Simulated Annealing, but more recent publications show Genetic Algorithm's (GA) efficiency on this problem's solution. Following this direction, our aim is to optimize nuclear fuel reload using Ant-Q, a reinforcement learning algorithm based on the Cellular Computing paradigm. Ant-Q's results on the Travelling Salesmen Problem, which is conceptually similar to fuel reload, are better than the GA's ones. Ant-Q was tested on fuel reload by the simulation of the first cycle in-out reload of Bibils, a 193 fuel element PWR. Comparing An-Q's result with the GA's ones, it can b seen that even without a local heuristics, the former evolutionary algorithm can be used to solve the nuclear fuel reload problem. (author)

  8. Taxon ordering in phylogenetic trees by means of evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Cerutti Francesco

    2011-07-01

    Full Text Available Abstract Background In in a typical "left-to-right" phylogenetic tree, the vertical order of taxa is meaningless, as only the branch path between them reflects their degree of similarity. To make unresolved trees more informative, here we propose an innovative Evolutionary Algorithm (EA method to search the best graphical representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods Starting from a West Nile virus phylogenetic tree, in a (1 + 1-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius next taxa. After having set the radius to the best performance, we evolved the trees with (λ + μ-EAs to study the influence of population on the algorithm. Results The (1 + 1-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (λ + μ-EAs performed as well as the (1 + 1, except the larger population (1000 + 1000. Conclusions The trees after the evolution showed an improvement both of the fitness (based on a genetic distance matrix, then close taxa are actually genetically close, and of the biological interpretation. Samples collected in the same state or year moved close each other, making the tree easier to interpret. Biological relationships between samples are also easier to observe.

  9. Evolutionary Pseudo-Relaxation Learning Algorithm for Bidirectional Associative Memory

    Institute of Scientific and Technical Information of China (English)

    Sheng-Zhi Du; Zeng-Qiang Chen; Zhu-Zhi Yuan

    2005-01-01

    This paper analyzes the sensitivity to noise in BAM (Bidirectional Associative Memory), and then proves the noise immunity of BAM relates not only to the minimum absolute value of net inputs (MAV) but also to the variance of weights associated with synapse connections. In fact, it is a positive monotonically increasing function of the quotient of MAV divided by the variance of weights. Besides, the performance of pseudo-relaxation method depends on learning parameters (λ and ζ), but the relation of them is not linear. So it is hard to find a best combination of λ and ζ which leads to the best BAM performance. And it is obvious that pseudo-relaxation is a kind of local optimization method, so it cannot guarantee to get the global optimal solution. In this paper, a novel learning algorithm EPRBAM (evolutionary psendo-relaxation learning algorithm for bidirectional association memory) employing genetic algorithm and pseudo-relaxation method is proposed to get feasible solution of BAM weight matrix. This algorithm uses the quotient as the fitness of each individual and employs pseudo-relaxation method to adjust individual solution when it does not satisfy constraining condition any more after genetic operation. Experimental results show this algorithm improves noise immunity of BAM greatly. At the same time, EPRBAM does not depend on learning parameters and can get global optimal solution.

  10. Macro-Micro Simulation for Polymer Crystallization in Couette Flow

    Directory of Open Access Journals (Sweden)

    Chunlei Ruan

    2017-12-01

    Full Text Available Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale; they only calculate macroscale parameters, e.g., temperature and relative crystallinity, or they only predict microstructure details, e.g., crystal morphology and mean size of crystals. The multi-scale numerical works that overcome these disadvantages are unfortunately based on quiescent crystallization, in which flow effects are neglected. The objective of this work is to build up a macro-micro model and a macro-micro algorithm to consider both the thermal and flow effects on the crystallization. Our macro-micro model couples two parts: mass and heat transfer of polymeric flow at the macroscopic level, and nucleation and growth of spherulites and shish-kebabs at the microscopic level. Our macro-micro algorithm is a hybrid finite volume/Monte Carlo method, in which the finite volume method is used at the macroscopic level to calculate the flow and temperature fields, while the Monte Carlo method is used at the microscopic level to capture the development of spherulites and shish-kebabs. The macro-micro model and the macro-micro algorithm are applied to simulate polymer crystallization in Couette flow. The effects of shear rate, shear time, and wall temperature on the crystal morphology and crystallization kinetics are also discussed.

  11. A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Alexis D. J. Makin

    2016-03-01

    Full Text Available Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene and orientation (0° to 90°, orientation, ORI gene. An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference.

  12. A new evolutionary algorithm with LQV learning for combinatorial problems optimization

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas; Schirru, Roberto

    2000-01-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for combinatorial problems optimization. In this work, a new learning mode, to be used by the population-based incremental learning algorithm, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process known as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors, in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problems. Due to the fact that the reload problem is a combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)

  13. Improved multilayer OLED architecture using evolutionary genetic algorithm

    International Nuclear Information System (INIS)

    Quirino, W.G.; Teixeira, K.C.; Legnani, C.; Calil, V.L.; Messer, B.; Neto, O.P. Vilela; Pacheco, M.A.C.; Cremona, M.

    2009-01-01

    Organic light-emitting diodes (OLEDs) constitute a new class of emissive devices, which present high efficiency and low voltage operation, among other advantages over current technology. Multilayer architecture (M-OLED) is generally used to optimize these devices, specially overcoming the suppression of light emission due to the exciton recombination near the metal layers. However, improvement in recombination, transport and charge injection can also be achieved by blending electron and hole transporting layers into the same one. Graded emissive region devices can provide promising results regarding quantum and power efficiency and brightness, as well. The massive number of possible model configurations, however, suggests that a search algorithm would be more suitable for this matter. In this work, multilayer OLEDs were simulated and fabricated using Genetic Algorithms (GAs) as evolutionary strategy to improve their efficiency. Genetic Algorithms are stochastic algorithms based on genetic inheritance and Darwinian strife to survival. In our simulations, it was assumed a 50 nm width graded region, divided into five equally sized layers. The relative concentrations of the materials within each layer were optimized to obtain the lower V/J 0.5 ratio, where V is the applied voltage and J the current density. The best M-OLED architecture obtained by genetic algorithm presented a V/J 0.5 ratio nearly 7% lower than the value reported in the literature. In order to check the experimental validity of the improved results obtained in the simulations, two M-OLEDs with different architectures were fabricated by thermal deposition in high vacuum environment. The results of the comparison between simulation and some experiments are presented and discussed.

  14. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Directory of Open Access Journals (Sweden)

    Afnizanfaizal Abdullah

    Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  15. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Science.gov (United States)

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  16. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS APPLIED TO MICROSTRIP ANTENNAS DESIGN ALGORITMOS EVOLUTIVOS MULTIOBJETIVO APLICADOS A LOS PROYECTOS DE ANTENAS MICROSTRIP

    Directory of Open Access Journals (Sweden)

    Juliano Rodrigues Brianeze

    2009-12-01

    Full Text Available This work presents three of the main evolutionary algorithms: Genetic Algorithm, Evolution Strategy and Evolutionary Programming, applied to microstrip antennas design. Efficiency tests were performed, considering the analysis of key physical and geometrical parameters, evolution type, numerical random generators effects, evolution operators and selection criteria. These algorithms were validated through design of microstrip antennas based on the Resonant Cavity Method, and allow multiobjective optimizations, considering bandwidth, standing wave ratio and relative material permittivity. The optimal results obtained with these optimization processes, were confirmed by CST Microwave Studio commercial package.Este trabajo presenta tres de los principales algoritmos evolutivos: Algoritmo Genético, Estrategia Evolutiva y Programación Evolutiva, aplicados al diseño de antenas de microlíneas (microstrip. Se realizaron pruebas de eficiencia de los algoritmos, considerando el análisis de los parámetros físicos y geométricos, tipo de evolución, efecto de generación de números aleatorios, operadores evolutivos y los criterios de selección. Estos algoritmos fueron validados a través del diseño de antenas de microlíneas basado en el Método de Cavidades Resonantes y permiten optimizaciones multiobjetivo, considerando ancho de banda, razón de onda estacionaria y permitividad relativa del dieléctrico. Los resultados óptimos obtenidos fueron confirmados a través del software comercial CST Microwave Studio.

  17. Preventive maintenance scheduling by variable dimension evolutionary algorithms

    International Nuclear Information System (INIS)

    Limbourg, Philipp; Kochs, Hans-Dieter

    2006-01-01

    Black box optimization strategies have been proven to be useful tools for solving complex maintenance optimization problems. There has been a considerable amount of research on the right choice of optimization strategies for finding optimal preventive maintenance schedules. Much less attention is turned to the representation of the schedule to the algorithm. Either the search space is represented as a binary string leading to highly complex combinatorial problem or maintenance operations are defined by regular intervals which may restrict the search space to suboptimal solutions. An adequate representation however is vitally important for result quality. This work presents several nonstandard input representations and compares them to the standard binary representation. An evolutionary algorithm with extensions to handle variable length genomes is used for the comparison. The results demonstrate that two new representations perform better than the binary representation scheme. A second analysis shows that the performance may be even more increased using modified genetic operators. Thus, the choice of alternative representations leads to better results in the same amount of time and without any loss of accuracy

  18. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling

    Directory of Open Access Journals (Sweden)

    Qianwang Deng

    2017-01-01

    Full Text Available Flexible job-shop scheduling problem (FJSP is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II for multiobjective FJSP (MO-FJSP with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

  19. A Bee Evolutionary Guiding Nondominated Sorting Genetic Algorithm II for Multiobjective Flexible Job-Shop Scheduling.

    Science.gov (United States)

    Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua

    2017-01-01

    Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.

  20. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    Science.gov (United States)

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Learning and anticipation in online dynamic optimization with evolutionary algorithms: The stochastic case

    NARCIS (Netherlands)

    P.A.N. Bosman (Peter); J.A. La Poutré (Han); D. Thierens (Dirk)

    2007-01-01

    htmlabstractThe focus of this paper is on how to design evolutionary algorithms (EAs) for solving stochastic dynamic optimization problems online, i.e. as time goes by. For a proper design, the EA must not only be capable of tracking shifting optima, it must also take into account the future

  2. An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective Distribution Feeder Reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2009-08-15

    This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)

  3. Synthesizing mixed H2/H-infinity dynamic controller using evolutionary algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal

    2001-01-01

    This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....

  4. THE APPLICATION OF AN EVOLUTIONARY ALGORITHM TO THE OPTIMIZATION OF A MESOSCALE METEOROLOGICAL MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D.; O' Steen, L.

    2008-02-11

    We show that a simple evolutionary algorithm can optimize a set of mesoscale atmospheric model parameters with respect to agreement between the mesoscale simulation and a limited set of synthetic observations. This is illustrated using the Regional Atmospheric Modeling System (RAMS). A set of 23 RAMS parameters is optimized by minimizing a cost function based on the root mean square (rms) error between the RAMS simulation and synthetic data (observations derived from a separate RAMS simulation). We find that the optimization can be efficient with relatively modest computer resources, thus operational implementation is possible. The optimization efficiency, however, is found to depend strongly on the procedure used to perturb the 'child' parameters relative to their 'parents' within the evolutionary algorithm. In addition, the meteorological variables included in the rms error and their weighting are found to be an important factor with respect to finding the global optimum.

  5. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    Science.gov (United States)

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    Science.gov (United States)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  7. Automatic Algorithm Selection for Complex Simulation Problems

    CERN Document Server

    Ewald, Roland

    2012-01-01

    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. An automated selection of simulation algorithms supports users in setting up simulation experiments without demanding expert knowledge on simulation. Roland Ewald analyzes and discusses existing approaches to solve the algorithm selection problem in the context of simulation. He introduces a framework for automatic simulation algorithm selection and

  8. Minimizing the symbol-error-rate for amplify-and-forward relaying systems using evolutionary algorithms

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2015-02-01

    In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.

  9. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Min-Yin Liu

    2017-05-01

    Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.

  10. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  11. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism.

    Science.gov (United States)

    Mélade, Julien; Wieseke, Nicolas; Ramasindrazana, Beza; Flores, Olivier; Lagadec, Erwan; Gomard, Yann; Goodman, Steven M; Dellagi, Koussay; Pascalis, Hervé

    2016-04-12

    An eco-epidemiological investigation was carried out on Madagascar bat communities to better understand the evolutionary mechanisms and environmental factors that affect virus transmission among bat species in closely related members of the genus Morbillivirus, currently referred to as Unclassified Morbilli-related paramyxoviruses (UMRVs). A total of 947 bats were investigated originating from 52 capture sites (22 caves, 18 buildings, and 12 outdoor sites) distributed over different bioclimatic zones of the island. Using RT-PCR targeting the L-polymerase gene of the Paramyxoviridae family, we found that 10.5% of sampled bats were infected, representing six out of seven families and 15 out of 31 species analyzed. Univariate analysis indicates that both abiotic and biotic factors may promote viral infection. Using generalized linear modeling of UMRV infection overlaid on biotic and abiotic variables, we demonstrate that sympatric occurrence of bats is a major factor for virus transmission. Phylogenetic analyses revealed that all paramyxoviruses infecting Malagasy bats are UMRVs and showed little host specificity. Analyses using the maximum parsimony reconciliation tool CoRe-PA, indicate that host-switching, rather than co-speciation, is the dominant macro-evolutionary mechanism of UMRVs among Malagasy bats.

  12. Nuclear fuel management optimization using adaptive evolutionary algorithms with heuristics

    International Nuclear Information System (INIS)

    Axmann, J.K.; Van de Velde, A.

    1996-01-01

    Adaptive Evolutionary Algorithms in combination with expert knowledge encoded in heuristics have proved to be a robust and powerful optimization method for the design of optimized PWR fuel loading pattern. Simple parallel algorithmic structures coupled with a low amount of communications between computer processor units in use makes it possible for workstation clusters to be employed efficiently. The extension of classic evolution strategies not only by new and alternative methods but also by the inclusion of heuristics with effects on the exchange probabilities of the fuel assemblies at specific core positions leads to the RELOPAT optimization code of the Technical University of Braunschweig. In combination with the new, neutron-physical 3D nodal core simulator PRISM developed by SIEMENS the PRIMO loading pattern optimization system has been designed. Highly promising results in the recalculation of known reload plans for German PWR's new lead to a commercially usable program. (author)

  13. An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem

    Directory of Open Access Journals (Sweden)

    Ji Ung Sun

    2015-01-01

    Full Text Available We consider a capacitated hub location-routing problem (HLRP which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitated p-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.

  14. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  15. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.

    Science.gov (United States)

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints

    Directory of Open Access Journals (Sweden)

    Rosshairy Abd. Rahman

    2017-01-01

    Full Text Available Formulating feed for shrimps represents a challenge to farmers and industry partners. Most previous studies selected from only a small number of ingredients due to cost pressures, even though hundreds of potential ingredients could be used in the shrimp feed mix. Even with a limited number of ingredients, the best combination of the most appropriate ingredients is still difficult to obtain due to various constraint requirements, such as nutrition value and cost. This paper proposes a new operator which we call Power Heuristics, as part of an Evolutionary Algorithm (EA, which acts as a constraint handling technique for the shrimp feed or diet formulation. The operator is able to choose and discard certain ingredients by utilising a specialized search mechanism. The aim is to achieve the most appropriate combination of ingredients. Power Heuristics are embedded in the EA at the early stage of a semirandom initialization procedure. The resulting combination of ingredients, after fulfilling all the necessary constraints, shows that this operator is useful in discarding inappropriate ingredients when a crucial constraint is violated.

  17. Safety management in NPPs using evolutionary algorithm

    International Nuclear Information System (INIS)

    Mishra, A.; Patwardhan, A.; Chauhan, A.; Verma, A.K.

    2005-01-01

    Technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. Accordingly, the risk-based analysis of Technical Specification (RBTS) is being considered in evaluating current TS. The multi objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper a multi objective Evolutionary Algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for Loss of coolant Accident (LOCA) and Main Steam Line Break (MSLB) as initiating events. (authors)

  18. Evolutionary dynamics on graphs: Efficient method for weak selection

    Science.gov (United States)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  19. The wind power prediction research based on mind evolutionary algorithm

    Science.gov (United States)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  20. Culture belief based multi-objective hybrid differential evolutionary algorithm in short term hydrothermal scheduling

    International Nuclear Information System (INIS)

    Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang

    2013-01-01

    Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.

  1. Fixation times in evolutionary games under weak selection

    International Nuclear Information System (INIS)

    Altrock, Philipp M; Traulsen, Arne

    2009-01-01

    In evolutionary game dynamics, reproductive success increases with the performance in an evolutionary game. If strategy A performs better than strategy B, strategy A will spread in the population. Under stochastic dynamics, a single mutant will sooner or later take over the entire population or go extinct. We analyze the mean exit times (or average fixation times) associated with this process. We show analytically that these times depend on the payoff matrix of the game in an amazingly simple way under weak selection, i.e. strong stochasticity: the payoff difference Δπ is a linear function of the number of A individuals i, Δπ=u i+v. The unconditional mean exit time depends only on the constant term v. Given that a single A mutant takes over the population, the corresponding conditional mean exit time depends only on the density dependent term u. We demonstrate this finding for two commonly applied microscopic evolutionary processes.

  2. A Problem-Reduction Evolutionary Algorithm for Solving the Capacitated Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Wanfeng Liu

    2015-01-01

    Full Text Available Assessment of the components of a solution helps provide useful information for an optimization problem. This paper presents a new population-based problem-reduction evolutionary algorithm (PREA based on the solution components assessment. An individual solution is regarded as being constructed by basic elements, and the concept of acceptability is introduced to evaluate them. The PREA consists of a searching phase and an evaluation phase. The acceptability of basic elements is calculated in the evaluation phase and passed to the searching phase. In the searching phase, for each individual solution, the original optimization problem is reduced to a new smaller-size problem. With the evolution of the algorithm, the number of common basic elements in the population increases until all individual solutions are exactly the same which is supposed to be the near-optimal solution of the optimization problem. The new algorithm is applied to a large variety of capacitated vehicle routing problems (CVRP with customers up to nearly 500. Experimental results show that the proposed algorithm has the advantages of fast convergence and robustness in solution quality over the comparative algorithms.

  3. Synthesizing multi-objective H2/H-infinity dynamic controller using evolutionary algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Langballe, A.S.; Wisniewski, Rafal

    This paper covers the design of an Evolutionary Algorithm (EA), which should be able to synthesize a mixed H2/H-infinity. It will be shown how a system can be expressed as Matrix Inequalities (MI) and these will then be used in the design of the EA. The main objective is to examine whether a mixed...... H2/H-infinity controller is feasible, and if so, how the optimal mixed controller might befound....

  4. Efficient fractal-based mutation in evolutionary algorithms from iterated function systems

    Science.gov (United States)

    Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.

    2018-03-01

    In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.

  5. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1997-01-01

    textabstractCross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic

  6. Quantum Genetic Algorithms for Computer Scientists

    OpenAIRE

    Lahoz Beltrá, Rafael

    2016-01-01

    Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Geneti...

  7. On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling

    DEFF Research Database (Denmark)

    Neumann, Frank; Witt, Carsten

    2015-01-01

    combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very...

  8. Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei

    the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...

  9. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    Directory of Open Access Journals (Sweden)

    M. Frutos

    2013-01-01

    Full Text Available Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.

  10. Improved quantum-inspired evolutionary algorithm with diversity information applied to economic dispatch problem with prohibited operating zones

    International Nuclear Information System (INIS)

    Vianna Neto, Julio Xavier; Andrade Bernert, Diego Luis de; Santos Coelho, Leandro dos

    2011-01-01

    The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.

  11. Improved quantum-inspired evolutionary algorithm with diversity information applied to economic dispatch problem with prohibited operating zones

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Julio Xavier, E-mail: julio.neto@onda.com.b [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Andrade Bernert, Diego Luis de, E-mail: dbernert@gmail.co [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Santos Coelho, Leandro dos, E-mail: leandro.coelho@pucpr.b [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)

    2011-01-15

    The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.

  12. Improved quantum-inspired evolutionary algorithm with diversity information applied to economic dispatch problem with prohibited operating zones

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Julio Xavier Vianna [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Bernert, Diego Luis de Andrade; Coelho, Leandro dos Santos [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)

    2011-01-15

    The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature. (author)

  13. A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration

    International Nuclear Information System (INIS)

    Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud

    2012-01-01

    Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.

  14. Creating ensembles of oblique decision trees with evolutionary algorithms and sampling

    Science.gov (United States)

    Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA

    2006-06-13

    A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.

  15. Phylogenetically Acquired Representations and Evolutionary Algorithms.

    OpenAIRE

    Wozniak , Adrianna

    2006-01-01

    First, we explain why Genetic Algorithms (GAs), inspired by the Modern Synthesis, do not accurately model biological evolution, being rather an artificial version of artificial, rather than natural selection. Being focused on optimisation, we propose two improvements of GAs, with the aim to successfully generate adapted, desired behaviour. The first one concerns phylogenetic grounding of meaning, a way to avoid the Symbol Grounding Problem. We give a definition of Phylogenetically Acquired Re...

  16. Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm

    Science.gov (United States)

    Craig, Sam; While, Lyndon; Barone, Luigi

    We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.

  17. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    Science.gov (United States)

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  18. Combining evolutionary algorithms with oblique decision trees to detect bent-double galaxies

    Science.gov (United States)

    Cantu-Paz, Erick; Kamath, Chandrika

    2000-10-01

    Decision tress have long been popular in classification as they use simple and easy-to-understand tests at each node. Most variants of decision trees test a single attribute at a node, leading to axis- parallel trees, where the test results in a hyperplane which is parallel to one of the dimensions in the attribute space. These trees can be rather large and inaccurate in cases where the concept to be learned is best approximated by oblique hyperplanes. In such cases, it may be more appropriate to use an oblique decision tree, where the decision at each node is a linear combination of the attributes. Oblique decision trees have not gained wide popularity in part due to the complexity of constructing good oblique splits and the tendency of existing splitting algorithms to get stuck in local minima. Several alternatives have been proposed to handle these problems including randomization in conjunction wiht deterministic hill-climbing and the use of simulated annealing. In this paper, we use evolutionary algorithms (EAs) to determine the split. EAs are well suited for this problem because of their global search properties, their tolerance to noisy fitness evaluations, and their scalability to large dimensional search spaces. We demonstrate our technique on a synthetic data set, and then we apply it to a practical problem from astronomy, namely, the classification of galaxies with a bent-double morphology. In addition, we describe our experiences with several split evaluation criteria. Our results suggest that, in some cases, the evolutionary approach is faster and more accurate than existing oblique decision tree algorithms. However, for our astronomical data, the accuracy is not significantly different than the axis-parallel trees.

  19. Purposeful selection of variables in logistic regression

    Directory of Open Access Journals (Sweden)

    Williams David Keith

    2008-12-01

    Full Text Available Abstract Background The main problem in many model-building situations is to choose from a large set of covariates those that should be included in the "best" model. A decision to keep a variable in the model might be based on the clinical or statistical significance. There are several variable selection algorithms in existence. Those methods are mechanical and as such carry some limitations. Hosmer and Lemeshow describe a purposeful selection of covariates within which an analyst makes a variable selection decision at each step of the modeling process. Methods In this paper we introduce an algorithm which automates that process. We conduct a simulation study to compare the performance of this algorithm with three well documented variable selection procedures in SAS PROC LOGISTIC: FORWARD, BACKWARD, and STEPWISE. Results We show that the advantage of this approach is when the analyst is interested in risk factor modeling and not just prediction. In addition to significant covariates, this variable selection procedure has the capability of retaining important confounding variables, resulting potentially in a slightly richer model. Application of the macro is further illustrated with the Hosmer and Lemeshow Worchester Heart Attack Study (WHAS data. Conclusion If an analyst is in need of an algorithm that will help guide the retention of significant covariates as well as confounding ones they should consider this macro as an alternative tool.

  20. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology.

    Science.gov (United States)

    Bonier, Frances; Martin, Paul R

    2016-11-30

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. © 2016 The Author(s).

  1. Older partner selection promotes the prevalence of cooperation in evolutionary games.

    Science.gov (United States)

    Yang, Guoli; Huang, Jincai; Zhang, Weiming

    2014-10-21

    Evolutionary games typically come with the interplays between evolution of individual strategy and adaptation to network structure. How these dynamics in the co-evolution promote (or obstruct) the cooperation is regarded as an important topic in social, economic, and biological fields. Combining spatial selection with partner choice, the focus of this paper is to identify which neighbour should be selected as a role to imitate during the process of co-evolution. Age, an internal attribute and kind of local piece of information regarding the survivability of the agent, is a significant consideration for the selection strategy. The analysis and simulations presented, demonstrate that older partner selection for strategy imitation could foster the evolution of cooperation. The younger partner selection, however, may decrease the level of cooperation. Our model highlights the importance of agent׳s age on the promotion of cooperation in evolutionary games, both efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front.

    Science.gov (United States)

    Saborido, Rubén; Ruiz, Ana B; Luque, Mariano

    2017-01-01

    In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.

  3. The Microfoundations of Macroeconomics: An Evolutionary Perspective

    NARCIS (Netherlands)

    Bergh, van den Jeroen C.J.M.; Gowdy, John M.

    2000-01-01

    We consider the microfoundations controversy from the perspective ofeconomic evolution and show that the debate can benefit from lessons learned in evolutionary biology. Although the analogy between biology and economics has been noted before, it has rarely focused on clarifying the micro-macro

  4. Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model

    International Nuclear Information System (INIS)

    Navid, Ali; Khalilarya, Shahram; Taghavifar, Hadi

    2016-01-01

    Highlights: • NLPQL algorithm with Latin hypercube and multi-objective GA were applied on engine. • NLPQL converge to the best solution at RunID41, MOGA introduces at RunID84. • Deeper, more encircled design gives the lowest NOx, greater radius and deeper bowl the highest IMEP. • The maximum IMEP and minimum ISFC obtained with NLPQL, the lowest NOx with MOGA. - Abstract: This study is concerned with the application of two major kinds of optimization algorithms on the baseline diesel engine in the class of evolutionary and non-evolutionary algorithms. The multi-objective genetic algorithm and non-linear programming by quadratic Lagrangian (NLPQL) method have completely different functions in optimizing and finding the global optimal design. The design variables are injection angle, half spray cone angle, inner distance of the bowl wall, and the bowl radius, while the objectives include NOx emission, spray droplet diameter, indicated mean effective pressure (IMEP), and indicated specific fuel consumption (ISFC). The restrictions were set on the objectives to distinguish between feasible designs and infeasible designs to sort those cases that cannot fulfill the demands of diesel engine designers and emission control measures. It is found that a design with deeper bowl and more encircled shape (higher swirl motion) is more suitable for NO_x emission control, whereas designs with a bigger bowl radius, and closer inner wall distance of the bowl (Di) may lead to higher engine efficiency indices. Moreover, it was revealed that the NLPQL could rapidly search for the best design at Run ID 41 compared to genetic algorithm, which is able to find the global optima at last runs (ID 84). Both techniques introduce almost the same geometrical shape of the combustion chamber with a negligible contrast in the injection system.

  5. Feature Selection of Network Intrusion Data using Genetic Algorithm and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Iwan Syarif

    2016-12-01

    Full Text Available This paper describes the advantages of using Evolutionary Algorithms (EA for feature selection on network intrusion dataset. Most current Network Intrusion Detection Systems (NIDS are unable to detect intrusions in real time because of high dimensional data produced during daily operation. Extracting knowledge from huge data such as intrusion data requires new approach. The more complex the datasets, the higher computation time and the harder they are to be interpreted and analyzed. This paper investigates the performance of feature selection algoritms in network intrusiona data. We used Genetic Algorithms (GA and Particle Swarm Optimizations (PSO as feature selection algorithms. When applied to network intrusion datasets, both GA and PSO have significantly reduces the number of features. Our experiments show that GA successfully reduces the number of attributes from 41 to 15 while PSO reduces the number of attributes from 41 to 9. Using k Nearest Neighbour (k-NN as a classifier,the GA-reduced dataset which consists of 37% of original attributes, has accuracy improvement from 99.28% to 99.70% and its execution time is also 4.8 faster than the execution time of original dataset. Using the same classifier, PSO-reduced dataset which consists of 22% of original attributes, has the fastest execution time (7.2 times faster than the execution time of original datasets. However, its accuracy is slightly reduced 0.02% from 99.28% to 99.26%. Overall, both GA and PSO are good solution as feature selection techniques because theyhave shown very good performance in reducing the number of features significantly while still maintaining and sometimes improving the classification accuracy as well as reducing the computation time.

  6. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    Science.gov (United States)

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  7. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  8. Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems

    CERN Document Server

    2015-01-01

    This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...

  9. Soft tissue freezing process. Identification of the dual-phase lag model parameters using the evolutionary algorithm

    Science.gov (United States)

    Mochnacki, Bohdan; Majchrzak, Ewa; Paruch, Marek

    2018-01-01

    In the paper the soft tissue freezing process is considered. The tissue sub-domain is subjected to the action of cylindrical cryoprobe. Thermal processes proceeding in the domain considered are described using the dual-phase lag equation (DPLE) supplemented by the appropriate boundary and initial conditions. DPLE results from the generalization of the Fourier law in which two lag times are introduced (relaxation and thermalization times). The aim of research is the identification of these parameters on the basis of measured cooling curves at the set of points selected from the tissue domain. To solve the problem the evolutionary algorithms are used. The paper contains the mathematical model of the tissue freezing process, the very short information concerning the numerical solution of the basic problem, the description of the inverse problem solution and the results of computations.

  10. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    Science.gov (United States)

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  11. A brief introduction to continuous evolutionary optimization

    CERN Document Server

    Kramer, Oliver

    2014-01-01

    Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel ...

  12. Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim

    2012-01-01

    A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.

  13. A Fast Algorithm of Cartographic Sounding Selection

    Institute of Scientific and Technical Information of China (English)

    SUI Haigang; HUA Li; ZHAO Haitao; ZHANG Yongli

    2005-01-01

    An effective strategy and framework that adequately integrate the automated and manual processes for fast cartographic sounding selection is presented. The important submarine topographic features are extracted for important soundings selection, and an improved "influence circle" algorithm is introduced for sounding selection. For automatic configuration of soundings distribution pattern, a special algorithm considering multi-factors is employed. A semi-automatic method for solving the ambiguous conflicts is described. On the basis of the algorithms and strategies a system named HGIS for fast cartographic sounding selection is developed and applied in Chinese Marine Safety Administration Bureau (CMSAB). The application experiments show that the system is effective and reliable. At last some conclusions and the future work are given.

  14. A new stellar spectrum interpolation algorithm and its application to Yunnan-III evolutionary population synthesis models

    Science.gov (United States)

    Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang

    2018-05-01

    In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.

  15. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  16. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm.

    Science.gov (United States)

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.

  17. Analysis of Parametric Optimization of Field-Oriented Control of 3-Phase Induction Motor with Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Wiktor HUDY

    2013-12-01

    Full Text Available In this paper, the impact of regulators set and their types for the characteristic of rotational speed of induction motor was researched.. The evolutionary algorithm was used as optimization tool. Results were verified with using MATLAB/Simulink.

  18. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  19. A novel algorithm of artificial immune system for high-dimensional function numerical optimization

    Institute of Scientific and Technical Information of China (English)

    DU Haifeng; GONG Maoguo; JIAO Licheng; LIU Ruochen

    2005-01-01

    Based on the clonal selection theory and immune memory theory, a novel artificial immune system algorithm, immune memory clonal programming algorithm (IMCPA), is put forward. Using the theorem of Markov chain, it is proved that IMCPA is convergent. Compared with some other evolutionary programming algorithms (like Breeder genetic algorithm), IMCPA is shown to be an evolutionary strategy capable of solving complex machine learning tasks, like high-dimensional function optimization, which maintains the diversity of the population and avoids prematurity to some extent, and has a higher convergence speed.

  20. Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Sihem SLATNIA

    2011-01-01

    Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks,extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.

  1. Evolutionary Cellular Automata for Image Segmentation and Noise Filtering Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Okba Kazar

    2011-01-01

    Full Text Available We use an evolutionary process to seek a specialized set of rules among a wide range of rules to be used by Cellular Automata (CA for a range of tasks, extracting edges in a given gray or colour image, noise filtering applied to black-white image. This is the best set of local rules determine the future state of CA in an asynchronous way. The Genetic Algorithm (GA is applied to search the best CA rules that can realize the best edge detection and noise filtering.

  2. A proposal of multi-objective function for submarine rigid pipelines route optimization via evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia

    2009-07-01

    This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)

  3. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  4. Optimization of externalities using DTM measures: a Pareto optimal multi objective optimization using the evolutionary algorithm SPEA2+

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel; Allkim, T.P.; van Arem, Bart

    2010-01-01

    Multi objective optimization of externalities of traffic is performed solving a network design problem in which Dynamic Traffic Management measures are used. The resulting Pareto optimal set is determined by employing the SPEA2+ evolutionary algorithm.

  5. Energy demand forecasting in Iranian metal industry using linear and nonlinear models based on evolutionary algorithms

    International Nuclear Information System (INIS)

    Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.

    2012-01-01

    Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector

  6. Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Krink, Thiemo; Thomsen, Rene

    2001-01-01

    The gaps in the fossil record gave rise to the hypothesis that evolution proceeded in long periods of stasis, which alternated with occasional, rapid changes that yielded evolutionary progress. One mechanism that could cause these punctuated bursts is the re-colonbation of changing and deserted...... at a critical state between chaos and order, known as self-organized criticality (SOC). Based on this background, we used SOC to control the size of spatial extinction zones in a diffusion model. The SOC selection process was easy to implement and implied only negligible computational costs. Our results show...

  7. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  8. A particle swarm optimization algorithm for beam angle selection in intensity-modulated radiotherapy planning

    International Nuclear Information System (INIS)

    Li Yongjie; Yao Dezhong; Yao, Jonathan; Chen Wufan

    2005-01-01

    Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated

  9. How Do Severe Constraints Affect the Search Ability of Multiobjective Evolutionary Algorithms in Water Resources?

    Science.gov (United States)

    Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.

    2015-12-01

    This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or

  10. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    Science.gov (United States)

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. The effects of stress and sex on selection, genetic covariance, and the evolutionary response.

    Science.gov (United States)

    Holman, L; Jacomb, F

    2017-10-01

    The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    Science.gov (United States)

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  13. Naive Bayes-Guided Bat Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Ahmed Majid Taha

    2013-01-01

    Full Text Available When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.

  14. Naive Bayes-Guided Bat Algorithm for Feature Selection

    Science.gov (United States)

    Taha, Ahmed Majid; Mustapha, Aida; Chen, Soong-Der

    2013-01-01

    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets. PMID:24396295

  15. Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.

    Science.gov (United States)

    Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu

    2017-01-01

    The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.

  16. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  17. Genetic evolutionary taboo search for optimal marker placement in infrared patient setup

    International Nuclear Information System (INIS)

    Riboldi, M; Baroni, G; Spadea, M F; Tagaste, B; Garibaldi, C; Cambria, R; Orecchia, R; Pedotti, A

    2007-01-01

    In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process

  18. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optimal routes scheduling for municipal waste disposal garbage trucks using evolutionary algorithm and artificial immune system

    Directory of Open Access Journals (Sweden)

    Bogna MRÓWCZYŃSKA

    2011-01-01

    Full Text Available This paper describes an application of an evolutionary algorithm and an artificial immune systems to solve a problem of scheduling an optimal route for waste disposal garbage trucks in its daily operation. Problem of an optimisation is formulated and solved using both methods. The results are presented for an area in one of the Polish cities.

  20. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks.

    Science.gov (United States)

    Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio

    2010-05-01

    This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.

  1. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates.

    Science.gov (United States)

    Al-Ruzouq, Rami; Shanableh, Abdallah; Omar, Maher; Al-Khayyat, Ghadeer

    2018-02-17

    Waste management involves various procedures and resources for proper handling of waste materials in compliance with health codes and environmental regulations. Landfills are one of the oldest, most convenient, and cheapest methods to deposit waste. However, landfill utilization involves social, environmental, geotechnical, cost, and restrictive regulation considerations. For instance, landfills are considered a source of hazardous air pollutants that can cause health and environmental problems related to landfill gas and non-methanic organic compounds. The increasing number of sensors and availability of remotely sensed images along with rapid development of spatial technology are helping with effective landfill site selection. The present study used fuzzy membership and the analytical hierarchy process (AHP) in a geo-spatial environment for landfill site selection in the city of Sharjah, United Arab Emirates. Macro- and micro-level factors were considered; the macro-level contained social and economic factors, while the micro-level accounted for geo-environmental factors. The weighted spatial layers were combined to generate landfill suitability and overall suitability index maps. Sensitivity analysis was then carried out to rectify initial theoretical weights. The results showed that 30.25% of the study area had a high suitability index for landfill sites in the Sharjah, and the most suitable site was selected based on weighted factors. The developed fuzzy-AHP methodology can be applied in neighboring regions with similar geo-natural conditions.

  2. Safety management in NPPs using an evolutionary algorithm technique

    International Nuclear Information System (INIS)

    Mishra, Alok; Patwardhan, Anand; Verma, A.K.

    2007-01-01

    The general goal of safety management in Nuclear Power Plants (NPPs) is to make requirements and activities more risk effective and less costly. The technical specification and maintenance (TS and M) activities in a plant are associated with controlling risk or with satisfying requirements, and are candidates to be evaluated for their resource effectiveness in risk-informed applications. Accordingly, the risk-based analysis of technical specification (RBTS) is being considered in evaluating current TS. The multi-objective optimization of the TS and M requirements of a NPP based on risk and cost, gives the pareto-optimal solutions, from which the utility can pick its decision variables suiting its interest. In this paper, a multi-objective evolutionary algorithm technique has been used to make a trade-off between risk and cost both at the system level and at the plant level for loss of coolant accident (LOCA) and main steam line break (MSLB) as initiating events

  3. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    Science.gov (United States)

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  4. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    Directory of Open Access Journals (Sweden)

    Evert Haasdijk

    Full Text Available Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability, and secondly they must competently perform user-specified tasks (usefulness. The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  5. Ad Hoc Access Gateway Selection Algorithm

    Science.gov (United States)

    Jie, Liu

    With the continuous development of mobile communication technology, Ad Hoc access network has become a hot research, Ad Hoc access network nodes can be used to expand capacity of multi-hop communication range of mobile communication system, even business adjacent to the community, improve edge data rates. For mobile nodes in Ad Hoc network to internet, internet communications in the peer nodes must be achieved through the gateway. Therefore, the key Ad Hoc Access Networks will focus on the discovery gateway, as well as gateway selection in the case of multi-gateway and handover problems between different gateways. This paper considers the mobile node and the gateway, based on the average number of hops from an average access time and the stability of routes, improved gateway selection algorithm were proposed. An improved gateway selection algorithm, which mainly considers the algorithm can improve the access time of Ad Hoc nodes and the continuity of communication between the gateways, were proposed. This can improve the quality of communication across the network.

  6. Random drift versus selection in academic vocabulary: an evolutionary analysis of published keywords.

    Science.gov (United States)

    Bentley, R Alexander

    2008-08-27

    The evolution of vocabulary in academic publishing is characterized via keyword frequencies recorded in the ISI Web of Science citations database. In four distinct case-studies, evolutionary analysis of keyword frequency change through time is compared to a model of random copying used as the null hypothesis, such that selection may be identified against it. The case studies from the physical sciences indicate greater selection in keyword choice than in the social sciences. Similar evolutionary analyses can be applied to a wide range of phenomena; wherever the popularity of multiple items through time has been recorded, as with web searches, or sales of popular music and books, for example.

  7. Selection of views to materialize using simulated annealing algorithms

    Science.gov (United States)

    Zhou, Lijuan; Liu, Chi; Wang, Hongfeng; Liu, Daixin

    2002-03-01

    A data warehouse contains lots of materialized views over the data provided by the distributed heterogeneous databases for the purpose of efficiently implementing decision-support or OLAP queries. It is important to select the right view to materialize that answer a given set of queries. The goal is the minimization of the combination of the query evaluation and view maintenance costs. In this paper, we have addressed and designed algorithms for selecting a set of views to be materialized so that the sum of processing a set of queries and maintaining the materialized views is minimized. We develop an approach using simulated annealing algorithms to solve it. First, we explore simulated annealing algorithms to optimize the selection of materialized views. Then we use experiments to demonstrate our approach. The results show that our algorithm works better. We implemented our algorithms and a performance study of the algorithms shows that the proposed algorithm gives an optimal solution.

  8. Optimum oil production planning using infeasibility driven evolutionary algorithm.

    Science.gov (United States)

    Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul

    2013-01-01

    In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.

  9. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    Science.gov (United States)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  10. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-01-01

    Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.

  11. Multithreshold Segmentation by Using an Algorithm Based on the Behavior of Locust Swarms

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available As an alternative to classical techniques, the problem of image segmentation has also been handled through evolutionary methods. Recently, several algorithms based on evolutionary principles have been successfully applied to image segmentation with interesting performances. However, most of them maintain two important limitations: (1 they frequently obtain suboptimal results (misclassifications as a consequence of an inappropriate balance between exploration and exploitation in their search strategies; (2 the number of classes is fixed and known in advance. This paper presents an algorithm for the automatic selection of pixel classes for image segmentation. The proposed method combines a novel evolutionary method with the definition of a new objective function that appropriately evaluates the segmentation quality with respect to the number of classes. The new evolutionary algorithm, called Locust Search (LS, is based on the behavior of swarms of locusts. Different to the most of existent evolutionary algorithms, it explicitly avoids the concentration of individuals in the best positions, avoiding critical flaws such as the premature convergence to suboptimal solutions and the limited exploration-exploitation balance. Experimental tests over several benchmark functions and images validate the efficiency of the proposed technique with regard to accuracy and robustness.

  12. Covariance-Based Measurement Selection Criterion for Gaussian-Based Algorithms

    Directory of Open Access Journals (Sweden)

    Fernando A. Auat Cheein

    2013-01-01

    Full Text Available Process modeling by means of Gaussian-based algorithms often suffers from redundant information which usually increases the estimation computational complexity without significantly improving the estimation performance. In this article, a non-arbitrary measurement selection criterion for Gaussian-based algorithms is proposed. The measurement selection criterion is based on the determination of the most significant measurement from both an estimation convergence perspective and the covariance matrix associated with the measurement. The selection criterion is independent from the nature of the measured variable. This criterion is used in conjunction with three Gaussian-based algorithms: the EIF (Extended Information Filter, the EKF (Extended Kalman Filter and the UKF (Unscented Kalman Filter. Nevertheless, the measurement selection criterion shown herein can also be applied to other Gaussian-based algorithms. Although this work is focused on environment modeling, the results shown herein can be applied to other Gaussian-based algorithm implementations. Mathematical descriptions and implementation results that validate the proposal are also included in this work.

  13. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  14. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid

    2009-01-01

    Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.

  15. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  16. A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics

    Science.gov (United States)

    Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.

    2015-12-01

    This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.

  17. A Hybrid Quantum Evolutionary Algorithm with Improved Decoding Scheme for a Robotic Flow Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lei

    2017-01-01

    Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.

  18. A backtracking evolutionary algorithm for power systems

    Directory of Open Access Journals (Sweden)

    Chiou Ji-Pyng

    2017-01-01

    Full Text Available This paper presents a backtracking variable scaling hybrid differential evolution, called backtracking VSHDE, for solving the optimal network reconfiguration problems for power loss reduction in distribution systems. The concepts of the backtracking, variable scaling factor, migrating, accelerated, and boundary control mechanism are embedded in the original differential evolution (DE to form the backtracking VSHDE. The concepts of the backtracking and boundary control mechanism can increase the population diversity. And, according to the convergence property of the population, the scaling factor is adjusted based on the 1/5 success rule of the evolution strategies (ESs. A larger population size must be used in the evolutionary algorithms (EAs to maintain the population diversity. To overcome this drawback, two operations, acceleration operation and migrating operation, are embedded into the proposed method. The feeder reconfiguration of distribution systems is modelled as an optimization problem which aims at achieving the minimum loss subject to voltage and current constraints. So, the proper system topology that reduces the power loss according to a load pattern is an important issue. Mathematically, the network reconfiguration system is a nonlinear programming problem with integer variables. One three-feeder network reconfiguration system from the literature is researched by the proposed backtracking VSHDE method and simulated annealing (SA. Numerical results show that the perfrmance of the proposed method outperformed the SA method.

  19. Variation and selection: The evolutionary analogy and the convergence of cognitive and behavioral psychology

    OpenAIRE

    Morgan, David L.; Morgan, Robin K.; Toth, James M.

    1992-01-01

    The empirical and theoretical work of both operant and cognitive researchers has increasingly appealed to evolutionary concepts. In particular, both traditional operant studies of extinction-induced behavior and cognitive investigations of creativity and problem solving converge on the fundamental evolutionary principles of variation and selection. These contemporary developments and their implications for the alleged preparadigmatic status of psychology are discussed.

  20. Random drift versus selection in academic vocabulary: an evolutionary analysis of published keywords.

    Directory of Open Access Journals (Sweden)

    R Alexander Bentley

    Full Text Available The evolution of vocabulary in academic publishing is characterized via keyword frequencies recorded in the ISI Web of Science citations database. In four distinct case-studies, evolutionary analysis of keyword frequency change through time is compared to a model of random copying used as the null hypothesis, such that selection may be identified against it. The case studies from the physical sciences indicate greater selection in keyword choice than in the social sciences. Similar evolutionary analyses can be applied to a wide range of phenomena; wherever the popularity of multiple items through time has been recorded, as with web searches, or sales of popular music and books, for example.

  1. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  2. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  3. An Improved User Selection Algorithm in Multiuser MIMO Broadcast with Channel Prediction

    Science.gov (United States)

    Min, Zhi; Ohtsuki, Tomoaki

    In multiuser MIMO-BC (Multiple-Input Multiple-Output Broadcasting) systems, user selection is important to achieve multiuser diversity. The optimal user selection algorithm is to try all the combinations of users to find the user group that can achieve the multiuser diversity. Unfortunately, the high calculation cost of the optimal algorithm prevents its implementation. Thus, instead of the optimal algorithm, some suboptimal user selection algorithms were proposed based on semiorthogonality of user channel vectors. The purpose of this paper is to achieve multiuser diversity with a small amount of calculation. For this purpose, we propose a user selection algorithm that can improve the orthogonality of a selected user group. We also apply a channel prediction technique to a MIMO-BC system to get more accurate channel information at the transmitter. Simulation results show that the channel prediction can improve the accuracy of channel information for user selections, and the proposed user selection algorithm achieves higher sum rate capacity than the SUS (Semiorthogonal User Selection) algorithm. Also we discuss the setting of the algorithm threshold. As the result of a discussion on the calculation complexity, which uses the number of complex multiplications as the parameter, the proposed algorithm is shown to have a calculation complexity almost equal to that of the SUS algorithm, and they are much lower than that of the optimal user selection algorithm.

  4. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  5. WH-EA: An Evolutionary Algorithm for Wiener-Hammerstein System Identification

    Directory of Open Access Journals (Sweden)

    J. Zambrano

    2018-01-01

    Full Text Available Current methods to identify Wiener-Hammerstein systems using Best Linear Approximation (BLA involve at least two steps. First, BLA is divided into obtaining front and back linear dynamics of the Wiener-Hammerstein model. Second, a refitting procedure of all parameters is carried out to reduce modelling errors. In this paper, a novel approach to identify Wiener-Hammerstein systems in a single step is proposed. This approach is based on a customized evolutionary algorithm (WH-EA able to look for the best BLA split, capturing at the same time the process static nonlinearity with high precision. Furthermore, to correct possible errors in BLA estimation, the locations of poles and zeros are subtly modified within an adequate search space to allow a fine-tuning of the model. The performance of the proposed approach is analysed by using a demonstration example and a nonlinear system identification benchmark.

  6. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  7. Support vector machines and evolutionary algorithms for classification single or together?

    CERN Document Server

    Stoean, Catalin

    2014-01-01

    When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.

  8. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    OpenAIRE

    Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans

    2016-01-01

    Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...

  9. A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm

    Science.gov (United States)

    Chae, Han Gil

    Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the

  10. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad H.; Sayyaadi, Hoseyn; Mohammadi, Amir H.; Barranco-Jimenez, Marco A.

    2013-01-01

    Highlights: • Thermo-economic multi-objective optimization of solar dish-Stirling engine is studied. • Application of the evolutionary algorithm is investigated. • Error analysis is done to find out the error through investigation. - Abstract: In the recent years, remarkable attention is drawn to Stirling engine due to noticeable advantages, for instance a lot of resources such as biomass, fossil fuels and solar energy can be applied as heat source. Great number of studies are conducted on Stirling engine and finite time thermo-economic is one of them. In the present study, the dimensionless thermo-economic objective function, thermal efficiency and dimensionless power output are optimized for a dish-Stirling system using finite time thermo-economic analysis and NSGA-II algorithm. Optimized answers are chosen from the results using three decision-making methods. Error analysis is done to find out the error through investigation

  11. Attribute Index and Uniform Design Based Multiobjective Association Rule Mining with Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.

  12. Attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm.

    Science.gov (United States)

    Zhang, Jie; Wang, Yuping; Feng, Junhong

    2013-01-01

    In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.

  13. Selectionist and evolutionary approaches to brain function: a critical appraisal

    Directory of Open Access Journals (Sweden)

    Chrisantha Thomas Fernando

    2012-04-01

    Full Text Available We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity and variability as the most powerful mechanism in a sparsely occupied search space. Examples of why parallel competitive search with information transfer among the units is efficient are given. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise.

  14. Selective epidemic vaccination under the performant routing algorithms

    Science.gov (United States)

    Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.

    2018-04-01

    Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.

  15. Potential of dynamic spectrum allocation in LTE macro networks

    Science.gov (United States)

    Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.

    2015-11-01

    In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up

  16. A Two-Pass Exact Algorithm for Selection on Parallel Disk Systems.

    Science.gov (United States)

    Mi, Tian; Rajasekaran, Sanguthevar

    2013-07-01

    Numerous OLAP queries process selection operations of "top N", median, "top 5%", in data warehousing applications. Selection is a well-studied problem that has numerous applications in the management of data and databases since, typically, any complex data query can be reduced to a series of basic operations such as sorting and selection. The parallel selection has also become an important fundamental operation, especially after parallel databases were introduced. In this paper, we present a deterministic algorithm Recursive Sampling Selection (RSS) to solve the exact out-of-core selection problem, which we show needs no more than (2 + ε ) passes ( ε being a very small fraction). We have compared our RSS algorithm with two other algorithms in the literature, namely, the Deterministic Sampling Selection and QuickSelect on the Parallel Disks Systems. Our analysis shows that DSS is a (2 + ε )-pass algorithm when the total number of input elements N is a polynomial in the memory size M (i.e., N = M c for some constant c ). While, our proposed algorithm RSS runs in (2 + ε ) passes without any assumptions. Experimental results indicate that both RSS and DSS outperform QuickSelect on the Parallel Disks Systems. Especially, the proposed algorithm RSS is more scalable and robust to handle big data when the input size is far greater than the core memory size, including the case of N ≫ M c .

  17. An evolutionary algorithm for port-of-entry security optimization considering sensor thresholds

    International Nuclear Information System (INIS)

    Concho, Ana Lisbeth; Ramirez-Marquez, Jose Emmanuel

    2010-01-01

    According to the US Customs and Border Protection (CBP), the number of offloaded ship cargo containers arriving at US seaports each year amounts to more than 11 million. The costs of locating an undetonated terrorist weapon at one US port, or even worst, the cost caused by a detonated weapon of mass destruction, would amount to billions of dollars. These costs do not yet account for the devastating consequences that it would cause in the ability to keep the supply chain operating and the sociological and psychological effects. As such, this paper is concerned with developing a container inspection strategy that minimizes the total cost of inspection while maintaining a user specified detection rate for 'suspicious' containers. In this respect and based on a general decision-tree model, this paper presents a holistic evolutionary algorithm for finding the following: (1) optimal threshold values for every sensor and (2) the optimal configuration of the inspection strategy. The algorithm is under the assumption that different sensors with different reliability and cost characteristics can be used. Testing and experimentation show the proposed approach consistently finds high quality solutions in a reduced computational time.

  18. Chaos Enhanced Differential Evolution in the Task of Evolutionary Control of Discrete Chaotic LOZI Map

    Directory of Open Access Journals (Sweden)

    Roman Senkerik

    2016-01-01

    Full Text Available In this paper, evolutionary technique Differential Evolution (DE is used for the evolutionary tuning of controller parameters for the stabilization of selected discrete chaotic system, which is the two-dimensional Lozi map. The novelty of the approach is that the selected controlled discrete dissipative chaotic system is used within Chaos enhanced heuristic concept as the chaotic pseudo-random number generator to drive the mutation and crossover process in the DE. The idea was to utilize the hidden chaotic dynamics in pseudo-random sequences given by chaotic map to help Differential evolution algorithm in searching for the best controller settings for the same chaotic system. The optimizations were performed for three different required final behavior of the chaotic system, and two types of developed cost function. To confirm the robustness of presented approach, comparisons with canonical DE strategy and PSO algorithm have been performed.

  19. The limits of weak selection and large population size in evolutionary game theory.

    Science.gov (United States)

    Sample, Christine; Allen, Benjamin

    2017-11-01

    Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

  20. Improvements in seismic event locations in a deep western U.S. coal mine using tomographic velocity models and an evolutionary search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.

  1. Using Self-Adaptive Evolutionary Algorithms to Evolve Dynamism-Oriented Maps for a Real Time Strategy Game

    OpenAIRE

    Lara-Cabrera, Raúl; Cotta, Carlos; Fernández Leiva, Antonio J.

    2013-01-01

    This work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based ...

  2. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  3. A Cancer Gene Selection Algorithm Based on the K-S Test and CFS

    Directory of Open Access Journals (Sweden)

    Qiang Su

    2017-01-01

    Full Text Available Background. To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S test and correlation-based feature selection (CFS principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. Results. We adopted support vector machines (SVM as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR, and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. Conclusions. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.

  4. Adaptive Equalizer Using Selective Partial Update Algorithm and Selective Regressor Affine Projection Algorithm over Shallow Water Acoustic Channels

    Directory of Open Access Journals (Sweden)

    Masoumeh Soflaei

    2014-01-01

    Full Text Available One of the most important problems of reliable communications in shallow water channels is intersymbol interference (ISI which is due to scattering from surface and reflecting from bottom. Using adaptive equalizers in receiver is one of the best suggested ways for overcoming this problem. In this paper, we apply the family of selective regressor affine projection algorithms (SR-APA and the family of selective partial update APA (SPU-APA which have low computational complexity that is one of the important factors that influences adaptive equalizer performance. We apply experimental data from Strait of Hormuz for examining the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE of SR-APA and SPU-APA decrease by 5.8 (dB and 5.5 (dB, respectively, in comparison with least mean square (LMS algorithm. Also the families of SPU-APA and SR-APA have better convergence speed than LMS type algorithm.

  5. Enhancement of Selection, Bubble and Insertion Sorting Algorithm

    OpenAIRE

    Muhammad Farooq Umar; Ehsan Ullah Munir; Shafqat Ali Shad; Muhammad Wasif Nisar

    2014-01-01

    In everyday life there is a large amount of data to arrange because sorting removes any ambiguities and make the data analysis and data processing very easy, efficient and provides with cost less effort. In this study a set of improved sorting algorithms are proposed which gives better performance and design idea. In this study five new sorting algorithms (Bi-directional Selection Sort, Bi-directional bubble sort, MIDBiDirectional Selection Sort, MIDBidirectional bubble sort and linear insert...

  6. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

  7. Enhancing Accuracy of Sediment Total Load Prediction Using Evolutionary Algorithms (Case Study: Gotoorchay River

    Directory of Open Access Journals (Sweden)

    K. Roshangar

    2016-09-01

    Full Text Available Introduction: Exact prediction of transported sediment rate by rivers in water resources projects is of utmost importance. Basically erosion and sediment transport process is one of the most complexes hydrodynamic. Although different studies have been developed on the application of intelligent models based on neural, they are not widely used because of lacking explicitness and complexity governing on choosing and architecting of proper network. In this study, a Genetic expression programming model (as an important branches of evolutionary algorithems for predicting of sediment load is selected and investigated as an intelligent approach along with other known classical and imperical methods such as Larsen´s equation, Engelund-Hansen´s equation and Bagnold´s equation. Materials and Methods: In this study, in order to improve explicit prediction of sediment load of Gotoorchay, located in Aras catchment, Northwestern Iran latitude: 38°24´33.3˝ and longitude: 44°46´13.2˝, genetic programming (GP and Genetic Algorithm (GA were applied. Moreover, the semi-empirical models for predicting of total sediment load and rating curve have been used. Finally all the methods were compared and the best ones were introduced. Two statistical measures were used to compare the performance of the different models, namely root mean square error (RMSE and determination coefficient (DC. RMSE and DC indicate the discrepancy between the observed and computed values. Results and Discussions: The statistical characteristics results obtained from the analysis of genetic programming method for both selected model groups indicated that the model 4 including the only discharge of the river, relative to other studied models had the highest DC and the least RMSE in the testing stage (DC= 0.907, RMSE= 0.067. Although there were several parameters applied in other models, these models were complicated and had weak results of prediction. Our results showed that the model 9

  8. XTALOPT version r11: An open-source evolutionary algorithm for crystal structure prediction

    Science.gov (United States)

    Avery, Patrick; Falls, Zackary; Zurek, Eva

    2018-01-01

    Version 11 of XTALOPT, an evolutionary algorithm for crystal structure prediction, has now been made available for download from the CPC library or the XTALOPT website, http://xtalopt.github.io. Whereas the previous versions of XTALOPT were published under the Gnu Public License (GPL), the current version is made available under the 3-Clause BSD License, which is an open source license that is recognized by the Open Source Initiative. Importantly, the new version can be executed via a command line interface (i.e., it does not require the use of a Graphical User Interface). Moreover, the new version is written as a stand-alone program, rather than an extension to AVOGADRO.

  9. Functional groups of macro-benthos of selected sites of upstream of Hron River and Hnilec River

    International Nuclear Information System (INIS)

    Rufusova, A.

    2011-01-01

    The author used six functional groups of macro-benthos based on 'species traits', which are indicated with the Greek letters α to ζ. In the work authors applied this method to the macroinvertebrate communities of selected sites of upstream of the Hron River and the Hnilec River. The method appropriately captured increasing gradient of anthropogenic changes in the direction of the river continuum. Although the method was used for Slovak rivers for the first time, it seems to be promising for use in the future. (author)

  10. A redundancy-removing feature selection algorithm for nominal data

    Directory of Open Access Journals (Sweden)

    Zhihua Li

    2015-10-01

    Full Text Available No order correlation or similarity metric exists in nominal data, and there will always be more redundancy in a nominal dataset, which means that an efficient mutual information-based nominal-data feature selection method is relatively difficult to find. In this paper, a nominal-data feature selection method based on mutual information without data transformation, called the redundancy-removing more relevance less redundancy algorithm, is proposed. By forming several new information-related definitions and the corresponding computational methods, the proposed method can compute the information-related amount of nominal data directly. Furthermore, by creating a new evaluation function that considers both the relevance and the redundancy globally, the new feature selection method can evaluate the importance of each nominal-data feature. Although the presented feature selection method takes commonly used MIFS-like forms, it is capable of handling high-dimensional datasets without expensive computations. We perform extensive experimental comparisons of the proposed algorithm and other methods using three benchmarking nominal datasets with two different classifiers. The experimental results demonstrate the average advantage of the presented algorithm over the well-known NMIFS algorithm in terms of the feature selection and classification accuracy, which indicates that the proposed method has a promising performance.

  11. Behavioural, ecological and evolutionary responses to extreme climatic events : Challenges and directions

    NARCIS (Netherlands)

    Van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H.C.; Visser, Marcel E.

    2017-01-01

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and

  12. Effective traffic features selection algorithm for cyber-attacks samples

    Science.gov (United States)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  13. Android malware detection based on evolutionary super-network

    Science.gov (United States)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  14. Optimal operational strategies for a day-ahead electricity market in the presence of market power using multi-objective evolutionary algorithms

    Science.gov (United States)

    Rodrigo, Deepal

    2007-12-01

    This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here

  15. An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.

    Science.gov (United States)

    Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun

    2017-09-01

    The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.

  16. Selection method of terrain matching area for TERCOM algorithm

    Science.gov (United States)

    Zhang, Qieqie; Zhao, Long

    2017-10-01

    The performance of terrain aided navigation is closely related to the selection of terrain matching area. The different matching algorithms have different adaptability to terrain. This paper mainly studies the adaptability to terrain of TERCOM algorithm, analyze the relation between terrain feature and terrain characteristic parameters by qualitative and quantitative methods, and then research the relation between matching probability and terrain characteristic parameters by the Monte Carlo method. After that, we propose a selection method of terrain matching area for TERCOM algorithm, and verify the method correctness with real terrain data by simulation experiment. Experimental results show that the matching area obtained by the method in this paper has the good navigation performance and the matching probability of TERCOM algorithm is great than 90%

  17. An algorithm for preferential selection of spectroscopic targets in LEGUE

    International Nuclear Information System (INIS)

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Lépine, Sébastien; Deng Licai; Chen Yuqin; Fu Xiaoting; Gao Shuang; Li Jing; Liu Chao; Beers, Timothy C.; Christlieb, Norbert; Grillmair, Carl J.; Guhathakurta, Puragra; Han Zhanwen; Hou Jinliang; Lee, Hsu-Tai; Liu Xiaowei; Pan Kaike; Sellwood, J. A.; Wang Hongchi

    2012-01-01

    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.

  18. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  19. An evolutionary algorithm for tomographic reconstructions in limited data sets problems

    International Nuclear Information System (INIS)

    Turcanu, Catrinel; Craciunescu, Teddy

    2000-01-01

    The paper proposes a new method for tomographic reconstructions. Unlike nuclear medicine applications, in physical science problems we are often confronted with limited data sets: constraints in the number of projections or limited angle views. The problem of image reconstruction from projections may be considered as a problem of finding an image (solution) having projections that match the experimental ones. In our approach, we choose a statistical correlation coefficient to evaluate the fitness of any potential solution. The optimization process is carried out by an evolutionary algorithm. Our algorithm has some problem-oriented characteristics. One of them is that a chromosome, representing a potential solution, is not linear but coded as a matrix of pixels corresponding to a two-dimensional image. This kind of internal representation reflects the genuine manifestation and slight differences between two points situated in the original problem space give rise to similar differences once they become coded. Another particular feature is a newly built crossover operator: the grid-based crossover, suitable for high dimension two-dimensional chromosomes. Except for the population size and the dimension of the cutting grid for the grid-based crossover, all the other parameters of the algorithm are independent of the geometry of the tomographic reconstruction. The performances of the method are evaluated in comparison with a traditional tomographic method, based on the maximization of the entropy of the image, that proved to work well with limited data sets. The test phantom is typical for an application with limited data sets: the determination of the neutron energy spectra with time resolution in case of short-pulsed neutron emission. The qualitative judgement and also the quantitative one, based on some figures of merit, point out that the proposed method ensures an improved reconstruction of shapes, sizes and resolution in the image, even in the presence of noise

  20. Genetic algorithm essentials

    CERN Document Server

    Kramer, Oliver

    2017-01-01

    This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

  1. Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm

    Science.gov (United States)

    Wu, Xiaolan; Grubesic, Tony H.

    2010-12-01

    Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.

  2. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    Science.gov (United States)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  3. Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner's dilemma games

    Science.gov (United States)

    Liu, Yuanming; Huang, Changwei; Dai, Qionglin

    2018-06-01

    Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors' attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual's attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α > 0 and at the same time M > 1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α > 0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.

  4. Optimization of heat transfer utilizing graph based evolutionary algorithms

    International Nuclear Information System (INIS)

    Bryden, Kenneth M.; Ashlock, Daniel A.; McCorkle, Douglas S.; Urban, Gregory L.

    2003-01-01

    This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced

  5. Minimization over randomly selected lines

    Directory of Open Access Journals (Sweden)

    Ismet Sahin

    2013-07-01

    Full Text Available This paper presents a population-based evolutionary optimization method for minimizing a given cost function. The mutation operator of this method selects randomly oriented lines in the cost function domain, constructs quadratic functions interpolating the cost function at three different points over each line, and uses extrema of the quadratics as mutated points. The crossover operator modifies each mutated point based on components of two points in population, instead of one point as is usually performed in other evolutionary algorithms. The stopping criterion of this method depends on the number of almost degenerate quadratics. We demonstrate that the proposed method with these mutation and crossover operations achieves faster and more robust convergence than the well-known Differential Evolution and Particle Swarm algorithms.

  6. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.

    Science.gov (United States)

    Tschirren, B; Råberg, L; Westerdahl, H

    2011-06-01

    Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  7. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  8. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  9. A Novel Self-Adaptive Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Kaiping Luo

    2013-01-01

    Full Text Available The harmony search algorithm is a music-inspired optimization technology and has been successfully applied to diverse scientific and engineering problems. However, like other metaheuristic algorithms, it still faces two difficulties: parameter setting and finding the optimal balance between diversity and intensity in searching. This paper proposes a novel, self-adaptive search mechanism for optimization problems with continuous variables. This new variant can automatically configure the evolutionary parameters in accordance with problem characteristics, such as the scale and the boundaries, and dynamically select evolutionary strategies in accordance with its search performance. The new variant simplifies the parameter setting and efficiently solves all types of optimization problems with continuous variables. Statistical test results show that this variant is considerably robust and outperforms the original harmony search (HS, improved harmony search (IHS, and other self-adaptive variants for large-scale optimization problems and constrained problems.

  10. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today.

    Science.gov (United States)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an "abstract" without references, compiled by Charles Darwin from a much longer manuscript entitled "Natural Selection." Here, I summarize the five theories that can be extracted from Darwin's monograph, explain the true meaning of the phrase "struggle for life" (i.e., competition and cooperation), and outline Darwin's original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that "selection only eliminates but is not creative" is still alive today. However, I document that August Weismann (Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen (Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this "Weismann-Schmalhausen principle" with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky (Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria

  11. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    Science.gov (United States)

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  12. Signal filtering algorithm for depth-selective diffuse optical topography

    International Nuclear Information System (INIS)

    Fujii, M; Nakayama, K

    2009-01-01

    A compact filtered backprojection algorithm that suppresses the undesirable effects of skin circulation for near-infrared diffuse optical topography is proposed. Our approach centers around a depth-selective filtering algorithm that uses an inverse problem technique and extracts target signals from observation data contaminated by noise from a shallow region. The filtering algorithm is reduced to a compact matrix and is therefore easily incorporated into a real-time system. To demonstrate the validity of this method, we developed a demonstration prototype for depth-selective diffuse optical topography and performed both computer simulations and phantom experiments. The results show that the proposed method significantly suppresses the noise from the shallow region with a minimal degradation of the target signal.

  13. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design

    International Nuclear Information System (INIS)

    Toffolo, A.; Lazzaretto, A.

    2002-01-01

    Thermoeconomic analyses in thermal system design are always focused on the economic objective. However, knowledge of only the economic minimum may not be sufficient in the decision making process, since solutions with a higher thermodynamic efficiency, in spite of small increases in total costs, may result in much more interesting designs due to changes in energy market prices or in energy policies. This paper suggests how to perform a multi-objective optimization in order to find solutions that simultaneously satisfy exergetic and economic objectives. This corresponds to a search for the set of Pareto optimal solutions with respect to the two competing objectives. The optimization process is carried out by an evolutionary algorithm, that features a new diversity preserving mechanism using as a test case the well-known CGAM problem. (author)

  14. Bio-inspired algorithms applied to molecular docking simulations.

    Science.gov (United States)

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  15. Optimizing Transmission Network Expansion Planning With The Mean Of Chaotic Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed R. Abdelaziz

    2015-08-01

    Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.

  16. Optimization of operating schedule of machines in granite industry using evolutionary algorithms

    International Nuclear Information System (INIS)

    Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.

    2014-01-01

    Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling

  17. Penalized likelihood fluence optimization with evolutionary components for intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Baydush, Alan H.; Marks, Lawrence B.; Das, Shiva K.

    2004-01-01

    A novel iterative penalized likelihood algorithm with evolutionary components for the optimization of beamlet fluences for intensity modulated radiation therapy (IMRT) is presented. This algorithm is designed to be flexible in terms of the objective function and automatically escalates dose, as long as the objective function increases and all constraints are met. For this study, the objective function employed was the product of target equivalent uniform dose (EUD) and fraction of target tissue within set homogeneity constraints. The likelihood component of the algorithm iteratively attempts to minimize the mean squared error between a homogeneous dose prescription and the actual target dose distribution. The updated beamlet fluences are then adjusted via a quadratic penalty function that is based on the dose-volume histogram (DVH) constraints of the organs at risk. The evolutionary components were included to prevent the algorithm from converging to a local maximum. The algorithm was applied to a prostate cancer dataset, with especially difficult DVH constraints on bladder, rectum, and femoral heads. Dose distributions were generated for manually selected sets of three-, four-, five-, and seven-field treatment plans. Additionally, a global search was performed to find the optimal orientations for an axial three-beam plan. The results from this optimal orientation set were compared to results for manually selected orientation (gantry angle) sets of 3- (0 deg., 90 deg., 270 deg. ), 4- (0 deg., 90 deg., 180 deg., 270 deg. ), 5- (0 deg., 50 deg., 130 deg., 230 deg., 310 deg.), and 7- (0 deg., 40 deg., 90 deg., 140 deg., 230 deg., 270 deg., 320 deg. ) field axial treatment plans. For all the plans generated, all DVH constraints were met and average optimization computation time was approximately 30 seconds. For the manually selected orientations, the algorithm was successful in providing a relatively homogeneous target dose distribution, while simultaneously satisfying

  18. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Directory of Open Access Journals (Sweden)

    Timothée Bonnet

    2017-01-01

    Full Text Available In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative genetic models are able to provide us with an understanding of the causes and consequences of

  19. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population

    Science.gov (United States)

    Wandeler, Peter; Camenisch, Glauco

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  20. Enhanced stopping of macro-particles in particle-in-cell simulations

    International Nuclear Information System (INIS)

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Ren, C.

    2014-01-01

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q 2 /m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles

  1. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array

    International Nuclear Information System (INIS)

    Singh, Sonveer; Agrawal, Sanjay; Gadh, Rajit

    2015-01-01

    Highlights: • Optimization of SCGPVT array using Evolutionary Algorithm. • The overall exergy gain is maximized with an Evolutionary Algorithm. • Annual Performance has been evaluated for New Delhi (India). • There are improvement in results than the model given in literature. • Carbon credit analysis has been done. - Abstract: In this paper, work is carried out in three steps. In the first step, optimization of single channel glazed photovoltaic thermal (SCGPVT) array has been done with an Evolutionary Algorithm (EA) keeping the overall exergy gain is an objective function of the SCGPVT array. For maximization of overall exergy gain, total seven design variables have been optimized such as length of the channel (L), mass flow rate of flowing fluid (m_F), velocity of flowing fluid (V_F), convective heat transfer coefficient through the tedlar (U_T), overall heat transfer coefficient between solar cell to ambient through glass cover (U_S_C_A_G), overall back loss heat transfer coefficient from flowing fluid to ambient (U_F_A) and convective heat transfer coefficient of tedlar (h_T). It has been observed that the instant overall exergy gain obtained from optimized system is 1.42 kW h, which is 87.86% more than the overall exergy gain of a un-optimized system given in literature. In the second step, overall exergy gain and overall thermal gain of SCGPVT array has been evaluated annually and there are 69.52% and 88.05% improvement in annual overall exergy gain and annual overall thermal gain respectively than the un-optimized system for the same input irradiance and ambient temperature. In the third step, carbon credit earned by the optimized SCGPVT array has also been evaluated as per norms of Kyoto Protocol Bangalore climatic conditions.

  3. MACRO

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    The description is given to MACRO which is a numerically formulated macroeconomic model constructed to reflect the economy of the European Community. The model belongs to the group of general equilibrium models often applied in long-term macroeconomic energy modeling. Furthermore, MACRO was designed so as to interact with other more technically oriented energy demand and supply models. It's main objective is to provide consistency checks between assumptions concerning energy trade, energy prices, resource availability and energy-related capital requirements. 5 figs

  4. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    Science.gov (United States)

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  5. The M-OLAP Cube Selection Problem: A Hyper-polymorphic Algorithm Approach

    Science.gov (United States)

    Loureiro, Jorge; Belo, Orlando

    OLAP systems depend heavily on the materialization of multidimensional structures to speed-up queries, whose appropriate selection constitutes the cube selection problem. However, the recently proposed distribution of OLAP structures emerges to answer new globalization's requirements, capturing the known advantages of distributed databases. But this hardens the search for solutions, especially due to the inherent heterogeneity, imposing an extra characteristic of the algorithm that must be used: adaptability. Here the emerging concept known as hyper-heuristic can be a solution. In fact, having an algorithm where several (meta-)heuristics may be selected under the control of a heuristic has an intrinsic adaptive behavior. This paper presents a hyper-heuristic polymorphic algorithm used to solve the extended cube selection and allocation problem generated in M-OLAP architectures.

  6. Gene selection heuristic algorithm for nutrigenomics studies.

    Science.gov (United States)

    Valour, D; Hue, I; Grimard, B; Valour, B

    2013-07-15

    Large datasets from -omics studies need to be deeply investigated. The aim of this paper is to provide a new method (LEM method) for the search of transcriptome and metabolome connections. The heuristic algorithm here described extends the classical canonical correlation analysis (CCA) to a high number of variables (without regularization) and combines well-conditioning and fast-computing in "R." Reduced CCA models are summarized in PageRank matrices, the product of which gives a stochastic matrix that resumes the self-avoiding walk covered by the algorithm. Then, a homogeneous Markov process applied to this stochastic matrix converges the probabilities of interconnection between genes, providing a selection of disjointed subsets of genes. This is an alternative to regularized generalized CCA for the determination of blocks within the structure matrix. Each gene subset is thus linked to the whole metabolic or clinical dataset that represents the biological phenotype of interest. Moreover, this selection process reaches the aim of biologists who often need small sets of genes for further validation or extended phenotyping. The algorithm is shown to work efficiently on three published datasets, resulting in meaningfully broadened gene networks.

  7. Macro-habitat preferences by the African manatee and crocodiles – ecological and conservation implications

    Directory of Open Access Journals (Sweden)

    L. Luiselli

    2012-07-01

    Full Text Available African manatees (Trichechus senegalensis and crocodiles are threatened species in parts of their range. In West Africa, crocodiles may constitute the main predators for manatees apart from humans. Here, we explore the macro-habitat selection of manatees and two species of crocodiles (West African crocodiles Crocodylus suchus and dwarf crocodile Osteolaemus tetraspis in the Niger Delta (Nigeria, testing the hypotheses that (i manatees may avoid crocodiles in order to minimize risks of predation, and (ii the two crocodile species do compete. The study was carried out between 1994 and 2010 with a suite of different field techniques. We observed that the main macro-habitat types were freshwater rivers and coastal lagoons for manatees, mangroves for West African crocodiles, and rivers and creeks for dwarf crocodiles, with (i the three species differing significantly in terms of their macro-habitat type selection, and (ii significant seasonal influence on habitat selection of each species. Null models for niche overlap showed a significantly lower overlap in macro-habitat type use between manatee and crocodiles, whereas the two crocodiles were relatively similar. Null model analyses did not indicate any competitive interactions between crocodiles. On the other hand, manatees avoided macro-habitats where crocodiles, and especially West African crocodiles, are abundant.

  8. Dynamic Power Dispatch Considering Electric Vehicles and Wind Power Using Decomposition Based Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Boyang Qu

    2017-12-01

    Full Text Available The intermittency of wind power and the large-scale integration of electric vehicles (EVs bring new challenges to the reliability and economy of power system dispatching. In this paper, a novel multi-objective dynamic economic emission dispatch (DEED model is proposed considering the EVs and uncertainties of wind power. The total fuel cost and pollutant emission are considered as the optimization objectives, and the vehicle to grid (V2G power and the conventional generator output power are set as the decision variables. The stochastic wind power is derived by Weibull probability distribution function. Under the premise of meeting the system energy and user’s travel demand, the charging and discharging behavior of the EVs are dynamically managed. Moreover, we propose a two-step dynamic constraint processing strategy for decision variables based on penalty function, and, on this basis, the Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D algorithm is improved. The proposed model and approach are verified by the 10-generator system. The results demonstrate that the proposed DEED model and the improved MOEA/D algorithm are effective and reasonable.

  9. Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm

    Science.gov (United States)

    Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad

    2016-04-01

    Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.

  10. Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Soo-Yong Cho

    2012-01-01

    Full Text Available An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.

  11. A numeric comparison of variable selection algorithms for supervised learning

    International Nuclear Information System (INIS)

    Palombo, G.; Narsky, I.

    2009-01-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( (http://sourceforge.net/projects/statpatrec/)). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ('Add N Remove R') implemented in SPR.

  12. A CO-EVOLUTIONARY PERSPECTIVE AND ITS APPLICATION TO THE THEORY OF ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Flavia Luciane Scherer

    2012-11-01

    Full Text Available This article pointed out the reasons and possibilities of co-evolutionary studies, requirements and problems to develop such studies, as well as discuss some of the central theoretical frameworks to the theory of organizations, from the perspective of coevolution (lewin and volberda , 1999. From this, we identify the possible links that can be established between different lenses of study, when integrated into a co-evolutionary study. Such links are drawn by taking the analysis of institutional theory (dimaggio and powell, 1991; meyer and rowan, 1991; scott, 1995, the transaction costs theory (williamson, 1981 and the theory of social relations in economic action (granovetter, 1992. Thus, it is expected to contribute to the discussion about the possibilities for greater integration in organizational studies, when calling attention to the importance of moving toward a more inclusive, taking into account the macro economic and social dynamics and their impact on the level the firm (in terms of effect size, identity, culture and learning processes and its inverse relationships - from the firm to the macro environment.

  13. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    Science.gov (United States)

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  14. Algorithms for selecting informative marker panels for population assignment.

    Science.gov (United States)

    Rosenberg, Noah A

    2005-11-01

    Given a set of potential source populations, genotypes of an individual of unknown origin at a collection of markers can be used to predict the correct source population of the individual. For improved efficiency, informative markers can be chosen from a larger set of markers to maximize the accuracy of this prediction. However, selecting the loci that are individually most informative does not necessarily produce the optimal panel. Here, using genotypes from eight species--carp, cat, chicken, dog, fly, grayling, human, and maize--this univariate accumulation procedure is compared to new multivariate "greedy" and "maximin" algorithms for choosing marker panels. The procedures generally suggest similar panels, although the greedy method often recommends inclusion of loci that are not chosen by the other algorithms. In seven of the eight species, when applied to five or more markers, all methods achieve at least 94% assignment accuracy on simulated individuals, with one species--dog--producing this level of accuracy with only three markers, and the eighth species--human--requiring approximately 13-16 markers. The new algorithms produce substantial improvements over use of randomly selected markers; where differences among the methods are noticeable, the greedy algorithm leads to slightly higher probabilities of correct assignment. Although none of the approaches necessarily chooses the panel with optimal performance, the algorithms all likely select panels with performance near enough to the maximum that they all are suitable for practical use.

  15. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    Science.gov (United States)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  16. A new hybrid genetic algorithm for optimizing the single and multivariate objective functions

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya Shankar [Idaho National Laboratory; McCulloch, Richard Chet James [Idaho National Laboratory

    2015-07-01

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.

  17. A new evolutionary algorithm with LVQ learning for the optimization of combinatory problems as a reload of nuclear reactors

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas

    1999-04-01

    Genetic algorithms are biologically motivated adaptive systems which have been used, with good results, for function optimization. In this work, a new learning mode, to be used by the Population-Based Incremental Learning (PBIL) algorithm, who combines mechanisms of standard genetic algorithm with simple competitive learning, has the aim to build a new evolutionary algorithm to be used in optimization of numerical problems and combinatorial problems. This new learning mode uses a variable learning rate during the optimization process, constituting a process know as proportional reward. The development of this new algorithm aims its application in the optimization of reload problem of PWR nuclear reactors. This problem can be interpreted as search of a load pattern to be used in the nucleus of the reactor in order to increase the useful life of the nuclear fuel. For the test, two classes of problems are used: numerical problems and combinatorial problem, the major interest relies on the last class. The results achieved with the tests indicate the applicability of the new learning mode, showing its potential as a developing tool in the solution of reload problem. (author)

  18. Investigating the Multi-memetic Mind Evolutionary Computation Algorithm Efficiency

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2017-01-01

    Full Text Available In solving practically significant problems of global optimization, the objective function is often of high dimensionality and computational complexity and of nontrivial landscape as well. Studies show that often one optimization method is not enough for solving such problems efficiently - hybridization of several optimization methods is necessary.One of the most promising contemporary trends in this field are memetic algorithms (MA, which can be viewed as a combination of the population-based search for a global optimum and the procedures for a local refinement of solutions (memes, provided by a synergy. Since there are relatively few theoretical studies concerning the MA configuration, which is advisable for use to solve the black-box optimization problems, many researchers tend just to adaptive algorithms, which for search select the most efficient methods of local optimization for the certain domains of the search space.The article proposes a multi-memetic modification of a simple SMEC algorithm, using random hyper-heuristics. Presents the software algorithm and memes used (Nelder-Mead method, method of random hyper-sphere surface search, Hooke-Jeeves method. Conducts a comparative study of the efficiency of the proposed algorithm depending on the set and the number of memes. The study has been carried out using Rastrigin, Rosenbrock, and Zakharov multidimensional test functions. Computational experiments have been carried out for all possible combinations of memes and for each meme individually.According to results of study, conducted by the multi-start method, the combinations of memes, comprising the Hooke-Jeeves method, were successful. These results prove a rapid convergence of the method to a local optimum in comparison with other memes, since all methods perform the fixed number of iterations at the most.The analysis of the average number of iterations shows that using the most efficient sets of memes allows us to find the optimal

  19. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Mengjun Ming

    2017-05-01

    Full Text Available Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes is maximized. To effectively solve this multi-objective problem (MOP, the multi-objective evolutionary algorithm based on decomposition (MOEA/D using localized penalty-based boundary intersection (LPBI method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified.

  20. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today

    Science.gov (United States)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an “abstract” without references, compiled by Charles Darwin from a much longer manuscript entitled “Natural Selection.” Here, I summarize the five theories that can be extracted from Darwin’s monograph, explain the true meaning of the phrase “struggle for life” (i.e., competition and cooperation), and outline Darwin’s original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that “selection only eliminates but is not creative” is still alive today. However, I document that August Weismann ( Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen ( Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this “Weismann-Schmalhausen principle” with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky ( Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by

  1. Theory of quasi-Chaplygin unstable media and evolutionary principle for selecting spontaneous solutions

    International Nuclear Information System (INIS)

    Zhdanov, S.K.; Trubnikov, B.A.; Institut Atomnoi Energii, Moscow, USSR)

    1986-01-01

    A one-dimensional ideal gas with negative compressibility described by quasi-Chaplygin equations is discussed. Its reduction to a Laplace equation is shown, and an evolutionary principle for selecting spontaneous solutions is summarized. Three extremely simple spontaneous solutions are obtained along with multidimensional self-similar solutions. The Buneman instability in a plasma is considered as an example. 17 references

  2. Parser Macros for Scala

    OpenAIRE

    Duhem, Martin; Burmako, Eugene

    2015-01-01

    Parser macros are a new kind of macros that allow developers to create new language constructs and to define their own syntax for using them. In this report, we present why parser macros are useful and the kind of problems that they help to solve. We will also see how they are implemented and gain insight about how they take advantage from scala.meta, the new metaprogramming toolkit for Scala. Finally, we will discuss what are the current limitations of parser macros and what is left for futu...

  3. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    Science.gov (United States)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  4. Feature Selection Criteria for Real Time EKF-SLAM Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Auat Cheein

    2010-02-01

    Full Text Available This paper presents a seletion procedure for environmet features for the correction stage of a SLAM (Simultaneous Localization and Mapping algorithm based on an Extended Kalman Filter (EKF. This approach decreases the computational time of the correction stage which allows for real and constant-time implementations of the SLAM. The selection procedure consists in chosing the features the SLAM system state covariance is more sensible to. The entire system is implemented on a mobile robot equipped with a range sensor laser. The features extracted from the environment correspond to lines and corners. Experimental results of the real time SLAM algorithm and an analysis of the processing-time consumed by the SLAM with the feature selection procedure proposed are shown. A comparison between the feature selection approach proposed and the classical sequential EKF-SLAM along with an entropy feature selection approach is also performed.

  5. A Fast Algorithm of Convex Hull Vertices Selection for Online Classification.

    Science.gov (United States)

    Ding, Shuguang; Nie, Xiangli; Qiao, Hong; Zhang, Bo

    2018-04-01

    Reducing samples through convex hull vertices selection (CHVS) within each class is an important and effective method for online classification problems, since the classifier can be trained rapidly with the selected samples. However, the process of CHVS is NP-hard. In this paper, we propose a fast algorithm to select the convex hull vertices, based on the convex hull decomposition and the property of projection. In the proposed algorithm, the quadratic minimization problem of computing the distance between a point and a convex hull is converted into a linear equation problem with a low computational complexity. When the data dimension is high, an approximate, instead of exact, convex hull is allowed to be selected by setting an appropriate termination condition in order to delete more nonimportant samples. In addition, the impact of outliers is also considered, and the proposed algorithm is improved by deleting the outliers in the initial procedure. Furthermore, a dimension convention technique via the kernel trick is used to deal with nonlinearly separable problems. An upper bound is theoretically proved for the difference between the support vector machines based on the approximate convex hull vertices selected and all the training samples. Experimental results on both synthetic and real data sets show the effectiveness and validity of the proposed algorithm.

  6. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil

    Directory of Open Access Journals (Sweden)

    Maira Kussainova

    2013-01-01

    Full Text Available The main objective of this study was to determine changes in soil dehydrogenase activity in natural macro aggregates development along a slope in forest soils. This study was carried out in Kocadag, Samsun, Turkey. Four landscape positions i.e., summit, shoulder backslope and footslope, were selected. For each landseape position, soil macro aggregates were separated into six aggregate size classes using a dry sieving method and then dehydrogenase activity was analyzed. In this research, topography influenced the macroaggregate size and dehydrogenase activity within the aggregates. At all landscape positions, the contents of macro aggregates (especially > 6.3 mm and 2.00–4.75 mm in all soil samples were higher than other macro aggregate contents. In footslope position, the soils had generally the higher dehydrogenase activity than the other positions at all landscape positions. In all positions, except for shoulder, dehydrogenase activity was greater macro aggregates of <1 mm than in the other macro aggregate size.

  7. A micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations

    DEFF Research Database (Denmark)

    Debrabant, Kristian; Samaey, Giovanni; Zieliński, Przemysław

    2017-01-01

    We present and analyse a micro-macro acceleration method for the Monte Carlo simulation of stochastic differential equations with separation between the (fast) time-scale of individual trajectories and the (slow) time-scale of the macroscopic function of interest. The algorithm combines short...

  8. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  9. The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fang Hu

    2014-04-01

    Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.

  10. Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid

    International Nuclear Information System (INIS)

    Padée, Adam; Zaremba, Krzysztof; Kurek, Krzysztof

    2013-01-01

    Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters

  11. Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms

    Science.gov (United States)

    Ye, Mengdie

    2017-05-01

    In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.

  12. Combining Environment-Driven Adaptation and Task-Driven Optimisation in Evolutionary Robotics

    NARCIS (Netherlands)

    Haasdijk, E.W.; Bredeche, Nicolas; Eiben, A.E.

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting

  13. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  14. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    Science.gov (United States)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  15. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges

    Science.gov (United States)

    Ketabchi, Hamed; Ataie-Ashtiani, Behzad

    2015-01-01

    This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision

  16. Genetic algorithm based on virus theory of evolution for traveling salesman problem; Virus shinkaron ni motozuku identeki algorithm no junkai salesman mondai eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, N. [Osaka Inst. of Technology, Osaka (Japan); Fukuda, T. [Nagoya University, Nagoya (Japan)

    1998-05-31

    This paper deals with virus evolutionary genetic algorithm. The genetic algorithms (GAs) have been demonstrated its effectiveness in optimization problems in these days. In general, the GAs simulate the survival of fittest by natural selection and the heredity of the Darwin`s theory of evolution. However, some types of evolutionary hypotheses such as neutral theory of molecular evolution, Imanishi`s evolutionary theory, serial symbiosis theory, and virus theory of evolution, have been proposed in addition to the Darwinism. Virus theory of evolution is based on the view that the virus transduction is a key mechanism for transporting segments of DNA across species. This paper proposes genetic algorithm based on the virus theory of evolution (VE-GA), which has two types of populations: host population and virus population. The VE-GA is composed of genetic operators and virus operators such as reverse transcription and incorporation. The reverse transcription operator transcribes virus genes on the chromosome of host individual and the incorporation operator creates new genotype of virus from host individual. These operators by virus population make it possible to transmit segment of DNA between individuals in the host population. Therefore, the VE-GA realizes not only vertical but also horizontal propagation of genetic information. Further, the VE-GA is applied to the traveling salesman problem in order to show the effectiveness. 20 refs., 10 figs., 3 tabs.

  17. Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction

    Directory of Open Access Journals (Sweden)

    Jingling Zhang

    2012-01-01

    Full Text Available The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS involves the distribution of orders from several depots to a set of customers over a time window. This paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The degree of customer satisfaction is represented by proposing an improved fuzzy due-time window, and the optimization problem is modeled as a mixed integer linear program. In the MOQEA, nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid is designed to achieve the diversity of solution sets; that is, the number of grids in each generation is not fixed but is automatically adjusted based on the distribution of the current generation of nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical benchmark problems. Results of numerical simulation and comparison show that the established model is valid and the MOQEA is effective for MVRPCS.

  18. Log-Linear Model Based Behavior Selection Method for Artificial Fish Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Zhehuang Huang

    2015-01-01

    Full Text Available Artificial fish swarm algorithm (AFSA is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  19. Log-linear model based behavior selection method for artificial fish swarm algorithm.

    Science.gov (United States)

    Huang, Zhehuang; Chen, Yidong

    2015-01-01

    Artificial fish swarm algorithm (AFSA) is a population based optimization technique inspired by social behavior of fishes. In past several years, AFSA has been successfully applied in many research and application areas. The behavior of fishes has a crucial impact on the performance of AFSA, such as global exploration ability and convergence speed. How to construct and select behaviors of fishes are an important task. To solve these problems, an improved artificial fish swarm algorithm based on log-linear model is proposed and implemented in this paper. There are three main works. Firstly, we proposed a new behavior selection algorithm based on log-linear model which can enhance decision making ability of behavior selection. Secondly, adaptive movement behavior based on adaptive weight is presented, which can dynamically adjust according to the diversity of fishes. Finally, some new behaviors are defined and introduced into artificial fish swarm algorithm at the first time to improve global optimization capability. The experiments on high dimensional function optimization showed that the improved algorithm has more powerful global exploration ability and reasonable convergence speed compared with the standard artificial fish swarm algorithm.

  20. Computing the Quartet Distance Between Evolutionary Trees in Time O(n log n)

    DEFF Research Database (Denmark)

    Brodal, Gerth Sølfting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm

    2003-01-01

    Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, McMorris, and ...... unrooted evolutionary trees of n species, where all internal nodes have degree three, in time O(n log n. The previous best algorithm for the problem uses time O(n 2).......Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, Mc......Morris, and Meacham. The quartet distance between two unrooted evolutionary trees is the number of quartet topology differences between the two trees, where a quartet topology is the topological subtree induced by four species. In this paper we present an algorithm for computing the quartet distance between two...

  1. 101 Ready-To-Use Excel Macros

    CERN Document Server

    Alexander, Michael

    2012-01-01

    Save time and be more productive with this helpful guide to Excel macros! While most books about Excel macros offer only minor examples, usually aimed at illustrating a particular topic, this invaluable resource provides you with the tools needed to efficiently and effectively program Excel macros immediately. Step-by-step instructions show you how to create VBA macros and explain how to customize your applications to look and work exactly as you want them to. By the end of the book, you will understand how each featured macro works, be able to reuse the macros included in the book and online,

  2. Adaptive attunement of selective covert attention to evolutionary-relevant emotional visual scenes.

    Science.gov (United States)

    Fernández-Martín, Andrés; Gutiérrez-García, Aída; Capafons, Juan; Calvo, Manuel G

    2017-05-01

    We investigated selective attention to emotional scenes in peripheral vision, as a function of adaptive relevance of scene affective content for male and female observers. Pairs of emotional-neutral images appeared peripherally-with perceptual stimulus differences controlled-while viewers were fixating on a different stimulus in central vision. Early selective orienting was assessed by the probability of directing the first fixation towards either scene, and the time until first fixation. Emotional scenes selectively captured covert attention even when they were task-irrelevant, thus revealing involuntary, automatic processing. Sex of observers and specific emotional scene content (e.g., male-to-female-aggression, families and babies, etc.) interactively modulated covert attention, depending on adaptive priorities and goals for each sex, both for pleasant and unpleasant content. The attentional system exhibits domain-specific and sex-specific biases and attunements, probably rooted in evolutionary pressures to enhance reproductive and protective success. Emotional cues selectively capture covert attention based on their bio-social significance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure.

    Science.gov (United States)

    Foroughi Pour, Ali; Dalton, Lori A

    2018-03-21

    Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.

  4. Micro-processus et macro-structures

    Directory of Open Access Journals (Sweden)

    Aaron Victor Cicourel

    2008-10-01

    Full Text Available Des approches sociologiques traditionnelles ont défini des macro-structures sociales comme un niveau particulier de la réalité sociale, à distinguer des micro-épisodes de l’action sociale. Cela les a conduits à concevoir ces macro-structures et à mener des recherches sur elles de manière plus ou moins indépendante des pratiques observables de la vie quotidienne. Cicourel soutient que les faits (macro-sociaux ne sont pas simplement donnés, mais émergent de pratiques routinières de la vie de tous les jours. Le macro, au sens de descriptions résumées, hors contexte, normalisées et typifiées, est un produit typique des procédures interactives et organisationnelles qui transforment les micro-événements en structures macro-sociales. Ainsi une précondition pour l’intégration des phénomènes micro- et macro-sociaux dans notre théorie et dans notre méthodologie renvoie à l’identification des processus contribuant à la création de macro-structures par des inférences routinières, des interprétations et des procédure de résumé. Le texte montre aussi que les différences entre approches micro-sociologiques apparaissent parallèles à celles existant entre approches micro et macro. On se centrant sur de petits fragments d’interactions conversationnelles, certains travaux micro-sociologiques tendent à ignorer ce qui informe ces interactions conversationnelles pour les participants eux-mêmes. Les comptes rendus décontextualisés produits par de telles méthodes ressemblent à la décontextualisation résultant des procédures macro-sociologiques d’agrégation. Contre cela, Cicourel défend la constitution de bases de données comparatives n’incluant pas seulement le contexte des interactions de face à face, mais étudiant aussi les phénomènes sociaux de manière systématique à travers différents contextes.Micro-processes and macro-structures. Notes on articulation between different levels of analysis

  5. Simulation of UMTS Capacity and Quality of Coverage in Urban Macro- and Microcellular Environment

    Directory of Open Access Journals (Sweden)

    P. Pechac

    2005-12-01

    Full Text Available This paper deals with simulations of a radio interface of thirdgeneration (3G mobile systems operating in the WCDMA FDD modeincluding propagation predictions in macro and microcells. In the radionetwork planning of 3G mobile systems, the quality of coverage and thesystem capacity present a common problem. Both macro and microcellularconcepts are very important for implementing wireless communicationsystems, such as Universal Mobile Telecommunication Systems (UMTS indense urban areas. The aim of this paper is to introduce differentimpacts - selected bit rate, uplink (UL loading, allocation and numberof Nodes B, selected propagation prediction models, macro andmicrocellular environment - on system capacity and quality of coveragein UMTS networks. Both separated and composite simulation scenarios ofmacro and microcellular environments are presented. The necessity of aniteration-based simulation approach and site-specific propagationmodeling in microcells is proven.

  6. Development of Base Transceiver Station Selection Algorithm for ...

    African Journals Online (AJOL)

    TEMS) equipment was carried out on the existing BTSs, and a linear algorithm optimization program based on the spectral link efficiency of each BTS was developed, the output of this site optimization gives the selected number of base station sites ...

  7. Selection of individual features of a speech signal using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Kamil Kamiński

    2016-03-01

    Full Text Available The paper presents an automatic speaker’s recognition system, implemented in the Matlab environment, and demonstrates how to achieve and optimize various elements of the system. The main emphasis was put on features selection of a speech signal using a genetic algorithm which takes into account synergy of features. The results of optimization of selected elements of a classifier have been also shown, including the number of Gaussian distributions used to model each of the voices. In addition, for creating voice models, a universal voice model has been used.[b]Keywords[/b]: biometrics, automatic speaker recognition, genetic algorithms, feature selection

  8. Predicting evolutionary responses when genetic variance and selection covary with the environment: a large-scale Open Access Data approach

    NARCIS (Netherlands)

    Ramakers, J.J.C.; Culina, A.; Visser, M.E.; Gienapp, P.

    2017-01-01

    Additive genetic variance and selection are the key ingredients for evolution. In wild populations, however, predicting evolutionary trajectories is difficult, potentially by an unrecognised underlying environment dependency of both (additive) genetic variance and selection (i.e. G×E and S×E).

  9. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.

    Science.gov (United States)

    Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J

    2016-03-01

    The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  10. Multilevel Evolutionary Algorithm that Optimizes the Structure of Scale-Free Networks for the Promotion of Cooperation in the Prisoner's Dilemma game.

    Science.gov (United States)

    Liu, Penghui; Liu, Jing

    2017-06-28

    Understanding the emergence of cooperation has long been a challenge across disciplines. Even if network reciprocity reflected the importance of population structure in promoting cooperation, it remains an open question how population structures can be optimized, thereby enhancing cooperation. In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new EA variant named mlEA-C PD -SFN to promote the cooperation level of scale-free networks (SFNs) in the Prisoner's Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to this problem, we also provide the optimization results of the comparative experiment (EA cluster ), which optimizes the clustering coefficient of structures. Even if preceding research concluded that highly clustered scale-free networks enhance cooperation, we find EA cluster does not perform desirably, while mlEA-C PD -SFN performs efficiently in different optimization environments. We hope that mlEA-C PD -SFN may help promote the structure of species in nature and that more general properties that enhance cooperation can be learned from the output structures.

  11. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  12. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    Science.gov (United States)

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  13. An Evolutionary Perspective of the Relationship Between Corporate Strategy and Performance, Through the Use of Artificial Neural Networks and Genetic AlgorithmsHttp://Dx.Doi.Org/10.5585/Riae.V9i3.1689

    Directory of Open Access Journals (Sweden)

    Alexandre Teixeira Dias

    2011-01-01

    Full Text Available This study aims to contribute to the understanding of the relationship between Corporate Strategy and Performance, from the perspective of the Evolutionary Theory. As methods of data processing, obtained in secondary databases, we used artificial neural networks and genetic algorithms. The results of processing neural networks and genetic algorithms demonstrate the importance of corporate strategies in determining performance. The evolutionary perspective emphasizes the importance of investing in operations as a factor influencing the adequacy of the organization, in order to achieve an improved performance, in addition to establishing relationships with other organizations, through members of the board.

  14. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    Science.gov (United States)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  15. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements.

    Science.gov (United States)

    Brunet, Tyler D P; Doolittle, W Ford

    2015-08-06

    One of several issues at play in the renewed debate over "junk DNA" is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to "speed evolution" or as an "evolutionary repository" could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness--or are instead junk--is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. A generalized macro-assembler

    International Nuclear Information System (INIS)

    Kaul, Mohan Lai

    1970-01-01

    The objective of this research is to study existing macro assemblers, and to create a generalized macro assembler, MAG-I, which is a system independent of a source language, and provides the following possibilities: development of any existing language, translation from a language to another, and creation of a new language. The user can choose his own notations to define macros. The system is implemented on an IBM 360/91 computer. Programs are written in symbolic language and the input/output software is written in Fortran [fr

  17. Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.

    Science.gov (United States)

    Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni

    2017-08-14

    Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  19. Life as Thermodynamic Evidence of Algorithmic Structure in Natural Environments

    Directory of Open Access Journals (Sweden)

    David A. Rosenblueth

    2012-11-01

    Full Text Available In evolutionary biology, attention to the relationship between stochastic organisms and their stochastic environments has leaned towards the adaptability and learning capabilities of the organisms rather than toward the properties of the environment. This article is devoted to the algorithmic aspects of the environment and its interaction with living organisms. We ask whether one may use the fact of the existence of life to establish how far nature is removed from algorithmic randomness. The paper uses a novel approach to behavioral evolutionary questions, using tools drawn from information theory, algorithmic complexity and the thermodynamics of computation to support an intuitive assumption about the near optimal structure of a physical environment that would prove conducive to the evolution and survival of organisms, and sketches the potential of these tools, at present alien to biology, that could be used in the future to address different and deeper questions. We contribute to the discussion of the algorithmic structure of natural environments and provide statistical and computational arguments for the intuitive claim that living systems would not be able to survive in completely unpredictable environments, even if adaptable and equipped with storage and learning capabilities by natural selection (brain memory or DNA.

  20. Improving permafrost distribution modelling using feature selection algorithms

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its

  1. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...

  2. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...... domains, such Evolvability Search produces solutions with higher evolvability than those produced with Novelty Search or traditional objective-based search algorithms. Further experiments demonstrate that the higher evolvability produced by Evolvability Search in a training environment also generalizes...

  3. Self-organized spectrum chunk selection algorithm for Local Area LTE-Advanced

    DEFF Research Database (Denmark)

    Kumar, Sanjay; Wang, Yuanye; Marchetti, Nicola

    2010-01-01

    This paper presents a self organized spectrum chunk selection algorithm in order to minimize the mutual intercell interference among Home Node Bs (HeNBs), aiming to improve the system throughput performance compared to the existing frequency reuse one scheme. The proposed algorithm is useful...

  4. Evolutionary design optimization of traffic signals applied to Quito city.

    Science.gov (United States)

    Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi

    2017-01-01

    This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.

  5. An Efficient Cost-Sensitive Feature Selection Using Chaos Genetic Algorithm for Class Imbalance Problem

    Directory of Open Access Journals (Sweden)

    Jing Bian

    2016-01-01

    Full Text Available In the era of big data, feature selection is an essential process in machine learning. Although the class imbalance problem has recently attracted a great deal of attention, little effort has been undertaken to develop feature selection techniques. In addition, most applications involving feature selection focus on classification accuracy but not cost, although costs are important. To cope with imbalance problems, we developed a cost-sensitive feature selection algorithm that adds the cost-based evaluation function of a filter feature selection using a chaos genetic algorithm, referred to as CSFSG. The evaluation function considers both feature-acquiring costs (test costs and misclassification costs in the field of network security, thereby weakening the influence of many instances from the majority of classes in large-scale datasets. The CSFSG algorithm reduces the total cost of feature selection and trades off both factors. The behavior of the CSFSG algorithm is tested on a large-scale dataset of network security, using two kinds of classifiers: C4.5 and k-nearest neighbor (KNN. The results of the experimental research show that the approach is efficient and able to effectively improve classification accuracy and to decrease classification time. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  6. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    Science.gov (United States)

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems

  8. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  9. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  10. Selective Bottlenecks Shape Evolutionary Pathways Taken during Mammalian Adaptation of a 1918-like Avian Influenza Virus.

    Science.gov (United States)

    Moncla, Louise H; Zhong, Gongxun; Nelson, Chase W; Dinis, Jorge M; Mutschler, James; Hughes, Austin L; Watanabe, Tokiko; Kawaoka, Yoshihiro; Friedrich, Thomas C

    2016-02-10

    Avian influenza virus reassortants resembling the 1918 human pandemic virus can become transmissible among mammals by acquiring mutations in hemagglutinin (HA) and polymerase. Using the ferret model, we trace the evolutionary pathway by which an avian-like virus evolves the capacity for mammalian replication and airborne transmission. During initial infection, within-host HA diversity increased drastically. Then, airborne transmission fixed two polymerase mutations that do not confer a detectable replication advantage. In later transmissions, selection fixed advantageous HA1 variants. Transmission initially involved a "loose" bottleneck, which became strongly selective after additional HA mutations emerged. The stringency and evolutionary forces governing between-host bottlenecks may therefore change throughout host adaptation. Mutations occurred in multiple combinations in transmitted viruses, suggesting that mammalian transmissibility can evolve through multiple genetic pathways despite phenotypic constraints. Our data provide a glimpse into avian influenza virus adaptation in mammals, with broad implications for surveillance on potentially zoonotic viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Using Evolutionary Theory to Guide Mental Health Research.

    Science.gov (United States)

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  12. Evolutionary Hybrid Particle Swarm Optimization Algorithm for Solving NP-Hard No-Wait Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Laxmi A. Bewoor

    2017-10-01

    Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.

  13. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun

    2011-02-05

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  14. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun; Peng, Chengbin; Wong, Manhon; Leung, Kwongsak

    2011-01-01

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  15. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R.V.; More, K.C.

    2017-01-01

    Highlights: • Self-adaptive Jaya algorithm is proposed for optimal design of thermal devices. • Optimization of heat pipe, cooling tower, heat sink and thermo-acoustic prime mover is presented. • Results of the proposed algorithm are better than the other optimization techniques. • The proposed algorithm may be conveniently used for the optimization of other devices. - Abstract: The present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of selected thermal devices viz; heat pipe, cooling tower, honeycomb heat sink and thermo-acoustic prime mover. Four different optimization case studies of the selected thermal devices are presented. The researchers had attempted the same design problems in the past using niched pareto genetic algorithm (NPGA), response surface method (RSM), leap-frog optimization program with constraints (LFOPC) algorithm, teaching-learning based optimization (TLBO) algorithm, grenade explosion method (GEM) and multi-objective genetic algorithm (MOGA). The results achieved by using self-adaptive Jaya algorithm are compared with those achieved by using the NPGA, RSM, LFOPC, TLBO, GEM and MOGA algorithms. The self-adaptive Jaya algorithm is proved superior as compared to the other optimization methods in terms of the results, computational effort and function evalutions.

  16. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    Science.gov (United States)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  17. A novel macro-model for spin-transfer-torque based magnetic-tunnel-junction elements

    Science.gov (United States)

    Lee, Seungyeon; Lee, Hyunjoo; Kim, Sojeong; Lee, Seungjun; Shin, Hyungsoon

    2010-04-01

    Spin-transfer-torque (STT) switching in magnetic-tunnel-junction (MTJ) has important merits over the conventional field induced magnetic switching (FIMS) MRAM in avoiding half-select problem, and improving scalability and selectivity. Design of MRAM circuitry using STT-based MTJ elements requires an accurate circuit model which exactly emulates the characteristics of an MTJ in a circuit simulator such as HSPICE. This work presents a novel macro-model that fully emulates the important characteristics of STT-based MTJ. The macro-model is realized as a three terminal sub-circuit that reproduces asymmetric resistance versus current (R-I) characteristics and temperature dependence of R-I hysteresis of STT-based MTJ element.

  18. Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization.

    Science.gov (United States)

    Gorunescu, Florin; Belciug, Smaranda

    2014-06-01

    The purpose of this paper is twofold: first, to propose an evolutionary-based method for building a decision model and, second, to assess and validate the model's performance using five different real-world medical datasets (breast cancer and liver fibrosis) by comparing it with state-of-the-art machine learning techniques. The evolutionary-inspired approach has been used to develop the learning-based decision model in the following manner: the hybridization of algorithms has been considered as "crossover", while the development of new variants which can be thought of as "mutation". An appropriate hierarchy of the component algorithms was established based on a statistically built fitness measure. A synergetic decision-making process, based on a weighted voting system, involved the collaboration between the selected algorithms in making the final decision. Well-established statistical performance measures and comparison tests have been extensively used to design and implement the model. Finally, the proposed method has been tested on five medical datasets, out of which four publicly available, and contrasted with state-of-the-art techniques, showing its efficiency in supporting the medical decision-making process. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Algoritmi selektivnog šifrovanja - pregled sa ocenom performansi / Selective encryption algorithms: Overview with performance evaluation

    Directory of Open Access Journals (Sweden)

    Boriša Ž. Jovanović

    2010-10-01

    Full Text Available Digitalni multimedijalni sadržaj postaje zastupljeniji i sve više se razmenjuje putem računarskih mreža i javnih kanala (satelitske komunikacije, bežične mreže, internet, itd. koji predstavljaju nebezbedne medijume za prenos informacija osetljive sadržine. Sve više na značaju dobijaju mehanizmi kriptološke zaštite slika i video sadržaja. Tradicionalni sistemi kriptografske obrade u sistemima za prenos ovih vrsta informacija garantuju visok stepen sigurnosti, ali i imaju svoje nedostatke - visoku cenu implementacije i znatno kašnjenje u prenosu podataka. Pomenuti nedostaci se prevazilaze primenom algoritama selektivnog šifrovanja. / Digital multimedia content is becoming widely used and increasingly exchanged over computer network and public channels (satelite, wireless networks, Internet, etc. which is unsecured transmission media for ex changing that kind of information. Mechanisms made to encrypt image and video data are becoming more and more significant. Traditional cryptographic techniques can guarantee a high level of security but at the cost of expensive implementation and important transmission delays. These shortcomings can be exceeded using selective encryption algorithms. Introduction In traditional image and video content protection schemes, called fully layered, the whole content is first compressed. Then, the compressed bitstream is entirely encrypted using a standard cipher (DES - Data Encryption Algorithm, IDEA - International Data Encryption Algorithm, AES - Advanced Encryption Algorithm etc.. The specific characteristics of this kind of data, high-transmission rate with limited bandwidth, make standard encryption algorithms inadequate. Another limitation of traditional systems consists of altering the whole bitstream syntax which may disable some codec functionalities on the delivery site coder and decoder on the receiving site. Selective encryption is a new trend in image and video content protection. As its

  20. Cloud computing task scheduling strategy based on improved differential evolution algorithm

    Science.gov (United States)

    Ge, Junwei; He, Qian; Fang, Yiqiu

    2017-04-01

    In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.

  1. Macro-economic environmental models

    International Nuclear Information System (INIS)

    Wier, M.

    1993-01-01

    In the present report, an introduction to macro-economic environmental models is given. The role of the models as a tool for policy analysis is discussed. Future applications, as well as the limitations given by the data, are brought into focus. The economic-ecological system is described. A set of guidelines for implementation of the system in a traditional economic macro-model is proposed. The characteristics of empirical national and international environmental macro-economic models so far are highlighted. Special attention is paid to main economic causalities and their consequences for the environmental policy recommendations sat by the models. (au) (41 refs.)

  2. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array.

    Science.gov (United States)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-20

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  3. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.

    Science.gov (United States)

    Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.

  4. Evolutionary genetics: 150 years of natural selection

    Indian Academy of Sciences (India)

    This year marks a hundred and fifty years since the formal enunciation of the ... publication of R. A. Fisher's landmark paper reconciling the statistical results of the ... applications of evolutionary thinking that has emerged over the past fifteen.

  5. ZEUS - standardized macros for the TPA computer

    International Nuclear Information System (INIS)

    Winde, M.

    1976-01-01

    An existing cross-assembler with macro-option was modified to allow the usage of the ZEUS macros. The ZEUS macros are understood by the assembler without prior definition by the user. ZEUS macros allow the programmer, who is obliged to code his TPA (PDP-8) programs on the assembler level to formulate his program logic as in a higher level language. ZEUS macros offer all basic elements necessary for structured programming. (author)

  6. (MBO) algorithm in multi-reservoir system optimisation

    African Journals Online (AJOL)

    A comparative study of marriage in honey bees optimisation (MBO) algorithm in ... A practical application of the marriage in honey bees optimisation (MBO) ... to those of other evolutionary algorithms, such as the genetic algorithm (GA), ant ...

  7. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    substrate Material properties of single crystal macro fiber composite actuators for active twist rotor blades Park, Jae-Sang (Seoul National...Passive Smart Structures and Integrated Systems 2007 Material properties of single crystal macro fiber composite actuators for active twist rotor ...19b. TELEPHONE NUMBER (Include area code) 10-03-20 16 Final Report 01 Jan 2013 - 31 Dec 2015 Macro-Fiber Composite Based Transduction N000-14-13-1-0212

  8. Comparative analysis of instance selection algorithms for instance-based classifiers in the context of medical decision support

    International Nuclear Information System (INIS)

    Mazurowski, Maciej A; Tourassi, Georgia D; Malof, Jordan M

    2011-01-01

    When constructing a pattern classifier, it is important to make best use of the instances (a.k.a. cases, examples, patterns or prototypes) available for its development. In this paper we present an extensive comparative analysis of algorithms that, given a pool of previously acquired instances, attempt to select those that will be the most effective to construct an instance-based classifier in terms of classification performance, time efficiency and storage requirements. We evaluate seven previously proposed instance selection algorithms and compare their performance to simple random selection of instances. We perform the evaluation using k-nearest neighbor classifier and three classification problems: one with simulated Gaussian data and two based on clinical databases for breast cancer detection and diagnosis, respectively. Finally, we evaluate the impact of the number of instances available for selection on the performance of the selection algorithms and conduct initial analysis of the selected instances. The experiments show that for all investigated classification problems, it was possible to reduce the size of the original development dataset to less than 3% of its initial size while maintaining or improving the classification performance. Random mutation hill climbing emerges as the superior selection algorithm. Furthermore, we show that some previously proposed algorithms perform worse than random selection. Regarding the impact of the number of instances available for the classifier development on the performance of the selection algorithms, we confirm that the selection algorithms are generally more effective as the pool of available instances increases. In conclusion, instance selection is generally beneficial for instance-based classifiers as it can improve their performance, reduce their storage requirements and improve their response time. However, choosing the right selection algorithm is crucial.

  9. Toward optimal feature selection using ranking methods and classification algorithms

    Directory of Open Access Journals (Sweden)

    Novaković Jasmina

    2011-01-01

    Full Text Available We presented a comparison between several feature ranking methods used on two real datasets. We considered six ranking methods that can be divided into two broad categories: statistical and entropy-based. Four supervised learning algorithms are adopted to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We showed that the selection of ranking methods could be important for classification accuracy. In our experiments, ranking methods with different supervised learning algorithms give quite different results for balanced accuracy. Our cases confirm that, in order to be sure that a subset of features giving the highest accuracy has been selected, the use of many different indices is recommended.

  10. On the Critical Role of Divergent Selection in Evolvability

    Directory of Open Access Journals (Sweden)

    Joel Lehman

    2016-08-01

    Full Text Available An ambitious goal in evolutionary robotics is to evolve increasingly complex robotic behaviors with minimal human design effort. Reaching this goal requires evolutionary algorithms that can unlock from genetic encodings their latent potential for evolvability. One issue clouding this goal is conceptual confusion about evolvability, which often obscures the aspects of evolvability that are important or desirable. The danger from such confusion is that it may establish unrealistic goals for evolvability that prove unproductive in practice. An important issue separate from conceptual confusion is the common misalignment between selection and evolvability in evolutionary robotics. While more expressive encodings can represent higher-level adaptations (e.g. sexual reproduction or developmental systems that increase long-term evolutionary potential (i.e. evolvability, realizing such potential requires gradients of fitness and evolvability to align. In other words, selection is often a critical factor limiting increasing evolvability. Thus, drawing from a series of recent papers, this article seeks to both (1 clarify and focus the ways in which the term evolvability is used within artificial evolution, and (2 argue for the importance of one type of selection, i.e. divergent selection, for enabling evolvability. The main argument is that there is a fundamental connection between divergent selection and evolvability (on both the individual and population level that does not hold for typical goal-oriented selection. The conclusion is that selection pressure plays a critical role in realizing the potential for evolvability, and that divergent selection in particular provides a principled mechanism for encouraging evolvability in artificial evolution.

  11. Trust Based Algorithm for Candidate Node Selection in Hybrid MANET-DTN

    Directory of Open Access Journals (Sweden)

    Jan Papaj

    2014-01-01

    Full Text Available The hybrid MANET - DTN is a mobile network that enables transport of the data between groups of the disconnected mobile nodes. The network provides benefits of the Mobile Ad-Hoc Networks (MANET and Delay Tolerant Network (DTN. The main problem of the MANET occurs if the communication path is broken or disconnected for some short time period. On the other side, DTN allows sending data in the disconnected environment with respect to higher tolerance to delay. Hybrid MANET - DTN provides optimal solution for emergency situation in order to transport information. Moreover, the security is the critical factor because the data are transported by mobile devices. In this paper, we investigate the issue of secure candidate node selection for transportation of the data in a disconnected environment for hybrid MANET- DTN. To achieve the secure selection of the reliable mobile nodes, the trust algorithm is introduced. The algorithm enables select reliable nodes based on collecting routing information. This algorithm is implemented to the simulator OPNET modeler.

  12. Fundamentals of natural computing basic concepts, algorithms, and applications

    CERN Document Server

    de Castro, Leandro Nunes

    2006-01-01

    Introduction A Small Sample of Ideas The Philosophy of Natural Computing The Three Branches: A Brief Overview When to Use Natural Computing Approaches Conceptualization General Concepts PART I - COMPUTING INSPIRED BY NATURE Evolutionary Computing Problem Solving as a Search Task Hill Climbing and Simulated Annealing Evolutionary Biology Evolutionary Computing The Other Main Evolutionary Algorithms From Evolutionary Biology to Computing Scope of Evolutionary Computing Neurocomputing The Nervous System Artif

  13. Evolutionary and adaptive learning in complex markets: a brief summary

    Science.gov (United States)

    Hommes, Cars H.

    2007-06-01

    We briefly review some work on expectations and learning in complex markets, using the familiar demand-supply cobweb model. We discuss and combine two different approaches on learning. According to the adaptive learning approach, agents behave as econometricians using time series observations to form expectations, and update the parameters as more observations become available. This approach has become popular in macro. The second approach has an evolutionary flavor and is sometimes referred to as reinforcement learning. Agents employ different forecasting strategies and evaluate these strategies based upon a fitness measure, e.g. past realized profits. In this framework, boundedly rational agents switch between different, but fixed behavioral rules. This approach has become popular in finance. We combine evolutionary and adaptive learning to model complex markets and discuss whether this theory can match empirical facts and forecasting behavior in laboratory experiments with human subjects.

  14. [Charles Darwin and the problem of evolutionary progress].

    Science.gov (United States)

    Iordanskiĭ, N N

    2010-01-01

    According to Ch. Darwin's evolutionary theory, evolutionary progress (interpreted as morpho-physiological progress or arogenesis in recent terminology) is one of logical results of natural selection. At the same time, natural selection does not hold any factors especially promoting evolutionary progress. Darwin emphasized that the pattern of evolutionary changes depends on organism nature more than on the pattern of environment changes. Arogenesis specificity is determined by organization of rigorous biological systems - integral organisms. Onward progressive development is determined by fundamental features of living organisms: metabolism and homeostasis. The concept of social Darwinism differs fundamentally from Darwin's ideas about the most important role of social instincts in progress of mankind. Competition and selection play secondary role in socio-cultural progress of human society.

  15. A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm

    Directory of Open Access Journals (Sweden)

    Jiao Shi

    2014-01-01

    Full Text Available How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems.

  16. Mathematical Optimization Algorithm for Minimizing the Cost Function of GHG Emission in AS/RS Using Positive Selection Based Clonal Selection Principle

    Science.gov (United States)

    Mahalakshmi; Murugesan, R.

    2018-04-01

    This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.

  17. Automatic motor task selection via a bandit algorithm for a brain-controlled button

    Science.gov (United States)

    Fruitet, Joan; Carpentier, Alexandra; Munos, Rémi; Clerc, Maureen

    2013-02-01

    Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a naïve selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing ‘BCI illiteracy’.

  18. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using

  19. Reactive power and voltage control based on general quantum genetic algorithms

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Østergaard, Jacob

    2009-01-01

    This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....

  20. Why Macro Practice Matters

    Science.gov (United States)

    Reisch, Michael

    2016-01-01

    This article asserts that macro practice is increasingly important in today's rapidly changing and complex practice environment. It briefly explores the history of macro practice in U.S. social work, summarizes its major contributions to the profession and to U.S. society, and provides some suggestions for how social work programs can expand…

  1. A review of channel selection algorithms for EEG signal processing

    Science.gov (United States)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  2. Spreadsheet macros for coloring sequence alignments.

    Science.gov (United States)

    Haygood, M G

    1993-12-01

    This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.

  3. The hormetic zone: an ecological and evolutionary perspective based upon habitat characteristics and fitness selection.

    Science.gov (United States)

    Parsons, P A

    2001-12-01

    Fitness varies nonlinearly with environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero--a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormonesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this reductionist model, more specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated.

  4. Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms

    Science.gov (United States)

    Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre

    2010-06-01

    The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples

  5. Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization

    International Nuclear Information System (INIS)

    Xu Ruirui; Chen Tianlun; Gao Chengfeng

    2006-01-01

    Nonlinear time series prediction is studied by using an improved least squares support vector machine (LS-SVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.

  6. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  7. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  8. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    Directory of Open Access Journals (Sweden)

    E. Osaba

    2014-01-01

    Full Text Available Since their first formulation, genetic algorithms (GAs have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.

  9. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    Science.gov (United States)

    Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731

  10. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... ... of events: 'Entities that were capable of independent replication ... There have been many major evolutionary events that this definition of .... selection at level x to exclusive selection at x – will probably require a multiplicity ...

  11. A supplier selection using a hybrid grey based hierarchical clustering and artificial bee colony

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2014-06-01

    Full Text Available Selection of one or a combination of the most suitable potential providers and outsourcing problem is the most important strategies in logistics and supply chain management. In this paper, selection of an optimal combination of suppliers in inventory and supply chain management are studied and analyzed via multiple attribute decision making approach, data mining and evolutionary optimization algorithms. For supplier selection in supply chain, hierarchical clustering according to the studied indexes first clusters suppliers. Then, according to its cluster, each supplier is evaluated through Grey Relational Analysis. Then the combination of suppliers’ Pareto optimal rank and costs are obtained using Artificial Bee Colony meta-heuristic algorithm. A case study is conducted for a better description of a new algorithm to select a multiple source of suppliers.

  12. Joint Macro and Femto Field Performance and Interference Measurements

    DEFF Research Database (Denmark)

    Jørgensen, Niels T.K.; Isotalo, Tero; Pedersen, Klaus

    2012-01-01

    In this paper macro performance in a co-channel macro and femto setup is studied. Measurements are performed in a live Universal Mobile Telecommunication System (UMTS) network. It is concluded that femto interference does not affect macro downlink (DL) performance as long as the macro Received Si...... radius smaller than 5 meter – with realistic power settings. This makes co-channel femto deployment less promising in dense macro environments with good macro RSCP coverage.......In this paper macro performance in a co-channel macro and femto setup is studied. Measurements are performed in a live Universal Mobile Telecommunication System (UMTS) network. It is concluded that femto interference does not affect macro downlink (DL) performance as long as the macro Received...... Signal Code Power (RSCP) is stronger than femto RSCP. We also conclude that a macro escape carrier is a robust DL interference management solution. In uplink (UL) direction it is shown that a single femto UE close to macro cell potentially can cause a noise rise of 6 dB in the surrounding macro cell...

  13. 进化作曲研究%Research on evolutionary music composer system

    Institute of Scientific and Technical Information of China (English)

    汪镭; 郑晓妹; 申林

    2014-01-01

    Algorithmic composition is the most attractive research area in computer music and genetic algorithm-based evolution-ary music composer system has become a hot spot in the algorithmic composition.This paper gives a structure of evolutionary mu-sic composer system,analyzes different goals of music composer systems,and then discusses two types of evolutionary music com-poser system from the aspect of fitness function design.Finally,several instances of evolutionary music composer system are ana-lyzed.%算法作曲是计算机音乐中最具吸引力的研究领域,而基于遗传算法的进化作曲系统已成为算法作曲中的热点。给出了进化作曲系统的结构,分析了系统不同的作曲目标,从适应度函数的设计讨论了两类作曲系统。最后给出了几个作曲系统实例分析。

  14. Studying neighborhood crime across different macro spatial scales: The case of robbery in 4 cities.

    Science.gov (United States)

    Hipp, John R; Wo, James C; Kim, Young-An

    2017-11-01

    Whereas there is a burgeoning literature focusing on the spatial distribution of crime events across neighborhoods or micro-geographic units in a specific city, the present study expands this line of research by selecting four cities that vary across two macro-spatial dimensions: population in the micro-environment, and population in the broader macro-environment. We assess the relationship between measures constructed at different spatial scales and robbery rates in blocks in four cities: 1) San Francisco (high in micro- and macro-environment population); 2) Honolulu (high in micro- but low in macro-environment population); 3) Los Angeles (low in micro- but high in macro-environment population); 4) Sacramento (low in micro- and macro-environment population). Whereas the socio-demographic characteristics of residents further than ½ mile away do not impact robbery rates, the number of people up to 2.5 miles away are related to robbery rates, especially in the two cities with smaller micro-environment population, implying a larger spatial scale than is often considered. The results show that coefficient estimates differ somewhat more between cities differing in micro-environment population compared to those differing based on macro-environment population. It is therefore necessary to consider the broader macro-environment even when focusing on the level of crime across neighborhoods or micro-geographic units within an area. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  16. Clinimetrics and clinical psychometrics: macro- and micro-analysis.

    Science.gov (United States)

    Tomba, Elena; Bech, Per

    2012-01-01

    Clinimetrics was introduced three decades ago to specify the domain of clinical markers in clinical medicine (indexes or rating scales). In this perspective, clinical validity is the platform for selecting the various indexes or rating scales (macro-analysis). Psychometric validation of these indexes or rating scales is the measuring aspect (micro-analysis). Clinical judgment analysis by experienced psychiatrists is included in the macro-analysis and the item response theory models are especially preferred in the micro-analysis when using the total score as a sufficient statistic. Clinical assessment tools covering severity of illness scales, prognostic measures, issues of co-morbidity, longitudinal assessments, recovery, stressors, lifestyle, psychological well-being, and illness behavior have been identified. The constructive dialogue in clinimetrics between clinical judgment and psychometric validation procedures is outlined for generating developments of clinical practice in psychiatry. Copyright © 2012 S. Karger AG, Basel.

  17. Identification of (R)-selective ω-aminotransferases by exploring evolutionary sequence space.

    Science.gov (United States)

    Kim, Eun-Mi; Park, Joon Ho; Kim, Byung-Gee; Seo, Joo-Hyun

    2018-03-01

    Several (R)-selective ω-aminotransferases (R-ωATs) have been reported. The existence of additional R-ωATs having different sequence characteristics from previous ones is highly expected. In addition, it is generally accepted that R-ωATs are variants of aminotransferase group III. Based on these backgrounds, sequences in RefSeq database were scored using family profiles of branched-chain amino acid aminotransferase (BCAT) and d-alanine aminotransferase (DAT) to predict and identify putative R-ωATs. Sequences with two profile analysis scores were plotted on two-dimensional score space. Candidates with relatively similar scores in both BCAT and DAT profiles (i.e., profile analysis score using BCAT profile was similar to profile analysis score using DAT profile) were selected. Experimental results for selected candidates showed that putative R-ωATs from Saccharopolyspora erythraea (R-ωAT_Sery), Bacillus cellulosilyticus (R-ωAT_Bcel), and Bacillus thuringiensis (R-ωAT_Bthu) had R-ωAT activity. Additional experiments revealed that R-ωAT_Sery also possessed DAT activity while R-ωAT_Bcel and R-ωAT_Bthu had BCAT activity. Selecting putative R-ωATs from regions with similar profile analysis scores identified potential R-ωATs. Therefore, R-ωATs could be efficiently identified by using simple family profile analysis and exploring evolutionary sequence space. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Combinatorial Optimization in Project Selection Using Genetic Algorithm

    Science.gov (United States)

    Dewi, Sari; Sawaluddin

    2018-01-01

    This paper discusses the problem of project selection in the presence of two objective functions that maximize profit and minimize cost and the existence of some limitations is limited resources availability and time available so that there is need allocation of resources in each project. These resources are human resources, machine resources, raw material resources. This is treated as a consideration to not exceed the budget that has been determined. So that can be formulated mathematics for objective function (multi-objective) with boundaries that fulfilled. To assist the project selection process, a multi-objective combinatorial optimization approach is used to obtain an optimal solution for the selection of the right project. It then described a multi-objective method of genetic algorithm as one method of multi-objective combinatorial optimization approach to simplify the project selection process in a large scope.

  19. Applied evolutionary economics and economic geography

    NARCIS (Netherlands)

    Frenken, K.

    2007-01-01

    Applied Evolutionary Economics and Economic Geography" aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and

  20. Natural selection and algorithmic design of mRNA.

    Science.gov (United States)

    Cohen, Barry; Skiena, Steven

    2003-01-01

    Messenger RNA (mRNA) sequences serve as templates for proteins according to the triplet code, in which each of the 4(3) = 64 different codons (sequences of three consecutive nucleotide bases) in RNA either terminate transcription or map to one of the 20 different amino acids (or residues) which build up proteins. Because there are more codons than residues, there is inherent redundancy in the coding. Certain residues (e.g., tryptophan) have only a single corresponding codon, while other residues (e.g., arginine) have as many as six corresponding codons. This freedom implies that the number of possible RNA sequences coding for a given protein grows exponentially in the length of the protein. Thus nature has wide latitude to select among mRNA sequences which are informationally equivalent, but structurally and energetically divergent. In this paper, we explore how nature takes advantage of this freedom and how to algorithmically design structures more energetically favorable than have been built through natural selection. In particular: (1) Natural Selection--we perform the first large-scale computational experiment comparing the stability of mRNA sequences from a variety of organisms to random synonymous sequences which respect the codon preferences of the organism. This experiment was conducted on over 27,000 sequences from 34 microbial species with 36 genomic structures. We provide evidence that in all genomic structures highly stable sequences are disproportionately abundant, and in 19 of 36 cases highly unstable sequences are disproportionately abundant. This suggests that the stability of mRNA sequences is subject to natural selection. (2) Artificial Selection--motivated by these biological results, we examine the algorithmic problem of designing the most stable and unstable mRNA sequences which code for a target protein. We give a polynomial-time dynamic programming solution to the most stable sequence problem (MSSP), which is asymptotically no more complex

  1. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  2. 3rd International Conference on Harmony Search Algorithm

    CERN Document Server

    2017-01-01

    This book presents state-of-the-art technical contributions based around one of the most successful evolutionary optimization algorithms published to date: Harmony Search. Contributions span from novel technical derivations of this algorithm to applications in the broad fields of civil engineering, energy, transportation & mobility and health, among many others and focus not only on its cross-domain applicability, but also on its core evolutionary operators, including elements inspired from other meta-heuristics. The global scientific community is witnessing an upsurge in groundbreaking, new advances in all areas of computational intelligence, with a particular flurry of research focusing on evolutionary computation and bio-inspired optimization. Observed processes in nature and sociology have provided the basis for innovative algorithmic developments aimed at leveraging the inherent capability to adapt characterized by various animals, including ants, fireflies, wolves and humans. However, it is the beha...

  3. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hala Alshamlan

    2015-01-01

    Full Text Available An artificial bee colony (ABC is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR, and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO. The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  4. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    Science.gov (United States)

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  5. Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa.

    Science.gov (United States)

    Hodgins, Kathryn A; Bock, Dan G; Hahn, Min A; Heredia, Sylvia M; Turner, Kathryn G; Rieseberg, Loren H

    2015-05-01

    Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species. © 2014 John Wiley & Sons Ltd.

  6. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    OpenAIRE

    Timothée Bonnet; Peter Wandeler; Glauco Camenisch; Erik Postma

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions: Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called ‘stasis paradox’ highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic enviro...

  7. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    Science.gov (United States)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  8. Video error concealment using block matching and frequency selective extrapolation algorithms

    Science.gov (United States)

    P. K., Rajani; Khaparde, Arti

    2017-06-01

    Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.

  9. Evolutionary optimization of production materials workflow processes

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment...... of the BPMN language, we employ an evolutionary algorithm where stochastic model checking is used as a fitness function to determine the degree of improvement of candidate processes derived from the original process through mutation and cross-over operations. We illustrate this technique using a case study...

  10. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2015-01-01

    Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.

  11. Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints

    International Nuclear Information System (INIS)

    Coelho, Leandro dos Santos; Mariani, Viviana Cocco

    2007-01-01

    Global optimization based on evolutionary algorithms can be used as the important component for many engineering optimization problems. Evolutionary algorithms have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems in the power systems area. Differential evolution (DE) is a simple and efficient evolutionary algorithm for function optimization over continuous spaces. It has reportedly outperformed search heuristics when tested over both benchmark and real world problems. This paper proposes improved DE algorithms for solving economic load dispatch problems that take into account nonlinear generator features such as ramp rate limits and prohibited operating zones in the power system operation. The DE algorithms and its variants are validated for two test systems consisting of 6 and 15 thermal units. Various DE approaches outperforms other state of the art algorithms reported in the literature in solving load dispatch problems with generator constraints

  12. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    International Nuclear Information System (INIS)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    2008-01-01

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions. The experiments show that this method can improve the recognition rate and the time of feature extraction

  13. A controllable sensor management algorithm capable of learning

    Science.gov (United States)

    Osadciw, Lisa A.; Veeramacheneni, Kalyan K.

    2005-03-01

    Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.

  14. Recursive macro generator for the TAS-86 language. First part: the macro generator language. Second part: system internal logics

    International Nuclear Information System (INIS)

    Zraick, Samir

    1970-01-01

    A macro-generator is a translator which is able to interpret and translate a programme written in a macro-language. After a first part presenting the main notions and proposing a brief description of the TAS-86 language, the second part of this research thesis reports the development of the macro-generator language, and notably presents the additional functionalities provided by the macro generator. The development is illustrated by logical flowcharts and programming listings

  15. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  16. Evolutionary Dynamics of Collective Behavior Selection and Drift: Flocking, Collapse, and Oscillation.

    Science.gov (United States)

    Tan, Shaolin; Wang, Yaonan; Chen, Yao; Wang, Zhen

    2016-06-14

    Behavioral choice is ubiquitous across a wide range of interactive decision-making processes and a myriad of scientific disciplines. With regard to this issue, one entitative problem is actually to understand how collective social behaviors form and evolve among populations when they face a variety of conflict alternatives. In this paper, a selection-drift dynamic model is formulated to characterize the behavior imitation and exploration processes in social populations. Based on the proposed framework, several typical behavior evolution patterns, including behavioral flocking, collapse, and oscillation, are reproduced with different kinds of behavior networks. Interestingly, for the selection-drift dynamics on homogeneous symmetric behavior networks, we unveil the phase transition from behavioral flocking to collapse and derive the bifurcation diagram of the evolutionary stable behaviors in social behavior evolution. While via analyzing the survival conditions of the best behavior on heterogeneous symmetric behavior networks, we propose a selection-drift mechanism to guarantee consensus at the optimal behavior. Moreover, when the selection-drift dynamics on asymmetric behavior networks is simulated, it is shown that breaking the symmetry in behavior networks can induce various behavioral oscillations. These obtained results may shed new insights into understanding, detecting, and further controlling how social norm and cultural trends evolve.

  17. Principles of macro-methodic of junior female gymnasts’ training to sport exercises for gymnastic all round competitions at specialized basic stage

    Directory of Open Access Journals (Sweden)

    V.A. Potop

    2015-08-01

    Full Text Available Purpose: working out of principles of junior female gymnasts’ macro-methodic training to sport exercises for all round competitions at stage of specialized basic training. Material: in the research 19 girl-gymnasts from reserve of combined team of Romania participated. Measurements and assessment of technical fitness at training sessions and in conditions of competitions were conducted at 120 training sessions (10 sessions a week. Results: we worked out and realized experimentally and in training sessions principles of macro-methodic training to gymnastic exercises. Macro-methodic of training is presented in structure of long-term programs of training for all round competitions. Macro-methodic is presented as combination of elements of motor, technical, didactic and technological structures of sport exercises (in the present article it was described on material of vaults of Yurchenko’s type. Conclusions: macro-methodic permits to state optimal algorithm of mastering of theoretical and practical materials at training sessions. Besides, it permits to demonstrate steady growth of sport results at competitions. With it individual-age features of junior female gymnasts, tendencies and specialists’ requirements are considered.

  18. featsel: A framework for benchmarking of feature selection algorithms and cost functions

    OpenAIRE

    Marcelo S. Reis; Gustavo Estrela; Carlos Eduardo Ferreira; Junior Barrera

    2017-01-01

    In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and co...

  19. Cash Management Policies By Evolutionary Models: A Comparison Using The MILLER-ORR Model

    Directory of Open Access Journals (Sweden)

    Marcelo Botelho da Costa Moraes

    2013-10-01

    Full Text Available This work aims to apply genetic algorithms (GA and particle swarm optimization (PSO to managing cash balance, comparing performance results between computational models and the Miller-Orr model. Thus, the paper proposes the application of computational evolutionary models to minimize the total cost of cash balance maintenance, obtaining the parameters for a cash management policy, using assumptions presented in the literature, considering the cost of maintenance and opportunity for cost of cash. For such, we developed computational experiments from cash flows simulated to implement the algorithms. For a control purpose, an algorithm has been developed that uses the Miller-Orr model defining the lower bound parameter, which is not obtained by the original model. The results indicate that evolutionary algorithms present better results than the Miller-Orr model, with prevalence for PSO algorithm in results.

  20. The admissible portfolio selection problem with transaction costs and an improved PSO algorithm

    Science.gov (United States)

    Chen, Wei; Zhang, Wei-Guo

    2010-05-01

    In this paper, we discuss the portfolio selection problem with transaction costs under the assumption that there exist admissible errors on expected returns and risks of assets. We propose a new admissible efficient portfolio selection model and design an improved particle swarm optimization (PSO) algorithm because traditional optimization algorithms fail to work efficiently for our proposed problem. Finally, we offer a numerical example to illustrate the proposed effective approaches and compare the admissible portfolio efficient frontiers under different constraints.

  1. In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language

    Science.gov (United States)

    Szathmáry, Eörs; Szathmáry, Zoltán; Ittzés, Péter; Orbaán, Geroő; Zachár, István; Huszár, Ferenc; Fedor, Anna; Varga, Máté; Számadó, Szabolcs

    It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding--just as brains do.

  2. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945

  3. Confronting Decision Cliffs: Diagnostic Assessment of Multi-Objective Evolutionary Algorithms' Performance for Addressing Uncertain Environmental Thresholds

    Science.gov (United States)

    Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.

    2014-12-01

    As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a

  4. A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm.

    Science.gov (United States)

    Zhang, Aizhu; Sun, Genyun; Ren, Jinchang; Li, Xiaodong; Wang, Zhenjie; Jia, Xiuping

    2018-01-01

    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named , which stores those superior agents after fitness sorting in each iteration. Since the global property of remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA.

  5. Core Business Selection Based on Ant Colony Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2014-01-01

    Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.

  6. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  7. Face Alignment Using Boosting and Evolutionary Search

    NARCIS (Netherlands)

    Zhang, Hua; Liu, Duanduan; Poel, Mannes; Nijholt, Antinus; Zha, H.; Taniguchi, R.-I.; Maybank, S.

    2010-01-01

    In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the

  8. Parameter optimization of differential evolution algorithm for automatic playlist generation problem

    Science.gov (United States)

    Alamag, Kaye Melina Natividad B.; Addawe, Joel M.

    2017-11-01

    With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.

  9. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    Science.gov (United States)

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  10. The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    He Yan

    2016-01-01

    Full Text Available The particle swarm optimization (PSO is an optimization algorithm based on intelligent optimization. Parameters selection of PSO will play an important role in performance and efficiency of the algorithm. In this paper, the performance of PSO is analyzed when the control parameters vary, including particle number, accelerate constant, inertia weight and maximum limited velocity. And then PSO with dynamic parameters has been applied on the neural network training for gearbox fault diagnosis, the results with different parameters of PSO are compared and analyzed. At last some suggestions for parameters selection are proposed to improve the performance of PSO.

  11. Computation-aware algorithm selection approach for interlaced-to-progressive conversion

    Science.gov (United States)

    Park, Sang-Jun; Jeon, Gwanggil; Jeong, Jechang

    2010-05-01

    We discuss deinterlacing results in a computationally constrained and varied environment. The proposed computation-aware algorithm selection approach (CASA) for fast interlaced to progressive conversion algorithm consists of three methods: the line-averaging (LA) method for plain regions, the modified edge-based line-averaging (MELA) method for medium regions, and the proposed covariance-based adaptive deinterlacing (CAD) method for complex regions. The proposed CASA uses two criteria, mean-squared error (MSE) and CPU time, for assigning the method. We proposed a CAD method. The principle idea of CAD is based on the correspondence between the high and low-resolution covariances. We estimated the local covariance coefficients from an interlaced image using Wiener filtering theory and then used these optimal minimum MSE interpolation coefficients to obtain a deinterlaced image. The CAD method, though more robust than most known methods, was not found to be very fast compared to the others. To alleviate this issue, we proposed an adaptive selection approach using a fast deinterlacing algorithm rather than using only one CAD algorithm. The proposed hybrid approach of switching between the conventional schemes (LA and MELA) and our CAD was proposed to reduce the overall computational load. A reliable condition to be used for switching the schemes was presented after a wide set of initial training processes. The results of computer simulations showed that the proposed methods outperformed a number of methods presented in the literature.

  12. Self-Adaptive MOEA Feature Selection for Classification of Bankruptcy Prediction Data

    Science.gov (United States)

    Gaspar-Cunha, A.; Recio, G.; Costa, L.; Estébanez, C.

    2014-01-01

    Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier. PMID:24707201

  13. More efficient evolutionary strategies for model calibration with watershed model for demonstration

    Science.gov (United States)

    Baggett, J. S.; Skahill, B. E.

    2008-12-01

    Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of

  14. An Efficient Evolutionary Based Method For Image Segmentation

    OpenAIRE

    Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad

    2017-01-01

    The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...

  15. Aggregate meta-models for evolutionary multiobjective and many-objective optimization

    Czech Academy of Sciences Publication Activity Database

    Pilát, Martin; Neruda, Roman

    Roč. 116, 20 September (2013), s. 392-402 ISSN 0925-2312 R&D Projects: GA ČR GAP202/11/1368 Institutional support: RVO:67985807 Keywords : evolutionary algorithms * multiobjective optimization * many-objective optimization * surrogate models * meta-models * memetic algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 2.005, year: 2013

  16. The Complexity of Constructing Evolutionary Trees Using Experiments

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm

    2001-01-01

    We present tight upper and lower bounds for the problem of constructing evolutionary trees in the experiment model. We describe an algorithm which constructs an evolutionary tree of n species in time O(nd logd n) using at most n⌈d/2⌉(log2⌈d/2⌉-1 n+O(1)) experiments for d > 2, and at most n(log n......+O(1)) experiments for d = 2, where d is the degree of the tree. This improves the previous best upper bound by a factor θ(log d). For d = 2 the previously best algorithm with running time O(n log n) had a bound of 4n log n on the number of experiments. By an explicit adversary argument, we show an Ω......(nd logd n) lower bound, matching our upper bounds and improving the previous best lower bound by a factor θ(logd n). Central to our algorithm is the construction and maintenance of separator trees of small height, which may be of independent interest....

  17. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2015-01-01

    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  18. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2017-01-01

    Full Text Available Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.

  19. A New Hybrid Algorithm to Solve Winner Determination Problem in Multiunit Double Internet Auction

    Directory of Open Access Journals (Sweden)

    Mourad Ykhlef

    2015-01-01

    Full Text Available Solving winner determination problem in multiunit double auction has become an important E-business task. The main issue in double auction is to improve the reward in order to match the ideal prices and quantity and make the best profit for sellers and buyers according to their bids and predefined quantities. There are many algorithms introduced for solving winner in multiunit double auction. Conventional algorithms can find the optimal solution but they take a long time, particularly when they are applied to large dataset. Nowadays, some evolutionary algorithms, such as particle swarm optimization and genetic algorithm, were proposed and have been applied. In order to improve the speed of evolutionary algorithms convergence, we will propose a new kind of hybrid evolutionary algorithm that combines genetic algorithm (GA with particle swarm optimization (PSO to solve winner determination problem in multiunit double auction; we will refer to this algorithm as AUC-GAPSO.

  20. A meta-heuristic method for solving scheduling problem: crow search algorithm

    Science.gov (United States)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.