WorldWideScience

Sample records for macquarie ridge earthquake

  1. Evanescent wave coupling in a geophysical system: Airborne acoustic signals from the Mw 8.1 Macquarie Ridge earthquake

    NARCIS (Netherlands)

    Evers, L.G.; Brown, D.; Heaney, K.D.; Assink, J.D.; Smets, P.S.M.; Snellen, M.

    2014-01-01

    Atmospheric low-frequency sound, i.e., infrasound, from underwater events has not been considered thus far, due to the high impedance contrast of the water-air interface making it almost fully reflective. Here we report for the first time on atmospheric infrasound from a large underwater earthquake

  2. The M8.1 Intraplate, Strike-Slip Macquarie Earthquake of 23 December 2004

    Science.gov (United States)

    Murphy, K.; Abercrombie, R. E.; Antolik, M.; Yamada, T.

    2006-12-01

    The M8.1, strike-slip earthquake on 23 December 2004 was ~150 km from the Macquarie Ridge plate boundary. This large intraplate earthquake provides an opportunity to investigate both the source processes of oceanic strike-slip earthquakes, which are controversial and poorly known, and to constrain the tectonics of the complex region surrounding the Macquarie Ridge. We model teleseismic P and SH waves from 29 stations using a point source moment tensor inversion. Our preferred model has two subevents, both strike-slip with strike and dip within about 15 degrees of one another; the first is tightly constrained by the first motions. The sources overlap by 17 s and have a combined duration of ~50 s. The centroid depths are 30 -- 35 km. There is no evidence for directivity in the waveforms, so our result is consistent with bilateral rupture along a slightly curved or bent fault. The lack of directivity means that we cannot unambiguously identify the fault plane. We prefer the NNW-SSE plane as it aligns with the aftershocks and the fossil transform faults in the region. We are performing a slip inversion to constrain further the fault plane and slip distribution. The apparent stress of the earthquake is ~5 MPa, higher than continental strike-slip earthquakes, but similar to previous intraplate oceanic earthquakes, e.g. 1998 M8.1 Antarctica. The stress drop (based on the 200 km aftershock extent, and the depth of 35 km) is ~3 MPa, consistent with previous oceanic and also continental strike-slip earthquakes. The tectonics of the region around the Macquarie Ridge are poorly known. Cande and Stock (2004) proposed that the SE part of the Australian plate is actually a separate plate (the Macquarie plate) separated by a diffuse plate boundary. Their model predicts NNE-SSW extension in the region of the 2004 M8.1 earthquake, which is at the northerly extent of a group of previous, smaller, earthquakes. They all have T axis orientations that fit this plate model. The age of the

  3. Seismic subduction of the Nazca Ridge as shown by the 1996-97 Peru earthquakes

    Science.gov (United States)

    Spence, W.; Mendoza, C.; Engdahl, E.R.; Choy, G.L.; Norabuena, E.

    1999-01-01

    By rupturing more than half of the shallow subduction interface of the Nazca Ridge, the great November 12, 1996 Peruvian earthquake contradicts the hypothesis that oceanic ridges subduct aseismically. The mainshock's rupture has a length of about 200 km and has an average slip of about 1.4 m. Its moment is 1.5 x 1028 dyne-cm and the corresponding M(w) is 8.0. The mainshock registered three major episodes of moment release as shown by a finite fault inversion of teleseismically recorded broadband body waves. About 55% of the mainshock's total moment release occurred south of the Nazca Ridge, and the remaining moment release occurred at the southern half of the subduction interface of the Nazca Ridge. The rupture south of the Nazca Ridge was elongated parallel to the ridge axis and extended from a shallow depth to about 65 km depth. Because the axis of the Nazca Ridge is at a high angle to the plate convergence direction, the subducting Nazca Ridge has a large southwards component of motion, 5 cm/yr parallel to the coast. The 900-1200 m relief of the southwards sweeping Nazca Ridge is interpreted to act as a 'rigid indenter,' causing the greatest coupling south of the ridge's leading edge and leading to the large observed slip. The mainshock and aftershock hypocenters were relocated using a new procedure that simultaneously inverts local and teleseismic data. Most aftershocks were within the outline of the Nazca Ridge. A three-month delayed aftershock cluster' occurred at the northern part of the subducting Nazca Ridge. Aftershocks were notably lacking at the zone of greatest moment release, to the south of the Nazca Ridge. However, a lone foreshock at the southern end of this zone, some 140 km downstrike of the mainshock's epicenter, implies that conditions existed for rupture into that zone. The 1996 earthquake ruptured much of the inferred source zone of the M(w) 7.9-8.2 earthquake of 1942, although the latter was a slightly larger earthquake. The rupture zone of

  4. Abandoned Beach Ridges in the Mejillones Peninsula, Northern Chile: Implications for Paleoseismology of Great Subduction Earthquakes.

    Science.gov (United States)

    del Río, I. A.; Gonzalez, G.; Antinao, J. L.; McDonald, E.; González-Carrasco, J. F.; Shrivastava, M. N.

    2015-12-01

    The Mejillones Peninsula, in northern Chile, shows a well-preserved set of beach ridges parallel to the present coast. These beach ridges can be observed up to 20 km inland and at 200 m above sea level. Previous dating performed in fossils extracted from the oldest beach ridges yielded ages of 400 ka (Victor et al., 2011). However, numerical ages for younger beach ridges have not been determined, therefore a complete time record is not available. InSar data show that the Mejillones Peninsula was uplifted several centimeters during the last two subduction earthquakes (Antofagasta Mw 8.1, 1995 earthquake and the Mw 7.7, 2007 Tocopilla earthquake) occurred in the area (Loveless et al., 2010). A permanent GPS station deployed by CALTECH (http://web.gps.caltech.edu/~jeff/andes/) in this peninsula has measured a coseismic uplift during the 2007 Tocopilla earthquake. This data suggest that the beach ridges were abandoned as a consequence of coseismic uplift during great subduction earthquakes and therefore they represent the long-term record of past earthquakes. In order to prove this hypothesis we excavated five trenches across the beach ridges. Our idea is to look for stratigraphic evidence of the abandonment mechanism and to collect samples for dating the beach ridges using the method of optically stimulated luminescence (OSL). The ages will be used to estimate long-term uplift rate and temporal variation of this rate. By confronting short-term uplift rate provided by GPS data with long-term rate we hope to know what it is the amount of the coseismic slip that remain in the geological record.

  5. Relocation of earthquakes at southwestern Indian Ocean Ridge and its tectonic significance

    Science.gov (United States)

    Luo, W.; Zhao, M.; Haridhi, H.; Lee, C. S.; Qiu, X.; Zhang, J.

    2015-12-01

    The southwest Indian Ridge (SWIR) is a typical ultra-slow spreading ridge (Dick et al., 2003) and further plate boundary where the earthquakes often occurred. Due to the lack of the seismic stations in SWIR, positioning of earthquakes and micro-earthquakes is not accurate. The Ocean Bottom Seismometers (OBS) seismic experiment was carried out for the first time in the SWIR 49 ° 39 'E from Jan. to March, 2010 (Zhao et al., 2013). These deployed OBS also recorded the earthquakes' waveforms during the experiment. Two earthquakes occurred respectively in Feb. 7 and Feb. 9, 2010 with the same magnitude of 4.4 mb. These two earthquakes were relocated using the software HYPOSAT based on the spectrum analysis and band-pass (3-5 Hz) filtering and picking up the travel-times of Pn and Sn. Results of hypocentral determinations show that there location error is decreased significantly by joined OBS's recording data. This study do not only provide the experiences for the next step deploying long-term wide-band OBSs, but also deepen understanding of the structure of SWIR and clarify the nature of plate tectonic motivation. This research was granted by the Natural Science Foundation of China (41176053, 91028002, 91428204). Keywords: southwest Indian Ridge (SWIR), relocation of earthquakes, Ocean Bottom Seismometers (OBS), HYPOSAT References:[1] Dick, H. J. B., Lin J., Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412. [2] Zhao M. H., et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39' E). Geochemistry Geophysics Geosystems, 14(10): 4544-4563.

  6. Slip on Ridge Transform Faults: Insights From Earthquakes and Laboratory Experiments

    Science.gov (United States)

    2005-06-01

    Don Forsyth and Maria Zuber, who have provided many insightful comments over the past few months. Additionally, John Collins deserves thanks for his...17.0 033 13.1 15.6 2480 816 290 South West Indian Ridge 41 Bouvet -54.2 1.9 200 13.8 5.8 6.5 6.6 11.3 0.24 15.4 18.3 3017 730 210 42 Islas Orcadas...1992). A slow earthquake in the Santa Felzer, K. R., T. W. Becket, R. E. Abercrombie, G. Ekstrfm and J. IL Rite Maria basin, California, Bul. Sedsmo

  7. Building the Sustainable Library at Macquarie University

    Science.gov (United States)

    Brodie, Maxine

    2012-01-01

    This article explores a number of current issues and challenges in sustainability, both of and in academic libraries of the future, using as a case study the new library opened at Macquarie University, Sydney in 2011. Issues covered include sustainable design and operation of library buildings, sustainability in relation to library collections,…

  8. Ongoing deformation of Antarctica following recent Great Earthquakes

    Science.gov (United States)

    King, Matt; Santamaría-Gómez, Alvaro

    2016-04-01

    The secular motion of Antarctica is thought to be almost everywhere governed by horizontal rigid plate rotation plus three-dimensional deformations due to past and present changes in ice-ocean loading, known as glacial isostatic adjustment (GIA). We use geodetic data to investigate deformation following the 1998 magnitude ~8.1 Antarctic intra-plate Earthquake, and show sustained three-dimensional deformation along East Antarctica's coastline, 600 km from the rupture location. Using a model of viscoelastic deformation we are able to match observed northward velocity changes, and either east or height, but not all three directions simultaneously, apparently partly due to lateral variations in mantle rheology. Our modeling predicts much of Antarctica may still be deforming, with further deformation possible from the 2004 Macquarie Ridge Earthquake. This previously unconsidered mode of Antarctic deformation affects geodetic estimates of plate motion and GIA; its viscous nature raises the prospect of further present-day deformation due to earlier Great Earthquakes.

  9. Hydrothermal contributions to global biogeochemical cycles: Insights from the Macquarie Island ophiolite

    Science.gov (United States)

    Coggon, Rosalind M.; Teagle, Damon A. H.; Harris, Michelle; Davidson, Garry J.; Alt, Jeffrey C.; Brewer, Timothy S.

    2016-11-01

    Hydrothermal circulation is a fundamental process in the formation and aging of the ocean crust, with the resultant chemical exchange between the crust and oceans comprising a key component of global biogeochemical cycles. Sections of hydrothermally altered ocean crust provide time-integrated records of this chemical exchange. Unfortunately, our knowledge of the nature and extent of hydrothermal exchange is limited by the absence of complete oceanic crustal sections from either submarine exposures or drill core. Sub-Antarctic Macquarie Island comprises 10 Ma ocean crust formed at a slow spreading ridge, and is the only sub-aerial exposure of a complete section of ocean crust in the ocean basin in which it formed. Hydrothermally altered rocks from Macquarie Island therefore provide a unique opportunity to evaluate the chemical changes due to fluid-rock exchange through a complete section of ocean crust. Here we exploit the immobile behavior of some elements during hydrothermal alteration to determine the precursor compositions to altered Macquarie whole rock samples, and evaluate the changes in bulk rock chemistry due to fluid-rock interaction throughout the Macquarie crust. The extent to which elements are enriched or depleted in each sample depends upon the secondary mineral assemblage developed, and hence the modal abundances of the primary minerals in the rocks and the alteration conditions, such as temperature, fluid composition, and water:rock ratios. Consequently the chemical changes vary with depth, most notably within the lava-dike transition zone where enrichments in K, S, Rb, Ba, and Zn are observed. Our results indicate that hydrothermal alteration of the Macquarie crust resulted in a net flux of Si, Ti, Al, and Ca to the oceans, whereas the crust was a net sink for H2O, Mg, Na, K, and S. Our results also demonstrate the importance of including the contribution of elemental uptake by veins for some elements (e.g., Si, Fe, Mg, S). Extrapolation of our

  10. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic

  11. Partnerships in Medical Education: An Exploration of Library Service Models for Postgraduate Medicine at Macquarie University

    Science.gov (United States)

    Simons, Mary

    2008-01-01

    Macquarie University's new medical school, The Australian School of Advanced Medicine (ASAM), is developing a postgraduate program that incorporates a partnership with Macquarie University Library. The curriculum encompasses contemporary models of competency-based assessment, teamwork and lifelong learning that are integrated with research and…

  12. Earthquake

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正A serious earthquake happened in Wenchuan, Sichuan. Over 60,000 people died in the earhtquake, millins of people lost their homes. After the earthquake, people showed their love in different ways. Some gave food, medicine and everything necessary, some gave money,

  13. The Student Experience of PACE at Macquarie University: Understanding Motivations for Learning

    Science.gov (United States)

    McLachlan, Kath; Rawlings-Sanaei, Felicity; Mason, Colina; Haski-Levanthal, Debbie; Nabeel, Hussein

    2017-01-01

    Professional and Community Engagement (PACE) at Macquarie University offers undergraduate students experiential learning opportunities with local, regional and international partners. Through PACE, students work on mutually beneficial projects that both meet the partner's organizational goals and enable students to strengthen graduate capabilities…

  14. Transformational Learning and Community Development: Early Reflections on Professional and Community Engagement at Macquarie University

    Science.gov (United States)

    Rawlings-Sanaei, Felicity; Sachs, Judyth

    2014-01-01

    Professional and Community Engagement (PACE) at Macquarie University offers undergraduate students experiential learning opportunities with local, regional, and international partners. In PACE projects, students work toward meeting the partner's organizational goals while they develop their capabilities, learn through the process of engagement,…

  15. The taxonomy and ecology of a new monocelid flatworm from Macquarie Island (Platyhelminthes, Turbellaria)

    NARCIS (Netherlands)

    Ball, Ian R.; Hay, David A.

    1977-01-01

    Macquarie Island (54°37'S 158°54'E) has been investigated for the occurrence of freshwater macroturbellarians. Twenty sites were examined but only one species, here ascribed to the genus Minona sensu lato of the Monocelididae, was found and it is described as Minona amnica sp. nov. Its closest

  16. Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper

    Science.gov (United States)

    Thomas, Rachael F.; Kingsford, Richard T.; Lu, Yi; Cox, Stephen J.; Sims, Neil C.; Hunter, Simon J.

    2015-05-01

    Flood dependent aquatic ecosystems worldwide are in rapid decline with competing demands for water. In Australia, this is particularly evident in the floodplain wetlands of semi-arid regions (e.g. the Macquarie Marshes), which rely on highly variable flooding from river flows. Environmental flows mitigate the impacts of river regulation, inundating floodplains, thereby rehabilitating degraded habitats. Mapping flooding patterns is critical for environmental flow management but challenging in large heterogeneous floodplains with variable patterns of flooding and complex vegetation mosaics. We mapped inundation in the Macquarie Marshes, using Landsat 5 TM and Landsat 7 ETM+ images (1989-2010). We classified three inundation classes: water, mixed pixels (water, vegetation, soil) and vegetation (emergent macrophytes obscuring inundation), merged to map inundated areas from not-inundated areas (dry land). We used the Normalised Difference Water Index (NDWIB2/B5), masked by the sum of bands 4, 5, and 7 (sum457), to detect water and mixed pixels. Vegetation was classified using an unsupervised classification of a composite image comprising two dates representing vegetation senescence and green growth, transformed into two contrasting vegetation indices, NDVI and NDIB7/B4. We assessed accuracy using geo-referenced oblique aerial photography, coincident with Landsat imagery for a small and large flood, producing respective overall accuracies of inundated area of 93% and 95%. Producer's and user's accuracies were also high (94-99%). Confusion among inundation classes existed but classes were spectrally distinct from one another and from dry land. Inundation class areas varied with flood size, demonstrating the variability. Inundation extent was highly variable (683-206,611 ha). Floods up to 50,000 ha were confined to the north and south wetland regions. Connectivity to the east region only occurred when flooding was greater than 51,000 ha. Understanding the spatiotemporal

  17. Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): Implications for mantle source, melting process and plumbing system

    Science.gov (United States)

    Husen, Anika; Kamenetsky, Vadim S.; Everard, John L.; Kamenetsky, Maya B.

    2016-07-01

    Compositional diversity of basalts forming the oceanic floor is attributed to a variety of factors such as mantle heterogeneities, melting conditions, mixing of individual melt batches, as well as fractionation and assimilation processes during magma ascent and emplacement. In this study the compositional range and origin of mid-ocean ridge basalts (MORB) is approached by petrological, mineralogical and geochemical studies of the Miocene Macquarie Island ophiolite, an uplifted part of the Macquarie Ridge at the boundary between the Australian and Pacific plates. In this study, earlier results on the enriched to ultra-enriched (La/Sm 1.4-7.9), isotopically homogeneous basaltic glasses are complemented by the compositions of olivine-phyric rocks, principal phenocrystic minerals and Cr-spinel hosted melt inclusions. Studied olivine, clinopyroxene and Cr-spinel phenocrysts are among the most primitive known for MORB (85-91 mol% forsterite in olivine, 81-91 Mg# in clinopyroxene, and 66-77 Mg# and 34-60 Cr# in spinel) and represent primary and near-primary compositions of their parental melts. Geochemical characteristics of the liquids parental to clinopyroxene (La/Sm 0.8-6.3) and Cr-spinel (La/Sm 0.4-5) partly overlap with those of the basaltic glasses, but also strongly advocate the role of depleted to ultra-depleted primary melts in the origin of the Macquarie Island porphyritic rocks. The trace element composition of olivine phenocrysts and the systematics of rare-earth elements in glasses, melt inclusions, and clinopyroxene provide evidence for a peridotitic composition of the source mantle. Our data supports the mechanism of fractional "dynamic" melting of a single mantle peridotite producing individual partial melt batches with continuously changing compositions from ultra-enriched towards ultra-depleted. The incipient enriched melt batches, represented by basaltic glasses in this study, may erupt without significant modification, whereas consecutively derived

  18. Eliciting the Implicit Knowledge and Perceptions of On-Ground Conservation Managers of the Macquarie Marshes

    Directory of Open Access Journals (Sweden)

    Ioan Fazey

    2006-06-01

    Full Text Available Knowledge that has been developed through extensive experience of receiving and responding to ecological feedback is particularly valuable for informing and guiding environmental management. This paper captures the implicit understanding of seven experienced on-ground conservation managers about the conservation issues affecting the Ramsar listed Macquarie Marshes in New South Wales, Australia. Multiple interviews, a workshop, and meetings were used to elicit the manager's knowledge. The managers suggest that the Macquarie Marshes are seriously threatened by a lack of water, and immediate steps need to be taken to achieve more effective water delivery. Their knowledge and perceptions of the wider societal impediments to achieving more effective water delivery have also led the managers to suggest that there may be system feedbacks that are reinforcing the tendency for water agencies to favor the short-term interests of the irrigation industry. Although the managers clearly have certain personal interests that influence their understanding and perceptions, much of their knowledge also appears to have been heavily influenced by their ecological understanding of the wetland's dynamics. This paper highlights that although all stakeholders clearly need to be involved in making decisions about conservation and how resources should be used, such decisions should not be confused with the need for consulting people with the appropriate ecological expertise to help determine the degree to which an ecological system is threatened, the likely ecological causes of the threats, and actions that may be needed to restore and maintain a functional ecosystem.

  19. Ground fracturing at the southern end of Summit Ridge caused by October 17, 1989 Loma Prieta, California, earthquake sequence (maps of Summit Ridge Shear Zones, en echelon tension cracks, complex and compound fractures, and small faults that formed coactively with the earthquake sequence)

    Energy Technology Data Exchange (ETDEWEB)

    Martosudarmo, S.Y. [BPP Technologi, Jakarta (Indonesia); Johnson, A.M. [Purdue Univ., West Lafayette, IN (United States). Harry Fielding Reid Earthquake Research Lab.; Fleming, R.W. [Geological Survey, Denver, CO (United States)

    1997-12-31

    The Loma Prieta earthquake of 17 October 1989 was the first of three large earthquakes that occurred in California in less than 5 years. The main shock of the Loma Prieta earthquake was deep-seated, the rupture zones of the main shock did not reach the surface, and the earthquake produced enigmatic surface ruptures along the frontal faults of the Coast Range and in the epicentral area that were explained in several quite different ways. The Landers earthquake of 28 June 1992 was near surface and produced more than 80 km of spectacular surface rupture of many different kinematic expressions. Detailed study of fractures at Landers has provided a basis for re-evaluating earlier work on fractures produced by the Loma Prieta earthquake. This paper is a description of some of the fractures produced by the Loma Prieta earthquake and a discussion of their causes. Detailed mapping (scale of 1:250) in an area on either side of Summit Road and between Morrell Cutoff Road in the northwest and the intersection of Summit Road and San Jose-Soquel Road in the southeast has provided documentation of fracture orientations and differential displacements required to decipher the ground deformation in that area during the Loma Prieta earthquake.

  20. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island

    Science.gov (United States)

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-01

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island’s GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica. PMID:28085087

  1. Growth of a tectonic ridge

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, R.W.; Messerich, J.A. [Geological Survey, Denver, CO (United States); Johnson, A.M. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences

    1997-12-31

    The 28 June 1992 Landers, California, earthquake of M 7.6 created an impressive record of surface rupture and ground deformation. Fractures extend over a length of more than 80 km including zones of right-lateral shift, steps in the fault zones, fault intersections and vertical changes. Among the vertical changes was the growth of a tectonic ridge described here. In this paper the authors describe the Emerson fault zone and the Tortoise Hill ridge including the relations between the fault zone and the ridge. They present data on the horizontal deformation at several scales associated with activity within the ridge and belt of shear zones and show the differential vertical uplifts. And, they conclude with a discussion of potential models for the observed deformation.

  2. An assessment of the effectiveness of lead pollution reduction strategies in North Lake Macquarie, NSW, Australia.

    Science.gov (United States)

    Morrison, Anthony L

    2003-02-15

    The North Lake Macquarie area of NSW, Australia, principally the suburbs of Boolaroo, Argenton and Speers Point, has been significantly polluted by lead emissions emanating from the Pasminco Metals Smelter (Cockle Creek). A lead accessibility reduction program has been carried out in North Lake Macquarie since 1991. The primary measure of success for the program is reduced blood lead levels, particularly in children. From 1991 to 2000 average child blood lead levels have decreased from 11 to 7.5 microg/dl. However, the lead accessibility reduction programs had failed to eliminate child blood lead levels that exceed the National Health and Medical Research Council maximum goal of 10 microg/dl, and a number of children still retain blood lead levels >25 microg/dl. Many factors have contributed to this failure, notably the continued presence of airborne high lead pollutants in ambient air, dusts and soil in residential areas. Significant reductions in lead mass emissions from 92 tonnes per annum (p.a.) in 1988 to approximately 15 tonnes p.a. to September 2000 have been achieved by the smelter operator. However, the reductions have been insufficient to ensure that ambient air quality consent conditions of 1 microg/m(3) are achieved in the residential areas surrounding the smelter. Sampling by the smelter operator also provides confirmation of continued deposition of high lead dusts in residential areas. The continued dust deposition places a high burden on the local community which must maintain obsessive levels of household cleanliness in order to minimise lead uptake from dusts deposited within the home and community. Evidence exists of institutional failure that may also have limited the success of the program. These failures include the use of inappropriate standards and non-approved techniques in remediation, lack of coordination between various arms of government and an unwillingness to enforce consent conditions. The smelter operator has also failed to

  3. Permeable bio-reactive barriers to address petroleum hydrocarbon contamination at subantarctic Macquarie Island.

    Science.gov (United States)

    Freidman, Benjamin L; Terry, Deborah; Wilkins, Dan; Spedding, Tim; Gras, Sally L; Snape, Ian; Stevens, Geoffrey W; Mumford, Kathryn A

    2017-05-01

    A reliance on diesel generated power and a history of imperfect fuel management have created a legacy of petroleum hydrocarbon contamination at subantarctic Macquarie Island. Increasing environmental awareness and advances in contaminant characterisation and remediation technology have fostered an impetus to reduce the environmental risk associated with legacy sites. A funnel and gate permeable bio-reactive barrier (PRB) was installed in 2014 to address the migration of Special Antarctic Blend diesel from a spill that occurred in 2002, as well as older spills and residual contaminants in the soil at the Main Power House. The PRB gate comprised of granular activated carbon and natural clinoptilolite zeolite. Petroleum hydrocarbons migrating in the soil water were successfully captured on the reactive materials, with concentrations at the outflow of the barrier recorded as being below reporting limits. The nutrient and iron concentrations delivered to the barrier demonstrated high temporal variability with significant iron precipitation observed across the bed. The surface of the granular activated carbon was largely free from cell attachment while natural zeolite demonstrated patchy biofilm formation after 15 months following PRB installation. This study illustrates the importance of informed material selection at field scale to ensure that adsorption and biodegradation processes are utilised to manage the environmental risk associated with petroleum hydrocarbon spills. This study reports the first installation of a permeable bio-reactive barrier in the subantarctic.

  4. Modelling the impacts of strategic tree plantings on salt loads and flows in the Macquarie river catchment, NSW, Australia.

    Science.gov (United States)

    Herron, Natasha; Davis, Richard; Dawes, Warrick; Evans, Ray

    2003-05-01

    In Australia, problems of dryland and stream salinity have recently become the focus of a National Action Plan. In many river catchments, preliminary stream salt load and salinity targets have been set to define maximum permissible export levels in 2015. Afforestation has been proposed as a strategy for meeting these targets, although several studies suggest that widespread commercial tree plantations are likely to deliver net dis-benefits. However, the impacts on stream salt loads of more localised tree plantings in high salt yielding areas have not been quantified. In this paper we use a simple empirical model to predict the effects of various strategic and non-strategic tree planting scenarios on flows and salt loads in the mid-Macquarie catchment, New South Wales. A simple salt routing model is then used to estimate the effect of these changes on salt loads at the end-of-valley monitoring site for the Macquarie catchment. Results suggest that widespread land management interventions will be required to meet the preliminary salt load targets for this catchment. On their own, small-scale, strategic tree planting in high salt export areas of the mid-Macquarie area will not have a significant impact on salt loads at the end-of-valley monitoring site. While widespread tree plantings may reduce salt loads in the longer term, they are likely to cause streamflow losses in the shorter term. Thus, stream salinities are expected to rise initially, due to the different response times of groundwater and surface water systems to land use change.

  5. Macquarie Surgical Innovation Identification Tool (MSIIT): a study protocol for a usability and pilot test.

    Science.gov (United States)

    Blakely, Brette; Selwood, Amanda; Rogers, Wendy A; Clay-Williams, Robyn

    2016-11-18

    Medicine relies on innovation to continually improve. However, innovation is potentially risky, and not all innovations are successful. Therefore, it is important to identify innovations prospectively and provide support, to make innovation as safe and effective as possible. The Macquarie Surgical Innovation Identification Tool (MSIIT) is a simple checklist designed as a practical tool for hospitals to identify planned surgical innovations. This project aims to test the usability and pilot the use of the MSIIT in a surgical setting. The project will run in two phases at two Australian hospitals, one public and one private. Phase I will involve interviews, focus groups and a survey of hospital administrators and surgical teams to assess the usability and system requirements for the use of the MSIIT. Current practice regarding surgical innovation within participating hospitals will be mapped, and the best implementation strategy for MSIIT completion will be established. Phase II will involve trialling the MSIIT for each surgery within the trial period by various surgical personnel. Follow-up interviews, focus groups and a survey will be conducted with trial participants to collect feedback on their experience of using the MSIIT during the trial period. Comparative data on rates of surgical innovation during the trial period will also be gathered from existing hospital systems and compared to the rates identified by the MSIIT. Ethical approval has been obtained. The results of this study will be presented to interested health services and other stakeholders, presented at conferences and published in a peer-reviewed MEDLINE-indexed journal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Strike-slip earthquakes can also be detected in the ionosphere

    Science.gov (United States)

    Astafyeva, Elvira; Rolland, Lucie M.; Sladen, Anthony

    2014-11-01

    It is generally assumed that co-seismic ionospheric disturbances are generated by large vertical static displacements of the ground during an earthquake. Consequently, it is expected that co-seismic ionospheric disturbances are only observable after earthquakes with a significant dip-slip component. Therefore, earthquakes dominated by strike-slip motion, i.e. with very little vertical co-seismic component, are not expected to generate ionospheric perturbations. In this work, we use total electron content (TEC) measurements from ground-based GNSS-receivers to study ionospheric response to six recent largest strike-slip earthquakes: the Mw7.8 Kunlun earthquake of 14 November 2001, the Mw8.1 Macquarie earthquake of 23 December 2004, the Sumatra earthquake doublet, Mw8.6 and Mw8.2, of 11 April 2012, the Mw7.7 Balochistan earthquake of 24 September 2013 and the Mw 7.7 Scotia Sea earthquake of 17 November 2013. We show that large strike-slip earthquakes generate large ionospheric perturbations of amplitude comparable with those induced by dip-slip earthquakes of equivalent magnitude. We consider that in the absence of significant vertical static co-seismic displacements of the ground, other seismological parameters (primarily the magnitude of co-seismic horizontal displacements, seismic fault dimensions, seismic slip) may contribute in generation of large-amplitude ionospheric perturbations.

  7. New ridge parameters for ridge regression

    Directory of Open Access Journals (Sweden)

    A.V. Dorugade

    2014-04-01

    Full Text Available Hoerl and Kennard (1970a introduced the ridge regression estimator as an alternative to the ordinary least squares (OLS estimator in the presence of multicollinearity. In ridge regression, ridge parameter plays an important role in parameter estimation. In this article, a new method for estimating ridge parameters in both situations of ordinary ridge regression (ORR and generalized ridge regression (GRR is proposed. The simulation study evaluates the performance of the proposed estimator based on the mean squared error (MSE criterion and indicates that under certain conditions the proposed estimators perform well compared to OLS and other well-known estimators reviewed in this article.

  8. Seismic hazard evaluation for Department of Energy Oak Ridge Reservations, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, R.K.; Toro, G.F. [Risk Engineering, Inc., Golden, CO (United States); Hunt, R.J. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Center for Natural Phenomena Engineering

    1992-09-30

    This study presents the results of an investigation of seismic hazard at the Department of Energy Oak Ridge Reservations (K-25 Site, Oak Ridge National Laboratories, and Oak Ridge Y-12 Plant), located in Oak Ridge, Tennessee. Oak Ridge is located in eastern Tennessee, in an area of moderate to high historical seismicity. Results from two separate seismic hazard analyses are presented. The EPRI/SOG analysis uses the input data and methodology developed by the Electric Power Research Institute, under the sponsorship of several electric utilities, for the evaluation of seismic hazard in the central and eastern United States. The LLNL analysis uses the input data and methodology developed by the Lawrence Livermore National Laboratory for the Nuclear Regulatory Commission. Both the EPRI/SOG and LLNL studies characterize earth-science uncertainty on the causes and characteristics of earthquakes in the central and eastern United States. This is accomplished by considering multiple hypotheses on the locations and parameters of seismic source zones and by considering multiple attenuation functions for the prediction of ground shaking given earthquake size and location. These hypotheses were generated by multiple expert teams and experts. Furthermore, each team and expert was asked to generate multiple hypotheses in order to characterize his own internal uncertainty. The seismic-hazard calculations are performed for all hypotheses. Combining the results from each hypothesis with the weight associated to that hypothesis, one obtains an overall representation of the seismic hazard at the Oak Ridge site and its uncertainty.

  9. Decline of the Macquarie Marshes ecosystem, Australia, since European arrival recorded by organic geochemical proxies in sediments

    Science.gov (United States)

    Yu, L.; Chivas, A. R.; Garcia, A.; Hu, J.

    2011-12-01

    The Macquarie Marshes are floodplain wetlands in semi-arid NSW, Australia, and a Ramsar site experiencing accelerated deterioration in the last 50 years due to anthropogenic activities. We investigated environmental changes occurring in the northern and southern marshes using organic geochemical proxies from short cores and surface samples as modern analogues. Some proxies of modern plants (ferns, charophyte, reeds, Eucalyptus) and biota (black swan guano) samples, which are abundant in the Macquarie Marshes, were also analysed for comparison. The proxies analysed include bulk organic carbon and nitrogen (TOC, TN, C/N ratio), carbon and nitrogen isotopes (δ13C, δ15N) and some organic biomarkers (focusing on n-alkanes, sterols and polycylic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs)). TOC values in surface samples range between 2 to 5% depending on the organic input. The TOC and TN curves exhibit similar trends along time, decreasing to only one tenth at the depth of 70 cm (~ 565-752 years old) than those at the surface. The bulk δ13C values of modern samples (less than 50 years old) vary from -23% to -26%, falling within the range of values found in black swan guano(-21.6%) and plants (-27.0 to -31.5%). The calculated C/N ratios range from 10 to 25, and together with δ13C values suggest that the organic matter is mainly derived from terrestrial C3 plants. The contribution of aquatic plants is shown by shifts to higher δ13C values and lower C/N values in the core sections below the 40 cm depth (older than 130 years). Changes in vegetation type are also reflected by n-alkane and sterol biomarkers. In one core from the northern marshes, the temporal variation of (n-C27+C29)/n-C31 ratio indicates that the dominance of grasses has gradually been replaced by higher plants about 130 years ago. Sediments from the floodplain and dry lagoons show a dominant peak in long-chain n-alkanes with strong odd-to-even preference, contributed by emergent

  10. Detection of a spotted fever group Rickettsia in the tick Ixodes tasmani collected from koalas in Port Macquarie, Australia.

    Science.gov (United States)

    Vilcins, Inger-Marie E; Old, Julie M; Deane, Elizabeth M

    2008-07-01

    Four species of Rickettsia are recognized as endemic to Australia. This study reports the detection of a new spotted fever group Rickettsia in the common marsupial tick Ixodes tasmani Neumann collected from koalas (Phascolarctos cinereus) in Port Macquarie, NSW, Australia. Based on the results of polymerase chain reaction (PCR) amplification of extracted tick DNA with primers targeting the citrate synthase gene (gltA) and the outer membrane proteins A and B (ompA. ompB), Rickettsiae were detected in 22 of 78 I. tasmani tick samples (28.2%). Sequence data obtained for the three genes displayed the closest degree of similarity to Rickettsia heilongjiangiensiss for gltA (99.4%; 331/333 bp), Rickettsia amblyommii for the ompA gene (94.8%; 417/440 bp), and both Rickettsia massiliae and Rickettsia rhipicephali for the ompB gene (97%; 770/803 bp). BLAST and phylogenetic analysis of partial sequences obtained for the three genes were found to have sufficient nucleotide variation from the current recognized Australian species to be considered a distinct spotted fever group Rickettsia.

  11. Nowcasting Earthquakes

    Science.gov (United States)

    Rundle, J. B.; Donnellan, A.; Grant Ludwig, L.; Turcotte, D. L.; Luginbuhl, M.; Gail, G.

    2016-12-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system, and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(nearthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(nearthquake cycle in the defined region at the current time.

  12. Earthquake Facts

    Science.gov (United States)

    Jump to Navigation Earthquake Facts The largest recorded earthquake in the United States was a magnitude 9.2 that struck Prince William Sound, ... we know, there is no such thing as "earthquake weather" . Statistically, there is an equal distribution of ...

  13. Nowcasting earthquakes

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G.

    2016-11-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(n < n(t)) for the current count n(t) for the small earthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(n < n(t)). EPS is therefore the current level of hazard and assigns a number between 0% and 100% to every region so defined, thus providing a unique measure. Physically, the EPS corresponds to an estimate of the level of progress through the earthquake cycle in the defined region at the current time.

  14. Assessing climate change impacts on wetlands in a flow regulated catchment: A case study in the Macquarie Marshes, Australia.

    Science.gov (United States)

    Fu, Baihua; Pollino, Carmel A; Cuddy, Susan M; Andrews, Felix

    2015-07-01

    Globally wetlands are increasingly under threat due to changes in water regimes as a result of river regulation and climate change. We developed the Exploring CLimAte Impacts on Management (EXCLAIM) decision support system (DSS), which simulates flow-driven habitat condition for 16 vegetation species, 13 waterbird species and 4 fish groups in the Macquarie catchment, Australia. The EXCLAIM DSS estimates impacts to habitat condition, considering scenarios of climate change and water management. The model framework underlying the DSS is a probabilistic Bayesian network, and this approach was chosen to explicitly represent uncertainties in climate change scenarios and predicted ecological outcomes. The results suggest that the scenario with no climate change and no water resource development (i.e. flow condition without dams, weirs or water license entitlements, often regarded as a surrogate for 'natural' flow) consistently has the most beneficial outcomes for vegetation, waterbird and native fish. The 2030 dry climate change scenario delivers the poorest ecological outcomes overall, whereas the 2030 wet climate change scenario has beneficial outcomes for waterbird breeding, but delivers poor outcomes for river red gum and black box woodlands, and fish that prefer river channels as habitats. A formal evaluation of the waterbird breeding model showed that higher numbers of observed nest counts are typically associated with higher modelled average breeding habitat conditions. The EXCLAIM DSS provides a generic framework to link hydrology and ecological habitats for a large number of species, based on best available knowledge of their flood requirements. It is a starting point towards developing an integrated tool for assessing climate change impacts on wetland ecosystems.

  15. Ridge and Furrow Fields

    DEFF Research Database (Denmark)

    Møller, Per Grau

    2016-01-01

    Ridge and furrow is a specific way of ploughing which makes fields of systematic ridges and furrows like a rubbing washboard. They are part of an overall openfield system, but the focus in this paper is on the functionality of the fields. There are many indications that agro-technological reasons...

  16. Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences; Fleming, R.W. [Geological Survey, Denver, CO (United States); Cruikshank, K.M. [Portland State Univ., OR (United States). Dept. of Geology; Martosudarmo, S.Y. [BPP Technologi, Jakarta (Indonesia)

    1997-12-31

    The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.

  17. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  18. Patterns and processes of fluvial discontinuity and sediment residence times on the lower Macquarie River, Murray-Darling Basin, Australia

    Science.gov (United States)

    Larkin, Zacchary; Ralph, Timothy; Hesse, Paul

    2014-05-01

    The supply, transport and deposition of fine-grained sediment are important factors determining the morphology of lowland rivers that experience channel breakdown and have wetlands on their lower reaches. Sediment supply and residence time determine whether reaches accumulate sediment (wetland areas) or erode sediment (channelised areas). This research investigated how processes of sedimentation and erosion drive channel breakdown and reformation in the Macquarie Marshes, a large anastomosing wetland system in the Murray-Darling Basin, Australia. Channel breakdown is attributed to a dominance of in-stream sedimentation that leads to a point where single-thread river channels cannot be maintained and so avulsion and floodout processes create smaller distributary channels and wetlands. Avulsions may reconnect channels, changing the sediment supply regime in those particular channels. Channel reformation occurs on the trunk stream where the floodplain gradient steepens enough to allow convergence of small tributaries, locally increasing stream power (and erosive energy in channels). As each river reach reforms following channel breakdown, the channel is smaller, shallower and straighter than the previous reach. One reach in this system recently (in the 1970s) became connected with a parallel channel through avulsion and has morphological characteristics that indicate a significant change in flow and sediment supply. In a pilot study using uranium-series disequilibrium methods and OSL dating, a sediment residence time of 58 +/- 2 ka was determined for sediment in the base of the active channel and a sediment residence time of 153 +/- 5 ka was determined for sediment buried in an adjacent meander that was cut off from the main channel 1,000 years ago. The apparent dramatic decrease in sediment residence time to this active channel poses an interesting question about the role of relatively new channels in transporting and depositing sediment more rapidly than the

  19. Divergent Ridge Features on the Juan de Fuca and Gorda Ridges

    Science.gov (United States)

    Eaton, M. E.; Sautter, L.; Steele, M.

    2014-12-01

    Multibeam data collected using a Kongsberg EM122 sonar system on the NOAA ship R/V Marcus G. Langseth led by chief scientist Douglas Toomey (University of Oregon) in 2009 and with a Simrad EM302 sonar system on two NOAA ship Okeanos Explorer cruises led by chief scientists James Gardner (University of New Hampshire) and Catalina Martinez (University of Rhode Island) in 2009 show the morphology of the Juan de Fuca and Gorda Ridges, as well as the Blanco and Mendocino Fracture Zones. These ridges and fracture zones comprise the divergent plate boundary of the eastern edge of the Pacific Plate and the western edges of the Juan de Fuca and Gorda Plates. Both plates are being subducted beneath the western edge of the North American Plate. CARIS HIPS 8.1 software was used to process the multibeam data and create bathymetric images. The ridge axes, located off the coast of Washington and Oregon (USA) adjacent to the Cascadia Basin, indicate obvious signs of spreading, due to the series of faults and rocky ridges aligned parallel to the plate boundaries. Fault and ridge orientations are used to compare the direction of seafloor spreading, and indicate that both the Juan de Fuca Plate and Gorda Plate are spreading in a southeastern direction. Younger ridges from the Gorda Ridge system mapped in the study run parallel to the boundary, however older ridges do not show the same orientation, indicating a change in spreading direction. The presence of hydrothermal vents along the Juan de Fuca Ridge is also evidence of the active boundary, as the vent chimneys are composed of minerals and metals precipitated from the hot water heated by magma from beneath the spreading seafloor. In this study, the data are used to compare and contrast earthquake seismicity and ridge morphologies at a depth range of approximately 762 to 2134 meters. The diverging Pacific, Juan de Fuca, and Gorda Plates along with the San Andreas Fault have potential to increase seismic and volcanic activity around

  20. Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array

    Science.gov (United States)

    Goslin, Jean; Lourenço, Nuno; Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Haxel, Joe; Luis, Joaquim

    2005-08-01

    The seismicity of the northern Mid-Atlantic Ridge was recorded by two hydrophone networks moored in the sound fixing and ranging (SOFAR) channel, on the flanks of the Mid-Atlantic Ridge, north and south of the Azores. During its period of operation (05/2002-09/2003), the northern `SIRENA' network, deployed between latitudes 40° 20'N and 50° 30'N, recorded acoustic signals generated by 809 earthquakes on the hotspot-influenced Reykjanes Ridge. This activity was distributed between five spatio-temporal event clusters, each initiated by a moderate-to-large magnitude (4.0-5.6 M) earthquake. The rate of earthquake occurrence within the initial portion of the largest sequence (which began on 2002 October 6) is described adequately by a modified Omori law aftershock model. Although this is consistent with triggering by tectonic processes, none of the Reykjanes Ridge sequences are dominated by a single large-magnitude earthquake, and they appear to be of relatively short duration (0.35-4.5 d) when compared to previously described mid-ocean ridge aftershock sequences. The occurrence of several near-equal magnitude events distributed throughout each sequence is inconsistent with the simple relaxation of mainshock-induced stresses and may reflect the involvement of magmatic or fluid processes along this deep (>2000 m) section of the Reykjanes Ridge.

  1. Ridge jump process in Iceland

    OpenAIRE

    Garcia, Sebastian

    2010-01-01

    Eastward ridge jumps bring the volcanic zones of Iceland back to the centre of the hotspot in response to the absolute westward drift of the Mid-Atlantic Ridge. Mantellic pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact conditions of the last ridge jump in Northern Iceland remain controversial. The diachronous evolution of these two parts of Iceland may be related to the asymmetric plume-ridge interaction when comparing Northern and Southern I...

  2. Earthquake Hazards Program: Earthquake Scenarios

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A scenario represents one realization of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture geometry and estimating...

  3. Fingermark ridge drift.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Roberts, Katherine A; Feixat, Carme Barrot; Hogrebe, Gregory G; Badia, Manel Gené

    2016-01-01

    Distortions of the fingermark topography are usually considered when comparing latent and exemplar fingerprints. These alterations are characterized as caused by an extrinsic action, which affects entire areas of the deposition and alters the overall flow of a series of contiguous ridges. Here we introduce a novel visual phenomenon that does not follow these principles, named fingermark ridge drift. An experiment was designed that included variables such as type of secretion (eccrine and sebaceous), substrate (glass and polystyrene), and degrees of exposure to natural light (darkness, shade, and direct light) indoors. Fingermarks were sequentially visualized with titanium dioxide powder, photographed and analyzed. The comparison between fresh and aged depositions revealed that under certain environmental conditions an individual ridge could randomly change its original position regardless of its unaltered adjacent ridges. The causes of the drift phenomenon are not well understood. We believe it is exclusively associated with intrinsic natural aging processes of latent fingermarks. This discovery will help explain the detection of certain dissimilarities at the minutiae/ridge level; determine more accurate "hits"; identify potentially erroneous corresponding points; and rethink identification protocols, especially the criteria of "no single minutiae discrepancy" for a positive identification.

  4. Control of seafloor roughness on earthquake rupture behavior

    Science.gov (United States)

    Bilek, Susan L.; Schwartz, Susan Y.; Deshon, Heather R.

    2003-05-01

    Earthquake rupture complexity is described for three recent large underthrusting earthquakes along the Costa Rican subduction zone, the 1983 Osa, 1990 Nicoya Gulf, and 1999 Quepos events. These earthquakes occurred in regions characterized by distinctly different morphologic features on the subducting plate. The 1990 and 1999 events occurred along linear projections of subducting seamount chains and had fairly simple earthquake rupture histories. Both events are interpreted as failure of the basal contact of closely spaced isolated seamounts acting as asperities. In contrast, the 1983 event occurred along the subducting Cocos Ridge and had a complex rupture history. Comparison of rupture characteristics of these large underthrusting earthquakes with size and location of subducting features provides evidence that seamounts can be subducted to seismogenic depths and that variations in seafloor bathymetry of the subducting plate strongly influence the earthquake rupture process.

  5. Earthquake engineering research: 1982

    Science.gov (United States)

    The Committee on Earthquake Engineering Research addressed two questions: What progress has research produced in earthquake engineering and which elements of the problem should future earthquake engineering pursue. It examined and reported in separate chapters of the report: Applications of Past Research, Assessment of Earthquake Hazard, Earthquake Ground Motion, Soil Mechanics and Earth Structures, Analytical and Experimental Structural Dynamics, Earthquake Design of Structures, Seismic Interaction of Structures and Fluids, Social and Economic Aspects, Earthquake Engineering Education, Research in Japan.

  6. Initiation of Ridges and Transform Faults

    Science.gov (United States)

    Nyst, M.; Thompson, G. A.; Parsons, T.

    2004-12-01

    No clear consensus has emerged to explain initiation of the strikingly regular pattern of ocean ridges and transform faults. The question is important on the continents also, because a less regular pattern of step-overs on faults such as the San Andreas influences the sources of earthquakes. We explore the question by finite element modeling and a study of observational data on ridges and transforms. We focus on the simplest case, where ridges and transforms seem to self-organize at new plate boundaries as soon as new oceanic (magmatic) crust forms. The South Atlantic supplies a clear example. Continental South America and Africa separated along an irregular break, whose general shape is still preserved in the Mid-Atlantic Ridge. In detail, however, the sea floor magnetic anomalies and satellite gravity show that traces of the ridges and transforms extend to the base of the continental slope, i.e. they formed quickly in the new oceanic crust. The Gulf of California provides another clear example and is notable because of its northward transition into the continental San Andreas fault system. In continental crust, dike segments connected by transform faults provide the clearest analogues of oceanic ridges and transforms. Remarkably, the ridge-transform pattern has been simulated by pulling the crust on molten wax [Oldenburg and Brune, JGR, 80, 1975] and also observed in the crust of a molten lava lake [Duffield, JGR, 77, 1972]. In neither of these models, however, do the spatial and temporal scales permit investigation of the dikes whose repeated emplacement and inflation builds layer 3 of the ocean crust. It is well established that, under a buoyant head of magma, dikes tend to fracture and intrude the crust in planes perpendicular to the least horizontal stress, and they relieve the stress difference as they inflate [e.g. Parsons and Thompson, Science, 253, 1991]. Dikes are commonly used as stress-direction indicators analogous to artificial hydraulic fractures

  7. SRTM Anaglyph: Wheeler Ridge, California

    Science.gov (United States)

    2000-01-01

    Wheeler Ridge and vicinity, California, is a site of major tectonic activity, both historically and over recent geologic time. The epicenter of the 7.5 magnitude Kern County earthquake occurred here on July 21,1952, and numerous geologic and topographic features indicate rapid geologic processes. The ridge itself (upper-right center) is a geologic fold that is growing out of the southern San Joaquin Valley. A prominent 'wind gap,' now used for passage of the California aquaduct (with the aid of a pumping station), is evidence that the ridge grew faster than tranversing streams could erode down. Nearby abrupt and/or landslid mountain fronts similarly indicate a vigorous tectonic setting here, just north of the San Andreas fault. The Interstate 5 freeway can be seen crossing agricultural fields on the right and entering the very rugged and steep Grapevine Canyon toward the bottom.This anaglyph was generated by first draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission (SRTM), then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data

  8. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  9. Connecting slow earthquakes to huge earthquakes

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  10. Is Earthquake Triggering Driven by Small Earthquakes?

    CERN Document Server

    Helmstetter, A

    2002-01-01

    Using a catalog of seismicity for Southern California, we measure how the number of triggered earthquakes increases with the earthquake magnitude. The trade-off between this scaling and the distribution of earthquake magnitudes controls the relative role of small compared to large earthquakes. We show that seismicity triggering is driven by the smallest earthquakes, which trigger fewer aftershocks than larger earthquakes, but which are much more numerous. We propose that the non-trivial scaling of the number of aftershocks emerges from the fractal spatial distribution of aftershocks.

  11. Tectonic setting of the Wooded Island earthquake swarm, eastern Washington

    Science.gov (United States)

    Blakely, Richard J.; Sherrod, Brian L.; Weaver, Craig S.; Rohay, Alan C.; Wells, Ray E.

    2012-01-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  12. Predictable earthquakes?

    Science.gov (United States)

    Martini, D.

    2002-12-01

    acceleration) and global number of earthquake for this period from published literature which give us a great picture about the dynamical geophysical phenomena. Methodology: The computing of linear correlation coefficients gives us a chance to quantitatively characterise the relation among the data series, if we suppose a linear dependence in the first step. The correlation coefficients among the Earth's rotational acceleration and Z-orbit acceleration (perpendicular to the ecliptic plane) and the global number of the earthquakes were compared. The results clearly demonstrate the common feature of both the Earth's rotation and Earth's Z-acceleration around the Sun and also between the Earth's rotational acceleration and the earthquake number. This fact might means a strong relation among these phenomena. The mentioned rather strong correlation (r = 0.75) and the 29 year period (Saturn's synodic period) was clearly shown in the counted cross correlation function, which gives the dynamical characteristic of correlation, of Earth's orbital- (Z-direction) and rotational acceleration. This basic period (29 year) was also obvious in the earthquake number data sets with clear common features in time. Conclusion: The Core, which involves the secular variation of the Earth's magnetic field, is the only sufficiently mobile part of the Earth with a sufficient mass to modify the rotation which probably effects on the global time distribution of the earthquakes. Therefore it might means that the secular variation of the earthquakes is inseparable from the changes in Earth's magnetic field, i.e. the interior process of the Earth's core belongs to the dynamical state of the solar system. Therefore if the described idea is real the global distribution of the earthquakes in time is predictable.

  13. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  14. Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera

    2016-07-01

    While nascent oceanic lithosphere at slow to fast spreading mid-ocean ridges (MOR) is relatively well studied, much less is known about the lithospheric structure and properties at ultraslow MORs. Here we present microearthquake data from a 1 year ocean bottom seismometer deployment at the amagmatic, oblique supersegment of the ultraslow spreading Southwest Indian Ridge. A refraction seismic experiment was performed to constrain upper lithosphere P-velocities and results were used to construct a 1D velocity model for earthquake location. Earthquake foci were located individually and subsequently relocated relative to each other to sharpen the image of seismically active structures. Frequent earthquake activity extends to 31 km beneath the seafloor, indicating an exceptionally thick brittle lithosphere and an undulating brittle-ductile transition that implies significant variations in the along-axis thermal structure of the lithosphere. We observe a strong relation between petrology, microseismicity distribution, and topography along the ridge axis: Peridotite-dominated areas associate with deepest hypocenters, vast volumes of lithosphere that deforms aseismically as a consequence of alteration, and the deepest axial rift valley. Areas of basalt exposure correspond to shallower hypocenters, shallower and more rugged axial seafloor. Focal mechanisms deviate from pure extension and are spatially variable. Earthquakes form an undulating band of background seismicity and do not delineate discrete detachment faults as common on slow spreading ridges. Instead, the seismicity band sharply terminates to the south, immediately beneath the rift boundary. Considering the deep alteration, large steep boundary faults might be present but are entirely aseismic.

  15. Earthquake swarms in South America

    Science.gov (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.

    2011-10-01

    We searched for earthquake swarms in South America between 1973 and 2009 using the global Preliminary Determination of Epicenters (PDE) catalogue. Seismicity rates vary greatly over the South American continent, so we employ a manual search approach that aims to be insensitive to spatial and temporal scales or to the number of earthquakes in a potential swarm. We identify 29 possible swarms involving 5-180 earthquakes each (with total swarm moment magnitudes between 4.7 and 6.9) within a range of tectonic and volcanic locations. Some of the earthquake swarms on the subduction megathrust occur as foreshocks and delineate the limits of main shock rupture propagation for large earthquakes, including the 2010 Mw 8.8 Maule, Chile and 2007 Mw 8.1 Pisco, Peru earthquakes. Also, subduction megathrust swarms commonly occur at the location of subduction of aseismic ridges, including areas of long-standing seismic gaps in Peru and Ecuador. The magnitude-frequency relationship of swarms we observe appears to agree with previously determined magnitude-frequency scaling for swarms in Japan. We examine geodetic data covering five of the swarms to search for an aseismic component. Only two of these swarms (at Copiapó, Chile, in 2006 and near Ticsani Volcano, Peru, in 2005) have suitable satellite-based Interferometric Synthetic Aperture Radar (InSAR) observations. We invert the InSAR geodetic signal and find that the ground deformation associated with these swarms does not require a significant component of aseismic fault slip or magmatic intrusion. Three swarms in the vicinity of the volcanic arc in southern Peru appear to be triggered by the Mw= 8.5 2001 Peru earthquake, but predicted static Coulomb stress changes due to the main shock were very small at the swarm locations, suggesting that dynamic triggering processes may have had a role in their occurrence. Although we identified few swarms in volcanic regions, we suggest that particularly large volcanic swarms (those that

  16. Spitzer IRAC observations of newly-discovered planetary nebulae from the Macquarie-AAO-Strasbourg H-alpha Planetary Nebula Project

    CERN Document Server

    Cohen, Martin; Green, Anne J; Murphy, Tara; Miszalski, Brent; Frew, David J; Meade, Marilyn R; Babler, Brian; Indebetouw, Remy; Whitney, Barbara A; Watson, Christer; Churchwell, Edward B; Watson, Douglas F

    2007-01-01

    We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo- urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good isolation between these colors and those of many other types of astronomical object. The only substantive contamination of PNe in the color-color plane we illustrate is due to YSOs. However, this ambiguity is readily resolved by the unique optical characteristics of PNe and their environs. We also examine the relationships between optical and MIR morphologies from 3.6 to 8.0um and explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a valuable discriminant between thermal and nonthermal emission. MASH emphasizes late evolutionary stages of PNe compared with previous catalogs, enabling study of the changes in MIR and radio flux that attend the aging process. Spatially integrated M...

  17. Magma plumbing system and seismicity of an active mid-ocean ridge volcano

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-01

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  18. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    Science.gov (United States)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  19. Earth's rotation variations and earthquakes 2010–2011

    Directory of Open Access Journals (Sweden)

    L. Ostřihanský

    2012-01-01

    character of aftershocks 19 years earlier in difference only one day to 27 December 1985 earthquake, proving that not only sidereal 13.66 days variations but also that the 19 years Metons cycle is the period of the earthquakes occurrence. Histograms show the regular change of earthquake positions on branches of LOD graph and also the shape of histogram and number of earthquakes on LOD branches from the mid-ocean ridge can show which side of the ridge moves quicker.

  20. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    Science.gov (United States)

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  1. Hurricane Sandy and earthquakes

    OpenAIRE

    MAVASHEV BORIS; MAVASHEV IGOR

    2013-01-01

    Submit for consideration the connection between formation of a hurricane Sandy and earthquakes. As a rule, weather anomalies precede and accompany earthquakes. The hurricane Sandy emerged 2 days prior to strong earthquakes that occurred in the area. And the trajectory of the hurricane Sandy matched the epicenter of the earthquakes. Possibility of early prediction of natural disasters will minimize the moral and material damage.

  2. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    The rate of magma and crustal production at mid-ocean ridges is thought to decrease with decreasing spreading rate. At ultraslow spreading rates below 10-20 mm/y full rate, heat loss by conduction greatly reduces melt production with less melt produced at increasingly greater depths. Gakkel Ridge, the actively spreading mid-ocean ridge in the Arctic Ocean, opens at rates of 14 mm/y in the west decreasing to less than 6 mm/y at its eastern termination and demonstrates that magma production is not only a function of spreading rate. Whereas amagmatic spreading takes place at rates of about 12-10 mm/y, focussed melt production occurs at even lower spreading rates in long-lived discrete volcanic centres. One such centre is the 85°E volcanic complex at eastern Gakkel ridge where in 1999 a teleseismically recorded earthquake swarm consisting of more than 250 earthquakes over 9 months signalled the onset of an active spreading episode. The earthquake swarm is believed to be associated with volcanic activity although no concurrent lava effusion was found. We analysed the teleseismic earthquake swarm together with visual observation and microseismic data recorded at this site in 2001 and 2007 and noted the following characteristics which may be indicative for volcanic spreading events at the still poorly explored ultraslow spreading ridges: - unusual duration: The 1999 earthquake swarm lasted over 9 months rather than a few weeks as observed on faster spreading ridges. In addition, in 2001 seismoacoustic sounds which we interpret as gas discharge in Strombolian eruptions and a giant event plume maintained over more than one year indicate waxing and waning volcanic activity since 1999. - unusual strength: The earthquake swarm was detected at teleseismic distances of more than 1000 km and included 11 events with a magnitude >5. No other confirmed mid-ocean ridge eruption released a comparable seismic moment. Rather than focussing in a narrow area or showing pronounced

  3. Polygonal Ridge Networks on Mars

    Science.gov (United States)

    Kerber, Laura; Dickson, James; Grosfils, Eric; Head, James W.

    2016-10-01

    Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. While networks formed from mineralized fractures hint at hot, possibly life-sustaining circulating ground waters, networks formed by impact-driven clasting diking, magmatic dikes, gas escape, or lava flows do not have the same astrobiological implications. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes and geographic locations and may be a mixture of clastic dikes, brecciated dikes, and mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these features are concentrated, and can appear in places where they morphologies are absent. Similarly, some of the ridge networks are associated with hydrated mineral detections, but some occur in locations without detections. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller version of the Nili-like ridges, in this case formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data becomes available. Hellas Basin is host to a third type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fourth, previously undocumented, ridge network type

  4. Executive Order 12941 Implementation at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.J.; Kroon, R.J.; Shaffer, K.E.

    1998-08-01

    Congress enacted the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124, as amended) to reduce risks to life and property from future earthquakes in the US. To implement the provisions of the Act, the Interagency Committee on Seismic Safety in Construction (ICSSC) was chartered. Approximately thirty Federal agencies, including the Department of Energy (DOE), participate in the ICSSC. The ICSSC is chaired by the National Institute of Standards (NIST) which also provides the technical secretariat. EO 12941, Seismic Safety of Existing Federally Owned or Leased Buildings, were prepared and issued by the ICSSC to reduce the vulnerability to buildings owned or leased by agencies or departments for Federal use. This report documents the implementation of EO 12941 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. ORNL is managed and operated by Lockheed Martin Energy Research, Inc. (LMER) for the DOE-Oak Ridge Operations Office (DOE-ORO). The ORNL building inventory includes buildings that are physically located at ORNL, East Tennessee Technology Park (ETTP), and the Oak Ridge Y-12 Plant. This report addresses buildings physically located at the ORNL plant site. ORNL buildings located at ETTP and Y-12 plant sites will be included in the EO 12941 implementation reports for those sites. The scope of this effort included revising the building inventory for ORNL that was prepared prior to the development of the DOE management plan, evaluating owned buildings not exempt from the requirements of EO 12941, estimating the costs associated with the rehabilitation of vulnerable non-exempt buildings, and preparing this report in the TR-17 prescribed format (CNPE 1996). These activities were performed in accordance with the DOE management plan and as applicable, Phase I - Screening Guidelines To Determine The Structures Exempt From Executive Order 12941 (CNPE 1995).

  5. Tohoku earthquake: a surprise?

    CERN Document Server

    Kagan, Yan Y

    2011-01-01

    We consider three issues related to the 2011 Tohoku mega-earthquake: (1) how to evaluate the earthquake maximum size in subduction zones, (2) what is the repeat time for the largest earthquakes in Tohoku area, and (3) what are the possibilities of short-term forecasts during the 2011 sequence. There are two quantitative methods which can be applied to estimate the maximum earthquake size: a statistical analysis of the available earthquake record and the moment conservation principle. The latter technique studies how much of the tectonic deformation rate is released by earthquakes. For the subduction zones, the seismic or historical record is not sufficient to provide a reliable statistical measure of the maximum earthquake. The moment conservation principle yields consistent estimates of maximum earthquake size: for all the subduction zones the magnitude is of the order 9.0--9.7, and for major subduction zones the maximum earthquake size is statistically indistinguishable. Starting in 1999 we have carried out...

  6. Tectonic Setting of the Wooded Island Earthquake Swarm, Eastern Washington

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, R. J.; Sherrod, B. L.; Weaver, C. S.; Rohay, A. C.; Wells, R. E.

    2012-08-01

    Magnetic anomalies provide insights into the tectonic implications of a swarm of ~1500 shallow (~1 km deep) earthquakes that occurred in 2009 on the Hanford site, Washington. Epicenters were concentrated in a 2 km2 area near Wooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ~50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Finally, although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

  7. Ridge 2000 Data Management System

    Science.gov (United States)

    Goodwillie, A. M.; Carbotte, S. M.; Arko, R. A.; Haxby, W. F.; Ryan, W. B.; Chayes, D. N.; Lehnert, K. A.; Shank, T. M.

    2005-12-01

    Hosted at Lamont by the marine geoscience Data Management group, mgDMS, the NSF-funded Ridge 2000 electronic database, http://www.marine-geo.org/ridge2000/, is a key component of the Ridge 2000 multi-disciplinary program. The database covers each of the three Ridge 2000 Integrated Study Sites: Endeavour Segment, Lau Basin, and 8-11N Segment. It promotes the sharing of information to the broader community, facilitates integration of the suite of information collected at each study site, and enables comparisons between sites. The Ridge 2000 data system provides easy web access to a relational database that is built around a catalogue of cruise metadata. Any web browser can be used to perform a versatile text-based search which returns basic cruise and submersible dive information, sample and data inventories, navigation, and other relevant metadata such as shipboard personnel and links to NSF program awards. In addition, non-proprietary data files, images, and derived products which are hosted locally or in national repositories, as well as science and technical reports, can be freely downloaded. On the Ridge 2000 database page, our Data Link allows users to search the database using a broad range of parameters including data type, cruise ID, chief scientist, geographical location. The first Ridge 2000 field programs sailed in 2004 and, in addition to numerous data sets collected prior to the Ridge 2000 program, the database currently contains information on fifteen Ridge 2000-funded cruises and almost sixty Alvin dives. Track lines can be viewed using a recently- implemented Web Map Service button labelled Map View. The Ridge 2000 database is fully integrated with databases hosted by the mgDMS group for MARGINS and the Antarctic multibeam and seismic reflection data initiatives. Links are provided to partner databases including PetDB, SIOExplorer, and the ODP Janus system. Improved inter-operability with existing and new partner repositories continues to be

  8. Effects of Cocos Ridge Collision on the Western Caribbean: Is there a Panama Block?

    Science.gov (United States)

    Kobayashi, D.; La Femina, P. C.; Geirsson, H.; Chichaco, E.; Abrego M, A. A.; Fisher, D. M.; Camacho, E. I.

    2011-12-01

    It has been recognized that the subduction and collision of the Cocos Ridge, a 2 km high aseismic ridge standing on >20 km thick oceanic crust of the Cocos plate, drives upper plate deformation in southern Central America. Recent studies of Global Positioning System (GPS) derived horizontal velocities relative to the Caribbean Plate showed a radial pattern centered on the Cocos Ridge axis where Cocos-Caribbean convergence is orthogonal, and margin-parallel velocities to the northwest. Models of the full three-dimensional GPS velocity field and earthquake slip vectors demonstrate low mechanical coupling along the Middle America subduction zone in Nicaragua and El Salvador, and a broad zone of high coupling beneath the Osa Peninsula, where the Cocos Ridge intersects the margin. These results suggest that Cocos Ridge collision may be the main driver for trench-parallel motion of the fore arc to the northwest and for uplift and shortening of the outer fore arc in southern Central America, whereby thickened and hence buoyant Cocos Ridge crust acts as an indenter causing the tectonic escape of the fore arc. These studies, however, were not able to constrain well the pattern of surface deformation east-southeast of the ridge axis due to a lack of GPS stations, and Cocos Ridge collision may be responsible for the kinematics and deformation of the proposed Panama block. Recent reinforcement of the GPS network in southeastern Costa Rica and Panama has increased the spatial and temporal resolution of the network and made it possible to further investigate surface deformation of southern Central America and the Panama block. We present a new regional surface velocity field for Central America from geodetic GPS data collected at 11 recently-installed and 178 existing episodic, semi-continuous, and continuous GPS sites in Nicaragua, Costa Rica, and Panama. We investigate the effects of Cocos Ridge collision on the Panama block through kinematic block modeling. Published

  9. Mid-ocean ridges, InRidge and the future

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Mukhopadhyay, R.; Drolia, R.K.; Ray, Dwijesh

    , Canada, France, Germany, Iceland, Italy, Japan, Korea, Mexico, Norway, Portugal, Russia, Spain, UK and US pooled in their expertise. Some of the national ridge research programmes of various coun - tries ar e: Bridge (Britain, this programme is now...) to oversee the development and implementation of its various programmes. This committee consists of a cross - section of the global ridge researchers. A central office (presently in Japan) is invol - ved to plan activities, hold special conferences...

  10. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  11. Earthquake Damage - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake is the motion or trembling of the ground produced by sudden displacement of rock in the Earth's crust. Earthquakes result from crustal strain,...

  12. Earthquake Notification Service

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Earthquake Notification Service (ENS) is a free service that sends you automated notifications to your email or cell phone when earthquakes happen.

  13. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  14. Earthquakes in Southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in Southern California. This set of slides shows earthquake damage from the following events: Imperial Valley, 1979,...

  15. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration

    Science.gov (United States)

    Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen

    2011-01-01

    Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere

  16. Were the 1952 Kern County and 1933 Long Beach, California, Earthquakes Induced?

    Science.gov (United States)

    Hough, S. E.; Tsai, V. C.; Walker, R. L., II; Page, M. T.; Aminzadeh, F.

    2016-12-01

    Several recent studies have presented evidence that significant induced earthquakes occurred in a number of regions during the 20th century related to either production or early wastewater injection. We consider whether the Mw6.4 Long Beach and Mw7.3 1952 Kern County earthquakes might have been induced by production in the Huntington Beach and Wheeler Ridge oil fields, respectively. The Long Beach earthquake occurred within 9 months of the start of directional drilling that first exploited offshore tideland reserves at depths of ≈1200 m; the well location was within ≈3 km of the event epicenter. The Kern County earthquake occurred 111 days following the first exploitation of deep Eocene production horizons within the Wheeler Ridge field at depths reaching 3 km, within ≈1 km of the White Wolf fault (WWF); the epicenter of this earthquake is poorly constrained but the preferred epicenter is within ≈7 km of the well. While production in the Wheeler Ridge field would have reduced pore pressure, likely inhibiting failure on the WWF assuming a Coulomb failure criteria, we present a model based on analytical solutions with model parameters constrained from detailed industry data, whereby direct pore pressure effects were blocked by a normal fault that created an impermeable barrier close to the WWF, allowing the normal stress change associated with production to dominate, thereby promoting failure by unclamping the fault. Our proposed triggering mechanism is consistent with the observation that significant earthquakes are only rarely induced by production in proximity to major faults. Our results also suggest that significant induced earthquakes in southern California during the early 20th century might have been associated with industry practices that are no longer employed (i.e., production without water re-injection). The occurrence of significant earthquakes during the earthquake 20th century therefore does not necessarily imply a high likely of induced

  17. EARTHQUAKE SCALING PARADOX

    Institute of Scientific and Technical Information of China (English)

    WU ZHONG-LIANG

    2001-01-01

    Two measures of earthquakes, the seismic moment and the broadband radiated energy, show completely different scaling relations. For shallow earthquakes worldwide from January 1987 to December 1998, the frequency distribution of the seismic moment shows a clear kink between moderate and large earthquakes, as revealed by previous works. But the frequency distribution of the broadband radiated energy shows a single power law, a classical Gutenberg-Richter relation. This inconsistency raises a paradox in the self-organized criticality model of earthquakes.

  18. From hydrodynamic to hydrological modelling: Investigating long-term hydrological regimes of key wetlands in the Macquarie Marshes, a semi-arid lowland floodplain in Australia

    Science.gov (United States)

    Wen, Li; Macdonald, Rohan; Morrison, Tim; Hameed, Tahir; Saintilan, Neil; Ling, Joanne

    2013-09-01

    The Macquarie Marshes is an intermittently flooded wetland complex covering nearly 200,000 ha. It is one of the largest semi-permanent wetland systems in the Murray-Darling Basin, Australia, and portions of the Marshes are listed as internationally important under the Ramsar Convention. Previous studies indicate that the Marshes have undergone accelerated ecological degradation since the 1980s. The ecological degradation is documented in declining biodiversity, encroaching of terrestrial species, colonisation of exotic species, and deterioration of floodplain forests. There is strong evidence that reduction in river flows is the principal cause of the decrease in ecological values. Although the streams are relatively well gauged and modelled, the lack of hydrological records within the Marshes hampers any attempts to quantitatively investigate the relationship between hydrological variation and ecosystem integrity. To enable a better understanding of the long-term hydrological variations within the key wetland systems, and in particular, to investigate the impacts of the different water management policies (e.g. environmental water) on wetlands, a river system model including the main wetland systems was needed. The morphological complex nature of the Marshes means that the approximation of hydrological regimes within wetlands using stream hydrographs would have been difficult and inaccurate. In this study, we built a coupled 1D/2D MIKE FLOOD floodplain hydrodynamic model based on a 1 m DEM derived from a LiDAR survey. Hydrological characteristics of key constituent wetlands such as the correlation between water level and inundation area, relationships between stream and wetlands and among wetlands were estimated using time series extracted from hydrodynamic simulations. These relationships were then introduced into the existing river hydrological model (IQQM) to represent the wetlands. The model was used in this study to simulate the daily behaviours of inflow

  19. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  20. Earthquake and Schools. [Videotape].

    Science.gov (United States)

    Federal Emergency Management Agency, Washington, DC.

    Designing schools to make them more earthquake resistant and protect children from the catastrophic collapse of the school building is discussed in this videotape. It reveals that 44 of the 50 U.S. states are vulnerable to earthquake, but most schools are structurally unprepared to take on the stresses that earthquakes exert. The cost to the…

  1. School Safety and Earthquakes.

    Science.gov (United States)

    Dwelley, Laura; Tucker, Brian; Fernandez, Jeanette

    1997-01-01

    A recent assessment of earthquake risk to Quito, Ecuador, concluded that many of its public schools are vulnerable to collapse during major earthquakes. A subsequent examination of 60 buildings identified 15 high-risk buildings. These schools were retrofitted to meet standards that would prevent injury even during Quito's largest earthquakes. US…

  2. Redefining Earthquakes and the Earthquake Machine

    Science.gov (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  3. Redefining Earthquakes and the Earthquake Machine

    Science.gov (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  4. Operational earthquake forecasting can enhance earthquake preparedness

    Science.gov (United States)

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  5. Constraints on 3-D stress in the crust from support of mid-ocean ridge topography

    Science.gov (United States)

    Luttrell, Karen; Sandwell, David

    2012-04-01

    The direction of crustal stresses acting at mid-ocean ridges is well characterized, but the magnitude of these stresses is poorly constrained. We present a method by which the absolute magnitude of these stresses may be constrained using seafloor topography and gravity. The topography is divided into a short-wavelength portion, created by rifting, magmatism, and transform faulting, and a long-wavelength portion associated with the cooling and subsidence of the oceanic lithosphere. The short-wavelength surface and Moho topography are used to calculate the spatially varying 3-D stress tensor in the crust by assuming that in creating this topography, the deviatoric stress reached the elastic-plastic limiting stress; the Moho topography is constrained by short-wavelength gravity variations. Under these assumptions, an incompressible elastic material gives the smallest plastic failure stress associated with this topography. This short-wavelength topographic stress generally predicts the wrong style of earthquake focal mechanisms at ridges and transform faults. However, the addition of an in-plane regional stress field is able to reconcile the combined crustal stress with both the ridge and transform focal mechanisms. By adjusting the magnitude of the regional stress, we determine a lower bound for in situ ridge-perpendicular extension of 25-40 MPa along the slow spreading mid-Atlantic ridge, 40-50 MPa along the ultra-slow spreading ridges in the western Indian Ocean, and 10-30 MPa along the fast spreading ridges of the southeastern Indian and Pacific Oceans. Furthermore, we constrain the magnitude of ridge-parallel extension to be between 4 and 8 MPa in the Atlantic Ocean, between -1 and 7 MPa in the western Indian Ocean, and between -1 and 3 MPa in the southeastern Indian and Pacific Oceans. These observations suggest that a deep transform valley is an essential feature of the ridge-transform spreading center.

  6. Carpenter Ridge Tuff, CO

    Science.gov (United States)

    Bachmann, Olivier; Deering, Chad D.; Lipman, Peter W.; Plummer, Charles

    2014-06-01

    The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe-Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51-53 wt% SiO2) with Ba contents to 4,000-5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4-5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that

  7. Seismicity of the Earth 1900-2010 eastern margin of the Australia plate

    Science.gov (United States)

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    The eastern margin of the Australia plate is one of the most seismically active areas of the world due to high rates of convergence between the Australia and Pacific plates. In the region of New Zealand, the 3,000 km long Australia-Pacific plate boundary extends from south of Macquarie Island to the southern Kermadec Island chain. It includes an oceanic transform (the Macquarie Ridge), two oppositely verging subduction zones (Puysegur and Hikurangi), and a transpressive continental transform, the Alpine Fault through South Island, New Zealand. Since 1900, there have been 15 M7.5+ earthquakes recorded near New Zealand. Nine of these, and the four largest, occurred along or near the Macquarie Ridge, including the 1989 M8.2 event on the ridge itself, and the 2004 M8.1 event 200 km to the west of the plate boundary, reflecting intraplate deformation. The largest recorded earthquake in New Zealand itself was the 1931 M7.8 Hawke's Bay earthquake, which killed 256 people. The last M7.5+ earthquake along the Alpine Fault was 170 years ago; studies of the faults' strain accumulation suggest that similar events are likely to occur again.

  8. Earthquake Science: a New Start

    Institute of Scientific and Technical Information of China (English)

    Chen Yun-tai

    2009-01-01

    @@ Understanding the mechanisms which cause earthquakes and thus earthquake prediction, is inher-ently difficult in comparison to other physical phenom-ena. This is due to the inaccessibility of the Earth's inte-rior, the infrequency of large earthquakes, and the com-plexities of the physical processes involved. Conse-quently, in its broadest sense, earthquake science--the science of studying earthquake phenomena, is a com-prehensive and inter-disciplinary field. The disciplines involved in earthquake science include: traditional seismology, earthquake geodesy, earthquake geology, rock mechanics, complex system theory, and informa-tion and communication technologies related to earth-quake studies.

  9. Reinterpretation of Historical Earthquakes during 1929 TO 1931, Myanmar

    Science.gov (United States)

    Aung, Hla Hla

    The years between 1929 to 1931 are significant years for Myanmar region, with a series of earthquakes starting with Swa Earthquake in 1929 to Phyu Earthquake in 1931. Major earthquakes that occurred during the years 1929 to 1931 in the past are in a remarkably linear distribution along the Sagaing fault. The area along the Sagaing fault falls in Zone 1 of the Seismic Zones of Myanmar. A detailed study of the Sagaing fault through the satellite images and aerial photographs reveals a zigzag nature consisting of alternate long NNW-SSE striking and short ENE-WSW striking fracture lineaments. The former occurs in a right-handed en-echelon strike-slip pattern which are cut by the latter being expressed as a normal fault character. The presence of dominant ENEWSW striking normal faults suggest that the area has been experiencing NNW-oriented regional tensional stress. Locations of historical earthquakes for the years of 1929 to 1931 have defined two ruptured segments viz. Segment (1) and Segment (3). Since 1929, earthquakes were mainly occurring in the southern and northern parts of the Sagaing fault. Therefore, it can be inferred that until end of 1991, the seismic activity was mostly confined on Segment (1) and Segment (3). To better examine the relationship between the seismicity and tectonics, major historical earthquakes of Pyinmana (1931), Pegu (Bago) (1930), Phyu (1930) and Swa (1929) are grouped as Segment (1) and Tagaung (1991), Mandalay (1956), Wuntho (1946) and Kamaing (1931) as Segment (3). The remaining unruptured fault length about 200 km in between these two segments is Segment (2). A detailed study of characteristics of each earthquake show that periodic movement along the normal lineaments has given rise to seismicity, and the location of earthquake events coincides with zones of lateral dislocation of Sagaing fault and occurrence of localized ridges or localized basins in the fault zone.

  10. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  11. Reduction of earthquake disasters

    Institute of Scientific and Technical Information of China (English)

    陈顒; 陈祺福; 黄静; 徐文立

    2003-01-01

    The article summarizes the researches on mitigating earthquake disasters of the past four years in China. The studyof earthquake disasters′ quantification shows that the losses increase remarkably when population concentrates inurban area and social wealth increase. The article also summarizes some new trends of studying earthquake disas-ters′ mitigation, which are from seismic hazard to seismic risk, from engineering disaster to social disaster andintroduces the community-centered approach.

  12. Oak Ridge callibration recall program

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.G.; Wright, W.E. [Oak Ridge National Lab., TN (United States); Pritchard, E.W. [Oak Ridge Centers for Manufacturing Technology, TN (United States)] [and others

    1996-12-31

    A development effort was initiated within the Oak Ridge metrology community to address the need for a more versatile and user friendly tracking database that could be used across the Oak Ridge complex. This database, which became known as the Oak Ridge Calibration Recall Program (ORCRP), needed to be diverse enough for use by all three Oak Ridge facilities, as well as the seven calibration organizations that support them. Various practical functions drove the initial design of the program: (1) accessible by any user at any site through a multi-user interface, (2) real-time database that was able to automatically generate e-mail notices of due and overdue measuring and test equipment, (3) large memory storage capacity, and (4) extremely fast data access times. In addition, the program needed to generate reports on items such as instrument turnaround time, workload projections, and laboratory efficiency. Finally, the program should allow the calibration intervals to be modified, based on historical data. The developed program meets all of the stated requirements and is accessible over a network of computers running Microsoft Windows software.

  13. Ridge Regression for Interactive Models.

    Science.gov (United States)

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are favorable to…

  14. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  15. InRidge program: Preliminary results from the first cruise

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.

    The first cruise under India's own Ridge research initiative, InRidge collected new data on bathymetry, free-air gravity and magnetic anomalies across the ridge axis between the Vema and Zhivago transform faults in the Central Indian Ridge...

  16. Which Yakima folds are most likely to sustain an earthquake? (Invited)

    Science.gov (United States)

    Yeats, R. S.

    2009-12-01

    An important question for seismic hazard evaluation of critical facilities in the Yakima Fold Belt (YFB) is this: are some folds more likely to sustain an earthquake than others? Some agencies consider the Toppenish Ridge and Saddle Mountains anticlines to be more likely than other folds in the YFB to be underlain by a blind reverse fault capable of a large earthquake. Other folds close to the Hanford waste treatment plant and to large dams on the Columbia River are, by the same reasoning, less likely to experience a large earthquake. Toppenish Ridge and probably Saddle Mountains underwent earthquakes during the Holocene with surface expression, whereas other YFB folds have not revealed such evidence. GPS-based strain rates across the YFB are probably no greater than 1 mm/yr, so that earthquake recurrence intervals on individual structures are measured in 10-30 kyr. Some folds would not have been the site of a large earthquake since the emplacement of the Missoula floods 12-14 ka. These floods are so massive that they would have removed all surficial evidence for any reverse-fault earthquakes, thick-skinned or thin-skinned, that predated the most recent floods. Source faults generating Yakima folds are largely blind, and exposed faults are commonly reverse faults low on the flanks, like the Mill Creek thrust on the north side of Toppenish Ridge, or bending-moment normal faults on the crests of anticlines. The 2009 Wooded Island earthquake swarm at Hanford indicates simply that these structures are still active. Hazard evaluation should include densification of the geodetic network to determine shortening across individual folds, which cannot be done at present.

  17. Improving prosthetic prognosis by connective tissue ridge augmentation of alveolar ridge

    OpenAIRE

    2010-01-01

    The contour of edentulous ridge should be carefully evaluated before a fixed partial denture is undertaken. The ideal ridge height and width allows placement of a natural looking pontic which facilitates maintenance of plaque-free environment. The localized alveolar ridge defect refers to the volumetric deficit of the limited extent of bone and soft tissue within the alveolar process. Such type of ridge defects can be corrected by surgical ridge augmentation that can be accomplished by the ad...

  18. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  19. More Earthquake Misery

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Less than four months after the devastation of the Wenchuan earthquake on May 12, another quake brings further death and destruction to southwest China on August 30, a 6.1-magnitude earthquake hit southwest China, the border of Sichuan Province and Yunnan Province. Panzhihua City, Huili County in Sichuan and Yuanmou County and Yongren County in Yunnan were worst hit.

  20. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  1. Sex Determination from Fingerprint Ridge Density

    Directory of Open Access Journals (Sweden)

    Dr. Sudesh Gungadin

    2007-07-01

    Full Text Available This study was conducted with an aim to establish a relationship between sex and fingerprint ridge density. The fingerprints were taken from 500 subjects (250 males and 250 females in the age group of 18-60 years. After taking fingerprints, the ridges were counted in the upper portion of the radial border of each print for all ten fingers and mean value was calculated. The results have shown that a finger print ridge of 14 ridges/25 mm2 is more likely of female origin. It has been successful to support the hypothesis that women tend to have a statistically significant greater ridge density than men.

  2. SRTM Stereo Pair: Wheeler Ridge, California

    Science.gov (United States)

    2000-01-01

    Wheeler Ridge and vicinity, California, is a site of major tectonic activity, both historically and over recent geologic time. The epicenter of the 7.5 magnitude Kern County earthquake occurred here on July 21,1952, and numerous geologic and topographic features indicate rapid geologic processes. The ridge itself (upper-right center) is a geologic fold that is growing out of the southern San Joaquin Valley. A prominent 'wind gap,' now used for passage of the California aquaduct (with the aid of a pumping station), is evidence that the ridge grew faster than tranversing streams could erode down. Nearby abrupt and/or landslid mountain fronts similarly indicate a vigorous tectonic setting here, just north of the San Andreas fault. The Interstate 5 freeway can be seen crossing agricultural fields on the right and entering the very rugged and steep Grapevine Canyon toward the bottom.This stereoscopic image was generated by draping a Landsat satellite image over a preliminary Shuttle Radar Topography Mission (SRTM) elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994

  3. Demand surge following earthquakes

    Science.gov (United States)

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  4. Modeling earthquake dynamics

    Science.gov (United States)

    Charpentier, Arthur; Durand, Marilou

    2015-07-01

    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  5. Status of Blue Ridge Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  6. Reconciling geodetic and geologic estimates of recent plate motion across the Southwest Indian Ridge

    Science.gov (United States)

    DeMets, C.; Calais, E.; Merkouriev, S.

    2016-10-01

    We use recently published, high-resolution reconstructions of the Southwest Indian Ridge to test whether a previously described systematic difference between Global Positioning System (GPS) and 3.16-Myr-average estimates of seafloor spreading rates between Antarctica and Africa is evidence for a recent slowdown in Southwest Indian Ridge seafloor spreading rates. Along the Nubia-Antarctic segment of the ridge, seafloor opening rates that are estimated with the new, high-resolution reconstructions and corrected for outward displacement agree well with geodetic rate estimates and reduce previously reported, highly significant non-closure of the Nubia-Antarctic-Sur plate circuit. The observations are inconsistent with a slowdown in spreading rates and instead indicate that Nubia-Antarctic plate motion has been steady since at least 5.2 Ma. Lwandle-Antarctic seafloor spreading rates that are estimated from the new high-resolution reconstructions differ insignificantly from a GPS estimate, thereby implying steady Lwandle-Antarctic plate motion since 5.2 Ma. Between the Somalia and Antarctic plates, the new Southwest Indian Ridge reconstructions eliminate roughly half of the systematic difference between the GPS and MORVEL spreading rate estimates. We interpret the available observations as evidence that Somalia-Antarctic spreading rates have been steady since at least 5.2 Ma and postulate that the remaining difference is attributable to random and/or systematic errors in the plate kinematic estimates and the combined effects of insufficient geodetic sampling of undeforming areas of the Somalia plate, glacial isostatic adjustment in Antarctica, and transient deformation triggered by the 1998 Mw=8.2 Antarctic earthquake, the 2004 Mw=9.3 Sumatra earthquake, or possibly other large historic earthquakes.

  7. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  8. Bose enhancement and the ridge

    Energy Technology Data Exchange (ETDEWEB)

    Altinoluk, Tolga [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Armesto, Néstor, E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Beuf, Guillaume [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2015-12-17

    We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.

  9. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  10. Bose enhancement and the ridge

    CERN Document Server

    Altinoluk, Tolga; Beuf, Guillaume; Kovner, Alex; Lublinsky, Michael

    2015-01-01

    We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.

  11. Bose enhancement and the ridge

    Directory of Open Access Journals (Sweden)

    Tolga Altinoluk

    2015-12-01

    Full Text Available We point out that Bose enhancement in a hadronic wave function generically leads to correlations between produced particles. We show explicitly, by calculating the projectile density matrix in the Color Glass Condensate approach to high-energy hadronic collisions, that the Bose enhancement of gluons in the projectile leads to azimuthal collimation of long range rapidity correlations of the produced particles, the so-called ridge correlations.

  12. A global classification and characterization of earthquake clusters

    Science.gov (United States)

    Zaliapin, Ilya; Ben-Zion, Yehuda

    2016-10-01

    We document space-dependent clustering properties of earthquakes with m ≥ 4 in the 1975-2015 worldwide seismic catalogue of the Northern California Earthquake Data Center. Earthquake clusters are identified using a nearest-neighbour distance in time-space-magnitude domain. Multiple cluster characteristics are compared with the heat flow level and type of deformation defined by parameters of the strain rate tensor. The analysis suggests that the dominant type of seismicity clusters in a region depends strongly on the heat flow, while the deformation style and intensity play a secondary role. The results show that there are two dominant types of global clustering: burst-like clusters that represent brittle fracture in relatively cold lithosphere (e.g. shallow events in subduction zones) and swarm-like clusters that represent brittle-ductile deformation in relatively hot lithosphere (e.g. mid-oceanic ridges). The global results are consistent with theoretical expectations and previous analyses of earthquake clustering in southern California based on higher quality catalogues. The observed region-specific deviations from average universal description of seismicity provide important constraints on the physics governing earthquakes and can be used to improve local seismic hazard assessments.

  13. Geo-Morphological Analyses of the Gakkel Ridge and the Southwest Indian Ridge

    Science.gov (United States)

    Dorschel, B.; Schlindwein, V. S. N.; Eagles, G.

    2014-12-01

    The Gakkel Ridge in the Arctic Ocean and the Southwest Indian Ridge in the Southwest Indian Ocean between Africa and Antarctica are ultraslow-spreading (intersticial melt migration) by which material rises to fill the space vacated by plate divergence. These ridges are characterised by non-orthogonal spreading. Transform faults, typical of faster spreading mid ocean ridges, are far less common at ultraslow spreading mid ocean ridges. Thus in return, detailed geo-statistical analyses of the geo-morphology of ultraslow-spreading mid ocean ridges can provide valuable information towards a better understanding of these slowest of spreading ridges. We have generated high resolution bathymetric grids for the Gakkel and Southwest Indian ridges based on high resolution multibeam echosounder data from various expeditions with RV Polarstern. On the basis of these grids, geo-statistical analyses allow for an assessment of the geo-morphological elements of the ridges on various scales. The results of these analyses show that, approximately 200 km long medium-scale sections of the ridges can be characterised by the lengths and orientations of the short-scale (hundreds of meters to tens of kilometres) ridges and troughs. The geomorphologies of short-scale ridges and troughs situated at the junctions between medium scale sections often exhibit a mixture of the geomorphological elements seen in the neighbouring sections. These geo-morphological patterns provide insights into the overall spreading-geometry along the Gakkel Ridge and the Southwest Indian Ridge.

  14. Earthquake forecast enrichment scores

    Directory of Open Access Journals (Sweden)

    Christine Smyth

    2012-03-01

    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP is a global project aimed at testing earthquake forecast models in a fair environment. Various metrics are currently used to evaluate the submitted forecasts. However, the CSEP still lacks easily understandable metrics with which to rank the universal performance of the forecast models. In this research, we modify a well-known and respected metric from another statistical field, bioinformatics, to make it suitable for evaluating earthquake forecasts, such as those submitted to the CSEP initiative. The metric, originally called a gene-set enrichment score, is based on a Kolmogorov-Smirnov statistic. Our modified metric assesses if, over a certain time period, the forecast values at locations where earthquakes have occurred are significantly increased compared to the values for all locations where earthquakes did not occur. Permutation testing allows for a significance value to be placed upon the score. Unlike the metrics currently employed by the CSEP, the score places no assumption on the distribution of earthquake occurrence nor requires an arbitrary reference forecast. In this research, we apply the modified metric to simulated data and real forecast data to show it is a powerful and robust technique, capable of ranking competing earthquake forecasts.

  15. Phase Transformations and Earthquakes

    Science.gov (United States)

    Green, H. W.

    2011-12-01

    Phase transformations have been cited as responsible for, or at least involved in, "deep" earthquakes for many decades (although the concept of "deep" has varied). In 1945, PW Bridgman laid out in detail the string of events/conditions that would have to be achieved for a solid/solid transformation to lead to a faulting instability, although he expressed pessimism that the full set of requirements would be simultaneously achieved in nature. Raleigh and Paterson (1965) demonstrated faulting during dehydration of serpentine under stress and suggested dehydration embrittlement as the cause of intermediate depth earthquakes. Griggs and Baker (1969) produced a thermal runaway model of a shear zone under constant stress, culminating in melting, and proposed such a runaway as the origin of deep earthquakes. The discovery of Plate Tectonics in the late 1960s established the conditions (subduction) under which Bridgman's requirements for earthquake runaway in a polymorphic transformation could be possible in nature and Green and Burnley (1989) found that instability during the transformation of metastable olivine to spinel. Recent seismic correlation of intermediate-depth-earthquake hypocenters with predicted conditions of dehydration of antigorite serpentine and discovery of metastable olivine in 4 subduction zones, suggests strongly that dehydration embrittlement and transformation-induced faulting are the underlying mechanisms of intermediate and deep earthquakes, respectively. The results of recent high-speed friction experiments and analysis of natural fault zones suggest that it is likely that similar processes occur commonly during many shallow earthquakes after initiation by frictional failure.

  16. Earthquake Disaster Management and Insurance

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    As one of the most powerful tools to reduce the earthquake loss, the Earthquake Disaster Management [EDM] and Insurance [EI] have been highlighted and have had a great progress in many countries in recent years. Earthquake disaster management includes a series of contents, such as earthquake hazard and risk analysis, vulnerability analysis of building and infrastructure, earthquake aware training, and building the emergency response system. EI, which has been included in EDM after this practice has been...

  17. Removing the remaining ridges in fingerprint segmentation

    Institute of Scientific and Technical Information of China (English)

    ZHU En; ZHANG Jian-ming; YIN Jian-ping; ZHANG Guo-min; HU Chun-feng

    2006-01-01

    Fingerprint segmentation is an important step in fingerprint recognition and is usually aimed to identify non-ridge regions and unrecoverable low quality ridge regions and exclude them as background so as to reduce the time expenditure of image processing and avoid detecting false features. In high and in low quality ridge regions, often are some remaining ridges which are the afterimages of the previously scanned finger and are expected to be excluded from the foreground. However, existing segmentation methods generally do not take the case into consideration, and often, the remaining ridge regions are falsely classified as foreground by segmentation algorithm with spurious features produced erroneously including unrecoverable regions as foreground. This paper proposes two steps for fingerprint segmentation aimed at removing the remaining ridge region from the foreground. The non-ridge regions and unrecoverable low quality ridge regions are removed as background in the first step, and then the foreground produced by the first step is further analyzed for possible remove of the remaining ridge region. The proposed method proved effective in avoiding detecting false ridges and in improving minutiae detection.

  18. Earthquakes and emergence

    Science.gov (United States)

    Earthquakes and emerging infections may not have a direct cause and effect relationship like tax evasion and jail, but new evidence suggests that there may be a link between the two human health hazards. Various media accounts have cited a massive 1993 earthquake in Maharashtra as a potential catalyst of the recent outbreak of plague in India that has claimed more than 50 lives and alarmed the world. The hypothesis is that the earthquake may have uprooted underground rat populations that carry the fleas infected with the bacterium that causes bubonic plague and can lead to the pneumonic form of the disease that is spread through the air.

  19. Earthquake engineering in Peru

    Science.gov (United States)

    Vargas, N.J

    1983-01-01

    During the last decade, earthquake engineering research in Peru has been carried out at the Catholic University of Peru and at the Universidad Nacional de Ingeniera (UNI). The Geophysical Institute (IGP) under the auspices of the Organization of American States (OAS) has initiated in Peru other efforts in regional seismic hazard assessment programs with direct impact to the earthquake engineering program. Further details on these programs have been reported by L. Ocola in the Earthquake Information Bulletin, January-February 1982, vol. 14, no. 1, pp. 33-38. 

  20. Influences of a ridge subduction on seismicity and geodynamics in the central Vanuatu arc.

    Science.gov (United States)

    Baillard, C.; Crawford, W. C.; Ballu, V.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2014-12-01

    The central part of the Vanuatu arc is characterized by the subduction of the d'Entrecasteaux ridge under the North Fiji Basin. This ridge influences directly the seismicity and the geodynamics in the proximal region. By analyzing the hypocenters from a local microseismic catalog (2008-2009) and global catalogs we show that the subduction interface, in the first 50 km depth, presents a small dipping angle where the ridge is subducting. This bump highlights the buoyancy of the ridge associated to the excess of fluids present in the seamount. This underplating could explain 20% to 60% of the vertical displacement estimated on the forearc islands from corals datations and that can reach a maximum of 6 mm/yr. The high concentration of hydrous minerals in the subducting ridge might also explain the important activity of intermediate depth earthquakes (half of the total activity in the studied region), we observed a very good correlation between the supposed extension of the ridge in depth and the location of these earthquakes. We propose that they are associated to crust minerals dehydration that causes hydrous fracturation trough preexistent faults. This dehydration process is maintained to a maximum depth of 190 km due to the high thermal parameter of the australian plate.Using the geometry of the Wadati-Benioff plane derived from earthquakes localisations, we established a 2D mechanical model to explain the horizontal interseismic displacement observed by GPS on islands of the upper plate. We show that the subduction interface alone cannot explain the GPS velocities observed, the system of thrust faults located below the back arc islands of Maewo and Pentecost, plays a major role in the region geodynamics and accommodate as much convergence as the subduction interface (between ~16 and 34 mm/yr). Using the model we were also able to explain the closing of the Aoba basin during interseismic phase (~25 mm/an). Finally, the mechanical model suggests the existence of a 23

  1. Tweet Earthquake Dispatch (TED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS is offering earthquake alerts via two twitter accounts: @USGSted and @USGSBigQuakes. On average, @USGSted and @USGSBigQuakes will produce about one tweet...

  2. 1988 Spitak Earthquake Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1988 Spitak Earthquake database is an extensive collection of geophysical and geological data, maps, charts, images and descriptive text pertaining to the...

  3. Earthquake Damage to Schools

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of slides graphically illustrates the potential danger that major earthquakes pose to school structures and to the children and adults who happen to be...

  4. Hydrologic effects of the Pymatuning earthquake on September 25, 1998, in northwestern Pennsylvania

    Science.gov (United States)

    Fleeger, Gary M.; Goode, D.J.; Buckwalter, T.F.; Risser, D.W.

    1999-01-01

    Within hours after the Pymatuning earthquake of September 25, 1998, in northwestern Pennsylvania, local residents reported wells becoming dry, wells beginning to flow, and the formation of new springs. About 120 household-supply wells reportedly went dry within 3 months after the earthquake. About 80 of these wells were on a ridge between Jamestown and Greenville, where water-level declines of as much as 100 feet were documented. Accompanying the decline in water levels beneath the ridge was an increase in water levels in valley wells of as much as 62 feet. One possible explanation of the observed hydrologic effects is that the earthquake increased the vertical hydraulic conductivity of shales beneath the ridge, which allowed ground water to drain from the hilltops. Computer simulations of ground-water flow beneath the ridge between Jamestown and Greenville indicate that increasing the vertical hydraulic conductivity of shale confining beds about 10 to 60 times from their pre-quake values could cause the general pattern of decreased water levels on hilltops and increased levels in valleys.

  5. Injection-induced earthquakes.

    Science.gov (United States)

    Ellsworth, William L

    2013-07-12

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  6. Injection-induced earthquakes

    Science.gov (United States)

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  7. Metallogenesis along the Indian Ocean Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Ray, Dwijesh

    active hydrothermal black smoker deposit along this ridge system (Figure 1). The obser - vations summarized here comprise the res ults obtained from the Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), Southeast Indian Ridge (SEIR), Carlsberg... and appears to be in a tectonic stage of rift development. A hydrothermal plume with maximum concentration of 202 nl/l methane (CH 4 ) and a tempera ture anomaly of + 0.05?C was delineated at 24?03 minuteS (hydro - ther mal plume site). Manganese...

  8. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  9. Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake

    Science.gov (United States)

    Taylor, Frederick W.; Briggs, Richard W.; Frohlich, Cliff; Brown, Abel; Hornbach, Matt; Papabatu, Alison K.; Meltzner, Aron J.; Billy, Douglas

    2008-04-01

    The largest earthquakes are generated in subduction zones, and the earthquake rupture typically extends for hundreds of kilometres along a single subducting plate. These ruptures often begin or end at structural boundaries on the overriding plate that are associated with the subduction of prominent bathymetric features of the downgoing plate. Here, we determine uplift and subsidence along shorelines for the 1 April 2007 moment magnitude MW 8.1 earthquake in the western Solomon Islands, using coral microatolls which provide precise measurements of vertical motions in locations where instrumental data are unavailable. We demonstrate that the 2007 earthquake ruptured across the subducting Simbo ridge transform and thus broke through a triple junction where the Australian and Woodlark plates subduct beneath the overriding Pacific plate. Previously, no known major megathrust rupture has involved two subducting plates. We conclude that this event illustrates the uncertainties of predicting the segmentation of subduction zone rupture on the basis of structural discontinuities.

  10. The Northern Central Indian Ridge: Geology and tectonics of fracture zones-dominated spreading ridge segments

    Digital Repository Service at National Institute of Oceanography (India)

    Drolia, R.K.; Iyer, S.D.; Chakraborty, B.; Kodagali, V.N.; Ray, Dwijesh; Misra, S.; Andrade, R.; Sarma, K.V.L.N.S.; Rajasekhar, R.P.; Mukhopadhyay, R.

    - OCEANIC RIDGES CURRENT SCIENCE, VOL. 85, NO. 3, 10 AUGUST 2003 The Northern Central Indian Ridge: Geology and tectonics of fracture zones - dominated spreading ridge segments R. K. Drolia*, Sridhar D. Iyer ? , B. Chakraborty, V. N. Kodagali, D... anomalies are plotted perpendicular to cruise tracks. SPECIAL SECTION: MID - OCEANIC RIDGES CURRENT SCIENCE, VOL. 85, NO. 3, 10 AUGUST 2003 291 20 ? 18 Ma old and runs along the equator from the CIR in the west to the Wharton Basin in the east...

  11. A global outer-rise/outer-trench-slope (OR/OTS) earthquake study

    Science.gov (United States)

    Wartman, J. M.; Kita, S.; Kirby, S. H.; Choy, G. L.

    2009-12-01

    Using improved seismic, bathymetric, satellite gravity and other geophysical data, we investigated the seismicity patterns and focal mechanisms of earthquakes in oceanic lithosphere off the trenches of the world that are large enough to be well recorded at teleseismic distances. A number of prominent trends are apparent, some of which have been previously recognized based on more limited data [1], and some of which are largely new [2-5]: (1) The largest events and the highest seismicity rates tend to occur where Mesozoic incoming plates are subducting at high rates (e.g., those in the western Pacific and the Banda segment of Indonesia). The largest events are predominantly shallow normal faulting (SNF) earthquakes. Less common are reverse-faulting (RF) events that tend to be deeper and to be present along with SNF events where nearby seamounts, seamount chains and other volcanic features are subducting [Seno and Yamanaka, 1996]. Blooms of SNF OR/OTS events usually occur just after and seaward of great interplate thrust (IPT) earthquakes but are far less common after smaller IPT events. (2) Plates subducting at slow rates (Shetlands). (4) Subducting plates of intermediate age (20 to about 65 Ma) display a diversity of focal mechanisms and seismicity patterns. In the Philippines, NE Indonesia, and Melanesia, bands of reverse faulting events occur at or near the trench and SNF earthquakes are restricted to OR/OTS sites further from the trench. (5) Clustering of OR/OTS events of all types commonly occurs where seamount chains, volcanic ridges, or volcanic plateaus enter OR/OTS regions (e.g., the Louisville Ridge in Tonga, the Juan Fernandez Ridge in Chile, the Ninety East Ridge in Sumatra, and the D’Entrecastaux Ridge in Vanuatu).

  12. Student Health Services at Orchard Ridge.

    Science.gov (United States)

    Nichols, Don D.

    This paper provides a synoptic review of student health services at the community college level while giving a more detailed description of the nature of health services at Orchard Ridge, a campus of Oakland Community College. The present College Health Service program provides for a part-time (24 hrs./wk.) nurse at Orchard Ridge. A variety of…

  13. Pulley Ridge Swath Bathymetry Grid - filtered

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in...

  14. Pulley Ridge Swath Bathymetry Grid - filtered

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the...

  15. Pulley Ridge Swath Bathymetry Grid - filtered

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Pulley Ridge is a series of drowned barrier islands that extends almost 200 km in 60-100 m water depths. This drowned ridge is located on the Florida Platform in the...

  16. Petrology of tectonically segmented Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.

    Distribution and mineralogy of various rock types along the 4200-km-long slow-spreading Central Indian Ridge, between Owen fracture zone in the north and Indian Ocean triple junction in the south, is studied in the light of ridge segmentation...

  17. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  18. Earthquake impact scale

    Science.gov (United States)

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.

    2011-01-01

    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  19. Earthquake and Geothermal Energy

    CERN Document Server

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  20. Rupture, waves and earthquakes

    Science.gov (United States)

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  1. Earthquake engineering in China

    Institute of Scientific and Technical Information of China (English)

    胡聿贤

    2002-01-01

    The development of earthquake engineering in China is described into three stages.The initial stage in 1950's -1960's was marked with the initiation of this branch of science from its creation in the first national 12-year plan of science andtechnology by specifying earthquake engineering as a branch item and IEM was one participant. The first earthquake zonationmap and the first seismic design code were soon completed and used in engineering design. Site effect on structural design andsite selection were seriously studied. The second stage marked with the occurrence of quite a few strong earthquakes in China,from which many lessons were learned and corresponding considerations were specified in our design codes and followed inconstruction practice. The third stage is a stage of disaster management, which is marked by a series of governmentdocumentations, leading by a national law of the People's Republic of China on the protecting against and mitigating earthquakedisasters adopted at the meeting of the Standing Committee of the National People's Congress of the People's Republic of Chinain 1997, and then followed by some provincial and municipal laws to force the actions outlined in the national law. It may beexpected that our society will be much more safer to resist the attack of future strong earthquakes with less losses. Lastly,possible future developments are also discussed.

  2. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  3. Recurrence Statistics of Great Earthquakes

    CERN Document Server

    Ben-Naim, E; Johnson, P A

    2013-01-01

    We investigate the sequence of great earthquakes over the past century. To examine whether the earthquake record includes temporal clustering, we identify aftershocks and remove those from the record. We focus on the recurrence time, defined as the time between two consecutive earthquakes. We study the variance in the recurrence time and the maximal recurrence time. Using these quantities, we compare the earthquake record with sequences of random events, generated by numerical simulations, while systematically varying the minimal earthquake magnitude Mmin. Our analysis shows that the earthquake record is consistent with a random process for magnitude thresholds 7.0<=Mmin<=8.3, where the number of events is larger. Interestingly, the earthquake record deviates from a random process at magnitude threshold 8.4<=Mmin<= 8.5, where the number of events is smaller; however, this deviation is not strong enough to conclude that great earthquakes are clustered. Overall, the findings are robust both qualitat...

  4. Earthquake Damage to Transportation Systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earthquakes represent one of the most destructive natural hazards known to man. A serious result of large-magnitude earthquakes is the disruption of transportation...

  5. Earthquakes, March-April 1989

    Science.gov (United States)

    Person, W.J.

    1989-01-01

    The first major earthquake (7.0-7.9) of the year hit Mexico on April 25, killing three people and causing some damage. Earthquake-related deaths were also reported from Malawi, China, and New Britain. 

  6. Early earthquakes of the Americas

    Institute of Scientific and Technical Information of China (English)

    Niu Zhijun

    2006-01-01

    @@ In recent decades the science of seismology,in particular the study of individual earthquakes, has expanded dramatically. A seismologist can look for evidence of past earthquakes in the material remains that have been excavated by archaeologists.

  7. The Glasma and the Hard Ridge

    CERN Document Server

    Moschelli, George

    2009-01-01

    Correlation measurements indicate that excess two particle correlations extend over causally disconnected rapidity ranges. Although, this enhancement is broad in relative rapidity $\\eta=\\eta_1 - \\eta_2$, it is focused in a narrow region in relative azimuthal angle $\\phi=\\phi_1 - \\phi_2$. The resulting structure looks like a ridge centered at $\\eta = \\phi=0$. Similar ridge structures are observed in correlations of particles associated with a jet trigger (the hard ridge) and in correlations without a trigger (the soft ridge). The long range rapidity behavior requires that the correlation originates in the earliest stage of the collision, and probes properties of the production mechanism. Glasma initial conditions as predicted by the theory of Color Glass Condensate and provide a and early stage correlation that naturally extends far in rapidity. We have previously shown that the soft ridge is a consequence of particles forming from an initial Glasma phase that experience a later stage transverse flow. We exten...

  8. From mantle to crust: Tomographic image of a mid-ocean ridge volcano

    Science.gov (United States)

    Schmid, Florian; Koulakov, Ivan; Schlindwein, Vera

    2016-04-01

    Volcanoes are an integral part of mid-ocean ridges. At ultraslow spreading ridges, volcanic centres receive more melt than is produced locally and hence are centres of very efficient magmatism. The cause of melt focussing and the structure of the underlying magma plumbing systems at these volcanic centres are still enigmatic. We present microearthquake data and local earthquake tomography results, based on a one-year deployment of ocean bottom seismometers from 2012 to 2013 on a volcanic centre at the ultraslow Southwest Indian Ridge. In the period 1996-2001, several tectono-magmatic earthquake swarms including unusually strong teleseismically recorded events indicated recent magmatic activity at the experiment site. The distribution of recorded microearthquakes reveals a prominent gap in seismicity of approx. 20 km diameter immediately beneath the volcano indicating elevated temperatures. Tomography results show distinct velocity anomalies in the area of the seismicity gap. An eminent circular low Vs anomaly was found at 4-6 km depth beneath the volcano, imaging a potential crustal magma chamber. Another anomaly of high Vp/Vs-ratios is located at the eastern rim of the seismicity gap, capped by a cluster of microearthquakes and underlain by another low Vs anomaly in the upper mantle. We propose anomalies of reduced seismic velocity to result from recent magmatic activity that is further manifested in elevated temperatures beneath the volcano. Clustering microearthquake foci might be associated with steep temperature gradients and thermal fracturing, where hot upwelling material is confronted with a cold, rigid crust. Our results provide the first direct observation of a melt lens beneath the ultraslow type of mid-ocean ridge and give unprecedented insights to potential magma pathways from the upper mantle to the crust.

  9. Hydroacoustic records of seafloor earthquakes, cryogenic sounds, and cetacean vocalizations in the Indian Ocean

    Science.gov (United States)

    Chateau, R.; Royer, J.; Dziak, R. P.; Bohnenstiehl, D. R.; Brandon, V.; Haxel, J. H.

    2009-12-01

    From October 2006 to January 2008, three hydrophones were deployed in the southern Indian Ocean by the CNRS/University of Brest and the NOAA/Oregon State University. These hydrophones were moored in the SOFAR channel and recorded a total of 1780 discrete acoustic events, mainly earthquakes from the mid-ocean ridges and cryogenic acoustic signals from off Antarctica (due to ice shelf creeping and iceberg breaking). The low attenuation of acoustic waves in the SOFAR channel allows for the long-range detection of low-magnitude earthquakes (body-magnitude cetacean species, including blue, fin, and Milke whales.

  10. Australia: historical earthquake studies

    Directory of Open Access Journals (Sweden)

    K. McCue

    2004-06-01

    Full Text Available Historical studies of earthquakes in Australia using information dating back to 1788 have been comprehensive, if not exhaustive. Newspapers have been the main source of historical earthquake studies. A brief review is given here with an introduction to the pre-European aboriginal dreamtime information. Some of the anecdotal information of the last two centuries has been compiled as isoseismal maps. Relationships between isoseismal radii and magnitude have been established using post-instrumental data allowing magnitudes to be assigned to the pre-instrumental data, which can then be incorporated into the national earthquake database. The studies have contributed to hazard analyses for the building codes and stimulated research into microzonation and paleo-seismology.

  11. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  12. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  13. Widespread Pleistocene submarine landslides and erosion on the Lomonosov Ridge (central Arctic Ocean)

    Science.gov (United States)

    Niessen, Frank; Stein, Rüdiger; Sauermilch, Isabel; Jensen, Laura; Jokat, Wilfried; Geissler, Wolfram; Gebhardt, Catalina

    2016-04-01

    uppermost debris flow. Extrapolations of the age models of sediment cores suggest that earlier submarine landslides have occurred during the Middle Pleistocene. Some areas of the Lomonosov Ridge, where landslides have occurred, are characterized by Mega-Scale Glacial Lineations (MSGL). Typically, several generations of parallel or slightly curved streamlined bedforms are oriented in a SW-NE direction in areas shallower than 1000 m present water depth. They indicate that dynamically flowing ice masses (ice rise within an Arctic Ocean ice shelf) grounded on the Lomonosov Ridge during Pleistocene glaciations and eroded older sediments. MSGL end abruptly at slide scares and were last formed during MIS-6. At the present state of the study we can only speculate on the causes of mass wasting. This includes erosion in the context of glacial loading and seismicity (e.g. earthquakes), as well as slope failure related to gas. Kristoffersen, Y., Coakley, B.J., Hall, J.K., Edwards, M. (2007) Mass wasting on the submarine Lomonosov Ridge, central Arctic Ocean. Mar. Geol. 243, 132-142.

  14. The 2015 Illapel earthquake: a comprehensive assessment

    Science.gov (United States)

    Tilmann, Frederik; Zhang, Yong; Moreno, Maros; Saul, Joachim; Eckelmann, Felix; Palo, Mauro; Deng, Zhiguo; Babeyko, Andrey; Chen, Kejie; Baez, Juan-Carlos; Schurr, Bernd; Wang, Rongjiang; Dahm, Torsten

    2016-04-01

    On September 16, 2015, the convergent Chilean margin again experienced a great subduction megathrust earthquake. The MW=8.2 Illapel earthquake occurred in the Metropolitan segment north of where the Juan-Fernandez ridge meets the Chile trench and subduction style and geometry change over a short distance. Combining GPS displacement measurements, InSAR interferograms, strong motion data, broadband seismological waveforms and backprojection of high frequency teleseismic signals we derive a comprehensive description of the coseismic rupture. Further, we determine accurate depths for the mostly offshore aftershock sequence by careful observations of teleseismic depth phases and derive moment tensors for the larger earthquakes from waveform modelling of body- and surface waves. The rupture nucleated near the coast but then propagated to the north and updip. The resulting simple rupture geometry is approximately circular with a peak slip of 6 m, and a diameter of approximately 100 km, centered below the middle slope of the forearc. Forward modelling of tsunami propagation for this model successfully predicts approximate tsunami wave heights measured at 3 tide gauges along the North Central Chile coast, confirming that the rupture diminished towards the trench. Similar to previous observations, high frequency seismic radiation is mostly emitted downdip of the region of most intense slip, but unlike in most previous events, the high frequency emitters do not track the whole rupture along-strike but are confined to a small region within ˜ 50 km of the epicenter. The time evolution of high frequency seismic radiation also peaks earlier than the long period rupture evolution, indicating that the final phase of the rupture progressed smoothly. The aftershocks extend significantly beyond the limits of the main rupture in both north and south direction; their pattern of propagation suggests triggering by coseismic changes to the Coulomb failure stress. Plate interface events

  15. Indonesian Earthquake Decision Support System

    CERN Document Server

    Warnars, Spits

    2010-01-01

    Earthquake DSS is an information technology environment which can be used by government to sharpen, make faster and better the earthquake mitigation decision. Earthquake DSS can be delivered as E-government which is not only for government itself but in order to guarantee each citizen's rights for education, training and information about earthquake and how to overcome the earthquake. Knowledge can be managed for future use and would become mining by saving and maintain all the data and information about earthquake and earthquake mitigation in Indonesia. Using Web technology will enhance global access and easy to use. Datawarehouse as unNormalized database for multidimensional analysis will speed the query process and increase reports variation. Link with other Disaster DSS in one national disaster DSS, link with other government information system and international will enhance the knowledge and sharpen the reports.

  16. Episodic tremor triggers small earthquakes

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  17. ALMA measures Calama earthquake

    Science.gov (United States)

    Brito, R.; Shillue, B.

    2010-04-01

    On 4 March 2010, the ALMA system response to an extraordinarily large disturbance was measured when a magnitude 6.3 earthquake struck near Calama, Chile, relatively close to the ALMA site. Figures 1 through 4 demonstrate the remarkable performance of the ALMA system to a huge disturbance that was more than 100 times the specification for correction accuracy.

  18. Road Damage Following Earthquake

    Science.gov (United States)

    1989-01-01

    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  19. The HayWired earthquake scenario—Earthquake hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-01-01

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  20. USACE Geotechnical Earthquake Engineering Software, Report 1 WESHAKE for Personal Computers (Version 1.0)

    Science.gov (United States)

    1992-09-01

    Paducah Gaseous Diffusion Plant , Paducah , Kentucky," Report K/GDP/SAR/SUB-l, Department of Energy, Oak Ridge...34Site-Specific Earthquake Response Analysis of Soil Columns at Paducah Gaseous Diffusion Plant , Paducah , KY," Miscellaneous Paper GL-92-?? (draft in DOE...Columns at Portsmouth Gaseous Diffusion Plant , Portsmouth, OH," Miscellaneous Paper GL-92-?? (draft in DOE review process), US Army Engineer

  1. Improving prosthetic prognosis by connective tissue ridge augmentation of alveolar ridge

    Directory of Open Access Journals (Sweden)

    Mishra Niraj

    2010-01-01

    Full Text Available The contour of edentulous ridge should be carefully evaluated before a fixed partial denture is undertaken. The ideal ridge height and width allows placement of a natural looking pontic which facilitates maintenance of plaque-free environment. The localized alveolar ridge defect refers to the volumetric deficit of the limited extent of bone and soft tissue within the alveolar process. Such type of ridge defects can be corrected by surgical ridge augmentation that can be accomplished by the addition of either soft or hard tissues. This article describes a procedure of surgical connective tissue augmentation of a localized deficient alveolar ridge in the maxilla, followed by fixed partial denture, enhancing the esthetics, function and health.

  2. Improving prosthetic prognosis by connective tissue ridge augmentation of alveolar ridge.

    Science.gov (United States)

    Mishra, Niraj; Singh, Balendra P; Rao, Jitendra; Rastogi, Pavitra

    2010-01-01

    The contour of edentulous ridge should be carefully evaluated before a fixed partial denture is undertaken. The ideal ridge height and width allows placement of a natural looking pontic which facilitates maintenance of plaque-free environment. The localized alveolar ridge defect refers to the volumetric deficit of the limited extent of bone and soft tissue within the alveolar process. Such type of ridge defects can be corrected by surgical ridge augmentation that can be accomplished by the addition of either soft or hard tissues. This article describes a procedure of surgical connective tissue augmentation of a localized deficient alveolar ridge in the maxilla, followed by fixed partial denture, enhancing the esthetics, function and health.

  3. KINERJA JACKKNIFE RIDGE REGRESSION DALAM MENGATASI MULTIKOLINEARITAS

    Directory of Open Access Journals (Sweden)

    HANY DEVITA

    2015-02-01

    Full Text Available Ordinary least square is a parameter estimations for minimizing residual sum of squares. If the multicollinearity was found in the data, unbias estimator with minimum variance could not be reached. Multicollinearity is a linear correlation between independent variabels in model. Jackknife Ridge Regression(JRR as an extension of Generalized Ridge Regression (GRR for solving multicollinearity.  Generalized Ridge Regression is used to overcome the bias of estimators caused of presents multicollinearity by adding different bias parameter for each independent variabel in least square equation after transforming the data into an orthoghonal form. Beside that, JRR can  reduce the bias of the ridge estimator. The result showed that JRR model out performs GRR model.

  4. The role of ridges in the formation and longevity of flat slabs.

    Science.gov (United States)

    Antonijevic, Sanja Knezevic; Wagner, Lara S; Kumar, Abhash; Beck, Susan L; Long, Maureen D; Zandt, George; Tavera, Hernando; Condori, Cristobal

    2015-08-13

    Flat-slab subduction occurs when the descending plate becomes horizontal at some depth before resuming its descent into the mantle. It is often proposed as a mechanism for the uplifting of deep crustal rocks ('thick-skinned' deformation) far from plate boundaries, and for causing unusual patterns of volcanism, as far back as the Proterozoic eon. For example, the formation of the expansive Rocky Mountains and the subsequent voluminous volcanism across much of the western USA has been attributed to a broad region of flat-slab subduction beneath North America that occurred during the Laramide orogeny (80-55 million years ago). Here we study the largest modern flat slab, located in Peru, to better understand the processes controlling the formation and extent of flat slabs. We present new data that indicate that the subducting Nazca Ridge is necessary for the development and continued support of the horizontal plate at a depth of about 90 kilometres. By combining constraints from Rayleigh wave phase velocities with improved earthquake locations, we find that the flat slab is shallowest along the ridge, while to the northwest of the ridge, the slab is sagging, tearing, and re-initiating normal subduction. On the basis of our observations, we propose a conceptual model for the temporal evolution of the Peruvian flat slab in which the flat slab forms because of the combined effects of trench retreat along the Peruvian plate boundary, suction, and ridge subduction. We find that while the ridge is necessary but not sufficient for the formation of the flat slab, its removal is sufficient for the flat slab to fail. This provides new constraints on our understanding of the processes controlling the beginning and end of the Laramide orogeny and other putative episodes of flat-slab subduction.

  5. Oak Ridge TNS Program: system description manual

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Becraft, W.R.; Brown, T.G.; Peng, Y.K.M.; Sardella, C.; Shannon, T.E.; Steiner, D.; Wells, W.M.; Wiseman, G.W.

    1979-05-01

    This document provides a systems description of the Reference Design for The Next Step (TNS) evolved at Oak Ridge National Laboratory (ORNL) during FY 1978. The description is presented on the basis of 24 individual device and facility systems. Additional information on these systems, the Reference Design, and the FY 1978 Oak Ridge TNS activities can be found in the associated technical memoranda, ORNL/TM-6720 and ORNL/TM-6722--ORNL/TM-6733.

  6. Realization of Ridge Regression in MATLAB

    Science.gov (United States)

    Dimitrov, S.; Kovacheva, S.; Prodanova, K.

    2008-10-01

    The least square estimator (LSE) of the coefficients in the classical linear regression models is unbiased. In the case of multicollinearity of the vectors of design matrix, LSE has very big variance, i.e., the estimator is unstable. A more stable estimator (but biased) can be constructed using ridge-estimator (RE). In this paper the basic methods of obtaining of Ridge-estimators and numerical procedures of its realization in MATLAB are considered. An application to Pharmacokinetics problem is considered.

  7. Interseismic Coupling Models and their interactions with the Sources of Large and Great Earthquakes

    Science.gov (United States)

    Chlieh, M.; Perfettini, H.; Avouac, J. P.

    2009-04-01

    Recent observations of heterogeneous strain build up reported from subduction zones and seismic sources of large and great interplate earthquakes indicate that seismic asperities are probably persistent features of the megathrust. The Peru Megathrust produce recurrently large seismic events like the 2001 Mw 8.4, Arequipa earthquake or the 2007 Mw 8.0, Pisco earthquake. The peruvian subduction zone provide an exceptional opportunity to understand the eventual relationship between interseismic coupling, large megathrust ruptures and the frictional properties of the megathrust. An emerging concept is a megathrust with strong locked fault patches surrounded by aseismic slip. The 2001, Mw 8.4 Arequipa earthquake ruptured only the northern portion of the patch that had ruptured already during the great 1868 Mw~8.8 earthquake and that had remained locked in the interseismic period. The 2007 Mw 8.0 Pisco earthquake ruptured the southern portion of the 1746 Mw~8.5 event. The moment released in 2007 amounts to only a small fraction of the deficit of moment that had accumulated since the 1746 great earthquake. Then, the potential for future large megathrust events in Central and Southern Peru area remains large. These recent earthquakes indicate that a same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or jointly to produce a larger rupture. The spatial distribution of frictional properties of the megathrust could be the cause for a more complex earthquakes sequence from one seismic cycle to another. The subduction of geomorphologic structure like the Nazca ridge could be the cause for a lower coupling there.

  8. Listening to Earthquakes with Infrasound

    Science.gov (United States)

    Mucek, A. E.; Langston, C. A.

    2011-12-01

    A tripartite infrasound array was installed to listen to earthquakes occurring along the Guy-Greenbrier fault in Arkansas. The active earthquake swarm is believed to be caused by deep waste water injections and will allow us to explain the mechanisms causing earthquake "booms" that have been heard during an earthquake. The array has an aperture of 50 meters and is installed next to the X301 seismograph station run by the Center for Earthquake Research and Information (CERI). This arrangement allows simultaneous recording of seismic and acoustic changes from the arrival of an earthquake. Other acoustic and seismic sources that have been found include thunder from thunderstorms, gunshots, quarry explosions and hydraulic fracturing activity from the local gas wells. The duration of the experiment is from the last week of June to the last week of September 2011. During the first month and a half, seven local earthquakes were recorded, along with numerous occurrences of the other infrasound sources. Phase arrival times of the recorded waves allow us to estimate wave slowness and azimuth of infrasound events. Using these two properties, we can determine whether earthquake "booms" occur at a site from the arrival of the P-wave or whether the earthquake "booms" occur elsewhere and travel through the atmosphere. Preliminary results show that the infrasound correlates well to the ground motion during an earthquake for frequencies below 15 Hertz.

  9. Oak Ridge Reservation environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01

    This two-volume report, the Oak Ridge Reservation Environmental Report for 1989, is the nineteenth in an annual series that began in 1971. It reports the results of a comprehensive, year-round program to monitor the impact of operations at the three major US Department of Energy (DOE) production and research installations in Oak Ridge on the immediate areas' and surrounding region's groundwater and surface waters, soil, air quality, vegetation and wildlife, and through these multiple and varied pathways, the resident human population. Information is presented for the environmental monitoring Quality Assurance (QA) Program, audits and reviews, waste management activities, land special environmental studies. Data are included for the Oak Ridge Y-12 Plant, Oak Ridge National Laboratory (ORNL), and Oak Ridge Gaseous Diffusion Plant (ORGDP). Volume 1 presents narratives, summaries, and conclusions based on environmental monitoring at the three DOE installations and in the surrounding environs during calendar year (CY) 1989. Volume 1 is intended to be a stand-alone'' report about the Oak Ridge Reservation (ORR) for the reader who does not want an in-depth review of 1989 data. Volume 2 presents the detailed data from which these conclusions have been drawn and should be used in conjunction with Volume 1.

  10. Assessing the clarity of friction ridge impressions.

    Science.gov (United States)

    Hicklin, R Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2013-03-10

    The ability of friction ridge examiners to correctly discern and make use of the ridges and associated features in finger or palm impressions is limited by clarity. The clarity of an impression relates to the examiner's confidence that the presence, absence, and attributes of features can be correctly discerned. Despite the importance of clarity in the examination process, there have not previously been standard methods for assessing clarity in friction ridge impressions. We introduce a process for annotation, analysis, and interchange of friction ridge clarity information that can be applied to latent or exemplar impressions. This paper: (1) describes a method for evaluating the clarity of friction ridge impressions by using color-coded annotations that can be used by examiners or automated systems; (2) discusses algorithms for overall clarity metrics based on manual or automated clarity annotation; and (3) defines a method of quantifying the correspondence of clarity when comparing a pair of friction ridge images, based on clarity annotation and resulting metrics. Different uses of this approach include examiner interchange of data, quality assurance, metrics, and as an aid in automated fingerprint matching.

  11. Tidal Triggering and Statistical Patterns of Microseismicity at Axial Volcano on the Juan de Fuca Ridge

    Science.gov (United States)

    Bohnenstiehl, D. R.; Dziak, R. P.; Caplan-Auerbach, J.; Haxel, J. H.; Mann, M. E.; Pennington, C.; Weis, J.; Womack, N.; Levy, S.

    2015-12-01

    Tidal stress changes are known to modulate the timing of microearthquakes within many mid-ocean ridge volcanic systems. At Axial Volcano, located on the Juan de Fuca Ridge, earthquakes occur preferentially when volumetric extension peaks near times of low ocean tide. Autonomous ocean-bottom hydrophone (OBH, 2007-2011) and cabled ocean bottom seismometer (OBS, Nov. 2014-) data are used to quantify the strength of tidal triggering in time periods before the April 2011 and April 2015 eruptions at Axial Volcano. The mean percent excess at times of low ocean-tide is ~14% (16% std) in the four years prior to the 2011 eruption and ~18% (17% std) in the five months prior to the 2015 eruption. The sensitivity of earthquakes to tidal stress does not evolve systematically prior to either eruption; however, this pattern is disturbed by much larger stress changes associated with the onset of dike intrusion. Following dike injection and eruption, seismicity rates drop sharply. As seismicity rates continue to rise in the months following the 2015 eruption, real-time data available from the cabled OBS network will be used quantify temporal patterns in microearthquake activity as dike induced stresses are relaxed and the magma chamber inflates.

  12. Are segment boundaries of subduction earthquakes structurally controlled? Evidences from the Ecuador-Colombia 20th century earthquake sequence

    Science.gov (United States)

    Collot, J.-Y.; Marcaillou, B.; Sage, F.; Gutscher, M.-A.; Charvis, P.; Michaud, F.

    2003-04-01

    , and across a highly deformed outer ridge, indicating a relatively weak margin/strong plate inter-face. In addition to separating areas of differing long-term deformation, MF appears to serve as location for high stress concentration during the earthquake cycle as indicated by the clustering of 1958 aftershock events of M=~6.0 near the fault. These data show that the MF controls the rupture zone of subduction earthquakes of Mw 7.7 to 8.2, by decoupling the tectonic blocks of the margin from the underlying plate interface.

  13. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    Science.gov (United States)

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  14. Incorporating Ridges with Minutiae for Improved Fingerprint verification

    Directory of Open Access Journals (Sweden)

    Ms.M.Indra

    2012-10-01

    Full Text Available Next to DNA, fingerprint is the unique feature which identifies the individual. Distortions and skin deformations makes the fingerprint unreliable and it is difficult to match using minutiae alone. But when ridge features are incorporated with minutiae features (minutiae type, orientation and position more topological information can be obtained. And also ridges are invariant to transformations such as rotation and translation[1]. Ridge based coordinate system is used to extract the ridge features such as ridge length, ridge count, ridge type and curvature direction in the skeletonized image. Breadth First Search is used to traverse the graph formed using the minutiae as the node and the ridge vector formed using the ridge features as the edge. The proposed ridge feature gives additional information for fingerprint matching with little increment in template size and can be used along with the existing minutiae features to increase the accuracy and robustness of fingerprint recognition systems.

  15. Intraplate compressional deformation in West-Congo and the Congo basin: related to ridge-puch from the South Atlantic spreading ridge?

    Science.gov (United States)

    Delvaux, Damien; Everaerts, Michel; Kongota Isasi, Elvis; Ganza Bamulezi, Gloire

    2016-04-01

    After the break-up and separation of South America from Africa and the initiation of the South-Atlantic mid-oceanic ridge in the Albian, at about 120 Ma, ridge-push forces started to build-up in the oceanic lithosphere and were transmitted to the adjacent continental plates. This is particularly well expressed in the passive margin and continental interior of Central Africa. According to the relations of Wiens and Stein (1985) between ridge-push forces and basal drag in function of the lithospheric age of oceanic plates, the deviatoric stress reaches a compressional maximum between 50 and 100, Ma after the initiation of the spreading ridge, so broadly corresponding to the Paleocene in this case (~70-20 Ma). Earthquake focal mechanism data show that the West-Congo margin and a large part of the Congo basin are still currently under compressional stresses with an horizontal compression parallel to the direction of the active transform fracture zones. We studied the fracture network along the Congo River in Kinshasa and Brazzaville which affect Cambrian sandstones and probably also the late Cretaceous-Paleocene sediments. Their brittle tectonic evolution is compatible with the buildup of ridge-push forces related to the South-Atlantic opening. Further inland, low-angle reverse faults are found affecting Jurassic to Middle Cretaceous cores from the Samba borehole in the Congo basin and strike-slip movements are recorded as a second brittle phase in the Permian cores of the Dekese well, at the southern margin of the Congo basin. An analysis of the topography and river network of the Congo basin show the development of low-amplitude (50-100 m) long wavelengths (100-300 km) undulations that can be interpreted as lithospheric buckling in response to the compressional intraplate stress field generated by the Mid-Atlantic ridge-push. Wiens, D.A., Stein, S., 1985. Implications of oceanic intraplate seismicity for plate stresses, driving forces and theology. Tectonophysics

  16. Aftershock seismicity and Tectonic Setting of the 16 September 2015 Mw 8.3 Illapel earthquake

    Science.gov (United States)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-04-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the spatial pattern of coseismic rupture and the temporal and spatial pattern of local seismicity for aftershocks and foreshocks in relation to the tectonic setting in the earthquake area. Aftershock seismicity surrounds the rupture area in lateral and downdip direction. For the first 24 hours following the mainshock we observe aftershock migration to both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern earthquake boundary aftershocks cluster around individual subducted seamounts located on the prolongation of the downthrusting Juan Fernández Ridge indicating stress transfer from the main rupture area. In the northern part of the rupture area a deeper band of local seismicity is observed indicating an alternation of seismic to aseismic behavior of the plate interface in downdip direction. This aseismic region at ~30 km depth that is also observed before the Illapel 2015 earthquake is likely controlled by the intersection of the continental Moho with the subducting slab.

  17. Solar activity and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, J.

    1979-02-26

    Prolonged astronomical observations have discovered that the Sun, which is the nearest star to the Earth, is not calm and serene. On the solar surface, there are often windstorms, electrical lights, and sometimes large flame eruptions; and there are regularly black spots in patches which are also active. The Sun not only disperses light and heat, but also throws out large quantities of currents of charged particles to be scattered in space and to reach the Earth, sometimes, which are called by some solar winds. These activities in the Sun can induce many physical phenomena on earth, including magnetic storms, polar light, sudden disruption or attenuation of medium- and short-wave radio, and many atmospheric changes. Some scientists believe they are perhaps also related to the occurrence of earthquakes. This paper explains these solar activities and their possible relationship to earthquakes.

  18. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  19. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  20. Why did the Nepal Gorkha Earthquake Have so few Effects on Glacial Lakes?

    Science.gov (United States)

    Kargel, J. S.; Collins, B. D.; Fielding, E. J.; Fujita, K.; Haritashya, U. K.; Hudnut, K. W.; Leonard, G. J.; Shugar, D. H.; Sakai, A.; Jibson, R.

    2015-12-01

    On 25 April 2015, a magnitude 7.8 earthquake struck Nepal. Subsequently many large aftershocks shook the region, including one of magnitude 7.3. Much damage occurred and over 4000 landslides were triggered, but fortunately few earthquake effects on glacier lakes have been identified and no large glacier lake outburst floods (GLOFs) have been clearly attributed to the quakes. Why were the lakes largely unscathed? We will (1) review some cases around the world where earthquakes have apparently triggered responses among glaciers and glacier- or moraine-dammed lakes, and how these responses took place, (2) consider why earthquakes in general might not commonly have such large impacts on glacial lakes as widely expected; (3) show some case examples of glacial moraine-dammed lakes in Nepal and Tibet where few visible effects of the Gorkha earthquake (and aftershocks) were documented; and (4) consider why specifically the Gorkha earthquake (+ aftershocks) caused very few and mild effects. Earthquake shaking and steep slopes result in thousands of landslides when big earthquakes occur in mountains; furthermore, large mass movements into glacial lakes are a known trigger of many GLOFs. Worldwide there is little evidence, contrary to speculation, and now reinforced by the Gorkha quake, that earthquakes—even big ones happening near glacier lakes—are normally a major trigger of GLOFs. There may be several explanations. The Gorkha earthquake might have caused less shaking than its total released energy suggests, thus further sparing the Himalayan lakes from catastrophe. A possible further protective aspect is that glacial lakes mainly occur far up alpine valleys. It is known from other quakes that when there is shallow slip and rugged relief, surface wave modes tend to be absorbed and scattered as these waves propagate across mountain ranges, and body waves are focused into ridges, thus reducing the ground accelerations on valley floors (where lakes occur) and commonly

  1. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara

    2012-06-01

    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  2. Foreshocks of strong earthquakes

    Science.gov (United States)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.

    2014-07-01

    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  3. Ground-motion amplification at the Colle di Roio ridge, central Italy: a combined effect of stratigraphy and topography

    Science.gov (United States)

    Hailemikael, S.; Lenti, L.; Martino, S.; Paciello, A.; Rossi, D.; Mugnozza, G. Scarascia

    2016-07-01

    Following the Mw 6.3 L'Aquila Earthquake of 2009 April 6, the Colle di Roio village, central Italy, suffered severe building damages. The village is located on top of an elongated carbonate ridge characterized by a complex subsurface structure, a condition prone to seismic amplification due to topographic and stratigraphic effects. We address the role of the subsurface structure and topography in the ground-motion amplification observed at the ridge top. To characterize the subsurface structure of the ridge we performed geological investigations and ambient vibration measurements in single-station as well as 2-D-array configuration. Geological investigations pointed out that the ridge top is characterized by the presence of fractured rock material as a consequence of its anticlinal fold structure. Horizontal-to-vertical spectral ratio (HVSR) processing of ambient vibration records showed a broad peak in the HVSR functions in the frequency range 4-6 Hz and 2-D-array data demonstrated that locally the subsurface structure at the ridge top cannot be considered homogeneous. In summer 2009, we further installed one accelerometric station on the ridge top to experimentally evaluate the site amplification. By means of HVSR analysis of a sample of 18 weak-motion records (H/V), we found that ground-motion amplification occurs in a narrow frequency range centred around 4 Hz with mean ratio amplitude of 6. We also analysed the dependence of seismic amplification on the azimuth by calculating H/V ratios for horizontal components rotated into a range of azimuths. This analysis showed that the higher level of horizontal amplification occurs in the direction perpendicular to the ridge trending direction. With the aim of evaluating the contribution of the topography and the local subsurface structure on the observed seismic amplification, we performed 2-D finite-difference modelling of wave propagation through the ridge, adopting both homogeneous and heterogeneous models. We were

  4. The Afar Depression: interpretation of the 1960-2000 earthquakes

    Science.gov (United States)

    Hofstetter, R.; Beyth, M.

    2003-11-01

    We studied the seismic activity of the Afar Depression (AD) and adjacent regions during the period 1960-2000. We define seven distinct seismogenic regions using geological, tectonic and seismological data. Based on the frequency-magnitude relationships we obtain b-values of about 1 for the different regions. The pattern of the distribution of the location of epicentres fits with the known active fault zone in the AD and the axial volcanic ridges. The Bab el Mandab area and the Danakil-Aysha'a blocks are less active. For 125 intermediate to strong earthquakes the seismic moment and source parameters were calculated. The results of the fault plane solutions for the Afar Depression indicate mainly strike-slip and normal sense of movement originating from fault planes striking NW-SE. These results indicate a clockwise block rotation described previously as a bookshelf model in central AD. There are a few right-lateral faults east of Massawa with E-W-striking fault planes. At the southern Red Sea, north of the Danakil block, the mixed focal mechanisms, with axial plane striking NW-SE, comprise several reverse faulting, strike-slip motion and normal faulting. Right-lateral movement was also calculated for a cluster of seismic events between the Manda Hararo and Alyata volcanic ridges along NW-SE-striking faults. Along the N-S-striking faults in the escarpment, at the western Afar margins, there are two distinct clusters of epicentres. The strong earthquakes at the southern cluster exhibit normal or strike-slip motions. The intermediate to small earthquakes in the northern cluster exhibit reverse and strike-slip motions. Mainly normal faults were calculated along NE-SW-striking faults of the Ethiopian East African Rift. Estimates of the seismic efficiency suggest that the maximal values are about 50 per cent or less, implying that most of the motion is taken aseismically.

  5. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    Science.gov (United States)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    -branch junction formation and evolution by using high-resolution 3D numerical mechanical experiments that take into account realistic thermo-rheological structure and rheology of the lithosphere. We find that two major types of quadruple and triple junctions are formed under bi-directional or multidirectional far-field stress field: (i) plate rifting junctions are formed by the initial plate fragmentation and can be subsequently re-arranged into (ii) oceanic spreading junctions controlled by the new oceanic crust accretion. In particular, we document initial formation and destabilization of quadruple R-R-R-R junctions as initial plate rifting structures under bi-directional extension. In most cases, quadruple plate rifting junctions rapidly (typically within 1-2 Myr) evolve towards formation of two diverging triple oceanic spreading junctions connected by a linear spreading center lengthening with time. This configuration remains stable over long time scales. However, under certain conditions, quadruple junctions may also remain relatively stable. Asymmetric stretching results in various configurations, for example formation of "T-junctions" with trans-extensional components and combination of fast and slow spreading ridges. Combined with plume impingement, this scenario evolves in realistic patterns closely resembling observed plate dynamics. In particular, opening of the Red Sea and of the Afar rift system find a logical explanation within a single model. Numerical experiments also suggest that several existing oceanic spreading junctions form as the result of plate motions rearrangements after which only one of two plates spreading along the ridge become subjected to bi-directional spreading.

  6. Preliminary results from the first InRidge cruise to the central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.; Ganesan, P.; Rao, A.K.; Suribabu, A.; Ganesh, C.; Naik, G.P.

    stream_size 1 stream_content_type text/plain stream_name Inter_Ridge_News_7_40.pdf.txt stream_source_info Inter_Ridge_News_7_40.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  7. Earthquake forecasting: Statistics and Information

    CERN Document Server

    Gertsik, V; Krichevets, A

    2013-01-01

    We present an axiomatic approach to earthquake forecasting in terms of multi-component random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different earthquake forecasts in terms of the increase of Shannon information. 'Forecasting' and 'prediction' of earthquakes are equivalent in this approach.

  8. Earthquake forecasting and its verification

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2005-01-01

    Full Text Available No proven method is currently available for the reliable short time prediction of earthquakes (minutes to months. However, it is possible to make probabilistic hazard assessments for earthquake risk. In this paper we discuss a new approach to earthquake forecasting based on a pattern informatics (PI method which quantifies temporal variations in seismicity. The output, which is based on an association of small earthquakes with future large earthquakes, is a map of areas in a seismogenic region ('hotspots'' where earthquakes are forecast to occur in a future 10-year time span. This approach has been successfully applied to California, to Japan, and on a worldwide basis. Because a sharp decision threshold is used, these forecasts are binary--an earthquake is forecast either to occur or to not occur. The standard approach to the evaluation of a binary forecast is the use of the relative (or receiver operating characteristic (ROC diagram, which is a more restrictive test and less subject to bias than maximum likelihood tests. To test our PI method, we made two types of retrospective forecasts for California. The first is the PI method and the second is a relative intensity (RI forecast based on the hypothesis that future large earthquakes will occur where most smaller earthquakes have occurred in the recent past. While both retrospective forecasts are for the ten year period 1 January 2000 to 31 December 2009, we performed an interim analysis 5 years into the forecast. The PI method out performs the RI method under most circumstances.

  9. Anthropogenic disruption to the seismic driving of beach ridge formation: The Sendai coast, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Goff, James, E-mail: j.goff@unsw.edu.au [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052 (Australia); Knight, Jasper, E-mail: jasper.knight@wits.ac.za [School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Sugawara, Daisuke, E-mail: sugawara@irides.tohoku.ac.jp [Hazard and Risk Evaluation Research Division, International Research, Institute of Disaster Science (IRIDeS), Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-0845 (Japan); Terry, James P., E-mail: james.terry@zu.ac.ae [College of Sustainability Sciences and Humanities, Zayed University, PO Box 19282, Dubai (United Arab Emirates)

    2016-02-15

    The expected geomorphic after-effects of the M{sub w} 9.0 Tōhoku-oki earthquake of 11 March 2011 (eastern Japan) are summarized by a schematic model of seismic driving, which details seismogenic disturbances to sediment systems that affect the rate or timing of sediment delivery to coastlines over timescales of 10{sup 2}–10{sup 4} years. The immediate physical environmental responses to this high-magnitude earthquake included a large tsunami and extensive region-wide slope failures. Normally, slope failures within mountain catchments would have significant impacts on Japan's river and coastal geomorphology in the coming decades with, for example, a new beach ridge expected to form within 20–100 years on the Sendai Plain. However, human activity has significantly modified the rate and timing of geomorphic processes of the region, which will have impacts on likely geomorphic responses to seismic driving. For example, the rivers draining into Sendai Bay have been dammed, providing sediment traps that will efficiently capture bedload and much suspended sediment in transit through the river system. Instead of the expected ~ 1 km of coastal progradation and formation of a ~ 3 m high beach ridge prior to the next large tsunami, it is likely that progradation of the Sendai Plain will continue to slow or even cease as a result of damming of river systems and capture of river sediments behind dams. The resulting reduction of fluvial sediment delivery to the coast due to modification of rivers inadvertently makes seawalls and other engineered coastal structures even more necessary than they would be otherwise. - Highlights: • The Tōhoku-oki earthquake led to seismogenic landslides inland. • Seismogenic sediments are reworked through river systems to the coast. • River dams are capturing these sediments, reducing sediment supply to the coast. • Reduced coastal sediment supply is increasing tsunami risk. • Engineering of river systems is making coastal

  10. Earthquake Source Parameters Inferred from T-Wave Observations

    Science.gov (United States)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.

    2004-12-01

    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T

  11. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

  12. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  13. Understanding intraplate earthquakes in Sweden: the where and why

    Science.gov (United States)

    Lund, Björn; Tryggvason, Ari; Chan, NeXun; Högdahl, Karin; Buhcheva, Darina; Bödvarsson, Reynir

    2016-04-01

    distributed, with a concentration in a band across Lake Vänern, following the boundary between the TIB and the Sveconorwegian orogenic belt. We identify a number of earthquake lineaments in the country and relate these to very different geological units and boundaries, from old Paleoproterozoic features to the youngest postglacial faults. We show how earthquake depths vary in the different seismically active regions, and identify events occurring down to 40 km depth in the crust. Focal mechanisms show that in much of Sweden strike-slip faulting dominates at seismogenic depths. There are however systematic variations within the country. Inverting the mechanisms for the stress field indicates that the maximum horizontal stress direction is NW-SE, in agreement with ridge-push, in much of the country. We will discuss other possible driving mechanisms, such as the ongoing postglacial rebound.

  14. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  15. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  16. Make an Earthquake: Ground Shaking!

    Science.gov (United States)

    Savasci, Funda

    2011-01-01

    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  17. Anthropogenic triggering of large earthquakes.

    Science.gov (United States)

    Mulargia, Francesco; Bizzarri, Andrea

    2014-08-26

    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  18. Heavy tails and earthquake probabilities

    Science.gov (United States)

    Ellsworth, William L.

    2012-01-01

    The 21st century has already seen its share of devastating earthquakes, some of which have been labeled as “unexpected,” at least in the eyes of some seismologists and more than a few journalists. A list of seismological surprises could include the 2004 Sumatra-Andaman Islands; 2008 Wenchuan, China; 2009 Haiti; 2011 Christchurch, New Zealand; and 2011 Tohoku, Japan, earthquakes

  19. Earthquakes Threaten Many American Schools

    Science.gov (United States)

    Bailey, Nancy E.

    2010-01-01

    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  20. Can Satellites Aid Earthquake Predictions?

    Institute of Scientific and Technical Information of China (English)

    John Roach; 李晓辉

    2004-01-01

    @@ Earthquake prediction is an imprecise science, and to illustrate the point,many experts point to the story of Tangshen①, China. On July 28, 1976, a magnitude② 7. 6 earthquake struck the city of Tangshen, China, without warning. None of the signs of the successful prediction from a year and half earlier were present. An estimated 250,000 people died.

  1. Refinements on the inferred causative faults of the great 2012 Indian Ocean earthquakes

    Science.gov (United States)

    Revathy, P. M.; Rajendran, K.

    2014-12-01

    As the largest known intra-plate strike-slip events, the pair of 2012 earthquakes in the Wharton Basin is a rarity. Separated in time by 2 hours these events rouse interest also because of their short inter-event duration, complex rupture mechanism, and spatial-temporal proximity to the great 2004 Sumatra plate boundary earthquake. Reactivation of fossil ridge-transform pairs is a favoured mechanism for large oceanic plate earthquakes and their inherent geometry triggers earthquakes on conjugate fault systems, as observed previously in the Wharton Basin. The current debate is whether the ruptures occurred on the WNW-ESE paleo ridges or the NNE-SSW paleo transforms. Back-projection models give a complex rupture pattern that favours the WNW-ESE fault [1]. However, the static stress changes due to the 2004 Sumatra earthquake and 2005 Nias earthquake favour the N15°E fault [2]. We use the Teleseismic Body-Wave Inversion Program [3] and waveform data from Global Seismic Network, to obtain the best fit solutions using P and S-wave synthetic modelling. The preliminary P-wave analysis of both earthquakes gives source parameters that are consistent with the Harvard CMT solutions. The obtained slip distribution complies with the NNE-SSW transforms. Both these earthquakes triggered small tsunamis which appear as two distinctive pulses on 13 Indian Ocean tide gauges and buoys. Frequency spectra of the tsunami recordings from various azimuths provide additional constraint for the choice of the causative faults. References: [1] Yue, H., T. Lay, and K. D. Koper (2012), En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes, Nature, 490, 245-249, doi:10.1038/nature11492 [2] Delescluse, M., N. Chamot-Rooke, R. Cattin, L. Fleitout, O. Trubienko and C. Vigny April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust, Nature, 490(2012), pp. 240-244, doi:10.1038/nature11520 [3] M. Kikuchi and H. Kanamori, Note on

  2. Bathymetry of Reykjanes Ridge: A methodological approach

    OpenAIRE

    Banul, Karolina, 1987-

    2014-01-01

    The sea floor is one of the Earths parts that still are mostly unexplored. Recent multibeam technology has now opened up new opportunities to increase our knowledge in this hitherto hidden part of the world. In this study part of the Reykjanes Ridge was analysed in order to create a high resolution and comprehensive topographic map of this northern part of the Mid-Atlantic Ocean Ridge. The general aims of the study were to i) develop seamless method from Caris, a raw analytical program for mu...

  3. Ridge and Transverse Correlation at Separated Rapidities

    CERN Document Server

    Chiu, Charles B

    2012-01-01

    A simple phenomenological relationship between the ridge distribution in $\\Delta\\eta$ and the single-particle distribution in $\\eta$ can be established from the PHOBOS data on both distributions. The implication points to the possibility that there is no long-range longitudinal correlation. An interpretation of the relationship is then developed, based on the recognition that longitudinal uncertainty of the initial configuration allows for non-Hubble-like expansion at early time. It is shown that the main features of the ridge structure can be explained in a model where transverse correlation stimulated by semihard partons is the principal mechanism.

  4. Tissue Engineering for Vertical Ridge Reconstruction.

    Science.gov (United States)

    Patel, Neel; Kim, Beomjune; Zaid, Waleed; Spagnoli, Daniel

    2017-02-01

    This article provides an overview of basic tissue engineering principles as they are applied to vertical ridge defects and reconstructive techniques for these types of deficiencies. Presented are multiple clinical cases ranging from office-based dentoalveolar procedures to the more complex reconstruction of postresection mandibular defects. Several different types of regenerative tissue constructs are presented; either used alone or in combination with traditional reconstructive techniques and procedures, such as maxillary sinus augmentation, Le Fort I osteotomy, and microvascular free tissue transfer. The goal is to also familiarize the reconstructive surgeon to potential future strategies in vertical alveolar ridge augmentation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Earthquake Loss Estimation Uncertainties

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander

    2013-04-01

    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  6. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  7. Earthquake forecasting: statistics and information

    Directory of Open Access Journals (Sweden)

    Vladimir Gertsik

    2016-01-01

    Full Text Available The paper presents a decision rule forming a mathematical basis of earthquake forecasting problem. We develop an axiomatic approach to earthquake forecasting in terms of multicomponent random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting a multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different algorithms of earthquake forecasts in terms of the increase of Shannon information. ‘Forecasting’ (the calculation of the probabilities and ‘prediction’ (the alarm declaring of earthquakes are equivalent in this approach.

  8. Are Earthquakes a Critical Phenomenon?

    Science.gov (United States)

    Ramos, O.

    2014-12-01

    Earthquakes, granular avalanches, superconducting vortices, solar flares, and even stock markets are known to evolve through power-law distributed events. During decades, the formalism of equilibrium phase transition has coined these phenomena as critical, which implies that they are also unpredictable. This work revises these ideas and uses earthquakes as the paradigm to demonstrate that slowly driven systems evolving through uncorrelated and power-law distributed avalanches (UPLA) are not necessarily critical systems, and therefore not necessarily unpredictable. By linking the correlation length to the pdf of the distribution, and comparing it with the one obtained at a critical point, a condition of criticality is introduced. Simulations in the classical Olami-Feder-Christensen (OFC) earthquake model confirm the findings, showing that earthquakes are not a critical phenomenon. However, one single catastrophic earthquake may show critical properties and, paradoxically, the emergence of this temporal critical behaviour may eventually carry precursory signs of catastrophic events.

  9. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    Science.gov (United States)

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  10. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  11. Ridge regression estimator: combining unbiased and ordinary ridge regression methods of estimation

    Directory of Open Access Journals (Sweden)

    Sharad Damodar Gore

    2009-10-01

    Full Text Available Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR. This estimator is obtained from unbiased ridge regression (URR in the same way that ordinary ridge regression (ORR is obtained from ordinary least squares (OLS. Properties of MUR are derived. Results on its matrix mean squared error (MMSE are obtained. MUR is compared with ORR and URR in terms of MMSE. These results are illustrated with an example based on data generated by Hoerl and Kennard (1975.

  12. Large fault fabric of the Ninetyeast Ridge implies near-spreading ridge formation

    Digital Repository Service at National Institute of Oceanography (India)

    Sager, W.W.; Paul, C.F; Krishna, K.S.; Pringle, M.S.; Eisin, A.E.; Frey, F; Rao, D; Levchenko, O.V.

    Large Fault Fabric of the Ninetyeast Ridge Implies Near-Spreading Ridge Formation 1 W. W. Sager 1 *, C. F. Paul 1 , K. S. Krishna 2 , M. Pringle 3 , A. E. Eisin 1,4 , F. A. Frey 3 , D. Gopala 2 Rao 5 , O. Levchenko 6 3 1 Department of Oceanography....proc.sr.121.122.1991. 254 Sandwell, D. T., and W. H. F. Smith (2009), Global marine gravity from retracked Geosat and 255 ERS-1 Altimetry: Ridge segmentation versus spreading rate, J. Geophys. Res., 114, 1-16, 256 doi:10.10029/2008JB006008, 2009. 257...

  13. The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey

    Directory of Open Access Journals (Sweden)

    Katsuichiro eGoda

    2015-06-01

    Full Text Available The 2015 Gorkha Nepal earthquake caused tremendous damage and loss. To gain valuable lessons from this tragic event, an earthquake damage investigation team was dispatched to Nepal from 1 May 2015 to 7 May 2015. A unique aspect of the earthquake damage investigation is that first-hand earthquake damage data were obtained 6 to 11 days after the mainshock. To gain deeper understanding of the observed earthquake damage in Nepal, the paper reviews the seismotectonic setting and regional seismicity in Nepal and analyzes available aftershock data and ground motion data. The earthquake damage observations indicate that the majority of the damaged buildings were stone/brick masonry structures with no seismic detailing, whereas the most of RC buildings were undamaged. This indicates that adequate structural design is the key to reduce the earthquake risk in Nepal. To share the gathered damage data widely, the collected damage data (geo-tagged photos and observation comments are organized using Google Earth and the kmz file is made publicly available.

  14. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  15. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  16. Earthquakes: Risk, Monitoring, Notification, and Research

    Science.gov (United States)

    2008-06-19

    far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks have occurred since the main seismic event. The May 12 earthquake...motion of tectonic plates; ! Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes; ! Earthquake hazards

  17. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  18. Mid-oceanic ridges - Guest editorial

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Ins titutes of Techno logy and national laboratories. A few Inter national re - searchers, notably from the USA, Portugal, France and J a pan too have shown interest in the I n Ridge and are keen to collaborate with India. It is foreseen that In...

  19. Petrography of basalts from the Carlsberg ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, R.; Iyer, S.D.

    Petrographic characteristics of basalts collected from a segment of the Carlsberg Ridge (lat. 3 degrees 35'N to 3 degrees 41'N; long. 64 degrees 05'E to 64 degrees 09'E) show typical pillow lava zonations with variable concentrations of plagioclase...

  20. Oak Ridge reservation land-use plan

    Energy Technology Data Exchange (ETDEWEB)

    Bibb, W. R.; Hardin, T. H.; Hawkins, C. C.; Johnson, W. A.; Peitzsch, F. C.; Scott, T. H.; Theisen, M. R.; Tuck, S. C.

    1980-03-01

    This study establishes a basis for long-range land-use planning to accommodate both present and projected DOE program requirements in Oak Ridge. In addition to technological requirements, this land-use plan incorporates in-depth ecological concepts that recognize multiple uses of land as a viable option. Neither environmental research nor technological operations need to be mutually exclusive in all instances. Unique biological areas, as well as rare and endangered species, need to be protected, and human and environmental health and safety must be maintained. The plan is based on the concept that the primary use of DOE land resources must be to implement the overall DOE mission in Oak Ridge. This document, along with the base map and overlay maps, provides a reasonably detailed description of the DOE Oak Ridge land resources and of the current and potential uses of the land. A description of the land characteristics, including geomorphology, agricultural productivity and soils, water courses, vegetation, and terrestrial and aquatic animal habitats, is presented to serve as a resource document. Essentially all DOE land in the Oak Ridge area is being fully used for ongoing DOE programs or has been set aside as protected areas.

  1. Ridges and hotspots: perspectives from global tomography

    OpenAIRE

    Zhang, Yu-Shen; Tanimoto, Toshiro

    1991-01-01

    Resolution in global tomography has improved to a level of about 1000 km due to a rapid increase of digital data during the last decade. We have started to see various important tectonic features in some detail. We will attempt to summarize our current observations for ridges and hotspots.

  2. 27 CFR 9.182 - Ribbon Ridge.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ribbon Ridge. 9.182 Section 9.182 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT..., to the road's intersection with North Valley Road, near the Erwin Young School, section 39, T3S, R3W...

  3. Oak Ridge Reservation Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.W. [ed.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  4. Structure and origin of the 85 degrees E ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Subrahmanyam, V.; Chaubey, A.K.; Ramprasad, T.; Sarma, K.V.L.N.S.; Krishna, K.S.; Desa, M.; Murty, G.P.S.; Subrahmanyam, C.

    processes for the ridge emplacement have been suggested. Ridge emplacement may be (1) due to shearing of the lithosphere caused by stretching and compressional forces associated at the time of major plate reorganization immediately after the evolution...

  5. Wrinkle Ridges in Aeolis Dorsa, Mars: Preliminary Mapping

    Science.gov (United States)

    Borden, R. M.; Burr, D. M.

    2016-06-01

    Previous work has interpreted wrinkle ridges as compressional landforms caused by movement along blind thrust faults. Our preliminary mapping in the Aeolis Dorsa, Mars has identified widely distributed wrinkle ridges, suggesting episodic contraction.

  6. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides

    OpenAIRE

    2012-01-01

    A mathematical model of sectoral coaxial ridged waveguides has been developed using coupled-integralequations technique. Maximal ratios of cutoff frequencies of two lowest modes of sectoral coaxial ridged waveguides have been obtained.

  7. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  8. Seismicity And Accretion Process Along The North Mid-Atlantic Ridge From The SIRENA Autonomous Hydrophone Data

    Science.gov (United States)

    Perrot, J.; Goslin, J.; Dziak, R. P.; Haxel, J. H.; Maia, M. A.; Tisseau, C.; Royer, J.

    2009-12-01

    The seismicity of the North Atlantic Ocean was recorded by the SIRENA array of 6 autonomous underwater hydrophones (AUH) moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). The instruments were deployed north of the Azores Plateau between 40° and 50°N from June 2002 to September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation result in a detection threshold reduction to a magnitude completeness level (Mc) of ~2.8, to be compared to a Mc~4.7 for MAR events recorded by land-based seismic networks. A spatio-temporal analysis was performed over the 1696 events localized inside the SIRENA array. For hydrophone-derived catalogs, the acoustic magnitude, or Source Level (SL), is used as a measure of earthquake size. The ''source level completeness'', above which the data set is complete, is SLc=208 dB. The SIRENA catalog was searched for swarms using the cluster software of the SEISAN distribution. A minimum SL of 210 dB was chosen to detect a possible mainshock, and all subsequent events within 40 days following the possible mainshock, located within a radius of 15 km from the mainshock were considered as events of the swarm. 15 km correspond to the maximum fault length in a slow-ridge context. 11 swarms with more than 15 events were detected along the MAR between 40°et 50°N during the SIRENA deployment. The maximum number of earthquakes in a swarm is 40 events. The SL vs. time distribution within each swarm allowed a first discrimination between the swarms occurring in a tectonic context and those which can be attributed to volcanic processes, the latter showing a more constant SL vs. time distribution. Moreover, the swarms occurring in a tectonic context show a "mainshock-afterschock" distribution of the cumulative number of events vs. time, fitting a Modified Omori Law. The location of tectonic and volcanic swarms correlates well with regions where a positive and negative Mantle Bouguer

  9. Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake

    Science.gov (United States)

    Remy, D.; Perfettini, H.; Cotte, N.; Avouac, J. P.; Chlieh, M.; Bondoux, F.; Sladen, A.; Tavera, H.; Socquet, A.

    2016-05-01

    Characterizing the time evolution of slip over different phases of the seismic cycle is crucial to a better understanding of the factors controlling the occurrence of large earthquakes. In this study, we take advantage of interferometric synthetic aperture radar data and 3.5 years of continuous Global Positioning System (GPS) measurements to determine interseismic, coseismic, and postseismic slip distributions in the region of the 2007, Mw 8.0 Pisco, earthquake, Peru, using the same fault geometry and inversion method. Our interseismic model, based on pre-2007 campaign GPS data, suggests that the 2007 Pisco seismic slip occurred in a region strongly coupled before the earthquake while afterslip occurred in low coupled regions. Large afterslip occurred in the peripheral area of coseismic rupture in agreement with the notion that afterslip is mainly induced by coseismic stress changes. The temporal evolution of the region of maximum afterslip, characterized by a relaxation time of about 2.3 years, is located in the region where the Nazca ridge is subducting, consistent with rate-strengthening friction promoting aseismic slip. We estimate a return period for the Pisco earthquake of about 230 years with an estimated aseismic slip that might account for about 50% of the slip budget in this region over the 0-50 km seismogenic depth range. A major result of this study is that the main asperity that ruptured during the 2007 Pisco earthquake relocked soon after this event.

  10. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak

    Science.gov (United States)

    von Huene, Roland; Miller, John J.; Weinrebe, Wilhelm

    2012-01-01

    Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.

  11. 2010 Chile Earthquake Aftershock Response

    Science.gov (United States)

    Barientos, Sergio

    2010-05-01

    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  12. The physics of an earthquake

    Science.gov (United States)

    McCloskey, John

    2008-03-01

    The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.

  13. Fracking, wastewater disposal, and earthquakes

    Science.gov (United States)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  14. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  15. An interdisciplinary management of severely resorbed maxillary anterior ridge complicated by traumatic bite using a ridge splitting technique

    Science.gov (United States)

    Gupta, Narender Dev; Maheshwari, Sandhya; Chaudhari, Prabhat Kumar; Rathi, Shraddha

    2015-01-01

    Injury to the teeth and alveolar ridge of the maxillary anterior region due to trauma can cause severe alveolar ridge deficiency. Ridge augmentation is a valuable periodontal plastic surgical method for the correction of ridge defects for esthetic purpose. Although ridge augmentation can help to restore the ridge volume, the grafting procedures can significantly increase the patient morbidity, treatment time, and the cost. Among the ridge augmentation techniques, the ridge split procedure demonstrates many benefits such as no need for donor site, the rare risk of damage to underlying anatomical structures, less pain, and swelling. This case report presents a vertical split technique for increasing the bone volume. There was a remarkable healing and significant increase in bone volume. We have followed the case for 6 months. PMID:25810602

  16. The threat of silent earthquakes

    Science.gov (United States)

    Cervelli, Peter

    2004-01-01

    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  17. Earthquakes: Thinking about the unpredictable

    Science.gov (United States)

    Geller, Robert J.

    The possibility of predicting earthquakes has been investigated by professionals and amateurs, seismologists and nonseismologists, for over 100 years. More than once, hopes of a workable earthquake prediction scheme have been raised only to be dashed. Such schemes—on some occasions accompanied by claims of an established track record—continue to be proposed, not only by Earth scientists, but also by workers in other fields. The assessment of these claims is not just a scientific or technical question. Public administrators and policy makers must make decisions regarding appropriate action in response to claims that some scheme has a predictive capability, or to specific predictions of imminent earthquakes.

  18. Fractal Models of Earthquake Dynamics

    CERN Document Server

    Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis

    2009-01-01

    Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.

  19. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  20. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  1. Discussion on Earthquake Forecasting and Early Warning

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaodong; Jiang Haikun; Li Mingxiao

    2008-01-01

    Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting (early warning) has been discussed.Regarding the natural attributes of earthquake forecasting,it only attempts to forecast the magnitude,location and occurrence time of future earthquake based on the aualysis of observational data and relevant theories and taking into consideration the present understanding of seismogeny and earthquake generation.It need not consider the consequences an earthquake forecast involves,and its purpose is to check out the level of scientific understanding of earthquakes.In respect of the social aspect of earthquake forecasting,people also focus on the consequence that the forecasting involves,in addition to its natural aspect,such as the uncertainty of earthquake prediction itself,the impact of earthquake prediction,and the earthquake resistant capability of structures (buildings),lifeline works,etc.In a word,it highlights the risk of earthquake forecasting and tries to mitigate the earthquake hazard as much as possible.In this paper,the authors also discuss the scientific and social challenges faced in earthquake prediction and analyze preliminarily the meanings and content of earthquake early warning.

  2. Analysis of Mw 7.2 2014 Molucca Sea earthquake and its aftershocks

    Science.gov (United States)

    Shiddiqi, Hasbi Ash; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wiyono, Samsul Hadi; Wandono, Wandono

    2016-05-01

    A Mw 7.2 earthquake struck an area in the Molucca Sea region on November 15, 2014, and was followed by more than 300 aftershocks until the end of December 2014. This earthquake was the second largest event in the Molucca Sea during the last decade and was well recorded by local networks. Although the seismicity rate of the aftershocks was declining at the end of 2014, several significant earthquakes with magnitude (Mw) larger than five still occurred from January to May 2015 within the vicinity of the mainshock location. In this study, we investigated the earthquake process and its relation to the increasing seismicity in the Molucca Sea within six months after the earthquake. We utilized teleseismic double-difference hypocenter relocation method using local, regional, and teleseismic direct body-wave arrival times of 514 earthquakes from the time of mainshock occurrence to May 2015. Furthermore, we analyzed the focal mechanism solutions from the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. From our results, we observed that aftershocks propagated along the NNE-SSW direction within a 100 km fault segment length of the Mayu Ridge. The highest number of the aftershocks was located in the SSW direction of the main event. The aftershocks were terminated at around 60 km depth, which may represent the location of the top of the Molucca Sea Plate (MSP). Between January and May 2015, several significant earthquakes propagated westward and were extended to the Molucca Sea slab. From focal mechanism catalog, we found that the mainshock mechanism was reverse with strike 192o and dip 55o. While most of the large aftershock mechanisms were consistent with the main event, several aftershocks had reverse, oblique mechanisms. Stress inversion result from focal mechanism data revealed that the maximum stress direction was SE and was not perpendicular with fault direction. We suggest that the non-perpendicular maximum stress caused several

  3. Comparative Seismotectonic Conditions Along the Sunda and Aleutian Arcs from Broadband Analysis of Earthquake Energetics

    Science.gov (United States)

    Choy, G. L.; Kirby, S. H.; Hayes, G. P.

    2014-12-01

    In the digital era, the Sunda arc has been the site of sixteen large and great (MW>7.0) earthquakes that generated oftimes devastating tsunamis. In contrast, the largest tsunami earthquakes along the Aleutian arc occurred in the pre-digital era. Given the tectonic and geological commonalities between the two arcs, such as oblique plate convergence and long sediment-rich sections of trench, it is natural to ask whether the numerous and well-recorded Sunda events can serve as analogs to the more sparse Aleutian events for insight into seismic and tsunami potential. The large earthquakes are examined in the context of moderate-sized earthquakes (5.5assess maturity of the faults. In the Sunda arc, energy release for moderate events was predominantly along the peripheries of the rupture zones of large events. Rather than on the slab interface, they often occurred on splay faults in the overriding plate, on perturbations of the slab interface under the outer-arc high or alongside obliquely subducted ridges and fracture zones. High strength regions (identified by high energy-release faults) resisted rupture during large earthquakes. Other splays seemed tsunami-capable. The greatest tsunamis came from earthquakes with rupture confined to the shallow forearc seaward of the outer-arc high, while greater seismic damage came from earthquakes confined to the deep forearc behind the outer-arc high. For the Aleutians, only two large events occurred during the same time period. But, like Sunda, the numerous moderate-sized events tended to demarcate the periphery of the rupture zone of past large events. Some splays with tsunami potential were observed, but the majority of events occurred at slab bends and around subducting fracture zones and seamounts, rather than about the subdued outer-arc high.

  4. Earthquakes in cities revisited

    CERN Document Server

    Wirgin, Armand

    2016-01-01

    During the last twenty years, a number of publications of theoretical-numerical nature have appeared which come to the apparently-reassuring conclusion that seismic motion on the ground in cities is smaller than what this motion would be in the absence of the buildings (but for the same underground and seismic load). Other than the fact that this finding tells nothing about the motion within the buildings, it must be confronted with the overwhelming empirical evidence (e.g, earthquakes in Sendai (2011), Kathmandu (2015), Tainan City (2016), etc.) that shaking within buildings of a city is often large enough to damage or even destroy these structures. I show, on several examples, that theory can be reconciled with empirical evidence, and suggest that the crucial subject of seismic response in cities is in need of more thorough research.

  5. Earthquake Breccias (Invited)

    Science.gov (United States)

    Rowe, C. D.; Melosh, B. L.; Lamothe, K.; Schnitzer, V.; Bate, C.

    2013-12-01

    Fault breccias are one of the fundamental classes of fault rocks and are observed in many exhumed faults. Some breccias have long been assumed to form co-seismically, but textural or mechanistic evidence for the association with earthquakes has never been documented. For example, at dilational jogs in brittle faults, it is common to find small bodies of chaotic breccia in lenticular or rhombohedral voids bounded by main slip surfaces and linking segments. Sibson interpreted these 'implosion breccias' as evidence of wall rock fracturing during sudden unloading when the dilational jogs open during earthquake slip (Sibson 1985, PAGEOPH v. 124, n. 1, 159-175). However, the role of dynamic fracturing in forming these breccias has not been tested. Moreover, the criteria for identifying implosion breccia have not been defined - do all breccias in dilational jogs or step-overs represent earthquake slip? We are building a database of breccia and microbreccia textures to develop a strictly observational set of criteria for distinction of breccia texture classes. Here, we present observations from the right-lateral Pofadder Shear Zone, South Africa, and use our textural criteria to identify the relative roles of dynamic and quasi-static fracture patterns, comminution/grinding and attrition, hydrothermal alteration, dissolution, and cementation. Nearly 100% exposure in the hyper-arid region south of the Orange River allowed very detailed mapping of frictional fault traces associated with rupture events, containing one or more right-steps in each rupture trace. Fracture patterns characteristic of on- and off-fault damage associated with propagation of dynamic rupture are observed along straight segments of the faults. The wall rock fractures are regularly spaced, begin at the fault trace and propagate at a high angle to the fault, and locally branch into subsidiary fractures before terminating a few cm away. This pattern of fractures has been previously linked to dynamic

  6. Sichuan Earthquake in China

    Science.gov (United States)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  7. Sichuan Earthquake in China

    Science.gov (United States)

    2008-01-01

    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  8. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  9. Behavior of Columns During Earthquakes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The behavior of columns during earthquakes is very important since column failures may lead to additional structural failures and result in total building collapses....

  10. Medical complications associated with earthquakes.

    Science.gov (United States)

    Bartels, Susan A; VanRooyen, Michael J

    2012-02-25

    Major earthquakes are some of the most devastating natural disasters. The epidemiology of earthquake-related injuries and mortality is unique for these disasters. Because earthquakes frequently affect populous urban areas with poor structural standards, they often result in high death rates and mass casualties with many traumatic injuries. These injuries are highly mechanical and often multisystem, requiring intensive curative medical and surgical care at a time when the local and regional medical response capacities have been at least partly disrupted. Many patients surviving blunt and penetrating trauma and crush injuries have subsequent complications that lead to additional morbidity and mortality. Here, we review and summarise earthquake-induced injuries and medical complications affecting major organ systems.

  11. Statistical earthquake focal mechanism forecasts

    CERN Document Server

    Kagan, Yan Y

    2013-01-01

    Forecasts of the focal mechanisms of future earthquakes are important for seismic hazard estimates and Coulomb stress and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range from -75 to +75 degrees, based on the Global Central Moment Tensor earthquake catalog. In the new forecasts we've improved the spatial resolution to 0.1 degree and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each grid point. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method ...

  12. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Institute of Scientific and Technical Information of China (English)

    高孟潭; 金学申; 安卫平; 吕晓健

    2004-01-01

    The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studied. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  13. Seismic hazard evaluation for the high-flux isotope reactor (HFIR) Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, R.K.; Toro, G.R. (Risk Engineering, Inc., Golden, CO (United States))

    1991-09-01

    This study investigates the probabilistic hazard of earthquake-induced ground shaking at the HFIR facility, Oak Ridge, Tennessee. These results will be used to calculate plant response and potential effects in a Probabilistic Risk Assessment (PRA). For this purpose, several guidelines apply to this work. First, both the frequency of exceedance and the uncertainty in frequency of exceedance of various ground motion levels must be represented. These are required by the PRA so that the frequency and uncertainty of various possible plant states can be expressed. Second, there is a deliberate attempt to provide an unbiased distribution of frequencies of exceedance, i.e. to present results that are neither conservative nor unconservative. This is consistent with the goals of a PRA, to provide unbiased estimates of plant effects from which appropriate decisions (for instance about evaluating existing levels of seismic design) can be reached. Recent intensive studies of seismic hazard in the central and eastern United States (CEUS) have been completed by the Electric Power Research Institute (EPRI). These studies represent major efforts to characterize the seismic hazard for nuclear power plants in the CEUS, and use the most recent, up-to-date understandings of seismicity and ground motion relations for the region. With these studies as a resource, the current effort relies exclusively on the seismicity and ground motion assumptions therein to formulate seismic hazard curves for the HFIR facility. The interpretation of these studies to derive seismic hazard curves in a format suitable for input to a PRA is described in this report. 29 refs., 40 figs., 22 tabs.

  14. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  15. Two models for earthquake forerunners

    Science.gov (United States)

    Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J.H.

    1975-01-01

    Similar precursory phenomena have been observed before earthquakes in the United States, the Soviet Union, Japan, and China. Two quite different physical models are used to explain these phenomena. According to a model developed by US seismologists, the so-called dilatancy diffusion model, the earthquake occurs near maximum stress, following a period of dilatant crack expansion. Diffusion of water in and out of the dilatant volume is required to explain the recovery of seismic velocity before the earthquake. According to a model developed by Soviet scientists growth of cracks is also involved but diffusion of water in and out of the focal region is not required. With this model, the earthquake is assumed to occur during a period of falling stress and recovery of velocity here is due to crack closure as stress relaxes. In general, the dilatancy diffusion model gives a peaked precursor form, whereas the dry model gives a bay form, in which recovery is well under way before the earthquake. A number of field observations should help to distinguish between the two models: study of post-earthquake recovery, time variation of stress and pore pressure in the focal region, the occurrence of pre-existing faults, and any changes in direction of precursory phenomena during the anomalous period. ?? 1975 Birkha??user Verlag.

  16. Earthquake damage to underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.A. Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository.

  17. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  18. Intracontinental basins and strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    邓起东; 高孟潭; 赵新平; 吴建春

    2004-01-01

    The September 17, 1303 Hongtong M=8 earthquake occurred in Linfen basin of Shanxi down-faulted basin zone. It is the first recorded M=8 earthquake since the Chinese historical seismic records had started and is a great earthquake occurring in the active intracontinental basin. We had held a Meeting of the 700th Anniversary of the 1303 Hongtong M=8 Earthquake in Shanxi and a Symposium on Intracontinental Basins and Strong Earthquakes in Taiyuan City of Shanxi Province on September 17~18, 2003. The articles presented on the symposium discussed the relationships between active intracontinental basins of different properties, developed in different regions, including tensional graben and semi-graben basins in tensile tectonic regions, compression-depression basins and foreland basins in compressive tectonic regions and pull-apart basins in strike-slip tectonic zones, and strong earthquakes in China. In this article we make a brief summary of some problems. The articles published in this special issue are a part of the articles presented on the symposium.

  19. Effect of Micro Ridges on Orientation of Cultured Cell

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2014-06-01

    Full Text Available The effect of micro ridges on orientation of cultured cells has been studied in vitro. Several patterns of micro ridges have been fabricated on a transparent polydimethylsiloxane disk with the photo lithography technique. The ridges consist of several lines of rectangular column: the width of 0.003 mm, the interval of 0.007 mm. Variation has been made on the height of the ridge between 0.0003 mm and 0.0035 mm. C2C12 (mouse myoblast cell line originated with cross-striated muscle of C3H mouse was cultured on the disk with the micro ridges for one week and was observed with an inverted phase contrast microscope. The experimental results show that cells adhere on the top of the ridge and align to the longitudinal direction of the micro ridges with the height between 0.0015 mm and 0.0025 mm.

  20. Triggering of volcanic eruptions by large earthquakes

    Science.gov (United States)

    Nishimura, Takeshi

    2017-08-01

    When a large earthquake occurs near an active volcano, there is often concern that volcanic eruptions may be triggered by the earthquake. In this study, recently accumulated, reliable data were analyzed to quantitatively evaluate the probability of the occurrence of new eruptions of volcanoes located near the epicenters of large earthquakes. For volcanoes located within 200 km of large earthquakes of magnitude 7.5 or greater, the eruption occurrence probability increases by approximately 50% for 5 years after the earthquake origin time. However, no significant increase in the occurrence probability of new eruptions was observed at distant volcanoes or for smaller earthquakes. The present results strongly suggest that new eruptions are likely triggered by static stress changes and/or strong ground motions caused by nearby large earthquakes. This is not similar to the previously presented evidence that volcanic earthquakes at distant volcanoes are remotely triggered by surface waves generated by large earthquakes.

  1. Active convection beneath ridges: a new spin

    Science.gov (United States)

    Katz, R. F.

    2009-12-01

    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, interesting symmetry-breaking behavior is predicted. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  2. Tubular initial conditions and ridge formation

    CERN Document Server

    Borysova, M S; Karpenko, Iu A; Shapoval, V M; Sinyukov, Yu M

    2013-01-01

    The 2D azimuth & rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one to associate the long-range longitudinal correlations observed in a narrow angular interval, the so-called (soft) ridge, with peculiarities of the initial conditions of collision process. This study's objective is to analyze whether multiform initial tubular structures, undergoing the subsequent hydrodynamic evolution and gradual decoupling, can form the soft ridges. Motivated by the flux-tube scenarios, the initial energy density distribution contains the different numbers of high density tube-like boost-invariant inclusions that form a bumpy structure in the transverse plane. The influence of various structures of such initial conditions in the most central A+A events on the collective evolution of matter, resulting spectra, angular particle correlations an...

  3. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...

  4. Marketing for Oak Ridge technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prosser, G.A.

    1989-06-15

    Martin Marietta Energy Systems, Inc., which manages major research and production facilities in Oak Ridge, Tennessee for the Department of Energy, has implemented a systematic approach to marketing for technology transfer. Unique mechanisms have been created to address the need for market research and analysis, strategy formulation, and the execution of plans designed to engender the broadest commercial use of government-funded technologies. Establishment of formal ties with the University of Tennessee Graduate School of Business has resulted in an expanded role for marketing in support of the Oak Ridge program. The creation of graduate research positions has enabled MBA students to contribute to, and learn from, a program which is at the forefront of an important national initiative.

  5. Unfaulting the Sardarapat Ridge, Southwest Armenia

    Science.gov (United States)

    Wetmore, P.; Connor, C.; Connor, L. J.; Savov, I. P.; Karakhanyan, A.

    2012-12-01

    Armenia is located near the core of contractional deformation associated with the collision between the Arabian and Eurasian tectonic plates. Several studies of this region, including portions of adjacent Georgia, Iran, and Turkey, have indicated that 1-2 mm/yr of intra-plate, north-south shortening is primarily accommodated by a network of E-W trending thrust faults, and NW-trending (dextral) and NE-trending (sinistral) strike-slip faults. One proposed fault in this network, the Sardarapat Fault (SF), was investigated as part of a regional seismic hazard assessment ahead of the installation of a replacement reactor at the Armenian Nuclear Power Plant (ANPP). The SF is primarily defined by the Sardarapat Ridge (SR), which is a WNW-trending, 40-70 m high topographic feature located just north of the Arax River and the Turkey-Armenia border. The stratigraphy comprising this ridge includes alluvium overlying several meters of lacustrine deposits above a crystal-rich basaltic lava flow that yields an Ar-Ar age of 0.9 +/- 0.02 Ma. The alluvial sediments on the ridge contain early Bronze age (3832-3470 BP) artifacts at an elevation 25 m above those of the surrounding alluvial plane. This has lead to the suggestion that the SR is bound to the south (the steepest side) by the SF, which is uplifting the ridge at a rate of 0.7 mm/yr. However, despite the prominence and trend of the ridge there are no unequivocal observations, such as scarps or exposures of fault rocks, to support the existence of the SF. The goal of the investigation of the SR area was to test various models for the formation of the ridge including faulting and combined volcanic and erosional processes. We therefore collected gravimetric, magnetic, magneto-tellurics (MT), and transient electromagnetic (TEM) data across an area of ~400 km2, and used correlations of stratigraphic data from coreholes drilled proximal to the study area to define the geometry of the contact between the basement and basin fill to

  6. Timing of large earthquakes during the past 500 years along the Santa Cruz Mountains segment of the San Andreas fault at Mill Canyon, near Watsonville, California

    Science.gov (United States)

    Fumal, Thomas E.

    2012-01-01

    A paleoseismic investigation across the Santa Cruz Mountains section of the San Andreas fault at Mill Canyon indicates that four surface‐rupturing earthquakes have occurred there during the past ~500  years. At this site, right‐lateral fault slip has moved a low shutter ridge across the mouth of the canyon, ponding latest Holocene sediments. These alluvial deposits are deformed along a narrow zone of faulting. There is excellent evidence for a 1906 (M 7.8) and three earlier earthquakes consisting of well‐developed fissures, scarps, and colluvial wedges. Deformation resulting from the earlier earthquakes is comparable to that from 1906, suggesting they also were large‐magnitude events. The earthquake prior to 1906 occurred either about A.D. 1750 (1711–1770) or A.D. 1855 (1789–1904), depending on assumptions incorporated into two alternative OxCal models. If the later age range is correct, then the earthquake may have been a historical early‐to‐mid‐nineteenth‐century earthquake, possibly the A.D. 1838 earthquake. Both models are viable, and there is no way to select one over the other with the available data. Two earlier earthquakes occurred about A.D. 1690 (1660–1720) and A.D. 1522 (1454–1605). Using OxCal, recalculation of the age of the reported penultimate earthquake reported from the Grizzly Flat site, located about 10 km northwest of Mill Canyon, indicates it occurred about A.D. 1105–1545, earlier than any of the past three earthquakes, and possibly correlates to the fourth earthquake at Mill Canyon.

  7. Constitutive Parameter Measurement Using Double Ridge Waveguide

    Science.gov (United States)

    2013-03-01

    PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE Nathan J. Lehman, B.S.E.E. Captain, USAF Approved: Michael Havrilla , PhD (Chairman) Maj Milo Hyde, PhD...would like express my gratitude to Dr. Michael Havrilla , my research advisor. Your ability to illustrate the entire picture of the subject was...electromagnetics U U U UU 83 Dr. Michael J. Havrilla (ENG) (937) 255-3636 x4582 michael.havrilla@afit.edu

  8. Fingerprint image mosaicking by recursive ridge mapping.

    Science.gov (United States)

    Choi, Kyoungtaek; Choi, Heeseung; Lee, Sangyoun; Kim, Jaihie

    2007-10-01

    To obtain a large fingerprint image from several small partial images, mosaicking of fingerprint images has been recently researched. However, existing approaches cannot provide accurate transformations for mosaics when it comes to aligning images because of the plastic distortion that may occur due to the nonuniform contact between a finger and a sensor or the deficiency of the correspondences in the images. In this paper, we propose a new scheme for mosaicking fingerprint images, which iteratively matches ridges to overcome the deficiency of the correspondences and compensates for the amount of plastic distortion between two partial images by using a thin-plate spline model. The proposed method also effectively eliminates erroneous correspondences and decides how well the transformation is estimated by calculating the registration error with a normalized distance map. The proposed method consists of three phases: feature extraction, transform estimation, and mosaicking. Transform is initially estimated with matched minutia and the ridges attached to them. Unpaired ridges in the overlapping area between two images are iteratively matched by minimizing the registration error, which consists of the ridge matching error and the inverse consistency error. During the estimation, erroneous correspondences are eliminated by considering the geometric relationship between the correspondences and checking if the registration error is minimized or not. In our experiments, the proposed method was compared with three existing methods in terms of registration accuracy, image quality, minutia extraction rate, processing time, reject to fuse rate, and verification performance. The average registration error of the proposed method was less than three pixels, and the maximum error was not more than seven pixels. In a verification test, the equal error rate was reduced from 10% to 2.7% when five images were combined by our proposed method. The proposed method was superior to other

  9. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  10. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  11. Jurassic zircons from the Southwest Indian Ridge

    Science.gov (United States)

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-05-01

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U-Pb and Lu-Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (ɛHf = +15.7-+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread ɛHf values (from-2.3 to-4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.

  12. Jurassic zircons from the Southwest Indian Ridge.

    Science.gov (United States)

    Cheng, Hao; Zhou, Huaiyang; Yang, Qunhui; Zhang, Lingmin; Ji, Fuwu; Dick, Henry

    2016-05-17

    The existence of ancient rocks in present mid-ocean ridges have long been observed but received less attention. Here we report the discovery of zircons with both reasonably young ages of about 5 Ma and abnormally old ages of approximate 180 Ma from two evolved gabbroic rocks that were dredged from the Southwest Indian Ridge (SWIR) in the Gallieni fracture zone. U-Pb and Lu-Hf isotope analyses of zircons were made using ion probe and conventional laser abrasion directly in petrographic thin sections. Young zircons and their host oxide gabbro have positive Hf isotope compositions (εHf = +15.7-+12.4), suggesting a highly depleted mantle beneath the SWIR. The spread εHf values (from-2.3 to-4.5) of abnormally old zircons, together with the unradiogenic Nd-Hf isotope of the host quartz diorite, appears to suggest an ancient juvenile magmatism along the rifting margin of the southern Gondwana prior to the opening of the Indian Ocean. A convincing explanation for the origin of the unusually old zircons is yet to surface, however, an update of the theory of plate tectonics would be expected with continuing discovery of ancient rocks in the mid-oceanic ridges and abyssal ocean basins.

  13. The Electronic Encyclopedia of Earthquakes

    Science.gov (United States)

    Benthien, M.; Marquis, J.; Jordan, T.

    2003-12-01

    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will

  14. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  15. A Prospect of Earthquake Prediction Research

    CERN Document Server

    Ogata, Yosihiko

    2013-01-01

    Earthquakes occur because of abrupt slips on faults due to accumulated stress in the Earth's crust. Because most of these faults and their mechanisms are not readily apparent, deterministic earthquake prediction is difficult. For effective prediction, complex conditions and uncertain elements must be considered, which necessitates stochastic prediction. In particular, a large amount of uncertainty lies in identifying whether abnormal phenomena are precursors to large earthquakes, as well as in assigning urgency to the earthquake. Any discovery of potentially useful information for earthquake prediction is incomplete unless quantitative modeling of risk is considered. Therefore, this manuscript describes the prospect of earthquake predictability research to realize practical operational forecasting in the near future.

  16. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  17. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes

    Science.gov (United States)

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.

    2003-12-01

    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  18. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  19. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  20. Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications

    Indian Academy of Sciences (India)

    Prosanta Kumar Khan; Md Afroz Ansari; S Mohanty

    2014-07-01

    The occurrences of moderate to large magnitude earthquakes and associated subsurface geological processes were critically examined in the backdrop of Indian plate obliquity, stress obliquity, topography, and the late Tertiary regional tectonics for understanding the evolving dynamics and kinematics in the central part of the Himalayas. The higher topographic areas are likely associated with the zones of depressions, and the lower topographic areas are found around the ridges located in the frontal part of the orogen. A positive correlation between plate and stress obliquities is established for this diffuse plate boundary. We propose that the zone of sharp bending of the descending Indian lithosphere is the nodal area of major stress accumulation which is released occasionally in form of earthquakes. The lateral geometry of the Himalayas shows clusters of seismicity at an angle of ∼20° from the centre part of the arc. Such spatial distribution is interpreted in terms of compression across the arc and extension parallel to the arc. This biaxial deformation results in the development of dilational shear fractures, observed along the orogenic belt, at an angle of ∼20° from the principal compressive stress axis.

  1. Alveolar ridge rehabilitation to increase full denture retention and stability

    Directory of Open Access Journals (Sweden)

    Mefina Kuntjoro

    2010-12-01

    Full Text Available Background: Atrophic mandibular alveolar ridge generally complicates prostetic restoration expecially full denture. Low residual alveolar ridge and basal seat can cause unstable denture, permanent ulcer, pain, neuralgia, and mastication difficulty. Pre-proshetic surgery is needed to improve denture retention and stability. Augmentation is a major surgery to increase vertical height of the atrophic mandible while vestibuloplasty is aimed to increase the denture bearing area. Purpose: The augmentation and vestibuloplasty was aimed to provide stability and retentive denture atrophic mandibular alveolar ridge. Case: A 65 years old woman patient complained about uncomfortable denture. Clinical evaluate showed flat ridge in the anterior mandible, flabby tissue and candidiasis, while residual ridge height was classified into class IV. Case management: Augmentation using autograph was conducted as the mandible vertical height is less than 15 mm. Autograph was used to achieve better bone quantity and quality. Separated alveolar ridge was conducted from left to right canine region and was elevated 0.5 mm from the previous position to get new ridge in the anterior region. The separated alveolar ridge was fixated by using T-plate and ligature wire. Three months after augmentation fixation appliances was removed vestibuloplasty was performed to increase denture bearing area that can make a stable and retentive denture. Conclusion: Augmentation and vestibuloplasty can improve flat ridge to become prominent.Latar belakang: Ridge mandibula yang atrofi pada umumnya mempersulit pembuatan restorasi prostetik terutama gigi tiruan lengkap (GTL. Residual alveolar ridge dan basal seat yang rendah menyebabkan gigi tiruan menjadi tidak stabil, menimbulkan ulser permanen, nyeri, neuralgia, dan kesulitan mengunyah. Tujuan: Augmentasi dan vestibuloplasti pada ridge mandibula yang atrofi dilakukan untuk menciptakan gigi tiruan yang stabil dan retentive. Kasus: Pasien wanita

  2. Earthquake fault superhighways

    Science.gov (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.

    2010-10-01

    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  3. Structural, geochronological, magnetic and magmatic constraints of a ridge collision/ridge subduction-related ophiolite

    Science.gov (United States)

    Anma, Ryo

    2013-04-01

    A mid-oceanic ridge system subducts underneath South American plate at latitude 46S off Chilean coast, forming a ridge-trench-trench type triple junction. At ~ 6 Ma, a short segment of the Chile ridge system subducted in south of the present triple junction. This ridge subduction event resulted in emplacement of a young ophiolite (5. 6 to 5. 2 Ma) and rapid crustal uplift (partly emerged after 4.9 Ma), and synchronous magmatism. This ophiolite, namely the Taitao ophiolite, provides criteria for the recognition of ridge collision/ridge subduction-related ophiolites. Aiming to establish recognition criteria, we studied distribution of structures, magnetic properties, geochemical characteristics, and radiometric ages of the Taitao ophiolite and related igneous rocks. The Taitao ophiolite exhibits a classic Penrose-type stratigraphy: ultramafic rocks and gabbros (collectively referred as plutonic section hereafter) in the south, and sheeted dike complex (SDC) and volcanic sequences in the north. Composite foliations developed in the plutonic section, which were folded. SDC were exposed in two isolated blocks having orthogonal strikes of dike margins. Geochemically, gabbros have an N-MORB composition whereas basalts of the volcanic sequence have an E-MORB composition. U-Pb ages of zircons separated from gabbros, SDC and sediments interbeded with billow lavas implied that the center of magmatic activities migrated from the plutonic section to volcanic section during ~5.6 Ma and ~5.2 Ma. Zircon fission track ages of gabbros coincide with U-Pb ages within error range, implying rapid cooling. Demagnetization paths for SDC and lavas form a straight line, whereas those from the plutonic section are Z-shaped and divisble into two components: low coercivity and high coercivity. Restored orientation of gabbro structures imply that the magnetization acquired while gabbroic structures were folding. Thus, magma genesis and emplacement of the plutonic section of ophiolite took place

  4. Precise relative locations for earthquakes in the northeast Pacific region

    Science.gov (United States)

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-01

    Double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faulting earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. The observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.

  5. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  6. Using earthquake intensities to forecast earthquake occurrence times

    Directory of Open Access Journals (Sweden)

    J. R. Holliday

    2006-01-01

    Full Text Available It is well known that earthquakes do not occur randomly in space and time. Foreshocks, aftershocks, precursory activation, and quiescence are just some of the patterns recognized by seismologists. Using the Pattern Informatics technique along with relative intensity analysis, we create a scoring method based on time dependent relative operating characteristic diagrams and show that the occurrences of large earthquakes in California correlate with time intervals where fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering. Furthermore, we show that the methods used to obtain these results may be applicable to other parts of the world.

  7. Triggering of tsunamigenic aftershocks from large strike-slip earthquakes: Analysis of the November 2000 New Ireland earthquake sequence

    Science.gov (United States)

    Geist, Eric L.; Parsons, Tom

    2005-10-01

    The November 2000 New Ireland earthquake sequence started with a Mw = 8.0 left-lateral main shock on 16 November and was followed by a series of aftershocks with primarily thrust mechanisms. The earthquake sequence was associated with a locally damaging tsunami on the islands of New Ireland and nearby New Britain, Bougainville, and Buka. Results from numerical tsunami-propagation models of the main shock and two of the largest thrust aftershocks (Mw > 7.0) indicate that the largest tsunami was caused by an aftershock located near the southeastern termination of the main shock, off the southern tip of New Ireland (Aftershock 1). Numerical modeling and tide gauge records at regional and far-field distances indicate that the main shock also generated tsunami waves. Large horizontal displacements associated with the main shock in regions of steep bathymetry accentuated tsunami generation for this event. Most of the damage on Bougainville and Buka Islands was caused by focusing and amplification of tsunami energy from a ridge wave between the source region and these islands. Modeling of changes in the Coulomb failure stress field caused by the main shock indicate that Aftershock 1 was likely triggered by static stress changes, provided the fault was on or synthetic to the New Britain interplate thrust as specified by the Harvard CMT mechanism. For other possible focal mechanisms of Aftershock 1 and the regional occurrence of thrust aftershocks in general, evidence for static stress change triggering is not as clear. Other triggering mechanisms such as changes in dynamic stress may also have been important. The 2000 New Ireland earthquake sequence provides evidence that tsunamis caused by thrust aftershocks can be triggered by large strike-slip earthquakes. Similar tectonic regimes that include offshore accommodation structures near large strike-slip faults are found in southern California, the Sea of Marmara, Turkey, along the Queen Charlotte fault in British Columbia

  8. Retrospection on the Conclusions of Earthquake Tendency Forecast before the Wenchuan Ms8.0 Earthquake

    Institute of Scientific and Technical Information of China (English)

    Liu Jie; Guo Tieshuan; Yang Liming; Su Youjin; Li Gang

    2009-01-01

    The reason for the failure to forecast the Wenchuan Ms8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kuulun Mountains Pass Ms8.1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002 ~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.

  9. Earthquake forecast via neutrino tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; CHEN Ya-Zheng; LI Xue-Qian

    2011-01-01

    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. An- tineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomog- raphy of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for ν emitted from a reactor. The case for a ν beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.

  10. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  11. Earthquakes in Central California, 1980-1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in central California. This set of slides shows earthquake damage from the following events: Livermore, 1980, Coalinga,...

  12. Fault Plane Orientations of Intermediate-Depth Earthquakes in South America

    Science.gov (United States)

    Warren, L. M.

    2013-12-01

    Extending from Colombia in the north to Chile and Argentina in the south, the South American subduction zone exhibits considerable variation: the subduction angle alternates between flat and steep; the subducting plate has complex structures such as ridges, plateaus, and fracture zones; and late Cenozoic volcanism in the overlying plate has gaps. I investigate the effect of these differences in incoming plate structure and subduction geometry on intermediate-depth earthquakes and use the results to test hypotheses for why intermediate-depth earthquakes occur. For all large (Mw ≥5.7) intermediate-depth earthquakes (60-360 km depth) in South America since 1990, I analyze rupture directivity to try to distinguish which of the two possible fault planes of the focal mechanism slipped in the earthquake. Of the 163 earthquakes that met the selection criteria, half were recorded with a sufficient distribution of stations to determine if there was directivity to the rupture and fault planes were identified for 31 events. Fault plane orientations are spatially coherent. In regions with "normal" subduction angles, such as the Central Volcanic Zone (southern Peru to central Chile), results are consistent with previous studies in Central America and the western Pacific subduction zones: most earthquakes rupture along subhorizontal faults and rupture azimuths are randomly distributed. In the Peruvian Flat Slab, identified fault planes dip eastward. After taking into account the angle of subduction, these faults are perpendicular to the faults that rupture in regions with normal subduction angles. Within sharply curved slab segments, such as the rebending of the plate at the eastern edge of the Peruvian flat slab, both orientations of faults slip. The observed flip in dominant fault plane orientation on either side of sharply curved slab segments suggests that bending and unbending stresses have an important role in controlling fault orientations. Pre-existing weak zones may

  13. Nonstationary ETAS models for nonstandard earthquakes

    OpenAIRE

    Kumazawa, Takao; Ogata, Yosihiko

    2014-01-01

    The conditional intensity function of a point process is a useful tool for generating probability forecasts of earthquakes. The epidemic-type aftershock sequence (ETAS) model is defined by a conditional intensity function, and the corresponding point process is equivalent to a branching process, assuming that an earthquake generates a cluster of offspring earthquakes (triggered earthquakes or so-called aftershocks). Further, the size of the first-generation cluster depends on the magnitude of...

  14. The October 12, 1992, Dahshur, Egypt, Earthquake

    Science.gov (United States)

    Thenhaus, P.C.; Celebi, M.; Sharp, R.V.

    1993-01-01

    Cairo and northeastern Egypt experienced a rare, damaging earthquake on October 12, 1992. The earthquake, which measured 5.9 on the Richter magnitude scale, was centered near the village of Dahshur, about 18 km south of Cairo. The computed hypocentral depth of the earthquake, about 25 km, is consistent with the fact that fault rupture associated with the earthquake did not reach the surface. 

  15. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  16. The origin and geological significance of lunar ridges

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lunar ridges are a kind of familiar linear structures developed on the lunar surface. The distribution pattern, formation mechanism and research significance of lunar ridges are discussed in this paper. Single lunar ridges are usually distributed in the form of broken lineation, and, as whole, lunar ridges are trapezoidal or annular in shape around the maria. As to the formation mechanism, only volcanism or tectonism was emphasized in the past, but the two processes are seldom taken into combined consideration. On the basis of detailed analyses, the authors thought that tectonism is a prerequisite for the formation of lunar ridges, while volcanism is the key factor controlling their particular shapes. Finally, the authors pointed out that it is very significant in the study of lunar ridges to link the course of lunar structure evolution with the stress state in the lunar crust.

  17. Magnetic Anomalies over the Pacific-Antarctic Ridge.

    Science.gov (United States)

    Pitman, W C; Heirtzler, J R

    1966-12-01

    Four magnetic profiles across the Pacific-Antarctic Ridge reveal magnetic anomalies that show trends parallel with the ridge axis and symmetry about the ridge axis. The distribution of bodies that could cause these anomalies supports the Vine and Matthews hypothesis for the generation of patterns of magnetic anomalies associated with the midocean ridge system. The geometry of the bodies accords with the known reversals of the geomagnetic field during the last 3.4 million years, indicating a spreading rate of the ocean floor of 4.5 centimeters per year. If one assume that the spreading rate within 500 kilometers of the ridge axis has been constant, reversals of the geomagnetic field during the last 10.0 million years can be determined. This new, detailed history of field reversals accords with observed anomalies over Reykjanes Ridge in the North Atlantic if a spreading rate of 1 centimeter per year is assumed there.

  18. Field Use of NMIS at Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, L.G.; Conger, M.; Hughes, S.S.; Mattingly, J.K.; McEvers, J.A.; Mihalczo, J.T.; Mullens, J.A.; Perez, R.B.; Turner, C.R.; Uckan, T.; Valentine, T.E.

    1999-08-26

    The Nuclear Materials Identification System (NMIS), developed by the Oak Ridge National Laboratory and Oak Ridge Y-12 Plant (Y-12), has been successfully used at Y-12 for nuclear material control and accountability (NMC&A). It is particularly useful in the high gamma-ray background of storage arrays and for shielded HEU. With three systems in use at Y-12, NMIS has enhanced the NMC&A capability for verification and for confirmation of materials in storage and for HEU receipts by providing capability not available or practical by other NDA methods for safeguards. It has recently cost-effectively quantified the HEU mass and enrichment of hundreds of HEU metal items to within a total spread of {+-} 5% (3 sigma) with and mean deviations for all HEU verified of + 0.2% for mass and {minus}0.2% for enrichment. Three cart portable systems are easily moved around with minimal impact on facility operations since no permanent dedicated floor space is required. The positive impact of NMIS at the Oak Ridge Y-12 Plant is improved and more cost effective NMC&A as well as the resolution of NMC&A findings. Its operation at the Y-12 Plant is essential for compliance with the NMC&A requirements of the US Department of Energy. NMIS portability has allowed one system to be moved temporarily to the former K-25 Gaseous Diffusion Plant for characterization of a large deposit of hydrated uranyl fluoride. The impact of this NMIS application was enhanced and verified nuclear criticality safety that led to the safe removal of a large deposit originally estimated by gamma-ray spectrometry and neutron counting to contain 1300 kg of 3.3 wt% {sup 235}U material. NMIS has also been operational at Los Alamos National Laboratory and Pantex.

  19. Microsurgical treatment of medial sphenoid ridge meningioma

    Directory of Open Access Journals (Sweden)

    Wei-qi HE

    2011-02-01

    Full Text Available Objective To explore the microsurgical technique of medial sphenoid ridge meningioma resectional therapy.Methods The clinical data were retrospectively analyzed of 29 patients(13 males and 16 females;aged 18-68 years with average of 42 years;duration of disease was 5 months to 8 years,averaged 28 months with medial sphenoidal ridge meningioma and admitted from Jan.2005 to Jan.2010.The anatomical relationship of the tumor to surrounding structures was assessed intraoperatively,the tumor was then completely resected through cutting off the tumor supplying vessels,shrinking the tumor volume and separating the tumors from adjacent vessels and nerves.All the patients were followed up for 4 months to 4 years.Results Of the 29 cases,20 got total tumor removal,7 got subtotal and 2 got partial tumor removal.Of the 20 patients with obviously preoperative visual impairment,12 were obviously relieved,6 showed no improvement and 2 got symptoms aggravation.Hemiplegia occurred in 2 cases and oculomoter nerve palsy in 6 cases.There was no death after surgery.A 6 months to 4 years follow-up showed that no recurrence was found in 27 patients with tumor resection level of Simpson I and II,2 patients with tumor resection level of Simpson III received postoperative radiotherapy or gamma knife surgery,and 1 recurred and received reoperation.Conclusions Fine intraoperative assessment of the anatomical relationship of the tumor to surrounding structures,separating and excising tumor according to the assessed result is the key of medial sphenoid ridge meningioma resection,and the tumor resection is favorable to visual rehabilitation and tumor control.

  20. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  1. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  2. Historical earthquake investigations in Greece

    Directory of Open Access Journals (Sweden)

    K. Makropoulos

    2004-06-01

    Full Text Available The active tectonics of the area of Greece and its seismic activity have always been present in the country?s history. Many researchers, tempted to work on Greek historical earthquakes, have realized that this is a task not easily fulfilled. The existing catalogues of strong historical earthquakes are useful tools to perform general SHA studies. However, a variety of supporting datasets, non-uniformly distributed in space and time, need to be further investigated. In the present paper, a review of historical earthquake studies in Greece is attempted. The seismic history of the country is divided into four main periods. In each one of them, characteristic examples, studies and approaches are presented.

  3. Oak Ridge Leadership Computing Facility Position Paper

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H Sarp [ORNL; Hill, Jason J [ORNL; Thach, Kevin G [ORNL; Podhorszki, Norbert [ORNL; Klasky, Scott A [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL

    2011-01-01

    This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

  4. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  5. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    King, David A. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site

  6. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  7. Tectonic origin of Crowley's Ridge, northeastern Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    VanArsdale, R.B. (Univ. of Arkansas, Fayetteville, AR (United States). Geology Dept.); Williams, R.A.; Shedlock, K.M.; King, K.W.; Odum, J.K. (Geological survey, Denver, CO (United States). Denver Federal Center); Schweig, E.S. III; Kanter, L.R. (Memphis State Univ., TN (United States))

    1992-01-01

    Crowley's Ridge is a 320 km long topographic ridge that extends from Thebes, Illinois to Helena, Arkansas. The ridge has been interpreted as an erosional remnant formed during Quaternary incision of the ancestral Mississippi and Ohio rivers; however, the Reelfoot Rift COCORP line identified a down-to-the-west fault bounding the western margin of Crowley's Ridge south of Jonesboro, Arkansas. Subsequent Mini-Sosie seismic reflection profiles confirmed the COCORP data and identified additional faults beneath other margins of the ridge. In each case the faults lie beneath the base of the ridge scarp. The Mini-Sosie data did not resolve the uppermost 150 m and so it was not possible to determine if the faults displace the near-surface Claiborne Group (middle Eocene). A shotgun source seismic reflection survey was subsequently conducted to image the uppermost 250 m across the faulted margins. The shotgun survey across the western margin of the ridge south of Jonesboro reveals displaced reflectors as shallow as 30 m depth. Claiborne Group strata are displaced approximately 6 m and it appears that some of the topographic relief of Crowley's Ridge at this location is due to post middle Eocene fault displacement. Based on the reflection data, the authors suggest that Crowley's Ridge is tectonic in origin.

  8. One Piece Orbitozygomatic Approach Based on the Sphenoid Ridge Keyhole

    DEFF Research Database (Denmark)

    Spiriev, Toma; Poulsgaard, Lars; Fugleholm, Kaare

    2016-01-01

    The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge was exami......The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge...

  9. New beach ridge type: severely limited fetch, very shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, W.F.; Demirpolat, S.

    1988-09-01

    The southern end of Laguna Madre (Texas) north of the Rio Grande mouth is marked by very shallow water, wide tidal flats, lunettes, islands made of beach ridges, and lesser features. The number and variety of islands in the lagoon is remarkable. The lunettes (clay dunes) are made primarily of quartz sand and coarse silt. They are common 5-10 m high, irregular in shape, and steep sided. They were deposited from wind transport and did not migrate. Those that are islands in the lagoon predate present position of sea level. Islands made of beach ridges were built from the lagoon side. Photoanalysis, field work, and granulometry all show that this sand was not moved into these ridges by Gulf of Mexico waves. Trenches in 12 beach ridges showed horizontal bedding but neither low-angle nor steep cross-bedding (quite unlike swash-built beach ridges). The ridges were built by wind-tide lag effects, not from the swash. Therefore, these beach ridges are a new type, in addition to swash-built, eolian, and storm-surge ridges. Growth of the ridges appears to be completed.

  10. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  11. Scaling relation for earthquake networks

    CERN Document Server

    Abe, Sumiyoshi

    2008-01-01

    The scaling relation derived by Dorogovtsev, Goltsev, Mendes and Samukhin [Phys. Rev. E, 68 (2003) 046109] states that the exponents of the power-law connectivity distribution, gamma, and the power-law eigenvalue distribution of the adjacency matrix, delta, of a locally treelike scale-free network satisfy 2*gamma - delta = 1 in the mean field approximation. Here, it is shown that this relation holds well for the reduced simple earthquake networks (without tadpole-loops and multiple edges) constructed from the seismic data taken from California and Japan. The result is interpreted from the viewpoint of the hierarchical organization of the earthquake networks.

  12. Computational methods in earthquake engineering

    CERN Document Server

    Plevris, Vagelis; Lagaros, Nikos

    2017-01-01

    This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

  13. Earthquakes triggered by fluid extraction

    Science.gov (United States)

    Segall, P.

    1989-01-01

    Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author

  14. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone

    Science.gov (United States)

    Yamamoto, Yojiro; Obana, Koichiro; Takahashi, Tsutomu; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-03-01

    We performed 3D seismic tomography of the Hyuga-nada region, western Nankai subduction zone, to investigate the relationship of the subducted part of Kyushu-Palau Ridge (KPR) to coseismic rupture propagation, seismicity, and shallow very low frequency earthquakes. Combining active-source and passive-source data recorded both onshore and offshore, we imaged the deep slab from near the trough axis to the coastal area. Our results show the subducted KPR as a low-velocity belt oriented NW-SE extending down the plate boundary to around 30 km depth. At this depth, we suggest that the subducted KPR detaches from the slab and becomes underplated on the overriding continental plate. As the coseismic slip areas of past large earthquakes do not extend into the subducted KPR, we suggest that it may inhibit rupture propagation. The interior of the subducted KPR shows active intraslab seismicity with a wide depth distribution. Shallow very low frequency earthquakes are continuously active above the location of the subducted KPR, whereas they are intermittent to the northeast of the subducted KPR. Thus, the subducted KPR appears to be an important factor in coseismic rupture propagation and seismic phenomena in this region.

  15. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  16. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes

    Science.gov (United States)

    Egan, Candice J.; Quigley, Mark C.

    2015-01-01

    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  17. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea

    Science.gov (United States)

    Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang

    2016-07-01

    Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.

  18. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea

    Science.gov (United States)

    Wu, Ziyin; Jin, Xianglong; Zhou, Jieqiong; Zhao, Dineng; Shang, Jihong; Li, Shoujun; Cao, Zhenyi; Liang, Yuyang

    2017-06-01

    Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320-200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.

  19. US Department of Energy Oak Ridge Operations Environmental Management Public Involvement Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document was prepared in accordance with CERCLA requirements for writing community relations plans. It includes information on how the DOE Oak Ridge Operations Office prepares and executes Environmental Management Community relations activities. It is divided into three sections: the public involvement plan, public involvement in Oak Ridge, and public involvement in 1995. Four appendices are also included: environmental management in Oak Ridge; community and regional overview; key laws, agreements, and policy; and principal contacts.

  20. Behavior of Cell on Vibrating Micro Ridges

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2015-06-01

    Full Text Available The effect of micro ridges on cells cultured at a vibrating scaffold has been studied in vitro. Several parallel lines of micro ridges have been made on a disk of transparent polydimethylsiloxane for a scaffold. To apply the vibration on the cultured cells, a piezoelectric element was attached on the outside surface of the bottom of the scaffold. The piezoelectric element was vibrated by the sinusoidal alternating voltage (Vp-p < 16 V at 1.0 MHz generated by a function generator. Four kinds of cells were used in the test: L929 (fibroblast connective tissue of C3H mouse, Hepa1-6 (mouse hepatoma, C2C12 (mouse myoblast, 3T3-L1 (mouse fat precursor cells. The cells were seeded on the micro pattern at the density of 2000 cells/cm2 in the medium containing 10% FBS (fetal bovine serum and 1% penicillin/ streptomycin. After the adhesion of cells in several hours, the cells are exposed to the ultrasonic vibration for several hours. The cells were observed with a phase contrast microscope. The experimental results show that the cells adhere, deform and migrate on the scaffold with micro patterns regardless of the ultrasonic vibration. The effects of the vibration and the micro pattern depend on the kind of cells.

  1. Fs-Laser structuring of ridge waveguides

    Science.gov (United States)

    Wortmann, D.; Gottmann, J.

    2008-10-01

    Thin films made by PLD from Er:ZBLAN and Nd:Gd3Ga5O12 are micro machined to form optical wave guiding structures using Ti:sapphire and Yb:glass fiber laser radiation. For the manufacturing of the ridge waveguides grooves are structured by ablation using femtosecond laser radiation. The fluence, the scanning velocity, the repetition rate, and the orientation of the polarization with respect to the scanning direction are varied. The resulting structures are characterized using optical microscopy and scanning electron microscopy. Damping and absorption coefficients of the waveguides are determined by observing the light scattered from the waveguides due to droplets in the thin films and the surface roughness of the structured edges. To discriminate between damping due to droplets and the structured edges, damping measurements in the non-structured films and the structured waveguides are performed. Ridge waveguides with non-resonant damping losses smaller than 3 dB/cm are achieved. Due to the high repetition rate of the Yb:glass fiber laser, the manufacturing time for one waveguide has been decreased by a factor of more than 100 compared to earlier results achieved with the Ti:sapphire laser.

  2. Data Resources for Accessing MARGINS, Ridge 2000 and ODP Data

    Science.gov (United States)

    Goodwillie, A.; Carbotte, S.; Arko, R.; O'Hara, S.; Ryan, W.; Melkonian, A.; Ferrini, V.; Weissel, R.; Bonczkowski, J.

    2007-12-01

    Web-based digital databases are being developed by a number of academic and governmental groups to improve the ability of researchers and students to access geoscience data in a convenient and user-friendly manner. With funding from the U.S. National Science Foundation, the Marine Geoscience Data System (MGDS) (http://www.marine-geo.org/) serves as the data portal for the NSF MARGINS program, providing free public access and preservation to a wide variety of marine and terrestrial data collected during MARGINS projects. The broad suite of integrated database holdings includes rock, fluid, biology and sediment samples information and station details, multibeam bathymetry and underway geophysical data, multi-channel seismics, and water column data. Seamless links point to external repositories for geodetic data (UNAVCO), and land seismic campaign data (IRIS). GeoMapApp (http://www.geomapapp.org/), an MGDS data visualization tool, supports map-based dynamic exploration of data using a multi-resolution global digital elevation model. Built-in land and marine data sets include EarthChem geochemistry, plate boundaries, DSDP/ODP core logs, earthquake events, seafloor photos, and submersible dive tracks. Users can also access land and marine data sets through OGC-compliant Web Services provided by external repositories including PetDB, UNAVCO, IRIS and NGDC. Users can generate custom maps and grids and import their own data sets and grids. A set of short, video-style online tutorials familiarises users step-by-step with GeoMapApp functionality (http://www.geomapapp.org/tutorials/). GeoMapApp is used in a number of undergraduate mini-lessons created during the MARGINS EPO workshop (April, 2007) and is the basis for two education modules hosted at SERC-Carlton (http://www.marine- geo.org/Education.html). MGDS data portal resources make available a wide variety of real scientific data from large NSF-supported research programs. Examples of accessing and manipulating a range

  3. Automatic earthquake confirmation for early warning system

    Science.gov (United States)

    Kuyuk, H. S.; Colombelli, S.; Zollo, A.; Allen, R. M.; Erdik, M. O.

    2015-07-01

    Earthquake early warning studies are shifting real-time seismology in earthquake science. They provide methods to rapidly assess earthquakes to predict damaging ground shaking. Preventing false alarms from these systems is key. Here we developed a simple, robust algorithm, Authorizing GRound shaking for Earthquake Early warning Systems (AGREEs), to reduce falsely issued alarms. This is a network threshold-based algorithm, which differs from existing approaches based on apparent velocity of P and S waves. AGREEs is designed to function as an external module to support existing earthquake early warning systems (EEWSs) and filters out the false events, by evaluating actual shaking near the epicenter. Our retrospective analyses of the 2009 L'Aquila and 2012 Emilia earthquakes show that AGREEs could help an EEWS by confirming the epicentral intensity. Furthermore, AGREEs is able to effectively identify three false events due to a storm, a teleseismic earthquake, and broken sensors in Irpinia Seismic Network, Italy.

  4. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos

    2017-04-01

    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  5. Using Smartphones to Detect Earthquakes

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2012-12-01

    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  6. Seismicity dynamics and earthquake predictability

    Directory of Open Access Journals (Sweden)

    G. A. Sobolev

    2011-02-01

    Full Text Available Many factors complicate earthquake sequences, including the heterogeneity and self-similarity of the geological medium, the hierarchical structure of faults and stresses, and small-scale variations in the stresses from different sources. A seismic process is a type of nonlinear dissipative system demonstrating opposing trends towards order and chaos. Transitions from equilibrium to unstable equilibrium and local dynamic instability appear when there is an inflow of energy; reverse transitions appear when energy is dissipating. Several metastable areas of a different scale exist in the seismically active region before an earthquake. Some earthquakes are preceded by precursory phenomena of a different scale in space and time. These include long-term activation, seismic quiescence, foreshocks in the broad and narrow sense, hidden periodical vibrations, effects of the synchronization of seismic activity, and others. Such phenomena indicate that the dynamic system of lithosphere is moving to a new state – catastrophe. A number of examples of medium-term and short-term precursors is shown in this paper. However, no precursors identified to date are clear and unambiguous: the percentage of missed targets and false alarms is high. The weak fluctuations from outer and internal sources play a great role on the eve of an earthquake and the occurrence time of the future event depends on the collective behavior of triggers. The main task is to improve the methods of metastable zone detection and probabilistic forecasting.

  7. Carslberg Ridge and Mid-Atlantic Ridge: Slow-spreading Apparent Analogs

    Science.gov (United States)

    Rona, P. A.; Murton, B. J.; Bostrom, K.; Widenfalk, L.; Melson, W. G.; O'Hearn, T.; Cronan, D. S.; Jenkins, W. J.

    2005-12-01

    We compare morphology, tectonics, petrology, and hydrothermal activity of a known section of the Mid-Atlantic Ridge (MAR) between the Kane and Atlantis fracture zones (full multi-beam coverage 21N to 31N) to the lesser known Carlsberg Ridge (CR; limited multi-beam coverage plus satellite altimetry). The CR extends from the Owen Fracture Zone (10N) to the Vityaz Fracture Zone (5S) and spreads at half-rates (~1.2-1.8 cm/yr) similar to the MAR: 1) Morphology: Both ridges exhibit distinct segmentation (primarily sinistral) and axial valleys with high floor to crest relief (range 1122-1771 m). Average lengths of segments (CR: 70 km; MAR: 50 km) and crest-to crest width of the axial valley are greater on the CR (40 km) than MAR (23 km). Axial volcanic ridges form the neovolcanic zone on both ridges, typically 2.6 km wide and 213 m high on the CR. Average water depth near segment centers is greater on the MAR (3933 m) than the CR (3564 m). V-shaped patterns oblique to the spreading axis are present on both ridges. 2) Tectonics: Segments on each ridge are predominantly separated by short-offset (Bulls-eye Mantle Bouguer Lows (-30 to -50 mgal) are present at centers of spreading segments on both ridges. Metamorphic core complexes of lower crust and upper mantle are present on the MAR section (at fracture zones) and at least at one locality at 58.33E on the CR. 3) Petrology: MORB composition from our 20 stations along the CR fall into the MORB family, with no evidence of hotspot inputs (no excess K or Nb), or extreme fractionation, similar to the MAR section. REE and trace element patterns between 57E and 61E on the CR indicate increasing melt depletion to the northwest, while glasses exhibit a striking systematic increase in MgO (decrease in fractionation) to the northwest and attain among the most primitive composition of any ocean ridge adjacent to the Owen fracture zone (9.93wt percent). Sr, Nd, and Pb isotopic compositions of Indian Ocean MORB are distinct from those of

  8. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    Science.gov (United States)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect

  9. Seismotectonics of the Lwandle-Nubia plate boundary between South Africa and the Southwest Indian Ridge

    Science.gov (United States)

    Hartnady, Chris; Okal, Emile; Calais, Eric; Stamps, Sarah; Saria, Elifuraha

    2013-04-01

    The Lwandle (LW) plate shares a boundary with the Nubia (NU) plate, extending from a diffuse triple junction with the Rovuma plate in Southern Mozambique to a triple junction with the Antarctic plate along a segment of the Southwest Indian Ridge (SWIR). The LW-NU boundary terminates in the ~750 km-long, complex transform of the Andrew Bain Fracture Zone (ABFZ), but its exact locus is still unclear. Recent works locate it along the eastern boundary of the submarine Mozambique Ridge, parallel to the pre-existing, oceanic transform-fault fabric. However, an early concept of the LW block ('ambiguous region' of Hartnady, 1990, Fig. 2) indicates a more westerly trajectory in the north that includes parts of South Africa, with a southerly extension across old oceanic crust of the submarine Natal Valley and Transkei Basin. This proposed boundary is marked by several, aligned epicentres of moderate to strong earthquakes (1941, 1942, 1956, 1969, 1972, 1975, 1981 and 1989). Our re-examination of seismographic records from the 1975 'intraplate' earthquake (-37.62°N, 30.98°E, mb5.0), in the oceanic crust of the distal Transkei Basin, shows a thrust-faulting focal mechanism along a nodal plane striking N272°E. The largest (ML4.2) of a series of three small earthquakes in the Natal Valley in 2009, close to a zone of recent seafloor deformation mapped in 1992, has similar first-motion patterns at Southern African seismograph stations. When the 1975 slip-vector result (N173°E) is combined with a normal-faulting slip vector (N078°E) from a 1986 onland earthquake (-30.53°N, 28.84°E, mb5.0) near the Lesotho-KZN border, and both are incorporated into the wider data-set previously used to solve for East African Rift kinematics, they produce a LW-NU rotation pole that is located south of Africa, near the Agulhas Plateau, and approximately 950 km from the Natal Valley deformation zone. The modeled low rate of right-lateral, LW-NU slip (~0.50-0.75 mm/yr) across this LW-NU boundary

  10. A Comparison of Geodetic Strain Rates With Earthquake Moment Tensors

    Science.gov (United States)

    Zhu, W.; Holt, W. E.

    2004-12-01

    In this paper we compare the global model from interpolation of GPS data with the global model inferred from earthquake moment tensors. We use the Harvard CMT catalog to calculate moment rates based on 3 assumptions: a. we assume earthquakes are self-similar; b. we assume a uniform Beta value of the Gutenberg-Richter distribution; c. we assume that all of the long-term strain is accommodated seismically. If these assumptions are correct then the seismicity rate is proportional to the tectonic moment rate. We then inferred a long-term moment rate tensor field estimate for all plate boundary zones from which we inferred a long-term seismic strain rate estimate. Using this estimate we solved for a self-consistent kinematic global solution (motions of rigid spherical caps and motions within plate boundary zones) using bi-cubic spline interpolation of the inferred strain rates. We tested the above assumptions by comparing the global kinematic model obtained from earthquake data with a global model inferred from interpolation of space geodetic data [Kreemer et al., 2003]. A comparison between the two models shows good agreement for motion directions of the North American, and Eurasian plates and for the plate boundary zones within these regions (e.g., Tibet). Problems arise, and our assumptions break down, for plates adjacent to fast spreading ridges where divergence of plates appears to be accommodated aseismically. We next investigated the correlation of strain rate tensor inferred from the interpolation of GPS observations within deforming Asia with the earthquake moment tensors, using both elastic and viscous rheologies. Our solutions satisfy the force balance equations for a given rheology. Our goal for this exercise is to investigate whether the interseismic signal, inferred from GPS, correlates better with moment tensor style for an elastic rheology as opposed to a viscous rheology. Results to date suggest that the viscous models only provide a better agreement

  11. Oak Ridge Reservation Annual Site environmental report summary for 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document presents a summary of the information collected for the Oak Ridge Reservation 1994 site environmental report. Topics discussed include: Oak Ridge Reservation mission; ecology; environmental laws; community participation; environmental restoration; waste management; radiation effects; chemical effects; risk to public; environmental monitoring; and radionuclide migration.

  12. 60 Years of Great Science (Oak Ridge National Laboratory)

    Science.gov (United States)

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  13. Pesticide Leaching from Agricultural Fields with Ridges and Furrows

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2010-01-01

    In the evaluation of the risk of pesticide leaching to groundwater, the soil surface is usually assumed to be level, although important crops like potato are grown on ridges. A fraction of the water from rainfall and sprinkler irrigation may flow along the soil surface from the ridges to the furrows

  14. Seismicity of the Equatorial Mid-Atlantic Ridge and its Large Offset Transforms recorded during a multi-year hydrophone array deployment

    Science.gov (United States)

    Smith, D. K.; Dziak, R. P.; Haxel, J.; Meyer, R. P.

    2015-12-01

    To increase our understanding of the slow-spreading, equatorial Mid-Atlantic Ridge (MAR), we deployed an array of eight autonomous hydrophones centered on the ridge axis between ~20°N and ~10°S. The hydrophones were deployed for 2+ years (500 Hz sample rate) and obtained a continuous record of the regional seismicity. This region is especially interesting for many reasons. A strongly segmented MAR is offset by some of the longest transform faults in the global oceans. In addition, the North America-South America-Africa (NA-SA-AF) triple junction is thought to be between 10°N and 20°N at the MAR, but its exact location is not well-defined. And finally, the NA-SA plate boundary is not clearly delineated by teleseismicity or prominent seafloor structures despite known relative motion between the plates. Seven of the eight hydrophones were recovered in January 2015 and earthquake location analysis is underway. These seismic data will be used to understand the modes of spreading, short-term earthquake predictability, and triple junction dynamics. In particular, we will use patterns in the earthquake data to address the following: 1) Whether long-lived detachment faults play a central role in accretion at the equatorial MAR similar to what is observed to the north (Escartin et al., 2008). 2) Whether foreshock sequences can be used to predict (retrospectively) earthquakes with magnitudes ≥ 5.4 mb on equatorial Atlantic transform faults as they can be on Pacific transforms (McGuire et al., 2005). A total of eighteen teleseismic earthquakes ≥ 5.4 mb occurred in this region during the hydrophone deployment providing a robust data base to test this foreshock precursor hypothesis. 3) Lastly, whether or not the geometry and crustal stress patterns induced by the NA-SA-AF triple junction are apparent in the earthquake data. If so, the earthquake patterns will help improve our understanding of triple junction dynamics and overall lithospheric strength.

  15. Evidence for melt channelization in Galapagos plume-ridge interaction

    Science.gov (United States)

    Mittal, T.; Richards, M. A.

    2015-12-01

    Many present-day hot spots are located within ~ 1000 km of a mid-ocean ridge, either currently or in the geologic past, leading to frequent interaction between these two magmatic regimes. The consequent plume-ridge interactions provide a unique opportunity to test models for asthenosphere-lithosphere dynamics, with the plume acting as a tracer fluid in the problem, and excess magmatism reflecting otherwise unsampled sub-surface phenomena. Galapagos is an off-ridge hotspot with the mantle plume located ~150-250 km south of the plate boundary. Plume-ridge interaction in Galapagos is expressed by the formation of volcanic lineaments of islands and seamounts - e.g., the Wolf-Darwin lineament (WDL) - providing a direct probe of the plume-ridge interaction process, especially in regards to geochemical data. Although several models have been proposed to explain plume-ridge interaction in Galapagos, none adequately explain the observed characteristics, especially the WDL. In particular, predicted lithospheric fault orientations and melt density considerations appear at odds with observations, suggesting that lithospheric extension is not the primary process for formation of these islands. Other off-ridge hotspots interacting with nearby spreading ridges, such as Reunion and Louisville, also exhibit volcanic lineaments linking the plume and the ridge. Thus these lineament-type features are a common outcome of plume-ridge interaction that are indicative of the underlying physics. We propose that the lineaments are surface expressions of narrow sub-lithospheric melt channels focused towards the spreading ridge. These channels should form naturally due to the reactive infiltration instability in a two-phase flow of magma and solid mantle as demonstrated in two-phase flow simulations (e.g., Katz & Weatherley 2012). For Galapagos, we show that melt channels can persist thermodynamically over sufficient length-scales to link the plume and nearby ridge segments. We also show that

  16. The axial topographic high at intermediate and fast spreading ridges

    Science.gov (United States)

    Carbotte, Suzanne M.; MacDonald, Ken C.

    1994-12-01

    An axial topographic high is commonly observed at both fast spreading ridges and some segments of intermediate spreading ridges. At fast rates the axial high is primarily created by the buoyancy of hot rock and magma beneath the rise. As newly formed crust is transported off axis, little vestige of an axial high is observed on the ridge flanks. In contrast, at intermediate rates, a significant component of the positive topography may be a volcanic construction, preserved on the ridge flanks as abyssal hills, which are slit axial volcanoes. We suggest this difference in the nature of the axial high reflects a lithosphere strong enough to support construction of a volcanic crestal ridge at intermediate spreading rates, but only rarely at fast rates. Relict overlap ridges, found within the discordant zones left by overlapping spreading centers, is one class of ridge-flank topography which appears to have a significant volcanic constructional component even at fast spreading ridges. Unlike topography away from these discontinuities, the relief and shape of overlapping spreading centers is preserved as relict ridge tips are rafted onto the ridge flanks. Reduced magma supply at these discontinuities may give rise to an axial lithosphere strong enough to support volcanic construction of overlap ridges. Low axial lithospheric strength may also account for the lack of normal faults within the innermost 1-2 km of fast, and some intermediate, spreading ridges. With a thin/weak brittle layer at the ridge crest, tensile failure will predominate and few normal faults will form. Depths to the axial magma chamber reflector observed in multi-channel seismic data limit the thickness of the brittel layer on axis to less than 1-2 km for much of the East Pacific Rise (EPR). This depth is comparable to depths over which tensile failure within the oceanic crust will predominate, estimated from the Griffith criteria for fracture initiation (approx. 0.5-1.5 km). As the brittle layer

  17. The fate of volatiles in mid-ocean ridge magmatism

    CERN Document Server

    Keller, Tobias; Hirschmann, Marc M

    2016-01-01

    Deep-Earth volatile cycles couple the mantle with near-surface reservoirs. Volatiles are emitted by volcanism and, in particular, from mid-ocean ridges, which are the most prolific source of basaltic volcanism. Estimates of volatile extraction from the asthenosphere beneath ridges typically rely on measurements of undegassed lavas combined with simple petrogenetic models of the mean degree of melting. Estimated volatile fluxes have large uncertainties; this is partly due to a poor understanding of how volatiles are transported by magma in the asthenosphere. Here, we assess the fate of mantle volatiles through numerical simulations of melting and melt transport at mid-ocean ridges. Our simulations are based on two-phase, magma/mantle dynamics theory coupled to an idealised thermodynamic model of mantle melting in the presence of water and carbon dioxide. We combine simulation results with catalogued observations of all ridge segments to estimate a range of likely volatile output from the global mid-ocean ridge...

  18. 76 FR 78908 - Environmental Management Site-Specific Advisory Board, Oak Ridge Reservation

    Science.gov (United States)

    2011-12-20

    ..., Department of Energy Oak Ridge Operations Office, P.O. Box 2001, EM-90, Oak Ridge, TN 37831. Phone (865) 241... and Reuse. The speaker will be Brian Henry, DOE Oak Ridge. Public Participation: The EM SSAB,...

  19. Model Selection in Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...

  20. Reactive spreading: Adsorption, ridging and compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, E.; Cannon, R.M.; Tomsia, A.P.

    2000-09-11

    Reactive spreading, in which a chemically active element is added to promote wetting of noble metals on nonmetallic materials, is evaluated. Theories for the energetics and kinetics of the necessary steps involved in spreading are outlined and compared to the steps in compound formation that typically accompany reactive wetting. These include: fluid flow, active metal adsorption, including nonequilibrium effects, and triple line ridging. All of these can be faster than compound nucleation under certain conditions. Analysis and assessment of recently reported experiments on metal/ceramic systems lead to a focus on those conditions under which spreading proceeds ahead of the actual formation of a new phase at the interface. This scenario may be more typical than believed, and perhaps the most effective situation leading to enhanced spreading. A rationale for the pervasive variability and hysteresis observed during high temperature wetting also emerges.

  1. Oak Ridge Reservation environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, V.A.; Wilson, A.R. (eds.)

    1990-10-01

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1989. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1989 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1. 16 figs., 194 tabs.

  2. Oak Ridge Reservation Environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.R. (ed.)

    1991-09-01

    The first two volumes of this report are devoted to a presentation of environmental data and supporting narratives for the US Department of Energy's (DOE's) Oak Ridge Reservation (ORR) and surrounding environs during 1990. Volume 1 includes all narrative descriptions, summaries, and conclusions and is intended to be a stand-alone'' report for the ORR for the reader who does not want to review in detail all of the 1990 data. Volume 2 includes the detailed data summarized in a format to ensure that all environmental data are represented in the tables. Narratives are not included in Vol. 2. The tables in Vol. 2 are addressed in Vol. 1. For this reason, Vol. 2 cannot be considered a stand-alone report but is intended to be used in conjunction with Vol. 1.

  3. Strong motions and engineering structure performances in recent major earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Li

    2010-01-01

    @@ In recent years, a series of major earthquakes occurred, which resulted in considerable engineering damage and collapse, triggered heavy geological hazards, and caused extremely high casualties and huge property and economic loss. The earthquakes include the 1994 Northridge earthquake (M6.8), the 1995 Kobe earthquake (M6.8), the 1999 Izmit earthquake (M7.6), the 1999 Jiji (Chi-Chi) earthquake (M7.6), the 2005 northern Pakistan earthquake (M7.6), the 2008 Wenchuan earthquake (M8.0) and the 2010 Haiti earthquake (M7.0). Some villages, towns and even cities were devastated in the earthquakes, especially in the 2005 northern Pakistan earthquake, the 2008 Wenchuan earthquake and the 2010 Haiti earthquake.

  4. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  5. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  6. Oak Ridge Health Studies phase 1 report, Volume 1: Oak Ridge Phase 1 overview

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, M.I.; Van Cleave, M.L.; Turri, P.; Daniel, J.

    1993-09-01

    In July 1991, the State of Tennessee initiated the Health Studies Agreement with the United States Department of Energy to carry out independent studies of possible adverse health effects in people living in the vicinity of the Oak Ridge Reservation. The health studies focus on those effects that could have resulted or could result from exposures to chemicals and radioactivity released at the Reservation since 1942. The major focus of the first phase was to complete a Dose Reconstruction Feasibility Study. This study was designed to find out if enough data exist about chemical and radionuclide releases from the Oak Ridge Reservation to conduct a second phase. The second phase will lead to estimates of the actual amounts or the ``doses`` of various contaminants received by people as a result of off-site releases. Once the doses of various contaminants have been estimated, scientists and physicians will be better able to evaluate whether adverse health effects could have resulted from the releases.

  7. Estimation of Future Earthquake Losses in California

    Science.gov (United States)

    Rowshandel, B.; Wills, C. J.; Cao, T.; Reichle, M.; Branum, D.

    2003-12-01

    Recent developments in earthquake hazards and damage modeling, computing, and data management and processing, have made it possible to develop estimates of the levels of damage from earthquakes that may be expected in the future in California. These developments have been mostly published in the open literature, and provide an opportunity to estimate the levels of earthquake damage Californians can expect to suffer during the next several decades. Within the past 30 years, earthquake losses have increased dramatically, mostly because our exposure to earthquake hazards has increased. All but four of the recent damaging earthquakes have occurred distant from California's major population centers. Two, the Loma Prieta earthquake and the San Fernando earthquake, occurred on the edges of major populated areas. Loma Prieta caused significant damage in the nearby Santa Cruz and in the more distant, heavily populated, San Francisco Bay area. The 1971 San Fernando earthquake had an epicenter in the lightly populated San Gabriel Mountains, but caused slightly over 2 billion dollars in damage in the Los Angeles area. As urban areas continue to expand, the population and infrastructure at risk increases. When earthquakes occur closer to populated areas, damage is more significant. The relatively minor Whittier Narrows earthquake of 1987 caused over 500 million dollars in damage because it occurred in the Los Angeles metropolitan area, not at its fringes. The Northridge earthquake had fault rupture directly beneath the San Fernando Valley, and caused about 46 billion dollars in damage. This vast increase in damage from the San Fernando earthquake reflected both the location of the earthquake directly beneath the populated area and the 23 years of continued development and resulting greater exposure to potential damage. We have calculated losses from potential future earthquake, both as scenarios of potential earthquakes and as annualized losses considering all the potential

  8. Long-Term Seismicity of Northern (15° N-60° N) Mid-Atlantic Ridge (MAR) Recorded by two Regional Hydrophone Arrays: a Widespread Along-Ridge Influence of the Azores and Iceland Hotspots

    Science.gov (United States)

    Goslin, J.; Bazin, S.; Dziak, R. P.; Fox, C.; Fowler, M.; Haxel, J.; Lourenco, N.; Luis, J.; Martin, C.; Matsumoto, H.; Perrot, J.; Royer, J.

    2004-12-01

    The seismicity of the North Atlantic was recorded by two networks of hydrophones moored in the SOFAR channel, north and south of the Azores Plateau. The interpretation of the hydro-acoustic signals recorded during the first six-month common period of operation of the two networks (June 2002 to Nov. 2002) provides a unique data set on the spatial and time distributions of the numerous low-magnitude earthquakes which occurred along the Mid-Atlantic Ridge. Close to 2000 events were localized during this six-month period between latitudes 15° N and 63° N, 501 of which are localized within the SIRENA network (40° N-51° N) and 692 within the wider South Azores network (17° N-33° N). Using hydrophones to locate seafloor earthquakes by interpreting T-wave signals lowers the detection threshold of Mid-Atlantic Ridge events to 3.0 mb from the 4.7 mb of global seismic networks. This represents an average thirty-fold increase in the number of events: 62 events were detected by global seismological networks within the same area during the same period. An along-ridge spatial distribution of the seismicity is obtained by computing the cumulated numbers of events in 1° -wide latitudinal bins. When plotted vs. latitude, this first-order distribution shows remarkable long-wavelength patterns: the seismicity rate is low when approaching the Azores and Iceland (reaching values as low as 10 events/d° ), while it peaks to 70 events/d° in the vicinity of the Gibbs FZ. Moreover, the latitudinal distribution of the seismicity hints at an asymmetric influence of the Azores hotpot on the MAR. Finally, the spatial distribution of the seismicity anti-correlates well at long wavelengths with the zero-age depths along the MAR and correlates with the zero-age Mantle Bouguer (MBA) anomaly values and the Vs velocity anomalies at 100 km in the upper mantle. It is thus proposed that the seismicity level would be partly tied to the rheology and thickness of the brittle layer and be thus

  9. Tiger team assessment of the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1990-02-01

    This document contains findings identified during the Tiger Team Compliance Assessment of the Department of Energy's (DOE's) Y-12 Plant in Oak Ridge, Tennessee. The Y-12 Plant Tiger Team Compliance Assessment is comprehensive in scope. It covers the Environmental, Safety, and Health (including Occupational Safety and Health Administration (OSHA) compliance), and Management areas and determines the plant's compliance with applicable federal (including DOE), state, and local regulations and requirements. 4 figs., 12 tabs.

  10. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  11. The Characteristics of Earthquake Swarms in and around Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    Huang Yun; Tian Jianming; Miao Ali

    2011-01-01

    This paper systematically analyzed 36 earthquake swarms in and around Jiangsu Province, summarized their characteristics and discussed the relationship between earthquske swarms and subsequent strong earthquakes. It also analyzed the judgment criteria for precursory earthquake swarms. Earthquake swarms in Jiangsu Province are concentrated in several areas. Most of them were of magnitude ML2. 0 ~ 3. 9. For most earthquake swarms, the number of earthquakes was less than 30. Time duration for about 55% of earthquake swarms was less than 15 days. The biggest magnitude of one earthquake swarm was not proportional to the number of earthquakes and time duration. There are 78% of earthquake swarms corresponded to the forthcoming earthquakes of M 〉 4. 6 in which there're 57% occured in one year, This shows a medium- and short-term criterion. Distance between earthquake swarm and future earthquake was distributed dispersedly. There were no earthquakes occurring in the same location as earthquake swarms. There was no good correlation between the magnitude and the corresponding rate of future earthquakes and the intensity of earthquake swarms. There was also no good correlation between the number of earthquakes in an earthquake swarm and the corresponding rate. The study also shows that it's better to use U-p or whole-combination to determine the type of earthquake swarm.

  12. Tectonics of the Ninetyeast Ridge derived from spreading records in adjacent oceanic basins and age constraints of the ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Abraham, H.; Sager, W.W.; Pringle, M.S.; Frey, F.; Rao, D.G.; Levchenko, O.V.

    and magnetic anomaly ages implies that the hot spot first emplaced NER volcanoes on the Indian plate at a distance from the Wharton Ridge, but as the northward drifting spreading ridge approached the hot spot, the two interacted, keeping later NER volcanism...

  13. Relation between the characteristics of strong earthquake activities in Chinese mainland and the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Zhang; Guohua Yang; Xian Lu; Mingxiao Li; Zhigao Yang

    2009-01-01

    This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the active-quiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.

  14. Investigation of Icelandic rift zones reveals systematic changes in hydrothermal outflow in concert with seismic and magmatic events: Implications for investigation of Mid-Ocean Ridge hydrothermal systems

    Science.gov (United States)

    Curewitz, D.; Karson, J. A.

    2010-12-01

    Co-registration of several generations of geological data was carried out for hydrothermal fields along active rift zones of the Iceland plate boundary zone. Significant short- and long-term changes in vent locations, flow rates and styles, and fluid characteristics over short periods take place in concert with recorded earthquakes, dike intrusions, and fissure eruptions. Higher resolution, more detailed analysis of the Icelandic hydrothermal sites will inform investigation of similar data from mid-ocean ridge hydrothermal systems along the RIDGE 2000 focus sites. Initial results from the Hengill and Krafla geothermal areas covering a time-span of nearly 40 years at ~10 year intervals reveal limited changes in the surface expression of fault populations, with the exception of local fault and fracture systems. The location and population density of individual vents and groups of vents underwent significant changes over the same time period, with either vents shifting location, or new vents opening and old vents closing. Registration of changes in vent fluid temperatures, vent field ground temperatures, fluid flow rates, and vent eruptive styles reveal changes in hydrothermal flow systematics in concert with the observed changes in vent location and vent population density. Significant local seismic and volcanological events (earthquakes, earthquake swarms, dike intrusions, eruptions, inflation/deflation) that are potential triggers for the observed changes take place in intervening years between production of successive maps. Changes in modeled stress intensities and local fracture/fault density and geometry associated with these tectono-magmatic events correspond well to inferred locations of increased or decreased shallow permeability thought to control hydrothermal outflow behavior. Recent seismic events are strongly linked to well-mapped changes in fracture/fault population and hydrothermal flow behavior in the Hveragerdi region, near Hengill, and provide higher

  15. Site descriptions of environmental restoration units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, P.L.; Legeay, A.J.; Pesce, D.S.; Stanley, A.M.

    1995-11-01

    This report, Site Descriptions of Environmental Restoration Units at the Oak Ridge K-25 Site, Oak Ridge, Tennessee, is being prepared to assimilate information on sites included in the Environmental Restoration (ER) Program of the K-25 Site, one of three major installations on the Oak Ridge Reservation (ORR) built during World War III as part of the Manhattan Project. The information included in this report will be used to establish program priorities so that resources allotted to the K-25 ER Program can be best used to decrease any risk to humans or the environment, and to determine the sequence in which any remedial activities should be conducted. This document will be updated periodically in both paper and Internet versions. Units within this report are described in individual data sheets arranged alphanumerically. Each data sheet includes entries on project status, unit location, dimensions and capacity, dates operated, present function, lifecycle operation, waste characteristics, site status, media of concern, comments, and references. Each data sheet is accompanied by a photograph of the unit, and each unit is located on one of 13 area maps. These areas, along with the sub-area, unit, and sub-unit breakdowns within them, are outlined in Appendix A. Appendix B is a summary of information on remote aerial sensing and its applicability to the ER program.

  16. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-12-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  17. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  18. Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions

    Science.gov (United States)

    Hanks, T.C.

    1977-01-01

    A variety of geophysical observations suggests that the upper portion of the lithosphere, herein referred to as the elastic plate, has long-term material properties and frictional strength significantly greater than the lower lithosphere. If the average frictional stress along the non-ridge margin of the elastic plate is of the order of a kilobar, as suggested by the many observations of the frictional strength of rocks at mid-crustal conditions of pressure and temperature, the only viable mechanism for driving the motion of the elastic plate is a basal shear stress of several tens of bars. Kilobars of tectonic stress are then an ambient, steady condition of the earth's crust and uppermost mantle. The approximate equality of the basal shear stress and the average crustal earthquake stress drop, the localization of strain release for major plate margin earthquakes, and the rough equivalence of plate margin slip rates and gross plate motion rates suggest that the stress drops of major plate margin earthquakes are controlled by the elastic release of the basal shear stress in the vicinity of the plate margin, despite the existence of kilobars of tectonic stress existing across vertical planes parallel to the plate margin. If the stress differences available to be released at the time of faulting are distributed in a random, white fasbion with a mean-square value determined by the average earthquake stress drop, the frequency of occurrence of constant stress drop earthquakes will be proportional to reciprocal faulting area, in accordance with empirically known frequency of occurrence statistics. ?? 1977 Birkha??user Verlag.

  19. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  20. Building the Ridge on Iapetus: Impacts Can Be Constructive!

    Science.gov (United States)

    Stickle, A. M.; Roberts, J. H.

    2016-12-01

    Iapetus has a continuous ridge along the equator that extends for more than 110° in longitude. Parts of the ridge rise as much as 20 km above the surrounding terrains. Earlier Voyager observations revealed mountains on the anti-Saturn side of Iapetus with as much as 25-km in relief, extending from 180°W-220°W which may be a continuation of this ridge. Most models for the formation of this enigmatic ridge are endogenic, generally requiring the formation of a fast-spinning Iapetus with an oblate shape due to the rotation speed. Though abundant, many of these models require specific scenarios and have constraining parameters in order to generate a ridge comparable to what is seen today. An exogenic formation mechanism has also been proposed, that the ridge represents the remains of an early ring system around Iapetus that collapsed onto the surface. Thus far, none of the models have conclusively identified the origin of the ridge. We assume an exogenic origin for the ridge, derived from a collapsing disk of debris around Iapetus, without invoking any specific model for the generation of the debris disk, to determine whether it is possible to generate a ridge of the size and shape as observed. Here, the impact of the collapsing debris is simulated using the CTH hydrocode. Pi-scaling calculations suggest that extremely oblique impact angles (1-10°) are needed to add to ridge topography. These extreme impact angles severely reduce the cratering efficiency compared to a vertical impact, adding material rather than eroding it during crater formation. Furthermore, material is likely to be excavated at low angles, enhancing downrange accumulation. Multiple impacts from debris pieces will heighten this effect. Because infalling debris is predicted to impact at extremely low angles, both of these effects might have contributed to ridge formation on Iapetus. The extreme grazing angles of the impacts modeled here decouple much of the projectile energy, and impact heating of

  1. Earthquake Risk, FEMA Earthquake Hazzard Risk Map, Published in 1994, Delaware Geological Survey.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Earthquake Risk dataset, was produced all or in part from Published Reports/Deeds information as of 1994. It is described as 'FEMA Earthquake Hazzard Risk Map'....

  2. A resonance mechanism of earthquakes

    CERN Document Server

    Flambaum, V V

    2015-01-01

    It had been observed in [1] that there are periodic 4-6 hours pulses of ? 200 ?Hz seismogravita- tional oscillations ( SGO ) before 95 % of powerful earthquakes. We explain this by beating between an oscillation eigenmode of a whole tectonic plate and a local eigenmode of an active zone which tranfers the oscillation energy from the tectonic plate to the active zone causing the eathrquake. Oscillation frequencies of the plate and ones of the active zone are tuned to a resonance by an additional pressure applied to the active zone due to collision of neighboring plates or convection in the upper mantia (plume). Corresponding theory may be used for short-term prediction of the earthquakes and tsunami.

  3. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann

    2014-01-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  4. Great East Japan Earthquake Tsunami

    Science.gov (United States)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  5. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI

  6. The physics of rock failure and earthquakes

    CERN Document Server

    Ohnaka, Mitiyasu

    2013-01-01

    Despite significant advances in the understanding of earthquake generation processes and derivation of underlying physical laws, controversy remains regarding the constitutive law for earthquake ruptures and how it should be formulated. Laboratory experiments are necessary to obtain high-resolution measurements that allow the physical nature of shear rupture processes to be deduced, and to resolve the controversy. This important book provides a deeper understanding of earthquake processes from nucleation to their dynamic propagation. Its key focus is a deductive approach based on laboratory-derived physical laws and formulae, such as a unifying constitutive law, a constitutive scaling law, and a physical model of shear rupture nucleation. Topics covered include: the fundamentals of rock failure physics, earthquake generation processes, physical scale dependence, and large-earthquake generation cycles. Designed for researchers and professionals in earthquake seismology, rock failure physics, geology and earthq...

  7. Is There An Earthquake Migration Global Pattern?

    Science.gov (United States)

    dos Santos, A. M.; Franca, G. S.; da Silveira, A. G.; Frigeri, G. V.; Marotta, G. S.

    2012-12-01

    Earthquake migration patterns before large earthquake were proposed by Mogi (1968) and existence of the correlation between earthquakes over distances that show probable global interdependence and this theme is certainly one of the most intriguing in field of seismology. In this job, we will present the phenomenology of earthquake migration global seismic pattern empirically, in order to ensure statistically the correlation of long range and lead to confrontation these seismic patterns. We used the international catalog available, such as, NEIC-USGS. We find that the pair of events that have a good correlation are confirmed statistically. As Shebalin (1996) has shown the earthquake chain, we show this first stage of the earthquake prediction correlation for large distances.

  8. Earthquake Hazard Mitigation Strategy in Indonesia

    Science.gov (United States)

    Karnawati, D.; Anderson, R.; Pramumijoyo, S.

    2008-05-01

    Because of the active tectonic setting of the region, the risks of geological hazards inevitably increase in Indonesian Archipelagoes and other ASIAN countries. Encouraging community living in the vulnerable area to adapt with the nature of geology will be the most appropriate strategy for earthquake risk reduction. Updating the Earthquake Hazard Maps, enhancement ofthe existing landuse management , establishment of public education strategy and method, strengthening linkages among stake holders of disaster mitigation institutions as well as establishement of continues public consultation are the main strategic programs for community resilience in earthquake vulnerable areas. This paper highlights some important achievements of Earthquake Hazard Mitigation Programs in Indonesia, together with the difficulties in implementing such programs. Case examples of Yogyakarta and Bengkulu Earthquake Mitigation efforts will also be discussed as the lesson learned. The new approach for developing earthquake hazard map which is innitiating by mapping the psychological aspect of the people living in vulnerable area will be addressed as well.

  9. Earthquakes in Virginia and vicinity 1774 - 2004

    Science.gov (United States)

    Tarr, Arthur C.; Wheeler, Russell L.

    2006-01-01

    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Virginia and parts of adjacent States. Moderate earthquakes cause slight local damage somewhere in the map area about twice a decade on the average. Additionally, many buildings in the map area were constructed before earthquake protection was added to local building codes. The large map shows all historical and instrumentally located earthquakes from 1774 through 2004.

  10. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to 4 earthquakes on the plate interface north of the Mendocino region 

  11. Discovery Along the San Andreas Fault: Relocating Photographs From the 1906 Earthquake in San Francisco and San Mateo Counties

    Science.gov (United States)

    Grove, K.; Prentice, C.; Polly, J.; Yuen, C.; Wu, K.; Zhong, S.; Lopez, J.

    2005-12-01

    April of 2006 will mark the 100-year anniversary of the great 1906 San Francisco earthquake. This earthquake was important not only because of its human tragedy (thousands of dead or homeless people), but also because of its scientific significance. The 8.3 magnitude earthquake ruptured 430 km of the northern San Andreas fault (SAF) and lasted nearly one minute. Investigations after the earthquake led to discoveries that were the beginning of modern earthquake theories and measuring instruments. This was also one of the first large-scale natural disasters to be photographed. Our research group, which is part of the National Science Foundation funded SF-ROCKS program, acquired photographs that were taken shortly after the earthquake in downtown San Francisco and along the SAF in San Mateo County. The SAF photos are part of a Geographical Information System (GIS) database being published on a U.S. Geological Survey web site. The goal of our project was to improve estimates of photograph locations and to compare the landscape features that were visible after the earthquake with the landscape that we see today. We used the GIS database to find initial photo locations, and we then used a high-precision Global Positioning System (GPS) to measure the geographic coordinates of the locations once we matched our view to what we saw in a photo. Where possible, we used a digital camera to retake photos from the same position, to show the difference in the landscape 100 years later. The 1906 photos show fault zone features such as ground rupture, sag ponds, shutter ridges, and offset fences. Changes to the landscape since 1906 have included erosion and grading of the land, building of houses and other structures, and more tree cover compared to previous grassland vegetation. Our project is part of 1906 Earthquake Centennial activities; it is contributing to the photo archive that helps scientists and engineers who study earthquakes and their effects. It will also help the

  12. Dim prospects for earthquake prediction

    Science.gov (United States)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a ‘proven nonscience’ [Geller, 1997a] is a paradigm for others to copy.”Readers are invited to verify for themselves that neither “proven nonscience” norv any similar phrase was used by Geller [1997a].

  13. Understand mountain studies from earthquake

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Sichuan earthquake on 12 May was the most devastating one to hit China over the past 60 years or so. As the affected were mostly mountainous areas, serious damages were caused by various secondary disasters ranging from mountain collapse to the formation of quake lakes. This leaves Prof. DENG Wei, director-general of the Institute of Mountain Hazards and Environment, CAS, much to think about, and he is calling for strengthening studies on mountain science.

  14. Tangshan Women After the Earthquake

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    TWENTY years ago, Tangshan, a city in China’s Hebei Province, was struck by an earthquake which killed 240,000 people, injured 160,000, and destroyed 10,200 homes. In 7,200 families there were no survivors. After 20 years of rebuilding, a new Tangshan has risen from the debris. Tangshan women played a very important role in rebuilding their hometown.

  15. Mechanics of Multifault Earthquake Ruptures

    Science.gov (United States)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  16. Bayesian kinematic earthquake source models

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  17. Propagating buoyant mantle upwelling on the Reykjanes Ridge

    Science.gov (United States)

    Martinez, Fernando; Hey, Richard

    2017-01-01

    Crustal features of the Reykjanes Ridge have been attributed to mantle plume flow radiating outward from the Iceland hotspot. This model requires very rapid mantle upwelling and a "rheological boundary" at the solidus to deflect plume material laterally and prevent extreme melting above the plume stem. Here we propose an alternative explanation in which shallow buoyant mantle upwelling instabilities propagate along axis to form the crustal features of the ridge and flanks. As only the locus of buoyant upwelling propagates this mechanism removes the need for rapid mantle plume flow. Based on new geophysical mapping we show that a persistent sub-axial low viscosity channel supporting buoyant mantle upwelling can explain the current oblique geometry of the ridge as a reestablishment of its original configuration following an abrupt change in opening direction. This mechanism further explains the replacement of ridge-orthogonal crustal segmentation with V-shaped crustal ridges and troughs. Our findings indicate that crustal features of the Reykjanes Ridge and flanks are formed by shallow buoyant mantle instabilities, fundamentally like at other slow spreading ridges, and need not reflect deep mantle plume flow.

  18. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  19. Use of ridge points in partial fingerprint matching

    Science.gov (United States)

    Fang, Gang; Srihari, Sargur N.; Srinivasan, Harish; Phatak, Prasad

    2007-04-01

    Matching of partial fingerprints has important applications in both biometrics and forensics. It is well-known that the accuracy of minutiae-based matching algorithms dramatically decrease as the number of available minutiae decreases. When singular structures such as core and delta are unavailable, general ridges can be utilized. Some existing highly accurate minutiae matchers do use local ridge similarity for fingerprint alignment. However, ridges cover relatively larger regions, and therefore ridge similarity models are sensitive to non-linear deformation. An algorithm is proposed here to utilize ridges more effectively- by utilizing representative ridge points. These points are represented similar to minutiae and used together with minutiae in existing minutiae matchers with simple modification. Algorithm effectiveness is demonstrated using both full and partial fingerprints. The performance is compared against two minutiae-only matchers (Bozorth and k-minutiae). Effectiveness with full fingerprint matching is demonstrated using the four databases of FVC2002- where the error rate decreases by 0.2-0.7% using the best matching algorithm. The effectiveness is more significant in the case of partial fingerprint matching- which is demonstrated with sixty partial fingerprint databases generated from FVC2002 (with five levels of numbers of minutiae available). When only 15 minutiae are available the error rate decreases 5-7.5%. Thus the method, which involves selecting representative ridge points, minutiae matcher modification, and a group of minutiae matchers, demonstrates improved performance on full and especially partial fingerprint matching.

  20. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  1. Storm sudden commencements and earthquakes

    Science.gov (United States)

    Lavrov, Ivan; Sobisevich, Aleksey; Guglielmi, Anatol

    2015-03-01

    We have investigated statistically the problem of possible impact of the geomagnetic storm sudden com-mencement (SSC) on the global seismic activity. SSC are used as reference points for comparative analysis of seismicity by the method of superposed epoch. We selected 405 earthquakes from 1973 to 2010 with M˜5 magnitudes from a representative part of USGS Catalog. The comparative analysis of seismicity was carried out at the intervals of ˜60 min relative to the reference point. With a high degree of reliability, it was found that before the reference point the number of earthquakes is noticeably greater than after it. In other words, the global seismicity is suppressed by SSC. We refer to some studies in which the chemical, thermal and force mechanisms of the electromagnetic field action on rocks are discussed. We emphasize the incompleteness of the study concerning the correlation between SSC and earthquakes because we still do not succeed in understanding and interpreting the relationship in terms of physics and mathematics. The study need to be continued to solve this problem of interest and importance.

  2. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville

    2014-12-01

    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  3. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    Science.gov (United States)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  4. Global review of human-induced earthquakes.

    OpenAIRE

    Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard

    2017-01-01

    The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsu...

  5. Global Significant Earthquake Database, 2150 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Earthquake Database is a global listing of over 5,700 earthquakes from 2150 BC to the present. A significant earthquake is classified as one that...

  6. Multiple linear regression with correlations among the predictor variables. Theory and computer algorithm ridge (FORTRAN 77)

    Science.gov (United States)

    van Gaans, P. F. M.; Vriend, S. P.

    Application of ridge regression in geoscience usually is a more appropriate technique than ordinary least-squares regression, especially in the situation of highly intercorrelated predictor variables. A FORTRAN 77 program RIDGE for ridged multiple linear regression is presented. The theory of linear regression and ridge regression is treated, to allow for a careful interpretation of the results and to understand the structure of the program. The program gives various parameters to evaluate the extent of multicollinearity within a given regression problem, such as the correlation matrix, multiple correlations among the predictors, variance inflation factors, eigenvalues, condition number, and the determinant of the predictors correlation matrix. The best method for the optimum choice of the ridge parameter with ridge regression has not been established yet. Estimates of the ridge bias, ridged variance inflation factors, estimates, and norms for the ridge parameter therefore are given as output by RIDGE and should complement inspection of the ridge traces. Application within the earth sciences is discussed.

  7. Solar cell with doped groove regions separated by ridges

    Energy Technology Data Exchange (ETDEWEB)

    Molesa, Steven Edward; Pass, Thomas; Kraft, Steve

    2017-01-31

    Solar cells with doped groove regions separated by ridges and methods of fabricating solar cells are described. In an example, a solar cell includes a substrate having a surface with a plurality of grooves and ridges. A first doped region of a first conductivity type is disposed in a first of the grooves. A second doped region of a second conductivity type, opposite the first conductivity type, is disposed in a second of the grooves. The first and second grooves are separated by one of the ridges.

  8. Optical dating of dune ridges on Rømø

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    . Samples for OSL dating were taken ~0.5 m below the crests of four different dune ridges; at least five samples were recovered from each ridge to test the internal consistency of the ages. Additional samples were recovered from the low lying areas in the swales and from the scattered dune formations......, and all ages were broadly consistent with those expected from historical information. The oldest aeolian surface on Rømø appears to be 370±30 years. This is built on what we interpret as a marine sandbank, whose surface is ~700 years old. The sand ridges seaward of the hummocky dune field have well...

  9. Fingerprint Ridge Frequency Estimation in the Fourier Domain

    Directory of Open Access Journals (Sweden)

    PATRICIU, V.-V.

    2014-11-01

    Full Text Available Ridge frequency is an important parameter in fingerprint image processing and feature extraction. However, ridge frequency estimation is a difficult task in noisy fingerprint images. A simple and accurate method for the computation of fingerprint ridge frequency using the Fourier spectrum is proposed. The results of the experiments conducted on a collection of fingerprints as well as a quantitative method for performance evaluation based on a Gabor filter-bank are presented. The proposed method is robust with respect to noise and reliable frequency images are obtained.

  10. Evaluation and cataloging of Korean historical earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kew Hwa; Han, Young Woo; Lee, Jun Hui; Park, Ji Eok; Na, Kwang Wooing; Shin, Byung Ju [The Reaearch Institute of Basic Sciences, Seoul Nationl Univ., Seoul (Korea, Republic of)

    1998-03-15

    In order to systematically collect and analyze the historical earthquake data of the Korean peninsula which are very important in analyzing the seismicity and seismic risk of the peninsula by seismologist and historian, extensive governmental and private historical documents are investigated and relative reliabilities of these documents are examined. This research unearthed about 70 new earthquake records and revealed the change in the cultural, political and social effects of earthquakes with time in Korea. Also, the results of the vibration test of the Korean traditional wooden house are obtained in order to better estimate intensities of the historical earthquakes.

  11. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  12. Earthquake risk assessment for Istanbul metropolitan area

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associated risk for rational formulation of contingency plans and mitigation strategies. In urban centers, the seismic risk is best quantified and portrayed through the preparation of "Earthquake Damage and Loss Scenarios." The components of such scenarios are the assessment of the hazard, inventories and the vulnerabilities of elements at risk. For the development of the earthquake risk scenario in Istanbul, two independent approaches, one based on intensities and the second on spectral displacements, are utilized. This paper will present the important features of a comprehensive study, highlight the methodology, discuss the results and provide insights to future developments.

  13. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  14. Statistical tests of simple earthquake cycle models

    Science.gov (United States)

    DeVries, Phoebe M. R.; Evans, Eileen L.

    2016-12-01

    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  15. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador-southwest Colombia margin

    Science.gov (United States)

    Collot, Jean-Yves; Marcaillou, Boris; Sage, FrançOise; Michaud, FrançOis; Agudelo, William; Charvis, Philippe; Graindorge, David; Gutscher, Marc-André; Spence, George

    2004-11-01

    Subduction of the Nazca plate beneath the Ecuador-Colombia margin has produced four megathrust earthquakes during the last century. The 500-km-long rupture zone of the 1906 (Mw = 8.8) event was partially reactivated by three thrust events, in 1942 (Mw = 7.8), 1958 (Mw = 7.7), and 1979 (Mw = 8.2), whose rupture zones abut one another. Multichannel seismic reflection and bathymetric data acquired during the SISTEUR cruise show evidence that the margin wedge is segmented by transverse crustal faults that potentially correlate with the limits of the earthquake coseismic slip zones. The Paleogene-Neogene Jama Quininde and Esmeraldas crustal faults define a ˜200-km-long margin crustal block that coincides with the 1942 earthquake rupture zone. Subduction of the buoyant Carnegie Ridge is inferred to partially lock the plate interface along central Ecuador. However, coseismic slip during the 1942 and 1906 earthquakes may have terminated against the subducted northern flank of the ridge. We report on a newly identified Manglares crustal fault that cuts transversally through the margin wedge and correlates with the limit between the 1958 and 1979 rupture zones. During the earthquake cycle the fault is associated with high-stress concentration on the plate interface. An outer basement high, which bounds the margin seaward of the 1958 rupture zone, may act as a deformable buttress to seaward propagation of coseismic slip along a megathrust splay fault. Coseismic uplift of the basement high is interpreted as the cause for the 1958 tsunami. We propose a model of weak transverse faults which reduce coupling between adjacent margin segments, together with a splay fault and an asperity along the plate interface as controlling the seismogenic rupture of the 1958 earthquake.

  16. Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

    Directory of Open Access Journals (Sweden)

    Y. Tanioka

    2008-01-01

    Full Text Available The 2006 large interplate Kurile earthquake proved that the entire plate interface of the Kurile-Kamchatka subduction zone was strongly coupled from Hokkaido, Japan, to Kamchatka, Russia. The seismic moment of the 2006 Kurile earthquake estimated from ten tsunami waveforms is 3.1×1021 Nm (Mw=8.3. This estimate is consistent with the seismic moment estimated from the seismological data in the Global CMT catalog. The computed tsunami propagation indicates that scattering of the tsunami waves occurred at the shallow region near the Emperor Ridge. The computed tsunami propagation also indicates that large later tsunami waves observed at Crescent City is caused by the shallow region along the Mendocino Fracture Zone. The seismic moment of the 2007 outer-rise Kurile earthquake estimated from tsunami waveforms is 1.0×1021 Nm (Mw=8.0. This estimate is also consistent with the seismic moment in the Global CMT catalog.

  17. Seismotectonics of mid-ocean ridge propagation

    Science.gov (United States)

    Floyd, Jacqueline Suzanne

    This dissertation investigates the rifting-spreading transition of two propagating mid-ocean spreading centers within actively rifting lithosphere, Woodlark Basin and Hess Deep. Hess Deep is a 5.4 km-deep oceanic rift basin at the westernmost tip of the Galapagos Spreading Center where it meets the East Pacific Rise at the Galapagos Triple Junction. Hydroacoustic seismicity data recorded over 200 earthquakes in Hess Deep that reveal earthquake and deformation patterns that are similar to those found in the process zone of laboratory-scale propagating tensile cracks. Seismicity and deformation patterns observed in Hess Deep are consistent with those from crack tip process zones Process zone deformation releases large crack tip stresses predicted by theoretical fracture mechanics and allows stable propagation to occur; thus, viscous suction or other forces are not required to balance the crack tip stress as proposed by previous investigators. The western Woodlark Basin of Papua New Guinea is the site of a major low-angle detachment fault immediately ahead of the westward propagating spreading center. We present the results of two studies of this fault: one using reflection seismology to image the fault zone velocity structure and composition, and one using deep crustal refraction seismology to image the large-scale velocity structure of the fault and surrounding crust. Results from genetic algorithm inversion of seismic reflection data show that the fault contains a frictionally weak fault gouge layer and fluids, while results from seismic tomography show that the fault is a major rift boundary between the northern and southern rift margins of the western Woodlark Basin. We conclude that favorable conditions exist for frictional slip at angles of 30° or less and that this will be the last fault to form before the crust completely rifts apart to create new oceanic crust and lithosphere. The morphology of the rifting-spreading transitions in Woodlark Basin and Hess

  18. A Hadronic Scenario for the Galactic Ridge

    CERN Document Server

    Gaggero, Daniele; Marinelli, Antonio; Urbano, Alfredo; Valli, Mauro

    2015-01-01

    Several observations from Fermi-LAT, up to few hundred GeV, and from H.E.S.S., up to $\\sim$ 10 TeV, reported an intense $\\gamma$-ray emission from the inner part of the Galactic plane. After the subtraction of point-like contributions, the remaining $\\gamma$-ray spectrum can provide important hints about the cosmic-ray (CR) population in that region. In particular, the diffuse spectrum measured by both Fermi-LAT and H.E.S.S. in the Galactic Ridge is significantly harder with respect to the rest of the Galaxy. These results were recently interpreted in terms of a comprehensive CR transport model which, adopting a spatial dependent diffusion coefficient and convective velocity, reproduces Fermi-LAT results on the whole sky as well as local CR spectra. We showed as that model predicts a significantly harder neutrino diffuse emission compared to conventional scenarios: The predicted signal is able to account for a significant fraction of the astrophysical flux measured by IceCube. In this contribution, we use the...

  19. Cosmic Web Reconstruction through Density Ridges: Catalogue

    CERN Document Server

    Chen, Yen-Chi; Brinkmann, Jon; Freeman, Peter E; Genovese, Christopher R; Schneider, Donald P; Wasserman, Larry

    2015-01-01

    We construct a catalogue for filaments using a novel approach called SCMS (subspace constrained mean shift; Ozertem & Erdogmus 2011; Chen et al. 2015). SCMS is a gradient-based method that detects filaments through density ridges (smooth curves tracing high-density regions). A great advantage of SCMS is its uncertainty measure, which allows an evaluation of the errors for the detected filaments. To detect filaments, we use data from the Sloan Digital Sky Survey, which consist of three galaxy samples: the NYU main galaxy sample (MGS), the LOWZ sample and the CMASS sample. Each of the three dataset covers different redshift regions so that the combined sample allows detection of filaments up to z = 0.7. Our filament catalogue consists of a sequence of two-dimensional filament maps at different redshifts that provide several useful statistics on the evolution cosmic web. To construct the maps, we select spectroscopically confirmed galaxies within 0.050 < z < 0.700 and partition them into 130 bins. For ...

  20. Oak Ridge Reservation environmental report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.R. (ed.)

    1991-09-01

    The purpose of this report is to provide information to the public about the impact of the US Department of Energy's (DOE's) facilities located on the Oak Ridge Reservation (ORR) on the public and the environment. It describes the environmental surveillance and monitoring activities conducted at and around the DOE facilities operated by Martin Marietta Energy Systems, Inc. Preparation and publication of this report is in accordance with DOE Order 5400.1. The order specifies a publication deadline of June of the following year for each calendar year of data. The primary objective of this report is to summarize all information collected for the previous calendar year regarding effluent monitoring, environmental surveillance, and estimates of radiation and chemical dose to the surrounding population. When multiple years of information are available for a program, trends are also evaluated. The first seven sections of Volume 1 of this report address this objective. The last three sections of Volume 1 provide information on solid waste management, special environmental studies, and quality assurance programs.

  1. Historical Earthquakes in the Yellow Sea and Its Adjacent Area

    Institute of Scientific and Technical Information of China (English)

    Wu Ge; Wang Andong; Wu Di

    2005-01-01

    As a result of sorting out, estimating and cataloging of historical earthquakes, from the year of 2 A.D. to Aug., 1949, we found that there were 2187 earthquakes with M≥3.0 in the area of the Yellow Sea and its adjacent area. Among the earthquakes, the number of earthquakes with M ≥ 5.0 is 209, and at least 43 of the earthquakes caused serious losses, 20 of the earthquakes caused human causalities. It is demonstrated that there were 3 areas of historical earthquake concentration and the earthquake activity was higher in the 16th century and the first half if the 20th century.

  2. Earthquake Engineering Research Center: 25th anniversry edition

    Science.gov (United States)

    1993-10-01

    The Earthquake Engineering Research Center exists to conduct research and develop technical information in all areas pertaining to earthquake engineering, including strong ground motion and ground failure, response of natural and manmade structures to earthquakes, design of structures to resist earthquakes, development of new systems for earthquake protection, and development of architectural and public policy aspects of earthquake engineering. The annual report for 1992-93 presents information on: Current Research Programs; Contracts and Grants; Public Service Program; National Information Service for Earthquake Engineering; Core Administration; Committees of the Earthquake Engineering Research Center; Research Participants - Faculty; and Research Participants - Students.

  3. Constraining Source Locations of Shallow Subduction Megathrust Earthquakes in 1-D and 3-D Velocity Models - A Case Study of the 2002 Mw=6.4 Osa Earthquake, Costa Rica

    Science.gov (United States)

    Grevemeyer, I.; Arroyo, I. G.

    2015-12-01

    Earthquake source locations are generally routinely constrained using a global 1-D Earth model. However, the source location might be associated with large uncertainties. This is definitively the case for earthquakes occurring at active continental margins were thin oceanic crust subducts below thick continental crust and hence large lateral changes in crustal thickness occur as a function of distance to the deep-sea trench. Here, we conducted a case study of the 2002 Mw 6.4 Osa thrust earthquake in Costa Rica that was followed by an aftershock sequence. Initial relocations indicated that the main shock occurred fairly trenchward of most large earthquakes along the Middle America Trench off central Costa Rica. The earthquake sequence occurred while a temporary network of ocean-bottom-hydrophones and land stations 80 km to the northwest were deployed. By adding readings from permanent Costa Rican stations, we obtain uncommon P wave coverage of a large subduction zone earthquake. We relocated this catalog using a nonlinear probabilistic approach using a 1-D and two 3-D P-wave velocity models. The 3-D model was either derived from 3-D tomography based on onshore stations and a priori model based on seismic refraction data. All epicentres occurred close to the trench axis, but depth estimates vary by several tens of kilometres. Based on the epicentres and constraints from seismic reflection data the main shock occurred 25 km from the trench and probably along the plate interface at 5-10 km depth. The source location that agreed best with the geology was based on the 3-D velocity model derived from a priori data. Aftershocks propagated downdip to the area of a 1999 Mw 6.9 sequence and partially overlapped it. The results indicate that underthrusting of the young and buoyant Cocos Ridge has created conditions for interpolate seismogenesis shallower and closer to the trench axis than elsewhere along the central Costa Rica margin.

  4. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents.

  5. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The

  6. Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, P.J.; Carr, B.J.; Doll, W.E.; Kaufmann, R.D.; Nyquist, J.E.

    1999-11-14

    Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void.

  7. INDEPENDENT VERIFICATION OF THE BUILDING 3550 SLAB AT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Phyllis C.

    2012-05-08

    The Oak Ridge Institute for Science and Education (ORISE) has completed the independent verification survey of the Building 3550 Slab. The results of this effort are provided. The objective of this verification survey is to provide independent review and field assessment of remediation actions conducted by Safety and Ecology Corporation (SEC) to document that the final radiological condition of the slab meets the release guidelines. Verification survey activities on the Building 3550 Slab that included scans, measurements, and the collection of smears. Scans for alpha, alpha plus beta, and gamma activity identified several areas that were investigated.

  8. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2016-09-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  9. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  10. Intraplate triggered earthquakes: Observations and interpretation

    Science.gov (United States)

    Hough, S.E.; Seeber, L.; Armbruster, J.G.

    2003-01-01

    We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of

  11. Whether solar flares can trigger earthquakes?

    Science.gov (United States)

    Jain, R.

    2007-05-01

    We present the study of 682 earthquakes of ¡Ý4.0 magnitude observed during January 1991 to January 2007 in the light of solar flares observed by GOES and SOXS missions in order to explore the possibility of any association between solar flares and earthquakes. Our investigation preliminarily shows that each earthquake under study was preceded by a solar flare of GOES importance B to X class by 10-100 hrs. However, each flare was not found followed by earthquake of magnitude ¡Ý4.0. We classified the earthquake events with respect to their magnitude and further attempted to look for their correlation with GOES importance class and delay time. We found that with the increasing importance of flares the delay in the onset of earthquake reduces. The critical X-ray intensity of the flare to be associated with earthquake is found to be ~10-6 Watts/m2. On the other hand no clear evidence could be established that higher importance flares precede high magnitude earthquakes. Our detailed study of 50 earthquakes associated with solar flares observed by SOXS mission and other wavebands revealed many interesting results such as the location of the flare on the Sun and the delay time in the earthquake and its magnitude. We propose a model explaining the charged particles accelerated during the solar flare and released in the space that undergone further acceleration by interplanetary shocks and produce the ring current in the earth's magnetosphere, which may enhance the process of tectonics plates motion abruptly at fault zones. It is further proposed that such sudden enhancement in the process of tectonic motion of plates in fault zones may increase abruptly the heat gradients on spatial (dT/dx) and temporal (dT/dt) scales responsible for earthquakes.

  12. Remotely triggered earthquakes following moderate main shocks

    Science.gov (United States)

    Hough, S.E.

    2007-01-01

    Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.

  13. Trying to understand the ridge effect in hydrodynamic model

    CERN Document Server

    Hama, Yogiro; Grassi, Frederique; Qian, Wei-Liang

    2009-01-01

    In a recent paper, the hydrodynamic code NeXSPheRIO was used in conjunction with STAR analysis methods to study two-particle correlations as function of Delta_eta and Delta_phi. Both the ridge-like near-side and the double-hump away-side structures were obtained. However, the mechanism of ridge production was not clear. In order to understand it, we study a simple model with only one high-energy density peripheral tube in a smooth cylindrical back-ground, with longitudinal boost invariance. The results are rather surprising, but the model does produce the triple-ridge structure with one high ridge plus two lower ones placed symmetrically with respect to the former one. The shape of this structure is rather stable in a wide range of parameters.

  14. Technical Evaluation of Oak Ridge Filter Test Facility

    CERN Document Server

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  15. Lake Wales Ridge National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Lake Wales Ridge NWR for the next 15 years. This plan outlines the Refuge vision and...

  16. The Trail Inventory of Glacial Ridge NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Glacial Ridge National Wildlife Refuge. Trails in this inventory are...

  17. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AdvR, Inc. proposes the development of an efficient process for fabricating ridge waveguides in magnesium-doped lithium niobate (MgO:LN). The effort will include,...

  18. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase I STTR effort, the feasibility of fabricating isolated ridge waveguides in 5% magnesium-doped lithium niobate (5% MgO:LN) will be established....

  19. Glacial Ridge National Wildlife Refuge : Annual Narrative Fiscal Year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Glacial Ridge National Wildlife Refuge summarizes Refuge activities during the 2006 fiscal year. The report begins with an...

  20. Geoid anomalies over Gorringe Ridge, North Atlantic Ocean

    Science.gov (United States)

    Souriau, A.

    1984-04-01

    The geoid anomalies over Gorringe Ridge, a very prominent high in the topography north of the Azores-Gibraltar plate boundary, have been deduced from Seasat alimetric data, and an interpretation of these anomalies together with the gravity anomalies is attempted. The geoid anomalies generated by the topographic high alone with the serpentinite density nearly fit the observed geoid anomalies, so that the structure must be either out of isostatic equilibrium or compensated at great depth. It is shown that a model in isostatic equilibrium with a small negative density contrast extending to 60 km depth or more explains both the gravity and geoid anomalies and is compatible with the deep seismicity north of Gorringe Ridge. Previous nonisostatic models, one involving an uplift of the upper mantle beneath the ridge, one describing a nascent subduction zone, and another involving flexure of the elastic part of the lithosphere due to the ridge loading, are discussed.

  1. Alveolar ridge changes in patients congenitally missing mandibular second premolars.

    Science.gov (United States)

    Ostler, M S; Kokich, V G

    1994-02-01

    This study investigated changes in ridge width over time in patients who were congenitally missing mandibular second premolars. Data were obtained from stone casts and radiographs of 35 edentulous sites on 22 patients representing three time periods: (1) before extraction of the primary mandibular second molar, (2) completion of orthodontic treatment, and (3) long-term evaluation. The findings indicate that ridge width decreases 25% within 3 years after primary molar extraction. The rate of decrease diminishes to 4% over the next 3 years. The change in ridge width had a weak association with the age of the patient at the time of the extraction but a small predictive value. No correlation was found between changes in ridge width and height and the time since the extraction or the age of the patient at the time of extraction.

  2. [Mandibular ridge augmentation with hydroxylapatite and its extension].

    Science.gov (United States)

    Huang, H; Mercier, P

    1996-01-01

    The results of 5 years follow-up of 84 cases of mandibular residual ridge augmented with hydroxlapatite (HA), followed by ridge extension, are reported. The first surgical procedures, subperiosteal HA insertion, and the second stage of total lowering of the floow of the mouth, vestibuloplasty and skin graft are detailedly described. The ridge is augmented by the first surgery, disturbance of the fraenums of the lip, buccal and tongue and muscles are eliminated by the second surgery, to increase denture retention and stability, improve wear resisting of tissue covered over the artifical ridge and eliminate pain and uncomfort when wearing denture. The results of five years follow-up show that two stages reconstruction are better than HA insertion only. HA is a kind of ideal material of bone replacement, which is not resorbed in most cases.

  3. A comparative study of some robust ridge and liu estimators ...

    African Journals Online (AJOL)

    Science World Journal ... To handle these two problems jointly, the study combines the Ridge and Liu Estimators ... Application to the proposed estimators to three (3) real life data set with multicollinearity and outliers problems reveals that the ...

  4. 60 years of great science [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  5. February 2007 Multibeam Mapping of Pulley Ridge, southwest Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This disk or set of disks contain high-resolution multibeam and backscatter maps of the Pulley Ridge Area, near the Tortugas, in the Gulf of Mexico. It includes the...

  6. Geology along the Blue Ridge Parkway in Virginia

    Science.gov (United States)

    Carter, Mark W.; Southworth, C. Scott; Tollo, Richard P.; Merschat, Arthur J.; Wagner, Sara; Lazor, Ava; Aleinikoff, John N.

    2017-01-01

    Detailed geologic mapping and new SHRIMP (sensitive high-resolution ion microprobe) U-Pb zircon, Ar/Ar, Lu-Hf, 14C, luminescence (optically stimulated), thermochronology (fission-track), and palynology reveal the complex Mesoproterozoic to Quaternary geology along the ~350 km length of the Blue Ridge Parkway in Virginia. Traversing the boundary of the central and southern Appalachians, rocks along the parkway showcase the transition from the para-autochthonous Blue Ridge anticlinorium of northern and central Virginia to the allochthonous eastern Blue Ridge in southern Virginia. From mile post (MP) 0 near Waynesboro, Virginia, to ~MP 124 at Roanoke, the parkway crosses the unconformable to faulted boundary between Mesoproterozoic basement in the core of the Blue Ridge anticlinorium and Neoproterozoic to Cambrian metasedimentary and metavolcanic cover rocks on the western limb of the structure. Mesoproterozoic basement rocks comprise two groups based on SHRIMP U-Pb zircon geochronology: Group I rocks (1.2-1.14 Ga) are strongly foliated orthogneisses, and Group II rocks (1.08-1.00 Ga) are granitoids that mostly lack obvious Mesoproterozoic deformational features.Neoproterozoic to Cambrian cover rocks on the west limb of the anticlinorium include the Swift Run and Catoctin Formations, and constituent formations of the Chilhowee Group. These rocks unconformably overlie basement, or abut basement along steep reverse faults. Rocks of the Chilhowee Group are juxtaposed against Cambrian rocks of the Valley and Ridge province along southeast- and northwest-dipping, high-angle reverse faults. South of the James River (MP 64), Chilhowee Group and basement rocks occupy the hanging wall of the nearly flat-lying Blue Ridge thrust fault and associated splays.South of the Red Valley high-strain zone (MP 144.5), the parkway crosses into the wholly allochthonous eastern Blue Ridge, comprising metasedimentary and meta-igneous rocks assigned to the Wills Ridge, Ashe, and Alligator

  7. Glacial Ridge National Wildlife Refuge : Annual Narrative Fiscal Year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Glacial Ridge National Wildlife Refuge summarizes Refuge activities during the 2005 fiscal year. The report begins with an...

  8. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes

    Science.gov (United States)

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  9. The Oak Ridge Reservation Annual Site Environmental Report Summary, 2007

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-02-28

    The Oak Ridge Reservation Annual Site Environmental Report is prepared and published each year to inform the public of the environmental activities that take place on the reservation and in the surrounding areas. It is written to comply with DOE Order 231.1A, Environment, Safety, and Health Reporting. This document has been prepared to present the highlights of the Oak Ridge Reservation Annual Site Environmental Report 2007 in an easy-to-read, summary format.

  10. Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate

    Science.gov (United States)

    Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg

    2011-01-01

    This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing

  11. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  12. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  13. Modeling earthquake indexes derived from the earthquake warning system upon the planet earth

    Science.gov (United States)

    Li, Yong

    2010-12-01

    By studying the correlation between historical earthquake data and the distributional characteristics of parameters of solid earth tides in the earthquake epicenter, we are able to design a forecasting function of earthquake probability. We put forward a design method for the Earthquake Warning System. The model could theoretically simulate and be used to predict the probability of strong earthquakes that could occur anywhere at any time. In addition, the system could also conveniently obtain global or partial Modeling Earthquake Indexes to finally combine the precise pointing prediction and forecast of partial indexes. The literature quotes global data values, provided by NEIC, of 1544 M ⩾ 6.5 earthquakes. It also gives examples of instantaneous earthquake indexes of the whole world and Taiwan Area on 1st January 2010, UT=0:00 and the average earthquake index near the Taiwan Area. According to the 10-year pointing prediction of strong earthquakes in San Francisco, the literature provides the average earthquake index on 24th June 2015 (± 15 days), in its neighborhood.

  14. Modeling earthquake indexes derived from the earthquake warning system upon the planet earth

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By studying the correlation between historical earthquake data and the distributional characteristics of parameters of solid earth tides in the earthquake epicenter, we are able to design a forecasting function of earthquake probability. We put forward a design method for the Earthquake Warning System. The model could theoretically simulate and be used to predict the probability of strong earthquakes that could occur anywhere at any time. In addition, the system could also conveniently obtain global or partial Modeling Earthquake Indexes to finally combine the precise pointing prediction and forecast of partial indexes. The literature quotes global data values, provided by NEIC, of 1544 M ≥ 6.5 earthquakes. It also gives examples of instantaneous earthquake indexes of the whole world and Taiwan Area on 1st January 2010, UT=0:00 and the average earthquake index near the Taiwan Area. According to the 10-year pointing prediction of strong earthquakes in San Francisco, the literature provides the average earthquake index on 24th June 2015 (± 15 days), in its neighborhood.

  15. The Papua New Guinea tsunamis from the 29 March and 5 May 2015 Mw 7.5 earthquake doublet

    Science.gov (United States)

    Heidarzadeh, M.; Gusman, A. R.; Harada, T.; Satake, K.

    2015-12-01

    We characterized tsunamis from the 29 March and 5 May 2015 Kokopo, Papua New Guinea Mw 7.5 earthquake doublet by applying teleseismic body-wave inversion and tsunami simulation. These events are the first instrumentally-recorded tsunamis from the New Britain subduction zone. Seismic body-wave inversions using various rupture velocities (Vr) showed almost similar source-time functions and waveform agreements but the spatial distributions of the slips were different. In this study, the rupture velocities were reliably estimated from joint use of seismic and tsunami data for the earthquake doublet; and they (i.e., 1.75 and 1.5 km/s) were smaller than typical Vr values for tsunamigenic earthquakes. The largest slips on the fault were similar (2.1 m and 1.7 m), but the different depths and locations yielded maximum seafloor uplift of ~ 0.4 m and ~ 0.2 m, respectively, which resulted in different tsunami powers. This indicates that even though the earthquake size and rupture durations are similar for an earthquake doublet, the resultant tsunami would be different, depending on the location and depth of the earthquake source, as well as water depth around the source. Simulations of hypothetical tsunami scenarios with large magnitudes of Mw 8.4 and 8.5 from the New Britain subduction zone showed that the shoreline tide gauge zero-to-crest amplitude can reach up to 10 m in Rabaul. Most of the tsunami was confined within the Solomon Sea indicating low tsunami hazards for far-field destinations such as Australia and New Zealand in the south. For other regions, ocean submarine ridges and island chains can significantly reflect back tsunami waves and limit the far-field reach of tsunamis.

  16. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States

    Science.gov (United States)

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.

    2011-01-01

    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  17. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States

    Science.gov (United States)

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.

    2011-01-01

    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  18. Research on strong earthquake type division and forecast method for subsequent strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationships between energy, amplitude and frequency of earthquake are correlative with the property of the seismic source. And the grade of the correlativity can be used as an index to distinguish the types of strong earthquakes. Primarily the strong earthquake can be divided into three types of main-after earthquakes, double-main earthquakes and swarm of strong earthquake. There are similarity and a certain repeatability at the quantificational indexes of hypocenter property between the same type of strong earthquakes, which supply basis for the forecast of subsequent strong shocks. The reference indexes of after strong shock forecast which are valuable for the applications of the method of type-divided forecast come from the analysis about more than fifty strong shock wide-band (BPZ wave) recording data of CDSN from 1988 to 1997.

  19. Along ridge variation of the seafloor cooling and subsidence

    Science.gov (United States)

    Huang, Po-Ju; Chiao, Ling-Yun

    2013-04-01

    Bathymetry is linearly proportional to the square root of the seafloor age according to decades of observations. It is well explained by the essentially one-dimensional thermal contraction such as that demonstrated in the classical half-space cooling model and the subsequent 2-D modifications such as the plate model, GDH1 model, PSM model etc. However, much less efforts have been undertaken on study of variation of seafloor cooling along the ridge axis. We carefully examine corridors in the spreading direction that avoid seamounts and other some secondary structures, in addition to the sediment correction. We find that subsidence rates vary along major mid-ocean ridges. It would require a range of 400 to -600°C difference if the subsidence rate variations are attributed entirely to sub-ridge mantle temperature anomalies. Pronounced anomalies include the noticeable lows at the equator in the mid-Atlantic ridge and the northern section of East Pacific Rise that might be attributed to the close by continental lithosphere. The eastern section in mid-Indian ridge is also significantly cooler within regions of the Australian-Antarctic Discordance (AAD), which has been attributed to an ancient slab stalled beneath the present-day Southeast Indian Ridge (SEIR). Further researches that take into account of trends of geoid data is underway to make consistent interpretations.

  20. Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan

    This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi......This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation...... of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge regression methodology to enable its use for economic time-series forecasting, by including lags of the dependent variable or other individual variables as predictors, as typically desired...... in macroeconomic and financial applications. Monte Carlo simulations as well as an empirical application to various key measures of real economic activity confirm that kernel ridge regression can produce more accurate forecasts than traditional linear and nonlinear methods for dealing with many predictors based...

  1. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Science.gov (United States)

    Moro, Alessandro; Foresta, Enrico; Falchi, Marco; De Angelis, Paolo; D'Amato, Giuseppe; Pelo, Sandro

    2017-01-01

    The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  2. Alveolar Ridge Split Technique Using Piezosurgery with Specially Designed Tips

    Directory of Open Access Journals (Sweden)

    Alessandro Moro

    2017-01-01

    Full Text Available The treatment of patients with atrophic ridge who need prosthetic rehabilitation is a common problem in oral and maxillofacial surgery. Among the various techniques introduced for the expansion of alveolar ridges with a horizontal bone deficit is the alveolar ridge split technique. The aim of this article is to give a description of some new tips that have been specifically designed for the treatment of atrophic ridges with transversal bone deficit. A two-step piezosurgical split technique is also described, based on specific osteotomies of the vestibular cortex and the use of a mandibular ramus graft as interpositional graft. A total of 15 patients were treated with the proposed new tips by our department. All the expanded areas were successful in providing an adequate width and height to insert implants according to the prosthetic plan and the proposed tips allowed obtaining the most from the alveolar ridge split technique and piezosurgery. These tips have made alveolar ridge split technique simple, safe, and effective for the treatment of horizontal and vertical bone defects. Furthermore the proposed piezosurgical split technique allows obtaining horizontal and vertical bone augmentation.

  3. Aftershock seismicity and tectonic setting of the 2015 September 16 Mw 8.3 Illapel earthquake, Central Chile

    Science.gov (United States)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-08-01

    Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the Mw 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr-1. At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic-aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.

  4. Aftershock seismicity and tectonic setting of the 16 September 2015 Mw 8.3 Illapel earthquake, Central Chile

    Science.gov (United States)

    Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun

    2016-06-01

    Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. To date detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the temporal and spatial pattern of the co-seismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hours after the mainshock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern rupture boundary aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic-aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.

  5. Spatiotemporal distribution of the seismicity along the Mid-Atlantic Ridge north of the Azores from hydroacoustic data: Insights into seismogenic processes in a ridge-hot spot context

    Science.gov (United States)

    Goslin, J.; Perrot, J.; Royer, J.-Y.; Martin, C.; LourençO, N.; Luis, J.; Dziak, R. P.; Matsumoto, H.; Haxel, J.; Fowler, M. J.; Fox, C. G.; Lau, A. T.-K.; Bazin, S.

    2012-02-01

    The seismicity of the North Atlantic was monitored from May 2002 to September 2003 by the `SIRENA array' of autonomous hydrophones. The hydroacoustic signals provide a unique data set documenting numerous low-magnitude earthquakes along the section of the Mid-Atlantic Ridge (MAR) located in a ridge-hot spot interaction context. During the experiment, 1696 events were detected along the MAR axis between 40°N and 51°N, with a magnitude of completeness level ofmb≈ 2.4. Inside the array, location errors are in the order of 2 km, and errors in the origin time are less than 1 s. From this catalog, 15 clusters were detected. The distribution of source level (SL) versus time within each cluster is used to discriminate clusters occurring in a tectonic context from those attributed to non-tectonic (i.e. volcanic or hydrothermal) processes. The location of tectonic and non-tectonic sequences correlates well with regions with positive and negative Mantle Bouguer Anomalies (MBAs), indicating the presence of thinner/colder and thicker/warmer crust respectively. At the scale of the entire array, both the complete and declustered catalogs derived from the hydroacoustic signals show an increase of the seismicity rate from the Azores up to 43°30'N suggesting a diminishing influence of the Azores hot spot on the ridge-axis temperature, and well correlated with a similar increase in the along-axis MBAs. The comparison of the MAR seismicity with the Residual MBA (RMBA) at different scales leads us to think that the low-magnitude seismicity rates are directly related to along-axis variations in lithosphere rheology and temperatures.

  6. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  7. Deformation of forearcs caused by subduction of aseismic ridges: The role of ridge orientation and convergence direction investigated with 3D finite-element models

    Science.gov (United States)

    Zeumann, Stefanie; Hampel, Andrea

    2015-04-01

    Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To investigate the role of ridge orientation relative to the margin and convergence direction on the style of forearc deformation, we developed a series of 3D finite-elemente models, in which a rigid oceanic plate carrying the model ridge subducts beneath a deformable forearc wedge. Experiments were carried out for angles of 30°, 60° and 90° between the ridge axis and the trench and for different convergence directions. In the experiments, in which the ridge axis is parallel to the convergence direction, the ridge is stationary; in all other experiments, the ridge migrates along the margin and thus affects different regions of the forearc. Our results show that the ridge indents and uplifts the forearc in all models. For obliquely subducting ridges the displacement and strain fields become highly asymmetric regardless if the ridge is stationary or migrates along the forearc. Only if the ridge is stationary and oriented perpendicular to the margin, the deformation is symmetric relative to the ridge axis. Stationary ridges show uplift only above the ridge tip, whereas a migrating ridge causes a wave of uplift above the leading flank of the ridge followed by subsidence above the trailing flank. Horizontal strain components show domains of both extension and shortening, with extension occurring above the ridge tip and shortening above the ridge flanks. To compare our results with natural case studies, we computed additional models reflecting the setting of the stationary Cocos Ridge subducting beneath southern Costa Rica and of the Nazca Ridge, which migrates along the Peruvian margin. The results of these adjusted models are in good agreement with field observations. For the model of the Cocos Ridge the highest degree of shortening occurs normal to the margin, which coincides with the location of a thrust belt in the forearc of Costa Rica with its maximum shortening inboard

  8. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.

    2003-01-01

    Using error diagrams, we quantify the forecasting of characteristic-earthquake occurence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the occurence of a characteristic event. The evaluation of this strategy leads to a one-dimensional n...

  9. Numerical earthquake simulations for seismic hazard assessment

    Science.gov (United States)

    Ismail-Zadeh, Alik; Sokolov, Vladimir; Soloviev, Alexander

    2017-04-01

    A comprehensive seismic hazard assessment can contribute to earthquake preparedness and preventive measures aimed to reduce impacts of earthquakes, especially in the view of growing population and increasing vulnerability and exposure. Realistic earthquake simulations coupled with a seismic hazard analysis can provide better assessments of potential ground shaking due to large earthquakes. We present a model of block-and-fault dynamics, which simulates earthquakes in response to lithosphere movements and allows for studying the influence of fault network properties on seismic patterns. Using case studies (e.g., the Tibet-Himalayan region and the Caucasian region), we analyse the model's performance in terms of reproduction of basic features of the observed seismicity, such as the frequency-magnitude relationship, clustering of earthquakes, occurrences of large events, fault slip rates, and earthquake mechanisms. We examine a new approach to probabilistic seismic hazard assessment, which is based on instrumentally recorded, historical and simulated earthquakes. Based on predicted and observed peak ground acceleration values, we show that the hazard level associated with large events significantly increases if the long record of simulated seismicity is considered in the hazard assessment.

  10. Earthquakes: Risk, Detection, Warning, and Research

    Science.gov (United States)

    2010-01-14

    and central China, and as far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks occurred after the main seismic event...34 The number of stations necessary to generate a data-based ShakeMap depends on the urban area and geology ...Research Congressional Research Service 24 • Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes

  11. Wood-framed houses for earthquake zones

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg

    Wood-framed houses with a sheathing are suitable for use in earthquake zones. The Direction describes a method of determining the earthquake forces in a house and shows how these forces can be resisted by diaphragm action in the walls, floors, and roof, of the house. An appendix explains how...

  12. Triggering of repeating earthquakes in central California

    Science.gov (United States)

    Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul

    2014-01-01

    Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.

  13. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  14. Stress,strain and earthquake activity

    Institute of Scientific and Technical Information of China (English)

    Yaolin Shi

    2009-01-01

    @@ There are 13 papers in this special issue on stress field,crustal deformation and seismicity.The great Wenchuan earthquake is a grievous disaster,but Chinese scientists are trying to learn more from the event in order to understand better the physics of earthquakes for future hazard mitigation planning.

  15. Acoustic wave-equation-based earthquake location

    Science.gov (United States)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  16. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.

    2002-01-01

    -earthquake behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...

  17. Structural Earthquake Resistance Design Using Energy Method

    Institute of Scientific and Technical Information of China (English)

    Hu Rongrong

    2003-01-01

    A summary of status of researches in the field of structural earthquake resistance design on energy concept is presented in three parts: earthquake input, demands on the structure and supplied capacity of the structure. A new approach is proposed for analysis of the seismic response and damage criteria based on the momentary input energy.

  18. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  19. Stress history and geotechnical properties of sediment from the Cape Fear Diapir, Blake Ridge Diapir, and Blake Ridge

    Science.gov (United States)

    Winters, W.J.

    2000-01-01

    Geotechnical properties of sediment from Ocean Drilling Program Leg 164 are presented as: (1) normalized shipboard strength ratios from the Cape Fear Diapir, the Blake Ridge Diapir, and the Blake Ridge; and (2) Atterberg limit, vane shear strength, pocket-penetrometer strength, and constant-rate-of-strain consolidation results from Hole 995A, located on the Blake Ridge. This study was conducted to understand the stress history in a region characterized by high sedimentation rates and the presence of gas hydrates. Collectively, the results indicate that sediment from the Blake Ridge exhibits significant underconsolidated behavior, except near the seafloor. At least 10 m of additional overburden was removed by erosion or mass wasting at Hole 993A on the Cape Fear Diapir, compared to nearby sites.

  20. Greenland Fracture Zone-East Greenland Ridge(s) revisited: Indications of a C22-change in plate motion?

    DEFF Research Database (Denmark)

    Døssing, Arne; Funck, T.

    2012-01-01

    Fracture Zone and separation of the 200-km-long, fracture-zone-parallel continental East Greenland Ridge from the Eurasia plate is thought to be related to a major change in relative plate motions between Greenland and Eurasia during the earliest Oligocene (Chron 13 time). This study presents...... a reinterpretation of the Greenland Fracture Zone -East Greenland Ridge based on new and existing geophysical data. Evidence is shown for two overstepping ridge segments (Segments A and B) of which Segment A corresponds to the already known East Greenland Ridge while Segment B was not detected previously....... Interpretation of sonobuoy data and revised modeling of existing OBS data across Segment B indicate a continental composition of the segment. This interpretation is supported by magnetic anomaly data. The Segments A and B are bounded by portions of the Greenland Fracture Zone with a distinct similar to 10...

  1. The 2010 Qinghai, China earthquake: a moderate supershear earthquake

    Science.gov (United States)

    Wang, D.; Mori, J.

    2010-12-01

    A moderately large (Mw6.9) strike-slip earthquake in eastern Qinghai province, China occurred on April 13, 2010 and caused extensive damage to structures with over 2200 deaths. The severe ground motions and resultant damage in the town of Yushu may be at least partially attributed to the extremely fast speed of the rupture front as it propagated along the fault toward this location. A nearfield seismogram recorded at station Yushu clearly documents that the rupture speed is faster than the S velocity. From analyses using both near-field and teleseismic data, we estimate the very fast speed to be 4.6 to 5.4 km/sec, depending on the length of the super-shear segment. The higher estimate is close to, or possibly greater than the local P velocity. We examined teleseismic records for this earthquake using an empirical Green function deconvolution of the P waves of teleseismic records, we can identify two pulses of high frequency radiation that show the rupture directivity toward the southeast. The two high frequency centroids were generated from fault segments that are 6.5 km and 41.8 km southeast of the epicenter, respectively. We suggest that the sources of high frequency waves are related to the change of rupture velocity to supershear speed.

  2. Oak Ridge National Laboratory Core Competencies

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B. [and others

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

  3. Cosmic web reconstruction through density ridges: catalogue

    Science.gov (United States)

    Chen, Yen-Chi; Ho, Shirley; Brinkmann, Jon; Freeman, Peter E.; Genovese, Christopher R.; Schneider, Donald P.; Wasserman, Larry

    2016-10-01

    We construct a catalogue for filaments using a novel approach called SCMS (subspace constrained mean shift). SCMS is a gradient-based method that detects filaments through density ridges (smooth curves tracing high-density regions). A great advantage of SCMS is its uncertainty measure, which allows an evaluation of the errors for the detected filaments. To detect filaments, we use data from the Sloan Digital Sky Survey, which consist of three galaxy samples: the NYU main galaxy sample (MGS), the LOWZ sample and the CMASS sample. Each of the three data set covers different redshift regions so that the combined sample allows detection of filaments up to z = 0.7. Our filament catalogue consists of a sequence of two-dimensional filament maps at different redshifts that provide several useful statistics on the evolution cosmic web. To construct the maps, we select spectroscopically confirmed galaxies within 0.050 < z < 0.700 and partition them into 130 bins. For each bin, we ignore the redshift, treating the galaxy observations as a 2-D data and detect filaments using SCMS. The filament catalogue consists of 130 individual 2-D filament maps, and each map comprises points on the detected filaments that describe the filamentary structures at a particular redshift. We also apply our filament catalogue to investigate galaxy luminosity and its relation with distance to filament. Using a volume-limited sample, we find strong evidence (6.1σ-12.3σ) that galaxies close to filaments are generally brighter than those at significant distance from filaments.

  4. Statistical properties of earthquakes clustering

    Directory of Open Access Journals (Sweden)

    A. Vecchio

    2008-04-01

    Full Text Available Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate the presence of correlations in the system probably related to the stressing perturbation characterizing the seismicity in the area under analysis. As shown by this analysis, the catalogues, at variance with sequences, show common statistical properties.

  5. Earthquake Effects on Employee Transportation

    OpenAIRE

    Bennett, Anna K; Little, David D.

    1990-01-01

    The Loma Prieta earthquake of October 17, 1989, had a disastrous impact on surface transportation in the Bay Area. The most tragic effect of the failures in the transportation system was the loss of life in the collapse of the Cypress structure on Interstate 880 in Oakland and of the section of the Bay Bridge. Less dramatic, but disrupting the daily routines of thousands of commuters, were the traffic delays and congestion that occurred in the month that the Bay Bridge and Highway 17 (between...

  6. The 2010 Haiti earthquake response.

    Science.gov (United States)

    Raviola, Giuseppe; Severe, Jennifer; Therosme, Tatiana; Oswald, Cate; Belkin, Gary; Eustache, Eddy

    2013-09-01

    This article presents an overview of the mental health response to the 2010 Haiti earthquake. Discussion includes consideration of complexities that relate to emergency response, mental health and psychosocial response in disasters, long-term planning of systems of care, and the development of safe, effective, and culturally sound mental health services in the Haitian context. This information will be of value to mental health professionals and policy specialists interested in mental health in Haiti, and in the delivery of mental health services in particularly resource-limited contexts in the setting of disasters.

  7. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  8. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  9. Stochastic Differential Equation of Earthquakes Series

    Science.gov (United States)

    Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura

    2016-07-01

    This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.

  10. Earthquake Correlations and Networks- A Comparative Study

    CERN Document Server

    G., T R Krishna Mohan P

    2010-01-01

    We quantify the correlation between earthquakes and use the same to distinguish between relevant causally connected earthquakes. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski (2004). A network of earthquakes is constructed, which is time ordered and with links between the more correlated ones. Recurrences to earthquakes are identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions, viz. California, Japan and Himalayas, are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub ...

  11. Parallelization of the Coupled Earthquake Model

    Science.gov (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  12. Volumetric Changes in Edentulous Alveolar Ridge Sites Utilizing Guided Bone Regeneration and a Custom Titanium Ridge Augmentation Matrix (CTRAM)

    Science.gov (United States)

    2016-06-01

    Milling CBCT Cone Beam Computed Tomography CT Computed Tomography CTRAM Custom Titanium Ridge Augmentation Matrix DMLS Direct Metal Laser Sintering ...could be used by Direct Metal Laser Sintering (DMLS) to create custom titanium mesh to reconstruct a deficient maxillary alveolar anterior ridge. A pre...Sinus Augmentations. Int J Periodont Rest Dent 2005; 25:231-237. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R. Direct Metal

  13. Do moderate magnitude earthquake generate seismically induced ground effects? The case study of the M w = 5.16, 29th December 2013 Matese earthquake (southern Apennines, Italy)

    Science.gov (United States)

    Valente, Ettore; Ascione, A.; Ciotoli, G.; Cozzolino, M.; Porfido, S.; Sciarra, A.

    2017-06-01

    Seismically induced ground effects characterize moderate to high magnitude seismic events, whereas they are not so common during seismic sequences of low to moderate magnitude. A low to moderate magnitude seismic sequence with a M w = 5.16 ± 0.07 main event occurred from December 2013 to February 2014 in the Matese ridge area, in the southern Apennines mountain chain. In the epicentral area of the M w = 5.16 main event, which happened on December 29th 2013 in the southeastern part of the Matese ridge, field surveys combined with information from local people and reports allowed the recognition of several earthquake-induced ground effects. Such ground effects include landslides, hydrological variations in local springs, gas flux, and a flame that was observed around the main shock epicentre. A coseismic rupture was identified in the SW fault scarp of a small-sized intermontane basin (Mt. Airola basin). To detect the nature of the coseismic rupture, detail scale geological and geomorphological investigations, combined with geoelectrical and soil gas prospections, were carried out. Such a multidisciplinary study, besides allowing reconstruction of the surface and subsurface architecture of the Mt. Airola basin, and suggesting the occurrence of an active fault at the SW boundary of such basin, points to the gravitational nature of the coseismic ground rupture. Based on typology and spatial distribution of the ground effects, an intensity I = VII-VIII is estimated for the M w = 5.16 earthquake according to the ESI-07 scale, which affected an area of at least 90 km2.

  14. Aesthetic enhancement with periodontal plastic procedure in a class 3 alveolar ridge defect

    OpenAIRE

    2012-01-01

    Localised alveolar ridge defect refers to volumetric deficit of the limited extent of bone and soft tissue within the alveolar process. Such type of ridge defects can be corrected by surgical ridge augmentation that can be accomplished by the addition of either soft or hard tissues. The contour of a partially edentulous ridge should be thoroughly evaluated before a fixed partial denture is undertaken. The ideal ridge width and height allows placement of a natural appearing pontic which provid...

  15. The Global Distribution of Wrinkle Ridges on Venus

    Science.gov (United States)

    Bilotti, Frank; Suppe, John

    1999-05-01

    New digital mapping of over 65,000 wrinkle ridges of the plains of Venus shows a strong correlation between the location and orientation of these long, low-amplitude compressive anticlines and major features of the geoid and long-wavelength topography. Regions with wrinkle ridges occupy 43% of the plains and are strongly skewed toward low elevations and negative geoid anomalies. About 93% of the wrinkle ridge plains lie below mean planetary radius and 72% have negative geoid anomalies. In contrast, the extensional rift zones of Venus are strongly skewed toward high elevations and positive geoid anomalies. Thus compressive deformation dominates the topographic and geoid lows, whereas extensional rifting is generally restricted to the highs. These observations are consistent with geoid-based stress models that predict compression in geoid lows and extension in geoid highs. The orientations of wrinkle ridges are generally consistent over regions extending for 1000-10,000 km. Many regions have multiple sets of wrinkle ridges of different orientations reflecting multiple episodes and directions of compression; however, about 80% of the regions display a single dominant wrinkle ridge orientation, with secondary orientations subordinate. The dominant wrinkle ridge orientations in many regions follow the contours of long-wavelength topography and geoid or lie along the axes of troughs in the geoid. Thus the maximum horizontal compression recorded by the folds is commonly parallel to the present-day gradient in geoid and topography, although some regions are strong exceptions, perhaps reflecting changes in topography and geoid with time. The dominant wrinkle ridge trends ring several major geoid and topographic swells, especially Western Aphrodite Terra and Lada Terra, with ring diameters of 75-120° (8000-13,000 km). In addition there are smaller rings of wrinkle ridges around the swells in Themis, Eistla, and Bell regiones, especially Gula Mons, with ring diameters of 25

  16. Morphodynamics and slope stability at Mergui Ridge, off western Thailand

    Science.gov (United States)

    Schwab, J.; Gross, F.; Krastel, S.; Jintasaeranee, P.; Bunsomboonsakul, S.; Winkelmann, D.; Weinrebe, W.

    2012-04-01

    2D seismic data from the top and the western slope of the Mergui Ridge (200 km off the Thai west coast) have been acquired during MASS cruise III in January 2011 in water depths between 300 and 2200 m. The Mergui Ridge is a part of the outer shelf slope off the Thai-Malay Peninsula and forms the eastern boundary of the East Andaman Basin. Structural features in the working area include faulted older slope sediments at the transition from Mergui Ridge to East Andaman Basin that are onlapping on the (acoustic) basement of Mergui Ridge. At their top these sediments are bordered by a pronounced erosive unconformity. Younger sedimentary units on top include three E-W elongated carbonate platforms. Moreover, drift sediments are deposited on top of the ridge, comprising features such as large scale sediment waves and moats around the platforms indicating transport and reworking of the sediments. These sediments are thinning towards the edge of the ridge where a zone of non-sedimentation prevails. In the East Andaman Basin younger sediments comprise disturbed and partially faulted units that are overlain by plastered drifts with increasing thickness towards south, where pronounced sediment waves within the drifts may indicate slope normal sediment transport by bottom currents. At the basin ridge transition, within the drift sediments on top of Mergui Ridge, and at the edge of the ridge several smaller scale mass transport deposits were identified. These MTDs indicate a general instability of the slope. Instability and general morphology of the slope may result from long-term tectonic processes such as extension due to backarc basin formation in the Andaman Sea basin. Moreover, phases of uplift, erosion and subsidence may have contributed to faulting and deformation of older units in our working area. Ongoing tectonics might still cause deformation and instability. In addition, bottom currents may presently play an important role concerning morphodynamic development by

  17. Seismicity And Accretion Processes Along The Mid-Atlantic Ridge south of the Azores using data from the MARCHE Autonomous Hydrophone Array

    Science.gov (United States)

    Perrot, Julie; Cevatoglu, Melis; Cannat, Mathilde; Escartin, Javier; Maia, Marcia; Tisseau, Chantal; Dziak, Robert; Goslin, Jean

    2013-04-01

    The seismicity of the South Atlantic Ocean has been recorded by the MARCHE network of 4 autonomous underwater hydrophones (AUH) moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). The instruments were deployed south of the Azores Plateau between 32° and 39°N from July 2005 to August 2008. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation result in a detection threshold reduction from a magnitude completeness level (Mc) of ~4.3 for MAR events recorded by the land-based seismic networks to Mc=2.1 using this hydrophone array. A spatio-temporal analysis has been performed among the 5600 events recorded inside the MARCHE array. Most events are distributed along the ridge between lat. 39°N on the Azores Platform and the Rainbow (36°N) segment. In the hydrophone catalogue, acoustic magnitude (Source Level, SL) is used as a measure of earthquake size. The source level above which the data set is complete is SLc=205 dB. We look for seismic swarms using the cluster software of the SEISAN package. The criterion used are a minimum SL of 210 to detect a possible mainshock, and a radius of 30 km and a time window of 40 days after this mainshock (Cevatoglu, 2010, Goslin et al., 2012). 7 swarms with more than 15 events are identified using this approach between 32°et 39°N of latitude. The maximum number of earthquake in a swarm is 57 events. This result differs from the study of Simao et al. (2010) as we processed a further year of data and selected sequences with fewer events. Looking at the distribution of the SL as a function of time after the mainshock, we discuss the possible mechanism of these earthquakes : tectonic events with a "mainshock-aftershock" distribution fitting a modified Omori law or volcanic events showing more constant SL values. We also present the geophysical setting of these 7 swarms, using gravity, bathymetry, and available local geological data. This study illustrates the potential of

  18. Miocene to present deformation rates in the Yakima Fold Province and implications for earthquake hazards in central Washington State, USA

    Science.gov (United States)

    Staisch, Lydia; Sherrod, Brian; Kelsey, Harvey; Blakely, Richard; Möller, Andreas; Styron, Richard

    2017-04-01

    , which lack syntectonic growth strata, we exploit 2-m LiDAR data and invert stream profiles to analytically solve for a linear solution to relative uplift rate. From stream profile inversion, we see an increase in incision rates in Pliocene time and suggest that this increased rate is tectonically controlled. Our analyses indicate that deformation rates along the Manastash and Umtanum Ridge anticlines are significantly higher than along the Saddle Mountains. We use our new estimates of slip rates along individual anticlines to calculate the time required to accumulate enough strain energy for a large magnitude earthquake (M≥7) along faults within the YFP. Our results indicate that it takes between several hundred to several thousand years to accumulate sufficient strain energy for a M≥7 earthquake, with the greatest hazard posed by the Umtanum Ridge anticline.

  19. Normal fault earthquakes or graviquakes

    Science.gov (United States)

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  20. Comparing methods for Earthquake Location

    Science.gov (United States)

    Turkaya, Semih; Bodin, Thomas; Sylvander, Matthieu; Parroucau, Pierre; Manchuel, Kevin

    2017-04-01

    There are plenty of methods available for locating small magnitude point source earthquakes. However, it is known that these different approaches produce different results. For each approach, results also depend on a number of parameters which can be separated into two main branches: (1) parameters related to observations (number and distribution of for example) and (2) parameters related to the inversion process (velocity model, weighting parameters, initial location etc.). Currently, the results obtained from most of the location methods do not systematically include quantitative uncertainties. The effect of the selected parameters on location uncertainties is also poorly known. Understanding the importance of these different parameters and their effect on uncertainties is clearly required to better constrained knowledge on fault geometry, seismotectonic processes and at the end to improve seismic hazard assessment. In this work, realized in the frame of the SINAPS@ research program (http://www.institut-seism.fr/projets/sinaps/), we analyse the effect of different parameters on earthquakes location (e.g. type of phase, max. hypocentral separation etc.). We compare several codes available (Hypo71, HypoDD, NonLinLoc etc.) and determine their strengths and weaknesses in different cases by means of synthetic tests. The work, performed for the moment on synthetic data, is planned to be applied, in a second step, on data collected by the Midi-Pyrénées Observatory (OMP).

  1. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    Science.gov (United States)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  2. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    Science.gov (United States)

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  3. Probabilistic approach to earthquake prediction.

    Directory of Open Access Journals (Sweden)

    G. D'Addezio

    2002-06-01

    Full Text Available The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the

  4. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site.

  5. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle

    Science.gov (United States)

    Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling

    2016-03-01

    We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in

  6. Californium Electrodepositions at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boll, Rose Ann [ORNL

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  7. Level 3 Baseline Risk Assessment for Building 3515 at Oak Ridge National Lab., Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Wollert, D.A.; Cretella, F.M.; Golden, K.M. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1995-08-01

    The baseline risk assessment for the Fission Product Pilot Plant (Building 3515) at the Oak Ridge National laboratory (ORNL) provides the Decontamination and Decommissioning (D&D) Program at ORNL and Building 3515 project managers with information concerning the results of the Level 3 baseline risk assessment performed for this building. The document was prepared under Work Breakdown Structure 1.4.12.6.2.01 (Activity Data Sheet 3701, Facilities D&D) and includes information on the potential long-term impacts to human health and the environment if no action is taken to remediate Building 3515. Information provided in this document forms the basis for the development of remedial alternatives and the no-action risk portion of the Engineering Evaluation/Cost Analysis report.

  8. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  9. Resource Management plan for the Oak Ridge Reservation. Volume 28, Wetlands on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M. [Science Applications International Corp., Oak Ridge, TN (United States); Pounds, Larry [Tennessee Univ., Knoxville, TN (United States)

    1991-12-01

    A survey of wetlands on the Oak Ridge Reservation (ORR) was conducted in 1990. Wetlands occurring on ORR were identified using National Wetlands Inventory (NWI) maps and field surveys. More than 120 sites were visited and 90 wetlands were identified. Wetland types on ORR included emergent communities in shallow embayments on reservoirs, emergent and aquatic communities in ponds, forested wetland on low ground along major creeks, and wet meadows and marshes associated with streams and seeps. Vascular plant species occurring on sites visited were inventoried, and 57 species were added to the checklist of vascular plants on ORR. Three species listed as rare in Tennessee were discovered on ORR during the wetlands survey. The survey provided an intensive ground truth of the wetlands identified by NWI and offered an indication of wetlands that the NWI remote sensing techniques did not detect.

  10. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.

  11. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.

  12. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  13. Stress triggering and the Canterbury earthquake sequence

    Science.gov (United States)

    Steacy, Sandy; Jiménez, Abigail; Holden, Caroline

    2014-01-01

    The Canterbury earthquake sequence, which includes the devastating Christchurch event of 2011 February, has to date led to losses of around 40 billion NZ dollars. The location and severity of the earthquakes was a surprise to most inhabitants as the seismic hazard model was dominated by an expected Mw > 8 earthquake on the Alpine fault and an Mw 7.5 earthquake on the Porters Pass fault, 150 and 80 km to the west of Christchurch. The sequence to date has included an Mw = 7.1 earthquake and 3 Mw ≥ 5.9 events which migrated from west to east. Here we investigate whether the later events are consistent with stress triggering and whether a simple stress map produced shortly after the first earthquake would have accurately indicated the regions where the subsequent activity occurred. We find that 100 per cent of M > 5.5 earthquakes occurred in positive stress areas computed using a slip model for the first event that was available within 10 d of its occurrence. We further find that the stress changes at the starting points of major slip patches of post-Darfield main events are consistent with triggering although this is not always true at the hypocentral locations. Our results suggest that Coulomb stress changes contributed to the evolution of the Canterbury sequence and we note additional areas of increased stress in the Christchurch region and on the Porters Pass fault.

  14. A critical history of British earthquakes

    Directory of Open Access Journals (Sweden)

    R. M. W. Musson

    2004-06-01

    Full Text Available This paper reviews the history of the study of historical British earthquakes. The publication of compendia of British earthquakes goes back as early as the late 16th Century. A boost to the study of earthquakes in Britain was given in the mid 18th Century as a result of two events occurring in London in 1750 (analogous to the general increase in earthquakes in Europe five years later after the 1755 Lisbon earthquake. The 19th Century saw a number of significant studies, culminating in the work of Davison, whose book-length catalogue was published finally in 1924. After that appears a gap, until interest in the subject was renewed in the mid 1970s. The expansion of the U.K. nuclear programme in the 1980s led to a series of large-scale investigations of historical British earthquakes, all based almost completely on primary historical data and conducted to high standards. The catalogue published by BGS in 1994 is a synthesis of these studies, and presents a parametric catalogue in which historical earthquakes are assessed from intensity data points based on primary source material. Since 1994, revisions to parameters have been minor and new events discovered have been restricted to a few small events.

  15. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  16. Earthquake prediction from China's mobile gravity data

    Directory of Open Access Journals (Sweden)

    Yiqing Zhu

    2015-03-01

    Full Text Available The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998–2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from mainland China since 2000 obviously reflected five major earthquakes (Ms > 7, all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically presented and evaluated, especially to estimate location of earthquake.

  17. Seismicity prior to the 2016 Kumamoto earthquakes

    CERN Document Server

    Nanjo, K Z; Orihara, Y; Furuse, N; Togo, S; Nitta, H; Okada, T; Tanaka, R; Kamogawa, M; Nagao, T

    2016-01-01

    The 2016 Kumamoto earthquakes occurred under circumstance that seismicity remains high in all parts of Japan since the 2011 Tohoku-Oki earthquake. Identifying what happened before this incident is one starting point for promote earthquake forecast research to prepare for subsequent large earthquakes in the near future in Japan. Here we report precursory seismic patterns prior to the Kumamoto earthquakes, measured by four different methods based on seismicity changes that can be used for earthquake forecasting: b-value method, two kinds of seismic quiescence evaluation methods, and a method of detailed foreshock evaluation. The spatial extent of precursory patterns differs from one method to the other and ranges from local scales (typically asperity size), to regional scales (e.g., 2{\\deg} x 3{\\deg} around the source zone). The earthquakes are preceded by periods of pronounced anomalies, which lasted decade scales (e.g., 20 years or longer) to yearly scales (e.g., 1~2 years). We demonstrate that combination of...

  18. New geological perspectives on earthquake recurrence models

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, D.P. [Geological Survey, Menlo Park, CA (United States)

    1997-02-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release.

  19. Scaling of Seismic Memory with Earthquake Size

    CERN Document Server

    Zheng, Zeyu; Tenenbaum, Joel; Podobnik, Boris; Stanley, H Eugene

    2011-01-01

    It has been observed that the earthquake events possess short-term memory, i.e. that events occurring in a particular location are dependent on the short history of that location. We conduct an analysis to see whether real-time earthquake data also possess long-term memory and, if so, whether such autocorrelations depend on the size of earthquakes within close spatiotemporal proximity. We analyze the seismic waveform database recorded by 64 stations in Japan, including the 2011 "Great East Japan Earthquake", one of the five most powerful earthquakes ever recorded which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the waveform sign series show long-range power-law anticorrelations while the interval series show long-range power-law correlations. We find size-dependence in earthquake auto-correlations---as earthquake size increases, both of these correlation beha...

  20. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.