WorldWideScience

Sample records for machine architecture support

  1. Investigation of support vector machine for the detection of architectural distortion in mammographic images

    International Nuclear Information System (INIS)

    Guo, Q; Shao, J; Ruiz, V

    2005-01-01

    This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma

  2. Investigation of support vector machine for the detection of architectural distortion in mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q [Department of Cybernetics, University of Reading, Reading RG6 6AY (United Kingdom); Shao, J [Department of Electronics, University of Kent at Canterbury, Kent CT2 7NT (United Kingdom); Ruiz, V [Department of Cybernetics, University of Reading, Reading RG6 6AY (United Kingdom)

    2005-01-01

    This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.

  3. A computer architecture for intelligent machines

    Science.gov (United States)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  4. Support vector machines applications

    CERN Document Server

    Guo, Guodong

    2014-01-01

    Support vector machines (SVM) have both a solid mathematical background and good performance in practical applications. This book focuses on the recent advances and applications of the SVM in different areas, such as image processing, medical practice, computer vision, pattern recognition, machine learning, applied statistics, business intelligence, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications, especially some recent advances.

  5. Migration of supervisory machine control architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Deursen, van A.; Nord, R.; Medvidovic, N.; Krikhaar, R.; Stafford, J.; Bosch, J.

    2005-01-01

    In this position paper, we discuss a first step towards an approach for the migration of supervisory machine control (SMC) architectures. This approach is based on the identification of SMC concerns and the definition of corresponding transformation rules.

  6. Implications of Structured Programming for Machine Architecture

    NARCIS (Netherlands)

    Tanenbaum, A.S.

    1978-01-01

    Based on an empirical study of more than 10,000 lines of program text written in a GOTO-less language, a machine architecture specifically designed for structured programs is proposed. Since assignment, CALL, RETURN, and IF statements together account for 93 percent of all executable statements,

  7. Machine-to-machine communications architectures, technology, standards, and applications

    CERN Document Server

    Misic, Vojislav B

    2014-01-01

    With the number of machine-to-machine (M2M)-enabled devices projected to reach 20 to 50 billion by 2020, there is a critical need to understand the demands imposed by such systems. Machine-to-Machine Communications: Architectures, Technology, Standards, and Applications offers rigorous treatment of the many facets of M2M communication, including its integration with current technology.Presenting the work of a different group of international experts in each chapter, the book begins by supplying an overview of M2M technology. It considers proposed standards, cutting-edge applications, architectures, and traffic modeling and includes case studies that highlight the differences between traditional and M2M communications technology.Details a practical scheme for the forward error correction code designInvestigates the effectiveness of the IEEE 802.15.4 low data rate wireless personal area network standard for use in M2M communicationsIdentifies algorithms that will ensure functionality, performance, reliability, ...

  8. Learning with Support Vector Machines

    CERN Document Server

    Campbell, Colin

    2010-01-01

    Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such a

  9. Reversible machine code and its abstract processor architecture

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Glück, Robert; Yokoyama, Tetsuo

    2007-01-01

    A reversible abstract machine architecture and its reversible machine code are presented and formalized. For machine code to be reversible, both the underlying control logic and each instruction must be reversible. A general class of machine instruction sets was proven to be reversible, building...

  10. Reconfigurable support vector machine classifier with approximate computing

    NARCIS (Netherlands)

    van Leussen, M.J.; Huisken, J.; Wang, L.; Jiao, H.; De Gyvez, J.P.

    2017-01-01

    Support Vector Machine (SVM) is one of the most popular machine learning algorithms. An energy-efficient SVM classifier is proposed in this paper, where approximate computing is utilized to reduce energy consumption and silicon area. A hardware architecture with reconfigurable kernels and

  11. Architecture Without Explicit Locks for Logic Simulation on SIMD Machines

    OpenAIRE

    Cockshott, W. Paul; Chimeh, Mozhgan Kabiri

    2016-01-01

    The presentation describes an architecture for logic simulation that takes advantages of the features of multi-core SIMD architectures. It uses neither explicit locks nor queues, using instead oblivious simulation. Data structures are targeted to efficient SIMD and multi-core cache operation. We demonstrate high levels of parallelisation on Xeon Phi and AMD multi-core machines. Performance on a Xeon Phi is comparable to or better than on a 1000 core Blue Gene machine.

  12. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  13. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.S.; /SLAC

    2008-04-22

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

  14. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    International Nuclear Information System (INIS)

    Larsen, R

    2008-01-01

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R and D including application of HA principles to power electronics systems

  15. Deep neural mapping support vector machines.

    Science.gov (United States)

    Li, Yujian; Zhang, Ting

    2017-09-01

    The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Logical Evaluation of Consciousness: For Incorporating Consciousness into Machine Architecture

    OpenAIRE

    Padhy, C. N.; Panda, R. R.

    2010-01-01

    Machine Consciousness is the study of consciousness in a biological, philosophical, mathematical and physical perspective and designing a model that can fit into a programmable system architecture. Prime objective of the study is to make the system architecture behave consciously like a biological model does. Present work has developed a feasible definition of consciousness, that characterizes consciousness with four parameters i.e., parasitic, symbiotic, self referral and reproduction. Prese...

  17. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  18. Clustering Categories in Support Vector Machines

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Nogales-Gómez, Amaya; Morales, Dolores Romero

    2017-01-01

    The support vector machine (SVM) is a state-of-the-art method in supervised classification. In this paper the Cluster Support Vector Machine (CLSVM) methodology is proposed with the aim to increase the sparsity of the SVM classifier in the presence of categorical features, leading to a gain in in...

  19. Deep Support Vector Machines for Regression Problems

    NARCIS (Netherlands)

    Wiering, Marco; Schutten, Marten; Millea, Adrian; Meijster, Arnold; Schomaker, Lambertus

    2013-01-01

    In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain

  20. Software architecture for time-constrained machine vision applications

    Science.gov (United States)

    Usamentiaga, Rubén; Molleda, Julio; García, Daniel F.; Bulnes, Francisco G.

    2013-01-01

    Real-time image and video processing applications require skilled architects, and recent trends in the hardware platform make the design and implementation of these applications increasingly complex. Many frameworks and libraries have been proposed or commercialized to simplify the design and tuning of real-time image processing applications. However, they tend to lack flexibility, because they are normally oriented toward particular types of applications, or they impose specific data processing models such as the pipeline. Other issues include large memory footprints, difficulty for reuse, and inefficient execution on multicore processors. We present a novel software architecture for time-constrained machine vision applications that addresses these issues. The architecture is divided into three layers. The platform abstraction layer provides a high-level application programming interface for the rest of the architecture. The messaging layer provides a message-passing interface based on a dynamic publish/subscribe pattern. A topic-based filtering in which messages are published to topics is used to route the messages from the publishers to the subscribers interested in a particular type of message. The application layer provides a repository for reusable application modules designed for machine vision applications. These modules, which include acquisition, visualization, communication, user interface, and data processing, take advantage of the power of well-known libraries such as OpenCV, Intel IPP, or CUDA. Finally, the proposed architecture is applied to a real machine vision application: a jam detector for steel pickling lines.

  1. How does Enterprise Architecture support innovation?

    DEFF Research Database (Denmark)

    Nardello, Marco; Lapalme, James; Toppenberg, Gustav

    2015-01-01

    Innovation is becoming increasingly important for Enterprise Architecture (EA) teams. Consequently, it is crucial that tools be developed to assist Enterprise Architecture teams when evaluating how (and how well) they are supporting innovation within the context of their enterprise. To date very...

  2. Neural architecture design based on extreme learning machine.

    Science.gov (United States)

    Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis

    2013-12-01

    Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Density Based Support Vector Machines for Classification

    OpenAIRE

    Zahra Nazari; Dongshik Kang

    2015-01-01

    Support Vector Machines (SVM) is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification) of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classification performance, and machine should better to discard them. SVM as a popular and widely used cl...

  4. Assured Mission Support Space Architecture (AMSSA) study

    Science.gov (United States)

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  5. Support vector machine for automatic pain recognition

    Science.gov (United States)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  6. Object-Oriented Support for Adaptive Methods on Paranel Machines

    Directory of Open Access Journals (Sweden)

    Sandeep Bhatt

    1993-01-01

    Full Text Available This article reports on experiments from our ongoing project whose goal is to develop a C++ library which supports adaptive and irregular data structures on distributed memory supercomputers. We demonstrate the use of our abstractions in implementing "tree codes" for large-scale N-body simulations. These algorithms require dynamically evolving treelike data structures, as well as load-balancing, both of which are widely believed to make the application difficult and cumbersome to program for distributed-memory machines. The ease of writing the application code on top of our C++ library abstractions (which themselves are application independent, and the low overhead of the resulting C++ code (over hand-crafted C code supports our belief that object-oriented approaches are eminently suited to programming distributed-memory machines in a manner that (to the applications programmer is architecture-independent. Our contribution in parallel programming methodology is to identify and encapsulate general classes of communication and load-balancing strategies useful across applications and MIMD architectures. This article reports experimental results from simulations of half a million particles using multiple methods.

  7. Rotating electric machine with fluid supported parts

    Science.gov (United States)

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  8. A distributed clinical decision support system architecture

    Directory of Open Access Journals (Sweden)

    Shaker H. El-Sappagh

    2014-01-01

    Full Text Available This paper proposes an open and distributed clinical decision support system architecture. This technical architecture takes advantage of Electronic Health Record (EHR, data mining techniques, clinical databases, domain expert knowledge bases, available technologies and standards to provide decision-making support for healthcare professionals. The architecture will work extremely well in distributed EHR environments in which each hospital has its own local EHR, and it satisfies the compatibility, interoperability and scalability objectives of an EHR. The system will also have a set of distributed knowledge bases. Each knowledge base will be specialized in a specific domain (i.e., heart disease, and the model achieves cooperation, integration and interoperability between these knowledge bases. Moreover, the model ensures that all knowledge bases are up-to-date by connecting data mining engines to each local knowledge base. These data mining engines continuously mine EHR databases to extract the most recent knowledge, to standardize it and to add it to the knowledge bases. This framework is expected to improve the quality of healthcare, reducing medical errors and guaranteeing the safety of patients by helping clinicians to make correct, accurate, knowledgeable and timely decisions.

  9. Hyperspectral image classification using Support Vector Machine

    International Nuclear Information System (INIS)

    Moughal, T A

    2013-01-01

    Classification of land cover hyperspectral images is a very challenging task due to the unfavourable ratio between the number of spectral bands and the number of training samples. The focus in many applications is to investigate an effective classifier in terms of accuracy. The conventional multiclass classifiers have the ability to map the class of interest but the considerable efforts and large training sets are required to fully describe the classes spectrally. Support Vector Machine (SVM) is suggested in this paper to deal with the multiclass problem of hyperspectral imagery. The attraction to this method is that it locates the optimal hyper plane between the class of interest and the rest of the classes to separate them in a new high-dimensional feature space by taking into account only the training samples that lie on the edge of the class distributions known as support vectors and the use of the kernel functions made the classifier more flexible by making it robust against the outliers. A comparative study has undertaken to find an effective classifier by comparing Support Vector Machine (SVM) to the other two well known classifiers i.e. Maximum likelihood (ML) and Spectral Angle Mapper (SAM). At first, the Minimum Noise Fraction (MNF) was applied to extract the best possible features form the hyperspectral imagery and then the resulting subset of the features was applied to the classifiers. Experimental results illustrate that the integration of MNF and SVM technique significantly reduced the classification complexity and improves the classification accuracy.

  10. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    Science.gov (United States)

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  11. Augmenting cognitive architectures to support diagrammatic imagination.

    Science.gov (United States)

    Chandrasekaran, Balakrishnan; Banerjee, Bonny; Kurup, Unmesh; Lele, Omkar

    2011-10-01

    Diagrams are a form of spatial representation that supports reasoning and problem solving. Even when diagrams are external, not to mention when there are no external representations, problem solving often calls for internal representations, that is, representations in cognition, of diagrammatic elements and internal perceptions on them. General cognitive architectures--Soar and ACT-R, to name the most prominent--do not have representations and operations to support diagrammatic reasoning. In this article, we examine some requirements for such internal representations and processes in cognitive architectures. We discuss the degree to which DRS, our earlier proposal for such an internal representation for diagrams, meets these requirements. In DRS, the diagrams are not raw images, but a composition of objects that can be individuated and thus symbolized, while, unlike traditional symbols, the referent of the symbol is an object that retains its perceptual essence, namely, its spatiality. This duality provides a way to resolve what anti-imagists thought was a contradiction in mental imagery: the compositionality of mental images that seemed to be unique to symbol systems, and their support of a perceptual experience of images and some types of perception on them. We briefly review the use of DRS to augment Soar and ACT-R with a diagrammatic representation component. We identify issues for further research. Copyright © 2011 Cognitive Science Society, Inc.

  12. Supporting Sustainability and Personalization with Product Architecture

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Jørgensen, Kaj Asbjørn; Taps, Stig B.

    2011-01-01

    Mass Customization, Personalization and Co-creation (MCPC) are continuously being adopted as a competitive business strategy. Consumers as well as governments are at the same time applying pressure on companies to adopt a more sustainable strategy, consumers request greener products and governments...... is a driver for MCPC and earlier research within product architecture has indicated that modularization could support sustainability. In this paper, work on the drivers for modularization with focus on sustainability and MCPC, will be presented. Several modularization methods and drivers are analyzed...

  13. Quantum optimization for training support vector machines.

    Science.gov (United States)

    Anguita, Davide; Ridella, Sandro; Rivieccio, Fabio; Zunino, Rodolfo

    2003-01-01

    Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors, represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training, especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences between Quadratic-Programming and Quantum-based optimization techniques are considered.

  14. Successive overrelaxation for laplacian support vector machine.

    Science.gov (United States)

    Qi, Zhiquan; Tian, Yingjie; Shi, Yong

    2015-04-01

    Semisupervised learning (SSL) problem, which makes use of both a large amount of cheap unlabeled data and a few unlabeled data for training, in the last few years, has attracted amounts of attention in machine learning and data mining. Exploiting the manifold regularization (MR), Belkin et al. proposed a new semisupervised classification algorithm: Laplacian support vector machines (LapSVMs), and have shown the state-of-the-art performance in SSL field. To further improve the LapSVMs, we proposed a fast Laplacian SVM (FLapSVM) solver for classification. Compared with the standard LapSVM, our method has several improved advantages as follows: 1) FLapSVM does not need to deal with the extra matrix and burden the computations related to the variable switching, which make it more suitable for large scale problems; 2) FLapSVM’s dual problem has the same elegant formulation as that of standard SVMs. This means that the kernel trick can be applied directly into the optimization model; and 3) FLapSVM can be effectively solved by successive overrelaxation technology, which converges linearly to a solution and can process very large data sets that need not reside in memory. In practice, combining the strategies of random scheduling of subproblem and two stopping conditions, the computing speed of FLapSVM is rigidly quicker to that of LapSVM and it is a valid alternative to PLapSVM.

  15. Infinite ensemble of support vector machines for prediction of ...

    African Journals Online (AJOL)

    user

    the support vector machines (SVMs), a machine learning algorithm used ... work designs so that specific, quantitative workplace assessments can be made ... with SVMs can be obtained by embedding the base learners (hypothesis) into a.

  16. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  17. Quantum algorithm for support matrix machines

    Science.gov (United States)

    Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan

    2017-09-01

    We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.

  18. Efficient Multiplicative Updates for Support Vector Machines

    DEFF Research Database (Denmark)

    Potluru, Vamsi K.; Plis, Sergie N; Mørup, Morten

    2009-01-01

    (NMF) problem. This allows us to derive a novel multiplicative algorithm for solving hard and soft margin SVM. The algorithm follows as a natural extension of the updates for NMF and semi-NMF. No additional parameter setting, such as choosing learning rate, is required. Exploiting the connection......The dual formulation of the support vector machine (SVM) objective function is an instance of a nonnegative quadratic programming problem. We reformulate the SVM objective function as a matrix factorization problem which establishes a connection with the regularized nonnegative matrix factorization...... between SVM and NMF formulation, we show how NMF algorithms can be applied to the SVM problem. Multiplicative updates that we derive for SVM problem also represent novel updates for semi-NMF. Further this unified view yields algorithmic insights in both directions: we demonstrate that the Kernel Adatron...

  19. Support vector machines and generalisation in HEP

    Science.gov (United States)

    Bevan, Adrian; Gamboa Goñi, Rodrigo; Hays, Jon; Stevenson, Tom

    2017-10-01

    We review the concept of Support Vector Machines (SVMs) and discuss examples of their use in a number of scenarios. Several SVM implementations have been used in HEP and we exemplify this algorithm using the Toolkit for Multivariate Analysis (TMVA) implementation. We discuss examples relevant to HEP including background suppression for H → τ + τ - at the LHC with several different kernel functions. Performance benchmarking leads to the issue of generalisation of hyper-parameter selection. The avoidance of fine tuning (over training or over fitting) in MVA hyper-parameter optimisation, i.e. the ability to ensure generalised performance of an MVA that is independent of the training, validation and test samples, is of utmost importance. We discuss this issue and compare and contrast performance of hold-out and k-fold cross-validation. We have extended the SVM functionality and introduced tools to facilitate cross validation in TMVA and present results based on these improvements.

  20. Progressive Classification Using Support Vector Machines

    Science.gov (United States)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  1. Scalable software architectures for decision support.

    Science.gov (United States)

    Musen, M A

    1999-12-01

    Interest in decision-support programs for clinical medicine soared in the 1970s. Since that time, workers in medical informatics have been particularly attracted to rule-based systems as a means of providing clinical decision support. Although developers have built many successful applications using production rules, they also have discovered that creation and maintenance of large rule bases is quite problematic. In the 1980s, several groups of investigators began to explore alternative programming abstractions that can be used to build decision-support systems. As a result, the notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) problem-solving methods--domain-independent algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper highlights how developers can construct large, maintainable decision-support systems using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.

  2. Connection machine: a computer architecture based on cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Hillis, W D

    1984-01-01

    This paper describes the connection machine, a programmable computer based on cellular automata. The essential idea behind the connection machine is that a regular locally-connected cellular array can be made to behave as if the processing cells are connected into any desired topology. When the topology of the machine is chosen to match the topology of the application program, the result is a fast, powerful computing engine. The connection machine was originally designed to implement knowledge retrieval operations in artificial intelligence programs, but the hardware and the programming techniques are apparently applicable to a much larger class of problems. A machine with 100000 processing cells is currently being constructed. 27 references.

  3. Software architecture standard for simulation virtual machine, version 2.0

    Science.gov (United States)

    Sturtevant, Robert; Wessale, William

    1994-01-01

    The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.

  4. From scientific instrument to industrial machine : Coping with architectural stress in embedded systems

    NARCIS (Netherlands)

    Doornbos, R.; Loo, S. van

    2012-01-01

    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a

  5. Building evolutionary architectures support constant change

    CERN Document Server

    Ford, Neal; Kua, Patrick

    2017-01-01

    The software development ecosystem is constantly changing, providing a constant stream of new tools, frameworks, techniques, and paradigms. Over the past few years, incremental developments in core engineering practices for software development have created the foundations for rethinking how architecture changes over time, along with ways to protect important architectural characteristics as it evolves. This practical guide ties those parts together with a new way to think about architecture and time.

  6. Ranking Support Vector Machine with Kernel Approximation

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-01-01

    Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  7. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  8. Architectural Design Support for Composition & Superimposition

    NARCIS (Netherlands)

    Gurp, Jilles van; Smedinga, Rein; Bosch, Jan

    2002-01-01

    The ever growing size and complexity of software systems is making it increasingly harder to build systems that both meet current and future requirements. During architecture design, a lot of important design decisions are taken. In this paper, we present an architecture design notation based on

  9. PLM support to architecture based development

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt

    , organisation, processes, etc. To identify, evaluate, and align aspects of these domains are necessary for developing the optimal layout of product architectures. It is stated in this thesis that architectures describe building principles for products, product families, and product programs, where this project...... and developing architectures can be difficult to manage, update, and maintain during development. The concept of representing product architectures in computer-based product information tools has though been central in this research, and in the creation of results. A standard PLM tool (Windchill PDMLink...... architectures in computer systems. Presented results build on research literature and experiences from industrial partners. Verification of the theory contributions, approaches, models, and tools, have been carried out in industrial projects, with promising results. This thesis describes the means for: (1...

  10. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  11. Comparison of Three Smart Camera Architectures for Real-Time Machine Vision System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2013-12-01

    Full Text Available This paper presents a machine vision system for real-time computation of distance and angle of a camera from a set of reference points located on a target board. Three different smart camera architectures were explored to compare performance parameters such as power consumption, frame speed and latency. Architecture 1 consists of hardware machine vision modules modeled at Register Transfer (RT level and a soft-core processor on a single FPGA chip. Architecture 2 is commercially available software based smart camera, Matrox Iris GT. Architecture 3 is a two-chip solution composed of hardware machine vision modules on FPGA and an external microcontroller. Results from a performance comparison show that Architecture 2 has higher latency and consumes much more power than Architecture 1 and 3. However, Architecture 2 benefits from an easy programming model. Smart camera system with FPGA and external microcontroller has lower latency and consumes less power as compared to single FPGA chip having hardware modules and soft-core processor.

  12. Layered distributed simulation architecture to support the C2 enterprise

    CSIR Research Space (South Africa)

    Duvenhage, A

    2009-09-01

    Full Text Available between these systems and that a capability is required to demonstrate, support and evaluate interoperability. This paper discusses the layered software architecture of a C++ software application framework for developing applications that support...

  13. Supporting visual quality assessment with machine learning

    NARCIS (Netherlands)

    Gastaldo, P.; Zunino, R.; Redi, J.

    2013-01-01

    Objective metrics for visual quality assessment often base their reliability on the explicit modeling of the highly non-linear behavior of human perception; as a result, they may be complex and computationally expensive. Conversely, machine learning (ML) paradigms allow to tackle the quality

  14. Feature recognition and detection for ancient architecture based on machine vision

    Science.gov (United States)

    Zou, Zheng; Wang, Niannian; Zhao, Peng; Zhao, Xuefeng

    2018-03-01

    Ancient architecture has a very high historical and artistic value. The ancient buildings have a wide variety of textures and decorative paintings, which contain a lot of historical meaning. Therefore, the research and statistics work of these different compositional and decorative features play an important role in the subsequent research. However, until recently, the statistics of those components are mainly by artificial method, which consumes a lot of labor and time, inefficiently. At present, as the strong support of big data and GPU accelerated training, machine vision with deep learning as the core has been rapidly developed and widely used in many fields. This paper proposes an idea to recognize and detect the textures, decorations and other features of ancient building based on machine vision. First, classify a large number of surface textures images of ancient building components manually as a set of samples. Then, using the convolution neural network to train the samples in order to get a classification detector. Finally verify its precision.

  15. Support vector machines optimization based theory, algorithms, and extensions

    CERN Document Server

    Deng, Naiyang; Zhang, Chunhua

    2013-01-01

    Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which SVMs are built.The authors share insight on many of their research achievements. They give a precise interpretation of statistical leaning theory for C-support vector classification. They also discuss regularized twi

  16. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  17. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, V.; Dröge, B.; Williams, D.; Yasar, B.; Yang, P.; Liu, B.; Dong, F.; Surinta, O.; Schomaker, L.R.B.; Roerdink, J.B.T.M.; Wiering, M.A.

    2016-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  18. Evaluating automatically parallelized versions of the support vector machine

    NARCIS (Netherlands)

    Codreanu, Valeriu; Droge, Bob; Williams, David; Yasar, Burhan; Yang, Fo; Liu, Baoquan; Dong, Feng; Surinta, Olarik; Schomaker, Lambertus; Roerdink, Jos; Wiering, Marco

    2014-01-01

    The support vector machine (SVM) is a supervised learning algorithm used for recognizing patterns in data. It is a very popular technique in machine learning and has been successfully used in applications such as image classification, protein classification, and handwriting recognition. However, the

  19. Infinite ensemble of support vector machines for prediction of ...

    African Journals Online (AJOL)

    Many researchers have demonstrated the use of artificial neural networks (ANNs) to predict musculoskeletal disorders risk associated with occupational exposures. In order to improve the accuracy of LBDs risk classification, this paper proposes to use the support vector machines (SVMs), a machine learning algorithm used ...

  20. Support Vector Machines for Pattern Classification

    CERN Document Server

    Abe, Shigeo

    2010-01-01

    A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empir

  1. The efficacy of support vector machines (SVM)

    Indian Academy of Sciences (India)

    (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source–receiver distance of up to 150 km during the period 1998–2011. We applied a ...

  2. Service-Oriented Architecture Approach to MAGTF Logistics Support Systems

    Science.gov (United States)

    2013-09-01

    Support System-Marine Corps IT Information Technology KPI Key Performance Indicators LCE Logistics Command Element ITV In-transit Visibility LCM...building blocks, options, KPI (key performance indicators), design decisions and the corresponding; the physical attributes which is the second attribute... KPI ) that they impact. h. Layer 8 (Information Architecture) The business intelligence layer and information architecture safeguards the inclusion

  3. Landslide susceptibility mapping using support vector machine and ...

    Indian Academy of Sciences (India)

    the prediction rate methods, the validation process was performed by ... support vector machine (SVM); geographical information systems (GIS); ... 2012a), decision tree methods (Akgun .... gence or divergence of water during downhill flow.

  4. Experimental comparison of support vector machines with random ...

    Indian Academy of Sciences (India)

    dient method, support vector machines, and random forests to improve producer accuracy and overall classification accuracy. The performance comparison of these classifiers is valuable for a decision maker ... ping, surveillance system, resource management, tracking ... rocks, water bodies, and anthropogenic elements,.

  5. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics

    OpenAIRE

    HUANG, SHUJUN; CAI, NIANGUANG; PACHECO, PEDRO PENZUTI; NARANDES, SHAVIRA; WANG, YANG; XU, WAYNE

    2017-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better ...

  6. Support vector machine for diagnosis cancer disease: A comparative study

    Directory of Open Access Journals (Sweden)

    Nasser H. Sweilam

    2010-12-01

    Full Text Available Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, Quantum-behave Particle Swarm for training SVM is introduced. Another approach named least square support vector machine (LSSVM and active set strategy are introduced. The obtained results by these methods are tested on a breast cancer dataset and compared with the exact solution model problem.

  7. Twin support vector machines models, extensions and applications

    CERN Document Server

    Jayadeva; Chandra, Suresh

    2017-01-01

    This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.

  8. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  9. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    Science.gov (United States)

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  10. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    The wave of the fourth industrial revolution (Industry 4.0) is bringing a new vision of the manufacturing industry. In manufacturing, one of the buzzwords of the moment is “Smart production”. Smart production involves manufacturing equipment with many sensors that can generate and transmit large...... amounts of data. These data and information from manufacturing operations are however not shared in the organization. Therefore the organization is not using them to learn and improve their operations. To address this problem, the authors implemented in an Industry 4.0 laboratory an instance...... of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  11. Machine learning and pattern recognition from surface molecular architectures.

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Sumpter, Bobby; Kalinin, Sergei

    The ability to utilize molecular assemblies as data storage devices requires capability to identify individual molecular states on a scale of thousands of molecules. We present a novel method of applying machine learning techniques for extraction of positional and rotational information from ultra-high vacuum scanning tunneling microscopy (STM) images and apply it to self-assembled monolayer of π-bowl sumanene molecules on gold. From density functional theory (DFT) simulations, we assume existence of distinct polar and multiple azimuthal rotational states. We use DFT-generated templates in conjunction with Markov Chain Monte Carlo (MCMC) sampler and noise modeling to create synthetic images representative of our model. We extract positional information of each molecule and use nearest neighbor criteria to construct a graph input to Markov Random Field (MRF) model to identify polar rotational states. We train a convolutional Neural Network (cNN) on a synthetic dataset and combine it with MRF model to classify molecules based on their azimuthal rotational state. We demonstrate effectiveness of such approach compared to other methods. Finally, we apply our approach to experimental images and achieve complete rotational class information extraction. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  12. Flexible software architecture for user-interface and machine control in laboratory automation.

    Science.gov (United States)

    Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E

    1998-10-01

    We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.

  13. An Ensemble of Deep Support Vector Machines for Image Categorization

    NARCIS (Netherlands)

    Abdullah, Azizi; Veltkamp, Remco C.; Wiering, Marco

    2009-01-01

    This paper presents the deep support vector machine (D-SVM) inspired by the increasing popularity of deep belief networks for image recognition. Our deep SVM trains an SVM in the standard way and then uses the kernel activations of support vectors as inputs for training another SVM at the next

  14. An equation of movement for supporting a drilling machine

    Energy Technology Data Exchange (ETDEWEB)

    Totev, Sl

    1982-01-01

    Support of a drilling machine is examined and an equation of movement is written. The equation has an invariant form and may be used for theoretical study of support in order to determine the forces and to study the stability and endurance of the elements as a whole.

  15. Dynamic Modeling and Analysis of the Large-Scale Rotary Machine with Multi-Supporting

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2011-01-01

    Full Text Available The large-scale rotary machine with multi-supporting, such as rotary kiln and rope laying machine, is the key equipment in the architectural, chemistry, and agriculture industries. The body, rollers, wheels, and bearings constitute a chain multibody system. Axis line deflection is a vital parameter to determine mechanics state of rotary machine, thus body axial vibration needs to be studied for dynamic monitoring and adjusting of rotary machine. By using the Riccati transfer matrix method, the body system of rotary machine is divided into many subsystems composed of three elements, namely, rigid disk, elastic shaft, and linear spring. Multiple wheel-bearing structures are simplified as springs. The transfer matrices of the body system and overall transfer equation are developed, as well as the response overall motion equation. Taken a rotary kiln as an instance, natural frequencies, modal shape, and response vibration with certain exciting axis line deflection are obtained by numerical computing. The body vibration modal curves illustrate the cause of dynamical errors in the common axis line measurement methods. The displacement response can be used for further measurement dynamical error analysis and compensation. The response overall motion equation could be applied to predict the body motion under abnormal mechanics condition, and provide theory guidance for machine failure diagnosis.

  16. From scientific instrument to industrial machine coping with architectural stress in embedded systems

    CERN Document Server

    Doornbos, Richard

    2012-01-01

    Architectural stress is the inability of a system design to respond to new market demands. It is an important yet often concealed issue in high tech systems. In From scientific instrument to industrial machine, we look at the phenomenon of architectural stress in embedded systems in the context of a transmission electron microscope system built by FEI Company. Traditionally, transmission electron microscopes are manually operated scientific instruments, but they also have enormous potential for use in industrial applications. However, this new market has quite different characteristics. There are strong demands for cost-effective analysis, accurate and precise measurements, and ease-of-use. These demands can be translated into new system qualities, e.g. reliability, predictability and high throughput, as well as new functions, e.g. automation of electron microscopic analyses, automated focusing and positioning functions. From scientific instrument to industrial machine takes a pragmatic approach to the proble...

  17. Virtual Class Support at the Virtual Machine Level

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Ernst, Erik

    2009-01-01

    This paper describes how virtual classes can be supported in a virtual machine.  Main-stream virtual machines such as the Java Virtual Machine and the .NET platform dominate the world today, and many languages are being executed on these virtual machines even though their embodied design choices...... conflict with the design choices of the virtual machine.  For instance, there is a non-trivial mismatch between the main-stream virtual machines mentioned above and dynamically typed languages.  One language concept that creates an even greater mismatch is virtual classes, in particular because fully...... general support for virtual classes requires generation of new classes at run-time by mixin composition.  Languages like CaesarJ and ObjectTeams can express virtual classes restricted to the subset that does not require run-time generation of classes, because of the restrictions imposed by the Java...

  18. Dialogue management in a home machine environment : linguistic components over an agent architecture

    OpenAIRE

    Quesada Moreno, José Francisco; García, Federico; Sena Pichardo, María Esther; Bernal Bermejo, José Ángel; Amores Carredano, José Gabriel de

    2001-01-01

    This paper presents the main characteristics of an Agent-based Architecture for the design and implementation of a Spoken Dialogue System. From a theoretical point of view, the system is based on the Information State Update approach, in particular, the system aims at the management of Natural Command Language Dialogue Moves in a Home Machine Environment. Specifically, the paper is focused on the Natural Language Understanding and Dialogue Management Agents...

  19. Prediction of Banking Systemic Risk Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Shouwei Li

    2013-01-01

    Full Text Available Banking systemic risk is a complex nonlinear phenomenon and has shed light on the importance of safeguarding financial stability by recent financial crisis. According to the complex nonlinear characteristics of banking systemic risk, in this paper we apply support vector machine (SVM to the prediction of banking systemic risk in an attempt to suggest a new model with better explanatory power and stability. We conduct a case study of an SVM-based prediction model for Chinese banking systemic risk and find the experiment results showing that support vector machine is an efficient method in such case.

  20. Indonesian Stock Prediction using Support Vector Machine (SVM

    Directory of Open Access Journals (Sweden)

    Santoso Murtiyanto

    2018-01-01

    Full Text Available This project is part of developing software to provide predictive information technology-based services artificial intelligence (Machine Intelligence or Machine Learning that will be utilized in the money market community. The prediction method used in this early stages uses the combination of Gaussian Mixture Model and Support Vector Machine with Python programming. The system predicts the price of Astra International (stock code: ASII.JK stock data. The data used was taken during 17 yr period of January 2000 until September 2017. Some data was used for training/modeling (80 % of data and the remainder (20 % was used for testing. An integrated model comprising Gaussian Mixture Model and Support Vector Machine system has been tested to predict stock market of ASII.JK for l d in advance. This model has been compared with the Market Cummulative Return. From the results, it is depicts that the Gaussian Mixture Model-Support Vector Machine based stock predicted model, offers significant improvement over the compared models resulting sharpe ratio of 3.22.

  1. A Novel Support Vector Machine with Globality-Locality Preserving

    Directory of Open Access Journals (Sweden)

    Cheng-Long Ma

    2014-01-01

    Full Text Available Support vector machine (SVM is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM, is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM.

  2. Multivariate calibration with least-squares support vector machines.

    NARCIS (Netherlands)

    Thissen, U.M.J.; Ustun, B.; Melssen, W.J.; Buydens, L.M.C.

    2004-01-01

    This paper proposes the use of least-squares support vector machines (LS-SVMs) as a relatively new nonlinear multivariate calibration method, capable of dealing with ill-posed problems. LS-SVMs are an extension of "traditional" SVMs that have been introduced recently in the field of chemistry and

  3. Support vector machine: a tool for mapping mineral prospectivity

    NARCIS (Netherlands)

    Zuo, R.; Carranza, E.J.M

    2011-01-01

    In this contribution, we describe an application of support vector machine (SVM), a supervised learning algorithm, to mineral prospectivity mapping. The free R package e1071 is used to construct a SVM with sigmoid kernel function to map prospectivity for Au deposits in western Meguma Terrain of Nova

  4. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  5. Identifying saltcedar with hyperspectral data and support vector machines

    Science.gov (United States)

    Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...

  6. Support vector machines classifiers of physical activities in preschoolers

    Science.gov (United States)

    The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...

  7. Support Vector Machines: Relevance Feedback and Information Retrieval.

    Science.gov (United States)

    Drucker, Harris; Shahrary, Behzad; Gibbon, David C.

    2002-01-01

    Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…

  8. GenSVM: a generalized multiclass support vector machine

    NARCIS (Netherlands)

    G.J.J. van den Burg (Gertjan); P.J.F. Groenen (Patrick)

    2016-01-01

    textabstractTraditional extensions of the binary support vector machine (SVM) to multiclass problems are either heuristics or require solving a large dual optimization problem. Here, a generalized multiclass SVM is proposed called GenSVM. In this method classification boundaries for a K-class

  9. A relational approach to support software architecture analysis

    NARCIS (Netherlands)

    Feijs, L.M.G.; Krikhaar, R.L.; van Ommering, R.C.

    1998-01-01

    This paper reports on our experience with a relational approach to support the analysis of existing software architectures. The analysis options provide for visualization and view calculation. The approach has been applied for reverse engineering. It is also possible to check concrete designs

  10. Optical Access Multiservice Architecture with Support to Smart Grid

    DEFF Research Database (Denmark)

    Gómez-Martínez, Alejandro; Amaya-Fernández, Ferney; Hincapié, Roberto

    2013-01-01

    The increasing demand of fixed and mobile applications, and considering that smart grid imposes new requirements to the access networks, in this paper we present an optical access architecture to support home multiservice including smart grid applications. We propose a migration path based in a WDM...

  11. The Use of Open Source Software for Open Architecture System on CNC Milling Machine

    Directory of Open Access Journals (Sweden)

    Dalmasius Ganjar Subagio

    2012-03-01

    Full Text Available Computer numerical control (CNC milling machine system cannot be separated from the software required to follow the provisions of the Open Architecture capabilities that have portability, extend ability, interoperability, and scalability. When a prescribed period of a CNC milling machine has passed and the manufacturer decided to discontinue it, then the user will have problems for maintaining the performance of the machine. This paper aims to show that the using of open source software (OSS is the way out to maintain engine performance. With the use of OSS, users no longer depend on the software built by the manufacturer because OSS is open and can be developed independently. In this paper, USBCNC V.3.42 is used as an alternative OSS. The test result shows that the work piece is in match with the desired pattern. The test result shows that the performance of machines using OSS has similar performance with the machine using software from the manufacturer. 

  12. Twin Support Vector Machine: A review from 2007 to 2014

    Directory of Open Access Journals (Sweden)

    Divya Tomar

    2015-03-01

    Full Text Available Twin Support Vector Machine (TWSVM is an emerging machine learning method suitable for both classification and regression problems. It utilizes the concept of Generalized Eigen-values Proximal Support Vector Machine (GEPSVM and finds two non-parallel planes for each class by solving a pair of Quadratic Programming Problems. It enhances the computational speed as compared to the traditional Support Vector Machine (SVM. TWSVM was initially constructed to solve binary classification problems; later researchers successfully extended it for multi-class problem domain. TWSVM always gives promising empirical results, due to which it has many attractive features which enhance its applicability. This paper presents the research development of TWSVM in recent years. This study is divided into two main broad categories - variant based and multi-class based TWSVM methods. The paper primarily discusses the basic concept of TWSVM and highlights its applications in recent years. A comparative analysis of various research contributions based on TWSVM is also presented. This is helpful for researchers to effectively utilize the TWSVM as an emergent research methodology and encourage them to work further in the performance enhancement of TWSVM.

  13. Support Vector Machine and Application in Seizure Prediction

    KAUST Repository

    Qiu, Simeng

    2018-04-01

    Nowadays, Machine learning (ML) has been utilized in various kinds of area which across the range from engineering field to business area. In this paper, we first present several kernel machine learning methods of solving classification, regression and clustering problems. These have good performance but also have some limitations. We present examples to each method and analyze the advantages and disadvantages for solving different scenarios. Then we focus on one of the most popular classification methods, Support Vectors Machine (SVM). In addition, we introduce the basic theory, advantages and scenarios of using Support Vector Machine (SVM) deal with classification problems. We also explain a convenient approach of tacking SVM problems which are called Sequential Minimal Optimization (SMO). Moreover, one class SVM can be understood in a different way which is called Support Vector Data Description (SVDD). This is a famous non-linear model problem compared with SVM problems, SVDD can be solved by utilizing Gaussian RBF kernel function combined with SMO. At last, we compared the difference and performance of SVM-SMO implementation and SVM-SVDD implementation. About the application part, we utilized SVM method to handle seizure forecasting in canine epilepsy, after comparing the results from different methods such as random forest, extremely randomized tree, and SVM to classify preictal (pre-seizure) and interictal (interval-seizure) binary data. We draw the conclusion that SVM has the best performance.

  14. An assessment of support vector machines for land cover classification

    Science.gov (United States)

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  15. ARCHITECTURE SOFTWARE SOLUTION TO SUPPORT AND DOCUMENT MANAGEMENT QUALITY SYSTEM

    Directory of Open Access Journals (Sweden)

    Milan Eric

    2010-12-01

    Full Text Available One of the basis of a series of standards JUS ISO 9000 is quality system documentation. An architecture of the quality system documentation depends on the complexity of business system. An establishment of an efficient management documentation of system of quality is of a great importance for the business system, as well as in the phase of introducing the quality system and in further stages of its improvement. The study describes the architecture and capability of software solutions to support and manage the quality system documentation in accordance with the requirements of standards ISO 9001:2001, ISO 14001:2005 HACCP etc.

  16. Language-based support for service oriented architectures

    DEFF Research Database (Denmark)

    Giambiagi, Pablo; Owe, Olaf; Ravn, Anders Peter

    2006-01-01

    The fast evolution of the Internet has popularized service-oriented architectures (SOA) with their promise of dynamic IT-supported inter-business collaborations. Yet this popularity does not reflect on the number of actual applications using the architecture. Programming models in use today make...... a poor match for the distributed, loosely-coupled, document-based nature of SOA. The gap is actually increasing. For example, interoperability between different organizations, requires contracts to reduce risks. Thus, high-level models of contracts are making their way into service-oriented architectures......, but application developers are still left to their own devices when it comes to writing code that will comply with a contract. This paper surveys existing and future directions regarding language-based solutions to the above problem....

  17. A novel improved fuzzy support vector machine based stock price trend forecast model

    OpenAIRE

    Wang, Shuheng; Li, Guohao; Bao, Yifan

    2018-01-01

    Application of fuzzy support vector machine in stock price forecast. Support vector machine is a new type of machine learning method proposed in 1990s. It can deal with classification and regression problems very successfully. Due to the excellent learning performance of support vector machine, the technology has become a hot research topic in the field of machine learning, and it has been successfully applied in many fields. However, as a new technology, there are many limitations to support...

  18. Canon multifunction copier machines – now with onsite support!

    CERN Document Server

    2013-01-01

    Following a retendering process in 2012, the IT Department is pleased to announce that leased multifunction copier machines are now covered by onsite support, provided by Canon technicians via the CERN Service Desk support system.   You can now contact the Service Desk regarding any problems or requests for toner: Telephone: 77777 Email: Service-Desk@cern.ch Please remember to quote the machine printer name and/or serial number (marked on the side of the machine). The following submission forms are available online: Report a failure with a printer or copier Request for network printer or copier installation or move Request toner/ink for my printer or copier The website below details the range of models available, all of which include print, photocopy and scan-to-mail functions as standard. These multifunction copier machines are leased subject to a monthly charge (minimum of 48 months) plus a “per click” charge to cover consumables (except staples), leaving you noth...

  19. SANDS: an architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2007-10-11

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics.

  20. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  1. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.

    Science.gov (United States)

    Huang, Shujun; Cai, Nianguang; Pacheco, Pedro Penzuti; Narrandes, Shavira; Wang, Yang; Xu, Wayne

    2018-01-01

    Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Sistem Deteksi Retinopati Diabetik Menggunakan Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wahyudi Setiawan

    2014-02-01

    Full Text Available Diabetic Retinopathy is a complication of Diabetes Melitus. It can be a blindness if untreated settled as early as possible. System created in this thesis is the detection of diabetic retinopathy level of the image obtained from fundus photographs. There are three main steps to resolve the problems, preprocessing, feature extraction and classification. Preprocessing methods that used in this system are Grayscale Green Channel, Gaussian Filter, Contrast Limited Adaptive Histogram Equalization and Masking. Two Dimensional Linear Discriminant Analysis (2DLDA is used for feature extraction. Support Vector Machine (SVM is used for classification. The test result performed by taking a dataset of MESSIDOR with number of images that vary for the training phase, otherwise is used for the testing phase. Test result show the optimal accuracy are 84% .   Keywords : Diabetic Retinopathy, Support Vector Machine, Two Dimensional Linear Discriminant Analysis, MESSIDOR

  3. Support vector machine for the diagnosis of malignant mesothelioma

    Science.gov (United States)

    Ushasukhanya, S.; Nithyakalyani, A.; Sivakumar, V.

    2018-04-01

    Harmful mesothelioma is an illness in which threatening (malignancy) cells shape in the covering of the trunk or stomach area. Being presented to asbestos can influence the danger of threatening mesothelioma. Signs and side effects of threatening mesothelioma incorporate shortness of breath and agony under the rib confine. Tests that inspect within the trunk and belly are utilized to recognize (find) and analyse harmful mesothelioma. Certain elements influence forecast (shot of recuperation) and treatment choices. In this review, Support vector machine (SVM) classifiers were utilized for Mesothelioma sickness conclusion. SVM output is contrasted by concentrating on Mesothelioma’s sickness and findings by utilizing similar information set. The support vector machine algorithm gives 92.5% precision acquired by means of 3-overlap cross-approval. The Mesothelioma illness dataset were taken from an organization reports from Turkey.

  4. Support Vector Machine Based Tool for Plant Species Taxonomic Classification

    OpenAIRE

    Manimekalai .K; Vijaya.MS

    2014-01-01

    Plant species are living things and are generally categorized in terms of Domain, Kingdom, Phylum, Class, Order, Family, Genus and name of Species in a hierarchical fashion. This paper formulates the taxonomic leaf categorization problem as the hierarchical classification task and provides a suitable solution using a supervised learning technique namely support vector machine. Features are extracted from scanned images of plant leaves and trained using SVM. Only class, order, family of plants...

  5. Support vector machines in analysis of top quark production

    International Nuclear Information System (INIS)

    Vaiciulis, A.

    2003-01-01

    The Support Vector Machine (SVM) learning algorithm is a new alternative to multivariate methods such as neural networks. Potential applications of SVMs in high energy physics include the common classification problem of signal/background discrimination as well as particle identification. A comparison of a conventional method and an SVM algorithm is presented here for the case of identifying top quark events in Run II physics at the CDF experiment

  6. A supportive architecture for CFD-based design optimisation

    Science.gov (United States)

    Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong

    2014-03-01

    Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture

  7. Weighted K-means support vector machine for cancer prediction.

    Science.gov (United States)

    Kim, SungHwan

    2016-01-01

    To date, the support vector machine (SVM) has been widely applied to diverse bio-medical fields to address disease subtype identification and pathogenicity of genetic variants. In this paper, I propose the weighted K-means support vector machine (wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM to impose weights to the loss term. Besides, I demonstrate the numerical relations between the objective function of the SVM and weights. Motivated by general ensemble techniques, which are known to improve accuracy, I directly adopt the boosting algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive performance, a range of simulation studies demonstrate that the weighted KM-SVM (and wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not limited to many popular classification rules. I applied the proposed methods to simulated data and two large-scale real applications in the TCGA pan-cancer methylation data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) increases accuracy of the classification model, and will facilitate disease diagnosis and clinical treatment decisions to benefit patients. A software package (wSVM) is publicly available at the R-project webpage (https://www.r-project.org).

  8. Variance inflation in high dimensional Support Vector Machines

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2013-01-01

    Many important machine learning models, supervised and unsupervised, are based on simple Euclidean distance or orthogonal projection in a high dimensional feature space. When estimating such models from small training sets we face the problem that the span of the training data set input vectors...... the case of Support Vector Machines (SVMS) and we propose a non-parametric scheme to restore proper generalizability. We illustrate the algorithm and its ability to restore performance on a wide range of benchmark data sets....... follow a different probability law with less variance. While the problem and basic means to reconstruct and deflate are well understood in unsupervised learning, the case of supervised learning is less well understood. We here investigate the effect of variance inflation in supervised learning including...

  9. Automatic Modulation Recognition by Support Vector Machines Using Wavelet Kernel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X Z; Yang, J; Luo, F L; Chen, J Y; Zhong, X P [College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha (China)

    2006-10-15

    Automatic modulation identification plays a significant role in electronic warfare, electronic surveillance systems and electronic counter measure. The task of modulation recognition of communication signals is to determine the modulation type and signal parameters. In fact, automatic modulation identification can be range to an application of pattern recognition in communication field. The support vector machines (SVM) is a new universal learning machine which is widely used in the fields of pattern recognition, regression estimation and probability density. In this paper, a new method using wavelet kernel function was proposed, which maps the input vector xi into a high dimensional feature space F. In this feature space F, we can construct the optimal hyperplane that realizes the maximal margin in this space. That is to say, we can use SVM to classify the communication signals into two groups, namely analogue modulated signals and digitally modulated signals. In addition, computer simulation results are given at last, which show good performance of the method.

  10. Automatic Modulation Recognition by Support Vector Machines Using Wavelet Kernel

    International Nuclear Information System (INIS)

    Feng, X Z; Yang, J; Luo, F L; Chen, J Y; Zhong, X P

    2006-01-01

    Automatic modulation identification plays a significant role in electronic warfare, electronic surveillance systems and electronic counter measure. The task of modulation recognition of communication signals is to determine the modulation type and signal parameters. In fact, automatic modulation identification can be range to an application of pattern recognition in communication field. The support vector machines (SVM) is a new universal learning machine which is widely used in the fields of pattern recognition, regression estimation and probability density. In this paper, a new method using wavelet kernel function was proposed, which maps the input vector xi into a high dimensional feature space F. In this feature space F, we can construct the optimal hyperplane that realizes the maximal margin in this space. That is to say, we can use SVM to classify the communication signals into two groups, namely analogue modulated signals and digitally modulated signals. In addition, computer simulation results are given at last, which show good performance of the method

  11. Support vector machine based battery model for electric vehicles

    International Nuclear Information System (INIS)

    Wang Junping; Chen Quanshi; Cao Binggang

    2006-01-01

    The support vector machine (SVM) is a novel type of learning machine based on statistical learning theory that can map a nonlinear function successfully. As a battery is a nonlinear system, it is difficult to establish the relationship between the load voltage and the current under different temperatures and state of charge (SOC). The SVM is used to model the battery nonlinear dynamics in this paper. Tests are performed on an 80Ah Ni/MH battery pack with the Federal Urban Driving Schedule (FUDS) cycle to set up the SVM model. Compared with the Nernst and Shepherd combined model, the SVM model can simulate the battery dynamics better with small amounts of experimental data. The maximum relative error is 3.61%

  12. Information Architecture for Quality Management Support in Hospitals.

    Science.gov (United States)

    Rocha, Álvaro; Freixo, Jorge

    2015-10-01

    Quality Management occupies a strategic role in organizations, and the adoption of computer tools within an aligned information architecture facilitates the challenge of making more with less, promoting the development of a competitive edge and sustainability. A formal Information Architecture (IA) lends organizations an enhanced knowledge but, above all, favours management. This simplifies the reinvention of processes, the reformulation of procedures, bridging and the cooperation amongst the multiple actors of an organization. In the present investigation work we planned the IA for the Quality Management System (QMS) of a Hospital, which allowed us to develop and implement the QUALITUS (QUALITUS, name of the computer application developed to support Quality Management in a Hospital Unit) computer application. This solution translated itself in significant gains for the Hospital Unit under study, accelerating the quality management process and reducing the tasks, the number of documents, the information to be filled in and information errors, amongst others.

  13. A comparative analysis of support vector machines and extreme learning machines.

    Science.gov (United States)

    Liu, Xueyi; Gao, Chuanhou; Li, Ping

    2012-09-01

    The theory of extreme learning machines (ELMs) has recently become increasingly popular. As a new learning algorithm for single-hidden-layer feed-forward neural networks, an ELM offers the advantages of low computational cost, good generalization ability, and ease of implementation. Hence the comparison and model selection between ELMs and other kinds of state-of-the-art machine learning approaches has become significant and has attracted many research efforts. This paper performs a comparative analysis of the basic ELMs and support vector machines (SVMs) from two viewpoints that are different from previous works: one is the Vapnik-Chervonenkis (VC) dimension, and the other is their performance under different training sample sizes. It is shown that the VC dimension of an ELM is equal to the number of hidden nodes of the ELM with probability one. Additionally, their generalization ability and computational complexity are exhibited with changing training sample size. ELMs have weaker generalization ability than SVMs for small sample but can generalize as well as SVMs for large sample. Remarkably, great superiority in computational speed especially for large-scale sample problems is found in ELMs. The results obtained can provide insight into the essential relationship between them, and can also serve as complementary knowledge for their past experimental and theoretical comparisons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Optimization of Support Vector Machine (SVM) for Object Classification

    Science.gov (United States)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  15. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  16. Support Vector Machines as tools for mortality graduation

    Directory of Open Access Journals (Sweden)

    Alberto Olivares

    2011-01-01

    Full Text Available A topic of interest in demographic and biostatistical analysis as well as in actuarial practice,is the graduation of the age-specific mortality pattern. A classical graduation technique is to fit parametric models. Recently, particular emphasis has been given to graduation using nonparametric techniques. Support Vector Machines (SVM is an innovative methodology that could be utilized for mortality graduation purposes. This paper evaluates SVM techniques as tools for graduating mortality rates. We apply SVM to empirical death rates from a variety of populations and time periods. For comparison, we also apply standard graduation techniques to the same data.

  17. Single Directional SMO Algorithm for Least Squares Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Xigao Shao

    2013-01-01

    Full Text Available Working set selection is a major step in decomposition methods for training least squares support vector machines (LS-SVMs. In this paper, a new technique for the selection of working set in sequential minimal optimization- (SMO- type decomposition methods is proposed. By the new method, we can select a single direction to achieve the convergence of the optimality condition. A simple asymptotic convergence proof for the new algorithm is given. Experimental comparisons demonstrate that the classification accuracy of the new method is not largely different from the existing methods, but the training speed is faster than existing ones.

  18. Fast Monte Carlo reliability evaluation using support vector machine

    International Nuclear Information System (INIS)

    Rocco, Claudio M.; Moreno, Jose Ali

    2002-01-01

    This paper deals with the feasibility of using support vector machine (SVM) to build empirical models for use in reliability evaluation. The approach takes advantage of the speed of SVM in the numerous model calculations typically required to perform a Monte Carlo reliability evaluation. The main idea is to develop an estimation algorithm, by training a model on a restricted data set, and replace system performance evaluation by a simpler calculation, which provides reasonably accurate model outputs. The proposed approach is illustrated by several examples. Excellent system reliability results are obtained by training a SVM with a small amount of information

  19. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Science.gov (United States)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  20. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Kamesh [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore, these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address

  1. Integration issues in virtual enterprises supported by an architectural framework

    DEFF Research Database (Denmark)

    Zwegers, Arian; Hannus, Matti; Tølle, Martin

    2001-01-01

    enterprises, especially concerning integration issues. This paper lays down an architectural framework, called VERAM, which aims to support the set-up and operation of virtual enterprises. Five different levels of integration are identified. They should all be addressed during the formation of a virtual......Nowadays, enterprises cooperate more extensively with other enterprises during the entire product life cycle. Temporary alliances between various enterprises emerge such as those in Virtual Enterprises. However, many enterprises experience difficulties in the formation and operation of virtual...

  2. HEP specific benchmarks of virtual machines on multi-core CPU architectures

    International Nuclear Information System (INIS)

    Alef, M; Gable, I

    2010-01-01

    Virtualization technologies such as Xen can be used in order to satisfy the disparate and often incompatible system requirements of different user groups in shared-use computing facilities. This capability is particularly important for HEP applications, which often have restrictive requirements. The use of virtualization adds flexibility, however, it is essential that the virtualization technology place little overhead on the HEP application. We present an evaluation of the practicality of running HEP applications in multiple Virtual Machines (VMs) on a single multi-core Linux system. We use the benchmark suite used by the HEPiX CPU Benchmarking Working Group to give a quantitative evaluation relevant to the HEP community. Benchmarks are packaged inside VMs and then the VMs are booted onto a single multi-core system. Benchmarks are then simultaneously executed on each VM to simulate highly loaded VMs running HEP applications. These techniques are applied to a variety of multi-core CPU architectures and VM configurations.

  3. Subspace identification of Hammer stein models using support vector machines

    International Nuclear Information System (INIS)

    Al-Dhaifallah, Mujahed

    2011-01-01

    System identification is the art of finding mathematical tools and algorithms that build an appropriate mathematical model of a system from measured input and output data. Hammerstein model, consisting of a memoryless nonlinearity followed by a dynamic linear element, is often a good trade-off as it can represent some dynamic nonlinear systems very accurately, but is nonetheless quite simple. Moreover, the extensive knowledge about LTI system representations can be applied to the dynamic linear block. On the other hand, finding an effective representation for the nonlinearity is an active area of research. Recently, support vector machines (SVMs) and least squares support vector machines (LS-SVMs) have demonstrated powerful abilities in approximating linear and nonlinear functions. In contrast with other approximation methods, SVMs do not require a-priori structural information. Furthermore, there are well established methods with guaranteed convergence (ordinary least squares, quadratic programming) for fitting LS-SVMs and SVMs. The general objective of this research is to develop new subspace algorithms for Hammerstein systems based on SVM regression.

  4. Penerapan Support Vector Machine (SVM untuk Pengkategorian Penelitian

    Directory of Open Access Journals (Sweden)

    Fithri Selva Jumeilah

    2017-07-01

    Full Text Available Research every college will continue to grow. Research will be stored in softcopy and hardcopy. The preparation of the research should be categorized in order to facilitate the search for people who need reference. To categorize the research, we need a method for text mining, one of them is with the implementation of Support Vector Machines (SVM. The data used to recognize the characteristics of each category then it takes secondary data which is a collection of abstracts of research. The data will be pre-processed with several stages: case folding converts all the letters into lowercase, stop words removal removal of very common words, tokenizing discard punctuation, and stemming searching for root words by removing the prefix and suffix. Further data that has undergone preprocessing will be converted into a numerical form with for the term weighting stage that is the weighting contribution of each word. From the results of term weighting then obtained data that can be used for data training and test data. The training process is done by providing input in the form of text data that is known to the class or category. Then by using the Support Vector Machines algorithm, the input data is transformed into a rule, function, or knowledge model that can be used in the prediction process. From the results of this study obtained that the categorization of research produced by SVM has been very good. This is proven by the results of the test which resulted in an accuracy of 90%.

  5. Chord Recognition Based on Temporal Correlation Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongyang Rao

    2016-05-01

    Full Text Available In this paper, we propose a method called temporal correlation support vector machine (TCSVM for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis, we expect the low-rank component of the spectrogram matrix to contain the musical accompaniment and the sparse component to contain the vocal signals. Then, we extract a new logarithmic pitch class profile (LPCP feature called enhanced LPCP from the low-rank part. To exploit the temporal correlation among the LPCP features of chords, we propose an improved support vector machine algorithm called TCSVM. We perform this study using the MIREX’09 (Music Information Retrieval Evaluation eXchange Audio Chord Estimation dataset. Furthermore, we conduct comprehensive experiments using different pitch class profile feature vectors to examine the performance of TCSVM. The results of our method are comparable to the state-of-the-art methods that entered the MIREX in 2013 and 2014 for the MIREX’09 Audio Chord Estimation task dataset.

  6. DC Algorithm for Extended Robust Support Vector Machine.

    Science.gov (United States)

    Fujiwara, Shuhei; Takeda, Akiko; Kanamori, Takafumi

    2017-05-01

    Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.

  7. Support Vector Machine Diagnosis of Acute Abdominal Pain

    Science.gov (United States)

    Björnsdotter, Malin; Nalin, Kajsa; Hansson, Lars-Erik; Malmgren, Helge

    This study explores the feasibility of a decision-support system for patients seeking care for acute abdominal pain, and, specifically the diagnosis of acute diverticulitis. We used a linear support vector machine (SVM) to separate diverticulitis from all other reported cases of abdominal pain and from the important differential diagnosis non-specific abdominal pain (NSAP). On a database containing 3337 patients, the SVM obtained results comparable to those of the doctors in separating diverticulitis or NSAP from the remaining diseases. The distinction between diverticulitis and NSAP was, however, substantially improved by the SVM. For this patient group, the doctors achieved a sensitivity of 0.714 and a specificity of 0.963. When adjusted to the physicians' results, the SVM sensitivity/specificity was higher at 0.714/0.985 and 0.786/0.963 respectively. Age was found as the most important discriminative variable, closely followed by C-reactive protein level and lower left side pain.

  8. SAM: Support Vector Machine Based Active Queue Management

    International Nuclear Information System (INIS)

    Shah, M.S.

    2014-01-01

    Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers. (author)

  9. Coal demand prediction based on a support vector machine model

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Cun-liang; Wu, Hai-shan; Gong, Dun-wei [China University of Mining & Technology, Xuzhou (China). School of Information and Electronic Engineering

    2007-01-15

    A forecasting model for coal demand of China using a support vector regression was constructed. With the selected embedding dimension, the output vectors and input vectors were constructed based on the coal demand of China from 1980 to 2002. After compared with lineal kernel and Sigmoid kernel, a radial basis function(RBF) was adopted as the kernel function. By analyzing the relationship between the error margin of prediction and the model parameters, the proper parameters were chosen. The support vector machines (SVM) model with multi-input and single output was proposed. Compared the predictor based on RBF neural networks with test datasets, the results show that the SVM predictor has higher precision and greater generalization ability. In the end, the coal demand from 2003 to 2006 is accurately forecasted. l0 refs., 2 figs., 4 tabs.

  10. Product Quality Modelling Based on Incremental Support Vector Machine

    International Nuclear Information System (INIS)

    Wang, J; Zhang, W; Qin, B; Shi, W

    2012-01-01

    Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.

  11. Combining extreme learning machines using support vector machines for breast tissue classification.

    Science.gov (United States)

    Daliri, Mohammad Reza

    2015-01-01

    In this paper, we present a new approach for breast tissue classification using the features derived from electrical impedance spectroscopy. This method is composed of a feature extraction method, feature selection phase and a classification step. The feature extraction phase derives the features from the electrical impedance spectra. The extracted features consist of the impedivity at zero frequency (I0), the phase angle at 500 KHz, the high-frequency slope of phase angle, the impedance distance between spectral ends, the area under spectrum, the normalised area, the maximum of the spectrum, the distance between impedivity at I0 and the real part of the maximum frequency point and the length of the spectral curve. The system uses the information theoretic criterion as a strategy for feature selection and the combining extreme learning machines (ELMs) for the classification phase. The results of several ELMs are combined using the support vector machines classifier, and the result of classification is reported as a measure of the performance of the system. The results indicate that the proposed system achieves high accuracy in classification of breast tissues using the electrical impedance spectroscopy.

  12. A support vector machine approach for detection of microcalcifications.

    Science.gov (United States)

    El-Naqa, Issam; Yang, Yongyi; Wernick, Miles N; Galatsanos, Nikolas P; Nishikawa, Robert M

    2002-12-01

    In this paper, we investigate an approach based on support vector machines (SVMs) for detection of microcalcification (MC) clusters in digital mammograms, and propose a successive enhancement learning scheme for improved performance. SVM is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate MC detection as a supervised-learning problem and apply SVM to develop the detection algorithm. We use the SVM to detect at each location in the image whether an MC is present or not. We tested the proposed method using a database of 76 clinical mammograms containing 1120 MCs. We use free-response receiver operating characteristic curves to evaluate detection performance, and compare the proposed algorithm with several existing methods. In our experiments, the proposed SVM framework outperformed all the other methods tested. In particular, a sensitivity as high as 94% was achieved by the SVM method at an error rate of one false-positive cluster per image. The ability of SVM to out perform several well-known methods developed for the widely studied problem of MC detection suggests that SVM is a promising technique for object detection in a medical imaging application.

  13. Support vector machines for nuclear reactor state estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.

  14. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  15. DNS Tunneling Detection Method Based on Multilabel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ahmed Almusawi

    2018-01-01

    Full Text Available DNS tunneling is a method used by malicious users who intend to bypass the firewall to send or receive commands and data. This has a significant impact on revealing or releasing classified information. Several researchers have examined the use of machine learning in terms of detecting DNS tunneling. However, these studies have treated the problem of DNS tunneling as a binary classification where the class label is either legitimate or tunnel. In fact, there are different types of DNS tunneling such as FTP-DNS tunneling, HTTP-DNS tunneling, HTTPS-DNS tunneling, and POP3-DNS tunneling. Therefore, there is a vital demand to not only detect the DNS tunneling but rather classify such tunnel. This study aims to propose a multilabel support vector machine in order to detect and classify the DNS tunneling. The proposed method has been evaluated using a benchmark dataset that contains numerous DNS queries and is compared with a multilabel Bayesian classifier based on the number of corrected classified DNS tunneling instances. Experimental results demonstrate the efficacy of the proposed SVM classification method by obtaining an f-measure of 0.80.

  16. Support vector machines for nuclear reactor state estimation

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Gross, K. C.

    2000-01-01

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm

  17. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    Science.gov (United States)

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  18. A support vector machine approach to detect financial statement fraud in South Africa: A first look

    CSIR Research Space (South Africa)

    Moepya, SO

    2014-04-01

    Full Text Available Auditors face the difficult task of detecting companies that issue manipulated financial statements. In recent years, machine learning methods have provided a feasible solution to this task. This study develops support vector machine (SVM) models...

  19. Learning Algorithms for Audio and Video Processing: Independent Component Analysis and Support Vector Machine Based Approaches

    National Research Council Canada - National Science Library

    Qi, Yuan

    2000-01-01

    In this thesis, we propose two new machine learning schemes, a subband-based Independent Component Analysis scheme and a hybrid Independent Component Analysis/Support Vector Machine scheme, and apply...

  20. Constructing Support Vector Machine Ensembles for Cancer Classification Based on Proteomic Profiling

    Institute of Scientific and Technical Information of China (English)

    Yong Mao; Xiao-Bo Zhou; Dao-Ying Pi; You-Xian Sun

    2005-01-01

    In this study, we present a constructive algorithm for training cooperative support vector machine ensembles (CSVMEs). CSVME combines ensemble architecture design with cooperative training for individual SVMs in ensembles. Unlike most previous studies on training ensembles, CSVME puts emphasis on both accuracy and collaboration among individual SVMs in an ensemble. A group of SVMs selected on the basis of recursive classifier elimination is used in CSVME, and the number of the individual SVMs selected to construct CSVME is determined by 10-fold cross-validation. This kind of SVME has been tested on two ovarian cancer datasets previously obtained by proteomic mass spectrometry. By combining several individual SVMs, the proposed method achieves better performance than the SVME of all base SVMs.

  1. Application of support vector machine for classification of multispectral data

    International Nuclear Information System (INIS)

    Bahari, Nurul Iman Saiful; Ahmad, Asmala; Aboobaider, Burhanuddin Mohd

    2014-01-01

    In this paper, support vector machine (SVM) is used to classify satellite remotely sensed multispectral data. The data are recorded from a Landsat-5 TM satellite with resolution of 30x30m. SVM finds the optimal separating hyperplane between classes by focusing on the training cases. The study area of Klang Valley has more than 10 land covers and classification using SVM has been done successfully without any pixel being unclassified. The training area is determined carefully by visual interpretation and with the aid of the reference map of the study area. The result obtained is then analysed for the accuracy and visual performance. Accuracy assessment is done by determination and discussion of Kappa coefficient value, overall and producer accuracy for each class (in pixels and percentage). While, visual analysis is done by comparing the classification data with the reference map. Overall the study shows that SVM is able to classify the land covers within the study area with a high accuracy

  2. Scorebox extraction from mobile sports videos using Support Vector Machines

    Science.gov (United States)

    Kim, Wonjun; Park, Jimin; Kim, Changick

    2008-08-01

    Scorebox plays an important role in understanding contents of sports videos. However, the tiny scorebox may give the small-display-viewers uncomfortable experience in grasping the game situation. In this paper, we propose a novel framework to extract the scorebox from sports video frames. We first extract candidates by using accumulated intensity and edge information after short learning period. Since there are various types of scoreboxes inserted in sports videos, multiple attributes need to be used for efficient extraction. Based on those attributes, the optimal information gain is computed and top three ranked attributes in terms of information gain are selected as a three-dimensional feature vector for Support Vector Machines (SVM) to distinguish the scorebox from other candidates, such as logos and advertisement boards. The proposed method is tested on various videos of sports games and experimental results show the efficiency and robustness of our proposed method.

  3. Automatic Task Classification via Support Vector Machine and Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Hyungsik Shin

    2018-01-01

    Full Text Available Automatic task classification is a core part of personal assistant systems that are widely used in mobile devices such as smartphones and tablets. Even though many industry leaders are providing their own personal assistant services, their proprietary internals and implementations are not well known to the public. In this work, we show through real implementation and evaluation that automatic task classification can be implemented for mobile devices by using the support vector machine algorithm and crowdsourcing. To train our task classifier, we collected our training data set via crowdsourcing using the Amazon Mechanical Turk platform. Our classifier can classify a short English sentence into one of the thirty-two predefined tasks that are frequently requested while using personal mobile devices. Evaluation results show high prediction accuracy of our classifier ranging from 82% to 99%. By using large amount of crowdsourced data, we also illustrate the relationship between training data size and the prediction accuracy of our task classifier.

  4. BEHAVIOR BASED CREDIT CARD FRAUD DETECTION USING SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    V. Dheepa

    2012-07-01

    Full Text Available Along with the great increase of internet and e-commerce, the use of credit card is an unavoidable one. Due to the increase of credit card usage, the frauds associated with this have also increased. There are a lot of approaches used to detect the frauds. In this paper, behavior based classification approach using Support Vector Machines are employed and efficient feature extraction method also adopted. If any discrepancies occur in the behaviors transaction pattern then it is predicted as suspicious and taken for further consideration to find the frauds. Generally credit card fraud detection problem suffers from a large amount of data, which is rectified by the proposed method. Achieving finest accuracy, high fraud catching rate and low false alarms are the main tasks of this approach.

  5. Support Vector Machines for Hyperspectral Remote Sensing Classification

    Science.gov (United States)

    Gualtieri, J. Anthony; Cromp, R. F.

    1998-01-01

    The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.

  6. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    Science.gov (United States)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  7. Application of Support Vector Machine to Forex Monitoring

    Science.gov (United States)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  8. Automatic Detection of Retinal Exudates using a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Nualsawat HIRANSAKOLWONG

    2013-02-01

    Full Text Available Retinal exudates are among the preliminary signs of diabetic retinopathy, a major cause of vision loss in diabetic patients. Correct and efficient screening of exudates is very expensive in professional time and may cause human error. Nowadays, the digital retinal image is frequently used to follow-up and diagnoses eye diseases. Therefore, the retinal image is crucial and essential for experts to detect exudates. Unfortunately, it is a normal situation that retinal images in Thailand are poor quality images. In this paper, we present a series of experiments on feature selection and exudates classification using the support vector machine classifiers. The retinal images are segmented following key preprocessing steps, i.e., color normalization, contrast enhancement, noise removal and color space selection. On data sets of poor quality images, sensitivity, specificity and accuracy is 94.46%, 89.52% and 92.14%, respectively.

  9. Explaining Support Vector Machines: A Color Based Nomogram.

    Directory of Open Access Journals (Sweden)

    Vanya Van Belle

    Full Text Available Support vector machines (SVMs are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models.In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables.Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant. When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable.This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method.

  10. A Java-based enterprise system architecture for implementing a continuously supported and entirely Web-based exercise solution.

    Science.gov (United States)

    Wang, Zhihui; Kiryu, Tohru

    2006-04-01

    Since machine-based exercise still uses local facilities, it is affected by time and place. We designed a web-based system architecture based on the Java 2 Enterprise Edition that can accomplish continuously supported machine-based exercise. In this system, exercise programs and machines are loosely coupled and dynamically integrated on the site of exercise via the Internet. We then extended the conventional health promotion model, which contains three types of players (users, exercise trainers, and manufacturers), by adding a new player: exercise program creators. Moreover, we developed a self-describing strategy to accommodate a variety of exercise programs and provide ease of use to users on the web. We illustrate our novel design with examples taken from our feasibility study on a web-based cycle ergometer exercise system. A biosignal-based workload control approach was introduced to ensure that users performed appropriate exercise alone.

  11. Support vector machine incremental learning triggered by wrongly predicted samples

    Science.gov (United States)

    Tang, Ting-long; Guan, Qiu; Wu, Yi-rong

    2018-05-01

    According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.

  12. Do Performance-Based Codes Support Universal Design in Architecture?

    DEFF Research Database (Denmark)

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    – Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities...... for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support ‘accessibility zoning’, achieving flexibility because of different levels of accessibility in a building due to its performance. The common...... of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency....

  13. Modular Architecture for Integrated Model-Based Decision Support.

    Science.gov (United States)

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  14. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    Science.gov (United States)

    Khawaja, Taimoor Saleem

    and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.

  15. Fuzzy support vector machine for microarray imbalanced data classification

    Science.gov (United States)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  16. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    Science.gov (United States)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  17. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM to predict tunnel squeezing based on four parameters, that is, diameter (D, buried depth (H, support stiffness (K, and rock tunneling quality index (Q. We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes.

  18. Support Vector Machine Classification of Drunk Driving Behaviour.

    Science.gov (United States)

    Chen, Huiqin; Chen, Lei

    2017-01-23

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R-R intervals (SDNN), the root mean square value of the difference of the adjacent R-R interval series (RMSSD), low frequency (LF), high frequency (HF), the ratio of the low and high frequencies (LF/HF), and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  19. Support Vector Machine Classification of Drunk Driving Behaviour

    Directory of Open Access Journals (Sweden)

    Huiqin Chen

    2017-01-01

    Full Text Available Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R–R intervals (SDNN, the root mean square value of the difference of the adjacent R–R interval series (RMSSD, low frequency (LF, high frequency (HF, the ratio of the low and high frequencies (LF/HF, and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety.

  20. Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression

    International Nuclear Information System (INIS)

    Ye Meiying; Wang Xiaodong

    2005-01-01

    A new class of support vector machine, nu-support vector machine, is discussed which can handle both classification and regression. We focus on nu-support vector machine regression and use it for phase space prediction of chaotic time series. The effectiveness of the method is demonstrated by applying it to the Henon map. This study also compares nu-support vector machine with back propagation (BP) networks in order to better evaluate the performance of the proposed methods. The experimental results show that the nu-support vector machine regression obtains lower root mean squared error than the BP networks and provides an accurate chaotic time series prediction. These results can be attributable to the fact that nu-support vector machine implements the structural risk minimization principle and this leads to better generalization than the BP networks.

  1. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment: (a...

  2. Supporting migration to services using software architecture reconstruction

    OpenAIRE

    O'Brien, Liam; Smith, Dennis; Lewis, Grace

    2005-01-01

    peer-reviewed There are many good reasons why organizations should perform software architecture reconstructions. However, few organizations are willing to pay for the effort. Software architecture reconstruction must be viewed not as an effort on its own but as a contribution in a broader technical context, such as the streamlining of products into a product line or the modernization of systems that hit their architectural borders, that is require major restructuring. In this paper we ...

  3. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  4. Incremental Support Vector Machine Framework for Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuichi Motai

    2007-01-01

    Full Text Available Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.

  5. Incremental support vector machines for fast reliable image recognition

    International Nuclear Information System (INIS)

    Makili, L.; Vega, J.; Dormido-Canto, S.

    2013-01-01

    Highlights: ► A conformal predictor using SVM as the underlying algorithm was implemented. ► It was applied to image recognition in the TJ–II's Thomson Scattering Diagnostic. ► To improve time efficiency an approach to incremental SVM training has been used. ► Accuracy is similar to the one reached when standard SVM is used. ► Computational time saving is significant for large training sets. -- Abstract: This paper addresses the reliable classification of images in a 5-class problem. To this end, an automatic recognition system, based on conformal predictors and using Support Vector Machines (SVM) as the underlying algorithm has been developed and applied to the recognition of images in the Thomson Scattering Diagnostic of the TJ–II fusion device. Using such conformal predictor based classifier is a computationally intensive task since it implies to train several SVM models to classify a single example and to perform this training from scratch takes a significant amount of time. In order to improve the classification time efficiency, an approach to the incremental training of SVM has been used as the underlying algorithm. Experimental results show that the overall performance of the new classifier is high, comparable to the one corresponding to the use of standard SVM as the underlying algorithm and there is a significant improvement in time efficiency

  6. Patients on weaning trials classified with support vector machines

    International Nuclear Information System (INIS)

    Garde, Ainara; Caminal, Pere; Giraldo, Beatriz F; Schroeder, Rico; Voss, Andreas; Benito, Salvador

    2010-01-01

    The process of discontinuing mechanical ventilation is called weaning and is one of the most challenging problems in intensive care. An unnecessary delay in the discontinuation process and an early weaning trial are undesirable. This study aims to characterize the respiratory pattern through features that permit the identification of patients' conditions in weaning trials. Three groups of patients have been considered: 94 patients with successful weaning trials, who could maintain spontaneous breathing after 48 h (GSucc); 39 patients who failed the weaning trial (GFail) and 21 patients who had successful weaning trials, but required reintubation in less than 48 h (GRein). Patients are characterized by their cardiorespiratory interactions, which are described by joint symbolic dynamics (JSD) applied to the cardiac interbeat and breath durations. The most discriminating features in the classification of the different groups of patients (GSucc, GFail and GRein) are identified by support vector machines (SVMs). The SVM-based feature selection algorithm has an accuracy of 81% in classifying GSucc versus the rest of the patients, 83% in classifying GRein versus GSucc patients and 81% in classifying GRein versus the rest of the patients. Moreover, a good balance between sensitivity and specificity is achieved in all classifications

  7. Fault size classification of rotating machinery using support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Lee, D. H.; Park, S. K. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2012-03-15

    Studies on fault diagnosis of rotating machinery have been carried out to obtain a machinery condition in two ways. First is a classical approach based on signal processing and analysis using vibration and acoustic signals. Second is to use artificial intelligence techniques to classify machinery conditions into normal or one of the pre-determined fault conditions. Support Vector Machine (SVM) is well known as intelligent classifier with robust generalization ability. In this study, a two-step approach is proposed to predict fault types and fault sizes of rotating machinery in nuclear power plants using multi-class SVM technique. The model firstly classifies normal and 12 fault types and then identifies their sizes in case of predicting any faults. The time and frequency domain features are extracted from the measured vibration signals and used as input to SVM. A test rig is used to simulate normal and the well-know 12 artificial fault conditions with three to six fault sizes of rotating machinery. The application results to the test data show that the present method can estimate fault types as well as fault sizes with high accuracy for bearing an shaft-related faults and misalignment. Further research, however, is required to identify fault size in case of unbalance, rubbing, looseness, and coupling-related faults.

  8. Targeted Local Support Vector Machine for Age-Dependent Classification.

    Science.gov (United States)

    Chen, Tianle; Wang, Yuanjia; Chen, Huaihou; Marder, Karen; Zeng, Donglin

    2014-09-01

    We develop methods to accurately predict whether pre-symptomatic individuals are at risk of a disease based on their various marker profiles, which offers an opportunity for early intervention well before definitive clinical diagnosis. For many diseases, existing clinical literature may suggest the risk of disease varies with some markers of biological and etiological importance, for example age. To identify effective prediction rules using nonparametric decision functions, standard statistical learning approaches treat markers with clear biological importance (e.g., age) and other markers without prior knowledge on disease etiology interchangeably as input variables. Therefore, these approaches may be inadequate in singling out and preserving the effects from the biologically important variables, especially in the presence of potential noise markers. Using age as an example of a salient marker to receive special care in the analysis, we propose a local smoothing large margin classifier implemented with support vector machine (SVM) to construct effective age-dependent classification rules. The method adaptively adjusts age effect and separately tunes age and other markers to achieve optimal performance. We derive the asymptotic risk bound of the local smoothing SVM, and perform extensive simulation studies to compare with standard approaches. We apply the proposed method to two studies of premanifest Huntington's disease (HD) subjects and controls to construct age-sensitive predictive scores for the risk of HD and risk of receiving HD diagnosis during the study period.

  9. Voice Activity Detection Using Fuzzy Entropy and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Johny Elton

    2016-08-01

    Full Text Available This paper proposes support vector machine (SVM based voice activity detection using FuzzyEn to improve detection performance under noisy conditions. The proposed voice activity detection (VAD uses fuzzy entropy (FuzzyEn as a feature extracted from noise-reduced speech signals to train an SVM model for speech/non-speech classification. The proposed VAD method was tested by conducting various experiments by adding real background noises of different signal-to-noise ratios (SNR ranging from −10 dB to 10 dB to actual speech signals collected from the TIMIT database. The analysis proves that FuzzyEn feature shows better results in discriminating noise and corrupted noisy speech. The efficacy of the SVM classifier was validated using 10-fold cross validation. Furthermore, the results obtained by the proposed method was compared with those of previous standardized VAD algorithms as well as recently developed methods. Performance comparison suggests that the proposed method is proven to be more efficient in detecting speech under various noisy environments with an accuracy of 93.29%, and the FuzzyEn feature detects speech efficiently even at low SNR levels.

  10. A support vector machine (SVM) based voltage stability classifier

    Energy Technology Data Exchange (ETDEWEB)

    Dosano, R.D.; Song, H. [Kunsan National Univ., Kunsan, Jeonbuk (Korea, Republic of); Lee, B. [Korea Univ., Seoul (Korea, Republic of)

    2007-07-01

    Power system stability has become even more complex and critical with the advent of deregulated energy markets and the growing desire to completely employ existing transmission and infrastructure. The economic pressure on electricity markets forces the operation of power systems and components to their limit of capacity and performance. System conditions can be more exposed to instability due to greater uncertainty in day to day system operations and increase in the number of potential components for system disturbances potentially resulting in voltage stability. This paper proposed a support vector machine (SVM) based power system voltage stability classifier using local measurements of voltage and active power of load. It described the procedure for fast classification of long-term voltage stability using the SVM algorithm. The application of the SVM based voltage stability classifier was presented with reference to the choice of input parameters; input data preconditioning; moving window for feature vector; determination of learning samples; and other considerations in SVM applications. The paper presented a case study with numerical examples of an 11-bus test system. The test results for the feasibility study demonstrated that the classifier could offer an excellent performance in classification with time-series measurements in terms of long-term voltage stability. 9 refs., 14 figs.

  11. Nonlinear structural damage detection using support vector machines

    Science.gov (United States)

    Xiao, Li; Qu, Wenzhong

    2012-04-01

    An actual structure including connections and interfaces may exist nonlinear. Because of many complicated problems about nonlinear structural health monitoring (SHM), relatively little progress have been made in this aspect. Statistical pattern recognition techniques have been demonstrated to be competitive with other methods when applied to real engineering datasets. When a structure existing 'breathing' cracks that open and close under operational loading may cause a linear structural system to respond to its operational and environmental loads in a nonlinear manner nonlinear. In this paper, a vibration-based structural health monitoring when the structure exists cracks is investigated with autoregressive support vector machine (AR-SVM). Vibration experiments are carried out with a model frame. Time-series data in different cases such as: initial linear structure; linear structure with mass changed; nonlinear structure; nonlinear structure with mass changed are acquired.AR model of acceleration time-series is established, and different kernel function types and corresponding parameters are chosen and compared, which can more accurate, more effectively locate the damage. Different cases damaged states and different damage positions have been recognized successfully. AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.

  12. A Semisupervised Support Vector Machines Algorithm for BCI Systems

    Science.gov (United States)

    Qin, Jianzhao; Li, Yuanqing; Sun, Wei

    2007-01-01

    As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm. PMID:18368141

  13. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  14. Automatic inspection of textured surfaces by support vector machines

    Science.gov (United States)

    Jahanbin, Sina; Bovik, Alan C.; Pérez, Eduardo; Nair, Dinesh

    2009-08-01

    Automatic inspection of manufactured products with natural looking textures is a challenging task. Products such as tiles, textile, leather, and lumber project image textures that cannot be modeled as periodic or otherwise regular; therefore, a stochastic modeling of local intensity distribution is required. An inspection system to replace human inspectors should be flexible in detecting flaws such as scratches, cracks, and stains occurring in various shapes and sizes that have never been seen before. A computer vision algorithm is proposed in this paper that extracts local statistical features from grey-level texture images decomposed with wavelet frames into subbands of various orientations and scales. The local features extracted are second order statistics derived from grey-level co-occurrence matrices. Subsequently, a support vector machine (SVM) classifier is trained to learn a general description of normal texture from defect-free samples. This algorithm is implemented in LabVIEW and is capable of processing natural texture images in real-time.

  15. Using support vector machines in the multivariate state estimation technique

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Gross, K.C.

    1999-01-01

    One approach to validate nuclear power plant (NPP) signals makes use of pattern recognition techniques. This approach often assumes that there is a set of signal prototypes that are continuously compared with the actual sensor signals. These signal prototypes are often computed based on empirical models with little or no knowledge about physical processes. A common problem of all data-based models is their limited ability to make predictions on the basis of available training data. Another problem is related to suboptimal training algorithms. Both of these potential shortcomings with conventional approaches to signal validation and sensor operability validation are successfully resolved by adopting a recently proposed learning paradigm called the support vector machine (SVM). The work presented here is a novel application of SVM for data-based modeling of system state variables in an NPP, integrated with a nonlinear, nonparametric technique called the multivariate state estimation technique (MSET), an algorithm developed at Argonne National Laboratory for a wide range of nuclear plant applications

  16. Fault size classification of rotating machinery using support vector machine

    International Nuclear Information System (INIS)

    Kim, Y. S.; Lee, D. H.; Park, S. K.

    2012-01-01

    Studies on fault diagnosis of rotating machinery have been carried out to obtain a machinery condition in two ways. First is a classical approach based on signal processing and analysis using vibration and acoustic signals. Second is to use artificial intelligence techniques to classify machinery conditions into normal or one of the pre-determined fault conditions. Support Vector Machine (SVM) is well known as intelligent classifier with robust generalization ability. In this study, a two-step approach is proposed to predict fault types and fault sizes of rotating machinery in nuclear power plants using multi-class SVM technique. The model firstly classifies normal and 12 fault types and then identifies their sizes in case of predicting any faults. The time and frequency domain features are extracted from the measured vibration signals and used as input to SVM. A test rig is used to simulate normal and the well-know 12 artificial fault conditions with three to six fault sizes of rotating machinery. The application results to the test data show that the present method can estimate fault types as well as fault sizes with high accuracy for bearing an shaft-related faults and misalignment. Further research, however, is required to identify fault size in case of unbalance, rubbing, looseness, and coupling-related faults

  17. Classification of masses on mammograms using support vector machine

    Science.gov (United States)

    Chu, Yong; Li, Lihua; Goldgof, Dmitry B.; Qui, Yan; Clark, Robert A.

    2003-05-01

    Mammography is the most effective method for early detection of breast cancer. However, the positive predictive value for classification of malignant and benign lesion from mammographic images is not very high. Clinical studies have shown that most biopsies for cancer are very low, between 15% and 30%. It is important to increase the diagnostic accuracy by improving the positive predictive value to reduce the number of unnecessary biopsies. In this paper, a new classification method was proposed to distinguish malignant from benign masses in mammography by Support Vector Machine (SVM) method. Thirteen features were selected based on receiver operating characteristic (ROC) analysis of classification using individual feature. These features include four shape features, two gradient features and seven Laws features. With these features, SVM was used to classify the masses into two categories, benign and malignant, in which a Gaussian kernel and sequential minimal optimization learning technique are performed. The data set used in this study consists of 193 cases, in which there are 96 benign cases and 97 malignant cases. The leave-one-out evaluation of SVM classifier was taken. The results show that the positive predict value of the presented method is 81.6% with the sensitivity of 83.7% and the false-positive rate of 30.2%. It demonstrated that the SVM-based classifier is effective in mass classification.

  18. Incremental support vector machines for fast reliable image recognition

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L., E-mail: makili_le@yahoo.com [Instituto Superior Politécnico da Universidade Katyavala Bwila, Benguela (Angola); Vega, J. [Asociación EURATOM/CIEMAT para Fusión, Madrid (Spain); Dormido-Canto, S. [Dpto. Informática y Automática – UNED, Madrid (Spain)

    2013-10-15

    Highlights: ► A conformal predictor using SVM as the underlying algorithm was implemented. ► It was applied to image recognition in the TJ–II's Thomson Scattering Diagnostic. ► To improve time efficiency an approach to incremental SVM training has been used. ► Accuracy is similar to the one reached when standard SVM is used. ► Computational time saving is significant for large training sets. -- Abstract: This paper addresses the reliable classification of images in a 5-class problem. To this end, an automatic recognition system, based on conformal predictors and using Support Vector Machines (SVM) as the underlying algorithm has been developed and applied to the recognition of images in the Thomson Scattering Diagnostic of the TJ–II fusion device. Using such conformal predictor based classifier is a computationally intensive task since it implies to train several SVM models to classify a single example and to perform this training from scratch takes a significant amount of time. In order to improve the classification time efficiency, an approach to the incremental training of SVM has been used as the underlying algorithm. Experimental results show that the overall performance of the new classifier is high, comparable to the one corresponding to the use of standard SVM as the underlying algorithm and there is a significant improvement in time efficiency.

  19. Exploiting Support Vector Machine Algorithm to Break the Secret Key

    Directory of Open Access Journals (Sweden)

    S. Hou

    2018-04-01

    Full Text Available Template attacks (TA and support vector machine (SVM are two effective methods in side channel attacks (SCAs. Almost all studies on SVM in SCAs assume the required power traces are sufficient, which also implies the number of profiling traces belonging to each class is equivalent. Indeed, in the real attack scenario, there may not be enough power traces due to various restrictions. More specifically, the Hamming Weight of the S-Box output results in 9 binomial distributed classes, which significantly reduces the performance of SVM compared with the uniformly distributed classes. In this paper, the impact of the distribution of profiling traces on the performance of SVM is first explored in detail. And also, we conduct Synthetic Minority Oversampling TEchnique (SMOTE to solve the problem caused by the binomial distributed classes. By using SMOTE, the success rate of SVM is improved in the testing phase, and SVM requires fewer power traces to recover the key. Besides, TA is selected as a comparison. In contrast to what is perceived as common knowledge in unrestricted scenarios, our results indicate that SVM with proper parameters can significantly outperform TA.

  20. Revisit of Machine Learning Supported Biological and Biomedical Studies.

    Science.gov (United States)

    Yu, Xiang-Tian; Wang, Lu; Zeng, Tao

    2018-01-01

    Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

  1. ADILE: Architecture of a database-supported learning environment

    NARCIS (Netherlands)

    Hiddink, G.W.

    2001-01-01

    This article proposes an architecture for distributed learning environments that use databases to store learning material. As the layout of learning material can inhibit reuse, the ar-chitecture implements the notion of "separation of layout and structure" using XML technology. Also, the

  2. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    Science.gov (United States)

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  3. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    ... machine (SVM) and its application in microarray experiment of Kashin-Beck disease. ... speed and amount of the corresponding mRNA in gene replication process. ... and revealed that some motifs may be related to the immune reactions.

  4. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  5. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  6. Profiled support vector machines for antisense oligonucleotide efficacy prediction

    Directory of Open Access Journals (Sweden)

    Martín-Guerrero José D

    2004-09-01

    Full Text Available Abstract Background This paper presents the use of Support Vector Machines (SVMs for prediction and analysis of antisense oligonucleotide (AO efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and the well-known problem of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1 feature selection using correlation analysis, mutual information, and SVM-based recursive feature elimination (SVM-RFE, and (2 AO prediction using standard and profiled SVM formulations. A profiled SVM gives different weights to different parts of the training data to focus the training on the most important regions. Results In the first stage, the SVM-RFE technique was most efficient and robust in the presence of low number of samples and high input space dimension. This method yielded an optimal subset of 14 representative features, which were all related to energy and sequence motifs. The second stage evaluated the performance of the predictors (overall correlation coefficient between observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE using 8-fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r = 0.44, ME = 0.022, and RMSE= 0.278 and predicted high (>75% inhibition of gene expression and low efficacy (http://aosvm.cgb.ki.se/. Conclusions The SVM approach is well suited to the AO prediction problem, and yields a prediction accuracy superior to previous methods. The profiled SVM was found to perform better than the standard SVM, suggesting that it could lead to improvements in other prediction problems as well.

  7. A Wavelet Kernel-Based Primal Twin Support Vector Machine for Economic Development Prediction

    Directory of Open Access Journals (Sweden)

    Fang Su

    2013-01-01

    Full Text Available Economic development forecasting allows planners to choose the right strategies for the future. This study is to propose economic development prediction method based on the wavelet kernel-based primal twin support vector machine algorithm. As gross domestic product (GDP is an important indicator to measure economic development, economic development prediction means GDP prediction in this study. The wavelet kernel-based primal twin support vector machine algorithm can solve two smaller sized quadratic programming problems instead of solving a large one as in the traditional support vector machine algorithm. Economic development data of Anhui province from 1992 to 2009 are used to study the prediction performance of the wavelet kernel-based primal twin support vector machine algorithm. The comparison of mean error of economic development prediction between wavelet kernel-based primal twin support vector machine and traditional support vector machine models trained by the training samples with the 3–5 dimensional input vectors, respectively, is given in this paper. The testing results show that the economic development prediction accuracy of the wavelet kernel-based primal twin support vector machine model is better than that of traditional support vector machine.

  8. Support Vector Machines for decision support in electricity markets׳ strategic bidding

    DEFF Research Database (Denmark)

    Pinto, Tiago; Sousa, Tiago M.; Praça, Isabel

    2015-01-01

    . The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated...... by being included in ALBidS and then compared with the application of an Artificial Neural Network (ANN), originating promising results: an effective electricity market price forecast in a fast execution time. The proposed approach is tested and validated using real electricity markets data from MIBEL......׳ research group has developed a multi-agent system: Multi-Agent System for Competitive Electricity Markets (MASCEM), which simulates the electricity markets environment. MASCEM is integrated with Adaptive Learning Strategic Bidding System (ALBidS) that works as a decision support system for market players...

  9. An Enterprise Security Program and Architecture to Support Business Drivers

    OpenAIRE

    Brian Ritchot

    2013-01-01

    This article presents a business-focused approach to developing and delivering enterprise security architecture that is focused on enabling business objectives while providing a sensible and balanced approach to risk management. A balanced approach to enterprise security architecture can create the important linkages between the goals and objectives of a business, and it provides appropriate measures to protect the most critical assets within an organization while accepting risk where appropr...

  10. A Proposed Clinical Decision Support Architecture Capable of Supporting Whole Genome Sequence Information

    Directory of Open Access Journals (Sweden)

    Brandon M. Welch

    2014-04-01

    Full Text Available Whole genome sequence (WGS information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR. A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1 each component of the architecture; (2 the interaction of the components; and (3 how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  11. A proposed clinical decision support architecture capable of supporting whole genome sequence information.

    Science.gov (United States)

    Welch, Brandon M; Loya, Salvador Rodriguez; Eilbeck, Karen; Kawamoto, Kensaku

    2014-04-04

    Whole genome sequence (WGS) information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS) offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR). A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1) each component of the architecture; (2) the interaction of the components; and (3) how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  12. Predicting the academic success of architecture students by pre-enrolment requirement: using machine-learning techniques

    Directory of Open Access Journals (Sweden)

    Ralph Olusola Aluko

    2016-12-01

    Full Text Available In recent years, there has been an increase in the number of applicants seeking admission into architecture programmes. As expected, prior academic performance (also referred to as pre-enrolment requirement is a major factor considered during the process of selecting applicants. In the present study, machine learning models were used to predict academic success of architecture students based on information provided in prior academic performance. Two modeling techniques, namely K-nearest neighbour (k-NN and linear discriminant analysis were applied in the study. It was found that K-nearest neighbour (k-NN outperforms the linear discriminant analysis model in terms of accuracy. In addition, grades obtained in mathematics (at ordinary level examinations had a significant impact on the academic success of undergraduate architecture students. This paper makes a modest contribution to the ongoing discussion on the relationship between prior academic performance and academic success of undergraduate students by evaluating this proposition. One of the issues that emerges from these findings is that prior academic performance can be used as a predictor of academic success in undergraduate architecture programmes. Overall, the developed k-NN model can serve as a valuable tool during the process of selecting new intakes into undergraduate architecture programmes in Nigeria.

  13. Architecture

    OpenAIRE

    Clear, Nic

    2014-01-01

    When discussing science fiction’s relationship with architecture, the usual practice is to look at the architecture “in” science fiction—in particular, the architecture in SF films (see Kuhn 75-143) since the spaces of literary SF present obvious difficulties as they have to be imagined. In this essay, that relationship will be reversed: I will instead discuss science fiction “in” architecture, mapping out a number of architectural movements and projects that can be viewed explicitly as scien...

  14. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department.

    Science.gov (United States)

    Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B

    2013-01-01

    The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.

  15. Support vector machines for TEC seismo-ionospheric anomalies detection

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2013-02-01

    Full Text Available Using time series prediction methods, it is possible to pursue the behaviors of earthquake precursors in the future and to announce early warnings when the differences between the predicted value and the observed value exceed the predefined threshold value. Support Vector Machines (SVMs are widely used due to their many advantages for classification and regression tasks. This study is concerned with investigating the Total Electron Content (TEC time series by using a SVM to detect seismo-ionospheric anomalous variations induced by the three powerful earthquakes of Tohoku (11 March 2011, Haiti (12 January 2010 and Samoa (29 September 2009. The duration of TEC time series dataset is 49, 46 and 71 days, for Tohoku, Haiti and Samoa earthquakes, respectively, with each at time resolution of 2 h. In the case of Tohoku earthquake, the results show that the difference between the predicted value obtained from the SVM method and the observed value reaches the maximum value (i.e., 129.31 TECU at earthquake time in a period of high geomagnetic activities. The SVM method detected a considerable number of anomalous occurrences 1 and 2 days prior to the Haiti earthquake and also 1 and 5 days before the Samoa earthquake in a period of low geomagnetic activities. In order to show that the method is acting sensibly with regard to the results extracted during nonevent and event TEC data, i.e., to perform some null-hypothesis tests in which the methods would also be calibrated, the same period of data from the previous year of the Samoa earthquake date has been taken into the account. Further to this, in this study, the detected TEC anomalies using the SVM method were compared to the previous results (Akhoondzadeh and Saradjian, 2011; Akhoondzadeh, 2012 obtained from the mean, median, wavelet and Kalman filter methods. The SVM detected anomalies are similar to those detected using the previous methods. It can be concluded that SVM can be a suitable learning method

  16. An Enterprise Security Program and Architecture to Support Business Drivers

    Directory of Open Access Journals (Sweden)

    Brian Ritchot

    2013-08-01

    Full Text Available This article presents a business-focused approach to developing and delivering enterprise security architecture that is focused on enabling business objectives while providing a sensible and balanced approach to risk management. A balanced approach to enterprise security architecture can create the important linkages between the goals and objectives of a business, and it provides appropriate measures to protect the most critical assets within an organization while accepting risk where appropriate. Through a discussion of information assurance, this article makes a case for leveraging enterprise security architectures to meet an organizations' need for information assurance. The approach is derived from the Sherwood Applied Business Security Architecture (SABSA methodology, as put into practice by Seccuris Inc., an information assurance integrator. An understanding of Seccuris’ approach will illustrate the importance of aligning security activities with high-level business objectives while creating increased awareness of the duality of risk. This business-driven approach to enterprise security architecture can help organizations change the perception of IT security, positioning it as a tool to enable and assure business success, rather than be perceived as an obstacle to be avoided.

  17. Adapting Virtual Machine Techniques for Seamless Aspect Support

    NARCIS (Netherlands)

    Bockisch, Christoph; Arnold, Matthew; Dinkelaker, Tom; Mezini, Mira

    2006-01-01

    Current approaches to compiling aspect-oriented programs are inefficient. This inefficiency has negative effects on the productivity of the development process and is especially prohibitive for dynamic aspect deployment. In this work, we present how well-known virtual machine techniques can be used

  18. Towards a Tool for Computer Supported Configuring of Machine Systems

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp

    1996-01-01

    An engineering designer designing a product determines not only the product's component structure, but also a set of different structures which carry product behaviour and performance and make the product suited for its life phases. Whereas the nature of the elements of a machine system is fairly...

  19. Adaptive Training and Collective Decision Support Based on Man-Machine Interface

    Science.gov (United States)

    2016-03-02

    Based on Man -machine Interface The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 adaptive training, EEG, man -machine interface...non peer-reviewed journals: Final Report: Adaptive Training and Collective Decision Support Based on Man -machine Interface Report Title The existence of

  20. Advances in architectural concepts to support distributed systems design

    NARCIS (Netherlands)

    Ferreira Pires, Luis; Vissers, C.A.; van Sinderen, Marten J.

    1993-01-01

    This paper presents and discusses some architectural concepts for distributed systems design. These concepts are derived from an analysis of limitations of some currently available standard design languages. We conclude that language design should be based upon the careful consideration of

  1. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.

    Science.gov (United States)

    Mutasa, Simukayi; Chang, Peter D; Ruzal-Shapiro, Carrie; Ayyala, Rama

    2018-02-05

    -hand radiographs done for bone age assessment, trauma evaluation without significant findings, and skeletal surveys. A 14 hidden layer-customized neural network was designed for this study. The network included several state of the art techniques including residual-style connections, inception layers, and spatial transformer layers. Data augmentation was applied to the network inputs to prevent overfitting. A linear regression output was utilized. Mean square error was used as the network loss function and mean absolute error (MAE) was utilized as the primary performance metric. MAE accuracies on the validation and test sets for young females were 0.654 and 0.561 respectively. For older females, validation and test accuracies were 0.662 and 0.497 respectively. For young males, validation and test accuracies were 0.649 and 0.585 respectively. Finally, for older males, validation and test set accuracies were 0.581 and 0.501 respectively. The female cohorts were trained for 900 epochs each and the male cohorts were trained for 600 epochs. An eightfold cross-validation set was employed for hyperparameter tuning. Test error was obtained after training on a full data set with the selected hyperparameters. Using our proposed customized neural network architecture on our large available data, we achieved an aggregate validation and test set mean absolute errors of 0.637 and 0.536 respectively. To date, this is the best published performance on utilizing deep learning for bone age assessment. Our results support our initial hypothesis that customized, purpose-built neural networks provide improved performance over networks derived from pre-trained imaging data sets. We build on that initial work by showing that the addition of state-of-the-art techniques such as residual connections and inception architecture further improves prediction accuracy. This is important because the current assumption for use of residual and/or inception architectures is that a large pre-trained network is

  2. Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery

    NARCIS (Netherlands)

    Misra, Ankita; Vojinovic, Zoran; Ramakrishnan, Balaji; Luijendijk, Arjen; Ranasinghe, Roshanka

    2018-01-01

    Satellite imagery along with image processing techniques prove to be efficient tools for bathymetry retrieval as they provide time and cost-effective alternatives to traditional methods of water depth estimation. In this article, a nonlinear machine learning technique of Support Vector Machine (SVM)

  3. Rule Extraction from Support Vector Machines: A Geometric Approach

    OpenAIRE

    Ren, L.

    2008-01-01

    Despite the success of connectionist systems in prediction and classi¯cation problems, critics argue that the lack of symbol processing and explanation capability makes them less competitive than symbolic systems. Rule extraction from neural networks makes the interpretation of the behaviour of connectionist networks possible by relating sub-symbolic and symbolic process- ing. However, most rule extraction methods focus only on speci¯c neural network architectures and present limited generali...

  4. Software and Human-Machine Interface Development for Environmental Controls Subsystem Support

    Science.gov (United States)

    Dobson, Matthew

    2018-01-01

    The Space Launch System (SLS) is the next premier launch vehicle for NASA. It is the next stage of manned space exploration from American soil, and will be the platform in which we push further beyond Earth orbit. In preparation of the SLS maiden voyage on Exploration Mission 1 (EM-1), the existing ground support architecture at Kennedy Space Center required significant overhaul and updating. A comprehensive upgrade of controls systems was necessary, including programmable logic controller software, as well as Launch Control Center (LCC) firing room and local launch pad displays for technician use. Environmental control acts as an integral component in these systems, being the foremost system for conditioning the pad and extremely sensitive launch vehicle until T-0. The Environmental Controls Subsystem (ECS) required testing and modification to meet the requirements of the designed system, as well as the human factors requirements of NASA software for Validation and Verification (V&V). This term saw significant strides in the progress and functionality of the human-machine interfaces used at the launch pad, and improved integration with the controller code.

  5. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  6. Capturing Business Strategy and Value in Enterprise Architecture to Support Portfolio Valuation

    NARCIS (Netherlands)

    Iacob, Maria Eugenia; Quartel, Dick; Jonkers, H.

    2012-01-01

    This paper investigates and enhances the suitability of the Archi Mate enterprise architecture modeling language to support the modeling of business strategy concepts and architecture-based approaches to IT portfolio valuation. It gives an overview of existing strategy and valuation concepts and

  7. The Flask Security Architecture: System Support for Diverse Security Policies

    Science.gov (United States)

    2006-01-01

    Flask microkernel -based operating sys­ tem, that successfully overcomes these obstacles to pol- icy flexibility. The cleaner separation of mechanism and...other object managers in the system to en- force those access control decisions. Although the pro­ totype system is microkernel -based, the security...mecha­ nisms do not depend on a microkernel architecture and will easily generalize beyond it. The resulting system provides policy flexibility. It sup

  8. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    Science.gov (United States)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  9. Design of a real-time open architecture controller for a reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-11-01

    Full Text Available The paper presents the design and the development of a real-time, open architecture controller that is used for control of reconfigurable manufacturing tools (RMTs) in reconfigurable manufacturing systems (RMS). The controller that is presented can...

  10. A PACS archive architecture supported on cloud services.

    Science.gov (United States)

    Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis

    2012-05-01

    Diagnostic imaging procedures have continuously increased over the last decade and this trend may continue in coming years, creating a great impact on storage and retrieval capabilities of current PACS. Moreover, many smaller centers do not have financial resources or requirements that justify the acquisition of a traditional infrastructure. Alternative solutions, such as cloud computing, may help address this emerging need. A tremendous amount of ubiquitous computational power, such as that provided by Google and Amazon, are used every day as a normal commodity. Taking advantage of this new paradigm, an architecture for a Cloud-based PACS archive that provides data privacy, integrity, and availability is proposed. The solution is independent from the cloud provider and the core modules were successfully instantiated in examples of two cloud computing providers. Operational metrics for several medical imaging modalities were tabulated and compared for Google Storage, Amazon S3, and LAN PACS. A PACS-as-a-Service archive that provides storage of medical studies using the Cloud was developed. The results show that the solution is robust and that it is possible to store, query, and retrieve all desired studies in a similar way as in a local PACS approach. Cloud computing is an emerging solution that promises high scalability of infrastructures, software, and applications, according to a "pay-as-you-go" business model. The presented architecture uses the cloud to setup medical data repositories and can have a significant impact on healthcare institutions by reducing IT infrastructures.

  11. Balance in machine architecture: Bandwidth on board and offboard, integer/control speed and flops versus memory

    International Nuclear Information System (INIS)

    Fischler, M.

    1992-04-01

    The issues to be addressed here are those of ''balance'' in machine architecture. By this, we mean how much emphasis must be placed on various aspects of the system to maximize its usefulness for physics. There are three components that contribute to the utility of a system: How the machine can be used, how big a problem can be attacked, and what the effective capabilities (power) of the hardware are like. The effective power issue is a matter of evaluating the impact of design decisions trading off architectural features such as memory bandwidth and interprocessor communication capabilities. What is studied is the effect these machine parameters have on how quickly the system can solve desired problems. There is a reasonable method for studying this: One selects a few representative algorithms and computes the impact of changing memory bandwidths, and so forth. The only room for controversy here is in the selection of representative problems. The issue of how big a problem can be attacked boils down to a balance of memory size versus power. Although this is a balance issue it is very different than the effective power situation, because no firm answer can be given at this time. The power to memory ratio is highly problem dependent, and optimizing it requires several pieces of physics input, including: how big a lattice is needed for interesting results; what sort of algorithms are best to use; and how many sweeps are needed to get valid results. We seem to be at the threshold of learning things about these issues, but for now, the memory size issue will necessarily be addressed in terms of best guesses, rules of thumb, and researchers' opinions

  12. REDUCING THE LOAD OF THE ELASTIC SUPPORT OF THE RESONANCE VIBRATING CONVEYOR MACHINES

    Directory of Open Access Journals (Sweden)

    A. I. Afanas'ev

    2018-03-01

    Full Text Available The relevance of the work is conditioned by the necessity of improving the efficiency of vibrator machines. This is done by means of increasing the reliability of the elastic reference elements. The purpose of the work is to develop a dynamic resonance system of the vibrator machine with a reduced mass of the working body and loads on elastic supports. The resonance vibrator machines appeared in the USSR in the mid-twentieth century. They were used in the coal industry. The machines of foreign production and some of the domestic machines are now produced according to the balanced scheme. Domestic machines of the "PEV" series are made according to the vibro-isolated scheme, and the vibro-exciter is rigidly connected to the box. The resonant oscillation frequency of these machines is 50 Hz, and the maximum acceleration is significantly greater than the one of free fall. These resonant machines operate with the amplitude up to 2.2 mm and they have a ratio mode greater than unity. The practice of running these machines shows their relatively low efficiency when screening thin products. The common disadvantage of unbalanced resonance vibrator machines is a relatively large loading of elastic elements (supports and the presence of a massive frame. The disadvantage of the balanced ones is the reactive mass or several working bodies with the same mass. One of the ways to achieve the goal is to define a rational dynamic scheme of the resonance vibrator machines. The results and their application. The authors proposed to transform a traditional one-mass oscillatory system into a system equivalent to a dynamic vibration dampener. This system can significantly reduce the weight of the machine. It can reduce the rigidity and loading of the elastic supports at a given frequency of oscillations. The upper mass can be reduced by 2 or 3 times, and the lower mass can be several times smaller than the upper one. At the same time, the dynamic loads on the supports

  13. Computer Security Primer: Systems Architecture, Special Ontology and Cloud Virtual Machines

    Science.gov (United States)

    Waguespack, Leslie J.

    2014-01-01

    With the increasing proliferation of multitasking and Internet-connected devices, security has reemerged as a fundamental design concern in information systems. The shift of IS curricula toward a largely organizational perspective of security leaves little room for focus on its foundation in systems architecture, the computational underpinnings of…

  14. A Modified Method Combined with a Support Vector Machine and Bayesian Algorithms in Biological Information

    Directory of Open Access Journals (Sweden)

    Wen-Gang Zhou

    2015-06-01

    Full Text Available With the deep research of genomics and proteomics, the number of new protein sequences has expanded rapidly. With the obvious shortcomings of high cost and low efficiency of the traditional experimental method, the calculation method for protein localization prediction has attracted a lot of attention due to its convenience and low cost. In the machine learning techniques, neural network and support vector machine (SVM are often used as learning tools. Due to its complete theoretical framework, SVM has been widely applied. In this paper, we make an improvement on the existing machine learning algorithm of the support vector machine algorithm, and a new improved algorithm has been developed, combined with Bayesian algorithms. The proposed algorithm can improve calculation efficiency, and defects of the original algorithm are eliminated. According to the verification, the method has proved to be valid. At the same time, it can reduce calculation time and improve prediction efficiency.

  15. Performance and optimization of support vector machines in high-energy physics classification problems

    International Nuclear Information System (INIS)

    Sahin, M.Ö.; Krücker, D.; Melzer-Pellmann, I.-A.

    2016-01-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications.

  16. Performance and optimization of support vector machines in high-energy physics classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, M.Ö., E-mail: ozgur.sahin@desy.de; Krücker, D., E-mail: dirk.kruecker@desy.de; Melzer-Pellmann, I.-A., E-mail: isabell.melzer@desy.de

    2016-12-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications.

  17. Knowledge-based support for design and operational use of human-machine interfaces

    International Nuclear Information System (INIS)

    Johannsen, G.

    1994-01-01

    The possibilities for knowledge support of different human user classes, namely operators, operational engineers and designers of human-machine interfaces, are discussed. Several human-machine interface functionalities are briefly explained. The paper deals with such questions as which type of knowledge is needed for design and operation, how to represent it, where to get it from, how to process it, and how to consider and use it. The relationships between design and operational use are thereby emphasised. (author)

  18. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  19. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification

    Directory of Open Access Journals (Sweden)

    Wang Lily

    2008-07-01

    Full Text Available Abstract Background Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate classification algorithms available for microarray gene expression data is a critical ingredient in order to develop the best possible molecular signatures for patient care. As suggested by a large body of literature to date, support vector machines can be considered "best of class" algorithms for classification of such data. Recent work, however, suggests that random forest classifiers may outperform support vector machines in this domain. Results In the present paper we identify methodological biases of prior work comparing random forests and support vector machines and conduct a new rigorous evaluation of the two algorithms that corrects these limitations. Our experiments use 22 diagnostic and prognostic datasets and show that support vector machines outperform random forests, often by a large margin. Our data also underlines the importance of sound research design in benchmarking and comparison of bioinformatics algorithms. Conclusion We found that both on average and in the majority of microarray datasets, random forests are outperformed by support vector machines both in the settings when no gene selection is performed and when several popular gene selection methods are used.

  20. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography

    DEFF Research Database (Denmark)

    Chang, Yi Wei; Kjær, Andreas; Ortega, Davi R.

    2017-01-01

    ,2. T4aP are more widespread and are involved in cell motility 3, DNA transfer 4, host predation 5 and electron transfer 6. T4bP are less prevalent and are mainly found in enteropathogenic bacteria, where they play key roles in host colonization 7. Following similar work on T4aP machines 8,9, here we...... sequence homology to components of the previously analysed Myxococcus xanthus T4aP machine (T4aPM), we find that their structures are nevertheless remarkably similar. Based on homologies with components of the M. xanthus T4aPM and additional reconstructions of TCPM mutants in which the non...

  1. Consumer support for healthy food and drink vending machines in public places.

    Science.gov (United States)

    Carrad, Amy M; Louie, Jimmy Chun-Yu; Milosavljevic, Marianna; Kelly, Bridget; Flood, Victoria M

    2015-08-01

    To investigate the feasibility of introducing vending machines for healthier food into public places, and to examine the effectiveness of two front-of-pack labelling systems in the vending machine context. A survey was conducted with 120 students from a university and 120 employees, patients and visitors of a hospital in regional NSW, Australia. Questions explored vending machine use, attitudes towards healthier snack products and price, and the performance of front-of-pack labelling formats for vending machine products. Most participants viewed the current range of snacks and drinks as "too unhealthy" (snacks 87.5%; drinks 56.7%). Nuts and muesli bars were the most liked healthier vending machine snack. Higher proportions of participants were able to identify the healthier snack in three of the five product comparisons when products were accompanied with any type of front-of-pack label (all pvending machines. Front-of-pack label formats on vending machines may assist consumers to identify healthier products. Public settings, such as universities and hospitals, should support consumers to make healthy dietary choices by improving food environments. © 2015 Public Health Association of Australia.

  2. Physical activity support community togetheractive - architecture, implementation and evaluation

    NARCIS (Netherlands)

    Elloumi, Lamia; van Beijnum, Bernhard J.F.; Hermens, Hermanus J.

    Reducing sedentary lifestyle and physical inactivity is getting an increased attention of researchers and health organizations due to its significant benefits on health. In the same direction we are proposing a virtual community system, TogetherActive, which supports people in their daily physical

  3. Ultrasonic fluid quantity measurement in dynamic vehicular applications a support vector machine approach

    CERN Document Server

    Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad

    2013-01-01

    Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...

  4. LINEAR KERNEL SUPPORT VECTOR MACHINES FOR MODELING PORE-WATER PRESSURE RESPONSES

    Directory of Open Access Journals (Sweden)

    KHAMARUZAMAN W. YUSOF

    2017-08-01

    Full Text Available Pore-water pressure responses are vital in many aspects of slope management, design and monitoring. Its measurement however, is difficult, expensive and time consuming. Studies on its predictions are lacking. Support vector machines with linear kernel was used here to predict the responses of pore-water pressure to rainfall. Pore-water pressure response data was collected from slope instrumentation program. Support vector machine meta-parameter calibration and model development was carried out using grid search and k-fold cross validation. The mean square error for the model on scaled test data is 0.0015 and the coefficient of determination is 0.9321. Although pore-water pressure response to rainfall is a complex nonlinear process, the use of linear kernel support vector machine can be employed where high accuracy can be sacrificed for computational ease and time.

  5. Lithium-ion battery remaining useful life prediction based on grey support vector machines

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    2015-12-01

    Full Text Available In this article, an improved grey prediction model is proposed to address low-accuracy prediction issue of grey forecasting model. The first step is using a trigonometric function to transform the original data sequence to smooth the data, which is called smoothness of grey prediction model, and then a grey support vector machine model by integrating the improved grey model with support vector machine is introduced. At the initial stage of the model, trigonometric functions and accumulation generation operation can be used to preprocess the data, which enhances the smoothness of the data and reduces the associated randomness. In addition, support vector machine is implemented to establish a prediction model for the pre-processed data and select the optimal model parameters via genetic algorithms. Finally, the data are restored through the ‘regressive generate’ operation to obtain the forecasting data. To prove that the grey support vector machine model is superior to the other models, the battery life data from the Center for Advanced Life Cycle Engineering are selected, and the presented model is used to predict the remaining useful life of the battery. The predicted result is compared to that of grey model and support vector machines. For a more intuitive comparison of the three models, this article quantifies the root mean square errors for these three different models in the case of different ratio of training samples and prediction samples. The results show that the effect of grey support vector machine model is optimal, and the corresponding root mean square error is only 3.18%.

  6. A network architecture supporting consistent rich behavior in collaborative interactive applications.

    Science.gov (United States)

    Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger

    2006-01-01

    Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics.

  7. A Software Architecture for Simulation Support in Building Automation

    Directory of Open Access Journals (Sweden)

    Sergio Leal

    2014-07-01

    Full Text Available Building automation integrates the active components in a building and, thus, has to connect components of different industries. The goal is to provide reliable and efficient operation. This paper describes how simulation can support building automation and how the deployment process of simulation assisted building control systems can be structured. We look at the process as a whole and map it to a set of formally described workflows that can partly be automated. A workbench environment supports the process execution by means of improved planning, collaboration and deployment. This framework allows integration of existing tools, as well as manual tasks, and is, therefore, many more intricate than regular software deployment tools. The complex environment of building commissioning requires expertise in different domains, especially lighting, heating, ventilation, air conditioning, measurement and control technology, as well as energy efficiency; therefore, we present a framework for building commissioning and describe a deployment process that is capable of supporting the various phases of this approach.

  8. Application of support vector machines to breast cancer screening using mammogram and clinical history data

    Science.gov (United States)

    Land, Walker H., Jr.; McKee, Dan; Velazquez, Roberto; Wong, Lut; Lo, Joseph Y.; Anderson, Francis R.

    2003-05-01

    The objectives of this paper are to discuss: (1) the development and testing of a new Evolutionary Programming (EP) method to optimally configure Support Vector Machine (SVM) parameters for facilitating the diagnosis of breast cancer; (2) evaluation of EP derived learning machines when the number of BI-RADS and clinical history discriminators are reduced from 16 to 7; (3) establishing system performance for several SVM kernels in addition to the EP/Adaptive Boosting (EP/AB) hybrid using the Digital Database for Screening Mammography, University of South Florida (DDSM USF) and Duke data sets; and (4) obtaining a preliminary evaluation of the measurement of SVM learning machine inter-institutional generalization capability using BI-RADS data. Measuring performance of the SVM designs and EP/AB hybrid against these objectives will provide quantative evidence that the software packages described can generalize to larger patient data sets from different institutions. Most iterative methods currently in use to optimize learning machine parameters are time consuming processes, which sometimes yield sub-optimal values resulting in performance degradation. SVMs are new machine intelligence paradigms, which use the Structural Risk Minimization (SRM) concept to develop learning machines. These learning machines can always be trained to provide global minima, given that the machine parameters are optimally computed. In addition, several system performance studies are described which include EP derived SVM performance as a function of: (a) population and generation size as well as a method for generating initial populations and (b) iteratively derived versus EP derived learning machine parameters. Finally, the authors describe a set of experiments providing preliminary evidence that both the EP/AB hybrid and SVM Computer Aided Diagnostic C++ software packages will work across a large population of patients, based on a data set of approximately 2,500 samples from five different

  9. A comparison study of support vector machines and hidden Markov models in machinery condition monitoring

    International Nuclear Information System (INIS)

    Miao, Qiang; Huang, Hong Zhong; Fan, Xianfeng

    2007-01-01

    Condition classification is an important step in machinery fault detection, which is a problem of pattern recognition. Currently, there are a lot of techniques in this area and the purpose of this paper is to investigate two popular recognition techniques, namely hidden Markov model and support vector machine. At the beginning, we briefly introduced the procedure of feature extraction and the theoretical background of this paper. The comparison experiment was conducted for gearbox fault detection and the analysis results from this work showed that support vector machine has better classification performance in this area

  10. A Hybrid Least Square Support Vector Machine Model with Parameters Optimization for Stock Forecasting

    Directory of Open Access Journals (Sweden)

    Jian Chai

    2015-01-01

    Full Text Available This paper proposes an EMD-LSSVM (empirical mode decomposition least squares support vector machine model to analyze the CSI 300 index. A WD-LSSVM (wavelet denoising least squares support machine is also proposed as a benchmark to compare with the performance of EMD-LSSVM. Since parameters selection is vital to the performance of the model, different optimization methods are used, including simplex, GS (grid search, PSO (particle swarm optimization, and GA (genetic algorithm. Experimental results show that the EMD-LSSVM model with GS algorithm outperforms other methods in predicting stock market movement direction.

  11. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    Science.gov (United States)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  12. Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization

    Science.gov (United States)

    Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun

    2016-01-01

    Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656

  13. Executable Architecture of Net Enabled Operations: State Machine of Federated Nodes

    Science.gov (United States)

    2009-11-01

    verbal descriptions from operators) of the current Command and Control (C2) practices into model form. In theory these should be Standard Operating...faudra une grande quantité de données pour faire en sorte que le modèle reflète les processus véritables, les auteurs recommandent que la machine à...descriptions from operators) of the current C2 practices into model form. In theory these should be SOPs that execute as a thread from start to finish. The

  14. An implementation of support vector machine on sentiment classification of movie reviews

    Science.gov (United States)

    Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.

    2018-03-01

    With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%

  15. Assessment of modularity architecture for recovery process of electric vehicle in supporting sustainable design

    Science.gov (United States)

    Baroroh, D. K.; Alfiah, D.

    2018-05-01

    The electric vehicle is one of the innovations to reduce the pollution of the vehicle. Nevertheless, it still has a problem, especially for disposal stage. In supporting product design and development strategy, which is the idea of sustainable design or problem solving of disposal stage, assessment of modularity architecture from electric vehicle in recovery process needs to be done. This research used Design Structure Matrix (DSM) approach to deciding interaction of components and assessment of modularity architecture using the calculation of value from 3 variables, namely Module Independence (MI), Module Similarity (MS), and Modularity for End of Life Stage (MEOL). The result of this research shows that existing design of electric vehicles has the architectural design which has a high value of modularity for recovery process on disposal stage. Accordingly, so it can be reused and recycled in component level or module without disassembly process to support the product that is environmentally friendly (sustainable design) and able reduce disassembly cost.

  16. A scalable architecture for incremental specification and maintenance of procedural and declarative clinical decision-support knowledge.

    Science.gov (United States)

    Hatsek, Avner; Shahar, Yuval; Taieb-Maimon, Meirav; Shalom, Erez; Klimov, Denis; Lunenfeld, Eitan

    2010-01-01

    Clinical guidelines have been shown to improve the quality of medical care and to reduce its costs. However, most guidelines exist in a free-text representation and, without automation, are not sufficiently accessible to clinicians at the point of care. A prerequisite for automated guideline application is a machine-comprehensible representation of the guidelines. In this study, we designed and implemented a scalable architecture to support medical experts and knowledge engineers in specifying and maintaining the procedural and declarative aspects of clinical guideline knowledge, resulting in a machine comprehensible representation. The new framework significantly extends our previous work on the Digital electronic Guidelines Library (DeGeL) The current study designed and implemented a graphical framework for specification of declarative and procedural clinical knowledge, Gesher. We performed three different experiments to evaluate the functionality and usability of the major aspects of the new framework: Specification of procedural clinical knowledge, specification of declarative clinical knowledge, and exploration of a given clinical guideline. The subjects included clinicians and knowledge engineers (overall, 27 participants). The evaluations indicated high levels of completeness and correctness of the guideline specification process by both the clinicians and the knowledge engineers, although the best results, in the case of declarative-knowledge specification, were achieved by teams including a clinician and a knowledge engineer. The usability scores were high as well, although the clinicians' assessment was significantly lower than the assessment of the knowledge engineers.

  17. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  18. Oblique decision trees using embedded support vector machines in classifier ensembles

    NARCIS (Netherlands)

    Menkovski, V.; Christou, I.; Efremidis, S.

    2008-01-01

    Classifier ensembles have emerged in recent years as a promising research area for boosting pattern recognition systems' performance. We present a new base classifier that utilizes oblique decision tree technology based on support vector machines for the construction of oblique (non-axis parallel)

  19. SVM-Maj: a majorization approach to linear support vector machines with different hinge errors

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); G.I. Nalbantov (Georgi); J.C. Bioch (Cor)

    2007-01-01

    textabstractSupport vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal

  20. An empirical comparison of different approaches for combining multimodal neuroimaging data with support vector machine

    NARCIS (Netherlands)

    Pettersson-Yeo, W.; Benetti, S.; Marquand, A.F.; Joules, R.; Catani, M.; Williams, S.C.; Allen, P.; McGuire, P.; Mechelli, A.

    2014-01-01

    In the pursuit of clinical utility, neuroimaging researchers of psychiatric and neurological illness are increasingly using analyses, such as support vector machine, that allow inference at the single-subject level. Recent studies employing single-modality data, however, suggest that classification

  1. Fuzzy-based multi-kernel spherical support vector machine for ...

    Indian Academy of Sciences (India)

    In the proposed classifier, we design a new multi-kernel function based on the fuzzy triangular membership function. Finally, a newly developed multi-kernel function is incorporated into the spherical support vector machine to enhance the performance significantly. The experimental results are evaluated and performance is ...

  2. Individualized prediction of illness course at the first psychotic episode: a support vector machine MRI study.

    LENUS (Irish Health Repository)

    Mourao-Miranda, J

    2012-05-01

    To date, magnetic resonance imaging (MRI) has made little impact on the diagnosis and monitoring of psychoses in individual patients. In this study, we used a support vector machine (SVM) whole-brain classification approach to predict future illness course at the individual level from MRI data obtained at the first psychotic episode.

  3. Research on intrusion detection based on Kohonen network and support vector machine

    Science.gov (United States)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  4. A Support Vector Machine Approach to Dutch Part-of-Speech Tagging

    NARCIS (Netherlands)

    Poel, Mannes; Stegeman, L.; op den Akker, Hendrikus J.A.; Berthold, M.R.; Shawe-Taylor, J.; Lavrac, N.

    Part-of-Speech tagging, the assignment of Parts-of-Speech to the words in a given context of use, is a basic technique in many systems that handle natural languages. This paper describes a method for supervised training of a Part-of-Speech tagger using a committee of Support Vector Machines on a

  5. Web-service architecture for tools supporting life-long e-Learning platforms

    NARCIS (Netherlands)

    Dimov, Alexander; Stefanov, Krassen

    2009-01-01

    Dimov, A., & Stefanov, K. (2008). Web-service architecture for tools supporting life-long e-Learning platforms. In R. Koper, K. Stefanov & D. Dicheva (Eds.), Proceedings of the 5th International TENCompetence Open Workshop "Stimulating Personal Development and Knowledge Sharing" (pp. 67-71).

  6. Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine

    International Nuclear Information System (INIS)

    Xu Ruirui; Bian Guoxing; Gao Chenfeng; Chen Tianlun

    2005-01-01

    The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter γ and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved.

  7. Vision based nutrient deficiency classification in maize plants using multi class support vector machines

    Science.gov (United States)

    Leena, N.; Saju, K. K.

    2018-04-01

    Nutritional deficiencies in plants are a major concern for farmers as it affects productivity and thus profit. The work aims to classify nutritional deficiencies in maize plant in a non-destructive mannerusing image processing and machine learning techniques. The colored images of the leaves are analyzed and classified with multi-class support vector machine (SVM) method. Several images of maize leaves with known deficiencies like nitrogen, phosphorous and potassium (NPK) are used to train the SVM classifier prior to the classification of test images. The results show that the method was able to classify and identify nutritional deficiencies.

  8. Performance and optimization of support vector machines in high-energy physics classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, M.Oe.; Kruecker, D.; Melzer-Pellmann, I.A.

    2016-01-15

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  9. Performance and optimization of support vector machines in high-energy physics classification problems

    International Nuclear Information System (INIS)

    Sahin, M.Oe.; Kruecker, D.; Melzer-Pellmann, I.A.

    2016-01-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT is developed and available on Github.

  10. When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections.

    Science.gov (United States)

    Zhong, Cheng; Han, Ju; Borowsky, Alexander; Parvin, Bahram; Wang, Yunfu; Chang, Hang

    2017-01-01

    Classification of histology sections in large cohorts, in terms of distinct regions of microanatomy (e.g., stromal) and histopathology (e.g., tumor, necrosis), enables the quantification of tumor composition, and the construction of predictive models of genomics and clinical outcome. To tackle the large technical variations and biological heterogeneities, which are intrinsic in large cohorts, emerging systems utilize either prior knowledge from pathologists or unsupervised feature learning for invariant representation of the underlying properties in the data. However, to a large degree, the architecture for tissue histology classification remains unexplored and requires urgent systematical investigation. This paper is the first attempt to provide insights into three fundamental questions in tissue histology classification: I. Is unsupervised feature learning preferable to human engineered features? II. Does cellular saliency help? III. Does the sparse feature encoder contribute to recognition? We show that (a) in I, both Cellular Morphometric Feature and features from unsupervised feature learning lead to superior performance when compared to SIFT and [Color, Texture]; (b) in II, cellular saliency incorporation impairs the performance for systems built upon pixel-/patch-level features; and (c) in III, the effect of the sparse feature encoder is correlated with the robustness of features, and the performance can be consistently improved by the multi-stage extension of systems built upon both Cellular Morphmetric Feature and features from unsupervised feature learning. These insights are validated with two cohorts of Glioblastoma Multiforme (GBM) and Kidney Clear Cell Carcinoma (KIRC). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India

    Science.gov (United States)

    Kumar, Deepak; Thakur, Manoj; Dubey, Chandra S.; Shukla, Dericks P.

    2017-10-01

    In recent years, various machine learning techniques have been applied for landslide susceptibility mapping. In this study, three different variants of support vector machine viz., SVM, Proximal Support Vector Machine (PSVM) and L2-Support Vector Machine - Modified Finite Newton (L2-SVM-MFN) have been applied on the Mandakini River Basin in Uttarakhand, India to carry out the landslide susceptibility mapping. Eight thematic layers such as elevation, slope, aspect, drainages, geology/lithology, buffer of thrusts/faults, buffer of streams and soil along with the past landslide data were mapped in GIS environment and used for landslide susceptibility mapping in MATLAB. The study area covering 1625 km2 has merely 0.11% of area under landslides. There are 2009 pixels for past landslides out of which 50% (1000) landslides were considered as training set while remaining 50% as testing set. The performance of these techniques has been evaluated and the computational results show that L2-SVM-MFN obtains higher prediction values (0.829) of receiver operating characteristic curve (AUC-area under the curve) as compared to 0.807 for PSVM model and 0.79 for SVM. The results obtained from L2-SVM-MFN model are found to be superior than other SVM prediction models and suggest the usefulness of this technique to problem of landslide susceptibility mapping where training data is very less. However, these techniques can be used for satisfactory determination of susceptible zones with these inputs.

  12. A Distributed Architecture for Tsunami Early Warning and Collaborative Decision-support in Crises

    Science.gov (United States)

    Moßgraber, J.; Middleton, S.; Hammitzsch, M.; Poslad, S.

    2012-04-01

    The presentation will describe work on the system architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". The challenges for a Tsunami Early Warning System (TEWS) are manifold and the success of a system depends crucially on the system's architecture. A modern warning system following a system-of-systems approach has to integrate various components and sub-systems such as different information sources, services and simulation systems. Furthermore, it has to take into account the distributed and collaborative nature of warning systems. In order to create an architecture that supports the whole spectrum of a modern, distributed and collaborative warning system one must deal with multiple challenges. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. At the bottom layer it has to reliably integrate a large set of conventional sensors, such as seismic sensors and sensor networks, buoys and tide gauges, and also innovative and unconventional sensors, such as streams of messages from social media services. At the top layer it has to support collaboration on high-level decision processes and facilitates information sharing between organizations. In between, the system has to process all data and integrate information on a semantic level in a timely manner. This complex communication follows an event-driven mechanism allowing events to be published, detected and consumed by various applications within the architecture. Therefore, at the upper layer the event-driven architecture (EDA) aspects are combined with principles of service-oriented architectures (SOA) using standards for communication and data exchange. The most prominent challenges on this layer

  13. A deep knowledge architecture for intelligent support of nuclear waste transportation decisions

    International Nuclear Information System (INIS)

    Batra, D.; Bowen, W.M.; Hill, T.R.; Weeks, K.D.

    1988-01-01

    The concept of intelligent decision support has been discussed and explored in several recent papers, one of which has suggested the use of a Deep Knowledge Architecture. This paper explores this concept through application to a specific decision environment. The complex problems involved in nuclear waste disposal decisions provide an excellent test case. The resulting architecture uses an integrated, multi-level model base to represent the deep knowledge of the problem. Combined with the surface level knowledge represented by the database, the proposed knowledge base complements that of the decision-maker, allowing analysis at a range of levels of decisions which may also occur at a range of levels

  14. Support vector machine used to diagnose the fault of rotor broken bars of induction motors

    DEFF Research Database (Denmark)

    Zhitong, Cao; Jiazhong, Fang; Hongpingn, Chen

    2003-01-01

    for the SVM. After a SVM is trained with learning sample vectors, so each kind of the rotor broken bar faults of induction motors can be classified. Finally the retest is demonstrated, which proves that the SVM really has preferable ability of classification. In this paper we tried applying the SVM......The data-based machine learning is an important aspect of modern intelligent technology, while statistical learning theory (SLT) is a new tool that studies the machine learning methods in the case of a small number of samples. As a common learning method, support vector machine (SVM) is derived...... from the SLT. Here we were done some analogical experiments of the rotor broken bar faults of induction motors used, analyzed the signals of the sample currents with Fourier transform, and constructed the spectrum characteristics from low frequency to high frequency used as learning sample vectors...

  15. A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Meza, Juan C.; Woods, Mark

    2009-12-18

    Machine or statistical learning is a growing field that encompasses many scientific problems including estimating parameters from data, identifying risk factors in health studies, image recognition, and finding clusters within datasets, to name just a few examples. Statistical learning can be described as 'learning from data' , with the goal of making a prediction of some outcome of interest. This prediction is usually made on the basis of a computer model that is built using data where the outcomes and a set of features have been previously matched. The computer model is called a learner, hence the name machine learning. In this paper, we present two such algorithms, a support vector machine method and a rule ensemble method. We compared their predictive power on three supernova type 1a data sets provided by the Nearby Supernova Factory and found that while both methods give accuracies of approximately 95%, the rule ensemble method gives much lower false negative rates.

  16. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning.

    Science.gov (United States)

    Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L

    2017-09-09

    Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.

  17. The Setting is the Service: How the Architecture of Sober Living Residences Supports Community Based Recovery.

    Science.gov (United States)

    Wittman, Fried; Jee, Babette; Polcin, Douglas L; Henderson, Diane

    2014-07-01

    The architecture of residential recovery settings is an important silent partner in the alcohol/drug recovery field. The settings significantly support or hinder recovery experiences of residents, and shape community reactions to the presence of sober living houses (SLH) in ordinary neighborhoods. Grounded in the principles of Alcoholics Anonymous, the SLH provides residents with settings designed to support peer based recovery; further, these settings operate in a community context that insists on sobriety and strongly encourages attendance at 12-step meetings. Little formal research has been conducted to show how architectural features of the recovery setting - building appearance, spatial layouts, furnishings and finishes, policies for use of the facilities, physical care and maintenance of the property, neighborhood features, aspects of location in the city - function to promote (or retard) recovery, and to build (or detract from) community support. This paper uses a case-study approach to analyze the architecture of a community-based residential recovery service that has demonstrated successful recovery outcomes for its residents, is popular in its community, and has achieved state-wide recognition. The Environmental Pattern Language (Alexander, Ishikawa, & Silverstein, 1977) is used to analyze its architecture in a format that can be tested, critiqued, and adapted for use by similar programs in many communities, providing a model for replication and further research.

  18. Development of a wearable measurement and control unit for personal customizing machine-supported exercise.

    Science.gov (United States)

    Wang, Zhihui; Tamura, Naoki; Kiryu, Tohru

    2005-01-01

    Wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of personal customizing machine-supported exercise that have biosignal-based controls. In this paper, we propose a new wearable unit design equipped with measurement and control functions to support the personal customization process. The wearable unit can measure the heart rate and electromyogram signals during exercise and output workload control commands to the exercise machines. We then applied a prototype of the wearable unit to an Internet-based cycle ergometer system. The wearable unit was examined using twelve young people to check its feasibility. The results verified that the unit could successfully adapt to the control of the workload and was effective for continuously supporting gradual changes in physical activities.

  19. Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements

    Science.gov (United States)

    Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.

    2010-01-01

    Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a

  20. Design Methodology of a Sensor Network Architecture Supporting Urgent Information and Its Evaluation

    Science.gov (United States)

    Kawai, Tetsuya; Wakamiya, Naoki; Murata, Masayuki

    Wireless sensor networks are expected to become an important social infrastructure which helps our life to be safe, secure, and comfortable. In this paper, we propose design methodology of an architecture for fast and reliable transmission of urgent information in wireless sensor networks. In this methodology, instead of establishing single complicated monolithic mechanism, several simple and fully-distributed control mechanisms which function in different spatial and temporal levels are incorporated on each node. These mechanisms work autonomously and independently responding to the surrounding situation. We also show an example of a network architecture designed following the methodology. We evaluated the performance of the architecture by extensive simulation and practical experiments and our claim was supported by the results of these experiments.

  1. Service oriented architecture for clinical decision support: a systematic review and future directions.

    Science.gov (United States)

    Loya, Salvador Rodriguez; Kawamoto, Kensaku; Chatwin, Chris; Huser, Vojtech

    2014-12-01

    The use of a service-oriented architecture (SOA) has been identified as a promising approach for improving health care by facilitating reliable clinical decision support (CDS). A review of the literature through October 2013 identified 44 articles on this topic. The review suggests that SOA related technologies such as Business Process Model and Notation (BPMN) and Service Component Architecture (SCA) have not been generally adopted to impact health IT systems' performance for better care solutions. Additionally, technologies such as Enterprise Service Bus (ESB) and architectural approaches like Service Choreography have not been generally exploited among researchers and developers. Based on the experience of other industries and our observation of the evolution of SOA, we found that the greater use of these approaches have the potential to significantly impact SOA implementations for CDS.

  2. Exploring Hardware Support For Scaling Irregular Applications on Multi-node Multi-core Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Ceriani, Marco; Tumeo, Antonino; Villa, Oreste; Palermo, Gianluca; Raffo, Luigi

    2013-06-05

    With the recent emergence of large-scale knowledge dis- covery, data mining and social network analysis, irregular applications have gained renewed interest. Classic cache-based high-performance architectures do not provide optimal performances with such kind of workloads, mainly due to the very low spatial and temporal locality of the irregular control and memory access patterns. In this paper, we present a multi-node, multi-core, fine-grained multi-threaded shared-memory system architecture specifically designed for the execution of large-scale irregular applications, and built on top of three pillars, that we believe are fundamental to support these workloads. First, we offer transparent hardware support for Partitioned Global Address Space (PGAS) to provide a large globally-shared address space with no software library overhead. Second, we employ multi-threaded multi-core processing nodes to achieve the necessary latency tolerance required by accessing global memory, which potentially resides in a remote node. Finally, we devise hardware support for inter-thread synchronization on the whole global address space. We first model the performances by using an analytical model that takes into account the main architecture and application characteristics. We describe the hardware design of the proposed cus- tom architectural building blocks that provide support for the above- mentioned three pillars. Finally, we present a limited-scale evaluation of the system on a multi-board FPGA prototype with typical irregular kernels and benchmarks. The experimental evaluation demonstrates the architecture performance scalability for different configurations of the whole system.

  3. Distributed sensor architecture for intelligent control that supports quality of control and quality of service.

    Science.gov (United States)

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-02-25

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  4. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    Directory of Open Access Journals (Sweden)

    Jose-Luis Poza-Lujan

    2015-02-01

    Full Text Available This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS parameters and the optimization of control using Quality of Control (QoC parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS communication standard as proposed by the Object Management Group (OMG. As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  5. Effective software design and development for the new graph architecture HPC machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dechev, Damian

    2012-03-01

    Software applications need to change and adapt as modern architectures evolve. Nowadays advancement in chip design translates to increased parallelism. Exploiting such parallelism is a major challenge in modern software engineering. Multicore processors are about to introduce a significant change in the way we design and use fundamental data structures. In this work we describe the design and programming principles of a software library of highly concurrent scalable and nonblocking data containers. In this project we have created algorithms and data structures for handling fundamental computations in massively multithreaded contexts, and we have incorporated these into a usable library with familiar look and feel. In this work we demonstrate the first design and implementation of a wait-free hash table. Our multiprocessor data structure design allows a large number of threads to concurrently insert, remove, and retrieve information. Non-blocking designs alleviate the problems traditionally associated with the use of mutual exclusion, such as bottlenecks and thread-safety. Lock-freedom provides the ability to share data without some of the drawbacks associated with locks, however, these designs remain susceptible to starvation. Furthermore, wait-freedom provides all of the benefits of lock-free synchronization with the added assurance that every thread makes progress in a finite number of steps. This implies deadlock-freedom, livelock-freedom, starvation-freedom, freedom from priority inversion, and thread-safety. The challenges of providing the desirable progress and correctness guarantees of wait-free objects makes their design and implementation difficult. There are few wait-free data structures described in the literature. Using only standard atomic operations provided by the hardware, our design is portable; therefore, it is applicable to a variety of data-intensive applications including the domains of embedded systems and supercomputers.Our experimental

  6. Support Vector Hazards Machine: A Counting Process Framework for Learning Risk Scores for Censored Outcomes.

    Science.gov (United States)

    Wang, Yuanjia; Chen, Tianle; Zeng, Donglin

    2016-01-01

    Learning risk scores to predict dichotomous or continuous outcomes using machine learning approaches has been studied extensively. However, how to learn risk scores for time-to-event outcomes subject to right censoring has received little attention until recently. Existing approaches rely on inverse probability weighting or rank-based regression, which may be inefficient. In this paper, we develop a new support vector hazards machine (SVHM) approach to predict censored outcomes. Our method is based on predicting the counting process associated with the time-to-event outcomes among subjects at risk via a series of support vector machines. Introducing counting processes to represent time-to-event data leads to a connection between support vector machines in supervised learning and hazards regression in standard survival analysis. To account for different at risk populations at observed event times, a time-varying offset is used in estimating risk scores. The resulting optimization is a convex quadratic programming problem that can easily incorporate non-linearity using kernel trick. We demonstrate an interesting link from the profiled empirical risk function of SVHM to the Cox partial likelihood. We then formally show that SVHM is optimal in discriminating covariate-specific hazard function from population average hazard function, and establish the consistency and learning rate of the predicted risk using the estimated risk scores. Simulation studies show improved prediction accuracy of the event times using SVHM compared to existing machine learning methods and standard conventional approaches. Finally, we analyze two real world biomedical study data where we use clinical markers and neuroimaging biomarkers to predict age-at-onset of a disease, and demonstrate superiority of SVHM in distinguishing high risk versus low risk subjects.

  7. The Model of Information Support for Management of Investment Attractiveness of Machine-Building Enterprises

    Directory of Open Access Journals (Sweden)

    Chernetska Olga V.

    2016-11-01

    Full Text Available The article discloses the content of the definition of “information support”, identifies basic approaches to the interpretation of this economic category. The main purpose of information support for management of enterprise investment attractiveness is determined. The key components of information support for management of enterprise investment attractiveness are studied. The main types of automated information systems for management of the investment attractiveness of enterprises are identified and characterized. The basic computer programs for assessing the level of investment attractiveness of enterprises are considered. A model of information support for management of investment attractiveness of machine-building enterprises is developed.

  8. Joint Fire Support in 2020: Development of a Future Joint Fires Systems Architecture for Immediate, Unplanned Targets

    National Research Council Canada - National Science Library

    Gabriel, J. T; Bartel, Matthew; Dorrough, Grashawn J; Paiz, B. L; Peters, Brian; Savage, Matthew; Nordgran, Spencer

    2006-01-01

    ... in support of the commander. In this context, the Joint Fire Support in 2020 project applied systems engineering procedures and principles to develop functional, physical, and operational architectures that maximize rapid...

  9. Development of aerodynamic bearing support for application in air cycle machines

    Directory of Open Access Journals (Sweden)

    Šimek J.

    2014-06-01

    Full Text Available Air cycle machines (ACM are used in environmental control system of aircrafts to manage pressurization of the cabin. The aim of this work is to gain theoretical and experimental data enabling replacement of rolling bearings, which require lubrication and have limited operating speed, with aerodynamic bearing support. Aerodynamic bearings do not pollute process air and at the same time allow achieving higher operating speed, thus enabling to reduce machine mass and dimensions. A test stand enabling the verification of aerodynamic bearing support properties for prospective ACM was designed, manufactured and tested with operating speeds up to 65 000 rpm. Some interesting features of the test stand design and the test results are presented. A smaller test stand with operating speed up to 100 000 rpm is in design stage.

  10. Credit Scoring by Fuzzy Support Vector Machines with a Novel Membership Function

    Directory of Open Access Journals (Sweden)

    Jian Shi

    2016-11-01

    Full Text Available Due to the recent financial crisis and European debt crisis, credit risk evaluation has become an increasingly important issue for financial institutions. Reliable credit scoring models are crucial for commercial banks to evaluate the financial performance of clients and have been widely studied in the fields of statistics and machine learning. In this paper a novel fuzzy support vector machine (SVM credit scoring model is proposed for credit risk analysis, in which fuzzy membership is adopted to indicate different contribution of each input point to the learning of SVM classification hyperplane. Considering the methodological consistency, support vector data description (SVDD is introduced to construct the fuzzy membership function and to reduce the effect of outliers and noises. The SVDD-based fuzzy SVM model is tested against the traditional fuzzy SVM on two real-world datasets and the research results confirm the effectiveness of the presented method.

  11. Time-frequency feature analysis and recognition of fission neutrons signal based on support vector machine

    International Nuclear Information System (INIS)

    Jin Jing; Wei Biao; Feng Peng; Tang Yuelin; Zhou Mi

    2010-01-01

    Based on the interdependent relationship between fission neutrons ( 252 Cf) and fission chain ( 235 U system), the paper presents the time-frequency feature analysis and recognition in fission neutron signal based on support vector machine (SVM) through the analysis on signal characteristics and the measuring principle of the 252 Cf fission neutron signal. The time-frequency characteristics and energy features of the fission neutron signal are extracted by using wavelet decomposition and de-noising wavelet packet decomposition, and then applied to training and classification by means of support vector machine based on statistical learning theory. The results show that, it is effective to obtain features of nuclear signal via wavelet decomposition and de-noising wavelet packet decomposition, and the latter can reflect the internal characteristics of the fission neutron system better. With the training accomplished, the SVM classifier achieves an accuracy rate above 70%, overcoming the lack of training samples, and verifying the effectiveness of the algorithm. (authors)

  12. FUSION DECISION FOR A BIMODAL BIOMETRIC VERIFICATION SYSTEM USING SUPPORT VECTOR MACHINE AND ITS VARIATIONS

    Directory of Open Access Journals (Sweden)

    A. Teoh

    2017-12-01

    Full Text Available This paw presents fusion detection technique comparisons based on support vector machine and its variations for a bimodal biometric verification system that makes use of face images and speech utterances. The system is essentially constructed by a face expert, a speech expert and a fusion decision module. Each individual expert has been optimized to operate in automatic mode and designed for security access application. Fusion decision schemes considered are linear, weighted Support Vector Machine (SVM and linear SVM with quadratic transformation. The conditions tested include the balanced and unbalanced conditions between the two experts in order to obtain the optimum fusion module from  these techniques best suited to the target application.

  13. Dual linear structured support vector machine tracking method via scale correlation filter

    Science.gov (United States)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  14. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    Science.gov (United States)

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  15. Automatic Detection of P and S Phases by Support Vector Machine

    Science.gov (United States)

    Jiang, Y.; Ning, J.; Bao, T.

    2017-12-01

    Many methods in seismology rely on accurately picked phases. A well performed program on automatically phase picking will assure the application of these methods. Related researches before mostly focus on finding different characteristics between noise and phases, which are all not enough successful. We have developed a new method which mainly based on support vector machine to detect P and S phases. In it, we first input some waveform pieces into the support vector machine, then employ it to work out a hyper plane which can divide the space into two parts: respectively noise and phase. We further use the same method to find a hyper plane which can separate the phase space into P and S parts based on the three components' cross-correlation matrix. In order to further improve the ability of phase detection, we also employ array data. At last, we show that the overall effect of our method is robust by employing both synthetic and real data.

  16. New fuzzy support vector machine for the class imbalance problem in medical datasets classification.

    Science.gov (United States)

    Gu, Xiaoqing; Ni, Tongguang; Wang, Hongyuan

    2014-01-01

    In medical datasets classification, support vector machine (SVM) is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM) for the class imbalance problem (called FSVM-CIP) is presented, which can be seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes. The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the outperformed or comparable effectiveness of FSVM-CIP.

  17. New Fuzzy Support Vector Machine for the Class Imbalance Problem in Medical Datasets Classification

    Directory of Open Access Journals (Sweden)

    Xiaoqing Gu

    2014-01-01

    Full Text Available In medical datasets classification, support vector machine (SVM is considered to be one of the most successful methods. However, most of the real-world medical datasets usually contain some outliers/noise and data often have class imbalance problems. In this paper, a fuzzy support machine (FSVM for the class imbalance problem (called FSVM-CIP is presented, which can be seen as a modified class of FSVM by extending manifold regularization and assigning two misclassification costs for two classes. The proposed FSVM-CIP can be used to handle the class imbalance problem in the presence of outliers/noise, and enhance the locality maximum margin. Five real-world medical datasets, breast, heart, hepatitis, BUPA liver, and pima diabetes, from the UCI medical database are employed to illustrate the method presented in this paper. Experimental results on these datasets show the outperformed or comparable effectiveness of FSVM-CIP.

  18. Secure Service Oriented Architectures (SOA) Supporting NEC [Architecture orientée service (SOA) gérant la NEC

    NARCIS (Netherlands)

    Meiler, P.P.; Schmeing, M.

    2009-01-01

    Combined scenario ; Data management ; Data processing ; Demonstrator ; Information systems ; Integrated systems ; Interoperability ; Joint scenario ; Network Enabled Capability (NEC) ; Operational effectiveness ; Operations research ; Scenarios ; Secure communication ; Service Oriented Architecture

  19. A technique to identify some typical radio frequency interference using support vector machine

    Science.gov (United States)

    Wang, Yuanchao; Li, Mingtao; Li, Dawei; Zheng, Jianhua

    2017-07-01

    In this paper, we present a technique to automatically identify some typical radio frequency interference from pulsar surveys using support vector machine. The technique has been tested by candidates. In these experiments, to get features of SVM, we use principal component analysis for mosaic plots and its classification accuracy is 96.9%; while we use mathematical morphology operation for smog plots and horizontal stripes plots and its classification accuracy is 86%. The technique is simple, high accurate and useful.

  20. Application of higher order spectral features and support vector machines for bearing faults classification.

    Science.gov (United States)

    Saidi, Lotfi; Ben Ali, Jaouher; Fnaiech, Farhat

    2015-01-01

    Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals. Copyright © 2014 ISA

  1. ROBUSTNESS OF A FACE-RECOGNITION TECHNIQUE BASED ON SUPPORT VECTOR MACHINES

    OpenAIRE

    Prashanth Harshangi; Koshy George

    2010-01-01

    The ever-increasing requirements of security concerns have placed a greater demand for face recognition surveillance systems. However, most current face recognition techniques are not quite robust with respect to factors such as variable illumination, facial expression and detail, and noise in images. In this paper, we demonstrate that face recognition using support vector machines are sufficiently robust to different kinds of noise, does not require image pre-processing, and can be used with...

  2. Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation

    OpenAIRE

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic...

  3. Kinematic Analysis of Cpm Machine Supporting to Rehabilitation Process after Surgical Knee Arthroscopy and Arthroplasty

    Science.gov (United States)

    Trochimczuk, R.; Kuźmierowski, T.

    2014-11-01

    Existing commercial solutions of the CPM (Continuous Passive Motion) machines are described in the paper. Based on the analysis of existing solutions we present our conceptual solution to support the process of rehabilitation of the knee joint which is necessary after arthroscopic surgery. For a given novel structure we analyze and present proprietary algorithms and the computer application to simulate the operation of our PCM device. In addition, we suggest directions for further research.

  4. Support vector machine based fault classification and location of a long transmission line

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2016-09-01

    Full Text Available This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21% and least fault distance estimation error (0.29%.

  5. Sentiment Analysis in the Sales Review of Indonesian Marketplace by Utilizing Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Anang Anggono Lutfi

    2018-04-01

    Full Text Available The online store is changing people’s shopping behavior. Despite the fact, the potential customer’s distrust in the quality of products and service is one of the online store’s weaknesses. A review is provided by the online stores to overcome this weakness. Customers often write a review using languages that are not well structured. Sentiment analysis is used to extract the polarity of the unstructured texts. This research attempted to do a sentiment analysis in the sales review. Sentiment analysis in sales reviews can be used as a tool to evaluate the sales. This research intends to conduct a sentiment analysis in the sales review of Indonesian marketplace by utilizing Support Vector Machine and Naive Bayes. The reviews of the data are gathered from one of Indonesian marketplace, Bukalapak. The data are classified into positive or negative class. TF-IDF is used to feature extraction. The experiment shows that Support Vector Machine with linear kernel provides higher accuracy than Naive Bayes. Support Vector Machine shows the highest accuracy average. The generated accuracy is 93.65%. This approach of sentiment analysis in sales review can be used as the base of intelligent sales evaluation for online stores in the future.

  6. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  7. Supporting and guiding device that is leak-tight and can be dismantled for the shaft of a rotating machine

    International Nuclear Information System (INIS)

    Tigoulet, Bernard; Fanchtein, J.P.; Dubost, Rene.

    1982-01-01

    This device includes a removable bearing casing crossed by at least one shaft of the machine, facilities for guiding this casing in parallel with the axis of the shaft so as to facilitate its removal and refitting, a system for supporting the shaft when the removable casing is not fitted in the machine frame. Application to machines for the extrusion of coating bitumen for radioactive waste [fr

  8. OPTIMALISASI SUPPORT VEKTOR MACHINE (SVM UNTUK KLASIFIKASI TEMA TUGAS AKHIR BERBASIS K-MEANS

    Directory of Open Access Journals (Sweden)

    Oman Somantri

    2017-01-01

    Full Text Available The difficulty in determining the classification of students final project theme often experienced by each college. The purpose of this study is to provide a decision support for policy makers in the study program so that each student can be achieved in accordance with their own competence. From the research that has been done text mining algorithms using Support Vector Machine ( SVM and K -Means as the technology used was produced a better accuracy rate with an accuracy rate of 86.21 % when compared to the SVM without K -Means is 85 , 38 %

  9. Predicting sumoylation sites using support vector machines based on various sequence features, conformational flexibility and disorder.

    Science.gov (United States)

    Yavuz, Ahmet Sinan; Sezerman, Osman Ugur

    2014-01-01

    Sumoylation, which is a reversible and dynamic post-translational modification, is one of the vital processes in a cell. Before a protein matures to perform its function, sumoylation may alter its localization, interactions, and possibly structural conformation. Abberations in protein sumoylation has been linked with a variety of disorders and developmental anomalies. Experimental approaches to identification of sumoylation sites may not be effective due to the dynamic nature of sumoylation, laborsome experiments and their cost. Therefore, computational approaches may guide experimental identification of sumoylation sites and provide insights for further understanding sumoylation mechanism. In this paper, the effectiveness of using various sequence properties in predicting sumoylation sites was investigated with statistical analyses and machine learning approach employing support vector machines. These sequence properties were derived from windows of size 7 including position-specific amino acid composition, hydrophobicity, estimated sub-window volumes, predicted disorder, and conformational flexibility. 5-fold cross-validation results on experimentally identified sumoylation sites revealed that our method successfully predicts sumoylation sites with a Matthew's correlation coefficient, sensitivity, specificity, and accuracy equal to 0.66, 73%, 98%, and 97%, respectively. Additionally, we have showed that our method compares favorably to the existing prediction methods and basic regular expressions scanner. By using support vector machines, a new, robust method for sumoylation site prediction was introduced. Besides, the possible effects of predicted conformational flexibility and disorder on sumoylation site recognition were explored computationally for the first time to our knowledge as an additional parameter that could aid in sumoylation site prediction.

  10. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  11. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  12. Research on bearing life prediction based on support vector machine and its application

    International Nuclear Information System (INIS)

    Sun Chuang; Zhang Zhousuo; He Zhengjia

    2011-01-01

    Life prediction of rolling element bearing is the urgent demand in engineering practice, and the effective life prediction technique is beneficial to predictive maintenance. Support vector machine (SVM) is a novel machine learning method based on statistical learning theory, and is of advantage in prediction. This paper develops SVM-based model for bearing life prediction. The inputs of the model are features of bearing vibration signal and the output is the bearing running time-bearing failure time ratio. The model is built base on a few failed bearing data, and it can fuse information of the predicted bearing. So it is of advantage to bearing life prediction in practice. The model is applied to life prediction of a bearing, and the result shows the proposed model is of high precision.

  13. Using support vector machines to identify literacy skills: Evidence from eye movements.

    Science.gov (United States)

    Lou, Ya; Liu, Yanping; Kaakinen, Johanna K; Li, Xingshan

    2017-06-01

    Is inferring readers' literacy skills possible by analyzing their eye movements during text reading? This study used Support Vector Machines (SVM) to analyze eye movement data from 61 undergraduate students who read a multiple-paragraph, multiple-topic expository text. Forward fixation time, first-pass rereading time, second-pass fixation time, and regression path reading time on different regions of the text were provided as features. The SVM classification algorithm assisted in distinguishing high-literacy-skilled readers from low-literacy-skilled readers with 80.3 % accuracy. Results demonstrate the effectiveness of combining eye tracking and machine learning techniques to detect readers with low literacy skills, and suggest that such approaches can be potentially used in predicting other cognitive abilities.

  14. Short-Term Prediction of Air Pollution in Macau Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Chi-Man Vong

    2012-01-01

    Full Text Available Forecasting of air pollution is a popular and important topic in recent years due to the health impact caused by air pollution. It is necessary to build an early warning system, which provides forecast and also alerts health alarm to local inhabitants by medical practitioners and the local government. Meteorological and pollutions data collected daily at monitoring stations of Macau can be used in this study to build a forecasting system. Support vector machines (SVMs, a novel type of machine learning technique based on statistical learning theory, can be used for regression and time series prediction. SVM is capable of good generalization while the performance of the SVM model is often hinged on the appropriate choice of the kernel.

  15. Aging Detection of Electrical Point Machines Based on Support Vector Data Description

    Directory of Open Access Journals (Sweden)

    Jaewon Sa

    2017-11-01

    Full Text Available Electrical point machines (EPM must be replaced at an appropriate time to prevent the occurrence of operational safety or stability problems in trains resulting from aging or budget constraints. However, it is difficult to replace EPMs effectively because the aging conditions of EPMs depend on the operating environments, and thus, a guideline is typically not be suitable for replacing EPMs at the most timely moment. In this study, we propose a method of classification for the detection of an aging effect to facilitate the timely replacement of EPMs. We employ support vector data description to segregate data of “aged” and “not-yet-aged” equipment by analyzing the subtle differences in normalized electrical signals resulting from aging. Based on the before and after-replacement data that was obtained from experimental studies that were conducted on EPMs, we confirmed that the proposed method was capable of classifying machines based on exhibited aging effects with adequate accuracy.

  16. Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    M. T. Mushtaq

    2015-04-01

    Full Text Available Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying based signals propagating through an AWGN (Additive White Gaussian Noise channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR values up to -50 dB.

  17. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    Science.gov (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  18. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    Science.gov (United States)

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    Science.gov (United States)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  20. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    stability. Conclusion: The pixel-scale soil aggregate stability predicted that using the developed SVM and MLR models demonstrates the usefulness of incorporating topographic and vegetation information along with the soil properties as predictors. However, the SVM model achieved more accuracy in predicting soil aggregate stability compared to the MLR model. Therefore, it appears that support vector machines can be used for prediction of some soil physical properties such as geometric mean diameter of soil aggregates in the study area. Furthermore, despite the high predictive accuracy of the SVM method compared to the MLR technique which was confirmed by the obtained results in the current study, the advantages of the SVM method such as its intrinsic effectiveness with respect to traditional prediction methods, less effort in setting up the control parameters for architecture design, the possibility of solving the learning problem according to constrained quadratic programming methods, etc., should motivate soil scientists to work on it further in the future.

  1. eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-organisation and Self-healing

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Madsen, Jan

    2009-01-01

    This paper presents the concept of a biological inspired reconfigurable hardware cell architecture which supports self-organisation and self-healing. Two fundamental processes in biology, namely fertilization-to-birth and cell self-healing have inspired the development of this cell architecture...... to simulate our self-organisation and self-healing algorithms and the results obtained from this looks promising....

  2. Supporting Air and Space Expeditionary Forces: Expanded Operational Architecture for Combat Support Execution Planning and Control

    National Research Council Canada - National Science Library

    Mills, Patrick; Evers, Ken; Kinlin, Donna; Tripp, Robert S

    2006-01-01

    During the past decade, the U.S. military has supported continuous deployments of forces around the world, often on very short notice and for prolonged duration, to meet the needs of a wide range of peacekeeping and humanitarian...

  3. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  4. Computerized operator support system with new man-machine interface for BWR power plants

    International Nuclear Information System (INIS)

    Monta, K.; Naito, N.; Sugawara, M.; Sato, N.; Mori, N.; Tai, I.; Fukumoto, A.; Tsuchida, M.

    1984-01-01

    Improvement of the man-machine interface of nuclear power plants is an important contribution to the further enhancement of operational safety. In addition, recent advances in computer technology seem to offer the greatest opportunity to date for achieving improvement in the man-machine interface. The development of a computerized operator support system for BWRs has been undertaken since 1980 with the support of the Japanese Government. The conceptual design of this system is based on the role of the operators. The main functions are standby system management, disturbance analysis and post-trip operational guidance. The objective of the standby system management is to monitor the standby status of the engineered safety feature during normal operation to assure its proper functioning at the onset of emergency situations. The disturbance analysis system detects disturbances in the plant in their early stages and informs the plant operators about, for example, the cause of the disturbances, the plant status and possible propagations. Consequently, operators can take corrective actions to prevent unnecessary plant shutdown. The objective of the post trip operational guide is to support operators in diagnosis and corrective action after a plant trip. Its functions are to monitor the performance of the engineered safety feature, to identify the plant status and to guide the appropriate corrective action to achieve safe plant shutdown. The information from the computerized operator support system is supplied to operators through a colour CRT operator console. The authors have evaluated the performance of various new man-machine interfacing tools and proposed a new operator console design. A prototype system has been developed and verification/validation is proceeding with a BWR plant simulator. (author)

  5. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  6. Tyrosine Kinase Ligand-Receptor Pair Prediction by Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masayuki Yarimizu

    2015-01-01

    Full Text Available Receptor tyrosine kinases are essential proteins involved in cellular differentiation and proliferation in vivo and are heavily involved in allergic diseases, diabetes, and onset/proliferation of cancerous cells. Identifying the interacting partner of this protein, a growth factor ligand, will provide a deeper understanding of cellular proliferation/differentiation and other cell processes. In this study, we developed a method for predicting tyrosine kinase ligand-receptor pairs from their amino acid sequences. We collected tyrosine kinase ligand-receptor pairs from the Database of Interacting Proteins (DIP and UniProtKB, filtered them by removing sequence redundancy, and used them as a dataset for machine learning and assessment of predictive performance. Our prediction method is based on support vector machines (SVMs, and we evaluated several input features suitable for tyrosine kinase for machine learning and compared and analyzed the results. Using sequence pattern information and domain information extracted from sequences as input features, we obtained 0.996 of the area under the receiver operating characteristic curve. This accuracy is higher than that obtained from general protein-protein interaction pair predictions.

  7. Application of support vector machines to breast cancer screening using mammogram and history data

    Science.gov (United States)

    Land, Walker H., Jr.; Akanda, Anab; Lo, Joseph Y.; Anderson, Francis; Bryden, Margaret

    2002-05-01

    Support Vector Machines (SVMs) are a new and radically different type of classifiers and learning machines that use a hypothesis space of linear functions in a high dimensional feature space. This relatively new paradigm, based on Statistical Learning Theory (SLT) and Structural Risk Minimization (SRM), has many advantages when compared to traditional neural networks, which are based on Empirical Risk Minimization (ERM). Unlike neural networks, SVM training always finds a global minimum. Furthermore, SVMs have inherent ability to solve pattern classification without incorporating any problem-domain knowledge. In this study, the SVM was employed as a pattern classifier, operating on mammography data used for breast cancer detection. The main focus was to formulate the best learning machine configurations for optimum specificity and positive predictive value at very high sensitivities. Using a mammogram database of 500 biopsy-proven samples, the best performing SVM, on average, was able to achieve (under statistical 5-fold cross-validation) a specificity of 45.0% and a positive predictive value (PPV) of 50.1% at 100% sensitivity. At 97% sensitivity, a specificity of 55.8% and a PPV of 55.2% were obtained.

  8. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Antonio Cerasa

    2015-01-01

    Full Text Available Presently, there are no valid biomarkers to identify individuals with eating disorders (ED. The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa were compared against 17 body mass index-matched healthy controls (HC. Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice.

  9. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    Science.gov (United States)

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice. PMID:26648660

  10. Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Harish, N.; Mandal, S.; Rao, S.; Patil, S.G.

    breakwater. Soft computing tools like Artificial Neural Network, Fuzzy Logic, Support Vector Machine (SVM), etc, are successfully used to solve complex problems. In the present study, SVM and hybrid of Particle Swarm Optimization (PSO) with SVM (PSO...

  11. Hybrid genetic algorithm tuned support vector machine regression for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, S.G.; Mandal, S.; Hegde, A.V.; Muruganandam, A.

    Support Vector Machine (SVM) works on structural risk minimization principle that has greater generalization ability and is superior to the empirical risk minimization principle as adopted in conventional neural network models. However...

  12. Breast cancer risk assessment and diagnosis model using fuzzy support vector machine based expert system

    Science.gov (United States)

    Dheeba, J.; Jaya, T.; Singh, N. Albert

    2017-09-01

    Classification of cancerous masses is a challenging task in many computerised detection systems. Cancerous masses are difficult to detect because these masses are obscured and subtle in mammograms. This paper investigates an intelligent classifier - fuzzy support vector machine (FSVM) applied to classify the tissues containing masses on mammograms for breast cancer diagnosis. The algorithm utilises texture features extracted using Laws texture energy measures and a FSVM to classify the suspicious masses. The new FSVM treats every feature as both normal and abnormal samples, but with different membership. By this way, the new FSVM have more generalisation ability to classify the masses in mammograms. The classifier analysed 219 clinical mammograms collected from breast cancer screening laboratory. The tests made on the real clinical mammograms shows that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and Laws texture features, the area under the Receiver operating characteristic curve reached .95, which corresponds to a sensitivity of 93.27% with a specificity of 87.17%. The results suggest that detecting masses using FSVM contribute to computer-aided detection of breast cancer and as a decision support system for radiologists.

  13. Cognitive Human-Machine Interface Applied in Remote Support for Industrial Robot Systems

    Directory of Open Access Journals (Sweden)

    Tomasz Kosicki

    2013-10-01

    Full Text Available An attempt is currently being made to widely introduce industrial robots to Small-Medium Enterprises (SMEs. Since the enterprises usually employ too small number of robot units to afford specialized departments for robot maintenance, they must be provided with inexpensive and immediate support remotely. This paper evaluates whether the support can be provided by means of Cognitive Info-communication – communication in which human cognitive capabilities are extended irrespectively of geographical distances. The evaluations are given with an aid of experimental system that consists of local and remote rooms, which are physically separated – a six-degree-of-freedom NACHI SH133-03 industrial robot is situated in the local room, while the operator, who supervises the robot by means of audio-visual Cognitive Human-Machine Interface, is situated in the remote room. The results of simple experiments show that Cognitive Info-communication is not only efficient mean to provide the support remotely, but is probably also a powerful tool to enhance interaction with any data-rich environment that require good conceptual understanding of system's state and careful attention management. Furthermore, the paper discusses data presentation and reduction methods for data-rich environments, as well as introduces the concepts of Naturally Acquired Data and Cognitive Human-Machine Interfaces.

  14. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    Directory of Open Access Journals (Sweden)

    R. Rajesh Sharma

    2015-01-01

    algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.

  15. Performance and optimization of support vector machines in high-energy physics classification problems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Mehmet Oezguer; Kruecker, Dirk; Melzer-Pellmann, Isabell [DESY, Hamburg (Germany)

    2016-07-01

    In this talk, the use of Support Vector Machines (SVM) is promoted for new-physics searches in high-energy physics. We developed an interface, called SVM HEP Interface (SVM-HINT), for a popular SVM library, LibSVM, and introduced a statistical-significance based hyper-parameter optimization algorithm for the new-physics searches. As example case study, a search for Supersymmetry at the Large Hadron Collider is given to demonstrate the capabilities of SVM using SVM-HINT.

  16. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    Science.gov (United States)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  17. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels.

    Science.gov (United States)

    Chen, S; Samingan, A K; Hanzo, L

    2001-01-01

    The problem of constructing an adaptive multiuser detector (MUD) is considered for direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. The emerging learning technique, called support vector machines (SVM), is proposed as a method of obtaining a nonlinear MUD from a relatively small training data block. Computer simulation is used to study this SVM MUD, and the results show that it can closely match the performance of the optimal Bayesian one-shot detector. Comparisons with an adaptive radial basis function (RBF) MUD trained by an unsupervised clustering algorithm are discussed.

  18. Non-linear HVAC computations using least square support vector machines

    International Nuclear Information System (INIS)

    Kumar, Mahendra; Kar, I.N.

    2009-01-01

    This paper aims to demonstrate application of least square support vector machines (LS-SVM) to model two complex heating, ventilating and air-conditioning (HVAC) relationships. The two applications considered are the estimation of the predicted mean vote (PMV) for thermal comfort and the generation of psychrometric chart. LS-SVM has the potential for quick, exact representations and also possesses a structure that facilitates hardware implementation. The results show very good agreement between function values computed from conventional model and LS-SVM model in real time. The robustness of LS-SVM models against input noises has also been analyzed.

  19. A Shellcode Detection Method Based on Full Native API Sequence and Support Vector Machine

    Science.gov (United States)

    Cheng, Yixuan; Fan, Wenqing; Huang, Wei; An, Jing

    2017-09-01

    Dynamic monitoring the behavior of a program is widely used to discriminate between benign program and malware. It is usually based on the dynamic characteristics of a program, such as API call sequence or API call frequency to judge. The key innovation of this paper is to consider the full Native API sequence and use the support vector machine to detect the shellcode. We also use the Markov chain to extract and digitize Native API sequence features. Our experimental results show that the method proposed in this paper has high accuracy and low detection rate.

  20. Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-01-01

    Full Text Available Accurate prediction of substation project cost is helpful to improve the investment management and sustainability. It is also directly related to the economy of substation project. Ensemble Empirical Mode Decomposition (EEMD can decompose variables with non-stationary sequence signals into significant regularity and periodicity, which is helpful in improving the accuracy of prediction model. Adding the Gauss perturbation to the traditional Cuckoo Search (CS algorithm can improve the searching vigor and precision of CS algorithm. Thus, the parameters and kernel functions of Support Vector Machines (SVM model are optimized. By comparing the prediction results with other models, this model has higher prediction accuracy.

  1. Impact of Health Care Employees’ Job Satisfaction on Organizational Performance Support Vector Machine Approach

    Directory of Open Access Journals (Sweden)

    CEMIL KUZEY

    2018-01-01

    Full Text Available This study is undertaken to search for key factors that contribute to job satisfaction among health care workers, and also to determine the impact of these underlying dimensions of employee satisfaction on organizational performance. Exploratory Factor Analysis (EFA is applied to initially uncover the key factors, and then, in the next stage of analysis, a popular data mining technique, Support Vector Machine (SVM is employed on a sample of 249 to determine the impact of job satisfaction factors on organizational performance. According to the proposed model, the main factors are revealed to be management’s attitude, pay/reward, job security and colleagues.

  2. Sentiment Analysis of Comments on Rohingya Movement with Support Vector Machine

    OpenAIRE

    Chowdhury, Hemayet Ahmed; Nibir, Tanvir Alam; Islam, Md. Saiful

    2018-01-01

    The Rohingya Movement and Crisis caused a huge uproar in the political and economic state of Bangladesh. Refugee movement is a recurring event and a large amount of data in the form of opinions remains on social media such as Facebook, with very little analysis done on them.To analyse the comments based on all Rohingya related posts, we had to create and modify a classifier based on the Support Vector Machine algorithm. The code is implemented in python and uses scikit-learn library. A datase...

  3. Estimation of the wind turbine yaw error by support vector machines

    DEFF Research Database (Denmark)

    Sheibat-Othman, Nida; Othman, Sami; Tayari, Raoaa

    2015-01-01

    Wind turbine yaw error information is of high importance in controlling wind turbine power and structural load. Normally used wind vanes are imprecise. In this work, the estimation of yaw error in wind turbines is studied using support vector machines for regression (SVR). As the methodology...... is data-based, simulated data from a high fidelity aero-elastic model is used for learning. The model simulates a variable speed horizontal-axis wind turbine composed of three blades and a full converter. Both partial load (blade angles fixed at 0 deg) and full load zones (active pitch actuators...

  4. PMSVM: An Optimized Support Vector Machine Classification Algorithm Based on PCA and Multilevel Grid Search Methods

    Directory of Open Access Journals (Sweden)

    Yukai Yao

    2015-01-01

    Full Text Available We propose an optimized Support Vector Machine classifier, named PMSVM, in which System Normalization, PCA, and Multilevel Grid Search methods are comprehensively considered for data preprocessing and parameters optimization, respectively. The main goals of this study are to improve the classification efficiency and accuracy of SVM. Sensitivity, Specificity, Precision, and ROC curve, and so forth, are adopted to appraise the performances of PMSVM. Experimental results show that PMSVM has relatively better accuracy and remarkable higher efficiency compared with traditional SVM algorithms.

  5. Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application.

    Science.gov (United States)

    Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju

    2014-03-21

    A tracking service like asset management is essential in a dynamic hospital environment consisting of numerous mobile assets (e.g., wheelchairs or infusion pumps) that are continuously relocated throughout a hospital. The tracking service is accomplished based on the key technologies of an indoor location-based service (LBS), such as locating and monitoring multiple mobile targets inside a building in real time. An indoor LBS such as a tracking service entails numerous resource lookups being requested concurrently and frequently from several locations, as well as a network infrastructure requiring support for high scalability in indoor environments. A traditional centralized architecture needs to maintain a geographic map of the entire building or complex in its central server, which can cause low scalability and traffic congestion. This paper presents a self-organizing and fully distributed indoor mobile asset management (MAM) platform, and proposes an architecture for multiple trackees (such as mobile assets) and trackers based on the proposed distributed platform in real time. In order to verify the suggested platform, scalability performance according to increases in the number of concurrent lookups was evaluated in a real test bed. Tracking latency and traffic load ratio in the proposed tracking architecture was also evaluated.

  6. Applications of Case Based Organizational Memory Supported by the PAbMM Architecture

    Directory of Open Access Journals (Sweden)

    Martín

    2017-04-01

    Full Text Available In the aim to manage and retrieve the organizational knowledge, in the last years numerous proposals of models and tools for knowledge management and knowledge representation have arisen. However, most of them store knowledge in a non-structured or semi-structured way, hindering the semantic and automatic processing of this knowledge. In this paper we present a more detailed case-based organizational memory ontology, which aims at contributing to the design of an organizational memory based on cases, so that it can be used to learn, reasoning, solve problems, and as support to better decision making as well. The objective of this Organizational Memory is to serve as base for the organizational knowledge exchange in a processing architecture specialized in the measurement and evaluation. In this way, our processing architecture is based on the C-INCAMI framework (Context-Information Need, Concept model, Attribute, Metric and Indicator for defining the measurement projects. Additionally, the proposal architecture uses a big data repository to make available the data for consumption and to manage the Organizational Memory, which allows a feedback mechanism in relation with online processing. In order to illustrate its utility, two practical cases are explained: A pasture predictor system, using the data of the weather radar (WR of the Experimental Agricultural Station (EAS INTA Anguil (La Pampa State, Argentina and an outpatient monitoring scenario. Future trends and concluding remarks are extended.

  7. Clinical decision support for whole genome sequence information leveraging a service-oriented architecture: a prototype.

    Science.gov (United States)

    Welch, Brandon M; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time.

  8. Guiding Principles for Data Architecture to Support the Pathways Community HUB Model.

    Science.gov (United States)

    Zeigler, Bernard P; Redding, Sarah; Leath, Brenda A; Carter, Ernest L; Russell, Cynthia

    2016-01-01

    The Pathways Community HUB Model provides a unique strategy to effectively supplement health care services with social services needed to overcome barriers for those most at risk of poor health outcomes. Pathways are standardized measurement tools used to define and track health and social issues from identification through to a measurable completion point. The HUB use Pathways to coordinate agencies and service providers in the community to eliminate the inefficiencies and duplication that exist among them. Experience with the Model has brought out the need for better information technology solutions to support implementation of the Pathways themselves through decision-support tools for care coordinators and other users to track activities and outcomes, and to facilitate reporting. Here we provide a basis for discussing recommendations for such a data infrastructure by developing a conceptual model that formalizes the Pathway concept underlying current implementations. The main contribution is a set of core recommendations as a framework for developing and implementing a data architecture to support implementation of the Pathways Community HUB Model. The objective is to present a tool for communities interested in adopting the Model to learn from and to adapt in their own development and implementation efforts. Experience with the Community Health Access Project (CHAP) data base system (the core implementation of the Model) has identified several issues and remedies that have been developed to address these issues. Based on analysis of issues and remedies, we present several key features for a data architecture meeting the just mentioned recommendations. Presentation of features is followed by a practical guide to their implementation allowing an organization to consider either tailoring off-the-shelf generic systems to meet the requirements or offerings that are specialized for community-based care coordination. Looking to future extensions, we discuss the

  9. Agent Based Framework Architecture for Supporting Content Adaptation for Mobile Government

    Directory of Open Access Journals (Sweden)

    Hasan Omar Al-Sakran

    2013-01-01

    Full Text Available Rapid spread of smart mobile technology that supports internet access is transforming the way governments provide services to their citizens. Mobile devices have different capabilities based on the manufacturers and models. This paper proposes a new framework for adapting the content of M-government services using mobile agent technology. The framework is based on a mediation architecture that uses multiple mobile agents and XML as semi-structure mediation language. The flexibility of the mediation and XML provide an adaptive environment to stream data based on the capabilities of the device sending the query to the system.

  10. VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius

    2014-05-01

    Full Text Available The aim of this paper is to accurately and quickly identify the faults of the tables and supports on which the embroidery machines are placed through vibrations measuring method. Vibrations measurements on Happy embroidery machine were performed at S.C. CONFIDEX S.R.L Oradea. A FFT spectrum analyzer Impaq was used, made by Benstone Instruments Inc –SUA. The measurements were performed in order to seek the role and importance of the rigidity of embroidery machine supports for a better and more efficient performance of the machine. Before performing these measurements was determined the optimal operating mode of the embroidery machine. The vibration measurements were performed in each measuring point, by installing a vibration sensor on the three directions of the Cartesian coordinates system: axial (X, horizontal (Y, vertical (Z. In the present paper is shown only the measuring direction Z (sensor mounting direction and advance of the material on x direction (the embroidery direction this is the most relevant direction, as on this part the embroidery is executed. After performing these vibration measurements on the HAPPY embroidery machine, previously mounted on a big table, after that mounted on a smaller table and a less rigid base. The same vibrations measurements were performed and it was noticed that it is mandatory to position the machine on a big table and a stable base because it will influence both the reliability and the working regime of the machine.

  11. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  12. Estimation of loads for the design of support for the rotary machine in nuclear power plant

    International Nuclear Information System (INIS)

    Gupta, S.K.; Chatterjee, B.; Kushwaha, H.S.; Venkat Raj, V.

    2002-01-01

    Full text: In a nuclear power plant two major equipment, which have a rotating shaft are pump in the primary heat transport system and turbine in the secondary system. In both cases, the shaft seizure leads to transfer of very large load to the supports. These supports, if not designed for these loads may fail and lead to missile generation. The missile generation should be avoided as it may hit and damage safety related systems. The pump of the primary heat transport system (PHTS) of a nuclear power plant is normally centrifugal type run by an induction motor. If the pump shaft seizes, the seizure load will be experienced by the pump shaft and support structure. Due to the presence of the flywheel, the total moment of inertia of the pump motor assembly is quite high. Hence the resisting torque be many times higher than the motor starting torque. Besides, the electric torque will continue to apply as the motor trip on overload current is delayed by several seconds to avoid inadvertent trip during start up. The electric torque would initially increase and then decrease as the shaft speed decreases. Part of the seizure load will be absorbed by the pump supports passed through the pump shaft. Seizure torque will depend on pump seizure time. Lesser the seizure time, higher would be the load on the pump support. If the pump shaft fails then the supports would see relatively less load. The turbine in the secondary system has a large inertia due to blades. In case of a seizure the generator is tripped in hundreds of milliseconds. The load experienced by supports due to seizure, is significantly enhanced in the first few seconds due to steam supply before it is cut off. These rotating machines are normally not designed for safe shutdown earthquakes (SSE) where integrity of the system is to be ensured. Shaft seizure can be considered as a consequential failure for SSE. In that case, the supports would simultaneously see an earthquake load on supports in addition to seizure

  13. Systemic Architecture

    DEFF Research Database (Denmark)

    Poletto, Marco; Pasquero, Claudia

    -up or tactical design, behavioural space and the boundary of the natural and the artificial realms within the city and architecture. A new kind of "real-time world-city" is illustrated in the form of an operational design manual for the assemblage of proto-architectures, the incubation of proto-gardens...... and the coding of proto-interfaces. These prototypes of machinic architecture materialize as synthetic hybrids embedded with biological life (proto-gardens), computational power, behavioural responsiveness (cyber-gardens), spatial articulation (coMachines and fibrous structures), remote sensing (FUNclouds...

  14. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Morshed, Nader [University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Echols, Nathaniel, E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D., E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  15. SVM Classifier – a comprehensive java interface for support vector machine classification of microarray data

    Science.gov (United States)

    Pirooznia, Mehdi; Deng, Youping

    2006-01-01

    Motivation Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. Results The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1–BRCA2 samples with RBF kernel of SVM. Conclusion We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at . PMID:17217518

  16. SVM Classifier - a comprehensive java interface for support vector machine classification of microarray data.

    Science.gov (United States)

    Pirooznia, Mehdi; Deng, Youping

    2006-12-12

    Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.

  17. Support vector machines for prediction and analysis of beta and gamma-turns in proteins.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2005-04-01

    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  18. T-wave end detection using neural networks and Support Vector Machines.

    Science.gov (United States)

    Suárez-León, Alexander Alexeis; Varon, Carolina; Willems, Rik; Van Huffel, Sabine; Vázquez-Seisdedos, Carlos Román

    2018-05-01

    In this paper we propose a new approach for detecting the end of the T-wave in the electrocardiogram (ECG) using Neural Networks and Support Vector Machines. Both, Multilayer Perceptron (MLP) neural networks and Fixed-Size Least-Squares Support Vector Machines (FS-LSSVM) were used as regression algorithms to determine the end of the T-wave. Different strategies for selecting the training set such as random selection, k-means, robust clustering and maximum quadratic (Rényi) entropy were evaluated. Individual parameters were tuned for each method during training and the results are given for the evaluation set. A comparison between MLP and FS-LSSVM approaches was performed. Finally, a fair comparison of the FS-LSSVM method with other state-of-the-art algorithms for detecting the end of the T-wave was included. The experimental results show that FS-LSSVM approaches are more suitable as regression algorithms than MLP neural networks. Despite the small training sets used, the FS-LSSVM methods outperformed the state-of-the-art techniques. FS-LSSVM can be successfully used as a T-wave end detection algorithm in ECG even with small training set sizes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Reservoir Inflow Prediction under GCM Scenario Downscaled by Wavelet Transform and Support Vector Machine Hybrid Models

    Directory of Open Access Journals (Sweden)

    Gusfan Halik

    2015-01-01

    Full Text Available Climate change has significant impacts on changing precipitation patterns causing the variation of the reservoir inflow. Nowadays, Indonesian hydrologist performs reservoir inflow prediction according to the technical guideline of Pd-T-25-2004-A. This technical guideline does not consider the climate variables directly, resulting in significant deviation to the observation results. This research intends to predict the reservoir inflow using the statistical downscaling (SD of General Circulation Model (GCM outputs. The GCM outputs are obtained from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP/NCAR Reanalysis. A new proposed hybrid SD model named Wavelet Support Vector Machine (WSVM was utilized. It is a combination of the Multiscale Principal Components Analysis (MSPCA and nonlinear Support Vector Machine regression. The model was validated at Sutami Reservoir, Indonesia. Training and testing were carried out using data of 1991–2008 and 2008–2012, respectively. The results showed that MSPCA produced better extracting data than PCA. The WSVM generated better reservoir inflow prediction than the one of technical guideline. Moreover, this research also applied WSVM for future reservoir inflow prediction based on GCM ECHAM5 and scenario SRES A1B.

  20. Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Jia Uddin

    2014-01-01

    Full Text Available This paper proposes a method for the reliable fault detection and classification of induction motors using two-dimensional (2D texture features and a multiclass support vector machine (MCSVM. The proposed model first converts time-domain vibration signals to 2D gray images, resulting in texture patterns (or repetitive patterns, and extracts these texture features by generating the dominant neighborhood structure (DNS map. The principal component analysis (PCA is then used for the purpose of dimensionality reduction of the high-dimensional feature vector including the extracted texture features due to the fact that the high-dimensional feature vector can degrade classification performance, and this paper configures an effective feature vector including discriminative fault features for diagnosis. Finally, the proposed approach utilizes the one-against-all (OAA multiclass support vector machines (MCSVMs to identify induction motor failures. In this study, the Gaussian radial basis function kernel cooperates with OAA MCSVMs to deal with nonlinear fault features. Experimental results demonstrate that the proposed approach outperforms three state-of-the-art fault diagnosis algorithms in terms of fault classification accuracy, yielding an average classification accuracy of 100% even in noisy environments.

  1. Normal mammogram detection based on local probability difference transforms and support vector machines

    International Nuclear Information System (INIS)

    Chiracharit, W.; Kumhom, P.; Chamnongthai, K.; Sun, Y.; Delp, E.J.; Babbs, C.F

    2007-01-01

    Automatic detection of normal mammograms, as a ''first look'' for breast cancer, is a new approach to computer-aided diagnosis. This approach may be limited, however, by two main causes. The first problem is the presence of poorly separable ''crossed-distributions'' in which the correct classification depends upon the value of each feature. The second problem is overlap of the feature distributions that are extracted from digitized mammograms of normal and abnormal patients. Here we introduce a new Support Vector Machine (SVM) based method utilizing with the proposed uncrossing mapping and Local Probability Difference (LPD). Crossed-distribution feature pairs are identified and mapped into a new features that can be separated by a zero-hyperplane of the new axis. The probability density functions of the features of normal and abnormal mammograms are then sampled and the local probability difference functions are estimated to enhance the features. From 1,000 ground-truth-known mammograms, 250 normal and 250 abnormal cases, including spiculated lesions, circumscribed masses or microcalcifications, are used for training a support vector machine. The classification results tested with another 250 normal and 250 abnormal sets show improved testing performances with 90% sensitivity and 89% specificity. (author)

  2. Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2009-07-01

    Full Text Available Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT and murine local lymph node assay (LLNA are the two most important in vivo models for identification of skin sensitizers. In order to reduce the number of animal tests, quantitative structure-activity relationships (QSARs are strongly encouraged in the assessment of skin sensitization of chemicals. This paper has investigated the skin sensitization potential of 162 compounds with LLNA results and 92 compounds with GPMT results using a support vector machine. A particle swarm optimization algorithm was implemented for feature selection from a large number of molecular descriptors calculated by Dragon. For the LLNA data set, the classification accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and the test sets, respectively. The classification performances were greatly improved compared to those reported in the literature, indicating that the support vector machine optimized by particle swarm in this paper is competent for the identification of skin sensitizers.

  3. Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine

    Science.gov (United States)

    Yuan, Hua; Huang, Jianping; Cao, Chenzhong

    2009-01-01

    Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT) and murine local lymph node assay (LLNA) are the two most important in vivo models for identification of skin sensitizers. In order to reduce the number of animal tests, quantitative structure-activity relationships (QSARs) are strongly encouraged in the assessment of skin sensitization of chemicals. This paper has investigated the skin sensitization potential of 162 compounds with LLNA results and 92 compounds with GPMT results using a support vector machine. A particle swarm optimization algorithm was implemented for feature selection from a large number of molecular descriptors calculated by Dragon. For the LLNA data set, the classification accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and the test sets, respectively. The classification performances were greatly improved compared to those reported in the literature, indicating that the support vector machine optimized by particle swarm in this paper is competent for the identification of skin sensitizers. PMID:19742136

  4. CLASSIFICATION OF ENTREPRENEURIAL INTENTIONS BY NEURAL NETWORKS, DECISION TREES AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2010-12-01

    Full Text Available Entrepreneurial intentions of students are important to recognize during the study in order to provide those students with educational background that will support such intentions and lead them to successful entrepreneurship after the study. The paper aims to develop a model that will classify students according to their entrepreneurial intentions by benchmarking three machine learning classifiers: neural networks, decision trees, and support vector machines. A survey was conducted at a Croatian university including a sample of students at the first year of study. Input variables described students’ demographics, importance of business objectives, perception of entrepreneurial carrier, and entrepreneurial predispositions. Due to a large dimension of input space, a feature selection method was used in the pre-processing stage. For comparison reasons, all tested models were validated on the same out-of-sample dataset, and a cross-validation procedure for testing generalization ability of the models was conducted. The models were compared according to its classification accuracy, as well according to input variable importance. The results show that although the best neural network model produced the highest average hit rate, the difference in performance is not statistically significant. All three models also extract similar set of features relevant for classifying students, which can be suggested to be taken into consideration by universities while designing their academic programs.

  5. Adaptive image denoising based on support vector machine and wavelet description

    Science.gov (United States)

    An, Feng-Ping; Zhou, Xian-Wei

    2017-12-01

    Adaptive image denoising method decomposes the original image into a series of basic pattern feature images on the basis of wavelet description and constructs the support vector machine regression function to realize the wavelet description of the original image. The support vector machine method allows the linear expansion of the signal to be expressed as a nonlinear function of the parameters associated with the SVM. Using the radial basis kernel function of SVM, the original image can be extended into a MEXICAN function and a residual trend. This MEXICAN represents a basic image feature pattern. If the residual does not fluctuate, it can also be represented as a characteristic pattern. If the residuals fluctuate significantly, it is treated as a new image and the same decomposition process is repeated until the residuals obtained by the decomposition do not significantly fluctuate. Experimental results show that the proposed method in this paper performs well; especially, it satisfactorily solves the problem of image noise removal. It may provide a new tool and method for image denoising.

  6. Vision-Based Perception and Classification of Mosquitoes Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Masataka Fuchida

    2017-01-01

    Full Text Available The need for a novel automated mosquito perception and classification method is becoming increasingly essential in recent years, with steeply increasing number of mosquito-borne diseases and associated casualties. There exist remote sensing and GIS-based methods for mapping potential mosquito inhabitants and locations that are prone to mosquito-borne diseases, but these methods generally do not account for species-wise identification of mosquitoes in closed-perimeter regions. Traditional methods for mosquito classification involve highly manual processes requiring tedious sample collection and supervised laboratory analysis. In this research work, we present the design and experimental validation of an automated vision-based mosquito classification module that can deploy in closed-perimeter mosquito inhabitants. The module is capable of identifying mosquitoes from other bugs such as bees and flies by extracting the morphological features, followed by support vector machine-based classification. In addition, this paper presents the results of three variants of support vector machine classifier in the context of mosquito classification problem. This vision-based approach to the mosquito classification problem presents an efficient alternative to the conventional methods for mosquito surveillance, mapping and sample image collection. Experimental results involving classification between mosquitoes and a predefined set of other bugs using multiple classification strategies demonstrate the efficacy and validity of the proposed approach with a maximum recall of 98%.

  7. Extraction of inland Nypa fruticans (Nipa Palm) using Support Vector Machine

    Science.gov (United States)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Biagtan, A. R.; Panuyas, N. Z.; Quibuyen, J. S.

    2017-09-01

    Mangroves are considered as one of the major habitats in coastal ecosystem, providing a lot of economic and ecological services in human society. Nypa fruticans (Nipa palm) is one of the important species of mangroves because of its versatility and uniqueness as halophytic palm. However, nipas are not only adaptable in saline areas, they can also managed to thrive away from the coastline depending on the favorable soil types available in the area. Because of this, mapping of this species are not limited alone in the near shore areas, but in areas where this species are present as well. The extraction process of Nypa fruticans were carried out using the available LiDAR data. Support Vector Machine (SVM) classification process was used to extract nipas in inland areas. The SVM classification process in mapping Nypa fruticans produced high accuracy of 95+%. The Support Vector Machine classification process to extract inland nipas was proven to be effective by utilizing different terrain derivatives from LiDAR data.

  8. Geodesic Flow Kernel Support Vector Machine for Hyperspectral Image Classification by Unsupervised Subspace Feature Transfer

    Directory of Open Access Journals (Sweden)

    Alim Samat

    2016-03-01

    Full Text Available In order to deal with scenarios where the training data, used to deduce a model, and the validation data have different statistical distributions, we study the problem of transformed subspace feature transfer for domain adaptation (DA in the context of hyperspectral image classification via a geodesic Gaussian flow kernel based support vector machine (GFKSVM. To show the superior performance of the proposed approach, conventional support vector machines (SVMs and state-of-the-art DA algorithms, including information-theoretical learning of discriminative cluster for domain adaptation (ITLDC, joint distribution adaptation (JDA, and joint transfer matching (JTM, are also considered. Additionally, unsupervised linear and nonlinear subspace feature transfer techniques including principal component analysis (PCA, randomized nonlinear principal component analysis (rPCA, factor analysis (FA and non-negative matrix factorization (NNMF are investigated and compared. Experiments on two real hyperspectral images show the cross-image classification performances of the GFKSVM, confirming its effectiveness and suitability when applied to hyperspectral images.

  9. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  10. Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Directory of Open Access Journals (Sweden)

    Mario Sansone

    2013-01-01

    Full Text Available Computer systems for Electrocardiogram (ECG analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units or in prompt detection of dangerous events (e.g., ventricular fibrillation. Together with clinical applications (arrhythmia detection and heart rate variability analysis, ECG is currently being investigated in biometrics (human identification, an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned.

  11. Developing an efficient decision support system for non-traditional machine selection: an application of MOORA and MOOSRA

    Directory of Open Access Journals (Sweden)

    Asis Sarkar

    2015-01-01

    Full Text Available The purpose of this paper is to find out an efficient decision support method for non-traditional machine selection. It seeks to analyze potential non-traditional machine selection attributes with a relatively new MCDM approach of MOORA and MOOSRA method. The use of MOORA and MOOSRA method has been adopted to tackle subjective evaluation of information collected from an expert group. An example case study is shown here for better understanding of the said selection module which can be effectively applied to any other decision-making scenario. The method is not only computationally very simple, easily comprehensible, and robust, but also believed to have numerous subjective attributes. The rankings are expected to provide good guidance to the managers of an organization to select a feasible non-traditional machine. It shall also provide a good insight for the non-traditional machine manufacturer who might encourage research work concerning non-traditional machine selection.

  12. The Platform Architecture and Key Technology of Cloud Service that Support Wisdom City Management

    Directory of Open Access Journals (Sweden)

    Liang Xiao

    2013-05-01

    Full Text Available According to the new requirement of constructing “resource sharing and service on demand” wisdom city system, this paper put forward the platform architecture of cloud service for wisdom city management which support IaaS, PaaS and SaaS three types of service model on the basis of researching the operation mode of the wisdom city which under cloud computing environment and through the research of mass storing technology of cloud data, building technology of cloud resource pool, scheduling management methods and monitoring technology of cloud resource, security management and control technology of cloud platform and other key technologies. The platform supports wisdom city system to achieve business or resource scheduling management optimization and the unified and efficient management of large-scale hardware and software, which has the characteristics of cross-domain resource scheduling, cross-domain data sharing, cross-domain facilities integration and cross-domain service integration.

  13. A Reference Architecture for Providing Tools as a Service to Support Global Software Development

    DEFF Research Database (Denmark)

    Chauhan, Aufeef

    2014-01-01

    -computing paradigm for addressing above-mentioned issues by providing a framework to select appropriate tools as well as associated services and reference architecture of the cloud-enabled middleware platform that allows on demand provisioning of software engineering Tools as a Service (TaaS) with focus......Global Software Development (GSD) teams encounter challenges that are associated with distribution of software development activities across multiple geographic regions. The limited support for performing collaborative development and engineering activities and lack of sufficient support......-based solutions. The restricted ability of the organizations to have desired alignment of tools with software engineering and development processes results in administrative and managerial overhead that incur increased development cost and poor product quality. Moreover, stakeholders involved in the projects have...

  14. Collapse moment estimation by support vector machines for wall-thinned pipe bends and elbows

    International Nuclear Information System (INIS)

    Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon

    2007-01-01

    The collapse moment due to wall-thinned defects is estimated through support vector machines with parameters optimized by a genetic algorithm. The support vector regression models are developed and applied to numerical data obtained from the finite element analysis for wall-thinned defects in piping systems. The support vector regression models are optimized by using both the data sets (training data and optimization data) prepared for training and optimization, and its performance verification is performed by using another data set (test data) different from the training data and the optimization data. In this work, three support vector regression models are developed, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.2333% for the training data, 0.5229% for the optimization data and 0.5011% for the test data. It is known from this result that the support vector regression models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows

  15. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles.

    Science.gov (United States)

    Feres, Magda; Louzoun, Yoram; Haber, Simi; Faveri, Marcelo; Figueiredo, Luciene C; Levin, Liran

    2018-02-01

    The existence of specific microbial profiles for different periodontal conditions is still a matter of debate. The aim of this study was to test the hypothesis that 40 bacterial species could be used to classify patients, utilising machine learning, into generalised chronic periodontitis (ChP), generalised aggressive periodontitis (AgP) and periodontal health (PH). Subgingival biofilm samples were collected from patients with AgP, ChP and PH and analysed for their content of 40 bacterial species using checkerboard DNA-DNA hybridisation. Two stages of machine learning were then performed. First of all, we tested whether there was a difference between the composition of bacterial communities in PH and in disease, and then we tested whether a difference existed in the composition of bacterial communities between ChP and AgP. The data were split in each analysis to 70% train and 30% test. A support vector machine (SVM) classifier was used with a linear kernel and a Box constraint of 1. The analysis was divided into two parts. Overall, 435 patients (3,915 samples) were included in the analysis (PH = 53; ChP = 308; AgP = 74). The variance of the healthy samples in all principal component analysis (PCA) directions was smaller than that of the periodontally diseased samples, suggesting that PH is characterised by a uniform bacterial composition and that the bacterial composition of periodontally diseased samples is much more diverse. The relative bacterial load could distinguish between AgP and ChP. An SVC classifier using a panel of 40 bacterial species was able to distinguish between PH, AgP in young individuals and ChP. © 2017 FDI World Dental Federation.

  16. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  17. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Balachandran Manavalan

    2018-03-01

    Full Text Available Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  18. Classification of Autism Spectrum Disorder Using Random Support Vector Machine Cluster

    Directory of Open Access Journals (Sweden)

    Xia-an Bi

    2018-02-01

    Full Text Available Autism spectrum disorder (ASD is mainly reflected in the communication and language barriers, difficulties in social communication, and it is a kind of neurological developmental disorder. Most researches have used the machine learning method to classify patients and normal controls, among which support vector machines (SVM are widely employed. But the classification accuracy of SVM is usually low, due to the usage of a single SVM as classifier. Thus, we used multiple SVMs to classify ASD patients and typical controls (TC. Resting-state functional magnetic resonance imaging (fMRI data of 46 TC and 61 ASD patients were obtained from the Autism Brain Imaging Data Exchange (ABIDE database. Only 84 of 107 subjects are utilized in experiments because the translation or rotation of 7 TC and 16 ASD patients has surpassed ±2 mm or ±2°. Then the random SVM cluster was proposed to distinguish TC and ASD. The results show that this method has an excellent classification performance based on all the features. Furthermore, the accuracy based on the optimal feature set could reach to 96.15%. Abnormal brain regions could also be found, such as inferior frontal gyrus (IFG (orbital and opercula part, hippocampus, and precuneus. It is indicated that the method of random SVM cluster may apply to the auxiliary diagnosis of ASD.

  19. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Support Distribution Machines

    Science.gov (United States)

    Ntampaka, Michelle; Trac, Hy; Sutherland, Dougal; Fromenteau, Sebastien; Poczos, Barnabas; Schneider, Jeff

    2018-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership infor- mation and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width E=0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (E=2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement (E=0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncon- taminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  20. Power Load Event Detection and Classification Based on Edge Symbol Analysis and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2012-01-01

    Full Text Available Energy signature analysis of power appliance is the core of nonintrusive load monitoring (NILM where the detailed data of the appliances used in houses are obtained by analyzing changes in the voltage and current. This paper focuses on developing an automatic power load event detection and appliance classification based on machine learning. In power load event detection, the paper presents a new transient detection algorithm. By turn-on and turn-off transient waveforms analysis, it can accurately detect the edge point when a device is switched on or switched off. The proposed load classification technique can identify different power appliances with improved recognition accuracy and computational speed. The load classification method is composed of two processes including frequency feature analysis and support vector machine. The experimental results indicated that the incorporation of the new edge detection and turn-on and turn-off transient signature analysis into NILM revealed more information than traditional NILM methods. The load classification method has achieved more than ninety percent recognition rate.

  1. Support vector machine based estimation of remaining useful life: current research status and future trends

    International Nuclear Information System (INIS)

    Huang, Hong Zhong; Wang, Hai Kun; Li, Yan Feng; Zhang, Longlong; Liu, Zhiliang

    2015-01-01

    Estimation of remaining useful life (RUL) is helpful to manage life cycles of machines and to reduce maintenance cost. Support vector machine (SVM) is a promising algorithm for estimation of RUL because it can easily process small training sets and multi-dimensional data. Many SVM based methods have been proposed to predict RUL of some key components. We did a literature review related to SVM based RUL estimation within a decade. The references reviewed are classified into two categories: improved SVM algorithms and their applications to RUL estimation. The latter category can be further divided into two types: one, to predict the condition state in the future and then build a relationship between state and RUL; two, to establish a direct relationship between current state and RUL. However, SVM is seldom used to track the degradation process and build an accurate relationship between the current health condition state and RUL. Based on the above review and summary, this paper points out that the ability to continually improve SVM, and obtain a novel idea for RUL prediction using SVM will be future works.

  2. PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine.

    Science.gov (United States)

    Manavalan, Balachandran; Shin, Tae H; Lee, Gwang

    2018-01-01

    Accurately identifying bacteriophage virion proteins from uncharacterized sequences is important to understand interactions between the phage and its host bacteria in order to develop new antibacterial drugs. However, identification of such proteins using experimental techniques is expensive and often time consuming; hence, development of an efficient computational algorithm for the prediction of phage virion proteins (PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136 optimal features. A feature selection protocol was employed to identify the optimal features from a large set that included amino acid composition, dipeptide composition, atomic composition, physicochemical properties, and chain-transition-distribution. PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which was 6% higher than control SVM predictors trained with all features, indicating the efficiency of the feature selection method. Furthermore, PVP-SVM displayed superior performance compared to the currently available method, PVPred, and two other machine-learning methods developed in this study when objectively evaluated with an independent dataset. For the convenience of the scientific community, a user-friendly and publicly accessible web server has been established at www.thegleelab.org/PVP-SVM/PVP-SVM.html.

  3. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    Science.gov (United States)

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small number of training trials.

  4. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    Science.gov (United States)

    Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox

    2015-01-01

    A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186

  5. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    Directory of Open Access Journals (Sweden)

    Daqing Zhang

    2015-01-01

    Full Text Available Blood-brain barrier (BBB is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration.

  6. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    Science.gov (United States)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  7. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    Science.gov (United States)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  8. Implementasi Teknik Seleksi Fitur Pada Klasifikasi Malware Android Menggunakan Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hendra Saputra

    2018-05-01

    Full Text Available Android Malware has grown significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each type of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM. The SVM type will be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used is Correlation-based Feature Selection (CFS, Gain Ratio (GR and Chi-Square (CHI. A result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicates that permission and broadcast receiver can be used in classifying type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection.

  9. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Chih-Feng Chao

    2015-01-01

    Full Text Available The setting of parameters in the support vector machines (SVMs is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM. This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI, machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM. The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.

  10. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins

    Directory of Open Access Journals (Sweden)

    MuthuKrishnan Selvaraj

    2016-01-01

    Full Text Available The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM models were developed for predicting HbL proteins based upon amino acid composition (AC, dipeptide composition (DC, hybrid method (AC + DC, and position specific scoring matrix (PSSM. In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM profiles. The average accuracy, standard deviation (SD, false positive rate (FPR, confusion matrix, and receiver operating characteristic (ROC were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.

  11. Support vector machine classification and validation of cancer tissue samples using microarray expression data.

    Science.gov (United States)

    Furey, T S; Cristianini, N; Duffy, N; Bednarski, D W; Schummer, M; Haussler, D

    2000-10-01

    DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results. We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. The SVM software is available at http://www.cs. columbia.edu/ approximately bgrundy/svm.

  12. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    Directory of Open Access Journals (Sweden)

    Chi-Jim Chen

    2015-03-01

    Full Text Available A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS, successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM, based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates.

  13. Localization of thermal anomalies in electrical equipment using Infrared Thermography and support vector machine

    Science.gov (United States)

    Laib dit Leksir, Y.; Mansour, M.; Moussaoui, A.

    2018-03-01

    Analysis and processing of databases obtained from infrared thermal inspections made on electrical installations require the development of new tools to obtain more information to visual inspections. Consequently, methods based on the capture of thermal images show a great potential and are increasingly employed in this field. However, there is a need for the development of effective techniques to analyse these databases in order to extract significant information relating to the state of the infrastructures. This paper presents a technique explaining how this approach can be implemented and proposes a system that can help to detect faults in thermal images of electrical installations. The proposed method classifies and identifies the region of interest (ROI). The identification is conducted using support vector machine (SVM) algorithm. The aim here is to capture the faults that exist in electrical equipments during an inspection of some machines using A40 FLIR camera. After that, binarization techniques are employed to select the region of interest. Later the comparative analysis of the obtained misclassification errors using the proposed method with Fuzzy c means and Ostu, has also be addressed.

  14. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

    Science.gov (United States)

    Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea

    2012-04-01

    Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    Science.gov (United States)

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  16. Tunnelling support methods and their possible application to machine rock face excavation in coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Maidl, B.; Edeling, H.

    1981-06-11

    Mechanized pushing through the rocks is possible even in teary rock if protective measures are taken directly behind the drill bit. Present arch-type supports are best reinforced with sprayed concrete as it will take up rock deformations. In this case, however, the question soon arises whether arch-type steel supports should be used at all. So far, mature solutions have not been found but they will be possible if the mining industry is really interested. Sprayed concrete with admixtures of reinforcing steel fibers plays a major role here as it will protect miner's heads already at an early stage and is suitable as support even at a later stage. Equally interesting would be reinforced concrete pumped behind advancing formwork. A combination of both techniques may turn out to be the most suitable method to replace arch-type supports. A problem of particular importance is machine bracing in the fresh concrete lining. If the concrete is filled in directly behind the drill bit, it is only 4 to 6 h old when it reaches the bracing device, i.e., its pressure resistance is lower than the contact pressure of present mining machinery. It may be difficult to find a solution here but it is considered to be possible. With shell concrete, the formwork should be constructed so as to withstand the contact pressure.

  17. A Study on Home Based Enterprises in Kampoeng Pandean as Supporting Sustainable Architecture

    Directory of Open Access Journals (Sweden)

    Safeyah Muchlisiniyati

    2016-01-01

    Full Text Available Home Based Enterprises (HBEs provide an enormous impact on the lives of the citizens and the environment. The impacts include: increase income and welfare of the family, provide job opportunities, improve the quality of homes and the environment, and ensure life sustainability. The existence of the business leads changes to the house. Those changes that made to the house are often ignore the comfort of home space and the environment as living space. This study aims to look at the development of HBEs performed by community in Kampoeng Pandean. The measurement items used are architectural sustainability factors, ie economical sustainability, social sustainability, and enviromental sustainability. The study is located in Kampoeng Pandean Sidoarjo. The method used is a combination of qualitative and quantitative method. The results show that HBEs in Kampoeng Pandean have not fully supported the sustainable architecture. Environmental sustainability has not been met, due to the density of the environment, the high percentage of building area to land area, and the construction of business space does not consider the comfort factor.

  18. Support vector machines and evolutionary algorithms for classification single or together?

    CERN Document Server

    Stoean, Catalin

    2014-01-01

    When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.

  19. Bearing Degradation Process Prediction Based on the Support Vector Machine and Markov Model

    Directory of Open Access Journals (Sweden)

    Shaojiang Dong

    2014-01-01

    Full Text Available Predicting the degradation process of bearings before they reach the failure threshold is extremely important in industry. This paper proposed a novel method based on the support vector machine (SVM and the Markov model to achieve this goal. Firstly, the features are extracted by time and time-frequency domain methods. However, the extracted original features are still with high dimensional and include superfluous information, and the nonlinear multifeatures fusion technique LTSA is used to merge the features and reduces the dimension. Then, based on the extracted features, the SVM model is used to predict the bearings degradation process, and the CAO method is used to determine the embedding dimension of the SVM model. After the bearing degradation process is predicted by SVM model, the Markov model is used to improve the prediction accuracy. The proposed method was validated by two bearing run-to-failure experiments, and the results proved the effectiveness of the methodology.

  20. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach.

    Science.gov (United States)

    Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia

    2016-02-01

    To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fault Diagnosis for Distribution Networks Using Enhanced Support Vector Machine Classifier with Classical Multidimensional Scaling

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Cho

    2017-09-01

    Full Text Available In this paper, a new fault diagnosis techniques based on time domain reflectometry (TDR method with pseudo-random binary sequence (PRBS stimulus and support vector machine (SVM classifier has been investigated to recognize the different types of fault in the radial distribution feeders. This novel technique has considered the amplitude of reflected signals and the peaks of cross-correlation (CCR between the reflected and incident wave for generating fault current dataset for SVM. Furthermore, this multi-layer enhanced SVM classifier is combined with classical multidimensional scaling (CMDS feature extraction algorithm and kernel parameter optimization to increase training speed and improve overall classification accuracy. The proposed technique has been tested on a radial distribution feeder to identify ten different types of fault considering 12 input features generated by using Simulink software and MATLAB Toolbox. The success rate of SVM classifier is over 95% which demonstrates the effectiveness and the high accuracy of proposed method.

  2. Prediction of Five Softwood Paper Properties from its Density using Support Vector Machine Regression Techniques

    Directory of Open Access Journals (Sweden)

    Esperanza García-Gonzalo

    2016-01-01

    Full Text Available Predicting paper properties based on a limited number of measured variables can be an important tool for the industry. Mathematical models were developed to predict mechanical and optical properties from the corresponding paper density for some softwood papers using support vector machine regression with the Radial Basis Function Kernel. A dataset of different properties of paper handsheets produced from pulps of pine (Pinus pinaster and P. sylvestris and cypress species (Cupressus lusitanica, C. sempervirens, and C. arizonica beaten at 1000, 4000, and 7000 revolutions was used. The results show that it is possible to obtain good models (with high coefficient of determination with two variables: the numerical variable density and the categorical variable species.

  3. Towards human behavior recognition based on spatio temporal features and support vector machines

    Science.gov (United States)

    Ghabri, Sawsen; Ouarda, Wael; Alimi, Adel M.

    2017-03-01

    Security and surveillance are vital issues in today's world. The recent acts of terrorism have highlighted the urgent need for efficient surveillance. There is indeed a need for an automated system for video surveillance which can detect identity and activity of person. In this article, we propose a new paradigm to recognize an aggressive human behavior such as boxing action. Our proposed system for human activity detection includes the use of a fusion between Spatio Temporal Interest Point (STIP) and Histogram of Oriented Gradient (HoG) features. The novel feature called Spatio Temporal Histogram Oriented Gradient (STHOG). To evaluate the robustness of our proposed paradigm with a local application of HoG technique on STIP points, we made experiments on KTH human action dataset based on Multi Class Support Vector Machines classification. The proposed scheme outperforms basic descriptors like HoG and STIP to achieve 82.26% us an accuracy value of classification rate.

  4. Neutron–gamma discrimination based on the support vector machine method

    International Nuclear Information System (INIS)

    Yu, Xunzhen; Zhu, Jingjun; Lin, ShinTed; Wang, Li; Xing, Haoyang; Zhang, Caixun; Xia, Yuxi; Liu, Shukui; Yue, Qian; Wei, Weiwei; Du, Qiang; Tang, Changjian

    2015-01-01

    In this study, the combination of the support vector machine (SVM) method with the moment analysis method (MAM) is proposed and utilized to perform neutron/gamma (n/γ) discrimination of the pulses from an organic liquid scintillator (OLS). Neutron and gamma events, which can be firmly separated on the scatter plot drawn by the charge comparison method (CCM), are detected to form the training data set and the test data set for the SVM, and the MAM is used to create the feature vectors for individual events in the data sets. Compared to the traditional methods, such as CCM, the proposed method can not only discriminate the neutron and gamma signals, even at lower energy levels, but also provide the corresponding classification accuracy for each event, which is useful in validating the discrimination. Meanwhile, the proposed method can also offer a predication of the classification for the under-energy-limit events

  5. Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines

    International Nuclear Information System (INIS)

    Niazi, Ali; Jameh-Bozorghi, Saeed; Nori-Shargh, Davood

    2008-01-01

    A quantitative structure-property relationship (QSPR) study is suggested for the prediction of toxicity (IGC 50 ) of nitrobenzenes. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the IGC 50 of nitrobenzenes as a function of molecular structures was established by means of the least squares support vector machines (LS-SVM). This model was applied for the prediction of the toxicity (IGC 50 ) of nitrobenzenes, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.0049 for LS-SVM. Results have shown that the introduction of LS-SVM for quantum chemical descriptors drastically enhances the ability of prediction in QSAR studies superior to multiple linear regression and partial least squares

  6. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Nazira Mammadova

    2013-01-01

    Full Text Available This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection.

  7. Active damage detection method based on support vector machine and impulse response

    International Nuclear Information System (INIS)

    Taniguchi, Ryuta; Mita, Akira

    2004-01-01

    An active damage detection method was proposed to characterize damage in bolted joints. The purpose of this study is to propose a damage detection method that can obtain the detailed information of the damage by creating feature vectors for pattern recognition. In the proposed method, the wavelet transform is applied to the sensor signals, and the feature vectors are defined by second power average of the amplitude. The feature vectors generated by experiments were successfully used as the training data for Support Vector Machine (SVM). By applying the wavelet transform to time-frequency analysis, the accuracy of pattern recognition was raised in both correlation coefficient and SVM applications. Moreover, the SVM could identify the damage with very strong discernment capability than others. Applicability of the proposed method was successfully demonstrated. (author)

  8. Efficiency improvement of the maximum power point tracking for PV systems using support vector machine technique

    International Nuclear Information System (INIS)

    Kareim, Ameer A; Mansor, Muhamad Bin

    2013-01-01

    The aim of this paper is to improve efficiency of maximum power point tracking (MPPT) for PV systems. The Support Vector Machine (SVM) was proposed to achieve the MPPT controller. The theoretical, the perturbation and observation (P and O), and incremental conductance (IC) algorithms were used to compare with proposed SVM algorithm. MATLAB models for PV module, theoretical, SVM, P and O, and IC algorithms are implemented. The improved MPPT uses the SVM method to predict the optimum voltage of the PV system in order to extract the maximum power point (MPP). The SVM technique used two inputs which are solar radiation and ambient temperature of the modeled PV module. The results show that the proposed SVM technique has less Root Mean Square Error (RMSE) and higher efficiency than P and O and IC methods.

  9. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    Science.gov (United States)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  10. SYN Flood Attack Detection in Cloud Computing using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zerina Mašetić

    2017-11-01

    Full Text Available Cloud computing is a trending technology, as it reduces the cost of running a business. However, many companies are skeptic moving about towards cloud due to the security concerns. Based on the Cloud Security Alliance report, Denial of Service (DoS attacks are among top 12 attacks in the cloud computing. Therefore, it is important to develop a mechanism for detection and prevention of these attacks. The aim of this paper is to evaluate Support Vector Machine (SVM algorithm in creating the model for classification of DoS attacks and normal network behaviors. The study was performed in several phases: a attack simulation, b data collection, cfeature selection, and d classification. The proposedmodel achieved 100% classification accuracy with true positive rate (TPR of 100%. SVM showed outstanding performance in DoS attack detection and proves that it serves as a valuable asset in the network security area.

  11. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    International Nuclear Information System (INIS)

    Wardaya, P D

    2014-01-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result

  12. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    Science.gov (United States)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  13. Graduating the age-specific fertility pattern using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Anastasia Kostaki

    2009-06-01

    Full Text Available A topic of interest in demographic literature is the graduation of the age-specific fertility pattern. A standard graduation technique extensively used by demographers is to fit parametric models that accurately reproduce it. Non-parametric statistical methodology might be alternatively used for this graduation purpose. Support Vector Machines (SVM is a non-parametric methodology that could be utilized for fertility graduation purposes. This paper evaluates the SVM techniques as tools for graduating fertility rates In that we apply these techniques to empirical age specific fertility rates from a variety of populations, time period, and cohorts. Additionally, for comparison reasons we also fit known parametric models to the same empirical data sets.

  14. Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seizi Someya

    2010-01-01

    Full Text Available Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is based on support vector machines (SVMs. We first clarified the definition of carbohydrate-binding proteins and then constructed positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method delivered 0.92 of the area under the receiver operating characteristic (ROC curve. We also examined two amino acid grouping methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB, we found that the true positive rate of prediction was improved.

  15. A SUPPORT VECTOR MACHINE APPROACH FOR DEVELOPING TELEMEDICINE SOLUTIONS: MEDICAL DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Mihaela GHEORGHE

    2015-06-01

    Full Text Available Support vector machine represents an important tool for artificial neural networks techniques including classification and prediction. It offers a solution for a wide range of different issues in which cases the traditional optimization algorithms and methods cannot be applied directly due to different constraints, including memory restrictions, hidden relationships between variables, very high volume of computations that needs to be handled. One of these issues relates to medical diagnosis, a subset of the medical field. In this paper, the SVM learning algorithm is tested on a diabetes dataset and the results obtained for training with different kernel functions are presented and analyzed in order to determine a good approach from a telemedicine perspective.

  16. Classification of ECG signal with Support Vector Machine Method for Arrhythmia Detection

    Science.gov (United States)

    Turnip, Arjon; Ilham Rizqywan, M.; Kusumandari, Dwi E.; Turnip, Mardi; Sihombing, Poltak

    2018-03-01

    An electrocardiogram is a potential bioelectric record that occurs as a result of cardiac activity. QRS Detection with zero crossing calculation is one method that can precisely determine peak R of QRS wave as part of arrhythmia detection. In this paper, two experimental scheme (2 minutes duration with different activities: relaxed and, typing) were conducted. From the two experiments it were obtained: accuracy, sensitivity, and positive predictivity about 100% each for the first experiment and about 79%, 93%, 83% for the second experiment, respectively. Furthermore, the feature set of MIT-BIH arrhythmia using the support vector machine (SVM) method on the WEKA software is evaluated. By combining the available attributes on the WEKA algorithm, the result is constant since all classes of SVM goes to the normal class with average 88.49% accuracy.

  17. Detection of Gastric Cancer with Fourier Transform Infrared Spectroscopy and Support Vector Machine Classification

    Directory of Open Access Journals (Sweden)

    Qingbo Li

    2013-01-01

    Full Text Available Early diagnosis and early medical treatments are the keys to save the patients' lives and improve the living quality. Fourier transform infrared (FT-IR spectroscopy can distinguish malignant from normal tissues at the molecular level. In this paper, programs were made with pattern recognition method to classify unknown samples. Spectral data were pretreated by using smoothing and standard normal variate (SNV methods. Leave-one-out cross validation was used to evaluate the discrimination result of support vector machine (SVM method. A total of 54 gastric tissue samples were employed in this study, including 24 cases of normal tissue samples and 30 cases of cancerous tissue samples. The discrimination results of SVM method showed the sensitivity with 100%, specificity with 83.3%, and total discrimination accuracy with 92.2%.

  18. Modulation transfer function (MTF) measurement method based on support vector machine (SVM)

    Science.gov (United States)

    Zhang, Zheng; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2016-03-01

    An imaging system's spatial quality can be expressed by the system's modulation spread function (MTF) as a function of spatial frequency in terms of the linear response theory. Methods have been proposed to assess the MTF of an imaging system using point, slit or edge techniques. The edge method is widely used for the low requirement of targets. However, the traditional edge methods are limited by the edge angle. Besides, image noise will impair the measurement accuracy, making the measurement result unstable. In this paper, a novel measurement method based on the support vector machine (SVM) is proposed. Image patches with different edge angles and MTF levels are generated as the training set. Parameters related with MTF and image structure are extracted from the edge images. Trained with image parameters and the corresponding MTF, the SVM classifier can assess the MTF of any edge image. The result shows that the proposed method has an excellent performance on measuring accuracy and stability.

  19. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    Science.gov (United States)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  20. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round-nose tools

    Science.gov (United States)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  1. Partial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Hilton de Oliveira; Rocha, Leonardo Chaves Dutra da [Department of Computer Science, Federal University of Sao Joao del-Rei, Visconde do Rio Branco Ave., Colonia do Bengo, Sao Joao del-Rei, MG, 36301-360 (Brazil); Salles, Thiago Cunha de Moura [Department of Computer Science, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil); Vasconcelos, Flavio Henrique [Department of Electrical Engineering, Federal University of Minas Gerais, 6627 Antonio Carlos Ave., Pampulha, Belo Horizonte, MG, 31270-901 (Brazil)

    2011-02-15

    In this paper an improved method to denoise partial discharge (PD) signals is presented. The method is based on the wavelet transform (WT) and support vector machines (SVM) and is distinct from other WT-based denoising strategies in the sense that it exploits the high spatial correlations presented by PD wavelet decompositions as a way to identify and select the relevant coefficients. PD spatial correlations are characterized by WT modulus maxima propagation along decomposition levels (scales), which are a strong indicative of the their time-of-occurrence. Denoising is performed by identification and separation of PD-related maxima lines by an SVM pattern classifier. The results obtained confirm that this method has superior denoising capabilities when compared to other WT-based methods found in the literature for the processing of Gaussian and discrete spectral interferences. Moreover, its greatest advantages become clear when the interference has a pulsating or localized shape, situation in which traditional methods usually fail. (author)

  2. Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine

    Science.gov (United States)

    Santoso, Noviyanti; Wibowo, Wahyu

    2018-03-01

    A financial difficulty is the early stages before the bankruptcy. Bankruptcies caused by the financial distress can be seen from the financial statements of the company. The ability to predict financial distress became an important research topic because it can provide early warning for the company. In addition, predicting financial distress is also beneficial for investors and creditors. This research will be made the prediction model of financial distress at industrial companies in Indonesia by comparing the performance of Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) combined with variable selection technique. The result of this research is prediction model based on hybrid Stepwise-SVM obtains better balance among fitting ability, generalization ability and model stability than the other models.

  3. Automatic SLEEP staging: From young aduslts to elderly patients using multi-class support vector machine

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Jennum, Poul; Sorensen, Helge B. D.

    2013-01-01

    an automatic sleep stage detector, which can separate wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep using only EEG and EOG. Most sleep events, which define the sleep stages, are reduced with age. This is addressed by focusing on the amplitude of the clinical EEG bands......Aging is a process that is inevitable, and makes our body vulnerable to age-related diseases. Age is the most consistent factor affecting the sleep structure. Therefore, new automatic sleep staging methods, to be used in both of young and elderly patients, are needed. This study proposes......, and not the affected sleep events. The age-related influences are then reduced by robust subject-specific scaling. The classification of the three sleep stages are achieved by a multi-class support vector machine using the one-versus-rest scheme. It was possible to obtain a high classification accuracy of 0...

  4. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation.

    Science.gov (United States)

    Halder, Sebastian; Bensch, Michael; Mellinger, Jürgen; Bogdan, Martin; Kübler, Andrea; Birbaumer, Niels; Rosenstiel, Wolfgang

    2007-01-01

    We propose a combination of blind source separation (BSS) and independent component analysis (ICA) (signal decomposition into artifacts and nonartifacts) with support vector machines (SVMs) (automatic classification) that are designed for online usage. In order to select a suitable BSS/ICA method, three ICA algorithms (JADE, Infomax, and FastICA) and one BSS algorithm (AMUSE) are evaluated to determine their ability to isolate electromyographic (EMG) and electrooculographic (EOG) artifacts into individual components. An implementation of the selected BSS/ICA method with SVMs trained to classify EMG and EOG artifacts, which enables the usage of the method as a filter in measurements with online feedback, is described. This filter is evaluated on three BCI datasets as a proof-of-concept of the method.

  5. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  6. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  7. Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony.

    Science.gov (United States)

    Gao, Lingyun; Ye, Mingquan; Wu, Changrong

    2017-11-29

    Intelligent optimization algorithms have advantages in dealing with complex nonlinear problems accompanied by good flexibility and adaptability. In this paper, the FCBF (Fast Correlation-Based Feature selection) method is used to filter irrelevant and redundant features in order to improve the quality of cancer classification. Then, we perform classification based on SVM (Support Vector Machine) optimized by PSO (Particle Swarm Optimization) combined with ABC (Artificial Bee Colony) approaches, which is represented as PA-SVM. The proposed PA-SVM method is applied to nine cancer datasets, including five datasets of outcome prediction and a protein dataset of ovarian cancer. By comparison with other classification methods, the results demonstrate the effectiveness and the robustness of the proposed PA-SVM method in handling various types of data for cancer classification.

  8. Detection of License Plate using Sliding Window, Histogram of Oriented Gradient, and Support Vector Machines Method

    Science.gov (United States)

    Astawa, INGA; Gusti Ngurah Bagus Caturbawa, I.; Made Sajayasa, I.; Dwi Suta Atmaja, I. Made Ari

    2018-01-01

    The license plate recognition usually used as part of system such as parking system. License plate detection considered as the most important step in the license plate recognition system. We propose methods that can be used to detect the vehicle plate on mobile phone. In this paper, we used Sliding Window, Histogram of Oriented Gradient (HOG), and Support Vector Machines (SVM) method to license plate detection so it will increase the detection level even though the image is not in a good quality. The image proceed by Sliding Window method in order to find plate position. Feature extraction in every window movement had been done by HOG and SVM method. Good result had shown in this research, which is 96% of accuracy.

  9. Process service quality evaluation based on Dempster-Shafer theory and support vector machine.

    Science.gov (United States)

    Pei, Feng-Que; Li, Dong-Bo; Tong, Yi-Fei; He, Fei

    2017-01-01

    Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM) and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs) are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.

  10. Pipeline leakage recognition based on the projection singular value features and support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wei; Zhang, Laibin; Mingda, Wang; Jinqiu, Hu [College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, (China)

    2010-07-01

    The negative wave pressure method is one of the processes used to detect leaks on oil pipelines. The development of new leakage recognition processes is difficult because it is practically impossible to collect leakage pressure samples. The method of leakage feature extraction and the selection of the recognition model are also important in pipeline leakage detection. This study investigated a new feature extraction approach Singular Value Projection (SVP). It projects the singular value to a standard basis. A new pipeline recognition model based on the multi-class Support Vector Machines was also developed. It was found that SVP is a clear and concise recognition feature of the negative pressure wave. Field experiments proved that the model provided a high recognition accuracy rate. This approach to pipeline leakage detection based on the SVP and SVM has a high application value.

  11. Convergence Of Cloud Computing Internet Of Things And Machine Learning The Future Of Decision Support Systems

    Directory of Open Access Journals (Sweden)

    Gilberto Crespo-Perez

    2017-07-01

    Full Text Available The objective of this research was to develop a framework for understanding the Convergence of Cloud Computing Machine Learning and Internet of Things as the future of Decision Support Systems. To develop this framework the researchers analyzed and synthesized 35 research articles from 2006 to 2017. The results indicated that when the data is massive it is necessary to use computational algorithms and complex analytical techniques. The Internet of Things in combination with the large accumulation of data and data mining improves the learning of automatic intelligence for business. This is due to the fact that the technology has the intelligence to infer and provide solutions based on past experiences and past events.

  12. A Support Vector Machine-Based Gender Identification Using Speech Signal

    Science.gov (United States)

    Lee, Kye-Hwan; Kang, Sang-Ick; Kim, Deok-Hwan; Chang, Joon-Hyuk

    We propose an effective voice-based gender identification method using a support vector machine (SVM). The SVM is a binary classification algorithm that classifies two groups by finding the voluntary nonlinear boundary in a feature space and is known to yield high classification performance. In the present work, we compare the identification performance of the SVM with that of a Gaussian mixture model (GMM)-based method using the mel frequency cepstral coefficients (MFCC). A novel approach of incorporating a features fusion scheme based on a combination of the MFCC and the fundamental frequency is proposed with the aim of improving the performance of gender identification. Experimental results demonstrate that the gender identification performance using the SVM is significantly better than that of the GMM-based scheme. Moreover, the performance is substantially improved when the proposed features fusion technique is applied.

  13. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    Science.gov (United States)

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  14. Process service quality evaluation based on Dempster-Shafer theory and support vector machine.

    Directory of Open Access Journals (Sweden)

    Feng-Que Pei

    Full Text Available Human involvement influences traditional service quality evaluations, which triggers an evaluation's low accuracy, poor reliability and less impressive predictability. This paper proposes a method by employing a support vector machine (SVM and Dempster-Shafer evidence theory to evaluate the service quality of a production process by handling a high number of input features with a low sampling data set, which is called SVMs-DS. Features that can affect production quality are extracted by a large number of sensors. Preprocessing steps such as feature simplification and normalization are reduced. Based on three individual SVM models, the basic probability assignments (BPAs are constructed, which can help the evaluation in a qualitative and quantitative way. The process service quality evaluation results are validated by the Dempster rules; the decision threshold to resolve conflicting results is generated from three SVM models. A case study is presented to demonstrate the effectiveness of the SVMs-DS method.

  15. Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine

    Science.gov (United States)

    Lawi, Armin; Sya'Rani Machrizzandi, M.

    2018-03-01

    Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.

  16. Data on Support Vector Machines (SVM model to forecast photovoltaic power

    Directory of Open Access Journals (Sweden)

    M. Malvoni

    2016-12-01

    Full Text Available The data concern the photovoltaic (PV power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015 [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA are applied to the Least Squares Support Vector Machines (LS-SVM to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  17. Modeling a ground-coupled heat pump system by a support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-08-15

    This paper reports on a modeling study of ground coupled heat pump (GCHP) system performance (COP) by using a support vector machine (SVM) method. A GCHP system is a multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for generalization, and this capability is independent of the dimensionality of the input data. In this study, a SVM based method was intended to adopt GCHP system for efficient modeling. The Lin-kernel SVM method was quite efficient in modeling purposes and did not require a pre-knowledge about the system. The performance of the proposed methodology was evaluated by using several statistical validation parameters. It is found that the root-mean squared (RMS) value is 0.002722, the coefficient of multiple determinations (R{sup 2}) value is 0.999999, coefficient of variation (cov) value is 0.077295, and mean error function (MEF) value is 0.507437 for the proposed Lin-kernel SVM method. The optimum parameters of the SVM method were determined by using a greedy search algorithm. This search algorithm was effective for obtaining the optimum parameters. The simulation results show that the SVM is a good method for prediction of the COP of the GCHP system. The computation of SVM model is faster compared with other machine learning techniques (artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS)); because there are fewer free parameters and only support vectors (only a fraction of all data) are used in the generalization process. (author)

  18. Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration

    International Nuclear Information System (INIS)

    Chen, Ji-Long; Li, Guo-Sheng; Wu, Sheng-Jun

    2013-01-01

    Highlights: • Support vector machine is used to estimate daily solar radiation from sunshine duration. • Seven SVM models using different input attributes are evaluated using 35 years long term data. • SVM models significantly outperform the empirical models. • The optimal SVM model is proposed. - Abstract: Estimation of solar radiation from sunshine duration offers an important alternative in the absence of measured solar radiation. However, due to the dynamic nature of atmosphere, accurate estimation of daily solar radiation has been being a challenging task. This paper presents an application of Support vector machine (SVM) to estimation of daily solar radiation using sunshine duration. Seven SVM models using different input attributes and five empirical sunshine-based models are evaluated using meteorological data at three stations in Liaoning province in China. All the SVM models give good performances and significantly outperform the empirical models. The newly developed model, SVM1 using sunshine ratio as input attribute, is preferred due to its greater accuracy and simple input attribute. It performs better in winter, while highest root mean square error and relative root mean square error are obtained in summer. The season-dependent SVM model is superior to the fixed model in estimation of daily solar radiation for winter, while consideration of seasonal variation of the data sets cannot improve the results for spring, summer and autumn. Moreover, daily solar radiation could be well estimated by SVM1 using the data from nearby stations. The results indicate that the SVM method would be a promising alternative over the traditional approaches for estimation of daily solar radiation

  19. Support vector machine based diagnostic system for breast cancer using swarm intelligence.

    Science.gov (United States)

    Chen, Hui-Ling; Yang, Bo; Wang, Gang; Wang, Su-Jing; Liu, Jie; Liu, Da-You

    2012-08-01

    Breast cancer is becoming a leading cause of death among women in the whole world, meanwhile, it is confirmed that the early detection and accurate diagnosis of this disease can ensure a long survival of the patients. In this paper, a swarm intelligence technique based support vector machine classifier (PSO_SVM) is proposed for breast cancer diagnosis. In the proposed PSO-SVM, the issue of model selection and feature selection in SVM is simultaneously solved under particle swarm (PSO optimization) framework. A weighted function is adopted to design the objective function of PSO, which takes into account the average accuracy rates of SVM (ACC), the number of support vectors (SVs) and the selected features simultaneously. Furthermore, time varying acceleration coefficients (TVAC) and inertia weight (TVIW) are employed to efficiently control the local and global search in PSO algorithm. The effectiveness of PSO-SVM has been rigorously evaluated against the Wisconsin Breast Cancer Dataset (WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The proposed system is compared with the grid search method with feature selection by F-score. The experimental results demonstrate that the proposed approach not only obtains much more appropriate model parameters and discriminative feature subset, but also needs smaller set of SVs for training, giving high predictive accuracy. In addition, Compared to the existing methods in previous studies, the proposed system can also be regarded as a promising success with the excellent classification accuracy of 99.3% via 10-fold cross validation (CV) analysis. Moreover, a combination of five informative features is identified, which might provide important insights to the nature of the breast cancer disease and give an important clue for the physicians to take a closer attention. We believe the promising result can ensure that the physicians make very accurate diagnostic decision in

  20. Conceptual design supporting tool between architectural design office and its client

    NARCIS (Netherlands)

    Shen, JiangTao

    2012-01-01

    Accompanied with the continuation of rapid Chinese economic growth through the past decades, I have experienced great changes happened in the architectural design industry. Computer science and various architectural design theories had been widely applied; traditional design institutes, which based

  1. Large-scale ligand-based predictive modelling using support vector machines.

    Science.gov (United States)

    Alvarsson, Jonathan; Lampa, Samuel; Schaal, Wesley; Andersson, Claes; Wikberg, Jarl E S; Spjuth, Ola

    2016-01-01

    The increasing size of datasets in drug discovery makes it challenging to build robust and accurate predictive models within a reasonable amount of time. In order to investigate the effect of dataset sizes on predictive performance and modelling time, ligand-based regression models were trained on open datasets of varying sizes of up to 1.2 million chemical structures. For modelling, two implementations of support vector machines (SVM) were used. Chemical structures were described by the signatures molecular descriptor. Results showed that for the larger datasets, the LIBLINEAR SVM implementation performed on par with the well-established libsvm with a radial basis function kernel, but with dramatically less time for model building even on modest computer resources. Using a non-linear kernel proved to be infeasible for large data sizes, even with substantial computational resources on a computer cluster. To deploy the resulting models, we extended the Bioclipse decision support framework to support models from LIBLINEAR and made our models of logD and solubility available from within Bioclipse.

  2. Service-oriented architectural framework for support and automation of collaboration tasks

    Directory of Open Access Journals (Sweden)

    Ana Sasa

    2011-06-01

    Full Text Available Due to more and more demanding requirements for business flexibility and agility, automation of end-to-end industrial processes has become an important topic. Systems supporting business process execution need to enable automated tasks execution as well as integrate human performed tasks (human tasks into a business process. In this paper, we focus on collaboration tasks, which are an important type of composite human tasks. We propose a service-oriented architectural framework describing a service responsible for human task execution (Human task service, which not only implements collaboration tasks but also improves their execution by automated and semi-automated decision making and collaboration based on ontologies and agent technology. The approach is very generic and can be used for any type of business processes. A case study was performed for a human task intensive business process from an electric power transmission domain.

  3. An Internet of Things platform architecture for supporting ambient assisted living environments.

    Science.gov (United States)

    Tsirmpas, Charalampos; Kouris, Ioannis; Anastasiou, Athanasios; Giokas, Kostas; Iliopoulou, Dimitra; Koutsouris, Dimitris

    2017-01-01

    Internet of Things (IoT) is the logical further development of today's Internet, enabling a huge amount of devices to communicate, compute, sense and act. IoT sensors placed in Ambient Assisted Living (AAL) environments, enable the context awareness and allow the support of the elderly in their daily routines, ultimately allowing an independent and safe lifestyle. The vast amount of data that are generated and exchanged between the IoT nodes require innovative context modeling approaches that go beyond currently used models. Current paper presents and evaluates an open interoperable platform architecture in order to utilize the technical characteristics of IoT and handle the large amount of generated data, as a solution to the technical requirements of AAL applications.

  4. Building the Knowledge Base to Support the Automatic Animation Generation of Chinese Traditional Architecture

    Science.gov (United States)

    Wei, Gongjin; Bai, Weijing; Yin, Meifang; Zhang, Songmao

    We present a practice of applying the Semantic Web technologies in the domain of Chinese traditional architecture. A knowledge base consisting of one ontology and four rule bases is built to support the automatic generation of animations that demonstrate the construction of various Chinese timber structures based on the user's input. Different Semantic Web formalisms are used, e.g., OWL DL, SWRL and Jess, to capture the domain knowledge, including the wooden components needed for a given building, construction sequence, and the 3D size and position of every piece of wood. Our experience in exploiting the current Semantic Web technologies in real-world application systems indicates their prominent advantages (such as the reasoning facilities and modeling tools) as well as the limitations (such as low efficiency).

  5. Supporting Undergraduate Computer Architecture Students Using a Visual MIPS64 CPU Simulator

    Science.gov (United States)

    Patti, D.; Spadaccini, A.; Palesi, M.; Fazzino, F.; Catania, V.

    2012-01-01

    The topics of computer architecture are always taught using an Assembly dialect as an example. The most commonly used textbooks in this field use the MIPS64 Instruction Set Architecture (ISA) to help students in learning the fundamentals of computer architecture because of its orthogonality and its suitability for real-world applications. This…

  6. Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine

    Directory of Open Access Journals (Sweden)

    Hosein Nouri-Ahmadabadi

    2017-12-01

    Full Text Available In this study, an intelligent system based on combined machine vision (MV and Support Vector Machine (SVM was developed for sorting of peeled pistachio kernels and shells. The system was composed of conveyor belt, lighting box, camera, processing unit and sorting unit. A color CCD camera was used to capture images. The images were digitalized by a capture card and transferred to a personal computer for further analysis. Initially, images were converted from RGB color space to HSV color ones. For segmentation of the acquired images, H-component in the HSV color space and Otsu thresholding method were applied. A feature vector containing 30 color features was extracted from the captured images. A feature selection method based on sensitivity analysis was carried out to select superior features. The selected features were presented to SVM classifier. Various SVM models having a different kernel function were developed and tested. The SVM model having cubic polynomial kernel function and 38 support vectors achieved the best accuracy (99.17% and then was selected to use in online decision-making unit of the system. By launching the online system, it was found that limiting factors of the system capacity were related to the hardware parts of the system (conveyor belt and pneumatic valves used in the sorting unit. The limiting factors led to a distance of 8 mm between the samples. The overall accuracy and capacity of the sorter were obtained 94.33% and 22.74 kg/h, respectively. Keywords: Pistachio kernel, Sorting, Machine vision, Sensitivity analysis, Support vector machine

  7. Decision support at home (DS@HOME – system architectures and requirements

    Directory of Open Access Journals (Sweden)

    Marschollek Michael

    2012-05-01

    Full Text Available Abstract Background Demographic change with its consequences of an aging society and an increase in the demand for care in the home environment has triggered intensive research activities in sensor devices and smart home technologies. While many advanced technologies are already available, there is still a lack of decision support systems (DSS for the interpretation of data generated in home environments. The aim of the research for this paper is to present the state-of-the-art in DSS for these data, to define characteristic properties of such systems, and to define the requirements for successful home care DSS implementations. Methods A literature review was performed along with the analysis of cross-references. Characteristic properties are proposed and requirements are derived from the available body of literature. Results 79 papers were identified and analyzed, of which 20 describe implementations of decision components. Most authors mention server-based decision support components, but only few papers provide details about the system architecture or the knowledge base. A list of requirements derived from the analysis is presented. Among the primary drawbacks of current systems are the missing integration of DSS in current health information system architectures including interfaces, the missing agreement among developers with regard to the formalization and customization of medical knowledge and a lack of intelligent algorithms to interpret data from multiple sources including clinical application systems. Conclusions Future research needs to address these issues in order to provide useful information – and not only large amounts of data – for both the patient and the caregiver. Furthermore, there is a need for outcome studies allowing for identifying successful implementation concepts.

  8. Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data

    Directory of Open Access Journals (Sweden)

    Simpson David

    2006-03-01

    Full Text Available Abstract Background Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of the many genes specifically or highly expressed in these cells. Over the last decades, different experimental approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA analysis technology has generated large amounts of gene expression data relevant to retinal development. This paper assesses a machine learning methodology for supporting the identification of photoreceptor enriched genes based on expression data. Results Based on the analysis of publicly-available gene expression data from the developing mouse retina generated by serial analysis of gene expression (SAGE, this paper presents a predictive methodology comprising several in silico models for detecting key complex features and relationships encoded in the data, which may be useful to distinguish genes in terms of their functional roles. In order to understand temporal patterns of photoreceptor gene expression during retinal development, a two-way cluster analysis was firstly performed. By clustering SAGE libraries, a hierarchical tree reflecting relationships between developmental stages was obtained. By clustering SAGE tags, a more comprehensive expression profile for photoreceptor cells was revealed. To demonstrate the usefulness of machine learning-based models in predicting functional associations from the SAGE data, three supervised classification models were compared. The results indicated that a relatively simple instance-based model (KStar model performed significantly better than relatively more complex algorithms, e.g. neural networks. To deal with the problem of functional class imbalance occurring in the dataset, two data re

  9. A model for Intelligent Random Access Memory architecture (IRAM) cellular automata algorithms on the Associative String Processing machine (ASTRA)

    CERN Document Server

    Rohrbach, F; Vesztergombi, G

    1997-01-01

    In the near future, the computer performance will be completely determined by how long it takes to access memory. There are bottle-necks in memory latency and memory-to processor interface bandwidth. The IRAM initiative could be the answer by putting Processor-In-Memory (PIM). Starting from the massively parallel processing concept, one reached a similar conclusion. The MPPC (Massively Parallel Processing Collaboration) project and the 8K processor ASTRA machine (Associative String Test bench for Research \\& Applications) developed at CERN \\cite{kuala} can be regarded as a forerunner of the IRAM concept. The computing power of the ASTRA machine, regarded as an IRAM with 64 one-bit processors on a 64$\\times$64 bit-matrix memory chip machine, has been demonstrated by running statistical physics algorithms: one-dimensional stochastic cellular automata, as a simple model for dynamical phase transitions. As a relevant result for physics, the damage spreading of this model has been investigated.

  10. Preliminary design and manufacturing feasibility study for a machined Zircaloy triangular pitch fuel rod support system (grids) (AWBA development program)

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1981-07-01

    General design features and manufacturing operations for a high precision machined Zircaloy fuel rod support grid intended for use in advanced light water prebreeder or breeder reactor designs are described. The grid system consists of a Zircaloy main body with fuel rod and guide tube cells machined using wire EDM, a separate AM-350 stainless steel insert spring which fits into a full length T-slot in each fuel rod cell, and a thin (0.025'' or 0.040'' thick) wire EDM machined Zircaloy coverplate laser welded to each side of the grid body to retain the insert springs. The fuel rods are placed in a triangular pitch array with a tight rod-to-rod spacing of 0.063 inch nominal. Two dimples are positioned at the mid-thickness of the grid (single level) with a 90 0 included angle. Data is provided on the effectiveness of the manufacturing operations chosen for grid machining and assembly

  11. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  12. NASA's Earth Science Gateway: A Platform for Interoperable Services in Support of the GEOSS Architecture

    Science.gov (United States)

    Alameh, N.; Bambacus, M.; Cole, M.

    2006-12-01

    Nasa's Earth Science as well as interdisciplinary research and applications activities require access to earth observations, analytical models and specialized tools and services, from diverse distributed sources. Interoperability and open standards for geospatial data access and processing greatly facilitate such access among the information and processing compo¬nents related to space¬craft, airborne, and in situ sensors; predictive models; and decision support tools. To support this mission, NASA's Geosciences Interoperability Office (GIO) has been developing the Earth Science Gateway (ESG; online at http://esg.gsfc.nasa.gov) by adapting and deploying a standards-based commercial product. Thanks to extensive use of open standards, ESG can tap into a wide array of online data services, serve a variety of audiences and purposes, and adapt to technology and business changes. Most importantly, the use of open standards allow ESG to function as a platform within a larger context of distributed geoscience processing, such as the Global Earth Observing System of Systems (GEOSS). ESG shares the goals of GEOSS to ensure that observations and products shared by users will be accessible, comparable, and understandable by relying on common standards and adaptation to user needs. By maximizing interoperability, modularity, extensibility and scalability, ESG's architecture fully supports the stated goals of GEOSS. As such, ESG's role extends beyond that of a gateway to NASA science data to become a shared platform that can be leveraged by GEOSS via: A modular and extensible architecture Consensus and community-based standards (e.g. ISO and OGC standards) A variety of clients and visualization techniques, including WorldWind and Google Earth A variety of services (including catalogs) with standard interfaces Data integration and interoperability Mechanisms for user involvement and collaboration Mechanisms for supporting interdisciplinary and domain-specific applications ESG

  13. Diagnosing tuberculosis with a novel support vector machine-based artificial immune recognition system.

    Science.gov (United States)

    Saybani, Mahmoud Reza; Shamshirband, Shahaboddin; Golzari Hormozi, Shahram; Wah, Teh Ying; Aghabozorgi, Saeed; Pourhoseingholi, Mohamad Amin; Olariu, Teodora

    2015-04-01

    Tuberculosis (TB) is a major global health problem, which has been ranked as the second leading cause of death from an infectious disease worldwide. Diagnosis based on cultured specimens is the reference standard, however results take weeks to process. Scientists are looking for early detection strategies, which remain the cornerstone of tuberculosis control. Consequently there is a need to develop an expert system that helps medical professionals to accurately and quickly diagnose the disease. Artificial Immune Recognition System (AIRS) has been used successfully for diagnosing various diseases. However, little effort has been undertaken to improve its classification accuracy. In order to increase the classification accuracy of AIRS, this study introduces a new hybrid system that incorporates a support vector machine into AIRS for diagnosing tuberculosis. Patient epacris reports obtained from the Pasteur laboratory of Iran were used as the benchmark data set, with the sample size of 175 (114 positive samples for TB and 60 samples in the negative group). The strategy of this study was to ensure representativeness, thus it was important to have an adequate number of instances for both TB and non-TB cases. The classification performance was measured through 10-fold cross-validation, Root Mean Squared Error (RMSE), sensitivity and specificity, Youden's Index, and Area Under the Curve (AUC). Statistical analysis was done using the Waikato Environment for Knowledge Analysis (WEKA), a machine learning program for windows. With an accuracy of 100%, sensitivity of 100%, specificity of 100%, Youden's Index of 1, Area Under the Curve of 1, and RMSE of 0, the proposed method was able to successfully classify tuberculosis patients. There have been many researches that aimed at diagnosing tuberculosis faster and more accurately. Our results described a model for diagnosing tuberculosis with 100% sensitivity and 100% specificity. This model can be used as an additional tool for

  14. Support vector machine learning-based fMRI data group analysis.

    Science.gov (United States)

    Wang, Ze; Childress, Anna R; Wang, Jiongjiong; Detre, John A

    2007-07-15

    To explore the multivariate nature of fMRI data and to consider the inter-subject brain response discrepancies, a multivariate and brain response model-free method is fundamentally required. Two such methods are presented in this paper by integrating a machine learning algorithm, the support vector machine (SVM), and the random effect model. Without any brain response modeling, SVM was used to extract a whole brain spatial discriminance map (SDM), representing the brain response difference between the contrasted experimental conditions. Population inference was then obtained through the random effect analysis (RFX) or permutation testing (PMU) on the individual subjects' SDMs. Applied to arterial spin labeling (ASL) perfusion fMRI data, SDM RFX yielded lower false-positive rates in the null hypothesis test and higher detection sensitivity for synthetic activations with varying cluster size and activation strengths, compared to the univariate general linear model (GLM)-based RFX. For a sensory-motor ASL fMRI study, both SDM RFX and SDM PMU yielded similar activation patterns to GLM RFX and GLM PMU, respectively, but with higher t values and cluster extensions at the same significance level. Capitalizing on the absence of temporal noise correlation in ASL data, this study also incorporated PMU in the individual-level GLM and SVM analyses accompanied by group-level analysis through RFX or group-level PMU. Providing inferences on the probability of being activated or deactivated at each voxel, these individual-level PMU-based group analysis methods can be used to threshold the analysis results of GLM RFX, SDM RFX or SDM PMU.

  15. Object Recognition System-on-Chip Using the Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Houzet Dominique

    2005-01-01

    Full Text Available The first aim of this work is to propose the design of a system-on-chip (SoC platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  16. Support vector machine-based facial-expression recognition method combining shape and appearance

    Science.gov (United States)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  17. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    Science.gov (United States)

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Near Real-Time Dust Aerosol Detection with Support Vector Machines for Regression

    Science.gov (United States)

    Rivas-Perea, P.; Rivas-Perea, P. E.; Cota-Ruiz, J.; Aragon Franco, R. A.

    2015-12-01

    Remote sensing instruments operating in the near-infrared spectrum usually provide the necessary information for further dust aerosol spectral analysis using statistical or machine learning algorithms. Such algorithms have proven to be effective in analyzing very specific case studies or dust events. However, very few make the analysis open to the public on a regular basis, fewer are designed specifically to operate in near real-time to higher resolutions, and almost none give a global daily coverage. In this research we investigated a large-scale approach to a machine learning algorithm called "support vector regression". The algorithm uses four near-infrared spectral bands from NASA MODIS instrument: B20 (3.66-3.84μm), B29 (8.40-8.70μm), B31 (10.78-11.28μm), and B32 (11.77-12.27μm). The algorithm is presented with ground truth from more than 30 distinct reported dust events, from different geographical regions, at different seasons, both over land and sea cover, in the presence of clouds and clear sky, and in the presence of fires. The purpose of our algorithm is to learn to distinguish the dust aerosols spectral signature from other spectral signatures, providing as output an estimate of the probability of a data point being consistent with dust aerosol signatures. During modeling with ground truth, our algorithm achieved more than 90% of accuracy, and the current live performance of the algorithm is remarkable. Moreover, our algorithm is currently operating in near real-time using NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) servers, providing a high resolution global overview including 64, 32, 16, 8, 4, 2, and 1km. The near real-time analysis of our algorithm is now available to the general public at http://dust.reev.us and archives of the results starting from 2012 are available upon request.

  19. Designing instruction to support mechanical reasoning: Three alternatives in the simple machines learning environment

    Science.gov (United States)

    McKenna, Ann Frances

    2001-07-01

    Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated

  20. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    Science.gov (United States)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  1. Automated detection of pulmonary nodules in CT images with support vector machines

    Science.gov (United States)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  2. Prediction and analysis of beta-turns in proteins by support vector machine.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  3. Cognitive Development Optimization Algorithm Based Support Vector Machines for Determining Diabetes

    Directory of Open Access Journals (Sweden)

    Utku Kose

    2016-03-01

    Full Text Available The definition, diagnosis and classification of Diabetes Mellitus and its complications are very important. First of all, the World Health Organization (WHO and other societies, as well as scientists have done lots of studies regarding this subject. One of the most important research interests of this subject is the computer supported decision systems for diagnosing diabetes. In such systems, Artificial Intelligence techniques are often used for several disease diagnostics to streamline the diagnostic process in daily routine and avoid misdiagnosis. In this study, a diabetes diagnosis system, which is formed via both Support Vector Machines (SVM and Cognitive Development Optimization Algorithm (CoDOA has been proposed. Along the training of SVM, CoDOA was used for determining the sigma parameter of the Gauss (RBF kernel function, and eventually, a classification process was made over the diabetes data set, which is related to Pima Indians. The proposed approach offers an alternative solution to the field of Artificial Intelligence-based diabetes diagnosis, and contributes to the related literature on diagnosis processes.

  4. A Support Vector Machine Hydrometeor Classification Algorithm for Dual-Polarization Radar

    Directory of Open Access Journals (Sweden)

    Nicoletta Roberto

    2017-07-01

    Full Text Available An algorithm based on a support vector machine (SVM is proposed for hydrometeor classification. The training phase is driven by the output of a fuzzy logic hydrometeor classification algorithm, i.e., the most popular approach for hydrometer classification algorithms used for ground-based weather radar. The performance of SVM is evaluated by resorting to a weather scenario, generated by a weather model; the corresponding radar measurements are obtained by simulation and by comparing results of SVM classification with those obtained by a fuzzy logic classifier. Results based on the weather model and simulations show a higher accuracy of the SVM classification. Objective comparison of the two classifiers applied to real radar data shows that SVM classification maps are spatially more homogenous (textural indices, energy, and homogeneity increases by 21% and 12% respectively and do not present non-classified data. The improvements found by SVM classifier, even though it is applied pixel-by-pixel, can be attributed to its ability to learn from the entire hyperspace of radar measurements and to the accurate training. The reliability of results and higher computing performance make SVM attractive for some challenging tasks such as its implementation in Decision Support Systems for helping pilots to make optimal decisions about changes inthe flight route caused by unexpected adverse weather.

  5. Failure and reliability prediction by support vector machines regression of time series data

    International Nuclear Information System (INIS)

    Chagas Moura, Marcio das; Zio, Enrico; Lins, Isis Didier; Droguett, Enrique

    2011-01-01

    Support Vector Machines (SVMs) are kernel-based learning methods, which have been successfully adopted for regression problems. However, their use in reliability applications has not been widely explored. In this paper, a comparative analysis is presented in order to evaluate the SVM effectiveness in forecasting time-to-failure and reliability of engineered components based on time series data. The performance on literature case studies of SVM regression is measured against other advanced learning methods such as the Radial Basis Function, the traditional MultiLayer Perceptron model, Box-Jenkins autoregressive-integrated-moving average and the Infinite Impulse Response Locally Recurrent Neural Networks. The comparison shows that in the analyzed cases, SVM outperforms or is comparable to other techniques. - Highlights: → Realistic modeling of reliability demands complex mathematical formulations. → SVM is proper when the relation input/output is unknown or very costly to be obtained. → Results indicate the potential of SVM for reliability time series prediction. → Reliability estimates support the establishment of adequate maintenance strategies.

  6. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Karthikeyan Elangovan

    2017-10-01

    Full Text Available As robots begin to perform jobs autonomously, with minimal or no human intervention, a new challenge arises: robots also need to autonomously detect errors and recover from faults. In this paper, we present a Support Vector Machine (SVM-based fault diagnosis system for a bio-inspired reconfigurable robot named Scorpio. The diagnosis system needs to detect and classify faults while Scorpio uses its crawling and rolling locomotion modes. Specifically, we classify between faulty and non-faulty conditions by analyzing onboard Inertial Measurement Unit (IMU sensor data. The data capture nine different locomotion gaits, which include rolling and crawling modes, at three different speeds. Statistical methods are applied to extract features and to reduce the dimensionality of original IMU sensor data features. These statistical features were given as inputs for training and testing. Additionally, the c-Support Vector Classification (c-SVC and nu-SVC models of SVM, and their fault classification accuracies, were compared. The results show that the proposed SVM approach can be used to autonomously diagnose locomotion gait faults while the reconfigurable robot is in operation.

  7. Modeling and Forecast Biological Oxygen Demand (BOD using Combination Support Vector Machine with Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Abazar Solgi

    2017-06-01

    Full Text Available Introduction: Chemical pollution of surface water is one of the serious issues that threaten the quality of water. This would be more important when the surface waters used for human drinking supply. One of the key parameters used to measure water pollution is BOD. Because many variables affect the water quality parameters and a complex nonlinear relationship between them is established conventional methods can not solve the problem of quality management of water resources. For years, the Artificial Intelligence methods were used for prediction of nonlinear time series and a good performance of them has been reported. Recently, the wavelet transform that is a signal processing method, has shown good performance in hydrological modeling and is widely used. Extensive research has been globally provided in use of Artificial Neural Network and Adaptive Neural Fuzzy Inference System models to forecast the BOD. But support vector machine has not yet been extensively studied. For this purpose, in this study the ability of support vector machine to predict the monthly BOD parameter based on the available data, temperature, river flow, DO and BOD was evaluated. Materials and Methods: SVM was introduced in 1992 by Vapnik that was a Russian mathematician. This method has been built based on the statistical learning theory. In recent years the use of SVM, is highly taken into consideration. SVM was used in applications such as handwriting recognition, face recognition and has good results. Linear SVM is simplest type of SVM, consists of a hyperplane that dataset of positive and negative is separated with maximum distance. The suitable separator has maximum distance from every one of two dataset. So about this machine that its output groups label (here -1 to +1, the aim is to obtain the maximum distance between categories. This is interpreted to have a maximum margin. Wavelet transform is one of methods in the mathematical science that its main idea was

  8. Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer

    Directory of Open Access Journals (Sweden)

    Gabere MN

    2016-06-01

    Full Text Available Musa Nur Gabere,1 Mohamed Aly Hussein,1 Mohammad Azhar Aziz2 1Department of Bioinformatics, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; 2Colorectal Cancer Research Program, Department of Medical Genomics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia Purpose: There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC. The selection of important features is a crucial step before training a classifier.Methods: In this study, we built a model that uses support vector machine (SVM to classify cancer and normal samples using Affymetrix exon microarray data obtained from 90 samples of 48 patients diagnosed with CRC. From the 22,011 genes, we selected the 20, 30, 50, 100, 200, 300, and 500 genes most relevant to CRC using the minimum-redundancy–maximum-relevance (mRMR technique. With these gene sets, an SVM model was designed using four different kernel types (linear, polynomial, radial basis function [RBF], and sigmoid.Results: The best model, which used 30 genes and RBF kernel, outperformed other combinations; it had an accuracy of 84% for both ten fold and leave-one-out cross validations in discriminating the cancer samples from the normal samples. With this 30 genes set from mRMR, six classifiers were trained using random forest (RF, Bayes net (BN, multilayer perceptron (MLP, naïve Bayes (NB, reduced error pruning tree (REPT, and SVM. Two hybrids, mRMR + SVM and mRMR + BN, were the best models when tested on other datasets, and they achieved a prediction accuracy of 95.27% and 91.99%, respectively, compared to other mRMR hybrid models (mRMR + RF, mRMR + NB, mRMR + REPT, and mRMR + MLP. Ingenuity pathway analysis was used to analyze the functions of the 30 genes selected for this model and their potential association with CRC: CDH3, CEACAM7, CLDN1, IL8, IL6R, MMP1

  9. Gaming machine addiction: the role of avoidance, accessibility and social support.

    Science.gov (United States)

    Thomas, Anna C; Allen, Felicity L; Phillips, James; Karantzas, Gery

    2011-12-01

    Commonality in etiology and clinical expression plus high comorbidity between pathological gambling and substance use disorders suggest common underlying motives. It is important to understand common motivators and differentiating factors. An overarching framework of addiction was used to examine predictors of problem gambling in current electronic gaming machine (EGM) gamblers. Path analysis was used to examine the relationships between antecedent factors (stressors, coping habits, social support), gambling motivations (avoidance, accessibility, social) and gambling behavior. Three hundred and forty seven (229 females: M = 29.20 years, SD = 14.93; 118 males: M = 29.64 years, SD = 12.49) people participated. Consistent with stress, coping and addiction theory, situational life stressors and general avoidance coping were positively related to avoidance-motivated gambling. In turn, avoidance-motivated gambling was positively related to EGM gambling frequency and problems. Consistent with exposure theory, life stressors were positively related to accessibility-motivated gambling, and accessibility-motivated gambling was positively related to EGM gambling frequency and gambling problems. These findings are consistent with other addiction research and suggest avoidance-motivated gambling is part of a more generalized pattern of avoidance coping with relative accessibility to EGM gambling explaining its choice as a method of avoidance. Findings also showed social support acted as a direct protective factor in relation to gambling frequency and problems and indirectly via avoidance and accessibility gambling motivations. Finally, life stressors were positively related to socially motivated gambling but this motivation was not related to either social support or gambling behavior suggesting it has little direct influence on gambling problems.

  10. hERG classification model based on a combination of support vector machine method and GRIND descriptors

    DEFF Research Database (Denmark)

    Li, Qiyuan; Jorgensen, Flemming Steen; Oprea, Tudor

    2008-01-01

    and diverse library of 495 compounds. The models combine pharmacophore-based GRIND descriptors with a support vector machine (SVM) classifier in order to discriminate between hERG blockers and nonblockers. Our models were applied at different thresholds from 1 to 40 mu m and achieved an overall accuracy up...

  11. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    Science.gov (United States)

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  12. Effectiveness of Podcasts as Laboratory Instructional Support: Learner Perceptions of Machine Shop and Welding Students

    Science.gov (United States)

    Lauritzen, Louis Dee

    2014-01-01

    Machine shop students face the daunting task of learning the operation of complex three-dimensional machine tools, and welding students must develop specific motor skills in addition to understanding the complexity of material types and characteristics. The use of consumer technology by the Millennial generation of vocational students, the…

  13. A novel featureless approach to mass detection in digital mammograms based on support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Campanini, Renato [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Dongiovanni, Danilo [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Iampieri, Emiro [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Lanconelli, Nico [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Masotti, Matteo [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Palermo, Giuseppe [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Riccardi, Alessandro [Department of Physics, University of Bologna, and INFN, Bologna (Italy); Roffilli, Matteo [Department of Computer Science, University of Bologna, Bologna (Italy)

    2004-03-21

    In this work, we present a novel approach to mass detection in digital mammograms. The great variability of the appearance of masses is the main obstacle to building a mass detection method. It is indeed demanding to characterize all the varieties of masses with a reduced set of features. Hence, in our approach we have chosen not to extract any feature, for the detection of the region of interest; in contrast, we exploit all the information available on the image. A multiresolution overcomplete wavelet representation is performed, in order to codify the image with redundancy of information. The vectors of the very-large space obtained are then provided to a first support vector machine (SVM) classifier. The detection task is considered here as a two-class pattern recognition problem: crops are classified as suspect or not, by using this SVM classifier. False candidates are eliminated with a second cascaded SVM. To further reduce the number of false positives, an ensemble of experts is applied: the final suspect regions are achieved by using a voting strategy. The sensitivity of the presented system is nearly 80% with a false-positive rate of 1.1 marks per image, estimated on images coming from the USF DDSM database.

  14. Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Kun He

    2018-04-01

    Full Text Available Health condition is a vital factor affecting printing quality for a 3D printer. In this work, an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using support vector machines (SVM. An attitude sensor was mounted on the moving platform of the printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field intensity. The attitude data of the working printer were collected under different conditions involving 12 fault types and a normal condition. The collected data were analyzed for diagnosing the health condition. To this end, the combination of binary classification, one-against-one with least-square SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in the experiment. For comparison, each one channel of the attitude monitoring data was employed for model training and testing. On the other hand, a back propagation neural network (BPNN was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44% was obtained when all channels of the attitude monitoring data were used with SVM modelling. The results indicate that the attitude monitoring with SVM is an effective method for the fault diagnosis of delta 3D printers.

  15. Support vector machine based fault detection approach for RFT-30 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Young Bae, E-mail: ybkong@kaeri.re.kr; Lee, Eun Je; Hur, Min Goo; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-10-21

    An RFT-30 is a 30 MeV cyclotron used for radioisotope applications and radiopharmaceutical researches. The RFT-30 cyclotron is highly complex and includes many signals for control and monitoring of the system. It is quite difficult to detect and monitor the system failure in real time. Moreover, continuous monitoring of the system is hard and time-consuming work for human operators. In this paper, we propose a support vector machine (SVM) based fault detection approach for the RFT-30 cyclotron. The proposed approach performs SVM learning with training samples to construct the classification model. To compensate the system complexity due to the large-scale accelerator, we utilize the principal component analysis (PCA) for transformation of the original data. After training procedure, the proposed approach detects the system faults in real time. We analyzed the performance of the proposed approach utilizing the experimental data of the RFT-30 cyclotron. The performance results show that the proposed SVM approach can provide an efficient way to control the cyclotron system.

  16. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-01-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers. (paper)

  17. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  18. CoSpa: A Co-training Approach for Spam Review Identification with Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2016-03-01

    Full Text Available Spam reviews are increasingly appearing on the Internet to promote sales or defame competitors by misleading consumers with deceptive opinions. This paper proposes a co-training approach called CoSpa (Co-training for Spam review identification to identify spam reviews by two views: one is the lexical terms derived from the textual content of the reviews and the other is the PCFG (Probabilistic Context-Free Grammars rules derived from a deep syntax analysis of the reviews. Using SVM (Support Vector Machine as the base classifier, we develop two strategies, CoSpa-C and CoSpa-U, embedded within the CoSpa approach. The CoSpa-C strategy selects unlabeled reviews classified with the largest confidence to augment the training dataset to retrain the classifier. The CoSpa-U strategy randomly selects unlabeled reviews with a uniform distribution of confidence. Experiments on the spam dataset and the deception dataset demonstrate that both the proposed CoSpa algorithms outperform the traditional SVM with lexical terms and PCFG rules in spam review identification. Moreover, the CoSpa-U strategy outperforms the CoSpa-C strategy when we use the absolute value of decision function of SVM as the confidence.

  19. Structural analysis of online handwritten mathematical symbols based on support vector machines

    Science.gov (United States)

    Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George

    2013-01-01

    Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.

  20. A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine

    Science.gov (United States)

    Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong

    2015-08-01

    Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.

  1. Cloud Monitoring for Solar Plants with Support Vector Machine Based Fault Detection System

    Directory of Open Access Journals (Sweden)

    Hong-Chan Chang

    2014-01-01

    Full Text Available This study endeavors to develop a cloud monitoring system for solar plants. This system incorporates numerous subsystems, such as a geographic information system, an instantaneous power-consumption information system, a reporting system, and a failure diagnosis system. Visual C# was integrated with ASP.NET and SQL technologies for the proposed monitoring system. A user interface for database management system was developed to enable users to access solar power information and management systems. In addition, by using peer-to-peer (P2P streaming technology and audio/video encoding/decoding technology, real-time video data can be transmitted to the client end, providing instantaneous and direct information. Regarding smart failure diagnosis, the proposed system employs the support vector machine (SVM theory to train failure mathematical models. The solar power data are provided to the SVM for analysis in order to determine the failure types and subsequently eliminate failures at an early stage. The cloud energy-management platform developed in this study not only enhances the management and maintenance efficiency of solar power plants but also increases the market competitiveness of solar power generation and renewable energy.

  2. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    International Nuclear Information System (INIS)

    Li, S X; Zhang, Y J; Zeng, Q Y; Li, L F; Guo, Z Y; Liu, Z M; Xiong, H L; Liu, S H

    2014-01-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA–SVM methods. The results prove that a RBF kernel PCA–SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample. (letters)

  3. CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks.

    Science.gov (United States)

    Gillani, Zeeshan; Akash, Muhammad Sajid Hamid; Rahaman, M D Matiur; Chen, Ming

    2014-11-30

    Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size. We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network. For network with nodes (SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/ .

  4. GPR identification of voids inside concrete based on the support vector machine algorithm

    International Nuclear Information System (INIS)

    Xie, Xiongyao; Li, Pan; Qin, Hui; Liu, Lanbo; Nobes, David C

    2013-01-01

    Voids inside reinforced concrete, which affect structural safety, are identified from ground penetrating radar (GPR) images using a completely automatic method based on the support vector machine (SVM) algorithm. The entire process can be characterized into four steps: (1) the original SVM model is built by training synthetic GPR data generated by finite difference time domain simulation and after data preprocessing, segmentation and feature extraction. (2) The classification accuracy of different kernel functions is compared with the cross-validation method and the penalty factor (c) of the SVM and the coefficient (σ2) of kernel functions are optimized by using the grid algorithm and the genetic algorithm. (3) To test the success of classification, this model is then verified and validated by applying it to another set of synthetic GPR data. The result shows a high success rate for classification. (4) This original classifier model is finally applied to a set of real GPR data to identify and classify voids. The result is less than ideal when compared with its application to synthetic data before the original model is improved. In general, this study shows that the SVM exhibits promising performance in the GPR identification of voids inside reinforced concrete. Nevertheless, the recognition of shape and distribution of voids may need further improvement. (paper)

  5. Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization

    Science.gov (United States)

    Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.

    2018-04-01

    The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.

  6. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Meng Qinghu; Meng Qingfeng; Feng Wuwei

    2012-01-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  7. Application of support vector machine classifiers to preoperative risk stratification with myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Kasamatsu, Tomotaka; Hashimoto, Jun; Nakahara, Tadaki; Bai, Jingming; Kitamura, Naoto; Kubo, Atsushi; Iyatomi, Hitoshi; Ogawa, Koichi

    2008-01-01

    Myocardial perfusion single-photon emission computed tomography (SPECT) has been used for risk stratification before non-cardiac surgery. However, few authors have used mathematical models for evaluating the likelihood of perioperative cardiac events. This retrospective cohort study collected data of 1,351 patients referred for SPECT before non-cardiac surgery. We generated binary classifiers using support vector machine (SVM) and conventional linear models for predicting perioperative cardiac events. We used clinical and surgical risk, and SPECT findings as input data, and the occurrence of all and hard cardiac events as output data. The area under the receiver-operating characteristic curve (AUC) was calculated for assessing the prediction accuracy. The AUC values were 0.884 and 0.748 in the SVM and linear models, respectively in predicting all cardiac events with clinical and surgical risk, and SPECT variables. The values were 0.861 (SVM) and 0.677 (linear) when not using SPECT data as input. In hard events, the AUC values were 0.892 (SVM) and 0.864 (linear) with SPECT, and 0.867 (SVM) and 0.768 (linear) without SPECT. The SVM was superior to the linear model in risk stratification. We also found an incremental prognostic value of SPECT results over information about clinical and surgical risk. (author)

  8. Predicting beta-turns in proteins using support vector machines with fractional polynomials.

    Science.gov (United States)

    Elbashir, Murtada; Wang, Jianxin; Wu, Fang-Xiang; Wang, Lusheng

    2013-11-07

    β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.

  9. Using support vector machine to predict beta- and gamma-turns in proteins.

    Science.gov (United States)

    Hu, Xiuzhen; Li, Qianzhong

    2008-09-01

    By using the composite vector with increment of diversity, position conservation scoring function, and predictive secondary structures to express the information of sequence, a support vector machine (SVM) algorithm for predicting beta- and gamma-turns in the proteins is proposed. The 426 and 320 nonhomologous protein chains described by Guruprasad and Rajkumar (Guruprasad and Rajkumar J. Biosci 2000, 25,143) are used for training and testing the predictive model of the beta- and gamma-turns, respectively. The overall prediction accuracy and the Matthews correlation coefficient in 7-fold cross-validation are 79.8% and 0.47, respectively, for the beta-turns. The overall prediction accuracy in 5-fold cross-validation is 61.0% for the gamma-turns. These results are significantly higher than the other algorithms in the prediction of beta- and gamma-turns using the same datasets. In addition, the 547 and 823 nonhomologous protein chains described by Fuchs and Alix (Fuchs and Alix Proteins: Struct Funct Bioinform 2005, 59, 828) are used for training and testing the predictive model of the beta- and gamma-turns, and better results are obtained. This algorithm may be helpful to improve the performance of protein turns' prediction. To ensure the ability of the SVM method to correctly classify beta-turn and non-beta-turn (gamma-turn and non-gamma-turn), the receiver operating characteristic threshold independent measure curves are provided. (c) 2008 Wiley Periodicals, Inc.

  10. Freshwater Algal Bloom Prediction by Support Vector Machine in Macau Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2012-01-01

    Full Text Available Understanding and predicting dynamic change of algae population in freshwater reservoirs is particularly important, as algae-releasing cyanotoxins are carcinogens that would affect the health of public. However, the high complex nonlinearity of water variables and their interactions makes it difficult to model the growth of algae species. Recently, support vector machine (SVM was reported to have advantages of only requiring a small amount of samples, high degree of prediction accuracy, and long prediction period to solve the nonlinear problems. In this study, the SVM-based prediction and forecast models for phytoplankton abundance in Macau Storage Reservoir (MSR are proposed, in which the water parameters of pH, SiO2, alkalinity, bicarbonate (HCO3 -, dissolved oxygen (DO, total nitrogen (TN, UV254, turbidity, conductivity, nitrate, total nitrogen (TN, orthophosphate (PO4 3−, total phosphorus (TP, suspended solid (SS and total organic carbon (TOC selected from the correlation analysis of the 23 monthly water variables were included, with 8-year (2001–2008 data for training and the most recent 3 years (2009–2011 for testing. The modeling results showed that the prediction and forecast powers were estimated as approximately 0.76 and 0.86, respectively, showing that the SVM is an effective new way that can be used for monitoring algal bloom in drinking water storage reservoir.

  11. A new range-free localisation in wireless sensor networks using support vector machine

    Science.gov (United States)

    Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing

    2018-02-01

    Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.

  12. Virtual-view PSNR prediction based on a depth distortion tolerance model and support vector machine.

    Science.gov (United States)

    Chen, Fen; Chen, Jiali; Peng, Zongju; Jiang, Gangyi; Yu, Mei; Chen, Hua; Jiao, Renzhi

    2017-10-20

    Quality prediction of virtual-views is important for free viewpoint video systems, and can be used as feedback to improve the performance of depth video coding and virtual-view rendering. In this paper, an efficient virtual-view peak signal to noise ratio (PSNR) prediction method is proposed. First, the effect of depth distortion on virtual-view quality is analyzed in detail, and a depth distortion tolerance (DDT) model that determines the DDT range is presented. Next, the DDT model is used to predict the virtual-view quality. Finally, a support vector machine (SVM) is utilized to train and obtain the virtual-view quality prediction model. Experimental results show that the Spearman's rank correlation coefficient and root mean square error between the actual PSNR and the predicted PSNR by DDT model are 0.8750 and 0.6137 on average, and by the SVM prediction model are 0.9109 and 0.5831. The computational complexity of the SVM method is lower than the DDT model and the state-of-the-art methods.

  13. Perbandingan Simple Logistic Classifier dengan Support Vector Machine dalam Memprediksi Kemenangan Atlet

    Directory of Open Access Journals (Sweden)

    Ednawati Rainarli

    2017-10-01

    Full Text Available A coach must be able to select which athlete has a good prospect of winning a game. There are a lot of aspects which influence the athlete in winning a game, so it's not easy by coach to decide it.This research would compare Simple Logistic Classifier (SLC and Support Vector Machine (SVM usage applied to predict winning game of athlete based on health and physical condition record. The data get from 28 sports. The accuracy of SLC and SVM are 80% and 88% meanwhile processing times of SLC and SVM method are 1.6 seconds dan 0.2 seconds.The result shows the SVM usage superior to the SLC both of speed process and the value of accuracy. There were also testing of 24 features used in the classifications process. Based on the test, features selection process can cause decreasing the accuracy value. This result concludes that all features used in this research influence the determination of a victory athletes prediction.

  14. Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Fei

    2014-01-01

    Full Text Available To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE and Support Vector Machine (SVM (PPSE-SVM, for short method was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness were collected under multipoint (multiple channels and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.

  15. Voltammetric electronic tongue and support vector machines for identification of selected features in Mexican coffee.

    Science.gov (United States)

    Domínguez, Rocio Berenice; Moreno-Barón, Laura; Muñoz, Roberto; Gutiérrez, Juan Manuel

    2014-09-24

    This paper describes a new method based on a voltammetric electronic tongue (ET) for the recognition of distinctive features in coffee samples. An ET was directly applied to different samples from the main Mexican coffee regions without any pretreatment before the analysis. The resulting electrochemical information was modeled with two different mathematical tools, namely Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). Growing conditions (i.e., organic or non-organic practices and altitude of crops) were considered for a first classification. LDA results showed an average discrimination rate of 88% ± 6.53% while SVM successfully accomplished an overall accuracy of 96.4% ± 3.50% for the same task. A second classification based on geographical origin of samples was carried out. Results showed an overall accuracy of 87.5% ± 7.79% for LDA and a superior performance of 97.5% ± 3.22% for SVM. Given the complexity of coffee samples, the high accuracy percentages achieved by ET coupled with SVM in both classification problems suggested a potential applicability of ET in the assessment of selected coffee features with a simpler and faster methodology along with a null sample pretreatment. In addition, the proposed method can be applied to authentication assessment while improving cost, time and accuracy of the general procedure.

  16. Modeling the Financial Distress of Microenterprise StartUps Using Support Vector Machines: A Case Study

    Directory of Open Access Journals (Sweden)

    Antonio Blanco-Oliver

    2014-10-01

    Full Text Available Despite the leading role that micro-entrepreneurship plays in economic development, and the high failure rate of microenterprise start-ups in their early years, very few studies have designed financial distress models to detect the financial problems of micro-entrepreneurs. Moreover, due to a lack of research, nothing is known about whether non-financial information and nonparametric statistical techniques improve the predictive capacity of these models. Therefore, this paper provides an innovative financial distress model specifically designed for microenterprise startups via support vector machines (SVMs that employs financial, non-financial, and macroeconomic variables. Based on a sample of almost 5,500 micro- entrepreneurs from a Peruvian Microfinance Institution (MFI, our findings show that the introduction of non-financial information related to the zone in which the entrepreneurs live and situate their business, the duration of the MFI-entrepreneur relationship, the number of loans granted by the MFI in the last year, the loan destination, and the opinion of experts on the probability that microenterprise start-ups may experience financial problems, significantly increases the accuracy performance of our financial distress model. Furthermore, the results reveal that the models that use SVMs outperform those which employ traditional logistic regression (LR analysis.

  17. Modeling and control of PEMFC based on least squares support vector machines

    International Nuclear Information System (INIS)

    Li Xi; Cao Guangyi; Zhu Xinjian

    2006-01-01

    The proton exchange membrane fuel cell (PEMFC) is one of the most important power supplies. The operating temperature of the stack is an important controlled variable, which impacts the performance of the PEMFC. In order to improve the generating performance of the PEMFC, prolong its life and guarantee safety, credibility and low cost of the PEMFC system, it must be controlled efficiently. A nonlinear predictive control algorithm based on a least squares support vector machine (LS-SVM) model is presented for a family of complex systems with severe nonlinearity, such as the PEMFC, in this paper. The nonlinear off line model of the PEMFC is built by a LS-SVM model with radial basis function (RBF) kernel so as to implement nonlinear predictive control of the plant. During PEMFC operation, the off line model is linearized at each sampling instant, and the generalized predictive control (GPC) algorithm is applied to the predictive control of the plant. Experimental results demonstrate the effectiveness and advantages of this approach

  18. An intraoperative diagnosis of parotid gland tumors using Raman spectroscopy and support vector machine

    International Nuclear Information System (INIS)

    Yan, Bing; Wen, Zhining; Li, Yi; Li, Longjiang; Xue, Lili

    2014-01-01

    The preoperative and intraoperative diagnosis of parotid gland tumors is difficult, but is important for their surgical management. In order to explore an intraoperative diagnostic method, Raman spectroscopy is applied to detect the normal parotid gland and tumors, including pleomorphic adenoma, Warthin’s tumor and mucoepidermoid carcinoma. In the 600–1800 cm −1 region of the Raman shift, there are numerous spectral differences between the parotid gland and tumors. Compared with Raman spectra of the normal parotid gland, the Raman spectra of parotid tumors show an increase of the peaks assigned to nucleic acids and proteins, but a decrease of the peaks related to lipids. Spectral differences also exist between the spectra of parotid tumors. Based on these differences, a remarkable classification and diagnosis of the parotid gland and tumors are carried out by support vector machine (SVM), with high accuracy (96.7∼100%), sensitivity (93.3∼100%) and specificity (96.7∼100%). Raman spectroscopy combined with SVM has a great potential to aid the intraoperative diagnosis of parotid tumors and could provide an accurate and rapid diagnostic approach. (paper)

  19. A Personalized Electronic Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Xibin; Luo, Fengji; Qian, Ying; Ranzi, Gianluca

    2016-01-01

    With the rapid development of ICT and Web technologies, a large an amount of information is becoming available and this is producing, in some instances, a condition of information overload. Under these conditions, it is difficult for a person to locate and access useful information for making decisions. To address this problem, there are information filtering systems, such as the personalized recommendation system (PRS) considered in this paper, that assist a person in identifying possible products or services of interest based on his/her preferences. Among available approaches, collaborative Filtering (CF) is one of the most widely used recommendation techniques. However, CF has some limitations, e.g., the relatively simple similarity calculation, cold start problem, etc. In this context, this paper presents a new regression model based on the support vector machine (SVM) classification and an improved PSO (IPSO) for the development of an electronic movie PRS. In its implementation, a SVM classification model is first established to obtain a preliminary movie recommendation list based on which a SVM regression model is applied to predict movies' ratings. The proposed PRS not only considers the movie's content information but also integrates the users' demographic and behavioral information to better capture the users' interests and preferences. The efficiency of the proposed method is verified by a series of experiments based on the MovieLens benchmark data set.

  20. Differentiation of Glioblastoma and Lymphoma Using Feature Extraction and Support Vector Machine.

    Science.gov (United States)

    Yang, Zhangjing; Feng, Piaopiao; Wen, Tian; Wan, Minghua; Hong, Xunning

    2017-01-01

    Differentiation of glioblastoma multiformes (GBMs) and lymphomas using multi-sequence magnetic resonance imaging (MRI) is an important task that is valuable for treatment planning. However, this task is a challenge because GBMs and lymphomas may have a similar appearance in MRI images. This similarity may lead to misclassification and could affect the treatment results. In this paper, we propose a semi-automatic method based on multi-sequence MRI to differentiate these two types of brain tumors. Our method consists of three steps: 1) the key slice is selected from 3D MRIs and region of interests (ROIs) are drawn around the tumor region; 2) different features are extracted based on prior clinical knowledge and validated using a t-test; and 3) features that are helpful for classification are used to build an original feature vector and a support vector machine is applied to perform classification. In total, 58 GBM cases and 37 lymphoma cases are used to validate our method. A leave-one-out crossvalidation strategy is adopted in our experiments. The global accuracy of our method was determined as 96.84%, which indicates that our method is effective for the differentiation of GBM and lymphoma and can be applied in clinical diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Efficient Prediction of Progesterone Receptor Interactome Using a Support Vector Machine Model

    Directory of Open Access Journals (Sweden)

    Ji-Long Liu

    2015-03-01

    Full Text Available Protein-protein interaction (PPI is essential for almost all cellular processes and identification of PPI is a crucial task for biomedical researchers. So far, most computational studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners for a single protein is likely a simpler problem. Given enough data for a particular protein, the results can be more accurate than general PPI predictors. In the present study, we assessed the potential of using the support vector machine (SVM model with selected features centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied this method to identify the interactome of progesterone receptor (PR, a protein which is essential for coordinating female reproduction in mammals by mediating the actions of ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity of 91.2%. Our method is generally applicable to any other proteins and therefore may be of help in guiding biomedical experiments.

  2. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM with RBF kernel, using particle swarm optimization (PSO to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.

  3. Objective Auscultation of TCM Based on Wavelet Packet Fractal Dimension and Support Vector Machine

    Science.gov (United States)

    Yan, Jian-Jun; Wang, Yi-Qin; Liu, Guo-Ping; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Xiaojing

    2014-01-01

    This study was conducted to illustrate that auscultation features based on the fractal dimension combined with wavelet packet transform (WPT) were conducive to the identification the pattern of syndromes of Traditional Chinese Medicine (TCM). The WPT and the fractal dimension were employed to extract features of auscultation signals of 137 patients with lung Qi-deficient pattern, 49 patients with lung Yin-deficient pattern, and 43 healthy subjects. With these features, the classification model was constructed based on multiclass support vector machine (SVM). When all auscultation signals were trained by SVM to decide the patterns of TCM syndromes, the overall recognition rate of model was 79.49%; when male and female auscultation signals were trained, respectively, to decide the patterns, the overall recognition rate of model reached 86.05%. The results showed that the methods proposed in this paper were effective to analyze auscultation signals, and the performance of model can be greatly improved when the distinction of gender was considered. PMID:24883068

  4. Feature Selection and Parameter Optimization of Support Vector Machines Based on Modified Artificial Fish Swarm Algorithms

    Directory of Open Access Journals (Sweden)

    Kuan-Cheng Lin

    2015-01-01

    Full Text Available Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.

  5. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

  6. Unsteady aerodynamic modeling at high angles of attack using support vector machines

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-06-01

    Full Text Available Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as selection of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfying learning and generalization performance of LS-SVMs.

  7. Nonlinear temperature compensation of fluxgate magnetometers with a least-squares support vector machine

    Science.gov (United States)

    Pang, Hongfeng; Chen, Dixiang; Pan, Mengchun; Luo, Shitu; Zhang, Qi; Luo, Feilu

    2012-02-01

    Fluxgate magnetometers are widely used for magnetic field measurement. However, their accuracy is influenced by temperature. In this paper, a new method was proposed to compensate the temperature drift of fluxgate magnetometers, in which a least-squares support vector machine (LSSVM) is utilized. The compensation performance was analyzed by simulation, which shows that the LSSVM has better performance and less training time than backpropagation and radical basis function neural networks. The temperature characteristics of a DM fluxgate magnetometer were measured with a temperature experiment box. Forty-five measured data under different magnetic fields and temperatures were obtained and divided into 36 training data and nine test data. The training data were used to obtain the parameters of the LSSVM model, and the compensation performance of the LSSVM model was verified by the test data. Experimental results show that the temperature drift of magnetometer is reduced from 109.3 to 3.3 nT after compensation, which suggests that this compensation method is effective for the accuracy improvement of fluxgate magnetometers.

  8. Using Support Vector Machine to Forecast Energy Usage of a Manhattan Skyscraper

    Science.gov (United States)

    Winter, R.; Boulanger, A.; Anderson, R.; Wu, L.

    2011-12-01

    As our society gains a better understanding of how humans have negatively impacted the environment, research related to reducing carbon emissions and overall energy consumption has become increasingly important. One of the simplest ways to reduce energy usage is by making current buildings less wasteful. By improving energy efficiency, this method of lowering our carbon footprint is particularly worthwhile because it actually reduces energy costs of operating the building, unlike many environmental initiatives that require large monetary investments. In order to improve the efficiency of the heating and air conditioning (HVAC) system of a Manhattan skyscraper, 345 Park Avenue, a predictive computer model was designed to forecast the amount of energy the building will consume. This model uses support vector machine (SVM), a method that builds a regression based purely on historical data of the building, requiring no knowledge of its size, heating and cooling methods, or any other physical properties. This pure dependence on historical data makes the model very easily applicable to different types of buildings with few model adjustments. The SVM model was built to predict a week of future energy usage based on past energy, temperature, and dew point temperature data. The predictive model closely approximated the actual values of energy usage for the spring and less closely for the winter. The prediction may be improved with additional historical data to help the model account for seasonal variability. This model is useful for creating a close approximation of future energy usage and predicting ways to diminish waste.

  9. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2017-01-01

    Full Text Available Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM. Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA, while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA, the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM is of great value, indicating the feasibility of digitalized tongue diagnosis.

  10. Generation of daily global solar irradiation with support vector machines for regression

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Urraca, R.; Antonanzas, J.; Fernandez-Ceniceros, J.; Martinez-de-Pison, F.J.

    2015-01-01

    Highlights: • New methodology for estimation of daily solar irradiation with SVR. • Automatic procedure for training models and selecting meteorological features. • This methodology outperforms other well-known parametric and numeric techniques. - Abstract: Solar global irradiation is barely recorded in isolated rural areas around the world. Traditionally, solar resource estimation has been performed using parametric-empirical models based on the relationship of solar irradiation with other atmospheric and commonly measured variables, such as temperatures, rainfall, and sunshine duration, achieving a relatively high level of certainty. Considerable improvement in soft-computing techniques, which have been applied extensively in many research fields, has lead to improvements in solar global irradiation modeling, although most of these techniques lack spatial generalization. This new methodology proposes support vector machines for regression with optimized variable selection via genetic algorithms to generate non-locally dependent and accurate models. A case of study in Spain has demonstrated the value of this methodology. It achieved a striking reduction in the mean absolute error (MAE) – 41.4% and 19.9% – as compared to classic parametric models; Bristow & Campbell and Antonanzas-Torres et al., respectively

  11. Using support vector machine ensembles for target audience classification on Twitter.

    Science.gov (United States)

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space.

  12. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hazrati, Mehrnaz Khodam; Kalies, Kai-Uwe; Martinetz, Thomas

    2011-01-01

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  13. A support vector machine approach to the automatic identification of fluorescence spectra emitted by biological agents

    Science.gov (United States)

    Gelfusa, M.; Murari, A.; Lungaroni, M.; Malizia, A.; Parracino, S.; Peluso, E.; Cenciarelli, O.; Carestia, M.; Pizzoferrato, R.; Vega, J.; Gaudio, P.

    2016-10-01

    Two of the major new concerns of modern societies are biosecurity and biosafety. Several biological agents (BAs) such as toxins, bacteria, viruses, fungi and parasites are able to cause damage to living systems either humans, animals or plants. Optical techniques, in particular LIght Detection And Ranging (LIDAR), based on the transmission of laser pulses and analysis of the return signals, can be successfully applied to monitoring the release of biological agents into the atmosphere. It is well known that most of biological agents tend to emit specific fluorescence spectra, which in principle allow their detection and identification, if excited by light of the appropriate wavelength. For these reasons, the detection of the UVLight Induced Fluorescence (UV-LIF) emitted by BAs is particularly promising. On the other hand, the stand-off detection of BAs poses a series of challenging issues; one of the most severe is the automatic discrimination between various agents which emit very similar fluorescence spectra. In this paper, a new data analysis method, based on a combination of advanced filtering techniques and Support Vector Machines, is described. The proposed approach covers all the aspects of the data analysis process, from filtering and denoising to automatic recognition of the agents. A systematic series of numerical tests has been performed to assess the potential and limits of the proposed methodology. The first investigations of experimental data have already given very encouraging results.

  14. Support vector machine-based open crop model (SBOCM: Case of rice production in China

    Directory of Open Access Journals (Sweden)

    Ying-xue Su

    2017-03-01

    Full Text Available Existing crop models produce unsatisfactory simulation results and are operationally complicated. The present study, however, demonstrated the unique advantages of statistical crop models for large-scale simulation. Using rice as the research crop, a support vector machine-based open crop model (SBOCM was developed by integrating developmental stage and yield prediction models. Basic geographical information obtained by surface weather observation stations in China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used. Based on the principle of scale compatibility of modeling data, an open reading frame was designed for the dynamic daily input of meteorological data and output of rice development and yield records. This was used to generate rice developmental stage and yield prediction models, which were integrated into the SBOCM system. The parameters, methods, error resources, and other factors were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be used for perennial simulation and one-year rice predictions within certain scale ranges. It is convenient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale factor integration. It has the potential for future integration with extensive social and economic factors to improve the prediction accuracy and practicability.

  15. Eddy current characterization of small cracks using least square support vector machine

    Science.gov (United States)

    Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.

    2016-04-01

    Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.

  16. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    Science.gov (United States)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  17. Stroke localization and classification using microwave tomography with k-means clustering and support vector machine.

    Science.gov (United States)

    Guo, Lei; Abbosh, Amin

    2018-05-01

    For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  18. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  19. Review of data mining applications for quality assessment in manufacturing industry: support vector machines

    Directory of Open Access Journals (Sweden)

    Rostami Hamidey

    2015-01-01

    Full Text Available In many modern manufacturing industries, data that characterize the manufacturing process are electronically collected and stored in databases. Due to advances in data collection systems and analysis tools, data mining (DM has widely been applied for quality assessment (QA in manufacturing industries. In DM, the choice of technique to be used in analyzing a dataset and assessing the quality depend on the understanding of the analyst. On the other hand, with the advent of improved and efficient prediction techniques, there is a need for an analyst to know which tool performs better for a particular type of dataset. Although a few review papers have recently been published to discuss DM applications in manufacturing for QA, this paper provides an extensive review to investigate the application of a special DM technique, namely support vector machine (SVM to deal with QA problems. This review provides a comprehensive analysis of the literature from various points of view as DM concepts, data preprocessing, DM applications for each quality task, SVM preliminaries, and application results. Summary tables and figures are also provided besides to the analyses. Finally, conclusions and future research directions are provided.

  20. Three-class classification in computer-aided diagnosis of breast cancer by support vector machine

    Science.gov (United States)

    Sun, Xuejun; Qian, Wei; Song, Dansheng

    2004-05-01

    Design of classifier in computer-aided diagnosis (CAD) scheme of breast cancer plays important role to its overall performance in sensitivity and specificity. Classification of a detected object as malignant lesion, benign lesion, or normal tissue on mammogram is a typical three-class pattern recognition problem. This paper presents a three-class classification approach by using two-stage classifier combined with support vector machine (SVM) learning algorithm for classification of breast cancer on mammograms. The first classification stage is used to detect abnormal areas and normal breast tissues, and the second stage is for classification of malignant or benign in detected abnormal objects. A series of spatial, morphology and texture features have been extracted on detected objects areas. By using genetic algorithm (GA), different feature groups for different stage classification have been investigated. Computerized free-response receiver operating characteristic (FROC) and receiver operating characteristic (ROC) analyses have been employed in different classification stages. Results have shown that obvious performance improvement in both sensitivity and specificity was observed through proposed classification approach compared with conventional two-class classification approaches, indicating its effectiveness in classification of breast cancer on mammograms.