WorldWideScience

Sample records for machinable glass ceramic

  1. Preparation of Machinable Bioactive Glass-ceramics by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method.The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction (XRD) analysis. Microstructure of the glass-ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750 ℃ and 950 ℃ for 1.5 h separately. The relative bulk density could achieve 99%under 1050 ℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160-180 MPa and a fracture toughness parameter KIC of about 2.1-2.3 were determined for the glass-ceramics.

  2. Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process.

    Science.gov (United States)

    Song, Xiao-Fei; Ren, Hai-Tao; Yin, Ling

    2016-01-01

    Esthetic high-strength lithium disilicate glass ceramics (LDGC) are used for monolithic crowns and bridges produced in dental CAD/CAM and oral adjusting processes, which machinability affects the restorative quality. A machinability study has been made in the simulated oral clinical machining of LDGC with a dental handpiece and diamond burs, regarding the diamond tool wear and chip control, machining forces and energy, surface finish and integrity. Machining forces, speeds and energy in in vitro dental adjusting of LDGC were measured by a high-speed data acquisition and force sensor system. Machined LDGC surfaces were assessed using three-dimensional non-contact chromatic confocal optical profilometry and scanning electron microscopy (SEM). Diamond bur morphology and LDGC chip shapes were also examined using SEM. Minimum tool wear but significant LDGC chip accumulations were found. Machining forces and energy significantly depended on machining conditions (pMachining speeds dropped more rapidly with increased removal rates than other glass ceramics (pmachinability indices associated with the hardness, Young's modulus and fracture toughness were derived based on the normal force-removal rate relations, which ranked LDGC the most difficult to machine among glass ceramics. Surface roughness for machined LDGC was comparable for other glass ceramics. The removal mechanisms of LDGC were dominated by penetration-induced brittle fracture and shear-induced plastic deformation. Unlike most other glass ceramics, distinct intergranular and transgranular fractures of lithium disilicate crystals were found in LDGC. This research provides the fundamental data for dental clinicians on the machinability of LDGC in intraoral adjustments.

  3. Novel glass-ceramics for dental restorations.

    Science.gov (United States)

    Pollington, Sarah

    2011-01-01

    There are many different ceramic systems available on the market for dental restorations. Glass-ceramics are a popular choice due to their excellent esthetics and ability to bond to tooth structure allowing a more conservative approach. However, at present, these materials have insufficient strength to be used reliably in posterior regions of the mouth. The aim of this review article is to discuss the types of novel glass-ceramic currently be investigated including composition, microstructure and properties. Current research in glass-ceramics focuses on the quest for a highly esthetic material along with sufficient strength to enable crowns and bridgework to be reliably placed in these areas. There is a gap in the market for a machinable resin bonded glass-ceramic with sufficient strength as well as excellent esthetics.

  4. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  5. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  6. Glass and glass-ceramic photonic systems

    Science.gov (United States)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  7. The effect of flourine content on crystallization and properites of fluorisilicic mica glass-ceramic

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-gang; TIAN Jie-mo; QIN Yan-jun

    2001-01-01

    @@ Fluormica glass-ceramics are widely used in dental field because of their high esthetics, excellent biocompatibility, and good mechanical properties and machinability. The main crystalline phase in fluormica glass-ceramics is either fluorophlogopite or fluorosilicic mica. Dicor(r) is the most notable commercialized fluorsilicic mica glass-ceramics.

  8. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  9. Optical scattering in glass ceramics

    NARCIS (Netherlands)

    Mattarelli, M.; Montagna, M.; Verrocchio, P.

    2008-01-01

    The transparency of glass ceramics with nanocrystals is generally higher than that expected from the theory of Rayleigh scattering. We attribute this ultra-transparency to the spatial correlation of the nanoparticles. The structure factor is calculated for a simple model system, the random sequentia

  10. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  11. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  12. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  13. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  14. Machinability evaluation of machinable ceramics with fuzzy theory

    Institute of Scientific and Technical Information of China (English)

    YU Ai-bing; ZHONG Li-jun; TAN Ye-fa

    2005-01-01

    The property parameters and machining output parameters were selected for machinability evaluation of machinable ceramics. Based on fuzzy evaluation theory, two-stage fuzzy evaluation approach was applied to consider these parameters. Two-stage fuzzy comprehensive evaluation model was proposed to evaluate machinability of machinable ceramic materials. Ce-ZrO2/CePO4 composites were fabricated and machined for evaluation of machinable ceramics. Material removal rates and specific normal grinding forces were measured. The parameters concerned with machinability were selected as alternative set. Five grades were chosen for the machinability evaluation of machnable ceramics. Machinability grades of machinable ceramics were determined through fuzzy operation. Ductile marks are observed on Ce-ZrO2/CePO4 machined surface. Five prepared Ce-ZrO2/CePO4 composites are classified as three machinability grades according to the fuzzy comprehensive evaluation results. The machinability grades of Ce-ZrO2/CePO4 composites are concerned with CePO4 content.

  15. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  16. Carbon nanofillers for machining insulating ceramics

    Directory of Open Access Journals (Sweden)

    Olivier Malek

    2011-10-01

    Full Text Available The implementation of ceramics in emerging applications is principally limited by the final machining process necessary for producing microcomponents with complex geometries. The addition of carbon nanotubes greatly enhances the electrical properties of insulating ceramics allowing electrical discharge machining to be used to manufacture intricate parts. Meanwhile other properties of the ceramic may be either preserved or even improved. For the first time, a silicon nitride/carbon nanotubes microgear is electrically discharge machined with a remarkably high material removal rate, low surface roughness, and low tool wear. This offers unprecedented opportunities for the manufacture of complicated ceramic parts by adding carbon nanotubes for new engineering and biomedical applications.

  17. Microelectrical Discharge Machining: A Suitable Process for Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Andreas Schubert

    2015-01-01

    Full Text Available Today ceramics are used in many industrial applications, for example, in the biomedical field, for high-temperature components or for cutting tools. This is attributed to their excellent mechanical and physical properties, as low density, high strength, and hardness or chemical resistance. However, these specific mechanical properties lead to problems regarding the postprocessing of ceramics. In particular, cutting processes require expensive tools which cause high manufacturing costs to machine ceramics. Consequently, there is a demand for alternative machining processes. Microelectrical discharge machining (micro-EDM is a thermal abrasion process which is based on electrical discharges between a tool and a workpiece. The advantages of micro-EDM are more and more in focus for ceramic machining. These advantages include the process of being a noncontact technology, an independency of material brittleness and hardness, a low impact on the material, and the achievable microstructures. This paper presents the current state of investigations regarding micro-EDM of ceramics. Beside the process principle of EDM, the used procedures for machining ceramics and insulating ceramics are described. Furthermore several machining examples are presented to demonstrate the possibilities of the micro-EDM process with regard to the machining of ceramics.

  18. Crystallization Kinetics in Fluorochloroziroconate Glass-Ceramics

    Science.gov (United States)

    Alvarez, Carlos J.

    Annealing fluorochlorozirconate (FCZ) glasses nucleates BaCl2 nanocrystals in the glass matrix, resulting in a nanocomposite glass-ceramic that has optical properties suitable for use as a medical X-ray imaging plate. Understanding the way in which the BaCl¬2 nanocrystal nucleation, growth and phase transformation processes proceed is critical to controlling the optical behavior. However, there is a very limited amount of information about the formation, morphology, and distribution of the nanocrystalline particles in FCZ glass-ceramics. In this thesis, the correlation between the microstructure and the crystallization kinetics of FCZ glass-ceramics, are studied in detail. In situ X-ray diffraction and transmission electron microscopy annealing experiments are used to analyze the crystal structure, size and distribution of BaCl 2 nanocrystals in FCZ glass-ceramics as a function of annealing rate and temperature. Microstructural analysis of the early stages on nucleation identified the formation of both BaCl2 and BaF2 nanocrystals. Annealing FCZ glass-ceramics above 280°C can cause the formation of additional glass matrix phase crystals, their microstructure and the annealing parameters required for their growth are identified. As the crystalline phases grow directly from the glass, small variations in processing of the glass can have a profound influence on the crystallization process. The information obtained from these experiments improves the understanding of the nucleation, growth and phase transformation process of the BaCl¬2 nanocrystals and additional crystalline phases that form in FCZ glass-ceramics, and may help expedite the implementation of FCZ glass-ceramics as next-generation X-ray detectors. Lastly, as these glass-ceramics may one day be commercialized, an investigation into their degradation in different environmental conditions was also performed. The effects of direct contact with water or prolonged exposure to humid environments on the

  19. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  20. Bioactive glass-ceramics coatings on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Vitale Brovarone, C.; Verne, E.; Lupo, F. [Politecnico di Torino (Italy). Materials Science and Chemical Eng. Dept.; Moisescu, C. [Jena Univ. (Germany). Otto-Schott-Inst. fuer Glaschemie; Zanardi, L.; Bosetti, M.; Cannas, M. [Eastern Piemont Univ., Novara (Italy). Medical Science Dept.

    2001-07-01

    In this work, aiming to combine the mechanical performances of alumina with the surface properties of a bioactive material, we coated full density alumina substrates by a bioactive glass-ceramic GC. This latter was specially tailored, in term of costituents and specific quantity to have a thermal expansion coefficient close to that of alumina (8.5-9{sup *}10{sup -6}/ C) which is lower than most of the bioactive glasses and glass-ceramics already in use. In this way, we sought to avoid, as much as possible, the crack formation and propagation due to residual stresses generated by the thermal expansion coefficients mismatch. Furthermore, the high reactivity of alumina toward the glass-ceramic was carefully controlled to avoid deep compositional modification of the GC that will negatively affect its bioactivity. At this purpose, an intermediate layer of an appropriate glass G was coated prior to coat the bioactive glass-ceramic. On the materials obtained, preliminary biological tests have been done to evaluate glass-ceramic biocompatibility respect to alumina. (orig.)

  1. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja;

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  2. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...

  3. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  4. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  5. Comparison of Leaching Rates of Glass-Ceramic and Glass

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>With the increase of the burn-up of the nuclear fuel, the amounts of the long-lived radionuclides increase. The solubility of actinides such as plutonium in glass is very limited. Glass-ceramic as the new

  6. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  7. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  8. Ion Exchange in Glass-Ceramics

    Science.gov (United States)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  9. Imaging spectroscopy based strategies for ceramic glass contaminants removal in glass recycling.

    Science.gov (United States)

    Bonifazi, Giuseppe; Serranti, Silvia

    2006-01-01

    The presence of ceramic glass contaminants in glass recycling plants reduces production quality and increases production costs. The problem of ceramic glass inspection is related to the fact that its detectable physical and pictorial properties are quite similar to those of glass. As a consequence, at the sorting plant scale, ceramic glass looks like normal glass and is detectable only by specialized personnel. In this paper an innovative approach for ceramic glass recognition, based on imaging spectroscopy, is proposed and investigated. In order to define suitable inspection strategies for the separation between useful (glass) and polluting (ceramic glass) materials, reference samples of glass and ceramic glass presenting different colors, thicknesses, shapes and manufacturing processes have been selected. Reflectance spectra have been obtained using two equipment covering the visible and near infrared wavelength ranges (400-1000 and 1000-1700 nm). Results showed as recognition of glass and ceramic glass is possible using selected wavelength ratios, in both visible and near infrared fields.

  10. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  11. Lanthanoides in Glass and Glass Ceramics

    Science.gov (United States)

    Meinhardt, Jürgen; Kilo, Martin; Somorowsky, Ferdinand; Hopp, Werner

    2017-03-01

    Many types of glass contain lanthanoides; among them, special glass for optical applications is the one with the highest content of lanthanoides. The precise determination of the lanthanoides' concentration is performed by inductively coupled plasma-optical emission spectrometry (ICP-OES). However, up to now, there are no established standard processes guaranteeing a uniform approach to the lanthanoide analysis. The knowledge of the lanthanoides' concentrations is necessary on the microscale in some cases, especially if a suitable separation and recycling procedure is to be applied. Here, the analysis is performed by energy-dispersive X-ray (EDX) or wavelength-dispersive X-ray (WDX) analytics in the scanning electron microscope.

  12. Research on the residual stress of glass ceramic based on rotary ultrasonic drilling

    Science.gov (United States)

    Sun, Lipeng; Jin, Yuzhu; Chen, Jianhua

    2016-10-01

    In the process of machining, the glass ceramic is easy to crack and damage, etc. And the residual stress in the machined surface may cause the crack to different extent in the later stage. Some may even affect the performance of the product. The residual stress of rotary ultrasonic drilling and mechanical processing is compared in different machining parameters (spindle speed, feed rate). The effects of processing parameters and methods are researched, in order to reduce the residual stress in the mechanical processing of glass ceramic, and provide guidance for the actual processing.

  13. Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization

    Science.gov (United States)

    Caurant, D.

    2014-05-01

    Highly radioactive nuclear waste must be immobilized in very durable matrices such as glasses, glass-ceramics and ceramics in order to avoid their dispersion in the biosphere during their radioactivity decay. In this paper, we present various examples of spectroscopic investigations (optical absorption, Raman, NMR, EPR) performed to study the local structure of different kinds of such matrices used or envisaged to immobilize different kinds of radioactive wastes. A particular attention has been paid on the incorporation and the structural role of rare earths—both as fission products and actinide surrogates—in silicate glasses and glass-ceramics. An example of structural study by EPR of a ceramic (hollandite) irradiated by electrons (to simulate the effect of the β-irradiation of radioactive cesium) is also presented.

  14. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  15. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  16. Laser Micromachining of Glass, Silicon, and Ceramics

    Directory of Open Access Journals (Sweden)

    L. Rihakova

    2015-01-01

    Full Text Available A brief review is focused on laser micromachining of materials. Micromachining of materials is highly widespread method used in many industries, including semiconductors, electronic, medical, and automotive industries, communication, and aerospace. This method is a promising tool for material processing with micron and submicron resolution. In this paper micromachining of glass, silicon, and ceramics is considered. Interaction of these materials with laser radiation and recent research held on laser material treatment is provided.

  17. Laser Micromachining of Glass, Silicon, and Ceramics

    OpenAIRE

    Rihakova, L.; Chmelickova, H.

    2015-01-01

    A brief review is focused on laser micromachining of materials. Micromachining of materials is highly widespread method used in many industries, including semiconductors, electronic, medical, and automotive industries, communication, and aerospace. This method is a promising tool for material processing with micron and submicron resolution. In this paper micromachining of glass, silicon, and ceramics is considered. Interaction of these materials with laser radiation and recent research held o...

  18. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  19. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related...... for the topology of multicomponent melts, before accurate prediction of phase relations within boron-containing glass ceramics can be obtained....

  20. Sintering behavior of LZSA glass-ceramics

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2009-06-01

    Full Text Available The LZSA glass-ceramic system (Li2O-ZrO2-SiO2-Al2O 3 shows interesting properties, such as good chemical resistance, low thermal expansion, high abrasion resistance, and a low dielectric constant. However, in order to obtain a high performance material for specific applications, the sintering behavior must be better understood so that the porosity may be reduced and other properties improved. In this context, a sintering investigation for a specific LZSA glass-ceramic system composition was carried out. A 18.8Li2O-8.3ZrO2-64.2SiO2-8.7Al 2O3 glass was prepared by melting the solids, quenching the melt in water, and grinding the resulting solid in order to obtain a powder (3.68 μm average particle diameter. Subsequently, the glass powder was characterized (chemical analysis and determination of thermal properties and the sintering behavior was investigated using optical non-contact dilatometry measurements. The results showed that the crystallization process strongly reduced the sintering in the temperature interval from 785 to 940 °C, and a maximum thermal shrinkage of 15.4% was obtained with operating conditions of 1020 °C and 180 minutes.

  1. Preparation and Microstructure of Glass-ceramics and Ceramic Composite Materials

    Institute of Scientific and Technical Information of China (English)

    HE Feng; XIE Junlin; HAN Da

    2008-01-01

    The technology and microstructure of glass-ceramics and ceramic composite materials were studied.A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics.According to the expansion coefficient of the ceramic body,that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted.a-wollastonite was found present as the major crystalline phase in glass-ceramic.The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period.The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1100℃.resulting in an interface between them.To achieve good sintered properties of glass-ceramics and the chosen ceramic body,at least a four-hour sintering time is used.

  2. The molten glass sewing machine

    Science.gov (United States)

    Brun, P.-T.; Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-04-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model-and a methodology-to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.

  3. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  4. Structures and optical properties of tellurite glasses and glass ceramics

    Science.gov (United States)

    Hart, Robert Theodore, Jr.

    The structures and optical properties of (K2O)15(Nb 2O5)15(TeO2)70 glass and glass ceramic have been studied in order to understand the second harmonic generation observed from the glass ceramic. We have used 93Nb NMR, Raman spectroscopy, differential scanning calorimetry, small angle x-ray scattering, transmission electron microscopy, and powder x-ray and neutron scattering. We find that there is a microstructure consistent with binodal phase separation leading to spherical inclusions ˜20 nm in size. Upon heat treatment, these domains become nanocrystals of K2Te 4O9. A theory of optical heterogeneity is used to describe the observed second harmonic generation which is ˜95 times more intense that quartz. The chi(2) value for this material is 3.0 x 10-9 esu. A second project has used 125Te and 17O NMR to study alkali tellurite glasses in the system (M2O) x(TeO2)10-x, where M = Li, Na or K and x = 1, 2 or 3. The 125Te results show that complex models of network modification are needed to explain the resulting spectra that include a distribution of polyhedral tellurite units at all compositions. The 17O results show that there is a clear distinction between bridging and non-bridging oxygen sites in tellurite crystals and that sophisticated NMR experiments should be able to distinguish them in the glasses. Further, we have used Extended Huckel theory tight-binding calculations to predict the 17O NMR shifts of SiO2, GeO 2 and TeO2. We find that these calculations allow accurate predictions of the chemical shifts based solely on the trend in valence orbital size, and that expensive calculations of electron currents need not be used for this application.

  5. Cost Effective Machining Of Ceramics (CEMOC)

    Energy Technology Data Exchange (ETDEWEB)

    Barkman, W.E.

    1997-04-18

    The purpose of the CEMOC program was to support U.S. industry needs in fabricating precision components, from difficult to machine materials, while maintaining and enhancing the precision manufacturing skills of the Oak Ridge Complex. Oak Ridge and partner company personnel worked in a team relationship wherein each contributed equally to the success of the program. In general, Oak Ridge contributed a wider range of expertise to a given task while the companies provided operations-specific equipment and shop-floor services. Process control technologies, machining procedures and parameters, and coolant-related environmental tasks were the primary focus areas. The companies were very pleased with the results of the CRADAs and are planning on continuing the relationships. Finish machining operations contribute the majority of the costs associated with fabricating high quality ceramic products. These components are typically used in harsh environments such as diesel engines, defense machinery, and automotive components. The required finishing operations involve a variety of technologies including process controls, machine coolants, product certification, etc. and are not limited only to component grinding methods. The broad range of manufacturing problem solving expertise available in Oak Ridge provided resources that were far beyond what are typically available to the CRADA partners. These partners contributed equipment, such as state-of-the-art machine tools, and operation-specific experience base. In addition, addressing these challenging tasks enabled Oak Ridge personnel to maintain familiarity with rapidly advancing technologies, such as those associated with computer control systems.

  6. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  7. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Science.gov (United States)

    Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146

  8. A small angle neutron scattering study of mica based glass-ceramics with applications in dentistry

    Science.gov (United States)

    Kilcoyne, S. H.; Bentley, P. M.; Al-Jawad, M.; Bubb, N. L.; Al-Shammary, H. A. O.; Wood, D. J.

    2004-07-01

    We are currently developing machinable and load-bearing mica-based glass-ceramics for use in restorative dental surgery. In this paper we present the results of an ambient temperature small angle neutron scattering (SANS) study of several such ceramics with chemical compositions chosen to optimise machinability and strength. The SANS spectra are all dominated by scattering from the crystalline-amorphous phase interface and exhibit Q-4 dependence (Porod scattering) indicating that, on a 100Å scale, the surface of the crystals is smooth.

  9. Preparation of Glass Ceramic Based on Granulated Slag and Cullet

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet.The content of granulated slag ranges from 50%-60%wt in the glass compositions. The samples were analyzed by DTA, SEM and XRD.The results show that the main crystal phase of the glass-ceramic is β-CaSiO3,Which is in scattering fiber or column form.The applying properties have also been measured.

  10. Water analysis of glass ceramics by FT-IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nease, A B; Hale, M D; Kramer, D P

    1983-12-15

    A method for measuring water concentration in glasses has been described and the results of the study of ten batches of glasses have been tabulated. It has been shown that infrared spectroscopy is a satisfactory tool for measuring water concentration in glass ceramics. The water concentrations of ten batches of glass have been shown to differ significantly, and these variances are associated with environmental humidity and glass preparation method.

  11. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system

    DEFF Research Database (Denmark)

    Pallesen, U.; Dijken van, J.W.V.

    2000-01-01

    The purpose of this study was to evaluate Cerec CAD/CAM inlays processed of two industrially made machinable ceramics during an 8-yr follow-up period. Each of 16 patients received two similar ceramic inlays. Half the number of the inlays were made of a feldspathic (Vita Mark II) and the other...... of a glass ceramic (Dicor MGC) block. The inlays were luted with a dual resin composite and evaluated clinically using modified USPHS criteria at baseline, 8 months, 2, 3, 5, 6 and 8 yr, and indirectly using models. At baseline, 84% of the inlays were estimated as optimal and 16% as acceptable. Postoperative...... sensitivity was reported by one patient for 8 months. Of the 32 inlays evaluated during the 8 yr, 3 failed due to fracture of the material. No secondary caries was found adjacent to the inlays. No significant differences in the clinical performance were found between inlays made of the two ceramics. It can...

  12. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range.

    Science.gov (United States)

    Sola, Daniel; Peña, Jose I

    2013-11-19

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated.

  13. Distribution of Nd3+ ions in oxyfluoride glass ceramics.

    Science.gov (United States)

    Yu, Hua; Guo, Hui; Zhang, Ming; Liu, Yan; Liu, Min; Zhao, Li-Juan

    2012-05-30

    It has been an open question whether Nd3+ ions are incorporated into the crystalline phase in oxyfluoride glass ceramics or not. Moreover, relative research has indicated that spectra characters display minor differences between before and after heat treatment in oxyfluoride glass compared to similar Er3+-, Yb3+-, Tm3+-, Eu3+-, etc.-doped materials. Here, we have studied the distribution of Nd3+ ions in oxyfluoride glass ceramics by X-ray diffraction quantitative analysis and found that almost none of the Nd3+ ions can be incorporated into the crystalline phase. In order to confirm the rationality of the process, the conventional mathematical calculation and energy-dispersive spectrometry line scanning are employed, which show good consistency. The distribution of Nd3+ ions in oxyfluoride glass ceramics reported here is significant for further optical investigations and applications of rare-earth doped oxyfluoride glass ceramics.

  14. Effect of machining fluid on the process performance of wire electrical discharge machining of nanocomposite ceramic

    Directory of Open Access Journals (Sweden)

    Zhang Chengmao

    2015-01-01

    Full Text Available Wire electric discharge machining (WEDM promise to be effective and economical techniques for the production of tools and parts from conducting ceramic blanks. However, the manufacturing of nanocomposite ceramics blanks with these processes is a long and costly process. This paper presents a new process of machining nanocomposite ceramics using WEDM. WEDM uses water based emulsion, polyvinyl alcohol and distilled water as the machining fluid. Machining fluid is a primary factor that affects the material removal rate and surface quality of WEDM. The effects of emulsion concentration, polyvinyl alcohol concentration and distilled water of the machining fluid on the process performance have been investigated.

  15. Photocatalytic activity of glass ceramics containing Nasicon-type crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie, E-mail: fu@ohara-inc.co.jp [R and D Department, Ohara Inc., Sagamihara-shi, Kanagawa 252-5286 (Japan)

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► Glass ceramics containing Nasicon-type crystals were prepared. ► The glass ceramics showed photocatalytic activity under UV irradiation. ► Higher activity was observed in the MgTi{sub 4}(PO{sub 4}){sub 6}- and CaTi{sub 4}(PO{sub 4}){sub 6}-containing glass ceramics. -- Abstract: Glass ceramics were prepared by heat-treating MO–TiO{sub 2}–P{sub 2}O{sub 5} (M = Mg, Ca, Sr and Ba) and R{sub 2}O–TiO{sub 2}–P{sub 2}O{sub 5}–SiO{sub 2} (R = Li, Na and K) glasses, and their photocatalytic activity was investigated. The crystalline phases precipitated in the glasses were only Nasicon-type crystals, MTi{sub 4}(PO{sub 4}){sub 6} or RTi{sub 2}(PO{sub 4}){sub 3}. Decomposition experiments of both methylene blue (MB) and acetaldehyde showed that the glass ceramics exhibited effective photocatalytic activity. The activity did not depend on the radius of the M{sup 2+} or R{sup +} ion, and higher activity was observed in the MgTi{sub 4}(PO{sub 4}){sub 6} and CaTi{sub 4}(PO{sub 4}){sub 6} precipitated glass ceramics.

  16. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter.

  17. Preparation and luminescence of new Nd 3+ doped chloro-sulphide glass-ceramics

    Science.gov (United States)

    Seznec, Vincent; Ma, Hong Li; Zhang, Xiang Hua; Nazabal, Virginie; Adam, Jean-Luc; Qiao, X. S.; Fan, X. P.

    2006-12-01

    Chalcogenide glass-ceramics containing rare earth have been studied. A reproducible process has been established for making transparent glass-ceramics. The presence of micro-crystals inside the chalco-halide glass-ceramics induces scattering at the short wavelengths. Photoluminescence of rare earth has been greatly increased in glass-ceramics. To our best knowledge, this is the first paper on rare-earth-doped glass-ceramics based on chalcogenide.

  18. Apatite glass-ceramics: a review

    Science.gov (United States)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  19. Glass-ceramic frits from fly ash in terracotta production.

    Science.gov (United States)

    Karamanova, Emilia; Karamanov, Alexander

    2009-02-01

    Preliminary results of an investigation into the possible use of glass-ceramic frits from fly ash and glass cullet in terracotta (stoneware) tile manufacture are reported. Two new ceramics were studied and compared with a plant composition, containing 45 wt.% sodium feldspar. In the first ceramic batch 20% of the feldspar was substituted by frits and in the second the whole amount of feldspar was eliminated and replaced by 35% frits and 10% refractory waste. It was found that the addition of low viscous glass-ceramic frits decreased the sintering temperature by 50-100 degrees C. At the same time, due to formation of an additional crystal phase (i.e. pyroxene or anorthite) the new ceramics showed an improvement of 25-50% in bending strength.

  20. Glass-ceramics as building materials

    Directory of Open Access Journals (Sweden)

    Rincón, J. María

    1996-06-01

    Full Text Available Glass-ceramics are materials composed as any ceramic material by several crystalline phases embedded in an amorphous or vitreous matrix, but their manufacture process implies the controlled devitrification or nucleation and growth of phases from an original glass. The original shape of the original glass molded by conventional methods is carried out by using pressing and sintering followed by crystallization steps. By both processing routes are obtained transparent and/or opaque materials, with or without colours, which after adequate control and design of composition and microstructure have numerous domestic and architectonic applications. They can be used as pavements or wall coatings and in various decorative elements. In fact, their use is very extensive in east-European, American and Asian (Japan countries in constructions for covering large surfaces. The greater advantage of the glass-ceramic process is that due to the own process of vitrification allows the incorporation in their structure of a wide range of compositions from mining and industrial residues, such as red muds, ashes, fangos, scraps... which they can in this way not only be inertizated, but furthermore it be converted without risk for the environment into products useful in construction applications, offering to the architect and to the decorator a new range of "eco-materials" with multiple complementary possibilities of the already existing architectural materials in the market.

    Los productos o materiales vitrocerámicos se componen, como cualquier material de tipo cerámico, de una o varias fases cristalinas embebidas en una matriz amorfa o vítrea, pero cuyo proceso de fabricación implica la desvitrificación o nucleación y cristalización controlada de un vidrio original o de partida. En el proceso de obtención de estos materiales se puede conservar la forma original conferida al vidrio de partida por los métodos convencionales de moldeado de vidrios

  1. Glass-ceramics and epoxy-composites for radiation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.V.M. [MacDiarmid Institute, Industrial Research, P.O. Box 31310, Lower Hutt (New Zealand)], E-mail: G.Williams@irl.cri.nz; Bittar, A. [MacDiarmid Institute, Industrial Research, P.O. Box 31310, Lower Hutt (New Zealand); Dotzler, C. [MacDiarmid Institute, Industrial Research, P.O. Box 31310, Lower Hutt (New Zealand); School of Chemical and Physical Sciences, Victoria University, P.O. Box 600, Wellington (New Zealand); Beaudin, A. [MacDiarmid Institute, Industrial Research, P.O. Box 31310, Lower Hutt (New Zealand); Varoy, C. [School of Chemical and Physical Sciences, Victoria University, P.O. Box 600, Wellington (New Zealand); Dunford, C. [MacDiarmid Institute, Industrial Research, P.O. Box 31310, Lower Hutt (New Zealand)

    2007-04-15

    We report the results of optical, photo-luminescence and spatial resolution measurements on glass-ceramic and epoxy-composite X-ray storage phosphors. We find that the optical extinction coefficient at the stimulation and emission wavelengths is dominated by scattering for all the samples studied. However, the extinction coefficient is at least an order of magnitude lower in ZBLAN:BaCl{sub 2}:Eu{sup 2+} glass-ceramics when compared with the epoxy/BaCl{sub 2}:Eu{sup 2+} composites. Significantly reduced scattering is found in a epoxy/KBr:Eu{sup 2+} composite due to the better match between the refractive indices of the epoxy and crystallite. We show that the spatial resolution using a confocal microscope readout in a ZBLAN:BaCl{sub 2}:Eu{sup 2+} glass-ceramic is below 10{mu}m and hence this glass-ceramic has potential applications in high resolution radiation imaging.

  2. Letter report on PCT/Monolith glass ceramic corrosion tests

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline network while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).

  3. Machining of glass fiber reinforced polyamide

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available The machinability of a 30 wt% glass fiber reinforced polyamide (PA was investigated by means of drilling tests. A disk was cut from an extruded rod and drilled on the flat surface: thrust was acquired during drilling at different drilling speed, feed rate and drill diameter. Differential scanning calorimetry (DSC and indentation were used to characterize PA so as to evaluate the intrinsic lack of homogeneity of the extruded material. In conclusion, it was observed that the chip formation mechanism affects the thrust dependence on the machining parameters. A traditional modeling approach is able to predict thrust only in presence of a continuous chip. In some conditions, thrust increases as drilling speed increases and feed rate decreases; this evidence suggests not to consider the general scientific approach which deals the machining of plastics in analogy with metals. Moreover, the thrust can be significantly affected by the workpiece fabrication effect, as well as by the machining parameters; therefore, the fabrication effect is not negligible in the definition of an optimum for the machining process.

  4. Surface or internal nucleation and crystallization of glass-ceramics

    Science.gov (United States)

    Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.

    2013-07-01

    Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.

  5. Terbium-activated lithium lanthanum aluminosilicate oxyfluoride scintillating glass and glass-ceramic

    Science.gov (United States)

    Pan, Z.; James, K.; Cui, Y.; Burger, A.; Cherepy, N.; Payne, S. A.; Mu, R.; Morgan, S. H.

    2008-09-01

    Terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glasses, 55SiO 2·6Al 2O 3·28Li 2O·11LaF 3 doped with different TbF 3 concentrations, have been fabricated and investigated. By appropriate heat treatment of the as-prepared glasses above, transparent glass-ceramics were obtained. Differential scanning calorimetry, X-ray diffraction, optical absorption, and luminescence under both UV and beta-particle excitation have been investigated on as-prepared glasses and glass-ceramics. It has been found that these terbium-activated lithium-lanthanum-aluminosilicate oxyfluoride scintillating glasses exhibit good UV-excited luminescence and radioluminescence. The luminescence yield increases for glass-ceramics. The efficiency of beta-induced luminescence is comparable or nearly equal to that of the Schott IQI-301 product.

  6. Laser spectroscopy of rare earth ions in lead borate glasses and transparent glass-ceramics

    Science.gov (United States)

    Pisarski, W. A.; Grobelny, Ł.; Pisarska, J.; Lisiecki, R.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2010-03-01

    Rare earth doped lead borate glasses and transparent glass-ceramics have been studied using optical spectroscopy. Based on the absorption, emission and its decay and the Judd-Ofelt calculations, several radiative and laser parameters for Ln 3+ ( Ln = Pr, Nd, Eu, Dy, Er, Tm) were evaluated. The large values of luminescence lifetime, quantum efficiency of excited state and room temperature peak stimulated emission cross-section suggest efficient laser transitions of Ln 3+ ions in lead borate glasses. The obtained results indicate that lead borate glasses and glass-ceramics containing Ln 3+ ions are promising host matrices for solid-state laser applications.

  7. Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Bragatto, Caio B.

    2013-01-01

    In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat trea...... as percolation theory. This work implies that, based on its electronic conductivity, vitreous 2TeO2-V2O5 is more suitable as a cathode material in secondary batteries compared to a 2TeO2-V2O5 glass-ceramic.......In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat...... treatment thereof. Glass-ceramics are prepared by mixing glass and crystal powder, followed by a sintering procedure. Activation energies for electronic conduction in the glass and in the crystal are determined by fitting the Mott-Austin equation to the electronic conductivity data obtained by impedance...

  8. ZERODUR® glass ceramics for high stress applications

    Science.gov (United States)

    Hartmann, Peter; Nattermann, Kurt; Döhring, Thorsten; Jedamzik, Ralf; Kuhr, Markus; Thomas, Peter; Kling, Guenther; Lucarelli, Stefano

    2009-08-01

    Recently SCHOTT has shown in a series of investigations the suitability of the zero expansion glass ceramic material ZERODUR® for applications like mirrors and support structures of complicated design used at high mechanical loads. Examples are vibrations during rocket launches, bonded elements to support single mirrors or mirrors of a large array, or controlled deformations for optical image correction, i.e. adaptive mirrors. Additional measurements have been performed on the behavior of ZERODUR® with respect to the etching process, which is capable of increasing strength significantly. It has been determined, which minimum layer thickness has to be removed in order to achieve the strength increase reliably. New data for the strength of the material variant ZERODUR K20® prepared with a diamond grain tool D151 are available and compared with the data of ZERODUR® specimens prepared in the same way. Data for the stress corrosion coefficient n of ZERODUR® for dry and normal humid environment have been measured already in the 1980s. It has been remeasured with the alternative double cleavage drilled compression (DCDC) method.

  9. Glass ceramic ZERODUR enabling nanometer precision

    Science.gov (United States)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  10. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    Science.gov (United States)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  11. A modularized pulse forming line using glass-ceramic slabs.

    Science.gov (United States)

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable.

  12. Elastic modulus measurements of LDEF glasses and glass-ceramics using a speckle technique

    Science.gov (United States)

    Wiedlocher, D. E.; Kinser, D. L.

    1992-01-01

    Elastic moduli of five glass types and the glass-ceramic Zerodur, exposed to a near-earth orbit environment on the Long Duration Exposure Facility (LDEF), were compared to that of unexposed samples. A double exposure speckle photography technique utilizing 633 nm laser light was used in the production of the speckle pattern. Subsequent illumination of a double exposed negative using the same wavelength radiation produces Young's fringes from which the in-plane displacements are measured. Stresses imposed by compressive loading produced measurable strains in the glasses and glass-ceramic.

  13. The local structure of europium-lead-borate glass ceramics

    Science.gov (United States)

    Rada, S.; Pascuta, P.; Culea, M.; Maties, V.; Rada, M.; Barlea, M.; Culea, E.

    2009-04-01

    Glass ceramics in the xEu 2O 3(100 - x)[3B 2O 3·PbO] system with 0 ⩽ x ⩽ 50 mol% have been prepared using the melt quenching method, succeeded by heat treatment applied at 625 °C and 675 °C, respectively, for 48 h. The influence of europium ions on structural behavior of the lead-borate glass ceramics has been investigated using infrared spectroscopy and DFT calculations. The addition of europium ions into the host glass ceramics matrix leads to an increase of the glass network polymerization due to the replacement of B sbnd O sbnd B bonds by the more resistant B sbnd O sbnd Pb bonds. The structural evolution of the studied glass ceramics with the gradual increase of the europium oxide content up to 50 mol% could be explained by considering that the excess of oxygen may be accommodated by the formation of [PbO 4] structural units. Then, the formation of different ionic complexes of the lead ions will decrease the rate of crystal growth and the conversion of the glass into crystalline material becomes more difficult, in agreement to the X-ray data.

  14. Tensile strength of bilayered ceramics and corresponding glass veneers

    Science.gov (United States)

    Champirat, Tharee; Jirajariyavej, Bundhit

    2014-01-01

    PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm2 in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials. PMID:25006377

  15. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter.

  16. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    Science.gov (United States)

    Tang, Ming; Kossoy, Anna; Jarvinen, Gordon; Crum, Jarrod; Turo, Laura; Riley, Brian; Brinkman, Kyle; Fox, Kevin; Amoroso, Jake; Marra, James

    2014-05-01

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (∼1-5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  17. Glass-ceramic materials from electric arc furnace dust.

    Science.gov (United States)

    Kavouras, P; Kehagias, T; Tsilika, I; Kaimakamis, G; Chrissafis, K; Kokkou, S; Papadopoulos, D; Karakostas, Th

    2007-01-31

    Electric arc furnace dust (EAFD) was vitrified with SiO2, Na2CO3 and CaCO3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO3) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase.

  18. The research on conformal acid etching process of glass ceramic

    Science.gov (United States)

    Wang, Kepeng; Guo, Peiji

    2014-08-01

    A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.

  19. [Optical parameters of Er3+ in oxyfluoride glass ceramic].

    Science.gov (United States)

    He, Chen-juan; Chen, Luan; Meng, Chao; Song, Zeng-fu; Wang, Zhi-guang; Meng, Guang-zheng

    2002-08-01

    Recently, in virtue of the develop of the semiconductor laser and the doped laser materials with rare-earth ions, the up-conversion laser with resonant pump has became a scientific subject in great demand. The doped oxyfluoride glass ceramic with rare-earth ions is a very excellent material, its optical property and chemical stability are outstanding. So, absorption spectrum of Er3+ in Fluoroxide glass ceramic was measured, and intensity parameters omega lambda were calculated using Judd-Oflet theory. Some predicted spectroscopic parameters of the excited states, like the spontaneous radiative transition rate, branching ratio and integrated emission cross section were given.

  20. Modeling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz N.; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related......-empirical optimisation of boron and alkali/alkali earth oxide activities in the liquid oxide solution, significantly improved fits between modelled and experimental results were obtained. Based on these results, it is suggested that more precise descriptions of higher order interactions need to be addressed, to account...

  1. Modelling the crystallisation of alkaline earth boroaluminosilicate glass ceramics

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Agersted, Karsten; Holm, Paul Martin

    2014-01-01

    To investigate the potential use of a thermochemical software package (FactSage 6.2), in the design of alkaline earth boroaluminosilicate glass ceramics, experimental and modelled results on four glass ceramics were compared. Initially large discrepancies were found. These are described and related......-empirical optimisation of boron and alkali/alkali earth oxide activities in the liquid oxide solution, significantly improved fits between modelled and experimental results were obtained. Based on these results, it is suggested that more precise descriptions of higher order interactions need to be addressed, to account...

  2. Radioluminescence properties of Sm-doped fluorochlorozirconate glasses and glass-ceramics

    Science.gov (United States)

    Okada, Go; Edgar, Andy; Kasap, Safa; Yanagida, Takayuki

    2016-02-01

    We have investigated X-ray induced radioluminescence (XL) properties of Sm-doped fluorochlorozirconate (FCZ) glasses and glass-ceramics. The FCZ glass is a modified ZBLAN glass which shows a very high optical transmission over a wide spectral range. The glass matrix includes Sm3+-doped nanocrystals of BaCl2 after heat-treatment at temperatures above 250 °C. The glass-ceramic emits red light under UV and X-ray exposure. Since conventional Si-based photodetectors, e.g., CCDs, have the highest quantum efficiency to red light in general, the Sm-doped FCZ glass-ceramic plate can be a good candidate as a scintillator material for indirect radiation detection. Moreover, a very broad emission is present in the glass-ceramic around 300-500 nm, which is attributed to a self-trapped exciton (STE) emissions. The temperature dependence of X-ray induced luminescence and photoluminescence are very similar. The XL light yield is linearly proportional to the X-ray exposure rate for rates higher than 20 mR/s. For low exposure rates, emissions by Sm2+ are more sensitive than others, leading to a nonlinear response.

  3. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  4. Crystallization of high-strength fine-sized leucite glass-ceramics.

    Science.gov (United States)

    Chen, X; Chadwick, T C; Wilson, R M; Hill, R; Cattell, M J

    2010-12-01

    Manufacturing of leucite glass-ceramics often leads to materials with inhomogeneous microstructures. Crystal-glass thermal mismatches which produce microcracking around larger crystals-agglomerates are associated with reduced mechanical properties. The hypotheses were that fine (ceramics were characterized by XRD, SEM, and Dilatometry. Experimental (A, M1A and M2A) and commercial glass-ceramics were tested by the BFS test. Experimental glass-ceramics showed an increased leucite crystal number and decreased crystal size with glass particle size reduction. Leucite glass-ceramics (ceramics M1A and M2A had higher mean BFS and characteristic strength than the IPS Empress Esthetic glass-ceramic (p ceramics were synthesized and produced high mean BFS.

  5. Enhanced Luminescent Properties in Tm3+/Dy3+ Co-doped Transparent Phosphate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    Yao L. Q.

    2016-01-01

    Full Text Available Novel Tm3+/Dy3+ co-doped phosphate glass and glass ceramic samples for white light emitting diodes were prepared by melt quenching method. Under 353 nm excitation, the colors of the luminescence of the glass and glass ceramic samples are white. The CIE chromaticity coordinates (0.338, 0.328 of the emission from the glass ceramic is close to the standard white-light illumination (0.333, 0.333. Compared to the glass, the fluorescence intensity in the glass ceramic is greatly enhanced.

  6. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator

    OpenAIRE

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2013-01-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF3:Tb nanocrystals precipitated within the oxide glass matrix during the processing and their lu...

  7. Mullite glass-ceramic glazes synthesized through a sol-gel and ceramic mixed process

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, I.; Hohemberger, J.M.; Carda, J.B. [Universitat Jaume I, Castellon (Spain). Dept. Quimica Inorganica y Organica; Jovani, M.A.; Nebot, A. [Colorobbia Espana S.A. Villafames, Castellon (Spain)

    2002-07-01

    The main objective of the present work is the development of a glass-ceramic glaze with similar properties to the mullite crystalline phase. We have developed new glass-ceramic materials, which are formed through devitrification of mullite. The synthesis process combines the traditional ceramic method and the more innovative sol-gel methodologies. Amorphous precursors for the glass-ceramic glazes were obtained through precalcination of previously synthesized gels. These amorphous materials served as crystallization nuclei when introduced in the enamel composition. Gels were synthesized by the polymeric sol-gel method using AlCl{sub 3}, t-BuOH and TEOS as precursors. Composition of frit was optimized in such a way that a frit rich in aluminum and silicon would have the adequate physical and chemical characteristics for the desired application. Microstructure and structure of all the obtained materials were characterized. DTA-TG profiles and mechanical, chemical and optical properties were evaluated. On the other hand, the glass-ceramic glazes were compared first to glass-crystalline mullite glazes, which were obtained by addition of mullite crystals to the frit and then, to the glaze derived of just the frit. (orig.)

  8. Luminescence property of Eu-doped fluorochlorozirconate glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    PEI Zhili; WANG Yongsheng; HE Dawei; MENG Xianguo

    2009-01-01

    A series of Eu2+-doped fluorochlorozireonate glass-ceramics were prepared by solid state reaction method. X-ray diffraction, pho-toluminescence, photo-stimulated luminescence (PSL) and the turbidity of fluorozirconate glass containing BaCl2 nano- and micro-crystals were measured for the samples annealed at 290 ℃ for 10 min. The PSL was attributed to the characteristic emission of Eu2+ in nano-crystallites of BaCl2, which formed in the glass upon annealing. The PSL efficiency of the glass ceramic was increased by increasing the concentration of BaCl2, which, however, resulted in the decreasing in the transparency of the sample. The sample turned to a semi-transparent glass ceramic or even an opaque and milky white one from a near-transparent glass. The trade-off between optical trans-parency and PSL intensity over different concentrations of BaCl2 for X-ray imaging plate applications was briefly discussed.

  9. Processing and Characterization of Nanocrystalline Mica Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    V. Khani

    2012-10-01

    Full Text Available In order to fabrication of transparent glass-ceramics with Li-mica nano crystals, the glasses with chemical composition of 94.9 mass% Li(1+xMg3AlSi3(1+xF2 (x=0.5 with 5.1 mass% MgF2 were crystallized. The glasses were fabricated via the conventional melt-quenching technique. Mica crystals were precipitated in the glass phase by later heat treatment. Glass samples had glass transition temperature (Tg, 557 ?C, softening temperature (Ts, 603 ?C, and crystallization peak temperature (Tp, 655 ?C. The fine mica crystals with size of separation. It’s confirmed that both as-quenched and heat-treated samples are transparent in the visible wave length.

  10. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    Science.gov (United States)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  11. Glass binder development for a glass-bonded sodalite ceramic waste form

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.; Canfield, Nathan L.; Zhu, Zihua; Zhang, Jiandong; Kruska, Karen; Schreiber, Daniel K.; Crum, Jarrod V.

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materials made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.

  12. Three-dimensional machining of insulating ceramics materials with electrical discharge machining

    Institute of Scientific and Technical Information of China (English)

    Yasushi FUKUZAWA; Naotake MOHRI; Hiromitsu GOTOH; Takayuki TANI

    2009-01-01

    The insulating ceramics were processed with sinking and wire cut electrical discharge machining(EDM). The new technology was named as the assisting electrode method. In the machining, the electrical conductive material was adhered on the surface of insulating workpiece as the starting point of electrical discharge. As the processing operated in oil, the electrical conductive product composed of decomposition carbon element from working oil adhered on the workpiece during discharge. The discharges generated continuously with the formation of the electrical conductive layer. So, the insulating ceramics turn to the machinable material by EDM. We introduced the mechanism and the application of the machining of insulating ceramics such as Si3N4 and ZrO2.

  13. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  14. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Carline R. G. van den Breemer

    2015-01-01

    Full Text Available Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS. Materials and Methods. An extensive literature search concerning the cementation of single-unit glass-ceramic posterior restorations was conducted in the databases of MEDLINE (Pubmed, CENTRAL (Cochrane Central Register of Controlled Trials, and EMBASE. To be considered for inclusion, in vitro and in vivo studies should compare different cementation regimes involving a “glass-ceramic/cement/human tooth” complex. Results and Conclusions. 88 studies were included in total. The in vitro data were organized according to the following topics: (microshear and (microtensile bond strength, fracture strength, and marginal gap and integrity. For in vivo studies survival and quality of survival were considered. In vitro studies showed that adhesive systems (3-step, etch-and-rinse result in the best (microshear bond strength values compared to self-adhesive and self-etch systems when luting glass-ceramic substrates to human dentin. The highest fracture strength is obtained with adhesive cements in particular. No marked clinical preference for one specific procedure could be demonstrated on the basis of the reviewed literature. The possible merits of IDS are most convincingly illustrated by the favorable microtensile bond strengths. No clinical studies regarding IDS were found.

  15. Cementation of Glass-Ceramic Posterior Restorations : A Systematic Review

    NARCIS (Netherlands)

    van den Breemer, Carline R. G.; Gresnigt, Marco M. M.; Cune, Marco S.

    2015-01-01

    Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS). Materials and Methods. An extensive literature search conce

  16. Cementation of Glass-Ceramic Posterior Restorations: A Systematic Review

    Science.gov (United States)

    van den Breemer, Carline R. G.; Gresnigt, Marco M. M.; Cune, Marco S.

    2015-01-01

    Aim. The aim of this comprehensive review is to systematically organize the current knowledge regarding the cementation of glass-ceramic materials and restorations, with an additional focus on the benefits of Immediate Dentin Sealing (IDS). Materials and Methods. An extensive literature search concerning the cementation of single-unit glass-ceramic posterior restorations was conducted in the databases of MEDLINE (Pubmed), CENTRAL (Cochrane Central Register of Controlled Trials), and EMBASE. To be considered for inclusion, in vitro and in vivo studies should compare different cementation regimes involving a “glass-ceramic/cement/human tooth” complex. Results and Conclusions. 88 studies were included in total. The in vitro data were organized according to the following topics: (micro)shear and (micro)tensile bond strength, fracture strength, and marginal gap and integrity. For in vivo studies survival and quality of survival were considered. In vitro studies showed that adhesive systems (3-step, etch-and-rinse) result in the best (micro)shear bond strength values compared to self-adhesive and self-etch systems when luting glass-ceramic substrates to human dentin. The highest fracture strength is obtained with adhesive cements in particular. No marked clinical preference for one specific procedure could be demonstrated on the basis of the reviewed literature. The possible merits of IDS are most convincingly illustrated by the favorable microtensile bond strengths. No clinical studies regarding IDS were found. PMID:26557651

  17. Phase evolution in zirconolite glass-ceramic wasteforms

    Science.gov (United States)

    Maddrell, Ewan R.; Paterson, Hannah C.; May, Sarah E.; Burns, Kerry M.

    2017-09-01

    The evolution of crystalline phases in a model glass-ceramic wasteform system has been studied as a function of temperature and time. The work has shown that perovskite and sphene form as transient phases before final formation of zirconolite. The study also suggests some evidence for subtle structural transformations within the zirconolite phase.

  18. Non-parametric analysis of infrared spectra for recognition of glass and glass ceramic fragments in recycling plants.

    Science.gov (United States)

    Farcomeni, Alessio; Serranti, Silvia; Bonifazi, Giuseppe

    2008-01-01

    Glass ceramic detection in glass recycling plants represents a still unsolved problem, as glass ceramic material looks like normal glass and is usually detected only by specialized personnel. The presence of glass-like contaminants inside waste glass products, resulting from both industrial and differentiated urban waste collection, increases process production costs and reduces final product quality. In this paper an innovative approach for glass ceramic recognition, based on the non-parametric analysis of infrared spectra, is proposed and investigated. The work was specifically addressed to the spectral classification of glass and glass ceramic fragments collected in an actual recycling plant from three different production lines: flat glass, colored container-glass and white container-glass. The analyses, carried out in the near and mid-infrared (NIR-MIR) spectral field (1280-4480 nm), show that glass ceramic and glass fragments can be recognized by applying a wavelet transform, with a small classification error. Moreover, a method for selecting only a small subset of relevant wavelength ratios is suggested, allowing the conduct of a fast recognition of the two classes of materials. The results show how the proposed approach can be utilized to develop a classification engine to be integrated inside a hardware and software sorting architecture for fast "on-line" ceramic glass recognition and separation.

  19. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants.

  20. Healing of lithographically introduced flaws in glass and glass containing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ackler, H.D.

    1992-12-01

    The morphological evolution of cylindrical pores or channels'' and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al[sub 2]O[sub 3]with [approx]5--10% intergranular glass, 96% Al[sub 2]O[sub 3] bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO[sub 2] had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.

  1. Healing of lithographically introduced flaws in glass and glass containing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ackler, H.D.

    1992-12-01

    The morphological evolution of cylindrical pores or ``channels`` and crack-like cavities in glass and glass-containing ceramics at elevated temperatures was studied. The systems studied were: Coming 7056 alkali borosilicate glass, soda-lime glass (microscope slides), a commercially available 96% Al{sub 2}O{sub 3}with {approx}5--10% intergranular glass, 96% Al{sub 2}O{sub 3} bonded to sapphire, and a model sapphire/glass/sapphire system fabricated by diffusion bonding etched and unetched pieces of sapphire onto which 30--50 nm of SiO{sub 2} had been sputter deposited. These systems span a broad range of glass contents, and permit observation of healing behavior with varying glass content. The results were compared with analytical models and results of similar studies in completely crystalline systems.

  2. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Maddrell, Ewan, E-mail: ewan.r.maddrell@nnl.co.uk [National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Thornber, Stephanie; Hyatt, Neil C. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-01-15

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}–SiO{sub 2} glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio.

  3. Biocompatible glass-ceramic materials for bone substitution.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana

    2008-01-01

    A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.

  4. Glass-ceramics obtained by the crystallization of basalt

    Directory of Open Access Journals (Sweden)

    Cocić M.

    2010-01-01

    Full Text Available The possibility to obtain glass-ceramics from basalt from the locality on Vrelo (Kopaonik mt. is shown in this paper. The parent rock was ground to fraction -0.4 +0.1 mm, and then melted at 1250 - 1300°C. The crystallization melted bazaltic glass at 950°C during the time interval of 3 hours caused synthesis of a glass-ceramic material with a microstructure that has excellent mechanical properties according to the determined dynamic modulus of elasticity and uniaxial compresive strength. The phase composition of the obtained glass ceramic material was determined by XRPD using Rietveld refinement and SEM. Two phases were found: pyroxene which corresponds to omphacite of the composition (Na0.199 K0.180 Ca0.471 Mg0.2491.1(Mg0.271Fe0.299Al0.4301.0(Si1.704Ti0.046Al0.2502.0O6 and glass with an approximate relationship 69:31.

  5. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  6. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Directory of Open Access Journals (Sweden)

    Renjie Ji

    Full Text Available Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR, electrode wear ratio (EWR, and surface roughness (SR. The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical

  7. Spectral cullet classification in the mid-infrared field for ceramic glass contaminants detection.

    Science.gov (United States)

    Serranti, Silvia; Bonifazi, Giuseppe; Pohl, Roland

    2006-02-01

    The presence of glass-like contaminants inside waste glass products, usually resulting from both industrial and differentiated urban waste collection, has greatly increased in recent years, due to the introduction to the market of a large amount of goods manufactured from ceramic glass. The presence of contaminants in the glass recycling streams reduces product quality and increases production costs. The detection of ceramic glass detection is an unresolved problem, as such material looks like normal glass and can only be detected by trained personnel. In this study an innovative approach to ceramic glass recognition, based on the spectral signature in the mid-infrared (MIR) field, was proposed and investigated. The study specifically addressed the spectral characterization of glass and ceramic glass fragments collected in a real recycling plant from two different production lines: coloured container glass and white container glass. To define suitable inspection strategies to separate the useful (glass) from the polluting (ceramic glass) materials at the recycling plants, fragments presenting different colour, thickness, size, shape and manufacturing were selected. Both dirty and clean cullet was considered. The analyses, carried out in the MIR spectral field (2280-4480 nm), show that ceramic glass and glass fragments can be recognized according to their different spectral signature. In particular, by selecting a specific wavelength ratio the two classes of materials can be rapidly recognized, suggesting the possibility of developing an integrated hardware and software sorting system for 'on-line' ceramic glass separation.

  8. CRYSTALLIZATION KINETICS OF GLASS-CERAMICS BY DIFFERENTIAL THERMAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. NOZAD

    2011-06-01

    Full Text Available The crystallization behavior of fluorphlogopite, a glass-ceramic in the MgO–SiO2–Al2O3–K2O–B2O3–F system, was studied by substitution of Li2O for K2O in the glass composition. DTA, XRD and SEM were used for the study of crystallization behavior, formed phases and microstructure of the resulting glass-ceramics. Crystallization kinetics of the glass was investigated under non-isothermal conditions, using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed, and both the activation energy of crystallization process as well as the crystallization mechanism were characterized. Calculated kinetic parameters indicated that the appropriate crystallization mechanism was bulk crystallization for base glass and the sample with addition of Li2O. Non-isothermal DTA experiments showed that the crystallization activation energies of base glasses was in the range of 234-246 KJ/mol and in the samples with addition of Li2O was changed to the range of 317-322 KJ/mol.

  9. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Structural analysis and thermal behavior of diopside-fluorapatite-wollastonite-based glasses and glass-ceramics.

    Science.gov (United States)

    Kansal, Ishu; Tulyaganov, Dilshat U; Goel, Ashutosh; Pascual, Maria J; Ferreira, José M F

    2010-11-01

    Glass-ceramics in the diopside (CaMgSi2O6)-fluorapatite (Ca5(PO4)3F)-wollastonite (CaSiO3) system are potential candidates for restorative dental and bone implant materials. The present study describes the influence of varying SiO2/CaO and CaF2/P2O5 molar ratio on the structure and thermal behavior of glass compositions in the CaO-MgO-SiO2-P2O5-Na2O-CaF2 system. The structural features and properties of the glasses were investigated by nuclear magnetic resonance (NMR), infrared spectroscopy, density measurements and dilatometry. Sintering and crystallization behavior of the glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. The microstructure and crystalline phase assemblage in the sintered glass powder compacts were studied under non-isothermal heating conditions at 825 °C. X-ray diffraction studies combined with the Rietveld-reference intensity ratio (R.I.R) method were employed to quantify the amount of amorphous and crystalline phases in the glass-ceramics, while scanning electron microscopy was used to shed some light on the microstructure of resultant glass-ceramics. An increase in CaO/SiO2 ratio degraded the sinterability of the glass powder compacts, resulting in the formation of akermanite as the major crystalline phase. On the other hand, an increase in P2O5/CaF2 ratio improved the sintering behavior of the glass-ceramics, while varying the amount of crystalline phases, i.e. diopside, fluorapatite and wollastonite. Copyright © 2010. Published by Elsevier Ltd.

  11. Effect of host glass matrix on structural and optical behavior of glass-ceramic nanocomposite scintillators

    Science.gov (United States)

    Brooke Barta, M.; Nadler, Jason H.; Kang, Zhitao; Wagner, Brent K.; Rosson, Robert; Kahn, Bernd

    2013-12-01

    Composite scintillator systems have received increased attention in recent years due to their promise for merging the radioisotope discrimination capabilities of single crystal scintillators with the high throughput scanning capabilities of portal monitors. However, producing the high light yield required for good energy resolution has proven challenging as scintillation photons are often scattered by variations in refractive index and agglomerated scintillator crystals within the composite. This investigation sought to mitigate these common problems by using glass-ceramic nanocomposite materials systems in which nanoscale scintillating crystallites are precipitated in a controlled manner from a transparent glass matrix. Precipitating crystallites in situ precludes nanoparticle agglomeration, and limiting crystallite size to 50 nm or less mitigates the effect of refractive index mismatch between the crystals and host glass. Cerium-doped gadolinium bromide (GdBr3(Ce)) scintillating crystals were incorporated into sodium-aluminosilicate (NAS) and alumino-borosilicate (ABS) host glass matrices, and the resulting glass-ceramic structures and luminescence behavior were characterized. The as-cast glass from the ABS system displayed a highly ordered microstructure that produced the highest luminescence intensity (light yield) of the samples studied. However, heat treating to form the glass-ceramic precipitated rare-earth oxide crystallites rather than rare-earth halides. This degraded light yield relative to the unaged sample.

  12. Glass/ceramic coatings for implants

    Science.gov (United States)

    Tomsia, Antoni P.; Saiz, Eduardo; Gomez-Vega, Jose M.; Marshall, Sally J.; Marshall, Grayson W.

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  13. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    Science.gov (United States)

    Bagheri, Hossein; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05). Sandblasting significantly increased the BFS for the zirconia (P<0.05), but the BFS was significantly decreased after laser irradiation (P<0.05). Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372

  14. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM).

    Science.gov (United States)

    Filser, F; Kocher, P; Weibel, F; Lüthy, H; Schärer, P; Gauckler, L J

    2001-04-01

    All-ceramic dental bridges for the molar region are not yet available at reasonable costs. The novel direct ceramic machining (DCM) process allows an easy, reliable and rapid fabrication for all-ceramic dental restorations with high mechanical strength and good biocompatibility. In DCM, an enlarged framework is easily milled out of a pre-fabricated porous ceramic blank made of zirconia. After sintering to full density, no further time-consuming hard machining with diamond tools is needed. For individual esthetical requirements, the framework is coated with a veneer porcelain. Compared to the commercially available In-Ceram Alumina and IPS Empress2 restorations, the mechanical strength of zirconia frameworks is twice as high, allowing the restorations to bear the high mastication forces in the molar region. In terms of reliability, zirconia bridges fabricated by the DCM process are also superior to In-Ceram Alumina and IPS Empress2. A clinical study of three-unit dental bridges in the molar region found no problems after the first year of observation.

  15. History and trends of bioactive glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Dutra Zanotto, Edgar

    2016-05-01

    The interest around bioactive glass-ceramics (GCs) has grown significantly over the last two decades due to their appropriate biochemical and mechanical properties. The intense research effort in this field has led to some new commercial products for biomedical applications. This review article begins with the basic concepts of GC processing and development via controlled heat treatments of monolithic pieces or sinter-crystallization of powdered glasses. We then go on to describe the processing, properties, and applications of some commercial bioactive GCs and discuss selected valuable reported researches on several promising types of bioactive GCs. The article finishes with a section on open relevant research directions for bioactive GC development.

  16. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Aldo R. Boccaccini

    2010-07-01

    Full Text Available Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship. In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review.

  17. Preparation and Luminescence of Er3+ Doped Oxyfluoride Glass Ceramics Containing LaF3 Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Er3+ doped transparent oxyfluoride glass ceramics containing LaF3 nanocrystals were prepared and the up-con-version and near infrared luminescence behavior of Er3+ in glasses and glass ceramics were investigated. With increasing heat-treating time and temperature, the size (varied from 0 to 19 nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er3+ ions in the glass ceramics is much stronger than that in the glasses and increased significantly with increasing heat-treating time and temperature. The near infrared emission of Er3+ ions in the glass ceramics is found to be similar to that in the glasses.

  18. Rare-earth ions doped transparent oxyfluoride glass-ceramics

    OpenAIRE

    2010-01-01

    In recent years, rare-earth ions doped transparent oxyfluoride glass-ceramics have attracted great attentions for their low phonon energy environments of fluoride nanocrystals and high chemical and mechanical stabilities of oxide glassy matrix. In this chapter, firstly, the crystallization behaviors of the transparent glassceramics containing CaF2 nanocrystals are presented to demonstrate the controllable microstructure evolution of nano-composites. Secondly, the optical properties of the new...

  19. Crystallisation Kinetics of a β-Spodumene-Based Glass Ceramic

    Directory of Open Access Journals (Sweden)

    Oscar Rubem Klegues Montedo

    2012-01-01

    Full Text Available LZSA (Li2O-ZrO2-SiO2-Al2O3 glass ceramic system has shown high potential to obtain LTCC laminate tapes at low sintering temperature (<1000°C for several applications, such as screen-printed electronic components. Furthermore, LZSA glass ceramics offer interesting mechanical, chemical, and thermal properties, which make LZSA also a potential candidate for fabricating multilayered structures processed by Laminated Objects Manufacturing (LOM technology. The crystallization kinetics of an LZSA glass ceramic with a composition of 16.9Li2O⋅5.0ZrO2⋅65.1SiO2⋅8.6Al2O3 was investigated using nonisothermal methods by differential thermal analysis and scanning electronic microscopy. Apparent activation energy for crystallization was found to be in the 274–292 kJ⋅mol−1 range, and an Avrami parameter n of 1 was obtained that is compared very favorably with SEM observations.

  20. Characterization of Wollastonite Glass-ceramics Made from Waste Glass and Coal Fly Ash

    Institute of Scientific and Technical Information of China (English)

    Soon-Do Yoon; Jong-Un Lee; Jeong-Hwan Lee; Yeon-Hum Yun; Wang-Jung Yoon

    2013-01-01

    The crystallization behavior of wollastonite glass-ceramics was investigated by means of X-ray diffraction (XRD)analysis and surface morphological observations,and the chemical compositions were evaluated by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS).Various heat treatment temperatures (850,900,950,1000 and 1050 ℃) were used to obtain glass-ceramics of the ideal wollastonite crystal phase as well as optimum mechanical properties and chemical durability.From XRD,FE-SEM and EDS,the crystallization of acicular crystal phase in the matrix was achieved at heat treatment temperature of 1000 and 1050 ℃,and wollastonite (CaSiO3) was found in the acicular type main crystal phase in the glass-ceramics.Various properties,such as density,compressive strength,bending strength and chemical durability were also examined.The mechanical properties of glass-ceramics obtained at the heat treatment temperature of 1000 and 1050 ℃ were superior to those obtained at the heat treatment temperature of 850 ℃.

  1. Fabrication and characterization of bioactive glass-ceramic using soda–lime–silica waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Mojtaba; Hashemi, Babak, E-mail: hashemib@shirazu.ac.ir

    2014-04-01

    Soda–lime–silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. - Highlights: • A bioactive glass-ceramic was synthesized using soda–lime–silica waste glass. • Solid-state reaction method was used to synthesize bioactive glass-ceramic. • Ca{sub 2}Na{sub 2}Si{sub 3}O{sub 9} and CaNaPO{sub 4} were formed with a one-step thermal treatment condition. • The amounts of crystalline and amorphous phases influenced the bioactivity. • The sample with a smaller amount of the crystalline phase had a higher bioactivity.

  2. Zinc containing borate glasses and glass-ceramics: Search for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amr M. Abdelghany

    2014-12-01

    Full Text Available Ternary soda lime borate glass and samples with ZnO replacing CaO up to 10 mol% were prepared and studied for their bone bonding ability. Fourier transform infrared (FTIR absorption spectra of the prepared glasses before and after immersion in simulated body fluid (SBF, for one or two weeks, showed the appearance of calcium phosphate (hydroxyapatite (HA which is an indication of bone bonding ability. X-ray diffraction patterns were measured for the glasses and indicated the presence of small peaks related to hydroxyapatite in the samples immersed in SBF. The glasses were heat treated with controlled two-step regime to convert them to their corresponding glass-ceramic derivatives. FTIR and X-ray diffraction measurements of the glass-ceramic samples (before and after immersion in SBF confirmed the appearance of HA which is influenced by ZnO content. The overall data are explained on the basis of current views about the corrosion behaviour of borate glasses including hydrolysis and direct dissolution mechanism.

  3. Production of glass-ceramics from sewage sludge and waste glass

    Science.gov (United States)

    Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.

    2011-12-01

    In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  4. Lead-barium fluoroborate glass ceramics doped with Nd3+ or Er3+

    Science.gov (United States)

    Petrova, O. B.; Sevostjanova, T. S.; Anurova, M. O.; Khomyakov, A. V.

    2016-02-01

    Lead-barium fluoroborate glasses in the PbF2-BaF2-B2O3, PbF2-BaO-B2O3, and PbO- BaF2-B2O3 systems doped with rare-earth ions (Nd3+ or Er3+) are synthesized and studied. It is shown that, based on these glasses, it is possible to produce transparent glass ceramics with fluoride crystalline phases, including ceramics with one crystalline phase of the fluorite structure. The spectral and luminescent properties of the doped glasses, glass ceramics, and polycrystalline complex fluorides containing Pb, Ba, and rare ions are studied.

  5. Best practices for ink jet decoration lines in ceramics. Electromagnetic radiation IR machine (wavelength technology); Mejoras practicas para lineas de decoracion Inkjet en ceramica. Maquina IR de radiaciones electromagneticas (tecnologia de longitud de onda)

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, J.; Galvez, D.

    2012-07-01

    SACMI IBERICA, S.A., has been awarded by the Spanish Society of Ceramics and Glass (SECV), with one GOLD ALFA, in its 2012 edition, during CEVISAMA for the presentation of the innovative IR Electromagnetic Radiation Machine, which improves the conditions and the production performance of digital decoration lines INKJET and other decorative applications ceramic tile. (Author)

  6. Experimental Study on Abrasive Water Jet Machining of PZT Ceramic

    Science.gov (United States)

    Dhanawade, Ajit; Upadhyai, Ravi; Rouniyar, Arunkumar; Kumar, Shailendra

    2017-07-01

    This paper presents research work involved in abrasive water jet machining of PZT ceramic material. Process parameters namely stand-off distance, water pressure and traverse rate are considered in the present study. Response surface methodology approach is used to design the experiments. Relative significance of process parameters and their influence on kerf properties are identified on the basis of analysis of variance. It is found that water pressure and traverse rate are most significant parameters followed by stand-off distance. On the basis of experimental analysis, regression models are developed to predict kerf taper and depth of cut. The models are developed with respect to significant parameters, interaction and quadratic terms. It is found that model predictions are in congruence with experimental results. Multi-response optimization of process parameters is also performed using desirability approach in order to minimize kerf taper and maximize depth of cut. Kerf wall features of machined surfaces are observed using scanning electron microscope. The findings of present study are useful to improve kerf properties in abrasive water jet machining of PZT ceramic materials.

  7. Augite-anorthite glass-ceramics from residues of basalt quarry and ceramic wastes

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2015-06-01

    Full Text Available Dark brown glasses were prepared from residues of basalt quarries and wastes of ceramic factories. Addition of CaF2, Cr2O3 and their mixture CaF2-Cr2O3 were used as nucleation catalysts. Generally, structures with augite and anorthite as major phases and small amount of magnetite and olivine phases were developed through the crystallization process. In the samples heat treated at 900 °C the dominant phase is augite, whereas the content of anorthite usually overcomes the augite at higher temperature (1100 °C. Fine to medium homogenous microstructures were detected in the prepared glass-ceramic samples. The coefficient of thermal expansion and microhardness measurements of the glass-ceramic samples were from 6.16×10-6 to 8.96×10-6 °C-1 (in the 20–500 °C and 5.58 to 7.16 GP, respectively.

  8. Upconversion in erbium-doped transparent glass ceramics

    Science.gov (United States)

    Jones, Gina Christine

    2005-11-01

    Transparent glass ceramics (TGCs) are a class of materials that are composed of a robust glass matrix which is densely embedded with nanometer-sized fluoride crystals: In bulk, fluoride materials tend to have poor handling and mechanical properties, and can be expensive to produce. In contrast, the forming and handling properties of the TGC are similar to those of the precursor, glass, and are engineered to be robust and mechanically stable. Rare earth ions can be incorporated into the TGC during manufacture and can become partially segregated into the crystalline phase. There they experience the low-phonon energy environment of the fluoride nanocrystallite, which induces long energy level lifetimes and enhanced frequency upconversion. Therefore, rare earth doped TGCs can have the spectroscopic properties of a crystal with the durability of an aluminosilicate glass. Upconversion fluorescence is studied for an aluminosilicate TGC containing LaF3 nanocrystallites and doped with an erbium density of 1.7 x 1020 CM-3. Time gated fluorescence and excitation spectra as well as photoluminescence decays are used to find the nature and origin of this fluorescence. It is determined that energy transfer upconversion occurs only in the nanocrystallite phase and sequential two-photon absorption upconversion occurs in both glass and crystal phases.

  9. Spectroscopic properties of Eu-doped antimony-germanate glass and glass-ceramics

    Science.gov (United States)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Ragin, T.; Dorosz, D.; ZajÄ c, A.

    2016-09-01

    In our work we focused on possibility of obtaining phosphate nano-phase structures in antimony-germanate glasses doped with europium ions. The glasses with molar composition of 50(Sb2O3 - GeO2) - 50(SiO2 - Al2O3 - Na2O) doped with 0.5mol% Eu2O3 were prepared by standard melt-quenching method. In order to optimize glass-ceramic system the influence of phosphate concentration (up to 10mol%) on spectroscopic properties have been investigated. The symmetry nature of molecular structure around europium ions have been determined from the intensity ratio between (5D0 →7F2)/(5D0 →7F1) transitions. The effect of prominent Stark splitting of luminescence band at 612 nm characterised as "hypersensitive transition" into 3 sub-wavelength was observed in glasses with 1mol% and 3mol% of P2O5.

  10. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    Science.gov (United States)

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.

  11. Rare earth-doped lead borate glasses and transparent glass-ceramics: Structure-property relationship

    Science.gov (United States)

    Pisarski, W. A.; Pisarska, J.; Mączka, M.; Lisiecki, R.; Grobelny, Ł.; Goryczka, T.; Dominiak-Dzik, G.; Ryba-Romanowski, W.

    2011-08-01

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu 3+ and Er 3+ ions. The observed BO 3 ↔ BO 4 conversion strongly depends on the relative PbO/B 2O 3 ratios in glass composition, giving important contribution to the luminescence intensities associated to 5D 0- 7F 2 and 5D 0- 7F 1 transitions of Eu 3+. The near-infrared luminescence and up-conversion spectra for Er 3+ ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er 3+ ions into the orthorhombic PbF 2 crystalline phase, which was identified using X-ray diffraction analysis.

  12. Cladding glass ceramic for use in high powered lasers

    Science.gov (United States)

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  13. Cracking phenomena in lithium-di-silicate glass ceramics

    Indian Academy of Sciences (India)

    Rajat Banerjee

    2001-04-01

    Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack length decreases and the crack deviates from its original path with increasing angle. The deviation of the crack was correlated with the component of the crack driving force and the theoretical strength of the aligned crystals at different angles.

  14. Transparent silicate glass-ceramics embedding Ni-doped nanocrystals

    OpenAIRE

    2010-01-01

    Recent progress in the development of transparent silicate glass-ceramics embedding Ni-doped nanocrystals as broadband gain media is reviewed. At first, optical properties such as the peak positions, wavelengths lifetimes and quantum efficiencies of the near-infrared emission of nickel-doped oxide crystals are overviewed. The quantum efficiencies of the near-infrared emission of nickel-doped LiGa5O8 and MgGa2O4 were as high as ~1 even at room temperature. Thus these materials are promising ca...

  15. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dependence of crystallizing phase dielectric permittivity on time of glass-ceramics sintering

    Directory of Open Access Journals (Sweden)

    Dmitriyev M. V.

    2010-10-01

    Full Text Available The paper deals with computing technique of effective dielectric permittivity of crystobalite formed in glass-ceramic body by means of measured dielectric permittivity of glass-ceramic composit. Dependence of the calculated parameter from the time of crystallization is found.

  17. Report on the planning workshop on cost-effective ceramic machining. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1991-11-01

    A workshop on ``Cost Effective Ceramic Machining`` (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee`s opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

  18. Effect of nucleation temperature on fracture toughness (KIC) of fluorcanasite-based glass-ceramic.

    Science.gov (United States)

    Oh, Won-Suck; Zhang, Nai-Zheng; Anusavice, Kenneth J

    2003-01-01

    The purpose of this study was to test the hypothesis that nucleation temperature significantly affects the fracture toughness of a fluorcanasite-based glass-ceramic. Sixty specimens were cut from a glass bar, polished, and randomly divided into six groups for nucleation treatment at temperatures of (1) 520 degrees C, (2) 550 degrees C, (3) 580 degrees C, (4) 610 degrees C, (5) 640 degrees C, and (6) 670 degrees C for 4 hours and a crystallization temperature of 850 degrees C for 6 hours. A precrack was produced at the center of each bar, and the prepared specimens were subjected to three-point flexural loading with the cracked surface under tension using an Instron machine at a cross-head speed of 0.5 mm/min. Fracture toughness was calculated based on the indentation strength technique, and crystal volume fraction was determined by quantitative stereology of SEM images of each group of ceramic specimens. The mean fracture toughness and crystal volume fraction ranged from 2.6 to 3.5 MPa x m1/2 and from 65% to 81%, respectively, within the limits of the nucleation temperatures investigated. ANOVA showed statistically significant differences among the test groups. Based on Duncan's multiple comparison test, significant differences in mean fracture toughness and crystal volume fraction were found among the following statistical subsets: groups 1 to 4, group 5, and group 6. Fracture toughness and crystal volume fraction of a fluorcanasite-based glass-ceramic were strongly influenced by nucleation temperature; the crystals precipitated during thermal processing are thought to be an important factor in increasing fracture toughness.

  19. Design and Fabrication of Automatic Glass Cutting Machine

    Science.gov (United States)

    Veena, T. R.; Kadadevaramath, R. S.; Nagaraj, P. M.; Madhusudhan, S. V.

    2016-09-01

    This paper deals with the design and fabrication of the automatic glass or mirror cutting machine. In order to increase the accuracy of cut and production rate; and decrease the production time and accidents caused due to manual cutting of mirror or glass, this project aims at development of an automatic machine which uses a programmable logic controller (PLC) for controlling the movement of the conveyer and also to control the pneumatic circuit. In this machine, the work of the operator is to load and unload the mirror. The cutter used in this machine is carbide wheel with its cutting edge ground to a V-shaped profile. The PLC controls the pneumatic cylinder and intern actuates the cutter along the glass, a fracture layer is formed causing a mark to be formed below the fracture layer and a crack to be formed below the rib mark. The machine elements are designed using CATIA V5R20 and pneumatic circuit are designed using FESTO FLUID SIM software.

  20. High strength bioactive glass-ceramic scaffolds for bone regeneration.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Baino, Francesco; Verné, Enrica

    2009-02-01

    This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route, ground and sieved to obtain powders of specific size. A slurry of CEL2 powders, polyvinyl alcohol (PVA) as a binder and water was prepared in order to coat, by a process of impregnation, the polymeric template. A thermal treatment was then used to remove the sponge and to sinter the glass powders, in order to obtain a replica of the template structure. The scaffolds were characterized by means of X-ray diffraction analysis, morphological observations, density measurements, volumetric shrinkage, image analysis, capillarity tests, mechanical tests and in vitro bioactivity evaluation.

  1. Thermal insulation of pipelines by foamed glass-ceramic

    Science.gov (United States)

    Apkaryan, A. S.; Kudyakov, A. I.

    2015-01-01

    Based on broken glass, clay and organic additives granular insulating glass crystalline material and technology of its receipt are developed. The regularities of the effect of composition and firing temperature on the properties of the granules are specified. The resulting granular thermally insulating material is produced with a bulk density of 260-280 kg/m3 pellet strength - 1.74 MPa, thermal conductivity - 0.075 W/m °C, water absorption - 2.6 % by weight. The effect of the basic physical characteristics of the components of the charge on the process of pore formation is studied. According to the research results, basic parameters affecting the sustainability of the swelling glass are specified. Rational charge composition, thermal and gas synthesis mode are chosen so that the partial pressure of gases is below the surface tension of the melt. This enables the formation of granules with small closed pores and vitrified surface. The article is the result of studies on the application of materials for pipe insulation of heating mains with foamed glass ceramics.

  2. Dilute condition corrosion behavior of glass-ceramic waste form

    Science.gov (United States)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; Zhu, Zihua; Olszta, Matthew J.; Tang, Ming

    2016-12-01

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m-2 d-1 at a flow rate per surface area = 1.73 × 10-6 m s-1. The crystal phases (oxyapatite and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).

  3. Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.T.; Ho, S.S.; Yan, B.H. [National Central Univ. (Taiwan). Dept. of Mechanical Engineering

    2001-07-01

    The borosilicate glass serves as the substrates of the micro sensors owing to their excellent anodic bonding properties. To build up the electrical through channel and connect the internal system with the environment, micro holes should be drilled on the substrates. This investigation describes a novel process that combines micro electrical discharge machining (micro EDM) and electrochemical discharge machining (ECDM) to drill micro holes on the borosilicate glass plate. Experimental investigation of the novel process includes fabrication of micro tools via micro EDM and machining characteristics of the borosilicate glass by ECDM. This study also analyzes the basic material removal mechanism in the ECDM process. Four stages are identified in the ECDM process via rapid photography. Etching reaction is important in the machining mechanism of ECDM through SEM and EDX analysis. Unlike conventional EDM, the key reason for improving material removal rate and surface roughness is the etching reaction in the ECDM process. Also discussed herein are the effects of machining parameters, such as applied voltage, electrolytes, concentration of electrolytes, and temperature of electrolytes in ECDM. Furthermore, machining time, hole expansion and the surface roughness of inner holes are measured to assess hole quality. This novel process can improve material removal rate and surface roughness to 1.5 mm/min and 0.08 {mu}m, Ra. Experimental results demonstrate that this process is excellent for fabricating micro holes on the borosilicate glass for MEMS. (orig.)

  4. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function

    OpenAIRE

    Øilo, Marit; Hardang, Anne Dybdahl; Ulsund, Amanda Hembre; Gjerdet,Nils Roar

    2014-01-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based res...

  5. In Vitro Evaluation of Some Types of Ferrimagnetic Glass Ceramics

    Directory of Open Access Journals (Sweden)

    S. A. M. Abdel-Hameed

    2014-01-01

    Full Text Available The present study aimed at studying the acceleration of the bioactive layer on the surface of ferrimagnetic glass ceramic with a basic composition 40Fe2O3–15P2O5–20SiO2–5TiO2 through the addition of 20% of different types of metal oxides like MgO or CaO or MnO or CuO or ZnO or CeO2. SEM, EDAX, and ICP were applied to present the results of the study. SEM and EDAX measurements indicated the presence of apatite layer formed on the surface of the prepared glass ceramics after immersion in SBF within 7 to 30 days. The investigation of the results clarified that the addition of CaO or ZnO accelerated the formation of apatite on the surfaces of the samples in the simulated body fluid faster than other metal oxides. Inductive coupled plasma (ICP analysis shows the evolution of ion extraction by the simulated body fluid solution (SBF with time in relation to the elemental composition.

  6. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    OpenAIRE

    2013-01-01

    International audience; Rare earth doped glass-ceramics transparent in the infrared region up to 16 µm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 µm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3+1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater w...

  7. Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, L A; Gouveia-Neto, A S; Costa, E B da [Laboratorio de Fotonica, Departamento de Fisica, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE (Brazil); Messaddeq, Y; Ribeiro, S J L [Instituto de Quimica, UNESP, CP 355, Araraquara 14801-970, SP (Brazil)

    2008-04-09

    Transparent oxyfluoride glasses and {beta}-PbF{sub 2} nanocrystals containing glass-ceramics were prepared with varying Eu{sup 3+} content (0.3, 0.4, 0.5 and 0.6%). The effect of Eu{sup 3+} content on the preparation of glass-ceramics was investigated. From differential scanning calorimetry, the T{sub x}-T{sub g} (T{sub x}-temperature of the onset of crystallization; T{sub g}-glass transition temperature) parameter for glasses has shown slight variation, and an exothermic peak near T{sub g} called the ceramization temperature (T{sub c}) has been observed. Heat treatments were performed at this temperature to obtain transparent glass-ceramics containing {beta}-PbF{sub 2} nanocrystals, identified by x-ray diffraction. Heat treatments for different periods of time were performed and were observed to be very important in the control of the crystal size and of the crystallization rate. Based upon the absorption spectra, the scattering level due to the presence of {beta}-PbF{sub 2} nanocrystals in the glass-ceramics was observed to be similar to that for the mother glasses. Detailed analysis of emission spectra and decay time measurements led to the identification of Eu{sup 3+} ions as the {beta}-PbF{sub 2} crystalline phase. Excitation spectra at 70 K show the interaction of Eu{sup 3+} ions with the fluorogermanate network.

  8. Enhanced luminescence in Er3+-doped chalcogenide glass-ceramics based on selenium

    Science.gov (United States)

    Hubert, Mathieu; Calvez, Laurent; Zhang, Xiang-Hua; Lucas, Pierre

    2013-10-01

    Rare earth doped glass-ceramics transparent in the infrared region up to 16 μm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 μm with increasing crystallinity was demonstrated in a selenium-based glass-ceramic having a composition of 80GeSe2-20Ga2Se3 + 1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass-ceramics were investigated. Luminescence intensities up to 7 times greater were obtained in glass-ceramics in comparison to the base glass. These materials are promising candidates for the production of new laser sources in the mid-infrared region.

  9. Synthesis and Structural Studies of Er3+ Containing Lead Cadmium Fluoroborate Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Silva Maurício A.P.

    2002-01-01

    Full Text Available The vitreous domain was established in the PbF2-CdF2-B2O 3 system from melting and quenching experiments. Er3+ containing glasses were prepared and glass ceramics were obtained by selected heat-treatments. Lead fluoride was identified (beta-PbF2 as the crystalline phase. Structural studies were performed in some glassy and partially crystallized samples by means of X-ray Diffraction (XRD and Extended X-ray Absorption Fine Structure (EXAFS measurements. The role of Cd2+ and Pb2+ atoms on the glass network formation and also on the crystallization behavior was put forward by these techniques. After crystallization Er3+ atoms segregated in the crystal phase.

  10. High temperature electrical behaviour and failure mechanisms of glass-ceramic dielectrics in thick film multilayers

    OpenAIRE

    Manca, Jean

    1994-01-01

    Glass-ceramics are polycrystalline materials obtained from glasses after an appropriate thermal treatment. They are of importance because they offer combinations of physical properties not available with other classes of materials. Glass-ceramics have become established as commercially important materials in fields such as consumer products, applications for the aerospace industry and protective coatings for metals. Recently, their technological importance has also been recognized in the fiel...

  11. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    Directory of Open Access Journals (Sweden)

    Mangutova Bianka V.

    2004-01-01

    Full Text Available Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa. The polyurethane foam was used as a pore creator which gave the material porosity of 70(5% (fly ash-glass composite and a porosity of 65( 5% (slag-glass composite. E-modulus values of the designed porous systems were 3.5(1.2 GPa and 8.1(3 GPa, while the bending strength values were 6.0(2 MPa and 13.2(3.5 MPa, respectively. These materials could be used for the production of tiles, wall bricks, as well as for the construction of air diffusers for waste water aeration.

  12. Sinter recrystalization and properties evaluation of glass-ceramic from waste glass bottle and magnesite for extended application

    Directory of Open Access Journals (Sweden)

    As'mau Ibrahim Gebi

    2016-12-01

    Full Text Available In a bid to address environmental challenges associated with the management of waste Coca cola glass bottle, this study set out to develop glass ceramic materials using waste coca cola glass bottles and magnesite from Sakatsimta in Adamawa state. A reagent grade chrome (coloring agent were used to modify the composition of the coca cola glass bottle;  X-ray fluorescence(XRF, X-ray diffraction (XRD and Thermo gravimetric analysis (TGA were used to characterize raw materials, four batches GC-1= Coca cola glass frit +1%Cr2O3, GC-2=97% Coca cola glass frit+ 2% magnesite+1%Cr2O3, GC-3=95% Coca cola glass frit+ 4%magnesite+1%Cr2O3, GC-4=93%Coca cola glass frit+ 6%magnesite+ 1%Cr2O3 were formulated and prepared. Thermal Gradient Analysis (TGA results were used as a guide in selection of three temperatures (7000C, 7500C and 8000C used for the study, three particle sizes -106+75, -75+53, -53µm and 2 hr sintering time were also used, the sinter crystallization route of glass ceramic production was adopted. The samples were characterized by X-ray diffraction (XRD and Scanning Electron Microscope (SEM, the density, porosity, hardness and flexural strength of the resulting glass ceramics were also measured. The resulting glass ceramic materials composed mainly of wollastonite, diopside and anorthite phases depending on composition as indicated by XRD and SEM, the density of the samples increased with increasing sintering temperature and decreasing particle size. The porosity is minimal and it decreases with increasing sintering temperature and decreasing particle size. The obtained glass ceramic materials possess appreciable hardness and flexural strength with GC-3 and GC-4 having the best combination of both properties.

  13. Abrasive wear behaviour of bio-active glass ceramics containing apatite

    Indian Academy of Sciences (India)

    I Sevim; M K Kulekci

    2006-06-01

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture toughness equations using experimental hardness results of the bio-active glass ceramic material. Two fracture toughness equations in the literature were used to identify the wear behaviour of studied ceramics. Wear resistance results that identified with both of the equations were similar. The results showed that the abrasive wear resistance of the bio-active glass ceramics produced with hot pressing process was found to be higher than that of the ceramics produced by conventional casting and controlled crystallization process.

  14. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  15. Preparation of Long-Lasting Phosphorescence (LLP) Glass-Ceramic Materials

    Institute of Scientific and Technical Information of China (English)

    李成宇; 苏锵; 王淑彬

    2004-01-01

    Three kinds of glass-ceramics, i.e., Mn2+ doped zinc borosilicate, Eu2+, Dy3+ co-doped strontium aluminoborate and Eu2+, Nd3+ co-doped calcium aluminoborate were prepared, whose phosphorescence emission band peaks at 525, 516 and 464 nm, respectively. In preparation of these glass-ceramics the base glasses were gained by heating the mixed starting materials at high temperature to get the transparent glasses; then those glasses were heat-treated and turned to opaque glass-ceramics. X-ray diffraction(XRD) shows that the crystallites are ZnSiO4, SrAl2O4 and α-CaAl2B2O7, respectively. It is a useful way to get new LLP materials by the method reported in this work that may be considered as "from glass to crystal".

  16. Lead fluorosilicate glass ceramics doped with Nd3+, Er3+, and Yb3+

    Science.gov (United States)

    Petrova, O. B.; Khomyakov, A. V.

    2013-06-01

    Glasses in the PbF2-PbO-SiO2 system doped with 1 mol % of rare-earth elements (Nd3+, Er3+, or Yb3+) are synthesized and studied. The glasses were heat-treated in order to obtain glass ceramics with a fluoride crystalline phase. The changes in the structure and spectral optical properties of glass ceramics with respect to initial glasses were determined by using X-ray diffraction analysis and by studying the luminescent characteristics of dopant ions.

  17. Preparation of Machinable Y-TZP/LaPO4 Composite Ceramics by Liquid Precursor Infiltration

    Institute of Scientific and Technical Information of China (English)

    周振君; 杨正方; 袁启明; 李秀华

    2002-01-01

    A machinable Y-TZP/LaPO4 composite ceramic was prepared by infiltrating LaPO4 liquid precursor into Y-TZP porous ceramic. Sintered Y-TZP ceramic preformed with 35% (volume fraction) open pore volume was made by adding graphite (30%, volume fraction). The Y-TZP/LaPO4 composite ceramics containing different LaPO4 contents were obtained by infiltration and pyrolysis cycles. The machinability and mechanical properties of materials were investigated. The results show that the machinable Y-TZP/LaPO4 composite ceramics containing 2.3% to 7.5% (volume fraction) LaPO4 has good machinability as well as outstanding mechanical properties.

  18. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  19. Laser fabricated microchannels inside photostructurable glass-ceramic

    Science.gov (United States)

    Fernández-Pradas, J. M.; Serrano, D.; Serra, P.; Morenza, J. L.

    2009-03-01

    Microchannels have been fabricated by laser direct-write in photostructurable glass-ceramic (Foturan) for their application in 3D-microfluidic systems. A Nd:YAG laser delivering 10 ns pulses at 355 nm wavelength has been used for irradiation. Afterwards, thermal treatment and chemical etching have been required for channel formation. The kinetics of channel formation and the channel morphology have been studied by optical and electron microscopy. A minimum accumulated energy (pulse energy multiplied by the number of pulses in a same site) is required to induce channel formation. Channels with symmetric round apertures at both ends can be obtained when using low pulse energies. On the contrary, irradiation with too high energetic pulses produces direct material damage in Foturan and provokes the formation of non-symmetric channels. One millimetre long channels with a minimum radius of 15 μm can be opened through Foturan slides after 15 min of chemical etching.

  20. Advanced processing of the Zerodur R glass ceramic

    Science.gov (United States)

    Marx, Thomas A.

    1991-11-01

    The Zerodur glass ceramic is an extraordinary material possessing a very low thermal expansion over a broad temperature range. Depending on the size of the castings, a continuous or a discontinuous melting technology is used in the manufacture of Zerodur. Continuous melters are being operated regularly in Germany and recently in the United States. The latest generation of discontinuous melters started production of 8.2 m spincast telescope blanks in early 1991. Zerodur fusion is a special process to generate lightweighted mirror blanks and special components. It requires glassy material and generates bonds that are as strong as the bulk material. Further process development such as waterjet cutting and insertion technologies are underway and may generate components of unique shapes and performance.

  1. Heritage of ZERODUR® glass ceramic for space applications

    Science.gov (United States)

    Döhring, Thorsten; Hartmann, Peter; Lentes, Frank-Thomas; Jedamzik, Ralf; Davis, Mark J.

    2009-08-01

    The zero-expansion glass ceramic ZERODUR® from SCHOTT is widely used for ground-based astronomical mirrors and in industrial applications. This paper points out that it is also well suited for satellite applications, especially with respect to the space radiation environment. Recent developments show that highly lightweighted components can be manufactured and that such structures are strong enough to survive launch vibrations. A series of thirty reference applications, where ZERODUR® has been or is currently used (including METEOSAT, SPOT, ROSAT, CHANDRA, and HST), demonstrate the high and long lasting performance of ZERODUR® components in orbit. The ongoing successful missions and upcoming new satellites continue to enlarge the space heritage of this unique material.

  2. A novel bioactive glass-ceramic for treating dentin hypersensitivity

    Directory of Open Access Journals (Sweden)

    Camila Tirapelli

    2010-12-01

    Full Text Available Dentin hypersensitivity (DH is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM, dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%; G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.

  3. Bioactive type glass-ceramics within incorporated aluminium; Vitroceramicos del tipo bioactivo con aluminio incorporado

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C.; Stabile, F.M.; Ortiga, J., E-mail: volzcris@netverk.com.ar [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Buenos Aires (Argentina)

    2012-07-01

    Bioactive glass-ceramics are used as biomaterials for the reparation of bone tissue. They are prepared, generally, by bioglass of specific composition for each particular use. The aluminium addition in the formulation at very small quantities influences on the structural properties. Two glass-ceramics obtained by P{sub 2}O{sub 5}-Na{sub 2}O-CaO-SiO{sub 2} formulation within aluminium (0.5 % in Al{sub 2}O{sub 3} base) added through a reactive alumina and purified feldspar were analyzed. The results showed structural differences between both glass-ceramics. (author)

  4. Effects of ZrO2 on the Microstructure of a Mica Glass-ceramic

    Institute of Scientific and Technical Information of China (English)

    秦小梅; 孙祥云; 修稚萌; 左良

    2004-01-01

    The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a lot of t--ZrO2 particles precipitate from ZrO2-mica glass-ceramics. The ZrO2 particles can effectively limit [0]the growth of mica crystal and benefit the mechanical properties of glass-ceramics.

  5. Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Vyas, V.; Sampath Kumar, A.; Ali, A.; Prasad, S.; Srivastava, P.; Prasanna Mallick, S.; Ershad, Md.; Prasad Singh, S.; Pyare, R.

    2016-07-01

    Many type of oxide substituted glass-ceramics like strontium, cobalt, barium and titanium have shown bioactivity with improved mechanical properties. The present work reports the in vitro bioactivity and mechanical properties of nickel oxide substituted in bioactive glass-ceramic and results were compared with 45S5 bioactive glass-ceramic. Bioactive glass ceramics were processed through controlled crystallization of their respective bioactive glasses. The formed crystalline phases in bioactive glass-ceramics were identified using X-ray diffraction (XRD) analysis. The formation of HA layer was assessed by immersing them in the simulated body fluid (SBF) for different soaking periods. The formation of hydroxyapatite was confirmed by FTIR spectrometry, SEM and pH measurement. Densities and mechanical properties of the samples were found to increase considerably with an increasing the concentration of nickel oxide. A decrease in glass transition temperature (Tg) with NiO addition showed that the nickel oxide had acted as an intermediate in smaller quantities in the bioactive glass. The cell culture studies demonstrated that the samples containing low concentration of NiO from 0 to 1.65mol% were non-cytotoxic against osteoblast cells. Finally, this investigation clearly concluded that NiO doped bioactive glass would be potential biomaterials for biomedical applications. (Author)

  6. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    Science.gov (United States)

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Aspects of bonding between resin luting cements and glass ceramic materials.

    Science.gov (United States)

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Machining accuracy of CAD/CAM ceramic crowns fabricated with repeated machining using the same diamond bur.

    Science.gov (United States)

    Tomita, Sachiko; Shin-Ya, Akiyoshi; Gomi, Harunori; Matsuda, Tetsuji; Katagiri, Shingo; Shin-Ya, Akikazu; Suzuki, Hitosi; Yara, Atsushi; Ogura, Hideo; Hotta, Yasuhiro; Miyazaki, Takashi; Sakamoto, Yuuki

    2005-03-01

    The purpose of this study was to investigate the effect of repeated machining up to 51 times using the same diamond bur on machining accuracy of inner and outer surfaces of CAD/CAM (computer-aided designing and computer-aided manufacturing) machined ceramic crowns. The surface topography of machined crowns was examined using photographs. It was found that machining accuracy was not affected by the number of machining times. In all measuring points, the inner surface was machined to a dimension larger than the die model (i.e., increased gap), whereas the outer surface was machined to a dimension smaller than the crown model (i.e., smaller crown). Photo observation showed that cervical contour was machined in a clear, rounded form from 1st to 11th crowns.

  9. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    Science.gov (United States)

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity.

  10. VITRIFICATION OF LIGNITE FLY ASH AND METAL SLAGS FOR THE PRODUCTION OF GLASS AND GLASS CERAMICS

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; A.Moutsatsou

    2006-01-01

    This work focuses on the production of glass and glass-ceramics by using industrial wastes or by-products,e.g., two fly ashes from the combustion of lignite, a slag from the production of Fe-Ni and a slag from the making of steel.Vitrification took place at 1 350°-1 450℃ and crystallization was achieved by heat treatment at 900, 950 and 1 000℃.The capability of the waste to be vitrified and subsequently devitrified was determined by XRD techniques. The crystalline phase depends greatly on the structure of the by-product and the heat treatment. The final products showed low leachability and good hardness.

  11. Synthesis of glass ceramics from kaolin and dolomite mixture

    Science.gov (United States)

    Boudchicha, Mohamed Reda; Rubio, Fausto; Achour, Slimane

    2017-02-01

    Cordierite- and anorthite-based binary glass ceramics of the CaO-MgO-Al2O3-SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization ( E a) calculated by the methods of Kissinger and Marotta are 438 kJ·mol-1 and 459 kJ·mol-1, respectively. The Avrami parameter ( n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850°C, whereas the μ-cordierite phase appears after heat treatment at 950°C. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000°C. Complete densification is achieved at 950°C; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m-3 between 1000°C and 1100°C. The highest Vickers hardness of 6 GPa is also obtained at 950°C. However, a substantial decrease in hardness is recorded at 1000°C; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.

  12. Green-white-yellow tunable luminescence from doped transparent glass ceramics containing nanocrystals

    Science.gov (United States)

    Wang, X. F.; Yan, X. H.; Xuan, Y.; Zheng, J.; He, W. Y.

    2013-10-01

    , , and doped transparent ceramics containing nanocrystals were fabricated by a melt-quenching method and subsequent heating. Tetragonal phase spheres with 20 nm size are homogeneously precipitated among a borosilicate glass matrix. The photoluminescence spectrum of single doped transparent ceramics shows white light emission under 382 nm UV excitation. The emission color of co-doped transparent glass ceramics is tuned from green to white through energy transfer from to , and the emission color of co-doped transparent ceramics is tuned from white to yellow through energy transfer from to . CIE chromaticity and color temperature measurements show that the resulting transparent glass ceramics may be a candidate as a warm-white LED material pumped by a UV InGaN chip.

  13. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Science.gov (United States)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  14. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    Science.gov (United States)

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel; Delevoye, Laurent

    2008-02-01

    Lithium zinc silicate glasses of composition (mol%): 17.5Li 2O-(72- x)SiO 2- xZnO-5.1Na 2O-1.3P 2O 5-4.1B 2O 3, 5.5⩽ x⩽17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. 29Si and 31P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q2, Q3 and Q4 sites are identified from 29Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q3 and Q4 resonances for low ZnO content indicates the occurrence of phase separation. From 31P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-( Q0) and pyro-phosphate ( Q1) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li 2Si 2O 5), lithium zinc ortho-silicate (Li 3Zn 0.5SiO 4), tridymite (SiO 2) and cristobalite (SiO 2) were identified as major silicate crystalline phases. Using 29Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, 31P spectra unambiguously revealed the presence of crystalline Li 3PO 4 and (Na,Li) 3PO 4 in the glass-ceramics.

  15. Synthesis and Structural Characterization of Niobium Doped Lead-Telluride Glass-Ceramics

    Science.gov (United States)

    Sathish, M.; Eraiah, B.

    2015-02-01

    The basic glasses with composition (70-x) TeO2-30PbO-xNb2O5 (where x=0.1 mol % and 0.2 mol %) were prepared by melt quenching method and heat treated at 280°C for 30 min. The samples becoming glass ceramics was confirmed by SEM. The XRD parameters such as crystallite size of these glass ceramics decreases as increase the impurity and is the order of 184-109A°. However, micro strain (ε) and dislocation density (δ) increases. Glass transition and thermal stability estimated from DSC measurements and it has been found that both increase with increasing of impurity. Infrared Absorption spectra were measured for TeO2 glass and glass ceramic doped with Nb2O5. The recorded bands attributed to the different modes of vibration and stretching of Te-O band. Optical Absorption spectra of TeO2-PbO- Nb2O5 system shows that the absorption edge has a tail extending towards the lower energies and shifts towards for higher energies for rare earths-doped glass-ceramics. The degree of the edge shift was found to depend on the structural rearrangement and the relative concentrations of the glass basic units. The general appearance of the absorption spectra of these rare earth doped TeO2 glasses are similar to the spectra observed for other glasses doped with the same kind of rare earth oxides.

  16. STATIC AND DYNAMIC IN VITRO TEST OF BIOACTIVITY OF GLASS CERAMICS

    Directory of Open Access Journals (Sweden)

    JANA KOZÁNKOVÁ

    2011-06-01

    Full Text Available The bioactivity of glass ceramics from Li2O–SiO2–CaO–P2O5–CaF2 system, with different amount of fluorapatite expressed as P2O5 content, has been tested in vitro under static and dynamic regime. The paper reports the results of bioactivity test of glass ceramics in static and dynamic regime. XRD, SEM and EPMA analysis were used to characterise the sample as well as to detect the presence of new phase onto the surface of glass ceramics. The bioactivity, as demonstrated by the formation of new apatite layer, depends on P2O5 content and testing regime. In static regime, one can observe a fine microstructure of hydroxyapatite layer on the surface on glass ceramics samples. In dynamic regime, the formation rate of this layer seems to be retarded in comparison with that of static regime.

  17. Sol-gel template synthesis of luminescent glass-ceramic rods

    Energy Technology Data Exchange (ETDEWEB)

    Secu, M., E-mail: msecu@infim.ro; Secu, C. E.; Sima, M. [National Institute of Materials Physics, Optical Processes in Nanostructured Materials Department (Romania)

    2012-03-15

    We report an original way to prepare luminescent glass-ceramic microrods containing Eu{sup 3+} doped BaF{sub 2} nanocrystals by sol-gel chemistry within the pores of a polycarbonate template membrane. Structural characterization by scanning electron microscopy and X-ray diffraction has shown the formation of glass-ceramic microrods with 0.8-m diameter of and 10 {mu}m length in which BaF{sub 2} nanocrystals of about 30 nm size are embedded. Photoluminescence measurements have indicated the incorporation of Eu{sup 3+} ions inside the BaF{sub 2} nanocrystals in a broad range of sites with low coordination symmetry. The comparison made with the bulk glass-ceramic indicated an influence of the dimensional constraints imposed by the membrane pores during xerogel formation and subsequent glass ceramization.

  18. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  19. Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics.

    Science.gov (United States)

    Lynn, Ciarán J; Dhir, Ravindra K; Ghataora, Gurmel S

    2016-01-01

    The characteristics of sewage sludge ash (SSA) and its use in ceramic applications pertaining to bricks, tiles and glass ceramics have been assessed using the globally published literature in the English medium. It is shown that SSA possesses similar chemical characteristics to established ceramic materials and under heat treatment achieves the targeted densification, strength increases and absorption reductions. In brick and tile applications, technical requirements relating to strength, absorption and durability are achievable, with merely manageable performance reductions with SSA as a partial clay replacement. Fluxing properties of SSA facilitate lower firing temperatures during ceramics production, although reductions in mix plasticity leads to higher forming water requirements. SSA glass ceramics attained strengths in excess of natural materials such as granite and marble and displayed strong durability properties. The thermal treatment and nature of ceramic products also effectively restricted heavy metal leaching to low levels. Case studies, predominantly in bricks applications, reinforce confidence in the material with suitable technical performances achieved in practical conditions.

  20. Broadband UV-to-green photoconversion in V-doped lithium zinc silicate glasses and glass ceramics.

    Science.gov (United States)

    Gao, Guojun; Meszaros, Robert; Peng, Mingying; Wondraczek, Lothar

    2011-05-09

    We report on photoluminescence of vanadium-doped lithium zinc silicate glasses and corresponding nanocrystalline Li2ZnSiO4 glass ceramics as broadband UV-to-VIS photoconverters. Depending on dopant concentration and synthesis conditions, VIS photoemission from [VO4]3 is centered at 550-590 nm and occurs over a bandwidth (FWHM) of ~250 nm. The corresponding excitation band covers the complete UV-B to UV-A spectral region. In as-melted glasses, the emission lifetime is about 34 μs up to a nominal dopant concentration of 0.5 mol%. In the glass ceramic, it increases to about 45 μs. For higher dopant concentration, a sharp drop in emission lifetime was observed, what is interpreted as a result of concentration quenching. Self-quenching is further promoted by energy transfer to V4+ centers (2glass and/or synthesis conditions.

  1. Elaboration of new ceramic composites containing glass fibre production wastes

    Directory of Open Access Journals (Sweden)

    Rozenstrauha, I.

    2013-04-01

    Full Text Available Two main by-products or waste from the production of glass fibre are following: sewage sludge containing montmorillonite clay as sorbent material and ca 50% of organic matter as well as waste glass from aluminiumborosilicate glass fibre with relatively high softening temperature (> 600 ºC. In order to elaborate different new ceramic products (porous or dense composites the mentioned by-products and illitic clay from two different layers of Apriki deposit (Latvia with illite content in clay fraction up to 80-90% was used as a matrix. The raw materials were investigated by differential-thermal (DTA and XRD analysis. Ternary compositions were prepared from mixtures of 15–35 wt % of sludge, 20 wt % of waste glass and 45–65 wt % of clay and the pressed green bodies were thermally treated in sintering temperature range from 1080 to 1120 ºC in different treatment conditions. Materials produced in temperature range 1090–1100 ºC with the most optimal properties - porosity 38-52%, water absorption 39–47% and bulk density 1.35–1.67 g/cm3 were selected for production of porous ceramics and materials showing porosity 0.35–1.1%, water absorption 0.7–2.6 % and bulk density 2.1–2.3 g/cm3 - for dense ceramic composites. Obtained results indicated that incorporation up to 25 wt % of sewage sludge is beneficial for production of both ceramic products and glass-ceramic composites according to the technological properties. Structural analysis of elaborated composite materials was performed by scanning electron microscopy(SEM. By X-ray diffraction analysis (XRD the quartz, diopside and anorthite crystalline phases were detected.Durante la obtención de ciertas fibras de vidrio se generan dos subproductos o residuos principalmente: Lodo de arcilla montmorillonítica capaz de adsorber el 50 % de materia orgánica y un vidrio silicato alumínico con temperatura de reblandecimiento relativamente alta (> 600 ºC. Con el fin de elaborar nuevos

  2. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    Science.gov (United States)

    2012-06-01

    Hardwick, and J.- M. Tarascon, Nature Materials, vol. 11, pp 19-29, 2012. 2. Linden , D. (Ed), Handbook of Batteries , 2nd Edition, Mc-Graw-Hill, New...AFRL-RQ-WP-TP-2015-0053 MESOPOROUS NITROGEN DOPED CARBON-GLASS CERAMIC CATHODE FOR HIGH PERFORMANCE LITHIUM-OXYGEN BATTERY (POSTPRINT...DOPED CARBON-GLASS CERAMIC CATHODE FOR HIGH PERFORMANCE LITHIUM-OXYGEN BATTERY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  3. Bone response to three different chemical compositions of fluorcanasite glass-ceramic.

    Science.gov (United States)

    da Rocha Barros, Valdemar Mallet; Liporaci, Jorge Luiz J; Rosa, Adalberto L; Junqueira, Marcela Caffarena; de Oliveira, Paulo Tambasco; Johnson, Anthony; van Noort, Richard

    2007-11-01

    The aim of this study was to evaluate the bone response to three fluorcanasite glass-ceramic compositions with different solubilities (K3, K5, and K8) after implantation in a femur rabbit model. Fluorcanasite glass-ceramic rods were implanted bilaterally in the mid-shafts rabbit femurs. Implants were harvested at 8 and 12 weeks and prepared for histological and histomorphometric analyses at the light microscope level. Bioglass 45S5 rods were used as a control material. At 8 weeks, all fluorcanasite glass-ceramics were entirely surrounded by a nonmineralized connective tissue. At 12 weeks, reduced areas of bone tissue were observed in the cortical area in direct contact with the K3 and K5 fluorcanasite glass-ceramics compared to Bioglass 45S5, whereas no bone tissue was observed in direct contact with the K8 surface. Bone-to-implant contact in the cortical area was affected by the material chemical composition and ranked as follows: Bioglass 45S5>K3>K5>K8 (p=0.001). In the bone marrow, a layer of fibrous connective tissue formed in direct contact with the fluorcanasite glass-ceramics and Bioglass 45S5, and only rarely exhibited contact osteogenesis. All the fluorcanasite glass-ceramics appeared to degrade in the biological environment. The solubility ratio did not alter significantly the biological reply of the fluorcanasite glass-ceramics in vivo. Further modifications of the chemical composition of the fluorcanasite glass-ceramic are required to increase the stability of the material in vivo.

  4. Development of Glass Ceramics Made From Ferrous Tailings and Slag in China

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng-jun; SHI Pei-yang; ZHANG Da-yong; JIANG Mao-fa

    2007-01-01

    A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.

  5. Effect of several surface treatments on the strength of a glass ceramic-to-metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D P; Salerno, R F; Egleston, E E

    1982-02-10

    Test shells of Inconel 625, Inconel 718, 21-6-9 stainless steel, and Hastelloy, C-276 were plasma and/or chemically cleaned before sealing with a multi-component glass-ceramic-to-metal seal was evaluated using a hydrostatic burst test. The results show that plasma cleaning can be used to increase the hydrostatic burst strength and hermeticity of a glass ceramic-to-metal seal.

  6. Immobilization of gadolinium in iron borophosphate glasses and iron borophosphate based glass-ceramics: Implications for the immobilization of plutonium(Ⅲ)

    Science.gov (United States)

    Wang, Fu; Liao, Qilong; Dai, Yunya; Zhu, Hanzhen

    2016-08-01

    Immobilization of gadolinium (Gd), a nonradioactive surrogate for Pu3+, in iron borophosphate glasses/glass-ceramics (IBP glasses/glass-ceramics) has been investigated. The IBP glass containing 4 mol% Gd2O3 is homogeneously amorphous. At higher Gd2O3 concentrations, additional Gd is retained in the glasses as crystalline inclusions of monazite GdPO4 crystalline phase detected with X-ray diffraction. Moreover, Gd2O3 addition increases the Tg of the IBP glasses in glass formation range, which is consistent with the structural modification of the glasses. The structure of the Gd2O3-loaded IBP glasses/glass-ceramics is mainly based on pyrophosphate units. The chemical durability of Gd2O3-loaded IBP glasses/glass-ceramics is comparable to widely used borosilicate glass waste forms and the existence of monazite GdPO4 crystalline phase does not degrade the aqueous chemical durability of the IBP glasses/glass-ceramics. The Gd-loading results imply that the solubility should not be a limiting factor in processing nuclide Pu3+ if the formed crystalline phase(s) have high chemical durability.

  7. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  8. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VI

  9. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  10. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  11. Spectroscopic properties of Er 3+ doped chalco-halide glass ceramics

    Science.gov (United States)

    Seznec, Vincent; Ma, Hongli; Zhang, Xianghua; Nazabal, Virginie; Adam, Jean-Luc; Qiao, X. S.; Fan, X. P.

    2006-02-01

    In this paper, we present results concerning the fabrication and characterization of glass-ceramics based on chalcohalide for application as laser host materials. The objective is to develop a highly efficient host material for rare-earth doping. The studied system is Ga-Ge-S-CsCl with Er 3+ ions as doping elements. Glass-ceramics have been prepared by thermal treatment of the base glass. The evolution of the optical transmission versus annealing time and temperature has been investigated. Preliminary up-conversion measurement of Er 3+ were performed. Glass ceramics show higher luminescence efficiency as compared to the base glass. Nano-crystalline phases have been generated in well-controlled experimental conditions, so that crystals with reproducible size smaller than 50 nm could be achieved.

  12. Infrared to ultraviolet upconversion luminescence in Nd3+ doped nano-glass-ceramic

    Institute of Scientific and Technical Information of China (English)

    CHEN Daqin; WANG Yuansheng; YU Yunlong; LIU Feng; HUANG Ping

    2008-01-01

    Nd3+ doped transparent oxyfluoride glass ceramic containing β-YF3 nanocrystals was prepared and the upconversion luminescence behaviors of Nd3+ in the precursor glass and glass ceramic were investigated. Under 796 nm laser excitation, ultraviolet upconversion emissions of Nd3+ ions at 354 nm (4D3/2→4I9/2) and 382 nm (4D3/2→4I11/2) were observed at room temperature. Power dependence analysis demonstrated that three-photon upconversion processes populated the 4D3/2 excited state. In comparison with those of the precursor glass, the ultraviolet emissions were enhanced by a factor of 500 in the glass ceramic, which was attributed to the change in the ligand field of Nd3+ ions and the decrease in phonon energy because of the partition of Nd3+ ions into the β-YF3 nanocrystals after crystallization.

  13. A neutron scintillator based on transparent nanocrystalline CaF{sub 2}:Eu glass ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Struebing, Christian; Kang, Zhitao, E-mail: zhitao.kang@gtri.gatech.edu [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Chong, JooYun; Wagner, Brent [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Lee, Gyuhyon; Ding, Yong [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Zavala, Martin; Erickson, Anna [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Wang, Cai-Lin; Diawara, Yacouba [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6460 (United States); Engels, Ralf [Forschungszentrum Jülich GmbH, Jülich 52425 (Germany)

    2016-04-11

    There are no efficient Eu{sup 2+} doped glass neutron scintillators reported due to low doping concentrations of Eu{sup 2+} and the amorphous nature of the glass matrix. In this work, an efficient CaF{sub 2}:Eu glass ceramic neutron scintillator was prepared by forming CaF{sub 2}:Eu nanocrystals in a {sup 6}Li-containing glass matrix. Through appropriate thermal treatments, the scintillation light yield of the transparent glass ceramic was increased by a factor of at least 46 compared to the as-cast amorphous glass. This improvement was attributed to more efficient energy transfer from the CaF{sub 2} crystals to the Eu{sup 2+} emitting centers. Further light yield improvement is expected if the refractive index of the glass matrix can be matched to the CaF{sub 2} crystal.

  14. Preparation and luminescence properties of Eu3+ doped oxyfluoride borosilicate glass ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Yanhong; ZHAO Li; ZHANG Yongming; MA Jing

    2012-01-01

    Oxyfluoride borosilicate glass with the molar composition of60SiO2-15B2O3-15Na2O-8CaF2-2NaF-0.25Eu2O3 was synthesized by a traditional glass melting method.Glass ceramics containing CaF2 nanocrystals were preparcd by heat treating the glass samples at a temperature in the range of 620-680℃.The results of X-ray diffraction (XRD) indicated that the average crystallite size and the lattice constant of CaF2 nanocrystals increased with the heat treatment temperature incrcasing.The luminescence spectra showed that the emission intensity of Eu3+ doped glass ceramics was stronger than that of the glass matrix,and increased with the heat treatment temperature increasing.The left edge of excitation band shifted to shorter wavelength in the glass ceramics.The local environments of Eu3+ ions in the glass and glass ceramics were different.

  15. Glass and glass-ceramics along the SrTiO3-NaPO3 line

    Directory of Open Access Journals (Sweden)

    Sinouh H.

    2013-09-01

    Full Text Available The xSrTiO3-(1−xNaPO3 (x = 0−0.20 mol% glasses were prepared by the conventional melt-quenching method. The amorphous state of the samples was verified by X-ray diffraction. The glass-ceramic materials were obtained by the well known thermal controlled crystallization process. It is found that several physical properties such as the density, molar volume, and the glass transition temperature depend strongly on the chemical composition. Vickers test on the glasses showed that the micro-hardness increases with the SrTiO3 content. The structural approach of the glasses was realized by IR spectroscopy. This technique has highlighted the co-existence of different phosphate and titanium structural units in the glassy-matrix. Crystallization of the glasses was enhanced by heat treatments and followed by X-ray diffraction. A mechanism for this glass crystallization was proposed.

  16. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    Science.gov (United States)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-07-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  17. Standard test method for measuring waste glass or glass ceramic durability by vapor hydration test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 The vapor hydration test method can be used to study the corrosion of a waste forms such as glasses and glass ceramics upon exposure to water vapor at elevated temperatures. In addition, the alteration phases that form can be used as indicators of those phases that may form under repository conditions. These tests; which allow altering of glass at high surface area to solution volume ratio; provide useful information regarding the alteration phases that are formed, the disposition of radioactive and hazardous components, and the alteration kinetics under the specific test conditions. This information may be used in performance assessment (McGrail et al, 2002 (1) for example). 1.2 This test method must be performed in accordance with all quality assurance requirements for acceptance of the data. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practice...

  18. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.

    Science.gov (United States)

    Fiorilli, Sonia; Baino, Francesco; Cauda, Valentina; Crepaldi, Marco; Vitale-Brovarone, Chiara; Demarchi, Danilo; Onida, Barbara

    2015-01-01

    In this work, the coating of 3-D foam-like glass-ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 10(6) J m(-3)) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

  19. Thin-film solar cells on perlite glass-ceramic substrates

    Science.gov (United States)

    Petrosyan, Stepan G.; Babayan, Virab H.; Musayelyan, Ashot S.; Harutyunyan, Levon A.; Zalesski, Valery B.; Kravchenko, Vladimir M.; Leonova, Tatyana R.; Polikanin, Alexander M.; Khodin, Alexander A.

    2013-06-01

    For the first time, thin-film CIGS solar cells have been fabricated by co-evaporation on specially developed non-conducting perlite (an aluminum potassium sodium silicate natural mineral of volcanic origin) glass-ceramic substrates to develop a fully integrated photovoltaic and building element. Such glass-ceramic material can meet the physical requirements to solar cells substrates as well as the cost goals. The preliminary data presented show that CIGS solar cells deposited on ceramic substrates can exhibit efficiency higher than 10%.

  20. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic

    OpenAIRE

    Baratto,Samantha Schaffer Pugsley; Spina,Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha,Leonardo Fernandes da; Furuse, Adilson Yoshio; Flares BARATTO FILHO; Correr, Gisele Maria

    2015-01-01

    Abstract: The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the...

  1. Effect of Crystallisation Degree on Hardness of Basaltic Glass-Ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Yue, Yuanzheng

    The dependence of hardness of basaltic glass-ceramics on their crystallisation degree has been explored by means of differential scanning calorimetry, optical microscopy, X-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses have been obtained...

  2. Wear Behaviour of Pressible Lithium Disilicate Glass Ceramic

    Science.gov (United States)

    Peng, Zhongxiao; Rahman, Muhammad Izzat Abdul; Zhang, Yu; Yin, Ling

    2015-01-01

    This paper reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressible lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using 3D laser scanning microscopy, scanning electron microscopy and energy dispersive x-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behaviour of LDGC and will provide guidelines for better utilisation and preparation of the material for long-term success in dental restorations. PMID:25980530

  3. Treatment of osteomyelitis with antibiotic-soaked porous glass ceramic.

    Science.gov (United States)

    Kawanabe, K; Okada, Y; Matsusue, Y; Iida, H; Nakamura, T

    1998-05-01

    We have developed a new drug delivery system using porous apatite-wollastonite glass ceramic (A-W GC) to treat osteomyelitis. A-W GC (porosity, 70% and 20% to 30%), or porous hydroxyapatite (HA) blocks (porosity 35% to 48%) used as controls, were soaked in mixtures of two antibiotics, isepamicin sulphate (ISP) and cefmetazole (CMZ) under high vacuum. We evaluated the release concentrations of the antibiotics from the blocks. The bactericidal concentration of ISP from A-W GC was maintained for more than 42 days, but that from HA decreased to below the detection limit after 28 days. The concentrations of CMZ from both materials were lower than those of ISP. An in vivo study using rabbit femora showed that an osseous concentration of ISP was maintained at eight weeks after implantation. Osteoconduction of the A-W GC block was good. Four patients with infected hip arthroplasties and one with osteomyelitis of the tibia have been treated with the new delivery system with excellent results.

  4. Progress on glass ceramic ZERODUR enabling nanometer precision

    Science.gov (United States)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas

    2016-03-01

    The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.

  5. Effect of binder burnout on the sealing performance of glass ceramics for solid oxide fuel cells

    Science.gov (United States)

    Ertugrul, Tugrul Y.; Celik, Selahattin; Mat, Mahmut D.

    2013-11-01

    The glass ceramics composite sealants are among few materials suitable for the solid oxide fuel cells (SOFC) due to their high operating temperatures (600 °C-850 °C). The glass ceramics chemically bond to both the metallic interconnector and the ceramic electrolyte and provide a gas tight connection. A careful and several stages manufacturing procedure is required to obtain a gas tight sealing. In this study, effects of binder burnout process on the sealing performance are investigated employing commercially available glass ceramic powders. The glass ceramic laminates are produced by mixing glass ceramic powders with the organic binders and employing a tape casting method. The laminates are sandwiched between the metallic interconnectors of an SOFC cell. The burnout and subsequent sealing quality are analyzed by measuring leakage rate and final macrostructure of sealing region. The effects of heating rate, dead weight load, solid loading, carrier gas and their flow rates are investigated. It is found that sealing quality is affected from all investigated parameters. While a slower heating rate is required for a better burnout, the mass flow rate of sweep gas must be adequate for removal of the burned gas. The leakage rate is reduced to 0.1 ml min-1 with 2 °C min-1 + 1 °C min-1 heating rate, 86.25% solid loading, 200 N dead weight load and 500 ml min-1 sweep gas flow rate.

  6. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    Science.gov (United States)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  7. The application of plasma-sprayed ceramic coatings on lift roller in float glass

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oxide ceramic was sprayed via high-energy plasma spray using MCrAlY manufactured with special technique as bond coating and oxide ceramic as top coating in this article. Investigation showed that the dense and highly adhesive coating could be obtained with optimized technique. After grinding and polishing, coating roughness was lower than 0. 2μm, which could meet the requirements of lift roller. After one year serv ice, molten Tin could not adhere to the ceramic coating,well it greatly alleviated its corrosion to the roller , kept the surface of oxide ceramic coating smooth and the improve the quality of glass due to the strengthened lift roll.

  8. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.; Valente, M. A. [Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, Aveiro (Portugal); Almeida, A. F.; Freire, F. N. A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Bih, L. [Equipe Physico-Chimie la Matière Condensée, Faculté des Sciences de Meknès, Meknès (Morocco)

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.

  9. High Efficiency Axial Deep Creep-Feed Grinding Machining Technology of Engineering Ceramics Materials

    Institute of Scientific and Technical Information of China (English)

    GUO Fang; ZHANG Baoguo; LU Hong; TIAN Xinli; WANG Jianquan; LI Fuqiang

    2012-01-01

    Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials,which is an original method to process the cylindrical ceramics materials or hole along its axis.The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process,and realized high efficiency,low-cost process of engineering ceramics materials.Compared with high speed-deep grinding machining,this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost.In addition,removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed,and the processed part is seldom destroyed,only by adjusting the axial force to control the length of transverse cracks.

  10. A new biocompatible and antibacterial phosphate free glass-ceramic for medical applications.

    Science.gov (United States)

    Cabal, Belén; Alou, Luís; Cafini, Fabio; Couceiro, Ramiro; Sevillano, David; Esteban-Tejeda, Leticia; Guitián, Francisco; Torrecillas, Ramón; Moya, José S

    2014-06-25

    In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains. The biocompatibility tests by using mesenchymal stem cells derived from human bone indicate an excellent biocompatibility.

  11. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gad-Allah, Tarek A., E-mail: tareqabdelshafy@yahoo.ca [Water Pollution Research Department, National Research Centre, Cairo 12311 (Egypt); Margha, Fatma H. [Department of Glass Research, National Research Centre, Cairo 12311 (Egypt)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ► Precipitation of photoactive phases by using controlled heat-treatment. ► Conservation of transparency along with photoactivity. ► Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UV–visible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  12. Contact fatigue mechanisms as a function of crystal aspect ratio in baria-silicate glass ceramics

    Science.gov (United States)

    Suputtamongkol, Kallaya

    2003-10-01

    Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, the existence of fatigue damage in ceramics raises considerable concern regarding its effect on the life prediction of dental prostheses. During normal mastication, dental restorations are subjected to repeated loading more than a thousand times per day and relatively high clinical failure rates for ceramic prostheses have been reported. To simulate the intraoral loads, Hertzian indentation loading was used in this study to characterize the fatigue failure mechanisms of ceramic materials using clinically relevant parameters. The baria-silicate system was chosen because of the nearly identical composition between the crystal and the glass matrix. Little or no residual stress is expected from the elastic modulus and thermal expansion mismatches between the two phases. Crystallites with different aspect ratios can also be produced by controlled heat treatment schedules. The objective of this study was to characterize the effect of crystal morphology on the fatigue mechanisms of bariasilicate glass-ceramics under clinically relevant conditions. The results show that the failure of materials with a low toughness such as baria-silicate glass (0.7 MPa•m1/2) and glass-ceramic with an aspect ratio of 3/1 (1.3 MPa•m1/2) initiated from a cone crack developed during cyclic loading for 103 to 105 cycles. The mean strength values of baria-silicate glass and glass-ceramic with an aspect ratio of 3/1 decreased significantly as a result of the presence of a cone crack. Failure of baria-silicate glass-ceramics with an aspect ratio of 8/1 (Kc = 2.1 MPa•m1/2) was initiated from surface flaws caused by either polishing or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8/1 after loading in air for 103 to 10 5 cycles. A reduction of approximately 50% in fracture stress levels was found for

  13. In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application.

    Science.gov (United States)

    Bretcanu, Oana; Miola, Marta; Bianchi, Claudia L; Marangi, Ida; Carbone, Roberta; Corazzari, Ingrid; Cannas, Mario; Verné, Enrica

    2017-04-01

    Ferrimagnetic glass-ceramics containing magnetite crystals were developed for hyperthermia applications of solid neoplastic tissue. The present work is focused on in vitro evaluation of the biocompatibility of these materials, before and after soaking in a simulated body fluid (SBF). X-ray diffraction, scanning electron microscopy, atomic absorption spectrophotometry, X-ray photoelectron spectrometry and pH measurements were employed in glass-ceramic characterisation. The free-radical mediated reactivity of the glass-ceramic was evaluated by Electron Paramagnetic Resonance (EPR) spin trapping. Cell adhesion and proliferation tests were carried out by using 3T3 murine fibroblasts. Cytotoxicity was performed by qualitative evaluation of human bone osteosarcoma cells U2OS cell line. The results show that almost two times more 3T3 cells proliferated on the samples pre-treated in SBF, compared with the untreated specimens. Moreover a decrease of confluence was observed at 48 and 72h for U2OS cells exposed to the untreated glass-ceramic, while the powder suspensions of glass-ceramic pre-treated in SBF did not influence the cell morphology up to 72h of exposition. The untreated glass-ceramic exhibited Fenton-like reactivity, as well as reactivity towards formate molecule. After pre-treatment with SBF the reactivity towards formate was completely suppressed. The concentration of iron released into the SBF solution was below 0.1ppm at 37°C, during one month of soaking. The different in vitro behaviour of the samples before and after SBF treatment has been correlated to the bioactive glass-ceramic surface modifications as detected by morphological, structural and compositional analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials

    Science.gov (United States)

    1988-09-15

    the strength and fatigue characteristics of ZBLAN (zirconium barium-lanthanum-aluminum-sodium fluoride) optical glass fiber obtained from British...Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materlals 12. PERSONAL AUTHOR(S) Carlo G. Pantano 13a. TYPE OF...fluorozirconate glasses . °. DTICS ELEC T E DEC 09 I 20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21.-A% RACT SECURITY CLASSIFICATION [BUNCLASSIFIED/UNLIMITED

  15. Er-doped and Er, Yb co-doped oxyfluoride glasses and glass-ceramics, structural and optical properties

    Science.gov (United States)

    Lisiecki, Radosław; Augustyn, Elżbieta; Ryba-Romanowski, Witold; Żelechower, Michał

    2011-09-01

    The selected glasses and glass-ceramics pertinent to following chemical composition in mol%:48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-11%PbF 2-3%ErF 3 and 48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-10%PbF 2-1%ErF 3-3%YbF 3 have been manufactured from high purity components (Aldrich) at 1450 °C in normal atmosphere. Glass optical fibers were successfully drawn. Subsequently they were subject to the heat-treatment at 700 °C in various time periods. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. It has been observed that the controlled heat-treatment of oxyfluoride glass fibers results in the creation of Pb 5Al 3F 19, Er 4F 2O 11Si 3 and Er 3FO 10Si 3 crystalline phases. The identified phases were characterized by X-ray powder diffraction (XRD) and confirmed by selected area electron diffraction (SAED). The fibers consist of mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. Their morphology was investigated applying high-resolution transmission electron microscopy. Optical properties and excited state relaxation dynamics of optically active ions (Er 3+, Yb 3+) in glass and glass-ceramics have been studied. Based on absorption spectra the Judd-Ofelt analysis was carried out. The main attention was directed to NIR luminescence at. 1.6 μm related to 4I 13/2 → 4I 15/2 Er 3+ and less effective emission associated with 4I 11/2 → 4I 15/2 Er 3+ and 2F 5/2 → 2F 7/2 Yb 3+ transitions. The dissimilar spectroscopic properties have been revealed for glasses and glass-ceramic samples, respectively. The reduction of emission linewidth at 1.6 and 1.0 μm combined with substantial increase of 4I 13/2 lifetimes of erbium in glass-ceramics appear to be evidences that Er 3+ ions are accommodated in crystalline phases. The structural and optical characteristics of oxyfluoride glass-ceramic

  16. Glass ceramic of high hardness and fracture toughness developed from iron-rich wastes

    Institute of Scientific and Technical Information of China (English)

    Weixin HAN

    2009-01-01

    A study has been carried out on the feasibility of using high iron content wastes, gen-erated during steel making, as a raw material for the production of glass ceramic. The iron-rich wastes were mixed and melted in different proportions with soda-lime glass cullet and sand. The devitrification of the parent glasses produced from the different mixtures was investigated using differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The mechanical properties of the glass-ceramic were assessed by hardness and indentation fracture toughness measurement. A glass ce-ramic with mixture of 60 wt pct iron-rich wastes, 25 wt pct sand, and 15 wt pct glass cullet exhibited the best combination of properties, namely, hardness 7.9 GPa and fracture toughness 3.75 MPa.m1/2, for the sake of containing magnetite in marked dendritic morphology. These new hard glass ceramics are candidate materials for wear resistant tiles and paving for heavy industrial floors.

  17. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  18. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    Science.gov (United States)

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.

  19. Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates.

    Science.gov (United States)

    Pan, Z; Zavalin, A; Ueda, A; Guo, M; Groza, M; Burger, A; Mu, R; Morgan, S H

    2005-06-01

    Surface-enhanced Raman scattering (SERS) has been studied using a silver-coated porous glass-ceramic material as a new type of substrate. The porous glass-ceramic is in the CaO-TiO2-P2O5 system prepared by controlled crystallization and subsequent chemical leaching of the dense glass-ceramic, leaving a solid skeleton with pores ranging in size from 50 nm to submicrometer. Silver was coated on the surface of the porous glass-ceramic by radio frequency (RF) sputtering or e-beam evaporation in vacuum. SERS spectra of excellent quality were obtained from several dyes and carboxylic acid molecules, including rhodamine 6G, crystal violet, isonicotinic acid, and benzoic acid, using this new substrate. This new substrate showed a good compatibility with these molecules. The porous glass ceramic with a nanometer-structured surface accommodated both test molecules and silver film. The absorbed molecules were therefore better interfaced with silver for surface-enhanced Raman scattering.

  20. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Scales, Charlie R.; Maddrell, Ewan R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom); Hobbs, Jeff [Sellafield Limited, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)

    2013-07-01

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  1. Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography

    Science.gov (United States)

    Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter

    2013-04-01

    The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress

  2. Micro solid oxide fuel cells on glass ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, Ulrich P.; Beckel, Daniel; Bieberle-Huetter, Anja; Graf, Silvio; Infortuna, Anna; Rupp, Jennifer L.M.; Schneider, Julian; Gauckler, Ludwig J. [Department of Materials, Nonmetallic Inorganic Materials, ETH Zurich (Switzerland); Bernard, Andre; Mueller, Patrik [Institute for Micro- and Nanotechnology, NTB Interstate University of Applied Sciences (Switzerland)

    2008-10-23

    Miniaturized solid oxide fuel cells are fabricated on a photostructurable glass ceramic substrate (Foturan) by thin film and micromachining techniques. The anode is a sputtered platinum film and the cathode is made of a spray pyrolysis (SP)-deposited lanthanum strontium cobalt iron oxide (LSCF), a sputtered platinum film and platinum paste. A single-layer of yttria-stabilized zirconia (YSZ) made by pulsed laser deposition (PLD) and a bilayer of PLD-YSZ and SP-YSZ are used as electrolytes. The total thickness of all layers is less than 1{mu}m and the cell is a free-standing membrane with a diameter up to 200 {mu}m. The electrolyte resistance and the sum of polarization resistances of the anode and cathode are measured between 400 and 600 C by impedance spectroscopy and direct current (DC) techniques. The contribution of the electrolyte resistance to the total cell resistance is negligible for all cells. The area-specific polarization resistance of the electrodes decreases for different cathode materials in the order of Pt paste > sputtered Pt > LSCF. The open circuit voltages (OCVs) of the single-layer electrolyte cells ranges from 0.91 to 0.56 V at 550 C. No electronic leakage in the PLD-YSZ electrolyte is found by in-plane and cross-plane electrical conductivity measurements and the low OCV is attributed to gas leakage through pinholes in the columnar microstructure of the electrolyte. By using a bilayer electrolyte of PLD-YSZ and SP-YSZ, an OCV of 1.06 V is obtained and the maximum power density reaches 152 mW cm{sup -2} at 550 C. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  4. Sonogels in the Preparation of Advanced Glass and Ceramic Materials

    Science.gov (United States)

    1992-10-20

    1 In0 f 7;ra Products) ceramic fibres . -using other yreinforcing phases in the. form of 7’T02 (7YF- 100 ,Zircar Products) and A1203 (MAFTEC) ceramic...usd we -r, made friom ceramic fibres . In both cases t ,- fi bris were I anrgel y continuous and random], oriented in p1lanes parallel Io tahe layers...gives the relative densities for the CT15 ’ A1203 composites . They are designated as CT15Av , where y is the volume fract ion of alt]mina ceramic

  5. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics.

    Science.gov (United States)

    Nath, Chandra; Lim, G C; Zheng, H Y

    2012-07-01

    Micro-chipping via micro-cracks, due to rapid mechanical indentations by abrasive grits, is the fundamental mechanism of material removal during ultrasonic machining (USM) of hard-brittle materials like ceramics and glass. This study aims mainly to investigate the adverse effects of this inherent removal phenomena on the hole integrity such as entrance chipping, wall roughness and subsurface damage. It also presents the material removal mechanism happens in the gap between the tool periphery and the hole wall (called 'lateral gap'). To do so, experiments were conducted for drilling holes on three advanced structural ceramics, namely, silicon carbide, zirconia, and alumina. Earlier published basic studies on the initiation of different crack modes and their growth characteristics are employed to explain the experimental findings in this USM study. It is realized that the radial and the lateral cracks formed due to adjacent abrasives, which are under the tool face, extends towards radial direction of the hole resulting in entrance chipping. Additionally, the angle penetration and the rolling actions of the abrasives, which are at the periphery of the tool, contribute to the entrance chipping. Later on, in the 'lateral gap', the sliding (or abrasion) and the rolling mechanisms by the larger abrasives take part to material removal. However, they unfavorably produce micro-cracks in the radial direction resulting in surface and subsurface damages, which are ultimately responsible for higher wall-surface roughness. Since the size of micro-cracks in brittle materials is grit size dependent according to the earlier studied physics, it is realized that such nature of the hole integrity during USM can only be minimized by employing smaller grit size, but cannot fully be eliminated.

  6. Glass ceramics containment matrix for insoluble residues coming from spent fuel reprocessing

    Science.gov (United States)

    Pinet, O.; Boën, R.

    2014-04-01

    Spent fuel reprocessing by hydrometallurgical process generates insoluble residues waste streams called fines solution. Considering their radioactivity, fines solution could be considered as Intermediate Level Waste. This waste stream is usually mixed with fission products stream before vitrification. Thus fines are incorporated in glass matrix designed for High Level Waste. The withdrawal of fines from high level glass could decrease the volume of high level waste after conditioning. It could also decrease the reaction time between high level waste and additives to obtain a homogeneous melt and then increase the vitrification process capacity. Separated conditioning of fines in glass matrices has been tested. The fines content targeted value is 16 wt%. To achieve this objective, two types of glass ceramic formulations have been tested. 700 g of the two selected glass ceramics have been prepared using simulated fines. Additives used were ground glass. Melting is achieved at 1100 °C. According to the type of glass ceramic, reducing or oxidizing conditions have been performed during melting. Due to their composition and the melting redox conditions, different phases have been observed. These crystalline phases are typically RuO2, metallic Ru, metallic Pd, MoO2 and CaMoO4. In view of melting these matrices in an in can process the corrosiveness of one of the most oxidizing borosilicate glass ceramic formulation has been tested. This one has been remelted at 1100 °C in inconel 601 pot for 3 days. The oxygen fugacity measurement performed in the remelted glass leads to an oxidizing value, indicating that no significant reaction occurred between the inconel pot and the glass melt had occurred.

  7. Nd3+,Yb3+ and Ho3+ Codoped Oxyfluoride Glass Ceramics with High Efficient Green Upconversion Luminescence

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Jie; KAWAMOTO Yoji; DAI Shi-Xun; ZHANG Li-Yan; HU Li-Li

    2004-01-01

    @@ New oxyfluoride glasses and glass ceramic codoped with Nd3+, Yb3+ and Ho3+ were prepared. The x-ray diffraction analysis revealed that the heat treatments of the oxyfluoride glasses could cause the precipitation of (Nd3+, Yb3+, Ho3+)-doped fluorite-type crystals. Very strong green up-conversion luminescence due to the Ho3+: (5F4, 5S2) → 5I8 transition under 800-nm excitation was observed in these transparent glass ceramics.The intensity of the green up-conversion luminescence in a 1-mo1% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+up-conversion luminescence in the oxyfluoride glass ceramics is discussed.

  8. Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

    Indian Academy of Sciences (India)

    Amitava Majumdar; Sunirmal Jana

    2001-02-01

    Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness. Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

  9. A novel processing route for carbon nanotube reinforced glass-ceramic matrix composites

    Science.gov (United States)

    Dassios, Konstantinos G.; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2015-03-01

    The current study reports the establishment of a novel feasible way for processing glass- and ceramic- matrix composites reinforced with carbon nanotubes (CNTs). The technique is based on high shear compaction of glass/ceramic and CNT blends in the presence of polymeric binders for the production of flexible green bodies which are subsequently sintered and densified by spark plasma sintering. The method was successfully applied on a borosilicate glass / multi-wall CNT composite with final density identical to that of the full-dense ceramic. Preliminary non-destructive evaluation of dynamic mechanical properties such as Young's and shear modulus and Poisson's ratio by ultrasonics show that property improvement maximizes up to a certain CNT loading; after this threshold is exceeded, properties degrade with further loading increase.

  10. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    Science.gov (United States)

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (∼1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  11. Broadband Infrared Luminescence of Ni2+ in Petalite-Type Transparent Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    FENG Gao-Reng; ZHOU Shi-Feng; ZHANG Song-Min; YANG Hu-Cheng; QIU Jian-Rong

    2007-01-01

    Transparent Ni2+-doped magnesium aluminosilicate glass ceramics are prepared.The formation of petalite-type crystallites in the glass ceramics is confirmed by x-ray diffraction.Broadband infrared luminescence centred at around 1235 nm with full width at half maximum (FWHM) of about 300 nm is observed from the Ni2+-doped glass ceramics.The observed infrared emission could be attributed to the 3T2(F)→3A2(F)transition of octahedral Ni2+ ions in petalite-type crystallites.The product of the fluorescence lifetime and the stimulated emission cross sections is 1.2×10-24 cm2s.

  12. Experimental Study on LTCC Glass-Ceramic Based Dual Segment Cylindrical Dielectric Resonator Antenna

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Gangwar

    2013-01-01

    Full Text Available The measured characteristics in C/X bands, including material properties of a dual segment cylindrical dielectric resonator antenna (CDRA fabricated from glass-ceramic material based on B2O3–La2O3–MgO glass and La(Mg0.5Ti0.5O3 ceramic, are reported. The sintering characteristic of the ceramic in presence of glass is determined from contact angle measurement and DTA. The return loss and input impedance versus frequency characteristics and radiation patterns of CDRA at its resonant frequency of 6.31 GHz are studied. The measured results for resonant frequency and return loss bandwidth of the CDRA are also compared with corresponding theoretical ones.

  13. Determination of the mechanical behavior of lithium disilicate glass ceramics by nanoindentation and scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Calvin M. [Matter and Materials, College of Science, Technology and Engineering, James Cook University, James Cook Drive, Townsville, QLD 4811 (Australia); Jiang, Danyu [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gong, Jianghong [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yin, Ling, E-mail: ling.yin@jcu.edu.au [Matter and Materials, College of Science, Technology and Engineering, James Cook University, James Cook Drive, Townsville, QLD 4811 (Australia)

    2014-12-15

    This paper reports on the mechanical behavior of high-strength dental ceramics, lithium disilicate glass ceramics (LDGC) using nanoindentation and in situ scanning probe microscopy (SPM). The nanoindentation hardness and Young's moduli of LDGC were measured as a function of the applied indentation load. The indentation load/size effect (ISE) was analyzed for both measured nanoindentation hardness and Young's moduli. The true hardness, i.e., the load-independent hardness, was determined based on the proportional specimen resistance (PSR) model. Nanoindentation-induced plasticity in LDGC was characterized by in situ SPM imaging of the indented volumes and by measuring pile-up heights of indented cross-sections. The results show that both nanoindentation hardness and Young's modulus are load-dependent following the expended Meyer's law using a power series. At the nanoindentation loads, indented LDGC can be mainly plastically deformed by limiting cracking events. This unusual behavior, for nominally brittle materials, influences the mode of contact damage in applications such as machining, polishing, wear, impact damage and hardness testing for dental restorations. - Highlights: • Both hardness and Young's modulus of LDGC were load-dependent following the expended Meyer's law. • The true hardness of LDGC was determined based on the proportional specimen resistance (PSR) model. • Nanoindentation-induced plasticity in LDGC was characterized by in situ SPM imaging. • At low nanoindentation loads, indented LDGC can be mainly plastically deformed by limiting cracking events.

  14. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    OpenAIRE

    2011-01-01

    International audience; Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium ...

  15. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic.

    Science.gov (United States)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-05

    A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr1.32Fe0.19Al0.49O4. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5wt.%), diopside (5.2wt.%), and some amorphous contents (91.2wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr2O3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that the use of affordable additives has potential in more reliably immobilizing COPR with a spinel-based glass-ceramic for safer disposal of this hazardous waste.

  16. Tempered glass and thermal shock of ceramic materials

    Science.gov (United States)

    Bunnell, L. Roy

    1992-01-01

    A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.

  17. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Science.gov (United States)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  18. Fabrication of transparent lead-free KNN glass ceramics by incorporation method.

    Science.gov (United States)

    Yongsiri, Ploypailin; Eitssayeam, Sukum; Rujijanagul, Gobwut; Sirisoonthorn, Somnuk; Tunkasiri, Tawee; Pengpat, Kamonpan

    2012-02-16

    The incorporation method was employed to produce potassium sodium niobate [KNN] (K0.5Na0.5NbO3) glass ceramics from the KNN-SiO2 system. This incorporation method combines a simple mixed-oxide technique for producing KNN powder and a conventional melt-quenching technique to form the resulting glass. KNN was calcined at 800°C and subsequently mixed with SiO2 in the KNN:SiO2 ratio of 75:25 (mol%). The successfully produced optically transparent glass was then subjected to a heat treatment schedule at temperatures ranging from 525°C -575°C for crystallization. All glass ceramics of more than 40% transmittance crystallized into KNN nanocrystals that were rectangular in shape and dispersed well throughout the glass matrix. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties. The transparency of the glass samples decreased with increasing crystal size. The maximum room temperature dielectric constant (εr) was as high as 474 at 10 kHz with an acceptable low loss (tanδ) around 0.02 at 10 kHz.

  19. Crystallization Characteristic of Glass-ceramic Made from Electrolytic Manganese Residue

    Institute of Scientific and Technical Information of China (English)

    QIAN Jueshi; HOU Pengkun; WANG Zhi; QU Yanzhao

    2012-01-01

    Electrolytic manganese residue (EMR) is a waste from electrolytic manganese industry that contains high concentration of toxic substances.Since the EMR disposal in landfill sites has a serious environmental impact,new ways of EMR utilization are being sought.Considering the melting of EMR to a glass at high temperature was a relatively less energy-intensive process,EMR was first made into a base glass and then the ground base glass was heat-treated in a certain procedure to make a glass-ceramic and the crystallization process was studied.It was determined by X-ray diffraction (XRD) that the primary crystalline phases of the EMR glass-ceramic were diopside and anorthite,which formed the surface crystallization mechanism with a crystallization activation energy of 429 kJ/mol.Scanning electron microscopy (SEM)observation showed that a layer of small spherical particles with an average size of about 0.5 μm were covered on the glass matrix surface,and among them there were some big particles.The low melting temperature and crystallization activation energy make it promising to reuse EMR for glass-ceramic production.

  20. Ultraviolet to visible frequency-conversion properties of rare earths doped glass ceramics

    Institute of Scientific and Technical Information of China (English)

    Y. Hatefi; N. Shahtahmasebi; A. Moghimi; E. Attaran

    2011-01-01

    Nd3+, Eu3+ and Tb3+ ions doped transparent chlorophosphate glass ceramics were prepared and their fiequency-conversion properties were studied. X-ray diffraction (XRD) patterns evidenced the formation of expected halide nanocrystals. The absorption, excitation and emission spectra investigation indicated that some of rare earth (RE) ions were trapped in low phonon energy halide nanocrystals, and therefore an efficient down frequency-conversion was observed. The comparative spectroscopic studies of RE doped samples suggested that the glass ceramics systems are potentially applicable as efficient ultraviolet to visible frequency-conversion photonics materials.

  1. Effects of rare earth addition on sintering process and dielectric property of cordierite based glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇

    2004-01-01

    The effects of rare earth oxide on the sintering and dielectric property of cordierite-based glass-ceramics with non-stoichiometric composition prepared by quenching of molten droplets were investigated. The results show that the addition of rare earth oxide can lower the sintering temperature of cordierite glass-ceramics, improve the densification process and obviously reduce sintering activation energy. It is found that the densification of cordieritebased glass-ceramics is a liquid phase sintering process. The dielectric constant of the sintered compacts enhances with the increase of the density. When the sintering temperature is identical, the rare earth addition is found to have a noticeable effect on the dielectric loss of glass-ceramics. The properties of the glass-ceramics containing rare earth oxide appear to be correct for low firing temperature substrates.

  2. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect.

  3. 氢氟酸处理时间对可切削玻璃陶瓷粘接后断裂强度的影响%The influence of hydrofluoric acid etching time on fracture strength of cemented machinable glass ceramic

    Institute of Scientific and Technical Information of China (English)

    黄宏; 张鹏; 黎日照

    2015-01-01

    目的:研究氢氟酸凝胶处理时间对可切削玻璃陶瓷粘接后断裂强度的影响。方法收集人离体磨牙50颗,垂直牙长轴磨除牙合面釉质;将CEREC Blocs可切削玻璃陶瓷瓷块加工成片状试件后,随机分成5组,每组10片,用质量分数9.5%的氢氟酸凝胶进行处理,处理时间分别为30 s( B组)、60 s( C组)、120 s( D组)、240 s ( E组),A组为对照组,不用氢氟酸凝胶处理;用Variolink® N粘接系统将处理后的瓷片与离体牙进行粘接,万能试验机上测试瓷片的断裂载荷,对数据进行单因素方差分析和LSD检验。结果 A组、B组、C组、D组、E组试件断裂载荷值分别为(1774±153) N、(2190±180) N、(2336±173) N、(2097±174) N、(2075±202) N。5组试件断裂载荷均数间的差异有统计学意义(F=13.5,P<0.001)。 LSD检验结果显示A组断裂载荷值均小于其余各组,差异均有统计学意义(P<0.05);C组载荷值大于D、E组,差异有统计学意义(P<0.05)。结论氢氟酸处理可提高试件粘接后的断裂强度,处理时间超过120 s后断裂强度下降,但仍高于不作氢氟酸处理组。%Objective To evaluate the fracture strength of cemented machinable glass ceramic after being etched with hydrofluoric acid for different time periods and provide guides for clinical hydrofluoric etching. Methods 50 human mo-lars were collected, and occlusal enamel was removed. Sirona CEREC Blocs were processed into plate-shape, divided in-to 5 groups and etched with hydrofluoric acid for 30 s ( Group B) , 60 s ( Group C) , 120 s ( Group D) and 240 s ( Group E) respectively, while Group A remained untreated. Then all specimens were cemented onto the collected molars with Variolink® N cement system. Fracture loads were measured with a universal testing machine. The results were analyzed by one-way ANOVA and LSD test. Results Fracture loads of Group A to E were ( 1 774 ± 153) N, ( 2 190 ± 180) N, ( 2 336 ± 173) N, ( 2 097 ± 174) N, ( 2

  4. A highly sensitive upconverting nano-glass-ceramic-based optical thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn; Liu, Shen; Wan, Zhongyi; Chen, Yan, E-mail: chenyan@hdu.edu.cn

    2016-07-05

    Yb/Tm: YF{sub 3} nanoparticles embedded transparent bulk glass ceramic was successfully prepared to explore its possible application in optical temperature sensors. Specifically, owing to the competition of electron population in the thermally coupled Tm{sup 3+3}F{sub 2,3} and {sup 3}H{sub 4} excited states, two upconversion emission bands corresponding to Tm{sup 3+}: {sup 3}F{sub 2,3} → {sup 3}H{sub 6} transition and {sup 1}G{sub 4}→{sup 3}F{sub 4} one exhibited opposite temperature-dependent behaviors, which resulted in monotonous enhancement of the related fluorescence intensity ratio with increase of temperature. As a consequence, Tm{sup 3+} activators in the present YF{sub 3} glass ceramic had advantages of a high sensitivity of 1.84% per K, an avoidable spectral overlapping and a negligible thermal effect for accurate temperature detecting. - Highlights: • Yb/Tm: β-YF{sub 3} embedded transparent glass ceramic was fabricated. • Glass crystallization induced greatly enhancement of upconversion luminescence. • Different T-sensitive emission behaviors of two thermally coupled states were observed. • Tm{sup 3+} fluorescence intensity ratio intensified with increase of temperature. • The glass ceramic exhibited a high sensitivity of 1.84% K{sup −1} and a negligible thermal effect.

  5. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  6. Preparation and Characteristic of Glass-Ceramics with Super Low Thermal Expansion Coefficient

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The preparation technics of glass-ceramics with super low coefficient of thermal expansion containing β-quartz solid solution as a main crystal phase based on the glass in the system Li2O-Al2O3-SiO2 was introduced. The composition of base glass, technics of melting and heat treatment effecting on characteristic of glass-ceramics was described. Specimens were prepared by melting, anneal and controlled two steps heat treatment. Crystal phase, microstructure and elementary distributing were studied by using XRD, SEM and EDS respectively. Prepared specimens show excellent transparency and super low thermal expansion coefficient of 2×10-8 ·K-1, which reaches international advanced level.

  7. Preparation and luminescence properties of Ce3+/Dy3+-codoped fluorosilicate glass ceramics

    Institute of Scientific and Technical Information of China (English)

    CUI Shuo; ZHAO Daliang; Huang Jinglu; FU Hengyi; QIAN Jiangyun; LUO Qun; Qiao Xusheng; FAN Xianping; ZHANG Xianghua

    2012-01-01

    The Ce3+and Dy3+ co-doped fluorosilicate glass and glass ceramics containing SrF2 or CeF3 nanocrystals were prepared under reducing atmosphere.The precipitated nano-crystalline phase shifted from cubic SrF2 to hexagonal CeF3 gradually with the heat treatment temperature increasing from 620 to 680 ℃.The glass and glass ceramics emitted white light,deriving from a combination of the Ce3+ blue and the Dy3+ yellow light.The CIE coordinates could be tuned by adjusting the ratio of Ce3+/Dy3+ concentration.The luminescence could be enhanced significantly by annealing the samples at the temperatures lower than 640 ℃.

  8. Influence of acid-etching and ceramic primers on the repair of a glass ceramic.

    Science.gov (United States)

    Queiroz, J R C; Souza, Rodrigo O A; Nogueira Junior, L; Ozcan, M; Bottino, M A

    2012-01-01

    The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μTBS) between a feldspathic ceramic and two composites. Forty blocks (6.0 x 6.0 x 5.0 mm³) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm² ± 0.2 mm) were stored in distilled water at 37 degrees C for 30 days and submitted to thermocycling (7,000 cycles; 5 degrees C/55 degrees C ± 1 degree C). The μTBS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (a = 0.05). The surface treatments significantly affected the results (P 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.

  9. Microstructure, mechanical, and in vitro properties of mica glass-ceramics with varying fluorine content.

    Science.gov (United States)

    Molla, Atiar Rahaman; Basu, Bikramjit

    2009-04-01

    The design and development of glass ceramic materials provide us the unique opportunity to study the microstructure development with changes in either base glass composition or heat treatment conditions as well as to understand processing-microstructure-property (mechanical/biological) relationship. In the present work, it is demonstrated how various crystal morphology can develop when F(-) content in base glass (K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F) is varied in the range of 1.08-3.85% and when all are heat treated at varying temperatures of 1000-1120 degrees C. For some selected heat treatment temperature, the heat treatment time is also varied over 4-24 h. It was established that with increase in fluoride content in the glass composition, the crystal volume fraction of the glass-ceramic decreases. Using 1.08% fluoride, more than 80% crystal volume fraction could be achieved in the K(2)O-B(2)O(3)-Al(2)O(3)-SiO(2)-MgO-F system. It was observed that with lower fluoride content glass-ceramic, if heated at 1040 degrees C for 12 h, an oriented microstructure with 'envelop like' crystals can develop. For glass ceramics with higher fluorine content (2.83% or 3.85%), hexagonal-shaped crystals are formed. Importantly, high hardness of around 8 GPa has been measured in glass ceramics with maximum amount of crystals. The three-point flexural strength and elastic modulus of the glass-ceramic (heat treated at 1040 degrees C for 24 h) was 80 MPa and 69 GPa of the sample containing 3.85% fluorine, whereas, similar properties obtained for the sample containing 1.08% F(-) was 94 MPa and 57 GPa, respectively. Further, in vitro dissolution study of the all three glass-ceramic composition in artificial saliva (AS) revealed that leached fluoride ion concentration was 0.44 ppm, when the samples were immersed in AS for 8 weeks. This was much lower than the WHO recommended safety limits of 1.5 ppm. Among all the investigated glass-ceramic samples, the glass ceramic with 3.85% F

  10. Experimental Study of the Aging and Self-Healing of Glass/Ceramic Sealant Used in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Khaleel, Mohammad A.

    2010-01-01

    High operating temperatures of solid oxide fuel cells (SOFCs) require that sealant must function at a high temperature between 600oC and 900oC and in the oxidizing and reducing environments of fuel and air. This paper describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals in the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant.

  11. Optical detection of paramagnetic centres: From crystals to glass-ceramics

    Science.gov (United States)

    Rogulis, Uldis

    2016-07-01

    An unambiguous attribution of the absorption spectra to definite paramagnetic centres identified by the EPR techniques in the most cases is problematic. This problem may be solved by applying of a direct measurement techniques—the EPR detected via the magnetic circular dichroism, or briefly MCD-EPR. The present survey reports on the advantages and disadvantages applying the MCD-EPR techniques to simple and complex paramagnetic centres in crystals as well as glasses and glass-ceramics.

  12. Medical imaging scintillators from glass-ceramics using mixed rare-earth halides

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Ding, Yong; Elder, Eric; Nadler, Jason H.

    2016-10-01

    Recent years have seen greater interest in developing new luminescent materials to replace scintillator panels currently used in medical X-ray imaging systems. The primary areas targeted for improvement are cost and image resolution. Cost reduction is somewhat straightforward in that less expensive raw materials and processing methods will yield a less expensive product. The path to improving image resolution is more complex because it depends on several properties of the scintillator material including density, transparency, and composition, among others. The present study focused on improving image resolution using composite materials, known as glass-ceramics that contain nanoscale scintillating crystallites formed within a transparent host glass matrix. The small size of the particles and in-situ precipitation from the host glass are key to maintaining transparency of the composite scintillator, which ensures that a majority of the light produced from absorbed X-rays can actually be used to create an image of the patient. Because light output is the dominating property that determines the image resolution achievable with a given scintillator, it was used as the primary metric to evaluate performance of the glass-ceramics relative to current scintillators. Several glass compositions were formulated and then heat treated in a step known as "ceramization" to grow the scintillating nanocrystals, whose light output was measured in response to a 65 kV X-ray source. Performance was found to depend heavily on the thermal history of the glass and glass-ceramic, and so additional studies are required to more precisely determine optimal process temperatures. Of the compositions investigated, an alumino-borosilicate host glass containing 56mol% scintillating rare-earth halides (BaF2, GdF3, GdBr3, TbF3) produced the highest recorded light output at nearly 80% of the value recorded using a commercially-available GOS:Tb panel as a reference.

  13. Relationship between Leucite Content and Compressive Strength of K2O-Al2O3-SiO2 System Dental Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Biao; QIAN Fatang; DUAN Xinglong; WU Bolin

    2009-01-01

    Relationship between leucite content and compressive strength of K2O-Al2O3-SiO2 sys-tem dental glass ceramics were investigated. 10 groups of feedstock powder with different composi-tions were treated according to the same thermal treatment system of leucite micro-crystallization reported in some primary studies. The products of each group were analyzed by X-ray diffractometer,polaring microscope and scanning electronic microscope (SEM), and then the compressive strength was tested by a material testing machine. A direct proportion was found between leucite content and the compressive strength when leucite content was less than 50 vol%, and compressive strength de-creased with the increasing of leucite micro-crystals when leucite content was more than 50vol%, The leucite content has a notable influence on the compressive strength of K2O-Al2O3-SiO2 system dental glass ceramics.

  14. Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment.

    Science.gov (United States)

    Fang, Zaijin; Zheng, Shupei; Peng, Wencai; Zhang, Hang; Ma, Zhijun; Dong, Guoping; Zhou, Shifeng; Chen, Danping; Qiu, Jianrong

    2015-11-02

    Glass ceramic fibers containing Ni(2+) doped LiGa(5)O(8) nanocrystals were fabricated by a melt-in-tube method and successive heat treatment. Fiber precursors were prepared by drawing at high temperature where fiber core glass was melted while fiber clad glass was softened. After heat treatment, LiGa(5)O(8) nanocrystals were precipitated in the fiber core. Excited by 980 nm laser, efficient broadband near-infrared emission was observed in the glass ceramic fiber compared to that of precursor fiber. The melt-in-tube method can realize controllable crystallization and is suitable for fabrication of novel glass ceramic fibers. The Ni(2+)-doped glass ceramic fiber is promising for broadband optical amplification.

  15. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    Science.gov (United States)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  16. 氟闪石玻璃陶瓷的研究进展%Research Progress of Fluoramphibole Glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    章为夷

    2012-01-01

    氟闪石玻璃陶瓷具有高强度、高韧性、耐腐蚀、良好的生物活性和可加工性等优异的性能,现已发展成为一种重要的生物材料.本文综述了该材料自问世以来国内外在组成、制备工艺、析晶机理、性能和应用等方面的研究进展,展望了今后的研究重点以及其在工业生产领域的应用前景.%Fluoramphibole glass-ceramics have been developed into an important biomaterial due to its high strength and roughness, high chemical durability, good bioactivity and machinability. In this paper, composition, preparation process, crystallization mechanism, properties and application of this material at home and abroad were reviewed in detail since it was developed. The future research focus of fluoramphibole glass-ceramics and its application in the industrial areas were also prospected.

  17. The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics.

    Science.gov (United States)

    Hu, Nan; Yu, Hua; Zhang, Ming; Zhang, Pan; Wang, Yazhou; Zhao, Lijuan

    2011-01-28

    Rare-earth doped oxyfluoride glasses and nanocrystalline glass ceramics have been prepared and studied by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) aiming at investigating the structure and the symmetry of the nanocrystal as well as the site of the rare-earth ion. To solve the problem encountered by previous researchers due to glass host interference, we etched off glass matrix and released the fluoride nanocrystal, which is more convenient for EDS measurement. A tetragonal phase model with the chemical formula as PbREF(5) proved by quantitative EDS and XRD analyses has been proposed in this paper for the first time. Two specific crystalline phases with the same space group have been observed at 460 °C-500 °C and 520 °C-560 °C, respectively. Moreover, a super "pseudo-cubic" cell based on our tetragonal model may give a good explanation to the probable previous cubic-symmetry misunderstanding by researchers. Additionally, the thermodynamic mechanism of phase transition and the thermal stability related to the structure of nanocrystals in glass ceramics have been studied and supported by ab initio calculations and experimental methods. The structure and thermal stability of the nanocrystal and clear environment of the rare-earth ion reported here have far-reaching significance with respect to the optical investigations and further applications of rare-earth doped oxyfluoride glass ceramics.

  18. Down- and up-conversion emissions in Er-doped transparent fluorotellurite glass-ceramics

    Science.gov (United States)

    Miguel, A.; Morea, R.; Gonzalo, J.; Fernandez, J.; Balda, R.

    2015-03-01

    In this work, we report the near infrared and upconversion emissions of Er3+-doped transparent fluorotellurite glassceramics obtained by heat treatment of the precursor Er-doped TeO2-ZnO-ZnF2 glass. Structural analysis shows that ErF3 nanocrystals nucleated in the glass-ceramic sample are homogeneously distributed in the glass matrix with a typical size of 45±10 nm. The comparison of the fluorescence properties of Er3+-doped precursor glass and glass-ceramic confirms the successful incorporation of the rare-earth into the nanocrystals. An enhancement of the red upconversion emission due to 4F9/2→4I15/2 transition together with weak emission bands due to transitions from 2H9/2, 4F3/2,5/2, and 4F7/2 levels to the ground state are observed under excitation at 801 nm in the glass-ceramic sample. The temporal evolution of the red emission together with the excitation upconversion spectrum suggest that energy transfer processes are responsible for the enhancement of the red emission.

  19. Machining variability impacts on the strength of a 'chair-side' CAD-CAM ceramic.

    LENUS (Irish Health Repository)

    Addison, Owen

    2012-08-01

    To develop a novel methodology to generate specimens for bi-axial flexure strength (BFS) determination from a \\'chair-side\\' CAD-CAM feldspathic ceramic with surface defect integrals analogous to the clinical state. The hypotheses tested were: BFS and surface roughness (R(a)) are independent of machining variability introduced by the renewal or deterioration of form-grinding tools and that a post-machining annealing cycle would significantly modify BFS.

  20. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  1. Effects of B2O3 content and sintering temperature on crystallization and microstructure of CBS glass-ceramic coatings

    Science.gov (United States)

    Li, Pengyang; Wang, Shubin; Liu, Jianggao; Feng, Mengjie; Yang, Xinwang

    2015-11-01

    Borosilicate glass-ceramics precursors with varying compositional ratios in the CaO-SiO2-B2O3 (CBS) system were synthesized by sol-gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass-ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass-ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (Ec) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass-ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The Ec values of CBS glasses and glass-ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B2O3 content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  2. Effect of the bur grit size on the flexural strength of a glass-ceramic

    Directory of Open Access Journals (Sweden)

    P. P. Kist

    Full Text Available Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26, according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse. Correlation (r between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.

  3. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation.

  4. Transmission Properties of a New Glass Ceramic and Doped with Co2+ as Saturable Absorber for 1.54 μm Er Glass Short Pulse Laser

    Institute of Scientific and Technical Information of China (English)

    YU Chunlei; CHEN Li; FENG Suya; HE Dongbing; WANG Meng; HU Lili

    2012-01-01

    The preparation and characteristics of a new transparent glass ceramic were described.Crystal phase particles with nanometer size were successfully precipitated in glass matrix,which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlyZnzO).The presence of aluminum (Al) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength.And subsequently,the IR cut-off edge blue shifted from 5.5 μm in base glass to 3 μm in transparent glass ceramic sample.Furthermore,passive Q switched 1.54 μm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.

  5. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    DEFF Research Database (Denmark)

    He, Wen; Zhang, Xudong; Jin, Chao

    2017-01-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar...

  6. Fabrication and Characterization of Glass-Ceramics Doped with Rare Earth Oxide and Heavy Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    陈国华; 刘心宇; 成钧

    2004-01-01

    Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO2) and heavy metal oxide (M2O3) respectively were fabricated from glass powders. After sintering and crystallization heat treatment, various physical properties, including compact density and apparent porosity, were examined to evaluate the sintering behavior of cordierite-based glass-ceramics. Results show that the additives both heavy metal oxide and rare earth oxide promote the sintering and lower the phase temperature from μ- to α-cordierite as well as affect the dielectric properties of sintered glass-ceramics. The complete-densification temperature for samples is as low as 900 ℃. The materials have a low dielectric constant (≈5), a low thermal expansion coefficient ((2.80~3.52)×10-6 ℃-1) and a low dissipation factor (≤0.2%) and can be co-fired with high conductivity metals such as Au, Cu, Ag/Pd paste at low temperature (below 950 ℃), which makes it to be a promising material for low-temperature co-fired ceramic substrates.

  7. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Directory of Open Access Journals (Sweden)

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  8. Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia

    Science.gov (United States)

    Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David

    2014-05-01

    In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  9. Machining Characteristics of Ce-ZrO2/CePO4 Ceramics

    Institute of Scientific and Technical Information of China (English)

    Yu Aibing; Tan Yefa; Yang Xiaoqiang

    2004-01-01

    Two-phase mixtures of Ce-ZrO2 and monazite-type CePO4 were fabricated. Drilling and grinding experiments were carried out to investigate the machining characteristics of Ce-ZrO2/CePO4 ceramics. The machined surfaces of ceramics and wear surfaces of drill bits were observed with scanning electron microscope. Material removals and grinding forces were measured. The transgranular fracture of CePO4 grains, intergranular fracture between ZrO2 and CePO4 grains, and ductile deformation of ceramics were observed on Ce-ZrO2/CePO4 machined surfaces. With the increase of CePO4 proportion to composites, drilling material removal rates increases and specific normal grinding forces decreases.There existed rapid wear of conventional metal cutting tool is caused by abrasive wear. The experimental results indicate that the weak interfaces and properties of Ce-ZrO2/CePO4 ceramics have influences on material removal and machinability.

  10. Enhanced emissions in Tb{sup 3+}-doped oxyfluoride scintillating glass ceramics containing BaF{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lihui, E-mail: huanglihui@cjlu.edu.cn; Jia, Shijie; Li, Yang; Zhao, Shilong; Deng, Degang; Wang, Huanping; Jia, Guohua; Hua, Youjie; Xu, Shiqing, E-mail: shiqingxu@cjlu.edu.cn

    2015-07-11

    Transparent Tb{sup 3+}-doped glass ceramics containing BaF{sub 2} nanocrystals were prepared by melt-quenching method with subsequent heat treatment. The XRD and EDS results showed the precipitated crystalline phase in the glass matrix was BaF{sub 2}. Under 376 nm light, Tb{sup 3+} doped oxyfluoride glass ceramics containing BaF{sub 2} nanocrystals showed more intense green emission than the as-made glass, and the emission intensity increased with increasing heat treatment temperature and time. The lifetimes of 541 nm emission of Tb{sup 3+} doped oxyfluoride glass ceramics were longer than that of as-made glass, which are in the range from 3.00 ms to 3.55 ms. Under X-ray excitation, the green emission was enhanced in the glass ceramics compared to the as-made glass. The results indicate Tb{sup 3+} doped oxyfluoride glass ceramics containing BaF{sub 2} nanocrystals could be a material candidate for X-ray glass scintillator for slow event detection.

  11. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  12. Magnetic glass ceramics for sustained 5-fluorouracil delivery: Characterization and evaluation of drug release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hameed, S.A.M., E-mail: Salwa_NRC@hotmail.com [Glass Research Department, National Research Center, Dokki, ElBehoos St., Cairo 12311 (Egypt); El-Kady, A.M. [Biomaterial Department, National Research Center, Dokki, ElBehoos St., Cairo 12311 (Egypt); Marzouk, M.A. [Glass Research Department, National Research Center, Dokki, ElBehoos St., Cairo 12311 (Egypt)

    2014-11-01

    In the present study, magnetic glass ceramics in the system Fe{sub 2}O{sub 3} ∙ TiO{sub 2} ∙ P{sub 2}O{sub 5} ∙ SiO{sub 2} ∙ MO (M = Mg, Ca, Mn, Cu, Zn or Ce) are prepared. The effect of adding different cations on the thermal behavior, developed phases, microstructure and magnetic properties is studied using differental thermal analysis (DTA), X-ray diffraction analysis (XRD), transmission electron microscope (TEM), FT-infrared transmission (FT-IR) and vibrating sample magnetometer (VSM) respectively. The magnetic glass ceramics are tested as delivery systems for 5-fluorouracil. Modeling and analysis of release kinetics are addressed. The application of Higuchi square root of time model and the first order release model indicated that, 5-FU is released by diffusion controlled mechanisms, and that its released rate depends greatly on the concentration of loaded drug during the loading stage. The obtained results suggested that, the prepared magnetic glass ceramics can be used for cancer treatment by hyperthermia and/or by localized delivery of therapeutic doses of 5-fluorouracil. - Highlights: • Preparation of magnetic glass ceramics in the system Fe{sub 2}O{sub 3} ∙ TiO{sub 2} ∙ P{sub 2}O{sub 5} ∙ SiO{sub 2} ∙ MO • The magnetic glass ceramics were tested as delivery systems for 5-fluorouracil. • Drug release profiles follow Higuchi square root of time and first order model.

  13. Spectroscopic properties of transparent Er-doped oxyfluoride glass-ceramics with GdF₃.

    Science.gov (United States)

    Środa, Marcin; Szlósarczyk, Krzysztof; Różański, Marek; Sitarz, Maciej; Jeleń, Piotr

    2015-01-05

    Optically active glass-ceramics (GC) with the low-phonon phases of fluorides, doped with Er(3+) was studied. Glass based on SiO₂-Al₂O₃-Na₂F₂-Na₂O-GdF₃-BaO system was obtained. Dopant were introduced to the glass in an amount of 0.01 mol Er₂O₃ per 1 mol of glass. DTA/DSC study shows multi-stage crystallization. XRD identification of obtained phases did not confirm the presence of pure GdF₃ phase. Instead of that ceramization process led to formation of NaGdF₄ and BaGdF₅. The structural changes were studied using FT-IR spectroscopic method. The study of luminescence of the samples confirmed that optical properties of the obtained GC depend on crystallizing phases during ceramization. Time resolved spectroscopy of Er-doped glass showed the 3 and 8 times increase of lifetime of emission from (4)S₃/₂ and (4)F₉/₂ states, respectively. It confirms the erbium ions have ability to locate in the low phonon gadolinium-based crystallites. The results give possibility to obtain a new material for optoelectronic application.

  14. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    Science.gov (United States)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  15. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    Science.gov (United States)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  16. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers

    Science.gov (United States)

    Augustyn, Elżbieta; Żelechower, Michał; Stróż, Danuta; Chrapoński, Jacek

    2012-04-01

    Oxyfluoride transparent glass-ceramics combine some features of glasses (easier shaping or lower than single crystals cost of fabrication) and some advantages of rare-earth doped single crystals (narrow absorption/emission lines and longer lifetimes of luminescent levels). Since the material seems to be promising candidate for efficient fiber amplifiers, the manufacturing as well as structural and optical examination of the oxyfluoride glass-ceramic fibers doped with rare-earth ions seems to be a serious challenge. In the first stage oxyfluoride glasses of the following compositions 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-11PbF2-3ErF3 and 48SiO2-11Al2O3-7Na2CO3-10CaO-10PbO-10PbF2-3YbF3-1ErF3 (in molar%) were fabricated from high purity commercial chemicals (Sigma-Aldrich). The fabricated glass preforms were drawn into glass fibers using the mini-tower. Finally, the transparent Er3+ doped and Er3+/Yb3+ co-doped oxyfluoride glass-ceramic fibers were obtained by controlled heat treatment of glass fibers. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. X-ray diffraction examination (XRD) at each stage of the glass-ceramic fibers fabrication confirmed the undesirable crystallization of preforms and glass fibers has been avoided. The fibers shown their mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. The crystal structure of the grown nano-crystals has been determined by XRD and confirmed by electron diffraction (SAED). Results obtained by both techniques seem to be compatible: Er3FO10Si3 (monoclinic; ICSD 92512), Pb5Al3F19 (triclinic; ICSD 91325) and Er4F2O11Si3 (triclinic; ICSD 51510) against to initially expected PbF2 crystals.

  17. Interaction of HEPES buffer with glass-ceramic scaffold: Can HEPES replace TRIS in SBF?

    Science.gov (United States)

    Rohanová, Dana; Horkavcová, Diana; Paidere, Laine; Boccaccini, Aldo Roberto; Bozděchová, Pavlína; Bezdička, Petr

    2016-11-27

    An international standard (ISO: 23317:2014) exists for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF). This standard uses TRIS buffer to maintain neutral pH in SBF, but in our previous paper, we showed that the interaction of a tested glass-ceramic material with TRIS can produce false-positive results. In this study, we evaluated whether the HEPES buffer, which also belongs to the group of Good's buffers, would be more suitable for SBF. We compared its suitability in two media: SBF with HEPES and demineralized water with HEPES. The tested scaffold (45S5 bioactive glass-based) was exposed to the media under a static-dynamic arrangement (solutions were replaced on a daily basis) for 15 days. Leachate samples were collected daily for the analysis of Ca(2+) ions and Si (AAS), (PO4 )(3-) ions (UV-VIS), and to measure pH. The glass-ceramic scaffold was analyzed by SEM/EDS, XRD, and WD-XRF before and after 0.3, 1, 3, 7, 11, and 15 days of exposure. Our results confirmed the rapid selective dissolution of the glass-ceramic crystalline phase (Combeite) containing Ca(2+) ions due to the presence of HEPES, hydroxyapatite supersaturation being reached within 24 h in both solutions. These new results suggest that, like TRIS, HEPES buffer is not suitable for the in vitro testing of highly reactive inorganic biomaterials (glass, glass-ceramics). The ISO standard for such tests requires revision, but HEPES is not a viable alternative to TRIS buffer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  18. Improving shear bond strength between feldspathic porcelain and zirconia substructure with lithium disilicate glass-ceramic liner.

    Science.gov (United States)

    Wattanasirmkit, Kamolporn; Srimaneepong, Viritpon; Kanchanatawewat, Kanchana; Monmaturapoj, Naruporn; Thunyakitpisal, Pasutha; Jinawath, Supatra

    2015-01-01

    This study investigated the shear bond strength (SBS) between veneering porcelain and zirconia substructure using lithium disilicate glass-ceramic as a liner. The mineral phases and microstructures of lithium disilicate glass-ceramic at temperature range of 800-900°C were preliminarily investigated. SBSs of porcelain-veneered zirconia specimens with and without lithium disilicate glassceramic liner fired at the same temperature were determined. Results showed that SBSs of veneering porcelain and zirconia with lithium disilicate glass-ceramic liner was notably increased (pporcelain and zirconia.

  19. Neodymium Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In the backend of nuclear fuel cycle, plutonium-containing wastes are inevitable to be produced. Glass as the matrix for HLLW is not appropriate for immobilize the plutonium waste due the poor solubility of

  20. Evaluation of High Permittivity Glass Ceramics for Millimeter Wave Applications.

    Science.gov (United States)

    2014-09-26

    patterns were run from room temperature to 1200QCwith a heating rate of 100C/minute. Each of the glasses exhib.ited an endothermic peak...corresponding to a glass transition temperature of 760*C, and a large exothermic peak at 900°C, presumably corresponding to the crystallization of SrTi0 3...the SrTiO 3 , although definitive dielectric loss data supporting these proposed mechanisms were not presented. In this paper, low temperature

  1. A new Energy Saving method of manufacturing ceramic products from waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Haun Labs

    2002-07-05

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an

  2. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  3. Structural and dielectric characteristics of strontium tetraborate-bismuth vanadate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Varma, K.B.R.; Shankar, M.V.; Subbanna, G.N. [Indian Inst. of Science (India). Materials Research Centre

    1996-05-01

    Glasses of strontium tetraborate, containing up to 50 mole-percent bismuth vanadate [(1{minus}x)SBO-xBiV (x = 0 to 0.50)], were prepared by splat quenching method. The glassy nature of these samples was confirmed by differential thermal analysis (DTA). The glass transition temperature (T{sub g}) and the crystallization temperature (T{sub cr}) of the glasses decrease with increase in bismuth vanadate, Bi{sub 2}VO{sub 5.5} (BiV) content. High resolution transmission electron microscopic studies reveal the presence of spherical particles of amorphous BiV (less than 10 nm in size) dispersed in the glassy matrix of strontium tetraborate, SrB{sub 4}O{sub 7} (SBO). The glasses of the compositions x = 0.25 to 0.50, on annealing at 500 C (T{sub g}) gave rise to crystalline BiV phase. Physical properties such as density, dielectric and optical transmission of these SBO:BiV glass-ceramics have been studied. The dielectric constant ({epsilon}{sub r}) of these glass-ceramics increases with increasing BiV content. The measured {epsilon}{sub r} values are found to be in good agreement with those predicted by the logarithmic mixture rule.

  4. Covalent attachment of the plant natural product naringenin to small glass and ceramic beads

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2005-10-01

    Full Text Available Abstract Background Natural products have numerous medicinal applications and play important roles in the biology of the organisms that accumulate them. Few methods are currently available for identifying proteins that bind to small molecules, therefore the discovery of cellular targets for natural products with pharmacological activity continues to pose a significant challenge in drug validation. Similarly, the identification of enzymes that participate in the biosynthesis or modification of natural products remains a formidable bottleneck for metabolic engineering. Flavonoids are one large group of natural products with a diverse number of functions in plants and in human health. The coupling of flavonoids to small ceramic and glass beads provides a first step in the development of high-throughput, solid-support base approaches to screen complex libraries to identify proteins that bind natural products. Results The utilization of small glass and ceramic beads as solid supports for the coupling of small molecules was explored. Initial characterization of the beads indicated uniform and high capacity loading of amino groups. Once the beads were deemed adequate for the linking of small molecules by the coupling of NHS-fluorescein followed by microscopy, chemical hydrolysis and fluorometry, the flavonoid naringenin was modified with 1,4-dibromobutane, followed by the attachment of aminopropyltriethoxysilane. After NMR structural confirmation, the resulting 7-(4-(3-(triethoxysilylpropylaminobutoxy naringenin was attached to the ceramic beads. Conclusion Our results demonstrate that ceramic and glass beads provide convenient solid supports for the efficient and facile coupling of small molecules. We succeeded in generating naringenin-coupled ceramic and glass beads. We also developed a convenient series of steps that can be applied for the solid-support coupling of other related flavonoids. The availability of solid-support coupled naringenin opens

  5. A New Technology of Microcrystallizing Leucite to Reinforce Dental Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Biao; PENG Bin; DUAN Xing-long; QIAN Fa-tang; WU Bo-lin

    2004-01-01

    The key technology and the main mechanism of microcrystallizing leucite to reirforce dentalglass ceramics were investigated. The feedstock powders were selected, mixed according to the ratios of the theoreti-cal composition of leucite, ball - milled, melted at 1600℃ and then cooled to room temperature quickly. Thecooled clinkers were ball - milled again to 4 μm. After cold - isostatic pressure molded and air sintered at 1 500℃for 1 h, the dental glass ceramics were fabricated. They have following characteristics: excellent mechanical prop-erties ( mean compressive strength is 206.6 MPa ), low sintering temperature and good reoccurrence to keep steadyquality.

  6. Ni2+-doped new silicate glass-ceramics for broadband near infrared luminescence

    Science.gov (United States)

    Zheng, Jian; Cheng, Yin

    2016-12-01

    The new composite transparent spinel silicate glass-ceramics containing Ni2+-doped ZnGa2O4 and solid solution MgxZn1-xGa2O4 nanocrystals were fabricated by in situ controlled crystallization method. After heat treatment, the crystal phase content of ZnGa2O4 increase with increasing heat treatment temperature, and the Mg2+ ions could enter the crystal lattice of ZnGa2O4 to replace the Zn2+ ions and form a new solid solution MgxZn1-xGa2O4. The coordination environment of Ni2+ was changed from tetrahedral in glasses to octahedral sites in glass ceramics. The super-broadband infrared luminescence with full width at half maximum (FWHM) of about 400 nm overing 1.1-1.7 μm wavelength region and fluorescent lifetime of about 480 μs were observed from the glass ceramics containing MgxZn1-xGa2O4 nanocrystals. It is probably due to the variety of solid solution structure making Ni2+ ions enter two different octahedral sites. At the same time, the impact of heat treatment temperature and the concentration of NiO on peak position and intensity were also discussed. The results demonstrate that the method presented may be an effective way to fabricate super-broadband optical amplifiers and tunable lasers.

  7. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    Science.gov (United States)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  8. Series multilayer internal electrodes for high energy density glass-ceramic capacitors

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; DU Jun; TANG Qun; MAO ChangHui

    2009-01-01

    The glass-ceramic dielectrics and internal electrode structures are investigated for improving the general energy storage density of capacitors.Calculation indicates that glass-ceramics acquired from glass matrix annealing at 850℃ for 3 hours can be approximately up to 17 J/cm3 in energy storage density.They are appropriately chosen as the dielectrics for preparing high energy storage density capacitors (HESDCs).A series multilayer structure of internal electrode is developed for the HESDCs,in which each layer is a combination of gold film and silver paste.This electrode structure promises the capacitor immune from the residual porosity defects inevitably brought by electrode paste sintering process,and specifically improves the electrical breakdown strength of the capacitor.Based on this new electrode structure,the energy storage densities of capacitors are increased by more than one order of magnitude compared with those traditional ones with only single layer of internal electrode.Thus,HESDCs based on the optimized glass-ceramic dielectrics can potentially achieve 7.5 J/cm3 in energy storage density,even taking into consideration the enlargement of total capacitor volumes while encapsulating practicable capacitors from dielectrics media.

  9. Crystallization Kinetics of Nanophase Glass-Ceramics as Magnetic Disk Substrate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Glass-ceramics containingβ-quartz as a main crystal phase based on the system of SiO2-Al2O3-Li2O-K2O-MgO-ZnO were investigated for the application to magnetic storage substrate for higher storage capacity.Parent glasses were prepared, then nucleated and crystallized at certain temperatures for 3~4 h. The crystallization kinetics of glass-ceramics was also studied. The grain size was estimated by Scherrer formula and image treatment of transmission electron microscopy (TEM). The results showed that the Avrami exponent was determined to be 3.88, the activation energy 189.3±7 kJ/mol and the grain size 30~60 nm. A detailed microstructure of the glass-ceramics, including grain distribution and the morphology of nano-crystalline was characterized by TEM, X-ray diffraction (XRD), differential scanning calorimeter (DSC), differential thermal analysis (DTA). The relationship between microstructure and mechanical properties was also discussed.

  10. Pilot study for a quantification of lead exposure in the ceramics and glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, K.H.; Weltle, D.; Schiele, R.; Weissflog, S.; Mayer, P.; Valentin, H.

    1981-11-01

    The lead level in the blood of 2706 workers was measured by atomic absorption spectrometry. delta-ALA concentrations in 400 urine samples were measured by photometry. The statistical analysis shows that lead concentrations are higher in the blood of glass workers (median: 51 ..mu..g/dl) than in workers of the ceramics industry (median: 44 ..mu..g/dl). In the ceramics industry, lead exposure is highest during glazing preparation and shaping. In the glass industry, foundrymen, furnace men, glass makers and mixers are most exposed. Of the glass workers, 21% exceeded the maximum permissible value of 70 ..mu..g/dl as compared with 14% of the ceramics workers. The difference was less pronounced in female workers. The maximum permissible concentration was exceeded in 18% of all cases. In the two years of observation, blood lead concentrations of 216 persons with at least three control examination was reduced by 20%. 53 other workers with three control examinations were transferred to other working places because of their high blood lead levels. Blood lead concentrations were reduced by 17% per month (median: 5 ..mu..g/dl per month). Reasons for this very slow reduction may be found in further lead exposure at the new place of work and in redistribution of lead from the soft tissues. The study shows that working conditions have been improved in the period of observation. Further reduction of lead levels requires information on the dangers of lead and technical measures to reduce lead exposure at the place of work.

  11. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues.

    Science.gov (United States)

    Roether, J A; Daniel, D J; Rani, D Amutha; Deegan, D E; Cheeseman, C R; Boccaccini, A R

    2010-01-15

    Air pollution control (APC) residues, obtained from a major UK energy from waste (EfW) plant, processing municipal solid waste, have been blended with silica and alumina and melted using DC plasma arc technology. The glass produced was crushed, milled, uni-axially pressed and sintered at temperatures between 750 and 1150 degrees C, and the glass-ceramics formed were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties assessed included Vickers's hardness, flexural strength, Young's modulus and thermal shock resistance. The optimum sintering temperature was found to be 950 degrees C. This produced a glass-ceramic with high density (approximately 2.58 g/cm(3)), minimum water absorption (approximately 2%) and relatively high mechanical strength (approximately 81+/-4 MPa). Thermal shock testing showed that 950 degrees C sintered samples could withstand a 700 degrees C quench in water without micro-cracking. The research demonstrates that glass-ceramics can be readily formed from DC plasma treated APC residues and that these have comparable properties to marble and porcelain. This novel approach represents a technically and commercially viable treatment option for APC residues that allow the beneficial reuse of this problematic waste.

  12. Optimization of glass-ceramic crystallization based on DTA exotherm analysis.

    Science.gov (United States)

    Parsell, D E; Anusavice, K J

    1994-05-01

    Crystallization of glass-ceramics is traditionally achieved through a two-stage heat treatment consisting of an isothermal nucleation stage followed by an isothermal growth stage. A method for determining a more efficient heat treatment schedule for a glass-ceramic material using a thermal analysis technique is proposed. The goal of an optimized heat treatment schedule is the production of a glass-ceramic with a desired microstructure (number of crystals per volume) in the shortest amount of time. The proposed method involves differential thermal analysis (DTA) to measure glass crystallization exotherm characteristics which are correlated with the population density of growing crystals, and therefore, to the effectiveness of any prior heat treatment. Traditional thermal processing parameters were investigated and optimized. A method for generating a more efficient heat treatment schedule composed of a series of increasing heating rates was also demonstrated. The thermal analysis method measured a significant effect upon the number density of crystals generated as a function of several experimental variables. Micrographs from samples crystallized with a more time-efficient heat treatment schedule were shown to have equivalent crystal number densities compared to those crystallized with a more time consuming, traditional schedule. This work demonstrated that a rapid thermal analysis method was capable of measuring the relative effectiveness of heat treatment schedules to generate crystalline populations. A novel heat treatment schedule was developed based on progressive adjustment of processing heating rates to generate the maximum crystal population in the shortest amount of time.

  13. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd_2O_3 addition

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred ...

  14. Characterization of the bioactive and mechanical behavior of dental ceramic/sol-gel derived bioactive glass mixtures.

    Science.gov (United States)

    Abbasi, Zahra; Bahrololoum, Mohammad E; Bagheri, Rafat; Shariat, Mohammad H

    2016-02-01

    Dental ceramics can be modified by bioactive glasses in order to develop apatite layer on their surface. One of the benefits of such modification is to prolong the lifetime of the fixed dental prosthesis by preventing the formation of secondary caries. Dental ceramic/sol-gel derived bioactive glass mixture is one of the options for this modification. In the current study, mixtures of dental ceramic/bioactive glass with different compositions were successfully produced. To evaluate their bioactive behavior, prepared samples were immersed in a simulated body fluid at various time intervals. The prepared and soaked specimens were characterized using Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. Since bioactive glasses have deleterious effects on the mechanical properties of dental ceramics, 3-point bending tests were used to evaluate the flexural strength, flexural strain, tangent modulus of elasticity and Weibull modulus of the specimens in order to find the optimal relationship between mechanical and bioactive properties.

  15. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  16. Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle dogs.

    Science.gov (United States)

    Moya, José S; Martínez, Arturo; López-Píriz, Roberto; Guitián, Francisco; Díaz, Luis A; Esteban-Tejeda, Leticia; Cabal, Belén; Sket, Federico; Fernández-García, Elisa; Tomsia, Antoni P; Torrecillas, Ramón

    2016-08-12

    Bacterial and fungal infections remain a major clinical challenge. Implant infections very often require complicated revision procedures that are troublesome to patients and costly to the healthcare system. Innovative approaches to tackle infections are urgently needed. We investigated the histological response of novel free P2O5 glass-ceramic rods implanted in the jaws of beagle dogs. Due to the particular percolated morphology of this glass-ceramic, the dissolution of the rods in the animal body environment and the immature bone formation during the fourth months of implantation maintained the integrity of the glass-ceramic rod. No clinical signs of inflammation took place in any of the beagle dogs during the four months of implantation. This new glass-ceramic biomaterial with inherent bactericidal and fungicidal properties can be considered as an appealing candidate for bone tissue engineering.

  17. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  18. Open Source Powder based Rapid Prototyping Machine for Ceramics

    NARCIS (Netherlands)

    Budding, A.; Vaneker, T.H.J.; Winnubst, A.J.A.

    2013-01-01

    3DP (Three Dimensional Printing) technology is one of the SFF (Solid Freeform Fabrication) technologies which have recently come into the spotlight due to its adaptability to various applications. However, commercial 3DP machines are limited as to the use of building material, without voiding the wa

  19. Influence of colorants on crystallization and mechanical properties of lithia-based glass-ceramics.

    Science.gov (United States)

    Anusavice, K J; Zhang, N Z; Moorhead, J E

    1994-03-01

    The objective of the present study was to test the hypothesis that colorants such as AgNO3 and FeCl3 act as conucleating agents with P2O5 in the Li2O-Al2O3-CaO-SiO2 system and that the addition of either colorant and P2O5 produces a greater effect on crystallization and selected mechanical properties than the use of P2O5 alone. Microstructural effects were observed by SEM and optical microscopy. Mechanical properties were determined to monitor the effects of structural changes after crystallization. These include controlled-flaw flexure strength, fracture toughness (KIC), and Vickers hardness (VHN). Based on a glass composition of 27.84 mol% Li2O, 2.45 mol% Al2O3, 5.88 mol% CaO, and 63.84 mol% SiO2 (LACS), the mechanical properties of LACS glass-ceramics were influenced by P2O5, the colorant type, and the colorant concentration. The mean strength of the glass-ceramic disks without P2O5 increased with AgNO3 concentration to a peak value of 188 MPa at a concentration of 0.78 mmol%. The maximum value of controlled-flaw flexure strength increased from 120 MPa for one of the FeCl3 groups to 188 MPa for one of the AgNO3 groups. The maximum fracture toughness of glass-ceramic disks without P2O5 (2.45 MPa.m1/2) was associated with a AgNO3 concentration of 0.58 mmol%. This value was significantly greater (p < 0.05) than that of the corresponding group (1.90 MPa.m1/2) which also contained P2O5. There was no significant change in KIC of glass-ceramic specimens containing P2O5 as the AgNO3 concentration increased. The increase in controlled-flaw flexure strength and fracture toughness of specimen groups containing 0.58 to 0.78 mmol% AgNO3 support its use as a colorant and as a nucleating agent in LACS glass-ceramics. The development of tougher, higher strength glass-ceramics can be controlled by the use of colorants that are also effective as nucleating agents. Although certain colorants are believed to act synergistically when used in combination with known nucleating agents

  20. Effect of the Cool System on Internal Stress of CaO-Al2O3-SiO2 Glass-ceramic System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The samples were attained through altering the cooling system of producing glass-ceramics.The X-ray diffraction was used to test the stress value of different samples. The relation of the cooling system and internal stress were also investigated. The experimental results show that the stress of glass-ceramic had a close relation with starting cool temperature. Above 800 C, glass-ceramic could be accelerated cooling and did not bring stress. Temperature between 500 C and 800℃ was an important temperature range of the formation of stress in glass-ceramic, in which the glass-ceramic stress would change obviously. Cool system was the key on how to control and eliminate internal stress in order to reduce the destroy of materials crated by internal stress. In addition, glass particles size increase, glass-ceramic stress increase in consequent.

  1. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Science.gov (United States)

    Lim, Myung-Jin

    2017-01-01

    Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm) of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  2. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  3. Mesoporous Nitrogen-Doped Carbon-Glass Ceramic Cathodes for Solid-State Lithium-Oxygen Batteries (Postprint)

    Science.gov (United States)

    2012-01-01

    A. C.; Swanson, S .; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193−2203. (3) In Handbook of Batteries and Fuel Cells, 2nd ed.; Linden , D., Ed...AFRL-RZ-WP-TP-2012-0057 MESOPOROUS NITROGEN-DOPED CARBON-GLASS CERAMIC CATHODES FOR SOLID-STATE LITHIUM−OXYGEN BATTERIES (Postprint...November 2011 4. TITLE AND SUBTITLE MESOPOROUS NITROGEN-DOPED CARBON-GLASS CERAMIC CATHODES FOR SOLID-STATE LITHIUM−OXYGEN BATTERIES (Postprint

  4. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system.

  5. Ferromagnetic glass ceramics and glass fibers based on the composition of SiO2-CaO-Al2O3-B2O3-Fe2O3 glass system

    Science.gov (United States)

    Liu, Jianan; Zhu, Chaofeng; Zhang, Meimei; Zhang, Yanfei; Yang, Xuena

    2017-03-01

    Ferromagnetic glass-ceramics and glass fibers were obtained by the melt-method from the glass system SiO2-CaO-Al2O3-B2O3-Fe2O3 without performing any nucleation and crystallization heat treatments. Glass-ceramics and glass fibers were characterized by x-ray diffraction, scanning and transmission electron microscopy, magnetic measurements, and thermal expansion instrument. The influence of alumina content on the spontaneous crystallization of magnetite, magnetism properties and thermal expansion performances in glass were investigated. We examined the crystallization behavior of the glasses and found that the spontaneous crystallization capacity of magnetite and magnetism properties in base glass increases with increasing the content of alumina. The ferromagnetic glass fibers containing magnetite nano-crystals are also obtained.

  6. Conversion of sandy tailing from banded iron formation exploitation into glass-ceramic materials

    Directory of Open Access Journals (Sweden)

    Valéria Alves Rodrigues de Melo

    2012-02-01

    Full Text Available Glass-ceramic materials made of 40.0 wt. (% of sandy tailing from banded iron formation exploitation and 60 wt. (% of slag from steelwork were analyzed. Vitrification was obtained by heating the batch samples up to 1400 °C for 1 hour and quenching the melt on a stainless steel plate. Devitrification was obtained by heat-treating the as-quenched glass samples in isothermal conditions at 750 and 1000 °C for 2 hours. FTIR spectroscopy analysis on the devitrified samples indicates a peak shift towards higher wave number with respect to the as-quenched glass because of the crystallization. XRD analysis revealed the presence of crystalline diopside CaMgSi2O6 as the major phase in the glass samples isothermally heat-treated at 1000 °C. Results also indicated that the devitrification at 1000 °C and an incipient devitrification at 750 °C resulted into harder glass-ceramic materials.

  7. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pcomposite resin resulted in less wear depth to human enamel compared with glass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Spectroscopic study of local thermal effect in transparent glass ceramics containing nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the temperature-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.

  9. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings

    Science.gov (United States)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-03-01

    A novel glass-ceramic tile consisting of one glass-ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73-99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass-ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass-ceramic layer at frequency of 2-18 GHz reached peak reflection loss (RL) of -17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass-ceramic layer can meet the requirements of different level of microwave absorption.

  10. Study on the surface bioactivity of novel magnetic A W glass ceramic in vitro

    Science.gov (United States)

    Li, Guangda; Zhou, Dali; Xue, Ming; Yang, Weizhong; Long, Qin; Cao, Bin; Feng, Dange

    2008-11-01

    Novel magnetic A-W glass ceramic (M GC) in the system MgO-CaO-SiO 2-P 2O 5-CaF 2-MnO-ZnO-Fe 2O 3 was synthesized by doping Mn-Zn ferrite to apatite-wollastonite glass ceramic. The phase composition was investigated by XRD. The magnetic property was measured by VSM. The in vitro bioactivity was tested by immersion in simulated body fluid. The result shows apatite, wollastonite, fluorapatite and Zn 0.75Mn 0.75Fe 1.5O 4 are the main phases of M GC. Under a magnetic field of 10,000 Oe, the saturation magnetization and coercive force of the material are 6 emu g - and 180 Oe, respectively. After soaking in SBF for 14 days, the surface of M GC is coated by a hydroxycarbonate apatite layer.

  11. Creep properties of solid oxide fuel cell glass-ceramic seal G18

    Energy Technology Data Exchange (ETDEWEB)

    Milhans, Jacqueline; Garmestani, H. [Georgia Institute of Technology, School of Material Science and Engineering (United States); Khaleel, Mohammed; Sun, Xin [Pacific Northwest National Lab (United States); Tehrani, Mehran; Al-Haik, Marwan [University of New Mexico, Department of Mechanical Engineering (United States)

    2010-06-01

    This study utilizes nanoindentation to investigate and measure creep properties of a barium calcium alumino-silicate glass-ceramic used for solid oxide fuel cell seals (SOFCs). Samples of the glass-ceramic seal material were aged for 5, 50, and 100 h to obtain different degrees of crystallinity. Instrumented nanoindentation was performed on the samples with different aging times at different temperatures to investigate the strain rate sensitivity during inelastic deformation. The temperature dependent behavior is important since SOFCs operate at high temperatures (800-1000 C). Results show that the samples with higher crystallinity were more resistant to creep, and the creep compliance tended to decrease with increasing temperature, especially with further aged samples. (author)

  12. Broadband Near-Infrared Emission from Transparent Ni2+-Doped Sodium Aluminosilicate Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Feng; FENG Gao-Feng; XU Shi-Qing; WU Bo-Tao; QIU Jian-Rong

    2006-01-01

    @@ Broadband near-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-ceramics is observed.The broad emission is centred at 1290nm and covers the whole telecommunication wavelength region (1100-1700nm) with full width at half maximum of about 340nm. The observed infrared emission could be attributed to the 3T2(F) → 3A2(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 × 10-24 cm2s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

  13. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2017-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  14. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  15. Picosecond Laser Machining of Deep Holes in Silicon Infi ltrated Silicon Carbide Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing; WANG Chunhui; LIU Yongsheng; ZHANG Litong; CHENG Guanghua

    2015-01-01

    Silicon infi ltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are diffi cult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.

  16. Optical dephasing of triply ionized rare earths in transparent glass ceramics containing LaF3 nanocrystals.

    Science.gov (United States)

    Zheng, Hairong; Zhang, Xiangyu; Gao, Dangli; Meltzer, Richard S

    2008-03-01

    Optical dephasing of Pr3+ and Tm3+ ions doped in transparent oxyfluoride glass ceramics was studied with the two-pulse photon echo technique. It was found that the dephasing time of rare earth ions is dramatically less in nanocrystals embedded in a glass matrix than in bulk crystals. A quasi-linear temperature dependence obtained at low temperatures proved that the long-range interaction of the ions inside the nanocrystals with the two level systems of the glass matrix dominates the optical dephasing. The local thermal effect in glass ceramics containing nanocrystals elevates the local temperature, which results in the reduction of optical dephasing time. For Tm(3+)-doped glass ceramics, the elevation of local temperature induced by the irradiation of excitation laser even quenched the photon echo signals in the experimental study.

  17. RESEARCH AND PRODUCTION OF GLASS-CERAMIC DECORATED MATERIAL CONTAINING CHROMIUM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the influences of catch-color agent content on glass-ceramic decorated material in the system of CaO-Al2O3-SiO2 were studied. By ladder temperature furnace and sintering shrinkage curve measurement, the influence of catch-color agent content on sintering and crystallization temperature was discussed. By means of XRD, three point bending strength and density measurement, the properties of the decorated material were investigated.

  18. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Science.gov (United States)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  19. Sodium sulfate corrosion of silicon carbide fiber-reinforced lithium aluminosilicate glass-ceramic matrix composites

    OpenAIRE

    1993-01-01

    Approved for public release; distribution is unlimited. Sodium sulfate hot corrosion of a SiC fiber-reinforced lithium aluminosilicate (LAS) glass-ceramic matrix composite was studied using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). Changes in the microstructural chemical composition of the specimens were investigated. The samples provided by Naval Air Warfare Center (NAWC), Warminster, PA were grouped as follows: (1) as-received, (2) Na2SO4 salt-coated and heat-treate...

  20. Multi-functionality of fluorescent nanocrystals in glass ceramics.

    Science.gov (United States)

    Schweizer, S; Henke, B; Miclea, P T; Ahrens, B; Johnson, J A

    2010-03-01

    Thermal processing of as-made fluorozirconate glasses, which were additionally doped with rare-earth and chlorine ions, results in the formation of fluorescent nanocrystals therein. For medical applications, the glasses were doped with divalent europium ions as the fluorescent rare-earth ion, while trivalent neodymium was used to develop up-conversion systems. The samples were annealed up to 290 °C to initiate the growth of hexagonal or orthorhombic phase BaCl2 nanocrystals therein. Upon annealing some of the rare-earth ions were incorporated into the BaCl2 nanocrystals leading to enhanced fluorescence properties. The particle diameters were in the range of a few nanometers to several tens of nanometers.

  1. Fabrication of a new porous glass-ceramic monolith using vanadium(III) calcium phosphate glass as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mazali, Italo Odone; Alves, Oswaldo Luiz [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: mazali@iqm.unicamp.br

    2004-08-01

    Preliminary XRD, IR, Raman and SEM data indicate that porous glass-ceramic monoliths (pgc-LVCP) with skeleton of V(PO{sub 3}){sub 3} and Ca{sub 3}(VO{sub 4}){sub 2} with three-dimensional network structure using an original Li{sub 2}O-V{sub 2}O{sub 3}-CaO-P{sub 2}O{sub 5} glass as precursor was obtained. The pgc-LVCP is a promising porous host for integrated chemical systems because the Ca{sub 3}(VO{sub 4}){sub 2} has ferroelectric and luminophore properties while V(PO{sub 3}){sub 3} exhibits magnetic properties associated with high degree of mechanical, chemical and thermal stability. (author)

  2. Luminescent properties of Ce3+-doped transparent oxyfluoride glass ceramics containing BaGdF5 nanocrystals

    Institute of Scientific and Technical Information of China (English)

    王倩; 欧阳绍业; 张为欢; 杨斌; 张约品; 夏海平

    2015-01-01

    The transparent oxyfluoride glass ceramics containing BaGdF5 nanocrystals were prepared with a composition of 42SiO2-12Na2O-16Al2O3-24BaF2-4Gd2O3-2CeF3 (mol.%) by thermal treatment technology. The typical DSC curve, X-ray diffraction (XRD) and transmission electron microscopy (TEM) patterns were measured. The transmission spectra and luminescent properties were in-vestigated. The decay times of the Gd3+ions at 312 nm excited with 275 nm for the Ce3+ions doped glass and glass ceramics speci-mens and the energy transfer process between Gd3+ions and Ce3+ions were also studied. The XRD analysis and the TEM images confirmed the generation of the spherical BaGdF5 nanocrystals. Compared with the PG specimen, the intensity of the luminescence spectra of the glass ceramics specimens was apparently enhanced with the heat treatment temperature increasing, and a blue shift in the excitation spectra and the emission spectra of glass ceramics specimens was obviously observed. In the fluorescence decay curves of the Gd3+ions, it could be obviously observed that the fluorescent intensity decays in the Ce3+ions doped glass and glass ceramics specimens decreased rapidly with the increase of the heat treatment temperature. In addition, the energy transfer efficiency from Gd3+ions to Ce3+ions was also calculated.

  3. Fabrication, microstructure, and optical properties of nanocrystalline transparent LAST glass ceramics containing CeO2

    Institute of Scientific and Technical Information of China (English)

    Mohammad Sadegh Shakeri

    2014-01-01

    In the present research, the effect of CeO2 dopant on the fabrication of transparent lithium aluminosilicate titanate (LAST) glass ceramics was investigated. Nanocrystallineβ-quartz solid solution (s.s.) was observed to be the main phase crystallized in this system. Com-parable refractive indices of the glassy matrix andβ-quartz s.s., as well as the incorporation of very fine grains size were determined as the main reasons for retaining the transparency of the glass ceramics. CeO2 was introduced as a suitable optical agent, playing a role as a network modifier in the glass ceramics, because it does not accelerate the growth process and retards the extended growth of crystals. Optical investi-gations indicate that the Fermi energy level, direct and indirect band gaps, and Urbach energy decrease with increasing nanocrystal content in the glassy matrix of specimens, which can be related to the expansion of conduction band, the enhancement of ionic bonds in the crystal lat-tice, and the enhancement of structural arrangement degree, respectively.

  4. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  5. Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study.

    Science.gov (United States)

    Zhong, Y; Liu, J; Li, X; Yin, W; He, T; Hu, D; Liao, Y; Yao, X; Wang, Y

    2015-03-01

    This in vitro study aimed to assess the ability and efficacy of HX-BGC, a novel bioactive glass-ceramic (SiO2-P2 O5-CaO-Na2 O-SrO), to reduce dentine tubule permeability. Dentine discs from human third molars were etched and randomly allocated into five groups: Group 1--distilled water; Group 2--Sensodyne Repair toothpaste (containing NovaMin®); Group 3--HX-BGC toothpaste (containing 7.5% HX-BGC); Group 4--control toothpaste (without HX-BGC); and Group 5--HX-BGC powder. Specimens were treated daily by brushing with an electric toothbrush for 20 seconds. Between daily treatments (7 days total), specimens were immersed in artificial saliva for 24 hours. Dentine permeability was measured at baseline, after the first treatment, after the first 24-hour immersion in artificial saliva and at the end of day 7. Dentine morphology and surface deposits were observed by scanning electron microscopy after one day and 7 days of treatment, respectively. Sensodyne Repair and bioactive glass-ceramic toothpaste significantly and immediately lowered dentine permeability. The HX-BGC powder group showed the highest reduction in dentine permeability after 7 days of treatment. The novel bioactive glass-ceramic material HX-BGC is effective in reducing dentine permeability by occluding open dentine tubules, indicating that HX-BGC may be a potential treatment for dentine hypersensitivity. © 2015 Australian Dental Association.

  6. Magnetic glass ceramics for sustained 5-fluorouracil delivery: characterization and evaluation of drug release kinetics.

    Science.gov (United States)

    Abdel-Hameed, S A M; El-Kady, A M; Marzouk, M A

    2014-11-01

    In the present study, magnetic glass ceramics in the system Fe2O3 ∙ TiO2 ∙ P2O5 ∙ SiO2 ∙ MO (M=Mg, Ca, Mn, Cu, Zn or Ce) are prepared. The effect of adding different cations on the thermal behavior, developed phases, microstructure and magnetic properties is studied using differental thermal analysis (DTA), X-ray diffraction analysis (XRD), transmission electron microscope (TEM), FT-infrared transmission (FT-IR) and vibrating sample magnetometer (VSM) respectively. The magnetic glass ceramics are tested as delivery systems for 5-fluorouracil. Modeling and analysis of release kinetics are addressed. The application of Higuchi square root of time model and the first order release model indicated that, 5-FU is released by diffusion controlled mechanisms, and that its released rate depends greatly on the concentration of loaded drug during the loading stage. The obtained results suggested that, the prepared magnetic glass ceramics can be used for cancer treatment by hyperthermia and/or by localized delivery of therapeutic doses of 5-fluorouracil.

  7. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  8. Experimental Study on Layered Ice Bonded Abrasive Polishing of Glass-ceramics

    Directory of Open Access Journals (Sweden)

    Yuli SUN

    2014-12-01

    Full Text Available Layered ice bonded abrasive tools (LIBAT is a new kind of one which not only has the ability of lapping and polishing but also has the effect of self-dressing. In this paper, two kinds of layered ice bonded abrasive tools were designed and manufactured. Experimental studies on layered ice bonded abrasive (LIBA polishing of glass-ceramics were conducted. The results show that the surface topography of glass-ceramics polished by micro α-Al2O3-nano α-Al2O3 LIBAT is better than that of polished by micro α-Al2O3-nano SiO2 LIBAT. The surface roughness Sa of glass-ceramics polished by the two kinds of LIBAT is at the nanometer scale. The reasons of this phenomenon were analyzed. The experimental results illustrate that the LIBAT shows good effect and can be used in production practice. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6149

  9. Influence of Nucleation Agents Concentration on Crystallization Structure and Properties of Glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Ren-Ping; YU Yan; GU Ying-Yun; GUO Jin-Yu

    2007-01-01

    Deep color glass-ceramics is prepared by using gold tailings as the main raw material, and Cr2O3 is added as nucleation agent. Influence of different Cr2O3 additions on crystallization structure and properties of CaO-MgO-Al2O3-SiO2 glass-ceramics has been discussed so as to select optimum additions. DTA is employed to determine optimum crystallization and nucleation temperatures; XRD and SEM are used to characterize microstructure of each sample; and performance indexes, such as water absorption, bulk density, flexural strength and so on, are also determined. Experimental results show that when 3wt% Cr2O3 is introduced, fine glass-ceramics with diopside as the main crystal and Ca-Fe diopside as the second-crystal is obtained, and its corresponding performance indexes are as follows: water absorption 0.12%, bulk density 2.56 g/cm3, and flexural strength 70.01 Mpa.

  10. Characterization of Waste Material Derived Willemite-Based Glass-Ceramics Doped with Erbium

    Directory of Open Access Journals (Sweden)

    G. V. Sarrigani

    2015-01-01

    Full Text Available We reported, for the first time, to the best of our knowledge, the production of erbium doped willemite-based glass-ceramic using waste material. In this work, a willemite-based glass-ceramic was prepared from waste material to obtain excellent crystallinity and then doped with trivalent erbium (Er3+ to yield ([(ZnO0.5(SLS0.5]1−x[Er2O3]x final composition where x=3 wt%. The samples were sintered at various temperatures (500–1100°C to study the effects of sintering temperatures on microstructure and physical properties of the samples. X-ray diffraction (XRD and Fourier transform infrared (FTIR were used to determine structural changes and functional groups in the samples, respectively. Field-emission scanning electron microscopy (FE-SEM equipped with energy dispersive X-ray was used to observe surface morphology and to detect presence of elements in the samples. Findings showed that average grain size of the Er3+ doped glass-ceramic sample increased as a function of the sintering temperature and the optimum temperature was 900°C.

  11. Characterization of monazite glass-ceramics as wasteform for simulated {alpha}-HLLW

    Energy Technology Data Exchange (ETDEWEB)

    He Yong [Materials Science and Chemical Engineering College, China University of Geosciences, Wuhan 430074 (China)], E-mail: heyongyu@263.net; Lue Yanjie; Zhang Qian [Materials Science and Chemical Engineering College, China University of Geosciences, Wuhan 430074 (China)

    2008-05-31

    Two monazite glass-ceramic wasteforms were sintered by mixing the lanthanum metaphosphate glass powder with the oxide powder of the components in simulated {alpha}-HLWs. The co-existence of components Al and Mo in an iron phosphate melt separated the melt into two immiscible glass melts, namely aluminum iron phosphate glass (Gb) and molybdenum iron phosphate glass (Gg). 24 wt% of ZrO{sub 2}, together with P{sub 2}O{sub 5} and proper amounts of Fe and Mo formed a zirconium pyrophosphate glass (Gg1), which was immiscible with the phase Gg. The iron ions in the wasteforms were all in Fe{sup 3+}, 1/3 of which was in 4-fold coordination. The O/P and O/(P + 1/3Fe{sup 3+}) ratios for the glass phases were Gg1 3.70, Gb 3.89-3.98, Gg 4.23-4.25, and Gg1 3.58, Gb 3.47-3.42, Gg 3.74-3.69, respectively. The dissolution rates of two wasteforms were 0.3008 and 0.2598 g/m{sup 2}d, respectively.

  12. INFLUENCE OF SURFACE TREATMENT AND PURIFICATION METHODS OF CO-115M GLASS-CERAMICS ON OPTICAL CONTACT STRENGTH

    Directory of Open Access Journals (Sweden)

    N. V. Tikhmenev

    2016-07-01

    Full Text Available Subject of Research.We present findings of the optical contact for details made of СО-115Мglass-ceramics brand mark. The optical contact is the main method of joining parts made of CO-115M glass-ceramics brand mark in commercially available laser gyros. The existing technology has a number of unresolved issues related to the durability of the optical contact, that determine the tightness of the laser sensor internal volume. Method. Mechanical strength control of the optical contact consisted in the measurement of specific tear force of the connection. Mechanical strength tests of the optical contact were carried out with the use of RMI-250 tensile testing machine. The evenly increasing load of 50 N/s was applied to the samples in mechanical tests. The value with the occurence of the optical contact destruction was registered. Main Results. We have shown that one of the main factors determining the mechanical strength of the joint is cleanliness of the surfaces being connected. Comparison of the influence of different surface cleaning methods for optical elements on the optical contact durability has been given. The negative impact of even short-term storage of optical parts after washing on the assembly strength has been shown. The additional operation of mechanical polishing of surfaces of stored optical parts before connection enabled significantly reducing the scatter of the optical contact mechanical strength. We have also established experimentally that the heating of assembly of optical elements under vacuum at a temperature of 300°C leads to the twofold increase in the optical contact strength, while the optical contact remains separable. Practical Relevance. The carried out studies make it possible to improve the technical and operational characteristics of the laser gyroes. The use of additional mechanical cleaning of surfaces of optical parts and vacuum heating of the assembly in the process of laser sensor production may

  13. Chemical durability of Dicor and fluorocanasite-based glass-ceramics.

    Science.gov (United States)

    Anusavice, K J; Zhang, N Z

    1998-07-01

    Fluorocanasite (Al2O3-CaO-F-K2O-Na2O-SiO2) glass-ceramics exhibit fracture toughness values of up to 5.0 MPa x m1/2. However, their chemical durability is not adequate for dental applications. The objective of this study was to test the hypothesis that an increased concentration of Al2O3 can increase the chemical durability of fluorocanasite-based glass-ceramics. Glass frits containing 2 wt% (CAN2), 5 wt% (CAN5), and 10 wt% Al2O3 (CAN10) were melted individually, poured into a graphite mold, and cut into 16-mm-diam. x 2-mm-thick disks. Each disk was crystallized at 850 degrees C for 6 hrs. The disks were immersed in a solution of de-ionized-distilled water, 4% acetic acid, or a pH 1 buffer solution, and sealed in 90-mL Teflon containers. Corrosion testing was performed by means of vibrational motion at 60 cycles per min in a shaker-bath at 80 degrees C for 15 days. Solution analyses were performed by means of a pH meter, an atomic absorption spectrophotometer, and an inductively coupled plasma spectrometer. Samples exposed to 4% acetic acid solution exhibited a mean weight loss rate (WLR) for the control group (Dicor) of 0.04+/-0.01 mg/cm2 day, which was significantly lower (p < or = 0.0001) than the mean WLR of the CAN2 (1.08+/-0.02 mg/cm2 x day), CAN5 (1.31+/-0.02 mg/cm2 x day), and CAN10(1.51+/-0.05 mg/cm2 x day) groups. The reduced durability of fluorocanasite-based glass-ceramics with increasing Al2O3 concentration is most likely associated with a more uniform distribution of smaller crystals during heat treatment of the glass.

  14. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  15. Luminescent properties of Ce3+/Tb3+co-doped glass ceramics containing YPO4 nanocrystals for W-LEDs

    Institute of Scientific and Technical Information of China (English)

    张志雄; 张约品; 冯治刚; 王成; 夏海平; 张新民

    2016-01-01

    Ce3+/Tb3+ co-doped transparent glass ceramics containing YPO4 nanocrystals were prepared using high temperature melt-ing method, and their structural and luminous properties were investigated. XRD analysis and TEM images confirmed the existence of YPO4 nanocrystals in glass ceramics. The transmission spectra proved that the glass ceramics specimens still maintained a high transparency. Then the excitation and emission spectra of the Ce3+ and Tb3+ single-doped and co-doped glass and glass ceramics were discussed, which proved that the glass ceramics had better luminescent properties. Under the near ultraviolet (331 nm) excitation, the broadband emission located at 385 nm was observed which was ascribed to 5d→2F5/2 and2F7/2 transition of Ce3+ ions. Several char-acteristic sharp peaks centered at 489, 543, 578 and 620 nm originated from the5D4 to7FJ (J=6, 5, 4, 3) of Tb3+ ions. The decay time of Tb3+ ions at 543 nm and the relevant energy levels of Ce3+ ions and Tb3+ ions illustrated the transfer process from Ce3+ ions to Tb3+ ions. The best CIE chromaticity coordinate of the glass ceramics specimen was calculated as (x=0.3201,y=0.3749), which was close to the NTSC standard values for white (x=0.333,y=0.333). All the results suggested that the YPO4-based Ce3+/Tb3+ co-doped glass ceramics could act as potential luminescent materials for white light-emitting diodes.

  16. Chemical durability of Dicor and lithia-based glass-ceramics.

    Science.gov (United States)

    Anusavice, K J; Zhang, N Z

    1997-01-01

    The aim of this study was to analyze the effect of a nucleation agent (P2O5) and a colorant/nucleation agent (AgNO3) on the chemical durability of Li2O-Al2O3-CaO-SiO2(LACS) glass-ceramics in 4% HAc solution, deionized-distilled water, and in pH buffer solutions of pH 1, pH 9, and pH 11. Glass powder [27.8 mol% Li2O, 2.5% Al2O3, 5.9% CaO, and 63.8% SiO2(LACS)] was melted, poured into a cylindrical graphite mold (16 mm diameter), cooled, cut into 2.2 mm thick disks, polished through 1200 grit SiC, nucleated at 510 degrees C for 3 h, and crystallized at 650 degrees C for 6 h. Dynamic corrosion tests of LACS glass-ceramic, LACS glass-ceramic containing 1.0 mol% P2O5 (LACSP), LACS glass-ceramic containing 0.78 mmol% AgNO3(LACSAg), and Dicor control specimens were performed in a shaker-bath unit at 80 degrees C at a shaker speed of 30 cycles/min for periods of up to 15 d. Differences in mean weight loss and ionic concentration were analyzed for statistical significance (p = 0.05) using ANOVA and the Tukey's Studentized Range Test. The mean weight loss over 15 d in 4% HAc increased in the following order: LACS (0.21 +/- 0.02 mg/cm2), LACSAg (0.25 +/- 0.05 mg/ cm2), and Dicor (0.27 +/- 0.05 mg/cm2). The differences in mean values were not statistically significant (p > 0.05). The amounts of Li+ leached in 32 mL of pH1 and pH11 buffer solutions were 3.1 +/- 0.3 microgram/cm2/mL and 243 +/- 49.0 micrograms/cm2/mL, respectively, for the LACS group, and 3.0 +/- 0.6 microgram/cm2/mL and 166 +/- 28.0 micrograms/cm2/mL for the LACSAg group. The differences in mean values are not statistically significant (p > 0.05). The high chemical durability in acidic environments of LACS glass-ceramics without P2O5 and their decreased durability at pH values of 9 and above were confirmed by SEM observations of the exposed surfaces. The weight loss for the three glass-ceramic systems was highest in pH 11 buffer solution, which represents an unlikely in vivo environment. From a toxicological

  17. Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Xiaojing Chen

    2014-07-01

    Full Text Available The bioactivity of a series of fluoride-containing sodium-free calcium and strontium phosphosilicate glasses has been tested in vitro. Glasses with high fluoride content were partially crystallised to apatite and other fluoride-containing phases. The bioactivity study was carried out in Tris and SBF buffers, and apatite formation was monitored by XRD, FTIR and solid state NMR. Ion release in solutions has been measured using ICP-OES and fluoride-ion selective electrode. The results show that glasses with low amounts of fluoride that were initially amorphous degraded rapidly in Tris buffer and formed apatite as early as 3 h after immersion. The apatite was identified as fluorapatite by 19F MAS-NMR after 6 h of immersion. Glass degradation and apatite formation was significantly slower in SBF solution compared to Tris. On immersion of the partially crystallised glasses, the fraction of apatite increased at 3 h compared to the amount of apatite prior to the treatment. Thus, partial crystallisation of the glasses has not affected bioactivity significantly. Fast dissolution of the amorphous phase was also indicated. There was no difference in kinetics between Tris and SBF studies when the glass was partially crystallised to apatite before immersion. Two different mechanisms of apatite formation for amorphous or partially crystallised glasses are discussed.

  18. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  19. LED and Halogen Light Transmission through a CAD/CAM Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Pereira, Carolina Nemesio de Barros; De Magalhães, Cláudia Silami; Daleprane, Bruno; Peixoto, Rogéli Tibúrcio Ribeiro da Cunha; Ferreira, Raquel da Conceição; Cury, Luiz Alberto; Moreira, Allyson Nogueira

    2015-01-01

    The effect of thickness, shade and translucency of CAD/CAM lithium disilicate glass-ceramic on light transmission of light-emitting diode (LED) and quartz-tungsten-halogen units (QTH) were evaluated. Ceramic IPS e.max CAD shades A1, A2, A3, A3.5, high (HT) and low (LT) translucency were cut (1, 2, 3, 4 and 5 mm). Light sources emission spectra were determined. Light intensity incident and transmitted through each ceramic sample was measured to determine light transmission percentage (TP). Statistical analysis used a linear regression model. There was significant interaction between light source and ceramic translucency (p=0.008) and strong negative correlation (R=-0.845, pceramic thickness and TP. Increasing one unit in thickness led to 3.17 reduction in TP. There was no significant difference in TP (p=0.124) between shades A1 (ß1=0) and A2 (ß1=-0.45) but significant reduction occurred for A3 (ß1=-0.83) and A3.5 (ß1=-2.18). The interaction QTH/HT provided higher TP (ß1=0) than LED/HT (ß1=-2.92), QTH/LT (ß1=-3.75) and LED/LT (ß1=-5.58). Light transmission was more effective using halogen source and high-translucency ceramics, decreased as the ceramic thickness increased and was higher for the lighter shades, A1 and A2. From the regression model (R2=0.85), an equation was obtained to estimate TP value using each variable ß1 found. A maximum TP of 25% for QTH and 20% for LED was found, suggesting that ceramic light attenuation could compromise light cured and dual cure resin cements polymerization.

  20. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  1. Numerical investigation on machining glass with CO2lasers

    Institute of Scientific and Technical Information of China (English)

    Junke JIAO; Xinbing WANG

    2009-01-01

    When a glass substrate was irradiated by three different temporal shapes of laser sources, namely, linetime-shape laser, triangle-time-shape laser, and parabolatime-shape laser, the mathematical models were proposed,and the temperature distribution and the resulting thermal stress were calculated by the finite-element-method (FEM)software ANSYS.With these three types of lasers having the same output laser energy, the resulting thermal stress induced in the glass substrate was analyzed.The results showed that, with the same output laser energy, the thermal stress produced in glass heated by line-time-shape laser is higher than that produced in glass heated by the other two shapes of lasers.

  2. THE STRUCTURE AND PROPERTIES OF Li2O-Al2O3-SiO2 LOW EXPANSION GLASS CERAMICS CONTAINING B2O3

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Through measuring the coefficient of linear expansion,the structure and properties of the Li20-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by IR and XRD. It is shown that the IR method is efficient in the study of the glass-ceramics structure. There is a "Boron abnormality"in the system which has an important influence on the properties of the glass-ceramics.

  3. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  4. Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Harizanova, Ruzha [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd, 1756 Sofia (Bulgaria); Tatchev, Dragomir [Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 11, 1113 Sofia (Bulgaria); Hoell, Armin [Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, D-14109 Berlin (Germany); Rüssel, Christian [Friedrich Schiller University, Fraunhoferstr. 6, 07743 Jena (Germany)

    2015-02-15

    Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enriched in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.

  5. Infrared-to-green upconversion luminescence and mechanism of Ho3+, Nd3+ and Yb3+ ions in oxyfluoride glass ceramics

    Institute of Scientific and Technical Information of China (English)

    Zhang Jun-Jie; Kawamoto Yoji; Dai Shi-Xun

    2004-01-01

    New oxyfluoride glasses and glass ceramics co-doped with Nd3+, Yb3+ and Ho3+ were prepared. The upconversion of infrared radiation into green fluorescence has been studied for Nd3+, Yb3+ and Ho3+ in the transparent oxyfluoride glass ceramics. At room temperature very strong green upconversion luminescence due to the Ho3+: (5F4, 5S2) →5I8transition under 800 nm excitation was observed in the glass ceramics. The intensity of the green upconversion luminescence in a 1mol% YbF3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho3+ upconversion luminescence in the oxyfluoride glass ceramics is discussed. The upconversion mechanism is also investigated.

  6. Broadband and High Efficient 1530 nm Emission from Oxyfluoride Glass Ceramics Codoped with Er3+ and Yb3+ Ions

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-Rong; ZHAO Li-Juan; SUN Jian; YU Hua; SONG Jie; XU Jing-Jun

    2007-01-01

    The emission at 1530 nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass doped by Er3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 1530 nm increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.

  7. Broadband and High Efficient 1530 nm Emission from Oxyfluoride Glass Ceramics Codoped with Er3+ and Yb3+ Ions

    Science.gov (United States)

    Liu, Bao-Rong; Zhao, Li-Juan; Sun, Jian; Yu, Hua; Song, Jie; Xu, Jing-Jun

    2007-02-01

    The emission at 1530 nm and its applications in optical communications are discussed. The efficient width of the emission band Δeff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass doped by Er3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 1530 nm increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.

  8. Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior.

    Science.gov (United States)

    Xu, Wei; Gao, Xiaoyang; Zheng, Longjiang; Zhang, Zhiguo; Cao, Wenwu

    2012-07-30

    Ho(3+)/Yb(3+) codoped glass ceramic was prepared by melt-quenching and subsequent thermal treatment. Under a 980 nm diode laser excitation, upconversion emissions from Ho(3+) ions centered at 540, 650, and 750 nm were greatly enhanced compared with those in the precursor glass. Especially, the short-wavelength upconversion emissions centered at 360, 385, 418, 445, and 485 nm were successfully obtained in the glass ceramic. An explanation for this phenomenon is given based on the fluorescence decay curve measurements. In addition, an optical temperature sensor based on the blue upconversion emissions from (5)F(2,3)/(3)K(8)→(5)I(8) and (5)F(1)/(5)G(6)→(5)I(8) transitions in Ho(3+)/Yb(3+) codoped glass ceramic has been developed. It was found that by using fluorescence intensity ratio technique, appreciable sensitivity for temperature measurement can be achieved by using the Ho(3+)/Yb(3+) codoped glass ceramic. This result makes the Ho(3+)/Yb(3+) codoped glass ceramic be a promising candidate for sensitive optical temperature sensor with high resolution and good accuracy.

  9. Report on the planning workshop on cost-effective ceramic machining

    Energy Technology Data Exchange (ETDEWEB)

    Blau, P.J.

    1991-11-01

    A workshop on Cost Effective Ceramic Machining'' (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee's opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

  10. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  11. Stress Analysis of CaO-Al2O3-SiO2 System Glass-ceramic with Different Thickness

    Institute of Scientific and Technical Information of China (English)

    CHENG Jinshu; XIE Jun; HE Feng; YANG Shuzhen

    2005-01-01

    In order to study the relationship between thickness and residual stress in CaO-Al2O3-SiO2 glass-ceramics. The residual stress was measured in CaO-Al2 O3-SiO2 system glass-ceramic with different thickness, and the formation mechanism and characterization of residual stress in CAS system Glass-ceramic were analyzed by the X-ray diffraction analysis. The experimental results show the compressive residual stress increases with thickness of glass-ceramic increasing

  12. Selective laser densification of lithium aluminosilicate glass ceramic tapes

    Science.gov (United States)

    Zocca, Andrea; Colombo, Paolo; Günster, Jens; Mühler, Thomas; Heinrich, Jürgen G.

    2013-01-01

    Tapes, cast by blade deposition of a lithium aluminosilicate glass slurry, were sintered using a YAG-fiber laser, with the aim of finding suitable parameters for an additive manufacturing process based on layer-wise slurry deposition and selective laser densification. The influence of the laser parameters (output power and scan velocity) on the sintering was evaluated, by scanning electron microscopy and by X-ray diffraction, on the basis of the quality of the processed layer. Well densified samples could be obtained only in a small window of values for the output power and the scan velocity. The measurement of the width of a set of single scanned lines allowed also to estimate the minimum resolution of the system along the layer plane.

  13. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    邱建备; 焦清; 周大成; 杨正文

    2016-01-01

    The upconversion (UC) of the rare earth doped glass-ceramics has been extensively investigated due to their potential ap-plications in many fields, such as color display, high density memories, optical data storage, sensor and energy solar cell, etc. Many series of them, especially the oxyfluorides glasses containing Ba2LaF7 nanocrystals were studied in this review work, due to the ther-mal and mechanical toughness, high optical transmittance from the ultraviolet to the infrared regions, and a low nonlinear refractive index compared to the other commercial laser glasses. Moreover, the energy transfer (ET) between the rare earth ions and transition metals plays an important role in the upconversion process. The cooperative ET has been researched very activly in UC glasses due to applications in the fields of solar cells, such as in the Er/Yb, Tm/Yb, Tb/Yb, Tb/Er/Yb and Tm/Er/Yb couples. The present article re-views on the recent progress made on: (i) upconversion materials with fluoride microcrystals in glasses and the mechanisms involved, including the UC in double and tri-dopant RE ions activated fluoride microcrystal, energy transfer process; and (ii) the effect of the metal Mn and nanoparticles of Au, Ag, Cu on the enhancement of UC emissions. Discussions have also been made on materials, ma-terial synthesis, the structural and emission properties of glass-ceramics. Additionally, the conversion efficiency is still a challenge for the spectra conversion materials and application; challenge and future advances have also been demonstrated.

  14. Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling

    Science.gov (United States)

    Venkata Krishnaiah, Kummara; Ledemi, Yannick; Soares de Lima Filho, Elton; Loranger, Sebastien; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-03-01

    Laser cooling with anti-Stokes fluorescencewas predicted by Pringsheim in 1929, but for solids was only demonstrated in 1995. There are many difficulties which have hindered laser assisted cooling, principally the chemical purity of a sample and the availability of suitable hosts. Recent progress has seen the cooled temperature plummet to 93K in Yb:YLF. One of the challenges for laser cooling to become ubiquitous, is incorporating the rare-earthcooling ion in a more easily engineered material, rather than a pure crystalline host. Rare-earth-doped nanocrystalline glass-ceramics were first developed by Wang and Ohwaki for enhanced luminescence and mechanical properties compared to their parent glasses. Our work has focused on creating a nanocrystalline environment for the cooling ion, in an easy to engineer glass. The glasses with composition 30SiO2-15Al2O3-27CdF2-22PbF2-4YF3-2YbF3 (mol%), have been prepared by the conventional melt-quenching technique. By a simple post fabrication thermal treatment, the rare-earth ions are embedded in the crystalline phase within the glass matrix. Nanocrystals with various sizes and rare-earth concentrations have been fabricated and their photoluminescence properties assessed in detail. These materials show close to unity photoluminescence quantum yield (PLQY) when pumped above the band. However, they exhibit strong up-conversion into the blue, characteristic of Tm trace impurity whose presence was confirmed. The purification of the starting materials is underway to reduce the background loss to demonstrate laser cooling. Progress in the development of these nano-glass-ceramics and their experimental characterization will be discussed.

  15. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    Science.gov (United States)

    Khalil, M. M. I.

    2007-03-01

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

  16. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.M.I. [National Center for Radiation Research and Technology, Radiation Physics Department, Cairo (Egypt)

    2007-03-15

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 C. The main separated crystalline phase is Li{sub 2}B{sub 8}O{sub 13}. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the log{sigma}-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li{sup +} ions dominates at high temperatures. (orig.)

  17. White light generation of glass ceramics containing Ba2LaF7: Eu2+,Tb3+ and Sm3+ nanocrystals

    Institute of Scientific and Technical Information of China (English)

    Yang Xu; Shuo Cui; Hengyi Fu; Jiangyun Qian; Qun Luo; Xusheng Qiao; Xianping Fan; Xianghua Zhang

    2012-01-01

    The Eu2+/Tb3+/Sm3+ co-doped oxyfluoride glass ceramics containing Ba2LaF7 nanocrystals are prepared in the reducing atmosphere. The X-ray diffraction results show that Eu2+,Tb3+ and Sm3+ ions are enriched into the precipitated Ba2LaF7 nanophase after the annealing process.It deduces efficient energy transfers from Eu2+ to Tb3+ and Sm3+ and intenses warm white luminescence of the glass ceramics.Comparing with the glass,the luminescence quantum yield of the glass ceramics is also enlarged by about 3 times. This demonstrates the potential white light-emitting diode application of the glass ceramics produced in this letter.%The Eu2+/Tb3+/Sm3+ co-doped oxyfluoride glass ceramics containing Ba2LaF7 nanocrystals are prepared in the reducing atmosphere. The X-ray diffraction results show that Eu2+, Tb3+ and Sm3+ ions are enriched into the precipitated Ba2LaF7 nanophase after the annealing process. It deduces efficient energy transfers from Eu2+ to Tb3+ and Sm3+ and intenses warm white luminescence of the glass ceramics. Comparing with the glass, the luminescence quantum yield of the glass ceramics is also enlarged by about 3 times. This demonstrates the potential white light-emitting diode application of the glass ceramics produced in this letter.

  18. Crystallization and fluorescence properties of Ce:YAG glass-ceramics with low SiO{sub 2} content

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili [Department of Materials Science and Engineering, University of Science and Technology Beijing 100083 (China); Mei, Lin; He, Gang; Liu, Guanghua [Technical Institute of Physics and Chemistry, Key Laboratory of Functional Crystals and Laser Technology, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jiangtao, E-mail: ljt0012@vip.sina.com [Technical Institute of Physics and Chemistry, Key Laboratory of Functional Crystals and Laser Technology, Chinese Academy of Sciences, Beijing 100190 (China); Xu, Lihua [Department of Materials Science and Engineering, University of Science and Technology Beijing 100083 (China)

    2013-04-15

    Ce{sup 3+} doped YAG (Ce:YAG) glass-ceramics with 20 mol% SiO{sub 2} were fabricated by the method of amorphous sintering followed by controlled crystallization (ASCC). An investigation on the crystallization process of as-sintered glasses revealed that surface crystallization occurred first and YAlO{sub 3} (YAP) was precipitated as the main crystalline phase; then bulk crystallization continued inside these glasses and YAP phase transited to YAG. The phase transition from YAP to YAG could be promoted by an inert atmosphere instead of reductive one and by the increase of the crystallization temperature and holding time. By combining the Ce:YAG glass-ceramics with a blue-emitting InGaN chip, white LEDs with a relatively high color rendering index of 80.3 and low color temperature of 5098 K were produced. Their luminous efficacy decreased with the increasing annealing temperatures, which was probably caused by the degradation of transparency. -- Highlights: ► Translucent SiO{sub 2}-low Ce:YAG glass-ceramics were successfully obtained. ► A white LED (CIR, 80.3 and CT, 5098 K) was equipped with the obtained glass-ceramic. ► Controlled surface and bulk crystallizations of the glass were observed. ► Three Ce{sup 3+} emission centers were possibly involved during the luminescence decay. ► Luminous efficacy decreased with elevated annealing temperatures.

  19. Optical properties of transparent cobalt-containing magnesium aluminosilicate glass-ceramics doped with gallium oxide for saturable absorbers

    Science.gov (United States)

    Loiko, P. A.; Skoptsov, N. A.; Dymshits, O. S.; Malyarevich, A. M.; Yumashev, K. V.; Zhilin, A. A.; Alekseeva, I. P.

    2016-10-01

    Transparent glass-ceramic materials based on glasses of the MgO-Al2O3-SiO2-TiO2 system doped with CoO and Ga2O3 are synthesized. The secondary heat treatment of the initial glasses at temperatures of 800-950°C leads to precipitation of nanosized (6-7 nm) crystals of magnesium aluminogallium spinel doped with cobalt ions and magnesium aluminotitanate solid solutions. The optical absorption spectra of the initial glass and glass-ceramic materials are studied. It is shown that the absorption band caused by the 4 A 2(4F)→ 4 T 1(4 F) transitions of tetrahedrally coordinated Co2+ ions in glass-ceramics with nanosized Co:Mg(Al,Ga)2O4 crystals is shifted to longer wavelengths (up to 1.67 µm) compared to the position of this band in materials with Co:MgAl2O4 crystals. The synthesized glass-ceramics are characterized by a relatively low saturation fluence FS 0.5 ± 0.1 J/cm2 at a wavelength of 1.54 µm, as well as by a high radiation resistance to nanosecond laser pulses, which is no lower than 15 ± 2 J/cm2. This explains their attractiveness as materials for saturable absorbers for erbium lasers emitting in the spectral range 1.5-1.7 µm.

  20. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  1. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    Science.gov (United States)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH‑) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10‑20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  2. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    Science.gov (United States)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  3. Machining of fiber reinforced composites

    Science.gov (United States)

    Komanduri, Ranga; Zhang, Bi; Vissa, Chandra M.

    Factors involved in machining of fiber-reinforced composites are reviewed. Consideration is given to properties of composites reinforced with boron filaments, glass fibers, aramid fibers, carbon fibers, and silicon carbide fibers and to polymer (organic) matrix composites, metal matrix composites, and ceramic matrix composites, as well as to the processes used in conventional machining of boron-titanium composites and of composites reinforced by each of these fibers. Particular attention is given to the methods of nonconventional machining, such as laser machining, water jet cutting, electrical discharge machining, and ultrasonic assisted machining. Also discussed are safety precautions which must be taken during machining of fiber-containing composites.

  4. Basaltic scorias from Romania - complex building material us for concrete, glazing tiles, ceramic glazes, glass ceramics, mineral wool

    Energy Technology Data Exchange (ETDEWEB)

    Marica, S.; Cetean, V. [PROCEMA S.A., Bucharest (Romania)

    2002-07-01

    The most spectacular deposit of basaltic scoria from Romania is the Heghes Hill from Racos, locality situated in the central part of country. This deposit emerged as grains of various dimensions, as volcanic ash with specific porosity up to 30% and vacuolar basaltic rocks. All types of basaltic scorias have specific vacuolar appearance, red- brick or blackish - grey coloured, scoria textures and similar chemical composition with others basalts of the world. The physical and mechanical characteristics determined included the scorias in the Heghes Hill in the following categories : light rocks (2,98 g/ dmc), porous(11,04%), similar to expanded slag, slightly absorbing rocks (3,86%), with low compression strengths (1700 daN/cmp). Basaltic scoria from Heghes is a very good row material for the manufacture of concrete, for obtain decorative cutting tiles glazing with ceramic and basaltic glazes (up to 40%) varied the range of colours and for obtaining glass ceramic, mineral wool, crushing sand for road maintenance, heat -insulating bricks and shid -proof material. (orig.)

  5. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO2 laser beam. A powdered dental glass-ceramic material from the system SiO2-Na2O-K2O-CaO-Al2O3-MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310(-6)/K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel

  6. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    Science.gov (United States)

    Mannstadt, Wolfgang

    2008-02-13

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic ab initio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'ab initio' simulations in the computer

  7. Optical thermometry based on luminescence behavior of Dy{sup 3+}-doped transparent LaF{sub 3} glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Y.Y. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Nanjing University of Posts and Telecommunications, College of Science, Nanjing (China); Cheng, S.J.; Wang, X.F. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing, Jiangsu (China); Yan, X.H. [Nanjing University of Posts and Telecommunications, College of Electronic Science and Engineering, Nanjing (China); Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Science, Nanjing (China)

    2015-11-15

    Dy{sup 3+}-doped transparent LaF{sub 3} glass ceramics were fabricated, and its structures of resulting glass ceramics are studied by the X-ray diffraction and transmission electron microscopy. Optical temperature sensing of the resulting glass ceramics in the temperature range from 298 to 523 K is studied based on the down-conversion luminescence of Dy{sup 3+} ion. By using fluorescence intensity ratio method, the {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} of Dy{sup 3+} ions are verified as thermally coupled levels. A minimum S{sub R} = 1.16 x 10{sup -4} K{sup -1} is obtained at T = 294 K. By doping Eu{sup 3+} ion, the overall emission color of Eu{sup 3+}-Dy{sup 3+} co-doped transparent glass ceramics can be tuned from white to yellow with the temperature increase through energy transfer between Eu{sup 3+} and Dy{sup 3+}. Additionally, the thermal stability of the Dy{sup 3+} single-doped transparent glass ceramics becomes higher after doping Eu{sup 3+} ion. (orig.)

  8. Fabrication and Crystallization of ZnO-SLS Glass Derived Willemite Glass-Ceramics as a Potential Material for Optics Applications

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Mohd Zaid

    2016-01-01

    Full Text Available Willemite glass-ceramics were successfully derived from conventional melt-quench ZnO-SLS precursor glass by an isothermal heat treatment process. The effect of heat treatment temperatures on the physical properties was investigated by Archimedes principle and linear shrinkage. The generation of willemite crystal phase and morphology with increase in heat treatment temperature was examined by X-ray diffraction (XRD, Fourier transform infrared (FTIR, and field emission scanning electron microscopy (FESEM techniques. X-ray diffraction revealed that the metastable β-Zn2SiO4 and thermodynamically stable zinc orthosilicate α-Zn2SiO4 phases can be observed at temperatures above 700°C. The experimental results indicated that the density and shrinkage of the glass-ceramic vary with increasing the sintering temperature. FTIR studies showed that the structure of glass-ceramic consists of SiO2 and ZnO4 units and exhibits the structural evolution of willemite glass-ceramics. The characteristic of strong vibrational bands can be related to the SiO44- tetrahedron corresponding to reference spectra of willemite.

  9. Photostimulated luminescence from a fluorobromozirconate glass-ceramic and the effect of crystallite size and phase

    CERN Document Server

    Secu, M; Spaeth, J M; Edgar, A; Williams, G V M; Rieser, U

    2003-01-01

    We report a systematic study of the photoluminescence (PL), photostimulated luminescence (PSL) and thermostimulated luminescence (TSL) from europium-and bromine-doped fluorozirconate glass-ceramics. Eu sup 2 sup + ions in the as-prepared glass show no PL, but after suitable thermal annealing hexagonal phase and orthorhombic phase barium bromide crystallites are precipitated and PL is observed from Eu sup 2 sup + ions in these crystallites. Room temperature PSL is observed from the orthorhombic phase, with an efficiency which is up to 9% of the well known crystalline storage phosphor BaFBr:Eu sup 2 sup +. The emission is at 404 nm, and there is a maximum in the stimulation at 580 nm. We associate the PSL with an optically quenchable peak in the glow curve, which has an activation energy of 1.20 eV and attribute this feature to a perturbed F centre. Room temperature PSL from glass-ceramics containing predominantly the hexagonal phase of BaBr sub 2 has a relative efficiency of less than 0.07%. The resultant trap...

  10. Treatment of copper industry waste and production of sintered glass-ceramic.

    Science.gov (United States)

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  11. Final report of experimental laboratory-scale brittle fracture studies of glasses and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L.J.; Mecham, W.J.; Reedy, G.T.; Steindler, M.J.

    1982-10-01

    An experimental program was conducted to characterize the fragments generated when brittle glasses and ceramics are impacted. The direct application of the results is to radioactive waste forms for which the effects of accidental impacts must be known or predictable. Two major measurable experimental responses used for characterization of these effects are (1) the size distribution of the fragments, including the sizes that are respirable, and (2) the increase in surface area of the brittle test specimen. This report describes the glass and ceramic materials characterized, the procedures and techniques used for the characterization of size distributions and surface areas, and the results of the two key responses of the impact tests. Five alternative methods of determining size distributions were compared. Also examined were the effects of diametral and axial specimen impact configurations and the use of mechanical stops to eliminate secondary crushing during testing. Microscopic characterizations of Pyrex and SRL 131 simulated waste glass and SYNROC fragments were also performed. Preliminary correlations of impact energy with key size-distribution parameters, fragment surface areas, and respirable fines were proposed as useful for future verification and for use with modeling and scale-up studies of brittle fracture of larger realistic waste forms. The impact fragments of all specimens could be described by lognormal size distributions.

  12. Structure and distortion of lead fluoride nanocrystals in rare earth doped oxyfluoride glass ceramics.

    Science.gov (United States)

    Ge, Jin; Zhao, Lijuan; Guo, Hui; Lan, Zijian; Chang, Lifen; Li, Yiming; Yu, Hua

    2013-10-28

    A series of rare earth (RE) doped oxyfluoride glasses with the composition of (45-x) SiO2-5Al2O3-40PbF2-10CdF2-xRe2O3 (x = 1, 5, 10, 15) (mol%) were prepared by a traditional melt-quenching method. Glass ceramics (GCs) were obtained after thermal treatment and characterized by X-ray diffraction (XRD) to investigate the nanocrystal structure and distortion. Both the dopant type and the doping level play an important role in the distortion of the PbF2-RE lattice. It is found that a cubic Pb3REF9 phase forms in low doping GCs, a tetragonal PbREF5 phase forms in middle doping GCs and cubic PbRE3F11 forms in high doping GCs. Accordingly, the site symmetry of RE(3+) dopants in β-PbF2 nanocrystal undergoes a transition of Oh···D4h···Oh with the increase of doping level. The change in the ligands coordinating the RE(3+) ions was further illustrated by the optical changes in Yb-doped GCs. This paper provides insights on the nanocrystal structure of RE at the atomic level and tries to make a complete description of the nanocrystal structure and distortion in these glass-ceramic materials, which will benefit the optimization of optical properties.

  13. Influence of high magnetic field on the luminescence of Eu{sup 3+}-doped glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Chen, Weibo; Chen, Ping; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng, E-mail: xfliu@zju.edu.cn, E-mail: qjr@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Junpei; Han, Junbo [Wuhan National High Magnetic field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Qiu, Jianrong, E-mail: xfliu@zju.edu.cn, E-mail: qjr@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2014-09-28

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu{sup 3+}-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu{sup 3+} decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu{sup 3+} can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  14. Influence of high magnetic field on the luminescence of Eu3+-doped glass ceramics

    Science.gov (United States)

    Jiang, Wei; Zhang, Junpei; Chen, Weibo; Chen, Ping; Han, Junbo; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng; Qiu, Jianrong

    2014-09-01

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu3+-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu3+ decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu3+ can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  15. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    Science.gov (United States)

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid.

  16. Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic.

    Science.gov (United States)

    Krug, Peter A; Rogojan, Rodica Matei; Albert, Jacques

    2009-06-20

    We inscribed thick volume gratings in WMS-15 glass ceramic by ultraviolet light at 193 and 248 nm. Unlike earlier work in ceramic materials, the inscription process modified the optical properties of the material without the need for any additional chemical or thermal processing. Experimental evidence from measurements of grating growth, thermal annealing, and spectral absorption indicates that two distinct physical mechanisms are responsible for the grating formation. Weak, easily thermally bleached gratings resulted from exposure fluences below 0.3 kJ/cm2. Optical absorption measurements suggest that these low fluence gratings are predominantly absorption gratings. More thermally stable gratings, found to be refractive index gratings with unsaturated refractive index modulation amplitude as large as 6 x 10(-5) were formed at cumulative fluences of 1 kJ/cm2 and above.

  17. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  18. Effect of lithium halide on glass network structure and upconversion luminescence in Er3+ co-doped oxyfluoride glass ceramics containing NaGdF4 nanocrystals

    Science.gov (United States)

    Ren, Peng; Yang, Yong; Zhou, Dacheng; Li, Zhencai; Qiu, Jianbei

    2017-10-01

    LiR(R = Br, Cl, F) co-doped oxyfluoride glass ceramics containing NaGdF4 nanocrystals were prepared. The effect on glass network structure by dopants was investigated through the Raman spectra. The crystallization temperature and integrity of the glass network structure was gradually reduced by introducing halogen ions. The types and distribution of nanocrystals were determined by X-ray diffraction and transmission electron microscope. The size of nanocrystals were shown in column type distribution map. The mean size of nanocrystals was bigger from SABr to SAF. The upconversion luminescence of Er3+ in SABr, SACl and SAF were study. The intensity ratio of red and green light was reduced in glass ceramics when the content from LiBr turn to LiF.

  19. Infrared-to-visible conversion luminescence of Er 3+ ions in lead borate transparent glass-ceramics

    Science.gov (United States)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2009-10-01

    Transparent glass-ceramics were successfully prepared during controlled heat treatment of lead borate glasses. The PbF 2 particles were dispersed into a borate glass matrix which was evidenced by X-ray diffraction analysis. The phase identification revealed that crystalline peaks can be related to the orthorhombic PbF 2 phase. Green up-conversion luminescence due to the 4S 3/2- 4I 15/2 transition of Er 3+ ions was registered. In comparison to the precursor glass the luminescence intensity was considerably higher, whereas the luminescence linewidth slightly decreased in the studied oxyfluoride transparent glass-ceramics. It indicated that a part of the trivalent erbium was incorporated into the PbF 2 crystalline phase.

  20. Variable thermal expansion of glass-ceramics containing Ba1-xSrxZn2Si2O7.

    Science.gov (United States)

    Thieme, Christian; Schlesier, Martin; Oji Dike, Eze; Rüssel, Christian

    2017-06-13

    Up to now, the thermal expansion behavior of multiphase glass-ceramics cannot be predicted reliably because of the nescience about the formation of the type and concentration of crystalline phases. In the system BaO-SrO-ZnO-SiO2, recently a new phase based on Ba1-xSrxZn2Si2O7 solid solutions was found, which exhibits unexpected low and highly anisotropic thermal expansion, which can be used for an adjustment of the thermal expansion properties. In the case of sealing materials for high-temperature reactors, the formation of this phase should be avoided. Hence, in this manuscript the concentration thresholds in which these solid solutions precipitate from glasses were determined. The phase analysis was correlated with the thermal expansion behavior of the glass-ceramics. Depending on the Ba/Sr-ratio of the glasses and the considered temperature range, the coefficients of thermal expansion of the glass-ceramics vary between 19.4·10(-6) K(-1) and 4.8·10(-6) K(-1). The concentration thresholds in which the as mentioned phases form via crystallization of glasses differ strongly from the literature values obtained via conventional ceramic mixed oxide route.

  1. Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering.

    Science.gov (United States)

    Goodridge, Ruth D; Wood, David J; Ohtsuki, Chikara; Dalgarno, Kenneth W

    2007-03-01

    The biological performance of a porous apatite-mullite glass-ceramic, manufactured via a selective laser sintering (SLS) method, was evaluated to determine its potential as a bone replacement material. Direct contact and extract assays were used to assess the cytotoxicity of the material. A pilot animal study, implanting the material into rabbit tibiae for 4 weeks, was also carried out to assess in vivo bioactivity. The material produced by SLS did not show any acute cytotoxic effects by either contact or extract methods. There was no evidence of an apatite layer forming on the surface of the material when soaked in SBF for 30 days, suggesting that the material was unlikely to exhibit bioactive behaviour in vivo. It is hypothesized that the material was unable to form an apatite layer in SBF due to the fact that this glass-ceramic was highly crystalline and the fluorapatite crystal phase was relatively stable in SBF, as were the two aluminosilicate crystal phases. There was thus no release of calcium and phosphorus and no formation of silanol groups to trigger apatite deposition from solution within the test time period. Following implantation in rabbit tibiae for 4 weeks, bone was seen to have grown into the porous structure of the laser-sintered parts, and appeared to be very close to, or directly contacting, the material surface. This result may reflect the local environment in vivo compared to that artificially found with the in vitro SBF test and, furthermore, confirms previous in vivo data on these glass-ceramics.

  2. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    F. Mahboub

    2010-06-01

    Full Text Available Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite.Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25 and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricatedfollowing manufacturer's instructions and the marginal gap was measured by a stereomicroscope at magnification 40× before cementation. After cementation of inlays and restoring the third group by direct composite, all the specimens were thermocycled and the marginal gaps were measured exactly as previously described. Repeated measure ANOVA and post-hoc Tukey test were used for pairwise comparison of occlusal, proximal, and gingival marginal gaps in each group. One-way ANOVA and post-hoc Tukey test wereused for comparison of mean marginal gap in the three groups and for comparison of marginal gap before and after cementation in inlays, paired T-test was used.Results: The marginal gap of direct composite (19.96 μm was significantly lower than that of indirect composite inlay (48.47 μm, which in itself was significantly lower than that of glass-ceramic inlay (60.96 μm. In all the restorations, marginal gap in the gingival margin was significantly higher than occlusal and proximal margins. The marginal gap of inlays did not change after cementation and thermocycling.Conclusion: This study indicated that the marginal gaps of the evaluated restorations are less than 100 μm, which is clinically acceptable.

  3. Exploratory development of a glass ceramic automobile thermal reactor. [anti-pollution devices

    Science.gov (United States)

    Gould, R. E.; Petticrew, R. W.

    1973-01-01

    This report summarizes the design, fabrication and test results obtained for glass-ceramic (CER-VIT) automotive thermal reactors. Several reactor designs were evaluated using both engine-dynamometer and vehicle road tests. A maximum reactor life of about 330 hours was achieved in engine-dynamometer tests with peak gas temperatures of about 1065 C (1950 F). Reactor failures were mechanically induced. No evidence of chemical degradation was observed. It was concluded that to be useful for longer times, the CER-VIT parts would require a mounting system that was an improvement over those tested in this program. A reactor employing such a system was designed and fabricated.

  4. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold

    Science.gov (United States)

    Cao, Bin; Zhou, Dali; Xue, Ming; Li, Guangda; Yang, Weizhong; Long, Qin; Ji, Li

    2008-11-01

    Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW/CS composite scaffold. The in vitro bioactivity of the AW/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the scaffold. The results showed that the compressive strength of AW GC scaffold was improved dramatically after being modified by CS, whereas the mineralization rate was delayed. MSCs can attach well on the surface of the composite scaffold.

  5. Class II direct composite resin restorations with beta-quartz glass-ceramic inserts.

    Science.gov (United States)

    Rada, R E

    1993-11-01

    With the increasing demand for esthetic posterior restorations, numerous techniques have been developed. The direct resin restoration has probably been used most extensively in Class II situations. Problems with Class II direct resin restorations include difficulty in developing proximal contact, occlusal wear, and polymerization shrinkage. Beta-quartz glass-ceramic inserts have been developed in an attempt to reduce the incidence of these potential problems. They can be placed in a one-appointment technique, are relatively inexpensive, and can readily be utilized by the clinician adept in placing Class II composite resin restorations.

  6. Research of utilization of a screen cullet in production of a glass-ceramic tile

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна Завгородня

    2016-01-01

    Full Text Available One of the directions of utilization of screen cullet of cathode ray tubes that came into disuse as inorganic valuable secondary raw materials is shown in the article. It was chosen as the aim: determine the optimal cullet content in the charge for making glass-ceramic tile. The basic method is the testing physical and chemical properties of experimental prototypes in conditions as close to real. It will be projected resource economy of inorganic secondary raw materials, reduction of harmful environmental impact of solid waste

  7. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  8. Erosion Resistance of CaO-Al2O3-SiO2 System Glass-Ceramics

    Institute of Scientific and Technical Information of China (English)

    HE Feng; NIU Feng; LOU Guang-hui; DENG Zhi-guo

    2004-01-01

    The erosion resistance tests were used to research the erosion wear behavior of CaO-Al2O3-SiO2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al2O3-SiO2 system glass-ceramic such as particles property, impact angle, impact time, size of particles were discussed.The results show that erosion rate rises along a straight line at the early period of erosion wear.With the impact time increased,the erosion rate deviates from original staight line,tendency of the erosion rate increases.With the size of paricle increased,it will have more kinetic energy,the erosion rate of the surface of glass-ceramics ploate rises.

  9. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  10. Effect of Storage Time on Bond Strength Performance of Multimode Adhesives to Indirect Resin Composite and Lithium Disilicate Glass Ceramic.

    Science.gov (United States)

    Makishi, P; André, C B; Silva, Jp Lyra E; Bacelar-Sá, R; Correr-Sobrinho, L; Giannini, M

    2016-01-01

    To investigate the bond strength performance of multimode adhesives (MMAs) to indirect resin composite and lithium disilicate glass ceramic after 24 hours or one year of water storage. Thirty flat and polished plates of indirect resin composite (Epricord) and thirty lithium disilicate glass ceramic plates (IPS e.max Press) were prepared. Surfaces were pretreated using sandblasting (indirect resin composite) or hydrofluoric acid (glass-based ceramic). Specimens were bonded with one of two MMAs (Scotchbond Universal [SBU] or All-Bond Universal [ABU]) or ceramic primer and hydrophobic bonding (RelyX Ceramic Primer and Adper Scotchbond Multi-Purpose Bond) as a control (n=10). Resin cement cylinders (0.75 mm in diameter × 0.5 mm in height) were bonded to both substrate surfaces using the respective adhesives. After 24 hours or one year of water storage, bonding performance was measured by microshear bond strength (MSBS) testing. Results were analyzed using three-way ANOVA with Bonferroni post hoc tests (α=0.05). For indirect resin composite, significantly higher MSBS values were found for ABU after 24 hours (ABU > SBU = control); however, no significant difference among the adhesives was observed after one year (p>0.05). For glass-based ceramic, significantly different bond strengths were observed among the adhesives after 24 hours (control = ABU > SBU) and one year (control > SBU = ABU; presin composite after aging, as they showed similar bond performance to that of the control group. However, separate bottles of silane bonding resin showed higher MSBS values and more durable bonding for etched glass-based ceramic.

  11. Effect of sintering temperature on structure and properties of highly porous glass-ceramics

    Directory of Open Access Journals (Sweden)

    Artem Iatsenko

    2015-06-01

    Full Text Available Highly porous biomaterials with a structure close to that of cancellous bone have been prepared using biogenic hydroxyapatite and glass of the SiO2-Na2O-CaO system by a replication of the polymer template structure. It has been established that during sintering of the samples the hydroxyapatite decomposes, which involves the formation of glass-ceramics containing phases of renanit NaCaPO4, calcium phosphate silicate Ca5(PO42SiO4, calcium pyrophosphate Ca2P2O7 and impurities of hydroxyapatite Ca5(PO43(OH. Structural characteristics and mechanical properties of the obtained materials are promising for the replacement of defective cancellous bone.

  12. The effect of microstructural features on the mechanical properties of LZSA glass-ceramic matrix composites

    Directory of Open Access Journals (Sweden)

    F. M. Bertan

    2013-09-01

    Full Text Available This work reports on the characterization of ZrSiO4 particulate-reinforced Li2O-ZrO2-SiO2-Al2O3 (LZSA glass-ceramic matrix composites. The typical physical/mechanical and chemical properties of the glass batches and the composites were measured. A composition with 60 wt.% ZrSiO4 was preliminarily selected because it demonstrated the highest values of bending strength (190 MPa and deep abrasion resistance (51 mm³. To this same composition was given a 7 wt.% bentonite addition in order to obtain plasticity behavior suitable for extrusion. The sintered samples (1150 ºC for 10 min presented a thermal linear shrinkage of 14% and bending strength values of 220 MPa.

  13. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review

    Science.gov (United States)

    Islam, Md Towhidul; Felfel, Reda M; Abou Neel, Ensanya A; Grant, David M; Ahmed, Ifty; Hossain, Kazi M Zakir

    2017-01-01

    An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented. PMID:28794848

  14. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    Energy Technology Data Exchange (ETDEWEB)

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S. (U. Halle); (Bergische); (Tennessee-C)

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  15. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    Energy Technology Data Exchange (ETDEWEB)

    Passlick, C. [Centre for Innovation Competence SiLi-nano registered , Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3, 06120 Halle (Saale) (Germany); Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R. [Bergische Universitaet Wuppertal, Gaussstrasse 20, 42097 Wuppertal (Germany); Johnson, J. A. [Department of Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States); Schweizer, S. [Centre for Innovation Competence SiLi-nano registered , Martin Luther University of Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 3, 06120 Halle (Saale) (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Walter-Huelse-Str. 1, 06120 Halle (Saale) (Germany)

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  16. Effect of CaO content on residual stress of CAS glass-ceramic

    Institute of Scientific and Technical Information of China (English)

    XIE Jun; CHENG Jin-shu; LONG Xin-jiang; YANG Shu-zhen

    2006-01-01

    The mismatch in thermal expansion coefficient between crystalline phase and glass phase can result in large thermal stresses during thermal processing,as well as the low thermal conductivity,which is the most troublesome in the production of the CaO-Al2O3-SiO2 glass-ceramic. CaO content may influence the residual stress in the system. Therefore X-ray diffraction (XRD) 'sin2ψ' method was used to calculate the residual stress in samples containing various contents of CaO. The relationship between CaO content and residual stress in CAS system was investigated. Finally reasons causing such residual stress were analyzed.

  17. Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Milhans, Jacqueline; Li, Dongsheng; Khaleel, Mohammad A.; Sun, Xin; Al-Haik, Marwan; Harris, Adrian; Garmestani, Hamid

    2011-04-20

    Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4h or 100h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750°C, using loading rates of 5 mN/s and 25 mN/s. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature (Tg). Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4h aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.

  18. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium.

    Science.gov (United States)

    Paßlick, C; Müller, O; Lützenkirchen-Hecht, D; Frahm, R; Johnson, J A; Schweizer, S

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl(2)) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu(3+) is more strongly reduced to Eu(2+), in particular, when doped as a chloride instead of fluoride compound. The Eu(2+)-to-Eu(3+) doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu(2+) fraction leads to a BaCl(2) phase transition from hexagonal to orthorhombic structure at a lower temperature.

  19. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  20. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Science.gov (United States)

    Wołkowycki, Grzegorz

    2016-03-01

    The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators' matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  1. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    Science.gov (United States)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  2. Dental ceramics coated with bioactive glass: Surface changes after exposure in a simulated body fluid under static and dynamic conditions

    Science.gov (United States)

    Papadopoulou, L.; Kontonasaki, E.; Zorba, T.; Chatzistavrou, X.; Pavlidou, E.; Paraskevopoulos, K.; Sklavounos, S.; Koidis, P.

    2003-07-01

    Bioactive materials develop a strong bond with living tissues through a carbonate-containing hydroxyapatite layer, similar to that of bone. The fabrication of a thin bioactive glass coating on dental ceramics used in metal-ceramic restorations, could provide a bioactive surface, which in combination with a tissue regenerative technique could lead to periodontal tissues attachment. The aim of this study was the in vitro investigation of the surface structure changes of dental ceramics used in metal-ceramic restorations, coated with a bioactive glass heat-treated at 950 °C, after exposure in a simulated body fluid (SBF) under two different soaking conditions. Coating of dental ceramics with a bioactive glass resulted in the formation of a stable and well bonded with the ceramic substrate thin layer. The growth of a well-attached carbonate apatite layer on their surface after immersion in a simulated body fluid is well evidenced under both experimental conditions, although in static environment the rate of apatite growth is constant and the grown layers seem to be more dense and compact compared with the respective layers observed on specimens under dynamic conditions.

  3. The effects of viscoelastic parameters on residual stress development in a zirconia/glass bilayer dental ceramic.

    Science.gov (United States)

    Taskonak, Burak; Borges, Gilberto A; Mecholsky, John J; Anusavice, Kenneth J; Moore, B Keith; Yan, Jiahau

    2008-09-01

    The aim of this study was to test the hypothesis that the residual stresses in a zirconia-based bilayer dental composite system can be tailored through heat treatment above and below the glass transition temperature of glass veneers. Ceramic bilayer disc specimens were prepared from a zirconia core and a glass veneer. Each bilayer ceramic group was heat treated 40 degrees C below, 20 degrees C and 40 degrees C above and at the glass transition temperature of the glass veneer, and cooled using a fast or a slow cooling rate. Specimens were tested for flexure strength using a biaxial bending fixture. Residual stresses were calculated using a fracture mechanics approach. Heat treatments produced significant differences (p 0.05) between the mean flexural strengths of the heat treatment groups when a slow cooling rate was used. Fractures initiated from the veneer surfaces of the specimens. Heat treatment above and below the glass transition temperature of the veneer layer, and the cooling rate have a significant effect on the flexural strength of the bilayer ceramic laminates. The existence of residual compressive stress is the most likely reason for the observed strength increases. Residual stresses can be modified using the elastic-viscoelastic relaxation behavior of a glass veneer.

  4. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Science.gov (United States)

    Juraski, Amanda De Castro; Dorion Rodas, Andrea Cecilia; Elsayed, Hamada; Bernardo, Enrico; Oliveira Soares, Viviane; Daguano, Juliana

    2017-01-01

    Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3) and diopside (CaMgSi2O6), but combeite (Na2Ca2Si3O9) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies. PMID:28772783

  5. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Amanda De Castro Juraski

    2017-04-01

    Full Text Available Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3 and diopside (CaMgSi2O6, but combeite (Na2Ca2Si3O9 crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies.

  6. Effect of nanocrystals on up-conversion luminescence of Er3+,Yb3+ co-doped glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    Hua Yu; Lijuan Zhao; Jie Meng; Qin Liang; Xuanyi Yu; Baiquan Tang; Jingjun Xu

    2005-01-01

    @@ Different up-conversion luminescent spectra of Er3+ ions were observed in the oxyfluoride glass-ceramics.The ratio of two fluorides in the original compositions was modified in order to form different nanocrystals.The intensity of up-conversion luminescence increased sharply when the ratio of PbF2 and CdF2 was 40:10.The data of differential thermal analysis and X-ray diffraction were used to explain the optimization fluoride ratio. The intensity of up-conversion luminescence is not only decided by the crystallizability but also mainly related with the stoichiometric proportion of fluoride nanocrystals in the glass-ceramics.

  7. Glass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Baino, Francesco; Miola, Marta; Mortera, Renato; Onida, Barbara; Verné, Enrica

    2009-03-01

    Glass-ceramic macroporous scaffolds were prepared using glass powders and polyethylene (PE) particles of two different sizes. The starting glass, named as Fa-GC, belongs to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O-CaF(2) and was synthesized by a traditional melting-quenching route. The glass was ground and sieved to obtain powders of specific size which were mixed with PE particles and then uniaxially pressed in order to obtain crack-free green samples. The compact of powders underwent a thermal treatment to remove the organic phase and to sinter the Fa-GC powders. Fa-GC scaffolds were characterized by means of X-Ray Diffraction, morphological observations, density measurements, image analysis, mechanical tests and in vitro tests. Composite systems were then prepared combining the drug uptake-delivery properties of MCM-41 silica micro/nanospheres with the Fa-GC scaffold. The system was prepared by soaking the scaffold into the MCM-41 synthesis batch. The composite scaffolds were characterized by means of X-Ray Diffraction, morphological observations, mechanical tests and in vitro tests. Ibuprofen was used as model drug for the uptake and delivery analysis of the composite system. In comparison with the MCM-41-free scaffold, both the adsorption capacity and the drug delivery behaviour were deeply affected by the presence of MCM-41 spheres inside the scaffold.

  8. Sol-gel synthesis and structure of cordierite/tialite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Lachezar Radev

    2009-09-01

    Full Text Available In the present work the results of the research on the sol-gel synthesis and structure of cordierite (2MgO·2Al2O3·5SiO2, tialite (Al2O3·TiO2 and cordierite/tialite glass-ceramics as well cordierite containing 2 wt.% of Co and Co+Cu have been described and discussed. The sol-gel synthesis was carried out using different kind of precursors as follows: Al(NO3×9H2O, Si(OC2H54 , Ti(OC4H94 , Mg(NO32×6H2O, chlorides or nitrates of corresponding metals, H2O, C2H5OH, Aqua Regia, NH4F and PEG. The synthesized gels were dried and thermally treated in the temperature range from 800°C to 1200°C. The sol-gel processes and structure of the cordierite, tialite and cordierite/tialite glass-ceramics have been investigated by means of XRD, FTIR, TEM, SEM and EPMA.

  9. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix.

    Science.gov (United States)

    Sun, D D; Tay, J H; Cheong, H K; Leung, D L; Qian, G

    2001-10-12

    Chemical analysis of spent Co/Mo/gamma Al(2)O(3) catalyst revealed the presence of carbon, molybdenum, sulfur, vanadium and cobalt at levels of 16.0, 10.9, 7.3, 4.6 and 4.0 wt.%, respectively. It was found that calcination at 500 degrees C provides an effective solution for the removal of carbon and sulfur and this generates the oxide form of the heavy metals. The removal of these heavy metals can be achieved through a two-stage leaching process. During the first stage, in which concentrated ammonia is used and it has been found that this process can be successful in removing as much as 83% (w/v) Mo. In a second stage, it was found that using 10% (v/v) of sulfuric acid, it was possible to account for up to 77% (w/v) Co and 4% (w/v) Mo removal. Leaching test results indicated that the vanadium present in the heated spent catalyst was almost stabilized but the molybdenum and cobalt were not. The combination of two solid wastes, ladle furnace slag (LFS) and treated residue of spent catalyst, could be used for making a high value-added anorthite glass-ceramic materials. Further leaching tests showed that ceramic glass materials provided a very effective method of Co, Mo and V heavy metals stabilization resulting in a product with a possible commercial value.

  10. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    Science.gov (United States)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  11. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  12. Microstructure and Characteristics of Ba(Ti,Zr)O3 Ceramics with Addition of Glass Frit

    Science.gov (United States)

    Wang, Chun-Huy

    2002-08-01

    Microstructure and characteristics of Ba(Ti,Zr)O3 ceramics are significantly influenced by the addition of 4PbO.B2O3. The melting temperature of 4PbO.B2O3 was approximately 500°C, and thus it provides a liquid phase during sintering. At low sintering temperatures, the grain growth of Ba(Ti,Zr)O3 ceramics is enhanced by capillary rearrangement and solution-reprecipitation from the liquid phase. At high sintering temperatures, exaggerated grain growth of Ba(Ti,Zr)O3 ceramics is restrained by the presence of a liquid phase. The spreading liquid can penetrate the solid-solid interfaces. Penetration leads to disintegration of the solid and the subsequent rearrangement of fragments. With increasing amounts of 4PbO.B2O3, the tetragonal c/a ratio and Curie point temperature increase, but the dielectric loss tangent is depressed. With a suitable amount of glass frit and temperature for sintering, the density is enhanced and the values of the planar coupling factor and the poled dielectric constant are improved.

  13. Electron paramagnetic resonance and photoluminescence investigation of europium local structure in oxyfluoride glass ceramics containing SrF2 nanocrystals

    Science.gov (United States)

    Antuzevics, A.; Kemere, M.; Krieke, G.; Ignatans, R.

    2017-10-01

    Different compositions of europium doped aluminosilicate oxyfluoride glass ceramics prepared in air atmosphere have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy methods. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements show presence of homogenously distributed SrF2 nanocrystals after the heat treatment of the precursor glass. Efficient Eu3+ incorporation in the high symmetry environment of glass ceramics is observed from the photoluminescence spectra. EPR spectra indicate Eu3+ → Eu2+ reduction upon precipitation of crystalline phases in the glass matrix. For composition abundant with Eu2+ in the glassy state such behaviour is not detected. Local structure around europium ions is discussed based on differences in chemical compositions.

  14. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  15. Critical Speed of The Glass Glue Machine's Creep and Influence Factors Analysis

    Science.gov (United States)

    Yang, Jianxi; Huang, Jian; Wang, Liying; Shi, Jintai

    When automatic glass glue machine works, two questions of the machine starting vibrating and stick-slip motion are existing. These problems should be solved. According to these questions, a glue machine's model for studying stick-slip is established. Based on the dynamics system describing of the model, mathematical expression is presented. The creep critical speed expression is constructed referring to existing research achievement and a new conclusion is found. The influencing factors of stiffness, dampness, mass, velocity, difference of static and kinetic coefficient of friction are analyzed through Matlab simulation. Research shows that reasonable choice of influence parameters can improve the creep phenomenon. These all supply the theory evidence for improving the machine's motion stability.

  16. On the use of Raman spectroscopy and instrumented indentation for characterizing damage in machined carbide ceramics

    Science.gov (United States)

    Groth, Benjamin Peter

    Machining is a necessary post-processing step in the manufacturing of many ceramic materials. Parts are machined to meet specific dimensions, with tight tolerances, not attainable from forming alone, as well as to achieve a desired surface finish. However, the machining process is very harsh, often employing the use of high temperatures and pressures to achieve the wanted result. In the case of silicon carbide, a material with extremely high hardness and stiffness, machining is very difficult and requires machining conditions that are highly aggressive. This can leave behind residual stresses in the surface of the material, cause unwanted phase transformations, and produce sub-surface deformation that can lead to failure. This thesis seeks to determine the effect of various machining conditions on the Raman spectra and elastic properties of sintered silicon carbide materials. Sample sets examined included hot-pressed silicon carbide tiles with four different surface finishes, as well as "ideal" single crystal silicon carbide wafers. The surface finishes studied were as follows: an as-pressed finish; a grit blast finish; a harsh rotary ground finish; and a mirror polish. Each finish imparts a different amount, as well as type, of deformation to the sample and are each utilized for a specific application. The sample surfaces were evaluated using a combination of Raman spectroscopy, for phase identification and stress analysis, and nanoindentation, for obtaining elastic properties and imparting uniform controlled deformation to the samples. Raman spectroscopy was performed over each sample surface using 514- and 633-nm wavelength excitation, along with confocal and non-confocal settings to study depth variation. Surfaces stresses were determined using peak shift information extracted from Raman spectra maps, while other spectral variations were used to compare levels of machining damage. Elastic modulus, hardness, and plastic work of indentation maps were generated

  17. Surface morphology and fracture in handpiece adjusting of a leucite-reinforced glass ceramic with coarse diamond burs

    Energy Technology Data Exchange (ETDEWEB)

    Song Xiaofei, E-mail: xiaofeisong@tju.edu.cn [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Yin Ling, E-mail: ling.yin@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4811 (Australia)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Morphology and fracture on the removed leucite-reinforced glass ceramic. Black-Right-Pointing-Pointer Morphology consisted of microfracture, chipping, ductile scratches, smear areas. Black-Right-Pointing-Pointer Brittle fracture was the primary mechanism for the ceramic removal. Black-Right-Pointing-Pointer Lateral and radial cracks due to the mechanical impact of diamond burs. Black-Right-Pointing-Pointer Temperature-induced phase transformations were detected in leucite-reinforced glass ceramic, which might cause crack initiation. - Abstract: The aim of this paper was to understand surface morphology and fracture occurring on leucite-reinforced glass ceramic surfaces adjusted with coarse diamond burs. The surface roughness was quantitatively assessed using stylus profilometry and was analyzed statistically. The surface morphology was viewed using scanning electron microscopy. Surface phase transformations were preliminarily studied using Raman spectrometry. The results show that the surface roughness did not significantly depend on either depth of cut (p > 0.05) or feed rate (p > 0.05). However, when decreasing the depth of cut and the feed rate, a tendency for brittle-to-ductile transition existed. The surface morphology consisted of microfracture, chipping, ductile removal scratches, smear areas and debris. Brittle fracture was the primary mechanism for material removal. Lateral and radial cracks due to the mechanical impact of diamond burs were the major cause of surface fracture in the leucite-reinforced glass ceramic. The maximum adjusting temperatures on the adjusted surfaces were estimated based on heat transfer analysis. The Raman spectra of the adjusted and unadjusted surfaces show a strong temperature-dependence of Raman shifts near 525-529 cm{sup -1}. This indicates the occurrence of temperature-induced cubic-tetragonal phase transformations in the adjusted leucite glass ceramic surfaces. These phase

  18. Spectrophotometric evaluation of the influence of different backgrounds on the color of glass-infiltrated ceramic veneers.

    Science.gov (United States)

    Charisis, Dimitrios; Koutayas, Spiridon-Oumvertos; Kamposiora, Photini; Doukoudakis, Asterios

    2006-08-01

    The purpose of this spectrophotometric study was to evaluate the influence of different color backgrounds on Vita In-Ceram (Vident) glass-infiltrated ceramic veneers. A total of 50 color background disks were fabricated from Vitadur Alpha 2M2 (n=30) and 5M1 (n=20) dentin porcelain (Vi-dent). Ceramic veneer disks were fabricated from In-Ceram Spinell (n=20) or In-Ceram Alumina (n=20) glass-infiltrated core veneered using Vitadur Alpha 2M2 dentin porcelain. In addition, 10 ceramic veneer disks were fabricated from feldspathic dentin porcelain Vitadur Alpha 2M2. The ceramic veneer specimens were bonded onto the color background specimens using dual-curing luting composite cement, creating the following groups (each n=10): S2M2 (Spinell/2M2), S5M1 (Spinell/5M1), A2M2 (Alumina/2M2), A5M1 (Alumina/5M1), and control (Vitadur Alpha/2M2). L*a*b* color coordinates were measured five times for each specimen using a Vita Easyshade (Vident) spectrophotometer. Mean color differences (deltaE) between each study group and the control group were: 3.79 for S2M2; 7.24 for S5M1; 5.86 for A2M2, and 7.32 for A5M1. Two-way ANOVA showed statistically significant differences in deltaE between all groups. However, a t test revealed that the statistically significant differences only existed between groups S2M2/S5M1, A2M2/A5M1, and S2M2/A2M2. The results suggest that vacuum infiltration with a translucent glass provides the Spinell and Alumina ceramic veneers with increased semi-translucency, which makes them highly influenced by discolored backgrounds. In-Ceram Spinell glass-infiltrated ceramic veneers could be considered as an alternative to conventional feldspathic veneers for the restoration of nondiscolored teeth. Although Spinell and Alumina ceramic veneers could enhance the final color establishment of discolored teeth, the results would not be clinically acceptable.

  19. Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors.

    Science.gov (United States)

    Henke, Bastian; Schweizer, Stefan; Johnson, Jacqueline A; Keane, Denis T

    2007-05-01

    The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl(2) nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d-4f transition of Eu(2+) embedded in the BaCl(2) nanocrystals; Eu(2+) in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl(2). The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K-edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.

  20. Micro-machining of optical glasses – A review of diamond-cutting glasses

    Indian Academy of Sciences (India)

    F Z Fang; X D Liu; L C Lee

    2003-10-01

    In order to diamond-turn optical glasses to a nanometric surface finish, it is critical to determine the transition point from brittle mode to ductile mode. This paper presents various experimental techniques to study this transition and discusses the mechanism of the surface generation. It has been recognized that tool wear is a serious issue in diamond turning of glasses. Thus, research in future should be concentrated on this field to enable the technology to be applied in commercial production.

  1. Synthesis, characterization and bioactivity of a calcium-phosphate glass-ceramics obtained by the sol-gel processing method.

    Science.gov (United States)

    Jmal, Nouha; Bouaziz, Jamel

    2017-02-01

    In this work, a calcium-phosphate glass-ceramics was successfully obtained by heat treatment of a mixture of 26.52 in wt.% of fluorapatite (Fap) and 73.48 in wt.% of 77S (77 SiO214 CaO9 P2O5 in wt.%) gel. The calcium phosphate-glass-ceramics was prepared by sol-gel process with tetraethyl orthosilicate (TEOS), triethyl phosphate (TEP), calcium nitrate and fluorapatite. The synthesized powders were characterized by some commonly used tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), (31)P magic angle spinning nuclear magnetic resonance (MAS-NMR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thin-film X-ray diffraction (TF-XRD). The obtained results seemed to confirm the nucleation and growth of hydroxyapatite (Hap) nano-phase in the glass. Moreover, an in-vitro evaluation of the glass-ceramic was performed. In addition, to assess its bioactive capacity, it was soaked in simulated body fluid (SBF) at different time intervals. The SEM, EDS and TF-XRD analyses showed the deposition of hydroxyapatite on the surface of the specimens after three days of immersion in SBF solution. The mechanical properties of the obtained material such as rupture strength, Vickers hardness and elastic modulus were measured. In addition, the friction coefficient of calcium phosphate-glass-ceramics was tested. The values of the composite of rupture strength (24MPa), Vickers hardness (214Hv), Young's modulus (52.3GPa), shear modulus (19GPa) and friction coefficient (0.327) were obtained. This glass-ceramics can have useful applications in dental prostheses. Indeed, this material may have promising applications for implants because of its content of fluorine, the effective protector against dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics.

    Science.gov (United States)

    Bretcanu, O; Spriano, S; Verné, E; Cöisson, M; Tiberto, P; Allia, P

    2005-07-01

    Ferrimagnetic glass-ceramics are potential candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to analyse the influence of the amount of crystallised magnetite on the magnetic properties of glass-ceramic samples. Thus, two different ferrimagnetic glass-ceramics with the composition of the system Na(2)O-CaO-SiO(2)-P(2)O(5)-FeO-Fe(2)O(3) were prepared by melting at 1500 degrees C for 30 min of the coprecipitation-derived starting products. The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The estimated amount of crystallised magnetite varies between 20 and 45 wt.%, as a function of the chemical composition. The morphology of the crystals was studied by scanning electron micrography and transmission electron micrography. Glass transition temperature and thermal stability were investigated by differential thermal analysis. Magnetic hysteresis cycles were analysed using a vibrating sample magnetometer with a maximum applied field of 17 kOe, at room temperature, in quasi-static conditions. Calorimetric measurements were carried out using a magnetic induction furnace. The power losses estimated from calorimetric measurements under a magnetic field of 40 kA/m and 440 kHz are 65 W/g for the glass-ceramic with lower iron oxides content and 25 W/g for the glass-ceramic with higher iron oxide content.

  3. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong-Sam Park

    2008-02-01

    Full Text Available In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

  4. Rigid bonded glass ceramic seals for high temperature membrane reactors and solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Ove

    2009-05-15

    Solid Oxide Fuel cells (SOFC) and dense gas separation membranes based on mixed ionic and electronic conductors have gained increased interest the resent years due the search for new technologies for clean energy generation. These technologies can be utilized to produce electricity from fossil fuel with low CO{sub 2} emission compared to conventional gas or coal based energy plants. One crucial challenge with high temperature membrane reactors and SOFCs is the sealing of the active membranes/electrolytes to prevent leakage of air to fuel side or vice versa. Due to the high operating temperatures of typical 800-1000 degrees Celsius the selection of reliable sealing materials is limited. The seals have to remain gas tight during the life time of the reactor/SOFC, they need to be chemical compatible with the sealed materials and stable in reducing and oxidizing atmospheres containing water vapour and CO{sub 2}, and finally they should be cheap, readily available and easy to process. The main purpose of the present work was to evaluate rigid bonded glass ceramic seals for dense oxygen ion and proton conducting membranes and electrolytes for SOFCs and high temperature (HT) membrane reactors. First, a review of sealing technologies has been carried out with emphasis on SOFC and ceramic membranes technologies applicable for zero emission power plants. Regarding sealing, the best and cheapest materials at the present time are based on silicate glass and glass ceramics. In the present work aluminate glass without silica is introduced as a new class of seals expanding the material selection for HT membrane sealing technologies. The main reason for studying silica free systems is that silica is known to be unstable in humid atmospheres and/or reducing conditions at elevated temperatures. Two glass systems have been evaluated. The first was based on aluminate glasses in the system RO-CaO-Al{sub 2}O{sub 3} (R=Mg, Ba, Sr) with special focus on the CaO-MgO-Al{sub 2}O{sub 3

  5. Bioactive Glass-Ceramic Scaffolds from Novel ‘Inorganic Gel Casting’ and Sinter-Crystallization

    Directory of Open Access Journals (Sweden)

    Hamada Elsayed

    2017-02-01

    Full Text Available Highly porous wollastonite-diopside glass-ceramics have been successfully obtained by a new gel-casting technique. The gelation of an aqueous slurry of glass powders was not achieved according to the polymerization of an organic monomer, but as the result of alkali activation. The alkali activation of a Ca-Mg silicate glass (with a composition close to 50 mol % wollastonite—50 mol % diopside, with minor amounts of Na2O and P2O5 allowed for the obtainment of well-dispersed concentrated suspensions, undergoing progressive hardening by curing at low temperature (40 °C, owing to the formation of a C–S–H (calcium silicate hydrate gel. An extensive direct foaming was achieved by vigorous mechanical stirring of partially gelified suspensions, comprising also a surfactant. The open-celled structure resulting from mechanical foaming could be ‘frozen’ by the subsequent sintering treatment, at 900–1000 °C, causing substantial crystallization. A total porosity exceeding 80%, comprising both well-interconnected macro-pores and micro-pores on cell walls, was accompanied by an excellent compressive strength, even above 5 MPa.

  6. Sintered gahnite–cordierite glass-ceramic based on raw materials with different fluorine sources

    Indian Academy of Sciences (India)

    Esmat M A Hamzawy; Mohammed A Bin Hussain

    2015-12-01

    Glass-ceramic based on Zn-containing cordierite was prepared from kaolin, silica'sand and commercial ZnO. The addition of AlF3, MgF2 and CaF2 was performed as nucleation catalysts. Dark brown glasses were obtained from the glass batches. The transformation and crystallization temperatures were in the range of 739–773 and 972–1007°C, respectively. Gahnite, cordierite and very little enstatite were the development crystalline phases through the heating and sintering process between 1000 and 1340°C. The microstructure of crystallized samples at 1340°C showed the appearance of dominant euhedral octahedral crystals of gahnite and hexagonal cordierite, in the low micro-scale, disseminated in the glassy matrix. The microanalysis of the crystallized samples indicated that Zn and Mg may replace each other in gahnite and cordierite structure. Densities of the crystallized samples were between 2.2517 and 2.5278 g cm−3. The thermal expansion of the crystallized samples was ranging from 19.22 to 59.30 × 10−7°C−1. However, the higher crystallization of both cordierite and gahnite accompany with the higher values of densities and the lower values of coefficient of thermal expansion.

  7. Feasibility and tailoring of bioactive glass-ceramic scaffolds with gradient of porosity for bone grafting.

    Science.gov (United States)

    Vitale-Brovarone, Chiara; Baino, Francesco; Verné, Enrica

    2010-05-01

    The aim of this research study is the preparation and characterization of graded glass-ceramic scaffolds that are able to mimic the structure of the natural bone tissue, formed by cortical and cancellous bone. The material chosen for the scaffolds preparation is a glass belonging to the system SiO( 2)-P(2)O(5)-CaO-MgO-Na( 2)O-K(2)O (CEL2). The glass was synthesized by a conventional melting-quenching route, ground, and sieved to obtain powders of specific size. The scaffolds were fabricated using different methods: polyethylene burn-off, sponge replication, a glazing-like technique, and combinations of these methods. The scaffolds were characterized through morphological observations, density measurements, volumetric shrinkage, mechanical tests, and in vitro bioactivity tests. The features of the scaffolds prepared using the different methods were compared in terms of morphological structure, pores content, and mechanical strength. The proposed scaffolds effectively mimic the cancellous/cortical bone system in terms of structure, porosity, and mechanical strength, and they exhibit a highly bioactive behavior. Therefore, these graded grafts have a great potential for biomedical applications and can be successfully proposed for the substitution of load-bearing bone portions.

  8. EFFECT OF SINTERING TEMPERATURE ON MICROSTRUCTURE AND IN-VITRO BEHAVIOR OF BIOACTIVE GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    Hashmi M. U.

    2013-12-01

    Full Text Available In this work, powders of the composition (CaO 46- SiO2 34- P2O5 14.5- MgO 4- CaF2 1- MgF2 0.5 (wt. % were thoroughly mixed and melted in a muffle furnace. The melt was quenched in water to form glass. Three glass-ceramics were prepared by sintering glass samples at three different temperatures 850, 900 and 950°C according to the exothermal peaks of DTA. The DTA peaks correspond to the bioactive crystalline phases hydroxyapatite (HA and wollastonite as confirmed by the XRD data. Study of diameter-shrinkage co-efficient and bulk-density of samples revealed higher densification rate for the range 900 - 950°C than that for the range 850 - 900°C.SEM and optical microscope results illustrated a tendency towards closely packed structure and increasing grain size with the increase of sintering temperature. The samples were immersed in SBF for 30 days at room temperature for in-vitro evaluation.EDS analysis, showing the presence of carbon (C along with calcium (Ca and phosphorus (P suggests the formation of hydroxycarbonate-apatite (HCA phase that indicates the bioactivity of the material which increases with the increase of sintering temperature.

  9. The structure of Er3+-doped oxy-fluoride transparent glass-ceramics studied by Raman scattering

    Science.gov (United States)

    Tikhomirov, V. K.; Seddon, A. B.; Ferrari, M.; Montagna, M.; Santos, L. F.; Almeida, R. M.

    2003-11-01

    We show that the structure of transparent oxy-fluoride glass-ceramics formed by heat treatment of glasses of typical composition 32(SiO2):9(AlO1.5):31.5(CdF2):18.5(PbF2): 5.5(ZnF2):3.5(ErF3) mol% consists of ~ 12 nm diameter, Er3+-doped, β-PbF2 nano-crystals embedded in a silica-based glass network and connected to it via non-bridging O and F anions, or fluorine linkages such as Pb-F-Cd and Pb-F-Zn. It is proposed that the glass network structure is mostly chain-like and dominated by Si(O,F)4 tetrahedra with two bridging O and two non-bridging O and/or F atoms (Q2 units). SiO4 tetrahedra with zero and one bridging O (Q0 and Q1 units, respectively) are also present in the glass structure, in the approximate proportion Q0:Q1:Q2 = 1:1:3, a characteristic which appears to be of primary importance. The flexible, chain-like glass-network, with many broken bonds, results in easy accommodation of the Er3+-doped PbF2 nano-crystals, which are grown by heat-treatment of the precursor glass. The boson peak in the Raman spectrum of the precursor glass decreases in intensity upon ceramming and is partly converted to narrow crystalline peaks at lower frequency, consistent with the precipitation of PbF2 crystalline nano-particles. It is suggested that the boson peak involves localized vibrations of broken or stretched Pb-F bonds. The mean free path for these vibrations increases with ceramming, which involves partial crystallization of the glass network, resulting in a shift of the boson peak vibrations to lower-frequency crystalline peaks.

  10. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  11. Interdisciplinary approach to cell-biomaterial interactions: biocompatibility and cell friendly characteristics of RKKP glass-ceramic coatings on titanium.

    Science.gov (United States)

    Ledda, Mario; De Bonis, Angela; Bertani, Francesca Romana; Cacciotti, Ilaria; Teghil, Roberto; Lolli, Maria Grazia; Ravaglioli, Antonio; Lisi, Antonella; Rau, Julietta V

    2015-06-01

    In this work, titanium (Ti) supports have been coated with glass-ceramic films for possible applications as biomedical implant materials in regenerative medicine. For the film preparation, a pulsed laser deposition (PLD) technique has been applied. The RKKP glass-ceramic material, used for coating deposition, was a sol-gel derived target of the following composition: Ca-19.4, P-4.6, Si-17.2, O-43.5, Na-1.7, Mg-1.3, F-7.2, K-0.2, La-0.8, Ta-4.1 (all in wt%). The prepared coatings were compact and uniform, characterised by a nanometric average surface roughness. The biocompatibility and cell-friendly properties of the RKKP glass-ceramic material have been tested. Cell metabolic activity and proliferation of human colon carcinoma CaCo-2 cells seeded on RKKP films showed the same exponential trend found in the control plastic substrates. By the phalloidin fluorescence analysis, no significant modifications in the actin distribution were revealed in cells grown on RKKP films. Moreover, in these cells a high mRNA expression of markers involved in protein synthesis, proliferation and differentiation, such as villin (VIL1), alkaline phosphatase (ALP1), β-actin (β-ACT), Ki67 and RPL34, was recorded. In conclusion, the findings, for the first time, demonstrated that the RKKP glass-ceramic material allows the adhesion, growth and differentiation of the CaCo-2 cell line.

  12. Crystallization evolution, microstructure and properties of sewage sludge-based glass-ceramics prepared by microwave heating.

    Science.gov (United States)

    Tian, Yu; Zuo, Wei; Chen, Dongdong

    2011-11-30

    A Microwave Melting Reactor (MMR) was designed in this study which improved the microwave adsorption of sewage sludge to prepare glass-ceramics. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used for the study of crystallization behavior and microstructure of the developed glass-ceramics. DSC and XRD analysis revealed that crystallization of the nucleated specimen in the region of 900-1000°C resulted in the formation of two crystalline phases: anorthite and wollastonite. When the crystallization temperature increased from 900 to 1000°C, the tetragonal wollastonite grains were subjected to tensile microstresses, causing the cracking of crystal. Al ions substituted partially Si ions and occupied tetrahedral sites, giving rise to the formation of anorthite. The relationship between microwave irradiation and crystal growth was studied and the result indicated that the microwave selective heating suppressed the crystal growth, giving apparent improvements in the properties of the glass-ceramics. The glass-ceramics products exhibited bending strength of 86.5-93.4 MPa, Vickers microhardness of 6.12-6.54 GPa and thermal expansion coefficient of 5.29-5.75 × 10(-6)/°C. The best chemical durability in acid and alkali solutions was 1.32-1.61 and 0.41-0.58 mg/cm(2), respectively, showing excellent durability in alkali solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

    Science.gov (United States)

    Eraslan, Oguz

    2016-01-01

    PURPOSE To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (Pacid etching. The surface topography of ceramics was affected by surface treatments. PMID:27141250

  14. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  15. Suppression effects of dental glass-ceramics with polarization-induced highly dense surface charges against bacterial adhesion.

    Science.gov (United States)

    Nozaki, Kosuke; Koizumi, Hiroki; Horiuchi, Naohiro; Nakamura, Miho; Okura, Toshinori; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    This study investigated the surface characteristics and antibacterial ability capacity of surface-improved dental glass-ceramics by an electrical polarization process. Commercially available dental glass-ceramic materials were electrically polarized to induce surface charges in a direct current field by heating. The surface morphology, chemical composition, crystal structure, and surface free energy (SFE) were evaluated using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and water droplet methods, respectively. The antibacterial capacity was assessed by a bacterial adhesion test using Streptococcus mutans. Although the surface morphology, chemical composition, and crystal structure were not affected by electrical polarization, the polar component and total SFE were enhanced. After 24 h incubation at 37ºC, bacterial adhesion to the polarized samples was inhibited. The electrical polarization method may confer antibacterial properties on prosthetic devices, such as porcelain fused to metal crowns or all ceramic restorations, without any additional bactericidal agents.

  16. Investigating in vitro bioactivity and magnetic properties of the ferrimagnetic bioactive glass-ceramic fabricated using soda-lime-silica waste glass

    Science.gov (United States)

    Abbasi, M.; Hashemi, B.; Shokrollahi, H.

    2014-04-01

    The main purpose of the current research is the production and characterization of a ferrimagnetic bioactive glass-ceramic prepared through the solid-state reaction method using soda-lime-silica waste glass as the main raw material. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural, thermal and magnetic properties of the samples were examined by X-ray diffraction (XRD), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). The apatite surface layer formation was examined by the scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The calcium ion concentration in the solutions was measured by atomic absorption spectroscopy (AAS). VSM results revealed that with the addition of 5-20 wt% strontium hexaferrite to bioactive glass-ceramics, the ferrimagnetic bioactive glass-ceramics with hysteresis losses between 7024 and 75,852 erg/g were obtained. The in vitro test showed that the onset formation time of hydroxyapatite layer on the surface of the samples was 14 days and after 30 days, this layer was completed.

  17. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brummond, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Armantrout, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaw, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jantzen, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jostons, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKibben, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strachan, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vienna, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between

  18. Luminescence properties of dual valence Eu doped nano-crystalline BaF2 embedded glass-ceramics and observation of Eu2+ → Eu3+ energy transfer.

    Science.gov (United States)

    Biswas, Kaushik; Sontakke, Atul D; Sen, R; Annapurna, K

    2012-03-01

    Europium doped glass-ceramics containing BaF(2) nano-crystals have been prepared by using the controlled crystallization of melt-quenched glasses. X-ray diffraction and transmission electron microscopy have confirmed the presence of cubic BaF(2) nano-crystalline phase in glass matrix in the ceramized samples. Incorporation of rare earth ions into the formed crystalline phase having low phonon energy of 346 cm(-1) has been demonstrated from the emission spectra of Eu(3+) ions showing the transitions from upper excitation states (5)D(J) (J = 1, 2, and 3) to ground states for the glass-ceramics samples. The presence of divalent europium ions in glass and glass-ceramics samples is confirmed from the dominant blue emission corresponding to its 5d-4f transition under an excitation of 300 nm. Increase in the reduction of trivalent europium (Eu(3+)) ions to divalent (Eu(2+)) with the extent of ceramization is explained by charge compensation model based on substitution defect mechanisms. Further, the phenomenon of energy transfer from Eu(2+) to Eu(3+) ion by radiative trapping or re-absorption is evidenced which increases with the degree of ceramization. For the first time, the reduction of Eu(3+) to Eu(2+) under normal air atmospheric condition has been observed in a BaF(2) containing oxyfluoride glass-ceramics system.

  19. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product.

  20. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Performance Evaluation of a Bench-Top Precision Glass Molding Machine

    Directory of Open Access Journals (Sweden)

    Peter Wachtel

    2013-01-01

    Full Text Available A Dyna Technologies Inc. GP-5000HT precision glass molding machine has been found to be a capable tool for bridging the gap between research-level instruments and the higher volume production machines typically used in industry, providing a means to apply the results of rigorous instrumentation analysis performed in the lab to industrial PGM applications. The GP-5000HT's thermal and mechanical functionality is explained and characterized through the measurement baseline functionality and the associated error. These baseline measurements were used to determine the center thickness repeatability of pressed glass parts, which is the main metric used in industrial pressing settings. The baselines and the repeatability tests both confirmed the need for three warm-up pressing cycles before the press reaches a thermal steady state. The baselines used for pressing a 2 mm glass piece to a 1 mm target center thickness yielded an average center thickness of 1.001 mm and a standard deviation of thickness of 0.0055 mm for glass samples pressed over 3 consecutive days. The baseline tests were then used to deconvolve the sources of error of final pressed piece center thickness.

  2. Synthesis and evaluation of factors affecting the in vitro bioactivity and antibacterial activity of bioactive glass ceramics

    Science.gov (United States)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat

    2017-01-01

    In the present study, two novel silicate glass-ceramics having chemical composition 38SiO2-41CaO-6P2O5-(15 - x)Na2O-xCaF2 (x = 0, 0.43 mol%) were synthesized. These glass derivatives were subjected to stimulated body fluid for 24 days in SBF under static condition at 37∘C in order to evaluate the bioactive properties of specimens. The antibacterial activity of glass ceramics against three pathogenic bacteria was determined using the modified Kirby Bauer method. It was found that the antibacterial activity primarily depends on the dissolution rate; faster release of ions caused rapid increase in the pH of the solution. Antibacterial properties were found to be strongly affected by changes in the pH of supernatant. The in vitro bioactivity assays showed that both glass derivatives were capable of bonding with bone and secondly effectively inhibit bacteria. However, the glass ceramic without CaF2 (B2) showed high dissolution rate, better bioactive ability and stronger antibacterial efficacy.

  3. Adjustable up-conversion luminescence color in rare earth co-doped transparent oxyfluoride nano-glass-ceramics.

    Science.gov (United States)

    Song, Zhiguo; Zhou, Dacheng; Qiu, Jianbei

    2010-03-01

    Transparent oxyfluoride nano-glass-ceramics with highly efficient up-conversion and adjustable color luminescence were developed in the 28SiO2 x 17Al2O3 28PbF2 x 22CdF2 x 0.1NdF3 x xYbF3 x yHoF3 zTmF3 x (4.9 - x - y - z)GdF3 composition, in mol%. X-ray diffraction and transmission electron microscopy measurements revealed that heat treatments of the oxyfluoride glasses cause the homogeneous precipitation of rare-earth ions co-doped fluorite-type Pb(x)Cd1-xF2 nanocrystals of about 10 nm in diameter in the glass matrix. Under single 808 nm laser excitation, intense red, green and blue up-conversion luminescences were simultaneously observed in these transparent nano-glass-ceramics owing to the successive energy transfer from Nd3+ ions to Ho3+ and Tm3+ via Yb3+ ions. Various colors of luminescence, including bright perfect white light, can be tuned by adjusting the concentrations of the Tm3+ ions in the material. A possible energy transfer process and up-conversion luminescence mechanism in the nano-glass-ceramics are proposed and discussed.

  4. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb3+-Er3+ codoped CaF2 nanocrystals

    Science.gov (United States)

    Peng, Wencai; Fang, Zaijin; Ma, Zhijun; Qiu, Jianrong

    2016-10-01

    Functional nanocrystal-containing materials have been a hot topic in recent years. However, few researches have focused on functional nanocrystals contained in optical glass fibers. In this research, transparent CaF2 glass-ceramic was prepared by a melt-quenching method. Greatly enhanced upconversion luminescence was observed after heat treatment. By applying a novel method called melt-in-tube, precursor fiber free of crystals was fabricated at the drawing temperature where the clad was softened while the core was melted. Glass-ceramic fiber with fiber core containing Yb3+-Er3+ codoped CaF2 nanocrystals was obtained after heat treatment at a relatively low temperature. Electron probe micro-analyzer measurement shows no obvious element diffusion between the core and clad. Greatly enhanced upconversion emission was detected in the glass-ceramic fiber excited by a 980 nm laser, suggesting the developed glass-ceramic fiber is a promising material for upconversion laser.

  5. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb(3+)-Er(3+) codoped CaF2 nanocrystals.

    Science.gov (United States)

    Peng, Wencai; Fang, Zaijin; Ma, Zhijun; Qiu, Jianrong

    2016-10-07

    Functional nanocrystal-containing materials have been a hot topic in recent years. However, few researches have focused on functional nanocrystals contained in optical glass fibers. In this research, transparent CaF2 glass-ceramic was prepared by a melt-quenching method. Greatly enhanced upconversion luminescence was observed after heat treatment. By applying a novel method called melt-in-tube, precursor fiber free of crystals was fabricated at the drawing temperature where the clad was softened while the core was melted. Glass-ceramic fiber with fiber core containing Yb(3+)-Er(3+) codoped CaF2 nanocrystals was obtained after heat treatment at a relatively low temperature. Electron probe micro-analyzer measurement shows no obvious element diffusion between the core and clad. Greatly enhanced upconversion emission was detected in the glass-ceramic fiber excited by a 980 nm laser, suggesting the developed glass-ceramic fiber is a promising material for upconversion laser.

  6. Effect of TiO2 on Crystallization,Microstructure and Mechanical Properties of Glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    Jian YANG; Shen-gen ZHANG; Bo LIU; De-an PAN; Chun-li WU; Alex AVOLINSKY

    2015-01-01

    The effect of TiO2 addition to the stainless steel slag glass-ceramics was studied.Different mass percenta-ges of TiO2 were added to four samples of the parent glass made from stainless steel slag and cullet.The tempera-tures of nucleation and crystallization were determined by differential scanning calorimetry (DSC).According to X-ray diffraction (XRD)and scanning electron microscopy (SEM)analysis,adding TiO2 refined grains and restricted the formation of the akermanite phase by capturing Ca2+ to form the perovskite phase.Diopside was the main crystal phase of the glass-ceramics.The bending strength and Vickers hardness increased with the addition of TiO2 .The op-timal amount of TiO2 was 7 mass%,and the highest bending strength and Vickers hardness were 144.6 MPa and 6.26 GPa,respectively.

  7. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  8. Rate equation analysis of nanocrystal-enhanced upconversion in neodymium-doped glass ceramics

    Science.gov (United States)

    Skrzypczak, U.; Pfau, Charlotte; Seifert, G.; Schweizer, Stefan

    2014-05-01

    Rare-earth ions embedded in glassy matrices are promising materials for photon upconversion processes, e.g. to convert near infrared light to frequencies above the band gap of a solar cell to make it available for electrical power generation. One strategy to optimize the efficiency of such upconversion processes is to embed the active ions in a host matrix with minimal losses to non-radiative relaxation. For the model system of trivalent neodymium in fluorochlorozirconate (FCZ) glass it has been shown recently that a uniform growth of BaCl2 nanocrystals inside such glasses can decrease the probability of multi-phonon relaxation (MPR) drastically, leading to a huge increase in upconversion intensity for monochromatic illumination. To identify the key processes which may enhance or diminish the total upconversion efficiency, a comprehensive description for the optical dynamics of neodymium in FCZ glass ceramics has been developed on the basis of a rate equation system, including ion-photon, ion-phonon, and ion-ion interactions. An effective medium approach is utilized to account for the neodymium located in BaCl2 nanocrystals or the FCZ glass bulk, respectively. The numerous parameters required to enable for a reliable numerical simulation of the processes are obtained from theoretical approaches like Judd-Ofelt theory, as well as from experimental studies of luminescence decay after femtosecond excitation at various wavelengths and luminescence spectra under cw illumination at 800 nm wavelength. This rate equation model enables for a convenient, self-consistent description of all time-resolved and cw experiments on samples with different neodymium concentration. On this basis, the power dependence of upconversion spectra can be simulated in good agreement with the experimental result for 800 nm cw illumination. The model therefore forms an excellent tool for optimizing the upconversion efficiency of rare-earth doped luminescent material also under realistic

  9. DISSOLUTION BEHAVIOR OF BIOACTIVE GLASS CERAMICS WITH DIFFERENT CaO/MgO RATIOS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD USMAN HASHMI

    2010-03-01

    Full Text Available In this work, powders of three different compositions, each having 34 SiO2-14.5 P2O5-1 CaF2-0.5 MgF (% wt and ratio of CaO/MgO varying from 11.5:1 to 1:11.5 were thoroughly mixed and melted under oxy-acetylene flame in a fire clay crucible that made the glass formation cheaper in time and cost. The melt of each composition was quenched in water to form three different glasses. Every glass was sintered at 950°C to form three glass ceramics named G1, G2 and G3 respectively. To study the dissolution behavior, each sample was immersed in a simulated body fluid (SBF for 2, 5, 10, 20 and 25 days at room temperature. Thin film XRD analysis revealed that the samples with larger CaO/MgO ratio exhibited better bioactivity. pH of SBF increased efficiently in case of G1 whereas in case of G2 and G3, this increase was slower due to greater amount of MgO. The concentrations of Ca, P, Mg and Si ions were measured by Atomic Absorption Spectroscopy. EDS analysis showed the increase in P and Ca ions and presence of C in G1 after 5 days immersion and after 10 days, in case of G2 indicating the higher formation rate of hydroxycarbonate Apatite layer in G1 as compared to G2 due to greater CaO/MgO ratio whereas in G3 Mg-hydroxycarbonate apatite (Ca(Mg5(CO3(PO43(OH (heneuite layer was recognized after 20 days showing the least bioactivity due to very large amount of Mg and the least CaO/MgO ratio.

  10. Physical modeling of joule heated ceramic glass melters for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, M.S.; Kreid, D.K.

    1979-03-01

    This study developed physical modeling techniques and apparatus suitable for experimental analysis of joule heated ceramic glass melters designed for immobilizing high level waste. The physical modeling experiments can give qualitative insight into the design and operation of prototype furnaces and, if properly verified with prototype data, the physical models could be used for quantitative analysis of specific furnaces. Based on evaluation of the results of this study, it is recommended that the following actions and investigations be undertaken: It was not shown that the isothermal boundary conditions imposed by this study established prototypic heat losses through the boundaries of the model. Prototype wall temperatures and heat fluxes should be measured to provide better verification of the accuracy of the physical model. The VECTRA computer code is a two-dimensional analytical model. Physical model runs which are isothermal in the Y direction should be made to provide two-dimensional data for more direct comparison to the VECTRA predictions. The ability of the physical model to accurately predict prototype operating conditions should be proven before the model can become a reliable design tool. This will require significantly more prototype operating and glass property data than were available at the time of this study. A complete set of measurements covering power input, heat balances, wall temperatures, glass temperatures, and glass properties should be attempted for at least one prototype run. The information could be used to verify both physical and analytical models. Particle settling and/or sludge buildup should be studied directly by observing the accumulation of the appropriate size and density particles during feeding in the physical model. New designs should be formulated and modeled to minimize the potential problems with melter operation identifed by this study.

  11. Investigation on Structural and Optical Properties of Willemite Doped Mn2+ Based Glass-Ceramics Prepared by Conventional Solid-State Method

    Directory of Open Access Journals (Sweden)

    Nur Farhana Samsudin

    2015-01-01

    Full Text Available Mn-doped willemite (Zn2SiO4:Mn2+ glass-ceramics derived from ZnO-SLS glass system were prepared by a conventional melt-quenching technique followed by a controlled crystallization step employing the heat treatment process. Soda lime silica (SLS glass waste, ZnO, and MnO were used as sources of silicon, zinc, and manganese, respectively. The obtained glass-ceramic samples were characterized using the X-ray diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM, Fourier Transform Infrared (FTIR, UV-Visible (UV-Vis, and photoluminescence (PL spectroscopy. The results of XRD revealed that ZnO crystal and willemite (β-Zn2SiO4 were presented as major embedded crystalline phases. This observation was consistent with the result of FESEM which showed the presence of irregularity in shape and size of willemite crystallites. FTIR spectroscopy exhibits the structural evolution of willemite based glass-ceramics. The optical band gap shows a decreasing trend as the Mn-doping content increased. Photoluminescent technique was applied to characterize the role of Mn2+ ions when entering the willemite glass-ceramic structure. By measuring the excitation and emission spectra, the main emission peak of the glass-ceramic samples located at a wavelength of 585 nm after subjecting to 260 nm excitations. The following results indicate that the obtained glass-ceramics can be applied as phosphor materials.

  12. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems

    Science.gov (United States)

    Estes, Lynda

    2011-01-01

    This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in

  13. Biocompatibility and antibacterial effect of silver doped 3D-glass-ceramic scaffolds for bone grafting.

    Science.gov (United States)

    Balagna, Cristina; Vitale-Brovarone, Chiara; Miola, Marta; Verné, Enrica; Canuto, Rosa Angela; Saracino, Silvia; Muzio, Giuliana; Fucale, Giacomo; Maina, Giovanni

    2011-02-01

    A 3D-glass-ceramic scaffold for bone tissue engineering with an interconnected macroporous network of pores was doped with silver ions in order to confer antibacterial properties. For this purpose, silver ions were selectively added to the scaffold surfaces through ion-exchange using an aqueous silver nitrate solution. The silver-doped scaffolds were characterized by means of leaching, in vitro antibacterial, and citotoxicity tests. In particular, the silver effect was examined through a broth dilution test in order to evaluate the proliferation of bacteria by counting the colonies forming units. Moreover, cytotoxicity tests were carried out to understand the effect of silver-containing scaffolds on cell adhesion, proliferation, and vitality. For all tests a comparison between silver-doped scaffold and silver-doped scaffold dry sterilized was performed.

  14. Glass-ceramic sealant for solid oxide fuel cells application: Characterization and performance in dual atmosphere

    Science.gov (United States)

    Sabato, A. G.; Cempura, G.; Montinaro, D.; Chrysanthou, A.; Salvo, M.; Bernardo, E.; Secco, M.; Smeacetto, F.

    2016-10-01

    A glass-ceramic composition was designed and tested for use as a sealant in solid oxide fuel cell (SOFC) planar stack design. The crystallization behaviour was investigated by calculating the Avrami parameter (n) and the activation energy for crystallization (Ec) was obtained. The calculated values for n and Ec were 3 and 413.5 kJ/mol respectively. The results of thermal analyses indicate that this composition shows no overlap between the sintering and crystallization stages and thus an almost pore-free sealant can be deposited and sintered at 850 °C in air for 30 min. A gas tightness test has been carried out at 800 °C for 1100 h in dual atmosphere (Ar-H2 and air) without recording any leakage. Morphological and crystalline phase analyses were conducted prior and following tests in dual atmospheres in order to assess the compatibility of the proposed sealant with the metallic interconnect.

  15. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    Science.gov (United States)

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  16. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    Directory of Open Access Journals (Sweden)

    Yiming Li

    2016-02-01

    Full Text Available Tm3+ ions doped β-PbF2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an Oh to D4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  17. Bioactive Glass-Ceramic Coatings Synthesized by the Liquid Precursor Plasma Spraying Process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Chen, Jiyong; Wu, Yao; Wu, Fang

    2011-03-01

    In this study, the liquid precursor plasma spraying process was used to manufacture P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings (BGCCs), where sol and suspension were used as feedstocks for plasma spraying. The effect of precursor and spray parameters on the formation and crystallinity of BGCCs was systematically studied. The results indicated that coatings with higher crystallinity were obtained using the sol precursor, while nanostructured coatings predominantly consisting of amorphous phase were synthesized using the suspension precursor. For coatings manufactured from suspension, the fraction of the amorphous phase increased with the increase in plasma power and the decrease in liquid precursor feed rate. The coatings synthesized from the suspension plasma spray process also showed a good in vitro bioactivity, as suggested by the fast apatite formation when soaking into SBF.

  18. 3D features of modified photostructurable glass-ceramic with infrared femtosecond laser pulses

    Science.gov (United States)

    Fernández-Pradas, J. M.; Serrano, D.; Bosch, S.; Morenza, J. L.; Serra, P.

    2011-04-01

    The exclusive ability of laser radiation to be focused inside transparent materials makes lasers a unique tool to process inner parts of them unreachable with other techniques. Hence, laser direct-write can be used to create 3D structures inside bulk materials. Infrared femtosecond lasers are especially indicated for this purpose because a multiphoton process is usually required for absorption and high resolution can be attained. This work studies the modifications produced by 450 fs laser pulses at 1027 nm wavelength focused inside a photostructurable glass-ceramic (Foturan ®) at different depths. Irradiated samples were submitted to standard thermal treatment and subsequent soaking in HF solution to form the buried microchannels and thus unveil the modified material. The voxel dimensions of modified material depend on the laser pulse energy and the depth at which the laser is focused. Spherical aberration and self-focusing phenomena are required to explain the observed results.

  19. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua, E-mail: zhaolj@nankai.edu.cn, E-mail: yuhua@nankai.edu.cn [The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071 (China); Zhao, Lijuan, E-mail: zhaolj@nankai.edu.cn, E-mail: yuhua@nankai.edu.cn [The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071 (China); Applied Physics School of TEDA, Nankai University, Tianjin 300457 (China)

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  20. Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18

    Energy Technology Data Exchange (ETDEWEB)

    Milhans, Jacqueline; Khaleel, Mohammad A.; Sun, Xin; Tehrani, Mehran; Al-Haik, Marwan; Garmestani, Hamid

    2010-11-01

    This study utilizes nanoindentation to investigate and measure creep properties of a barium calcium aluminosilicate glass-ceramic used for solid oxide fuel cell seals (SOFCs). Samples of the glassceramic seal material were aged for 5h, 50h, and 100h to obtain different degrees of crystallinity. Instrumented nanoindentation was performed on the samples with different aging times at different temperatures to investigate the strain rate sensitivity during inelastic deformation. The temperature dependent behavior is important since SOFCs operate at high temperatures (800-1000°C). Results show that the samples with higher crystallinity were more resistant to creep, and the creep compliance tended to decrease with increasing temperature, especially with further aged samples.

  1. Wide colour gamut generated in triply lanthanide doped sol-gel nano-glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, J. del, E-mail: fjvargas@ull.e [Universidad de La Laguna, Dpto. Fisica Basica (Spain); Mendez-Ramos, J. [Universidad de La Laguna, Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas (Spain); Yanes, A. C. [Universidad de La Laguna, Dpto. Fisica Basica (Spain); Rodriguez, V. D. [Universidad de La Laguna, Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas (Spain)

    2009-05-15

    The generation of a wide colour gamut, based on up-conversion of cheap near-infrared photons into the visible range, is of great importance for general lighting appliances and integrated optical devices. Here, we report for the first time on up-conversion luminescence under infrared excitation at 980 nm in Yb{sup 3+}-Er{sup 3+}-Tm{sup 3+} triply doped sol-gel derived SiO{sub 2}-LaF{sub 3} based nano-glass-ceramics (SOL-YET), containing LaF{sub 3} nanocrystals with a size about 13 nm. Efficient simultaneous up-conversion emission of the three primary colours (blue, green and red) gives rise to a balanced white overall emission. The ratio between up-conversion emission bands can be varied by changing pump power intensity resulting in colour tuneable up-conversion phosphor.

  2. Crystallization effect on rare-earth activated biocompatible glass-ceramics

    Science.gov (United States)

    Balda, R.; Sola, D.; Peña, J. I.; Fernández, J.

    2013-03-01

    In this work we report the influence of the crystallization stage of the host matrix on the spectroscopic properties of rare earth ions in CaSiO3/Ca3(PO4)2 biocompatible eutectic glass-ceramics grown by the laser floating zone technique. The microstructural analysis shows that either a growth rate increase or a rod diameter decrease leads the system to a structural arrangement from three (two crystalline and one amorphous) to two phases (one crystalline and one amorphous). The crystalline phases correspond to apatite-like and Ca2SiO4 structures. Site-selective laser spectroscopy allows to distinguish between crystalline and amorphous environments for the Nd3+ ions and to correlate the spectroscopic properties with the microstructure of these eutectics.

  3. Gel-cast glass-ceramic tissue scaffolds of controlled architecture produced via stereolithography of moulds.

    Science.gov (United States)

    Chopra, K; Mummery, P M; Derby, B; Gough, J E

    2012-12-01

    Two glass-ceramic scaffolds with a simple cubic structure of 500 µm square ligaments and square channels of width 400 or 600 µm have been fabricated by gel-casting into moulds produced by stereolithography, followed by mould removal, polymer burnout and sintering. The scaffolds have crushing strengths of 41 ± 14 and 17 ± 5 Mpa, respectively. Using a method of assembling discrete slices of scaffold, we are able to study cell behaviour within a scaffold by disassembly. Both scaffold structures were seeded with primary human osteoblasts and these penetrate, adhere, spread and proliferate on the scaffold structure. The larger channel diameter scaffold shows a greater cell population (despite its smaller surface area) and more pronounced production of ECM components (collagen and mineralization) with increased time in culture. Studies of sectioned scaffolds show that cell density and ECM production decrease with depth and that the difference between the two scaffold architectures is maintained.

  4. Autoradiographic determination of marginal leakage of a pressed glass ceramic inlay.

    Science.gov (United States)

    Canay, R S; Hersek, N E; Uzun, G; Ercan, M T

    1997-09-01

    The marginal integrity and microleakage of pressed glass ceramic inlays were evaluated using autoradiography. IPS/Empress ceramic inlays were fabricated for 10 human molar mandibular teeth. After adjusting the inlays, they were etched with 37% phosphoric acid gel for 30 s and silanized with Monobond S for 30 s. Before cementation with dual cure resin cement the inlays and cavity walls were gently covered with a thin layer of bonding agent. When the cementation process was completed the samples were cycled 300 times between a 55 degrees C hot bath and a 5 degrees C cold bath. The samples were placed in each bath for 60 s, with 5 s intervals between immersions, then the specimens were immersed in an aqueous solution of Ca-45. After 24 h the inlay and tooth assemblies were removed, rinsed with water and placed in cold-cured acrylic resin, then sectioned through the long axis for autoradiographic analysis. According to the penetration of Ca-45, the microleakage level was scored for each section. The results indicated slight penetration of Ca-45 on autoradiographic films.

  5. A blue luminescence glass-ceramics of Eu2+ ions activated Li2O-BaO-B2O3

    Institute of Scientific and Technical Information of China (English)

    HUANG Yanlin; Eunjin Cho; Kiwan Jang; Ho Sueb Lee; WANG Xigang; QIN Dake; JIANG Chuanfang

    2008-01-01

    New blue luminescence glass-ceramic samples were prepared in air by annealing of the Eu3+-doped Li2O-BaO-B2O3 glass. The as-made glass samples only showed the sharp emission peaks assigned to the transitions of 5D0-7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The glass-ceramic samples gave a strong and broad emission band peaking at about 382 nm ascribed to the 5d-4f transition of Eu2+ ions. The optical properties such as excitation and emission spectra, and the decay time of the Eu2+ ions were investigated in the glasses or the glass-ceramics samples. The X-ray diffraction pattern showed that LiBaB9O15 might be demonstrated to be the crystallites in the glass-ceramic, which contributed to the blue luminescence. SEM micrograph was investigated on the glass-ceramic samples obtained by crystallization of the glass matrix resulting in a mixture of poly-crystals.

  6. Effect of nucleating agents on microstructure and mechanical properties of SiO2-Al2O3-ZrO2 glass-ceramics

    Institute of Scientific and Technical Information of China (English)

    YU Li-ping; XIAO Han-ning; HU Peng-fei

    2005-01-01

    SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investigated by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and three-point bending method. The results show that ZrO2 is not an effective nucleating agent in SiO2-Al2O3-ZrO2 system, while TiO2 is effective for the separation of spinel, and P2O5 facilitates solubility of ZrO2 in glass and crystallization. The main crystalline phases of the glass-ceramics are spinel, anorthite and tetragonal zirconia. With the increase of ZrO2 content in the glass, glass-ceramics show higher bending strength (120 MPa) than others.

  7. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    Science.gov (United States)

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  8. The effect of hydrothermal hot-pressing parameters on the fabrication of porous ceramics using waste glass

    Science.gov (United States)

    Matamoros-Veloza, Z.; Yanagisawa, K.; Rendón-Angeles, J. C.; Oishi, S.

    2004-04-01

    The effect of varying hydrothermal hot-pressing (HHP) parameters on the expansion of waste glass powder was investigated by conventional heat treatment. Glass ceramic porous materials were prepared by hydrothermal hot pressing under standard conditions at 200 °C, for 2 h at a constant uniaxial pressure of 20 MPa, while varying experimental variables such as glass particle size, water content, reaction interval, temperature and heating rate. SEM investigation showed the presence of a new glass phase, which incorporated water in its structure. The degree of reactivity attainable between glass particles and water seems to control the expansion process during heating of HHP glass compacts. It was found that the expansion process is independent of experimental parameters such as reaction time, temperature and heating rate, but does depend on the particle size and water content. During the heat treatment, the glass foaming process was preceded by decomposition of the new glass phase in the HHP compacts. A minimum apparent density of 0.40 g cm-3 was obtained on specimens prepared with low water content (5 wt%) and medium particle size (39-45 µm). X-ray diffraction patterns of the expanded glasses revealed the formation of SiO2 (agr-cristobalite and quartz) and CaSiO3 (wollastonite).

  9. Broadband near-infrared emission from Tm3+/Er3+ co-doped nanostructured glass ceramics

    Science.gov (United States)

    Chen, Daqin; Wang, Yuansheng; Bao, Feng; Yu, Yunlong

    2007-06-01

    Transparent SiO2-Al2O3-NaF-YF3 glass ceramics co-doped with Er3+ and Tm3+ were prepared by melt quenching and subsequent heating. X-ray diffraction and transmission electron microscopy experiments revealed that β-YF3 nanocrystals incorporated with Er3+ and Tm3+ were precipitated homogeneously among the oxide glass matrix. An integrated broad near-infrared emission band in the wavelength region of 1300-1700 nm, consisting of Tm3+ emissions around 1472 nm (H34→F34) and 1626 nm (F34→H36), and Er3+ emission around 1543 nm (I413/2→I415/2), was obtained under 792 nm laser excitation. The full width at half maximum of this integrated band increased with the increasing of [Tm]/[Er] ratio, and it reached as large as 175 nm for the 0.1 mol% Er3+ and 0.8 mol% Tm3+ co-doped sample. The energy transfers between Er3+ and Tm3+ were proposed to play an important role in tailoring the emission bandwidth of the sample.

  10. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    Science.gov (United States)

    He, Wen; Zhang, Xudong; Jin, Chao; Wang, Yaoyao; Mossin, Susanne; Yue, Yuanzheng

    2017-02-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar ratio of Fe/V = 7:6 is composed of nano-domains of semiconducting oxide glass (Li2O-Na2O-Fe2O3-V2O5-P2O5, LNFVP), nanocrystalline particles (Li9Fe3P8O29, Li0.6V1.67O3.67 and VOPO4), and nanopores connected by interfaces. We have clarified the mixing ion transport mechanism and the electrochemical reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g-1) and energy storage density (525 Whkg-1) at 5C, and the capacity retention reaches 70% after 1000 cycles. More importantly, we have established a direct relationship between the electrochemical kinetics and nanostructure of NGC electrode materials.

  11. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  12. Crystallization and structural investigation of Eu-doped fluorozirconate-based glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Passlick, Christian [Centre for Innovation Competence SiLi-nano, Martin Luther University of Halle-Wittenberg, Halle (Saale) (Germany); Ahrens, Bernd; Henke, Bastian; Schweizer, Stefan [Centre for Innovation Competence SiLi-nano, Martin Luther University of Halle-Wittenberg, Halle (Saale) (Germany); Fraunhofer Center for Silicon Photovoltaics, Halle (Saale) (Germany); Johnson, Jacqueline A. [Department of Materials Science and Engineering, University of Tennessee Space Institute, Tullahoma, TN (United States)

    2010-07-01

    A series of Eu-doped fluorozirconate-based glass ceramics has been developed for medical and photovoltaic applications. In the first case, the materials can be used as X-ray scintillators or X-ray storage phosphors, in the latter case as down-converting top layers for highly efficient solar cells. The glasses are based on a modified ZBLAN composition, i.e. a mixture of Zr, Ba, La, Al, and Na fluorides. They are additionally doped with chlorine ions to initiate the growth of BaCl{sub 2} nanocrystals upon thermal processing. Eu{sup 2+} ions are incorporated into the nanocrystals during the annealing procedure enabling a strong fluorescence upon ultraviolet or x-ray excitation. The nanocrystal size and structural phase depend significantly on the heating conditions and Eu doping level. X-ray diffraction patterns show a structural phase change of the BaCl{sub 2} nanocrystals from hexagonal to orthorhombic as annealing temperatures are increased. DSC experiments were performed to obtain activation energies, thermal stability parameters and information on the crystal growth mechanisms.

  13. 牙科用云母微晶玻璃的微观结构对其力学性能的影响%Influence of microstructure on mechanical properties of mica-based glass-ceramics for dental restorations.

    Institute of Scientific and Technical Information of China (English)

    秦燕军; 王忠义; 曹小刚; 田杰谟

    2001-01-01

    目的:研究牙科CAD/CAM加工用四硅氟云母微晶玻璃的微观结构对其力学性能的影响。方法:采用K2O-MgO-MgF2-SiO2系统来研制云母微晶玻璃,通过差热分析(DTA)、X射线衍射分析(XRD)、扫描电子显微镜观测(SEM)及力学性能测试,比较了三种不同晶化温度下,四硅氟云母微晶玻璃的微观结构对其力学性能影响。结果:随着晶化温度的逐步升高,四硅氟云母的晶粒大小和径厚比逐步增大,抗弯强度和断裂韧性亦逐渐增高,维氏硬度和脆性指数随温度升高而降低。结论:云母微晶玻璃的微观结构对其力学性能起决定作用,而微观结构与晶化温度密切相关。%Objective:To investigate the influence of microstructure onmechanical properties of mica-based machinable glass-ceramics used for CAD/CAM restorations.Methods:According to the requirements of dental restorative materials, K2O-MgO-MgF2-SiO2 system was chosen to form tetrasilicic fluormica glass-ceramics and three different temperatures were used to finish crystallization process.Differential thermal analysis(DTA),X-ray diffractometer(XRD) and scanning electron microscopy(SEM) were used to observe the crystallization behavior,crystalline phases and microstructures of the glass-ceramics.Influence of microstructure on mechanical properties of the glass-ceramics was compared.Results:Improving crystallization temperature can increase the grain sizes and aspect ratio of mica and improve the three-point bending strength and fracture toughness of the glass-ceramics.Vickers hardness and the index of brittleness decrease with increasing of temperature.Conclusion:The mechanical properties of the glass-ceramic are determined by its microstructure,while the latter has a close relationship with crystallization temperature.

  14. Effect of sintering temperature on the thermal properties of diopside-based glass-ceramics of varying CaO/MgO ratio.

    Science.gov (United States)

    Jang, Seokju; Kang, Seunggu

    2013-08-01

    The thermal properties of diopside (CaMgSi2O6)-based glass-ceramics of varying CaO/MgO ratio were investigated as a function of sintering temperature. The crystallization behavior of the glass was studied by a non-isothermal method using a differential thermal analysis (DTA) with various heating rates. Diopside, as a main crystalline phase, and cordierite, as a minor phase, were formed in the glass-ceramics with an - 0.67-2.23 CaO/MgO ratio. The X-ray diffraction peak for diopside in the glass-ceramic becomes higher with an increase of the CaO/MgO ratio. The crystallization volume fraction with sintering temperature was calculated showing that both the initiation temperature for crystallization and a temperature range of crystallization increased with an increased heating rate. The microstructure of all glass-ceramics had a lump area composed of several tens-of-nanometer particles and a matrix composed of rows of particles, and the matrix area decreased with a decreasing CaO/MgO ratio. The thermal conductivity of glass-ceramics of CaO/MgO = 2.23 was 44% higher than that of CaO/MgO = 0.67 owing to the higher crystallinity and less voids in a microstructure. All glass-ceramics fabricated in this study were sintered at below 955 degrees C, which makes them applicable to the LTCC process for light-emitting diode packaging.

  15. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m(2)) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. An Experiment to Explain Depth of Cut Notch Wear of Ceramic Tools in Ni- based Super-alloy Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718, a high temperature alloy, is extensive ly used in aircraft, gas engines and nuclear-power plants. It is generally known that the life of ceramic cutting tools in machining Inconel 718 is often restric ted by depth-of-cut (DOC) notch wear. In view of the number of various factors involved and the variety of tool materi als and cutting conditions available, the analysis of the DOC notch wear is very difficult. According to previous work concerning the DOC notch wear of ceramics tools, some A...

  17. Fabrication and Machining of Bulk Metallic Glass for Airborne Gravity Gradiometry

    Science.gov (United States)

    Cole, Kevin Mark

    Bulk metallic glass is an intriguing material ideally suited for use as a flexure in an airborne gravity gradiometry. Successful fabrication of Zr56Ni20Al15Cu5Nb4 was achieved using arc melting and suction casting. The effect of oxygen and microalloying Nb into this alloy composition was investigated. It was determined that oxygen in solute form is much more detrimental than as an oxide with respect to glass forming ability. Through microalloying Nb, a high glass forming region was observed between 2 - 4 at.% Nb. Studies on crystallization kinetics revealed that upon heating these amorphous samples, a multi-step phase transformation pathway can be observed. Lastly, electrochemical micromachining (ECMM) and abrasive water jet machining (AWJM) were shown to be effective techniques which can be used to shape BMGs after casting without inducing crystallization. ECMM parameters were investigated to optimize the micron-machining process. AWJM demonstrated that fast cutting could be achieved with smooth surface finishes and good dimensional tolerance.

  18. Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass.

    Science.gov (United States)

    Corbari, Costantino; Champion, Audrey; Gecevičius, Mindaugas; Beresna, Martynas; Bellouard, Yves; Kazansky, Peter G

    2013-02-25

    The ability of 8 picosecond pulse lasers for three dimensional direct-writing in the bulk of transparent dielectrics is assessed through a comparative study with a femtosecond laser delivering 600 fs pulses. The comparison addresses two main applications: the fabrication of birefringent optical elements and two-step machining by laser exposure and post-processing by chemical etching. Formation of self-organized nano-gratings in glass by ps-pulses is demonstrated. Differential etching between ps-laser exposed regions and unexposed silica is observed. Despite attaining values of retardance (>100 nm) and etching rate (2 μm/min) similar to fs pulses, ps pulses are found unsuitable for bulk machining in silica glass primarily due to the build-up of a stress field causing scattering, cracks and non-homogeneous etching. Additionally, we show that the so-called "quill-effect", that is the dependence of the laser damage from the direction of writing, occurs also for ps-pulse laser machining. Finally, an opposite dependence of the retardance from the intra-pulse distance is observed for fs- and ps-laser direct writing.

  19. Synthesis and spectral properties of Nd-doped glass-ceramics in SiO2-CaO-MgO system prepared by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    Masoud Eslami; Zohreh Hamnabard; Ali Nemati

    2013-01-01

    SiO2-CaO-MgO glass and glass-ceramic powder doped with Nd3+ were synthesized with sol-gel method.Tetraethylorthosilicate (TEOS),Ca(NO3)2·4H2O,Mg(NO3)2·6H2O,Nd(NO3)3·6H2O,ethanol,distilled water,and HNO3 were used as starting materials.The synthesized powder's properties were examined with simultaneous thermal analysis (STA),X-ray diffraction (XRD),photoluminescence (PL) and scanning electron microscopy (SEM) analysis.The STA curves showed that the softening point and crystallization temperatures were shifted to higher temperatures with increasing dopant content.Regarding XRD pattems of glass samples,Nd was found to act as an intermediate oxide in glass matrix.The XRD patterns of glass-ceramic samples indicated that bredigite and akermanite crystallized in the glass matrix after heat treating at 900 ℃.The ()luorescence spectra showed that glass-ceramics emitted much stronger irradiation than glasses with the same dopant content.The SEM images illustrated uniform and homogeneous distribution of applied oxides in glass and glass-ceramic compositions.

  20. Eu3+ probe ion for rare-earth dopant site structure in sol-gel derived LiYF4 oxyfluoride glass-ceramic

    Science.gov (United States)

    Secu, C. E.; Negrea, R. F.; Secu, M.

    2013-10-01

    Sol-gel route using metal alkoxides and trifluoroacetic acid as precursors has been used to prepare oxyfluoride glass-ceramic containing Eu3+-doped LiYF4 nanocrystals of about tens of nm size embedded in a silica matrix through controlled crystallization at higher temperatures of the xerogel. Photoluminescence spectra and decay curves recorded in the Eu3+-doped LiYF4 polycrystalline pellet and glass ceramic have been discussed using group-theoretical arguments. In the glass-ceramic Eu3+ ions are embedded dominantly inside the LiYF4 nanocrystals most probably as Eu-O center and/or dimer centers in low symmetry (C2v) sites; oxygen ions were incorporated in their neighborhood during the glass ceramization.

  1. Preparation and properties of CaO-Al2O3-SiO2 glass-ceramics by sintered frits particle from mining wastes

    Directory of Open Access Journals (Sweden)

    He F.

    2014-01-01

    Full Text Available The paper reports on some experimental results obtained from the production of glass-ceramics containing gold tailings powder (GTP. Frits particle sintered technology was used to prepare glass ceramic products. SiO2, CaO, ZnO, BaO and B2O3 were selected to adjust the composition of the glass. Based on the results of differential thermal analysis (DTA, the nucleation and crystallization temperature of parent glass samples with different schedule were identified, respectively. X-ray diffraction (XRD analysis of the produced glass-ceramics materials revealed that the main crystalline phase was β-wollastonite. With the increasing of CaO content, the intensity of crystal diffractive peaks also increases. The formation of β-wollastonite crystal could be accelerated by the increasing of CaO. The glass-ceramics with fine microstructure showed better physical, mechanical properties and chemical resistance. Overall results indicated that it was a feasible attempt to produce glass-ceramics for building and decorative materials from waste materials. The amount of GTP used in the glass batches was more than 65 wt% of the whole raw.

  2. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics.

    Science.gov (United States)

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2013-09-01

    The partial substitution of MgO, TiO2, or CaF2 for CaO in the Na2O-CaO-SiO2-P2O5 (45S5) system was conducted by the sol-gel method and a comparative study on structural, mechanical properties, and bioactivity of the glasses was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass-ceramic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and so on, and the bioactivity of the glass-ceramic was evaluated by in vitro assays in simulated body fluid (SBF). Results indicate that with the partial substitution of MgO, TiO2, CaF2 for CaO in glass composition, the mechanical properties of the glass-ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization and the crystallization does not inhibit the glass-ceramic bioactivity. All samples possess bioactivity; however, the bioactivity of these glass-ceramics is quite different. Compared with 45S5, the introduction of MgO decreases the ability of apatite induction. The addition of TiO2 does not significantly improve the bioactivity, and the replacement of CaO by CaF2 shows a higher bioactivity.

  3. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Science.gov (United States)

    Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd

    The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.

  4. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  5. Surface treatments for repair of feldspathic, leucite - and lithium disilicate-reinforced glass ceramics using composite resin.

    Science.gov (United States)

    Neis, Christian Alencar; Albuquerque, Nadine Luísa Guimarães; Albuquerque, Ivo de Souza; Gomes, Erica Alves; Souza-Filho, Celso Bernardo de; Feitosa, Victor Pinheiro; Spazzin, Aloisio Oro; Bacchi, Atais

    2015-01-01

    The aim of this study was to evaluate the efficacy of different surface conditioning methods on the microtensile bond strength of a restorative composite repair in three types of dental ceramics: lithium disilicate-reinforced, leucite-reinforced and feldspathic. Twelve blocks were sintered for each type of ceramic (n=3) and stored for 3 months in distilled water at 37 °C. The bonding surface of ceramics was abraded with 600-grit SiC paper. Surface treatments for each ceramic were: GC (control) - none; GDB - diamond bur #30 µm; GHF - hydrofluoric acid (10%); GT- tribochemical silica coating (45-μm size particles). Treatments were followed by cleaning with phosphoric acid 37% for 20 s + silane + adhesive. The composite resin was used as restorative material. After repair, samples were subjected to thermocycled ageing (10,000 cycles between 5 °C and 55 °C for 30 s). Thereafter, the samples were sectioned into 1.0 mm2 sticks and tested for microtensile bond strength with 0.5 mm/min crosshead speed. Data were compared by two-way ANOVA and Tukey's test (α=0.05). The superficial wear with diamond bur proved to be suitable for feldspathic porcelain and for leucite-reinforced glass ceramic while hydrofluoric acid-etching is indicated for repairs in lithium disilicate-reinforced ceramic; tribochemical silica coating is applicable to leucite-reinforced ceramic. Predominance of adhesive failures was observed (>85% in all groups). In conclusion, the success of surface treatments depends on the type of ceramic to be repaired.

  6. Bond Strength of Resin Cement and Glass Ionomer to Nd:YAG Laser-Treated Zirconia Ceramics.

    Science.gov (United States)

    Asadzadeh, Nafiseh; Ghorbanian, Foojan; Ahrary, Farzaneh; Rajati Haghi, Hamidreza; Karamad, Reza; Yari, Amir; Javan, Abdollah

    2017-09-05

    To investigate the effect of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the surface properties and bond strength of zirconia ceramics. Forty-eight zirconia ceramic pieces (4 × 4 × 1 mm(3) ) were divided into four groups according to surface treatment as follows: two control groups (no treatment) for resin bonding (CRC) and glass ionomer (GI) bonding (CGC); two laser treatment groups (Nd:YAG irradiation, 3 W, 200 MJ, 10 Hz, 180 μs) for resin bonding (LRC) and GI bonding (LGC). The ceramics in the control groups and the laser groups were distinguished by the application of different cements (resin cement and GI). Following surface treatments, the specimens were cemented to human dentin with resin cement and GI. After bonding, the shear bond strength (SBS) of the ceramic to dentin was measured, and the failure mode of each specimen was analyzed using a stereomicroscope. A one-way ANOVA compared the average bond strength of the four groups. Pairwise comparisons among the groups were performed using the Games-Howell test. The level of significance was set at 0.05. The means (± standard deviation) of SBS values in the CRC, CGC, LRC, and LGC groups were 3.98 ± 1.10, 1.66 ± 0.59, 10.24 ± 2.46, and 2.21 ± 0.38 MPa, respectively. Data showed that the application of the Nd:YAG laser resulted in a significantly greater SBS of the resin cement to the zirconia ceramics (p nd 83.3% in the LRC and LGC groups, respectively. In the CGC group, all failures were adhesive. Pretreatment of zirconia ceramic via Nd:YAG laser improves the bond strength of the resin cement to the zirconia ceramic. GI cement does not provide sufficient bond strength of zirconia ceramics to dentin. © 2017 by the American College of Prosthodontists.

  7. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation.

    Science.gov (United States)

    Vitale-Brovarone, C; Verné, E; Robiglio, L; Appendino, P; Bassi, F; Martinasso, G; Muzio, G; Canuto, R

    2007-03-01

    Glass-ceramic macroporous scaffolds for tissue engineering have been developed using a polyurethane sponge template and bioactive glass powders. The starting glass (CEL2) belongs to the system SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O and has been synthesised by a conventional melting-quenching route. A slurry of CEL2 powder, polyvinyl alcohol and water has been prepared in order to coat, by impregnation, the polymeric template. An optimised thermal treatment was then use to remove the sponge and to sinter the glass powders, leading to a glass-ceramic replica of the template. Morphological observations, image analyses, mechanical tests and in vitro tests showed that the obtained devices are good candidates as scaffolds for bone-tissue engineering, in terms of pore-size distribution, pore interconnection, surface roughness, and both bioactivity and biocompatibility. In particular, a human osteoblast cell line (MG-63) seeded onto the scaffold after a standardised preconditioning route in simulated body fluid showed a high degree of cell proliferation and a good ability to produce calcium nodules. The obtained results were enhanced by the addition of bone morphogenetic proteins after cell seeding.

  8. Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic

    Science.gov (United States)

    Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng

    2016-12-01

    Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.

  9. Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er3+/Yb3+

    Science.gov (United States)

    Haas, Sylvio; Hoell, Armin; Wurth, Roman; Rüssel, Christian; Boesecke, Peter; Vainio, Ulla

    2010-05-01

    Here, we describe the analysis of the nanostructure and average chemical compositions of each phase present in an oxyfluoride glass ceramic, which is composed of fluoride nanocrystals and an oxide glass matrix. The overall composition of the oxyfluoride glass ceramic as prepared is 21.1%SiO26.5%B2O37.0%Al2O321.0%PbF214.3%CdF211.0%YbF30.5%ErF311.0%PbO7.6%CdO(mole%) . Nanocrystals begin to grow at temperatures above the glass transformation temperature at 678 K as observed by x-ray diffraction. We report results from anomalous small-angle x-ray scattering taken at energies of x-ray absorption edges of Er, Yb, Pb, and Cd. By nonlinear regression of the scattering curves obtained from different edges simultaneously, the nanocrystals were found to be describable as polydisperse spheroids. The length of the smaller axis was found to be 6.4±1.4nm while the larger axis was found to be 17.7±3.9nm . By analyzing the scattering contrast as a function of the x-ray energy we found cadmium only in the glass matrix.

  10. Effects of soda-lime-silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics.

    Science.gov (United States)

    Marinoni, Nicoletta; D'Alessio, Daniela; Diella, Valeria; Pavese, Alessandro; Francescon, Ferdinando

    2013-07-30

    The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Structure, Dielectric and Energy Storage Properties of Strontium Barium Niobate-Based Glass-Ceramics Doped with La2O3

    Science.gov (United States)

    Xiu, Shaomei; Xiao, Shi; Shen, Bo; Zhai, Jiwei

    2017-07-01

    In this work, the effect of La2O3 content on the phase evolution, microstructure, dielectric properties and energy storage properties of the strontium barium niobate (SBN)-based glass-ceramics were studied. The results show that the La3+ is easily incorporated into the tetragonal tungsten bronze structured phase, and La2O3 doped into the BSN-glass-ceramics, as a grain growth inhibitor, can have an evident effect on the grain size reduction and crystallization. The microstructure of the SBN-glass-ceramics becomes denser and more uniform with increasing La2O3 content. The remanent polarization of all samples is extremely low. The dielectric constant of the SBN-glass-ceramics obviously is decreased, while the breakdown strength is increased with the increment of La2O3 content. When La2O3 content in the SBN-glass-ceramics is 0.2 mol.%, the theoretical energy storage density is at the maximal level of 7.2 J/cm3. In addition, the energy discharging efficiency and discharging speed of the SBN-glass-ceramics with different La2O3 content were evaluated. With La2O3 content increasing, the energy discharging efficiency gradually increased.

  12. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone

    DEFF Research Database (Denmark)

    Nimb, L; Jensen, J S; Gotfredsen, K

    1995-01-01

    A canine study was performed to make a histological and biomechanical evaluation of the interface between bone and two different bioceramic implants. A newly developed glass-ceramic formed by P2O5, CaO, SiO2, and Al2O3, giving a crystal phase composed of CaP2O6-AlPO4-SiP2O7, was compared to hydro......A canine study was performed to make a histological and biomechanical evaluation of the interface between bone and two different bioceramic implants. A newly developed glass-ceramic formed by P2O5, CaO, SiO2, and Al2O3, giving a crystal phase composed of CaP2O6-AlPO4-SiP2O7, was compared...

  13. Effect of glass-ceramic-processing cycle on the metallurgical properties of candidate alloys for actuator housings

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L.J.

    1982-01-01

    This report summarizes the results from an investigation on the effect of a glass ceramic processing cycle on the metallurgical properties of metal candidates for actuator housings. The cycle consists of a 980/sup 0/C sealing step, a 650/sup 0/C crystallization step and a 475/sup 0/C annealing step. These temperatue excursions are within the same temperature regime as annealing and heat treating processes normally employed for metals. Therefore, the effect of the processing cycle on metallurgical properties of microstructure, strength, hardness and ductility were examined. It was found that metal candidates which are single phase or solid solution alloys (such as 21-6-9, Hastelloy C-276 and Inconel 625) were not affected whereas multiphase or precipitation hardened alloys (such as Inconel 718 and Titanium ..beta..-C) were changed by the processing cycle for the glass ceramic.

  14. Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+

    Science.gov (United States)

    Wang, Rongping; Yan, Kunlun; Zhang, Mingjie; Shen, Xiang; Dai, Shixun; Yang, Xinyu; Yang, Zhiyong; Yang, Anping; Zhang, Bin; Luther-Davies, Barry

    2015-10-01

    We have annealed Ge28.125Ga6.25S65.625 glasses doped with 0.5% Dy to create glass-ceramics in order to examine the local chemical environment of the rare earth ions (REI). More than 12 times enhancement of the emission at 2.9 and 3.5 μm was achieved in glass-ceramics produced using prolonged annealing time. Elemental mapping showed clear evidence that Ga2S3 crystalline grains with a size of 50 nm were dispersed in a Ge-S glass matrix in the glass-ceramics, and the REI could only be found near the Ga2S3 crystalline grains. From the unchanged lineshape of the emissions at 2.9 and 3.5 μm and lack of splitting of the absorption peaks, we concluded that the REI were bonded to Ga on the surface of the Ga2S3 crystals.

  15. Preparation and characterization of Er3+-Yb3+-Ce3+ co-doped transparent glass ceramic containing nano Ca5(PO4)3F crystals

    Institute of Scientific and Technical Information of China (English)

    LI Yongjin; SONG Zhiguo; LI Chen; QIU Jianbei; YANG Zhengwen; YIN Zhaoyi; YANG Yong

    2013-01-01

    A transparent glass ceramic tri-doped with Ce3+/Er3+/yb3+ was fabricated by the high-temperature melting technique and following heat-treatment.X-ray diffraction and transmission electron microscope results demonstrated that Ca5(PO4)3F(FAP) nanocrystals,possessed with preferable emission performances for the 1.54 μm transition for doping Er3+,were homogeneously precipitated among the glass matrix with a mean size of 30 nm.Addition of Ce3+ greatly enhanced 1.54 μm fluorescence of Er3+ by the cross relaxation energy transfer between Er3+ and Ce3+.Meanwhile,incorporation of Ce3+ dramatically decreased the visible upconversion emission intensity of glass ceramic than that of glass,suggesting that Ce3+ might incorporate into the FAP nanocrystals.The properties of this transparent glass ceramic showed the potential application as an efficient 980 nm pumped infrared laser medium.

  16. Preparation and properties of Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruilin; Wang, Jinlong; Zhang, Liaolin; Liu, Chunxiao; Wei, Wei [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China)

    2016-07-15

    Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate glass-ceramics were prepared by the melt quenching and subsequent thermal treatment method. The formation of SrAlF{sub 5} nanocrystals in the glass was confirmed by X-ray diffraction and scanning electron microscope. The fluorescence intensity and lifetime of the glass-ceramics increased with the increase of size of nanocrystals. Importantly, by controlling growth of nanocrystals, an obvious enhancement of lifetime (725 μs) emerged in the glass-ceramics heat-treated at 510 C and the transmittance can reach to 72.2 % at 1049 nm. The enhanced fluorescence intensity and lifetime were ascribed to the comfortable local environment to the Nd{sup 3+} ion and scattering of the nanoparticle embedded into the glass matrix. (orig.)

  17. Obtaining a glass-ceramic material from a steel slag mixed with glass cullet; Obtencion de un material vitroceramico a partir de una escoria de aceria mezclada con vidrio de desecho

    Energy Technology Data Exchange (ETDEWEB)

    Oziel Mendez Guerrero, D.; Alicia Vazquez Mendez, B.; Alvarez Mendez, A.

    2011-07-01

    In this paper, the qualitative, quantitative and thermal characterization of a steel slag and glass cullet of high generation rate in northern Mexico were made in order to use these wastes as raw materials in the production of glass ceramics. The particle size was controlled at sizes = 75 micrometers and the major components of the slag were located in a phase equilibrium diagram for proposing a reaction temperature that leaded to the starting glass. Later, heat treatments were performed to obtain the glass ceramics. The materials were characterized by powder X-ray diffraction (XRD), differential thermal analysis coupled with thermal gravimetric analysis (DTA-TGA), reflected light optical microscopy (RLOM) and scanning electron microscopy (SEM). Subsequently, Vickers microhardness and chemical resistance tests were performed, which enabled us to propose an application of the glass ceramics. (Author) 18 refs.

  18. Inorganic wastes in manufacturing of glass-ceramics. Slurry of phosphorous fertilizer production and oil shale ash

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovsky, A.V.; Mendez-Nonell, J.; Escalante-Garcia, J.I.; Pech-Canul, M.I.; Vargas-Gutierrez, G. [Department of Engineering Ceramics of CINVESTAV-IPN, Unidad Saltillo-Monterrey, km 13.5, Apartado Postal 663, CP 25000, Saltillo, Coahuila (Mexico); Gorokhovsky, V.A.; Mescheryakov, D.V. [Department of Building Materials of Saratov State Technical University, Saratov (Russian Federation)

    2001-11-01

    The use of bicomponent raw material mixtures of industrial wastes to produce pyroxene glass ceramics was investigated. It is shown that oil shale ash from heat power stations can promote the production of crystalline phases and the slurry from phosphorous fertilizer production can provide sufficient concentration of nucleating agents. Mechanical and chemical properties, as well as the structure and crystallization mechanism were characterized. An increase of phosphorous oxide and fluorine concentrations leads to a change of the crystallization mechanism.

  19. Numerical Modelling of the Compressive and Tensile Response of Glass and Ceramic under High Pressure Dynamic Loading

    Science.gov (United States)

    Clegg, Richard A.; Hayhurst, Colin J.

    1999-06-01

    Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless

  20. Highly matched spectrum needed for photosynthesis in Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weirong; Gao, Huiping [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China); Mao, Yanli, E-mail: ylmao@henu.edu.cn [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2015-11-05

    A series of oxyfluoride glass ceramics containing CaF{sub 2} nano-crystals tri-doped with Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} ions were prepared by high temperature melting method and subsequent heat treatment. The structural properties were examined by X-ray diffraction measurements. The absorption, excitation, and emission spectra of the glass ceramics were investigated. Difference in erbium emission spectra between glass and glass ceramics had been studied. The emission bands originating from the {sup 4}F{sub 9/2} state of Er{sup 3+} were enhanced when the CaF{sub 2} nano-crystal created. By down-converting the ultraviolet wavelength region (280∼400 nm) light and up-converting the near-infrared wavelength region (900∼1100 nm) light, the glass ceramics can also emit strong reddish orange emission. The emission spectra consisting of bluish violet (400∼500 nm) and reddish orange (640∼680 nm) bands match well with the action spectrum of photosynthesis and absorption spectra of chlorophylls. Our materials will be favored to promote the development of glass greenhouses for green plant. - Highlights: • Ce{sup 3+}/Er{sup 3+}/Yb{sup 3+} tri-doped oxyfluoride glass ceramics were prepared by high temperature melting method. • 668 nm red emission was obtained under 320 nm, 380 nm and 980 nm excitation, respectively. • The emission of samples matched well with the spectrum for photosynthesis.