WorldWideScience

Sample records for mach-zehnder integrated optical

  1. Integrated optical displacement sensor based on asymmetric Mach-Zehnder interferometer chip

    Science.gov (United States)

    Zhao, Ning; Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Hu, Wei; Li, Ruo-Zhou; Zhang, Tong

    2017-02-01

    Displacement sensor is one of the most important measuring instruments in many automated systems. We demonstrated an integrated optical displacement sensor based on an asymmetric Mach-Zehnder interferometer chip on a flexible substrate. The sensing chip was made of polymer materials and fabricated by lithography and lift-off techniques. Measured results show that the device has a loss of less than 5 dB and a potential sensitivity of about 0.105 rad/μm with quite a large space for promotion. The sensor has advantages of antielectromagnetic interference, high reliability and stability, simple preparing process, and low cost; it will occupy an important place in displacement sensors.

  2. Temperature characterization of integrated optical all-polymer Mach-Zehnder interferometers

    Science.gov (United States)

    Xiao, Yanfen; Hofmann, Meike; Wang, Ziyu; Langenecker, Alexa; Shermann, Stanislav; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    Two new design concepts for all-polymer-based integrated optical Mach-Zehnder interferometers in foil as chemical or bio-chemical sensors are presented. Fabricated with hot-embossing and printing techniques, these all polymer optical components are designed for low-cost fabrication and yield highly sensitive response to external refractive index changes. Compared to traditional semiconductor based systems, these polymer sensors do not need the interaction window and do not require a cleanroom for fabrication. The optical response of the asymmetric interferometers to temperature variations is determined theoretically and compared for two designs. Using the designed asymmetric interferometer, a chemical micro-fluidic test system with temperature controller experimentally demonstrates the sensors' temperature characteristics.

  3. An innovative single development process for integrated optical Mach-Zehnder interferometer pattern transfer

    Science.gov (United States)

    Idris, NurulBariah; Lau, Kuen Yau; Khor, Kang Nan; Abdul Wahid, Mohamad Halim; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Integrated optical Mach-Zehnder interferometer (IO-MZI) has been widely researched for various usage including for biosensor application. However, the success rate of IO-MZI pattern transfer has been low using the conventional multidevelopment process. One of the main factors is the particle contamination due to the practice of reused developer bath. In this work, an innovative single development process had been proposed with the utilization of the same conventional set-up but with a different protocol. The concept of this method is the estimation of total development time based on the calculated development rate. By doing so, the development process can be completed with only one immersion of the substrate in the developer bath. Besides, the manipulation of development rate by varying exposure time in this work also had revealed the possibility of manipulation of line-width based on the exposure time. In short, the proposed single development process has increased the success rate of IO-MZI pattern transfer from 30% (multi-development method) to 90%.

  4. Characterization of an Optically Integrated Mach-Zehnder Interferometer for the Detection of Biological Agents

    Science.gov (United States)

    1997-04-01

    nanotechnology for chemical and biochemical analysis. The integration of planar waveguides with these technologies can provide new methods of detection...Project Group 33 on automated biosensors. The work described herein is relevant to NATO Panel 7 in that it presents a novel method of chemical-optical...the analytes possess flu- P502399.PDF [Page: 12 of 62] UNCLASSIFIED 2 orescence labels) or by refractometry . Surface plasmon resonance (Refs. 1 and 2

  5. Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration.

    Science.gov (United States)

    Ding, Jianfeng; Chen, Hongtao; Yang, Lin; Zhang, Lei; Ji, Ruiqiang; Tian, Yonghui; Zhu, Weiwei; Lu, Yangyang; Zhou, Ping; Min, Rui

    2012-01-30

    We demonstrate a carrier-depletion Mach-Zehnder silicon optical modulator, which is compatible with CMOS fabrication process and works well at a low driving voltage. This is achieved by the optimization of the coplanar waveguide electrode to reduce the electrical signal transmission loss. At the same time, the velocity and impedance matching are both considered. The 12.5 Gbit/s data transmission experiment of the fabricated device with a 2-mm-long phase shifter is performed. The driving voltages with the swing amplitudes of 1 V and 2 V and the reverse bias voltages of 0.5 V and 0.8 V are applied to the device, respectively. The corresponding extinction ratios are 7.67 and 12.79 dB.

  6. Generation of Carrier and Odd Sidebands Suppressed Optical MM-Wave with Signal Only on One Sideband Using an External Integrated Mach-Zehnder Modulator

    Institute of Scientific and Technical Information of China (English)

    XU Wei; XIN Xiang-Jun; ZHAO Tong-Gang; LING Jing; YU Chong-Xiu

    2009-01-01

    A novel scheme to generate millimeter(mm)-wave is proposed where the quadrupling of local radio frequency is formed by using an external integrated Mach-Zehnder modulator through intensity modulation or phase modulation.Generated optical mm-wave signal suffers from neither power periodical fading nor time shift of the sidebands as it is transmitted along the fiber.Receiver sensitivity of our 10Gbit/s radio-over-fiber system based on the proposed scheme is-28.3dBm under intensity modulation while-24dBm under phase modulation after 65 km transmission,and bit error rate is at 10~(-4) level after 100km transmission.Optical carrier in uplink is provided by the central station to simplify the base station,which also reduces the cost of the base station.

  7. Efficient regenerative wavelength conversion at 10Gbit/s over C- and L-band (80nm span) using a Mach-Zehnder interferometer with monolithically integrated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Dülk, M.; Fischer, St.; Gamper, E.;

    2000-01-01

    A demonstration is presented of 10Gbit/s 2R regenerative wavelength up- and down-conversion within the C-band as well as up-conversion to the L-band using a monolithically integrated Mach-Zehnder interferometer module with semiconductor optical amplifiers (MZI-SOAs). The converted output signals ...

  8. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.

    Science.gov (United States)

    Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J

    2013-01-01

    Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.

  9. A new magnetic sensor with Mach-Zehnder/Sagnac optical fiber interferometer

    Institute of Scientific and Technical Information of China (English)

    Shuguang LI; Xinwan LI; Xin WANG; Jianping CHEN

    2009-01-01

    This paper presents a new structure for magnetic sensor with Mach-Zehnder/Sagnac optical fiber interferometer. The magnetostrictive optical fiber sensor is placed in one of the two arms of the Mach-Zehnder interferometer, which can detect the optic phase shift by testing the length difference of the arm caused by environmental magnetic field. Because of forward and backward transmission in the arms, the Mach-Zehnder/ Sagnac optical fiber interferometer can deduce twice exactly of the phase shift proportional to the length difference as Mach-Zehnder interferometer. Theoretically, description of the Mach-Zehnder/Sagnac interferometer is given, and some main issues in the magnetic field sensor with optical fiber interferometer are demonstrated with experiments. The magnetic sensors are implemented using the proposed methods.

  10. Mach-Zehnder Fiber-Optic Links for ICF Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E. K., Hermann, H. W.

    2012-11-01

    This article describes the operation and evolution of Mach-Zehnder links for single-point detectors in inertial confinement fusion experimental facilities, based on the Gamma Reaction History (GRH) diagnostic at the National Ignition Facility.

  11. Optical Coupling Structures of Fiber-Optic Mach-Zehnder Interferometers Using CO2 Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Chien-Hsing Chen

    2014-01-01

    Full Text Available The Mach-Zehnder interferometer (MZI can be used to test changes in the refractive index of sucrose solutions at different concentrations. However, the popularity of this measurement tool is limited by its substantial size and portability. Therefore, the MZI was integrated with a small fiber-optic waveguide component to develop an interferometer with fiber-optic characteristics, specifically a fiber-optic Mach-Zehnder interferometer (FO-MZI. Optical fiber must be processed to fabricate two optical coupling structures. The two optical coupling structures are a duplicate of the beam splitter, an optical component of the interferometer. Therefore, when the sensor length and the two optical coupling structures vary, the time or path for optical transmission in the sensor changes, thereby influencing the back-end interference signals. The researchers successfully developed an asymmetrical FO-MZI with sensing abilities. The spacing value between the troughs of the sensor length and interference signal exhibited an inverse relationship. In addition, image analysis was employed to examine the size-matching relationship between various sensor lengths and the coupling and decoupling structure. Furthermore, the spectral wavelength shift results measured using a refractive index sensor indicate that FO-MZIs with a sensor length of 38 mm exhibited excellent sensitivity, measuring 59.7 nm/RIU.

  12. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography.

    Science.gov (United States)

    Yurtsever, Günay; Považay, Boris; Alex, Aneesh; Zabihian, Behrooz; Drexler, Wolfgang; Baets, Roel

    2014-04-01

    Optical coherence tomography (OCT) is a noninvasive, three-dimensional imaging modality with several medical and industrial applications. Integrated photonics has the potential to enable mass production of OCT devices to significantly reduce size and cost, which can increase its use in established fields as well as enable new applications. Using silicon nitride (Si3N4) and silicon dioxide (SiO2) waveguides, we fabricated an integrated interferometer for spectrometer-based OCT. The integrated photonic circuit consists of four splitters and a 190 mm long reference arm with a foot-print of only 10 × 33 mm(2). It is used as the core of a spectral domain OCT system consisting of a superluminescent diode centered at 1320 nm with 100 nm bandwidth, a spectrometer with 1024 channels, and an x-y scanner. The sensitivity of the system was measured at 0.25 mm depth to be 65 dB with 0.1 mW on the sample. Using the system, we imaged human skin in vivo. With further optimization in design and fabrication technology, Si3N4/SiO2 waveguides have a potential to serve as a platform for passive photonic integrated circuits for OCT.

  13. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration

    DEFF Research Database (Denmark)

    Durhuus, T.; Jørgensen, C.; Mikkelsen, Benny

    1994-01-01

    Penalty free wavelength conversion is demonstrated at 2.5 Gbit/s over a wavelength span of 12 nm by the use of semiconductor optical amplifier (SOA)'s in a Mach-Zehnder configuration. An increase in the extinction ratio is measured for the converted signal compared to the input signal implying si...... signal regeneration as well as wavelength conversion...

  14. Distributed optical fiber perturbation sensing system based on Mach-Zehnder interferometer

    Institute of Scientific and Technical Information of China (English)

    Wengang WANG; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Ziheng XU

    2009-01-01

    A novel distributed optical fiber vibration-sensing system based on Mach-Zehnder interferometer has been designed and experimentally demonstrated. Firstly, the principle of Mach-Zehnder optical path interferometer technique is clarified. The output of the Mach-Zehnder interferometer is proportional to the phase shift induced by the perturbation. Secondly, the system consists of the laser diode (LD) as the light source, fiber, Mach-Zehnder optical interferometers as the sensing units, a 1×N star fiber-optic coupler, an N×1 fiber-optic coupler, a photodiode (PD) detector, and a computer used in signal processing. The entire monitoring region of this system is divided into several small zones, and each small monitoring zone is independent from each other. All of the small monitoring zones have their own sensing unit, which is defined by Mach-Zehnder optical interferometer. A series of sensing units are connected by the star fiber-optic couplers to form a whole sensing net. Thirdly, signal-processing techniques are subsequently used to calculate the phase shift to estimate whether intruders appear. The sensing system is able to locate the vibration signal simultaneously, includ-ing multiple vibrations at different positions, by employing the time-division multiplexed (TDM) technique. Finally, the operation performance of the proposed system is tested in the experiment lab with the conditions as follows: the number of the sensing units is 3, the length of the sensing fiber is 50 m, and the wavelength of the light diode is 1550nm. Based on these investigations, the fiber surrounding alert system is achieved. We have experimen-tally demonstrated that the sensing system can measure both the frequency and position of the vibration in real time, with a spatial positional resolution better than 50 m in an area of 1 km2.

  15. Optical waveguide biosensor based on cascaded Mach-Zehnder interferometer and ring resonator with Vernier effect

    Science.gov (United States)

    Jiang, Xianxin; Tang, Longhua; Song, Jinyan; Li, Mingyu; He, Jian-Jun

    2014-03-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) have been extensively investigated owing to its various advantages and many potential applications. In this article, we demonstrate a novel highly sensitive biosensor based on cascaded Mach-Zehnder interferometer (MZI) and ring resonator with the Vernier effect using wavelength interrogation. The experimental results show that the sensitivity reached 1,960 nm/RIU and 19,100 nm/RIU for sensors based on MZI alone and cascaded MZI-ring with Vernier effect, respectively. A biosensing application was also demonstrated by monitoring the interaction between goat and antigoat immunoglobulin G (IgG) pairs. This integrated high sensitivity biosensor has great potential for medical diagnostic applications.

  16. Mach-Zehnder fiber-optic links for reaction history measurements at the National Ignition Facility

    Science.gov (United States)

    Miller, E. Kirk; Herrmann, H. W.; Stoeffl, W.; Horsfield, C. J.

    2010-08-01

    We present the details of the analog fiber-optic data link that will be used in the chamber-mounted Gamma Reaction History (GRH) diagnostic at the National Ignition Facility (NIF) located at the Lawrence Livermore Laboratory in Livermore, California. The system is based on Mach-Zehnder (MZ) modulators integrated into the diagnostic, with the source lasers and bias control electronics located remotely to protect the active electronics. A complete recording system for a single GRH channel comprises two MZ modulators, with the fiber signals split onto four channels on a single digitizer. By carefully selecting the attenuation, the photoreceiver, and the digitizer settings, the dynamic range achievable is greater than 1000:1 at the full system bandwidth of greater than 10 GHz. The system is designed to minimize electrical reflections and mitigate the effects of transient radiation darkening on the fibers.

  17. The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology

    NARCIS (Netherlands)

    Schipper, E.F.; Brugman, A.M.; Lechuga, L.M.; Kooyman, R.P.H.; Greve, J.; Dominguez, C.

    1997-01-01

    We describe the realization of a symmetric integrated channel waveguide Mach-Zehnder sensor which uses the evanescent field to detect small refractive-index changes (¿nmin ¿ 1 × 10¿4) near the guiding-layer surface. This guiding layer consists of ridge structures with a height of 3 nm and a width of

  18. Mach-Zehnder-based five-port silicon router for optical interconnects.

    Science.gov (United States)

    Li, Xianyao; Xiao, Xi; Xu, Hao; Li, Zhiyong; Chu, Tao; Yu, Jinzhong; Yu, Yude

    2013-05-15

    We propose and fabricate a five-port silicon optical router based on Mach-Zehnder interferometer switches. Only 10 switching elements and five low-loss waveguide crossings are required in our design. Through thermal control of the switching network, we successfully demonstrate 20 possible I/O paths of the five-port optical router at a data transmission rate of 32 Gb/s. The results here show great potential for application in ultrahigh-capacity optical interconnects.

  19. Stabilized fiber-optic Mach-Zehnder interferometer for carrier-frequency rejection

    CERN Document Server

    Cooper, Nathan; Bateman, James; Dunning, Alexander; Freegarde, Tim

    2013-01-01

    We have demonstrated stabilization of a fiber-optic Mach-Zehnder interferometer, with a centimeter-scale path difference, to the transmission minimum for the carrier wave of a frequency-modulated laser beam. A time-averaged extinction of 32 dB, limited by the bandwidth of the feedback, was maintained over several hours. The interferometer was used to remove the carrier wave from a 780 nm laser beam that had been phase modulated at 2.7 GHz.

  20. Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator

    Science.gov (United States)

    Thomas, Roney; Ikonic, Zoran; Kelsall, Robert W.

    2012-01-01

    The performance of a CMOS-compatible electro-optic Mach-Zehnder plasmonic modulator is investigated using electromagnetic and carrier transport simulations. Each arm of the Mach-Zehnder device comprises a metal-insulator-semiconductor-insulator-metal (MISIM) structure on a buried oxide substrate. Quantum mechanical effects at the oxide/semiconductor interfaces were considered in the calculation of electron density profiles across the structure, in order to determine the refractive index distribution and its dependence on applied bias. This information was used in finite element simulations of the electromagnetic modes within the MISIM structure in order to determine the Mach-Zehnder arm lengths required to achieve destructive interference and the corresponding propagation loss incurred by the device. Both inversion and accumulation mode devices were investigated, and the layer thicknesses and height were adjusted to optimise the device performance. A device loss of <8 dB is predicted for a MISIM structure with a 25 nm thick silicon layer, for which the device length is <3 μm, and <5 dB loss is predicted for the limiting case of a 5 nm thick silicon layer in a 1.2 μm long device: in both cases, the maximum operating voltage is 7.5 V.

  1. Optical directional coupler and Mach-Zehnder interferometer enhanced via 4H-SiC phonons

    Science.gov (United States)

    Finch, Michael F.; Saunders Filho, Claudio A. B.; Lail, Brian A.

    2016-09-01

    Surface phonon polaritons (SPhPs), similar to it cousin phenomenon surface plasmon polaitons (SPPs), are quasi-neutral particles resulting from light-matter coupling that can provide high modal confinement and long propagation in the mid to long infrared (IR). Mach-Zehnder interferometer (MZI) is a combination of two connected optical directional couplers (ODC). With the use of SPhPs, sub-wavelength feature sizes and modal areas can be achieved and to this end a hybrid SPhP waveguide, where propagation length and modal area can be trade-off, will be employed in the design of an ODC and MZI. This endeavor analyzes and characteristics both an ODC and MZI using commercially available numerical simulation software employing finite element method (FEM). The ODC and MZI are design using a novel SPhP hybrid waveguide design where a 4H-SiC substrate provides the polariton mode. The output ports power and relative phase difference between ports are investigated. SPhP enhanced ODC and MZI has applications including, but not limited to, next-generation ultra-compact photonic integrated circuits and waveguide based IR sensing.

  2. On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer.

    Science.gov (United States)

    Sieger, Markus; Balluff, Franz; Wang, Xiaofeng; Kim, Seong-Soo; Leidner, Lothar; Gauglitz, Guenter; Mizaikoff, Boris

    2013-03-19

    We report the design, fabrication, and first functional verification of mid-infrared (MIR; 3-12 μm) Mach-Zehnder interferometers (MZIs). The developed MIR-MZIs are entirely chip-integrated solid-state devices based on GaAs/AlGaAs technology waveguide fabricated via conventional optical lithography and reactive ion etching (RIE). Thus, fabricated MIR-MZIs were combined with a broadly tunable quantum cascade laser (tQCL) providing a wavelength coverage of 5.78-6.35 μm. MIR-MZIs have been designed with a waveguide width of 5 μm to ensure single mode behavior, avoiding optically undefined interference patterns. Several structures with different opening angles of the Y-junction were fabricated and tested for maximizing IR radiation throughput. This study demonstrates the feasibility of the very first chip-integrated mid-infrared Mach-Zehnder structures via interference patterns produced by minute amounts of water deposited at different positions of the MIR-MZI structure.

  3. Theoretical Analysis and Experiment of Temperature Stability for Fiber-optic Mach-Zehnder Interferometer Filter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fiber-optic Mach-Zehnder interferometer(MZI) can be used as wavelength-multiplexers and demultiplexers. The △L and △φ directly influence the properties of MZI. To lengthen the △L can demultiplex much more wavelengths, but when the △L is longer, the temperature will influence MZI more seriously. A method to solve this problem is proposed, which enables MZI to work stably. The wavelength distance is 0.8nm, and the extinction ratio is high.

  4. Integrated all-polymer Mach-Zehnder interferometers without interaction window in asymmetric configuration

    Science.gov (United States)

    Xiao, Yanfen; Hofmann, Meike; Wang, Ziyu; Sherman, Stanislav; Li, Pei; Zappe, Hans

    2016-02-01

    Integrated Mach-Zehnder interferometers (MZI) based on semiconductors or glasses have been widely used as evanescent field sensors for the monitoring of liquid or gas concentrations. In these systems the upper cladding of the sensing arm is removed partially to form an interaction window by means of subtractive fabrication techniques like etching. The use of polymer materials implicates new options and challenges. Polymers are tunable in terms of refractive index and viscosity offering a great flexibility in design and fabrication in a certain range. They enable a cost-efficient and large-scale roll-to-roll manufacturing of integrated optics on flexible foils as substrate material. The foils can be pre-patterned for example by hot-embossing. Additive steps such as printing a pattern or dispensing a homogeneous layer of liquid monomer material followed by a UV induced polymerization can be used to define the optical structure. However, when a large scale fabrication is required, the reliable production of small lateral structures and thin layers is challenging. Thus the fabrication according to the classical MZI design including an interaction window is difficult so that new design approaches are required. We present here the design and systematic evaluation of MZI sensors without interaction window based on polymer materials. The phase shift at the recombining Y-splitter of the MZI upon a refractive index change of an analyte, which serves as upper cladding of the entire system, is generated by a geometrical asymmetricity of the MZI. The waveguides in the sensing and the reference arm have different width leading to different effective refractive indices and sensitivities. We consider theoretically the expected interference signal and show results from numerical simulations of the whole system using commercial software. The simulations include the material as well as propagation losses and give an overall optimal system length.

  5. Mach-zehnder based optical marker/comb generator for streak camera calibration

    Science.gov (United States)

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  6. High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions

    Directory of Open Access Journals (Sweden)

    Graham Trevor Reed

    2014-12-01

    Full Text Available This paper presents new experimental data from a lateral PN junction silicon Mach-Zehnder optical modulator. Efficiencies in the 1.4V.cm to 1.9V.cm range are demonstrated for drive voltages between 0V and 6V. High speed operation up to 52Gbit/s is also presented. The performance of the device which has its PN junction positioned in the centre of the waveguide is then compared to previously reported data from a lateral PN junction device with the junction self-aligned to the edge of the waveguide rib. An improvement in modulation efficiency is demonstrated when the junction is positioned in the centre of the waveguide. Finally we propose schemes for achieving high modulation efficiency whilst retaining self-aligned formation of the PN junction.

  7. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches.

    Science.gov (United States)

    Yang, Lin; Xia, Yuhao; Zhang, Fanfan; Chen, Qiaoshan; Ding, Jianfeng; Zhou, Ping; Zhang, Lei

    2015-04-01

    We demonstrate a reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches. For all optical links in its 9 routing states, the optical signal-to-noise ratios are larger than 15 dB in the wavelength range from 1525 to 1565 nm. Each optical link of the optical router can manipulate 50 wavelength-division-multiplexing channels with the data rate of 32 Gbps for each channel in the same wavelength range. Its average energy efficiency is about 16.3 fJ/bit, and its response time is about 19 μs.

  8. Optimization design of optical waveguide in Mach-Zehnder electro-optical polymer modulator

    Institute of Scientific and Technical Information of China (English)

    GAO Yuan; ZHANG Xiao-xia; LIAO Jin-kun

    2011-01-01

    @@ In order to reduce transmission loss of the optical waveguide in Mach-Zehnder (M-Z) electro-optical (EO) polymer modulator,the basic iterative formula of semi-vector finite-difference beam propagation method (FD-BPM) is obtained from the scalar wave equation.The transition waveguide is combined with S-type bend branch waveguide for the M-Z EO modulator in the branch waveguide.The effects of structure parameters such as ridge width, length of the branch waveguide and interferometer spacing on the transmission loss are systematically studied by using the semi-vector FD-BPM method.The structure is optimized as an S-sine bend branch waveguide, with rib width w=7 μm, length of branch waveguide L=1200μm and interferometer spacing G=22 μm.The results show that the optimized structure can reduce transmission loss to 0.083 dB,which have a certain reference value to the design of optical waveguide in M-Z polymer modulator.

  9. Design and analysis of various multifunctional operations at ultrahigh speed by using a semiconductor optical amplifier-Mach-Zehnder interferometer

    Science.gov (United States)

    Lovkesh; Marwaha, Anupma

    2016-03-01

    Various multifunctional operations are performed by proposing designs of optical adder, subtractor, comparator, and decoder at 60 Gb/s. In all operations, constructive interference is produced by choosing optimized parameters, i.e., optical pulse generator power, input power, semiconductor optical amplifier-Mach-Zehnder interferometer parameters, and so on, for delivering a true output signal. An optical pulse-generated signal is required for all operations except addition, subtraction and equal to in a comparator.

  10. Design of 1-bit and 2-bit magnitude comparators using electro-optic effect in Mach-Zehnder interferometers

    Science.gov (United States)

    Kumar, Santosh; Bisht, Ashish; Singh, Gurdeep; Choudhary, Kuldeep; Raina, K. K.; Amphawan, Angela

    2015-12-01

    The Mach-Zehnder interferometer (MZI) structures collectively show powerful capability in switching an input optical signal to a desired output port from a collection of output ports. Hence, it is possible to construct complex optical combinational digital circuits using the electro-optic effect constituting MZI structure as a basic building block. Optical switches have been designed for 1-bit and 2-bit magnitude comparators based on electro-optic effect using Mach-Zehnder interferometers. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. Analysis of some factors influencing the performances of proposed device has been discussed properly. The study is verified using beam propagation method.

  11. Design of all-optical multi-level regenerators based on Mach-Zehnder interferometer

    Science.gov (United States)

    Kong, Xiangjian; Wu, Baojian; Zhou, Xingyu; Wan, Qingyao; Jiang, Shanglong; Wen, Feng; Qiu, Kun

    2016-12-01

    We propose a design method for all-optical multi-level regenerators by mimicking the normalized power transfer function (PTF) in the first-order approximation to the ideal step-like PTF, in which a key step is to appropriately select the amplitude and phase conditions of Mach-Zehnder-interferometer (MZI)-based regenerators. As an example, we describe the design process of the self-phase-modulation (SPM)-based MZI regenerator constructed by a section of nonlinear fiber and an optical phase shifter (OPS). It is shown that the parameter of reference power level (RPL) can be regarded as the upper limit of input power, which is useful for the measure of the multi-level regeneration performance. The number of regenerative power levels increases with the RPL parameter. For 4-level pulse amplitude modulated (4PAM) optical signals degraded by the Gaussian noises with the standard deviation of 0.02, the SPM-based MZI regenerator has an average noise reduction ratio (NRR) of 6.5 dB, better than that of 1st-order regenerator by about 5 dB.

  12. Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks

    Science.gov (United States)

    Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.

    2016-02-01

    Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.

  13. Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches

    DEFF Research Database (Denmark)

    Gosciniak, J.; Markey, L.; Dereux, A.

    2012-01-01

    We report detailed experimental studies of compact fiber-coupled dielectric-loaded plasmonic waveguide components-Mach-Zehnder interferometers (MZIs) and directional couplers (DCs)-whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold st......, and wavelength dependent low power (similar to 0.92 mW) rerouting is achieved with DC switches. Furthermore, simulations were performed to confirm the switching characteristics of the components....

  14. A versatile all-optical modulator based on nonlinear Mach-Zehnder interferometers

    NARCIS (Netherlands)

    Krijnen, G.J.M.; Villeneuve, A.; Stegeman, G.I.; Lambeck, P.V.; Hoekstra, H.J.W.M.

    1994-01-01

    A device based on a Nonlinear Mach-Zehnder interferometer (NMI) which exploits cross-phase modulation of two co-propagating modes in bimodal branches has been described in this paper. The advantage of this device is that it becomes polarisation independent while keeping phase insensitive by using di

  15. Mach-Zehnder Interferometers with Asymmetric Modulation Arms in Applications of High Speed Silicon-on-Insulator Based Optical Switches

    Institute of Scientific and Technical Information of China (English)

    SUN Fei; YU Jin-Zhong

    2006-01-01

    @@ Modulation arms with different widths are introduced to Mach-Zehnder interferometers (MZIs) to obtain improved performance. Theoretical analysis and numerical simulation have shown that when the widths of the two arms are properly designed to achieve an inherent mπ/2 (m is an odd integer) optical phase difference between the arms, the asymmetric MZI presents higher modulation speed. Furthermore, the carrier-absorption induced divergence of insertion losses in silicon-on-insulator (SOI) based MZI optical switches can be obviously improved.

  16. An all-optical switch of Mach-Zehnder interferometer type using an active fibre ring resonator

    Institute of Scientific and Technical Information of China (English)

    Li Jun-Qing; Alireza Bananej; Li Qiang-Hua; Chen Qiang; Li Chun-Fei

    2004-01-01

    We propose an all-optical switch of the Mach-Zehnder interferometer type using an active nonlinear ring resonatorand analyse the significance of the parameter A, a product of gain and total loss, for performing an ideal 1 by 2switch. We found that in the range of 1 - κ≤ A ≤√/1 - k, the increment of A can compensate the losses insidethe ring, therefore increase the finesse of the ring and enhance the nonlinearity contribution to reduce the switchingpower threshold effectively. We also emphasize the importance of the initial switching point and discuss the feasibilityof utilizing a high-nonlinear fibre in the ring.

  17. A 2×2 SOI mach-zehnder thermo-optical switch based on strongly guided paired multimode interference couplers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A silicon-on-insulator 2×2 Mach-Zehnder thermo-optical switch is developed based on strongly guided paired multimode interference couplers. The multimode-interference couplers were etched deeply for improving coupler characteristics such as self-imaging quality, uniformity and fabrication tolerance. The proposed switch achieves good performances, including a low insertion loss of -11 .OdB, a fiber-waveguide coupling loss of -4.3dB and a fast response speed measured to be 3.5 and 8.8 μs for raise and fall switching time, respectively.

  18. Compact silicon-on-insulator-based 2 × 2 Mach-Zehnder interferometer electro-optic switch with low crosstalk

    Institute of Scientific and Technical Information of China (English)

    Jiejiang Xing; Zhiyong Li; Peiji Zhou; Yuanhao Gong; Yude Yu; Manqing Tan; Jinzhong Yu

    2015-01-01

    We report a compact 2 × 2 Mach-Zehnder interferometer (MZI) electro-optic switch fabricated on a siliconon-insulator using standard complementary metal-oxide semiconductor (CMOS) processes.With a short modulation arm length of 200 μm,the crosstalk is reduced to-22 dB by the new modulation scheme of push-pull modulation with a pre-biased π/2 phase shift.The new modulation scheme can also work with a fast switching time of about 5.4 ns.

  19. All-optical clear/drop optimisation for a 4x40 Gbit/s signal in Mach-Zehnder Interferometers Based on Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2000-01-01

    Optimisation of the all-optical clear and drop functionality using a Mach-Zehnder Interferometer is investigated for 2, 4 and 8x40 Gbit/s signals. The performance of different devices is compared, and critical design issues are discussed....

  20. All-Optical Regenerative OTDM Add-Drop Multiplexing at 40 Gb/s using Monolithic InP Mach-Zehnder Interferometer

    DEFF Research Database (Denmark)

    Fischer, St.; Dülk, M.; Gamper, E.;

    2000-01-01

    We present a novel method for all-optical add-drop multiplexing having regenerative capability for 40-Gb/s optical time-division multiplexed (OTDM) data using a semiconductor optical amplifier (SOA) based, monolithic Mach-Zehnder interferometer (MZI). Simultaneous dropping of one 10-Gb/s channel ...

  1. All-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an analog on the electromagnetically induced transparency effect

    Science.gov (United States)

    Wang, Boyun; Xiong, Liangbin; Zeng, Qingdong; Chen, Zhihong; Lv, Hao; Ding, Yaoming; Du, Jun; Yu, Huaqing

    2016-06-01

    We theoretically and numerically investigate all-optical Mach-Zehnder interferometer switching based on the phase-shift multiplication effect of an all-optical analog on the electromagnetically induced transparency effect. The free-carrier plasma dispersion effect modulation method is applied to improve the tuning rate with a response time of picoseconds. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Compared with no phase-shift multiplication effect, the average pump power of all-optical switching required to yield the π-phase shift difference decreases by 55.1%, and the size of the modulation region is reduced by 50.1% when the average pump power reaches 60.8 mW. This work provides a new direction for low-power consumption and miniaturization of microstructure integration light-controlled switching devices in optical communication and quantum information processing.

  2. Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors

    Science.gov (United States)

    Gajos, Katarzyna; Angelopoulou, Michailia; Petrou, Panagiota; Awsiuk, Kamil; Kakabakos, Sotirios; Haasnoot, Willem; Bernasik, Andrzej; Rysz, Jakub; Marzec, Mateusz M.; Misiakos, Konstantinos; Raptis, Ioannis; Budkowski, Andrzej

    2016-11-01

    Time-of-flight secondary ion mass spectrometry (imaging, micro-analysis) has been employed to evaluate biofunctionalization of the sensing arm areas of Mach-Zehnder interferometers monolithically integrated on silicon chips for the immunochemical (competitive) detection of bovine κ-casein in goat milk. Biosensor surfaces are examined after: modification with (3-aminopropyl)triethoxysilane, application of multiple overlapping spots of κ-casein solutions, blocking with 100-times diluted goat milk, and reaction with monoclonal mouse anti-κ-casein antibodies in blocking solution. The areas spotted with κ-casein solutions of different concentrations are examined and optimum concentration providing homogeneous coverage is determined. Coverage of biosensor surfaces with biomolecules after each of the sequential steps employed in immunodetection is also evaluated with TOF-SIMS, supplemented by Atomic force microscopy and X-ray photoelectron spectroscopy. Uniform molecular distributions are observed on the sensing arm areas after spotting with optimum κ-casein concentration, blocking and immunoreaction. The corresponding biomolecular compositions are determined with a Principal Component Analysis that distinguished between protein amino acids and milk glycerides, as well as between amino acids characteristic for Mabs and κ-casein, respectively. Use of the optimum conditions (κ-casein concentration) for functionalization of chips with arrays of ten Mach-Zehnder interferometers provided on-chips assays with dramatically improved both intra-chip response repeatability and assay detection sensitivity.

  3. 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach-Zehnder interferometer

    Science.gov (United States)

    Rendón-Salgado, I.; Gutiérrez-Castrejón, R.

    2017-09-01

    A novel architecture to implement an all-optical AND gate that relies on the use of a bulk semiconductor optical amplifier-based active Mach-Zehnder interferometer and the turbo-switch effect is presented. Its performance is analyzed in terms of relevant physical parameters and its power consumption calculated. Error-free operation at 160 Gb/s is numerically demonstrated, thus becoming the fastest AND gate of its kind. Accurate simulations using a well-tested design suite predict a 2.7 dB improvement in terms of quality factor when compared to a conventional scheme. The performance advantages of the proposed architecture remain when combined with a turbo-switched XOR gate: the resulting all-optical half-adder also operates error-free at 160 Gb/s. Our research work boosts the potential of interferometric turbo-switched photonic structures as ultra-fast all-optical processing elements.

  4. N-port strictly non-blocking optical router based on Mach-Zehnder optical switch for photonic networks-on-chip

    Science.gov (United States)

    Geng, Minming; Tang, Zhenhua; Chang, Kan; Huang, Xufang; Zheng, Jiali

    2017-01-01

    A universal method for constructing an N-port strictly non-blocking optical router based on 2×2 Mach-Zehnder optical switch for photonic networks-on-chip is proposed. By analyzing the routing table of the N-port optical router, the relationship between the optical links of port m→port n and port m→port n-1 is indicated, as well as the relationships between the block matrices of the N-port optical router. The strictly non-blocking property of the N-port optical router is proved by the contradiction method. The scale of the N-port optical router can be increased with the improvement of the performance of the Mach-Zehnder optical switch.

  5. A system-level model for high-speed, radiation-hard optical links in HEP experiments based on silicon Mach-Zehnder modulators

    Science.gov (United States)

    Zeiler, M.; Detraz, S.; Olantera, L.; Sigaud, C.; Soos, C.; Troska, J.; Vasey, F.

    2016-12-01

    Silicon Mach-Zehnder modulators have been shown to be relatively insensitive to displacement damage beyond a 1-MeV-equivalent neutron fluence of 3ṡ1016n/cm2. Recent investigations on optimized device designs have also led to a high resistance against total ionizing dose levels of above 1 MGy. Such devices could potentially replace electrical and/or optical links close to the particle interaction points in future high energy physics experiments. Since they require an external continuous-wave light source, radiation-hard optical links based on silicon Mach-Zehnder modulators need to have a different system design when compared to existing directly modulated laser-based optical links. 10 Gb/s eye diagrams of irradiated Mach-Zehnder modulators were measured. The outcomes demonstrate the suitability for using these components in harsh radiation environments. A proposal for the implementation of silicon Mach-Zehnder modulators in CERN's particle detectors was developed and a model to calculate the system performance is presented. The optical power budget and the electrical power dissipation of the proposed link is compared to that of the upcoming Versatile Link system that will be installed in 2018.

  6. Simulation of acousto-optical interaction in a Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    ]. In [3] it is explained how a SAW can be employed to modulate the output light of a GaAs Mach-Zehnder interferometer (MZI) and experimental results with a relative modulation depth of 40 % are presented. To modulate the light using a MZI a SAW is transmitted perpendicularly to the two waveguide arms...... in waveguide structures is to let the light interact with surface acoustic waves (SAW) [1]. SAWs are elastic waves that propagate along a material surface, they consist of a longitudinal and a shear component and they have most of their energy density concentrated within one wavelength of the surface [2...... and the elastic stress field from the SAW results in a periodic change of the refractive index and therefore a periodical phase change in the waveguide arms. At a wave crest the refractive index will increase and at a trough it will decrease. Thus, if the distance between the arms is chosen as an unequal multiple...

  7. Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Gajos, Katarzyna, E-mail: kasia.fornal@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Angelopoulou, Michailia; Petrou, Panagiota [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St, Aghia Paraksevi 15310, Athens (Greece); Awsiuk, Kamil [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Kakabakos, Sotirios [Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR Demokritos, P. Grigoriou & Neapoleos St, Aghia Paraksevi 15310, Athens (Greece); Haasnoot, Willem [RIKILT Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen (Netherlands); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Rysz, Jakub [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Marzec, Mateusz M. [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków (Poland); Misiakos, Konstantinos; Raptis, Ioannis [Department of Microelectronics, Institute of Nanoscience and Nanotechnology, NCSR Demokritos, P. Grigoriou & Neapoleos St, Aghia Paraksevi 15310, Athens (Greece); Budkowski, Andrzej [M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland)

    2016-11-01

    Highlights: • Optimization of probe immobilization with robotic spotter printing overlapping spots. • In-situ inspection of microstructured surfaces of biosensors integrated on silicon. • Imaging and chemical analysis of immobilization, surface blocking and immunoreaction. • Insight with molecular discrimination into step-by-step sensor surface modifications. • Optimized biofunctionalization improves sensor sensitivity and response repeatability. - Abstract: Time-of-flight secondary ion mass spectrometry (imaging, micro-analysis) has been employed to evaluate biofunctionalization of the sensing arm areas of Mach-Zehnder interferometers monolithically integrated on silicon chips for the immunochemical (competitive) detection of bovine κ-casein in goat milk. Biosensor surfaces are examined after: modification with (3-aminopropyl)triethoxysilane, application of multiple overlapping spots of κ-casein solutions, blocking with 100-times diluted goat milk, and reaction with monoclonal mouse anti-κ-casein antibodies in blocking solution. The areas spotted with κ-casein solutions of different concentrations are examined and optimum concentration providing homogeneous coverage is determined. Coverage of biosensor surfaces with biomolecules after each of the sequential steps employed in immunodetection is also evaluated with TOF-SIMS, supplemented by Atomic force microscopy and X-ray photoelectron spectroscopy. Uniform molecular distributions are observed on the sensing arm areas after spotting with optimum κ-casein concentration, blocking and immunoreaction. The corresponding biomolecular compositions are determined with a Principal Component Analysis that distinguished between protein amino acids and milk glycerides, as well as between amino acids characteristic for Mabs and κ-casein, respectively. Use of the optimum conditions (κ-casein concentration) for functionalization of chips with arrays of ten Mach-Zehnder interferometers provided on-chips assays

  8. Improved silica-PLC Mach-Zehnder interferometer type optical switches with error dependence compensation of directional coupler

    Science.gov (United States)

    Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui

    2017-03-01

    For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.

  9. Ultrafast optical reversible double Feynman logic gate using electro-optic effect in lithium-niobate based Mach Zehnder interferometers

    Science.gov (United States)

    Chauhan, Chanderkanta; Bedi, Amna; Kumar, Santosh

    2017-02-01

    In this ultra fast computing era power optimization is a major technological challenge that requires new computing paradigms. Conservative and reversible logic opens up the possibility of ultralow power computing. In this paper, basic reversible logic gate (double Feynman gate) using the lithium-niobate based Mach-Zehnder interferometer is proposed. The results are verified using beam propagation method and MATLAB simulations.

  10. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks

    Science.gov (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao

    2014-05-01

    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  11. Manufacture tolerance analysis and control for a polymer on-silicon Mach-Zehnder-interferometer-based electro-optic switch

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuan-tao; MA Chun-sheng; YAN Xin; CUI Zhan-chen; ZHANG Da-ming

    2011-01-01

    To enhance the electro-optic (EO) modulation efficiency and realize the impedance-matching, a polymer-on-silicon multi mode interference (MMI) Mach-Zehnder interferometer (MZI) -based electro-optic (EO) switch is designed and optimized.Under the central operation wavelength of 1550 nm, the driving voltages of the designed switch are O and ±1.375 V,respectively, with a short active region length of 5 mm, and the characteristic impedance of the electrode is about 49.6 Ω.The manufacture tolerance is analyzed for instructing the device fabrication. The results show that to realize ideal switching function, high fabrication accuracy on the buffer thickness, core thickness, electrode width and MMI wavegnide width is extremely required, and a small voltage drift of-0.03-0.05 V is also expected for reducing the crosstalk to less than -30 dB.The allowed 3 dB bandwidth is 60 nm, and within this spectrum range, the insertion loss and crosstalk are less than 6.71 dB and -30 dB, respectively.

  12. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor.

    Science.gov (United States)

    Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He

    2012-11-30

    The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  13. Signal Transmission in a Human Body Medium-Based Body Sensor Network Using a Mach-Zehnder Electro-Optical Sensor

    Directory of Open Access Journals (Sweden)

    Yong Song

    2012-11-01

    Full Text Available The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.

  14. Frequency measurement of THz waves by electro-optic sampling using Mach-Zehnder-modulator-based flat comb generator

    Science.gov (United States)

    Morohashi, Isao; Kirigaya, Mayu; Kaneko, Yuta; Katayama, Ikufumi; Sakamoto, Takahide; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-02-01

    In the recent progress in terahertz (THz) devices, various kinds of source devices, such as resonant tunneling diodes, quantum cascade lasers and so forth, have been developed. Frequency measurement of THz radiations, which can operate in high speed and at room-temperature, is important for development of high-performance THz source devices. Recently, frequency measurement using optical combs are demonstrated by several groups. In these techniques, modelocked lasers (MLLs) are used for optical comb source, so that phase-locking techniques are required in order to stabilize the repetition frequency of the MLLs. On the other hand, a modulator-based optical comb generator has high accuracy and stability in the comb spacing, which is comparable to that of microwave signal driving the modulator. Thus it is suitable for frequency measurement of THz waves. In this paper, we demonstrated frequency measurement of THz waves using a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). The frequency measurement was carried out by an electro-optic (EO) sampling method, where an optical two-tone signal extracted from the optical comb generated by the MZ-FCG was used for the probe light. A 100 GHz signal generated by a W-band frequency multiplier and the probe beam collinearly traveled through an EO crystal, and beat signals between them were measured by a combination of a balanced photodetector and a spectrum analyzer. As a result, frequency measurement of the 100 GHz wave was successfully demonstrated, in which the linewidth of the beat signal was less than 1 Hz.

  15. Compact-sized high-modulation-efficiency silicon Mach-Zehnder modulator based on a vertically dipped depletion junction phase shifter for chip-level integration.

    Science.gov (United States)

    Kim, Gyungock; Park, Jeong Woo; Kim, In Gyoo; Kim, Sanghoon; Jang, Ki-Seok; Kim, Sun Ae; Oh, Jin Hyuk; Joo, Jiho; Kim, Sanggi

    2014-04-15

    We present small-sized depletion-type silicon Mach-Zehnder (MZ) modulator with a vertically dipped PN depletion junction (VDJ) phase shifter based on a CMOS compatible process. The fabricated device with a 100 μm long VDJ phase shifter shows a VπLπ of ∼0.6  V·cm with a 3 dB bandwidth of ∼50  GHz at -2  V bias. The measured extinction ratios are 6 and 5.3 dB for 40 and 50  Gb/s operation under 2.5  Vpp differential drive, respectively. On-chip insertion loss is 3 dB for the maximum optical transmission. This includes the phase-shifter loss of 1.88  dB/100  μm, resulting mostly from the extra optical propagation loss through the polysilicon-plug structure for electrical contact, which can be readily minimized by utilizing finer-scaled lithography nodes. The experimental result indicates that a compact depletion-type MZ modulator based on the VDJ scheme can be a potential candidate for future chip-level integration.

  16. Design of Excess 3 to BCD code converter using electro-optic effect of Mach-Zehnder Interferometers for efficient data transmission

    Science.gov (United States)

    Kumar, Santosh; Chanderkanta; Amphawan, Angela

    2016-04-01

    Excess 3 code is one of the most important codes used for efficient data storage and transmission. It is a non-weighted code and also known as self complimenting code. In this paper, a four bit optical Excess 3 to BCD code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  17. ALL OPTICAL IMPLEMENTATION OF HIGH SPEED AND LOW POWER REVERSIBLE FULL ADDER USING SEMICONDUCTOR OPTICAL AMPLIFIER BASED MACH-ZEHNDER INTERFEROMETER

    Directory of Open Access Journals (Sweden)

    R. M. Bommi

    2014-01-01

    Full Text Available In the recent years reversible logic design has promising applications in low power computing, optical computing, quantum computing. VLSI design mainly concentrates on low power logic circuit design. In the present scenario researchers have made implementations of reversible logic gates in optical domain for its low energy consumption and high speed. This study is all about designing a reversible Full adder using combination of all optical Toffoli and all optical TNOR and to compare it with the Full adder designed using all optical Toffoli gate in terms of optical cost. All optical TNOR gate can work as a replacement of existing NAND based All optical Toffoli Gate (TG. The gates are designed using Mach-Zehnder Interferometer (MZI based optical switch. The proposed system is developed with the basic of reversibility to design all optical full Adder implemented with CMOS transistors. The design is efficient in terms of both architecture and in power consumption.

  18. Comparison of all-optical co- and counter-propagating high-speed signal processing in SOA-based Mach-Zehnder interferometers

    DEFF Research Database (Denmark)

    Bischoff, Svend; Buxens, Alvaro; Fischer, S.;

    2001-01-01

    The all-optical signal processing performance of a Mach-Zehnder interferometer (MZI) is investigated. Calculated switching windows are used to investigate and understand the physical mechanisms limiting the high speed performance. Especially, the co- and counter-propagating operation of the MZI...... is discussed and important differences in the performance for the two schemes are addressed. The non-regenerative all-optical clear and drop functionality is investigated for a 2, 4 and 8 x 40 Gbit/s signal, showing good performance in the co-propagating case. Regenerative simultaneous clear and drop...... functionality in a single MZI is demonstrated experimentally and compared to the large signal model predictions....

  19. Improving the acousto-optical interaction in a Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole

    2009-01-01

    A method for modeling the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach–Zehnder interferometer is presented. The surface acoustic wave is generated by an interdigital transducer using a linear elastic plane model of a piezoelect......A method for modeling the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach–Zehnder interferometer is presented. The surface acoustic wave is generated by an interdigital transducer using a linear elastic plane model...... of a piezoelectric, inhomogeneous material, and reflections from the boundaries are avoided by applying perfectly matched layers. The optical modes in the waveguides are modeled by time-harmonic wave equations for the magnetic field. The two models are coupled using stress-optical relations and the change...... bigger if the waveguides are kept single moded. It is furthermore shown that the difference increases more than ten times when the waveguides are buried below the surface, where the mechanical stresses have their maximum, and in the case where two interdigital transducers are used the difference...

  20. Design, Fabrication and Characterization of LiNbO3-Based Integrated Optical Waveguide Mach-Zehnder Interferometer%铌酸锂基集成光波导马赫-曾德尔干涉仪的设计、制备及其特性的初步测试

    Institute of Scientific and Technical Information of China (English)

    陈方; 刘瑞鹏; 祁志美

    2011-01-01

    设计了具有推挽调制电极和消逝场敏感窗口的铌酸锂(LiNbO3)基集成光波导马赫-曾德尔干涉仪(MZI).利用标准微光机电系统(MOEMS)加工工艺结合高温钛内扩散法制备出三维单模LiNbO3光波导MZI阵列芯片,并对芯片进行了端面抛光,实现了光纤一波导端面输入和输出耦合,并初步调查了干涉仪芯片的相位调制特性,结果表明,在633 nm波长下其半波调制电压为5.61 V,干涉条纹对比度为0.62.当干涉仪芯片被用于生化探测时-这种电光调制功能可用于调节干涉仪芯片的初始相位差和识别其相位差的变化方向.%LiNbO3-based integrated optical waveguide Mach-Zehnder interferometer (MZI) with push-pull electrodes and evanescent field sensing window is developed. By using standard micro-opto-electro-mechanical-system (MOEMS) technique and titanium-indiffusion method, LiNbO3 monomode channel waveguide MZI array with modulating electrodes is fabricated. The near-field profile of the guided mode is detected after launching light into the LiNbO3 waveguide by fiber end-fire coupling. The phase-modulating property of the LiNbO3 MZI is investigated. The experimental results show that the phase modulation of the MZI is fully reversible and its half-wave voltage Vπ is 5.61 V, and fringe contrast is 0.62. The phase-modulating capability allows the initial phase of the MZI device to be a quadrature point to make the device work in the linear-response region for biochemical sensor.

  1. Thermo-optically driven silicon microring-resonator-loaded Mach-Zehnder modulator for low-power consumption and multiple-wavelength modulation

    Science.gov (United States)

    Gautam, Rajdeep; Kaneshige, Hiroki; Yamada, Hitoshi; Katouf, Redouane; Arakawa, Taro; Kokubun, Yasuo

    2014-02-01

    Low-power-consumption thermo-optically controlled silicon-microring-resonator loaded Mach-Zehnder modulators (MRR-loaded MZMs) are demonstrated. We experimentally characterized a single microring and cascaded-multiple-microring resonators coupled to one arm of a Mach-Zehnder interferometer (MZI). The driving power consumption of the proposed MZM is significantly reduced owing to the enhanced phase shift in the MRR. The device was fabricated on a silicon-on-insulator (SOI) waveguide structure, and each microring is equipped with TiN microheater for thermo-optic tuning. The coupling efficiency between the microring and a busline waveguide was regulated by varying the gap between two waveguides at a directional coupler. The power consumption of single microring and cascaded MRR-loaded MZMs was approximately 0.4 and 1 mW, respectively. The phase-shift enhancement factor of up to 19 with a maximum extinction ratio of 18 dB was obtained experimentally. Multiple-wavelength operation was also demonstrated in the cascaded MRR-loaded MZM.

  2. Design of reversible sequential circuits using electro-optic effect of lithium-niobate-based Mach-Zehnder interferometers

    Science.gov (United States)

    Kumar, Santosh; Chauhan, Chanderkanta; Bedi, Amna

    2016-12-01

    In recent years, it has been shown that reversible logic can play an important role in power optimization for computer design. The various reversible logic gates such as Feynman, Fredkin, Peres, and Toffoli gates have been discussed by researchers, but very little work has been done on reversible sequential circuits. Design of reversible sequential circuits using lithium-niobate-based Mach-Zehnder interferometers is proposed. Here, flip-flops are designed with the help of basic reversible logic gates such as Feynman, Fredkin, and Peres gates. Theoretical descriptions along with mathematical formulation of the devices are provided. The devices are also analyzed through finite difference-beam propagation method and MATLAB® simulation.

  3. Slow light Mach-Zehnder fiber interferometer

    Institute of Scientific and Technical Information of China (English)

    Yundong Zhang; Jinfang Wang; Xuenan Zhang; Hao Wu; Yuanxue Cai; Jing Zhang; Ping Yuan

    2012-01-01

    A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated.The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure.The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.Interferometers have been investigated in relation to their applications in fields such as metrology[1],optical sensing[2],optical communication[3,4],quantum information processing[5],and biomedical engineering[6].A number of schemes have been proposed to improve the performance of interferometers[7],such as using photonic crystal structures to minimize the size of on-chip devices[8],utilizing the dispersive property of semiconductor to enhance the spectral sensitivity of interferometers[9,10],utilizing slow light medium to enhance the resolution of Fourier transform interferometer[11],exploiting fast light medium or slow light structure to increase the rotation sensitivity of a Sagnac interferometer[12,13],enhancing the transmittance of the Mach-Zehnder interferometer (MZI) in the slow light region by gratings[14],and using liquid crystal light valve to derive high sensitivity interferometers[15].%A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated. The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure. The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.

  4. Coplanar-waveguide-based silicon Mach-Zehnder modulator using a meandering optical waveguide and alternating-side PN junction loading.

    Science.gov (United States)

    Dong, Po; Sinsky, Jeffrey H; Gui, Chengcheng

    2016-09-15

    We demonstrate a silicon Mach-Zehnder modulator with a coplanar waveguide transmission-line electrode structure using a meandering optical waveguide and alternating-side PN junction loading of the electrodes, which helps suppress the signal distortion caused by the parasitic slot-line mode and improves the electro-optic (EO) bandwidth. The silicon MZM exhibits a π-phase-shift voltage (Vπ) of 4.5 V with an EO 3 dB bandwidth of ∼20  GHz for a 5 mm long phase shifter. This achieved Vπ is among the lowest for silicon-only modulators with a bandwidth of more than 20 GHz.

  5. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Science.gov (United States)

    Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung

    2013-01-01

    We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744

  6. Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Pan

    2013-07-01

    Full Text Available We propose and experimentally demonstrate the novel radio-frequency (RF interrogation of a fiber Bragg grating (FBG sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM. Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications.

  7. Design of an optical 4-bit binary to BCD converter using electro-optic effect of lithium niobate based Mach-Zehnder interferometers

    Science.gov (United States)

    Kumar, Santosh

    2017-07-01

    Binary to Binary coded decimal (BCD) converter is a basic building block for BCD processing. The last few decades have witnessed exponential rise in applications of binary coded data processing in the field of optical computing thus there is an eventual increase in demand of acceptable hardware platform for the same. Keeping this as an approach a novel design exploiting the preeminent feature of Mach-Zehnder Interferometer (MZI) is presented in this paper. Here, an optical 4-bit binary to binary coded decimal (BCD) converter utilizing the electro-optic effect of lithium niobate based MZI has been demonstrated. It exhibits the property of switching the optical signal from one port to the other, when a certain appropriate voltage is applied to its electrodes. The projected scheme is implemented using the combinations of cascaded electro-optic (EO) switches. Theoretical description along with mathematical formulation of the device is provided and the operation is analyzed through finite difference-Beam propagation method (FD-BPM). The fabrication techniques to develop the device are also discussed.

  8. Mach-Zehnder recording systems for pulsed power diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E. K.; Abbott, R. Q.; McKenna, I.; Macrum, G.; Baker, D.; Tran, V.; Rodriguez, E.; Kaufman, M. I.; Tibbits, A.; Silbernagel, C. T.; Waltman, T. B. [National Security Technologies, LLC, Santa Barbara and Livermore, California 93111 (United States); National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); and National Security Technologies, LLC, North Las Vegas, Nevada 89193 (United States); Herrmann, H. W.; Kim, Y. H.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedillo, T. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Grafil, E. [Lawrence Livermore National Laboratory, Livermore, California (United States); and others

    2012-10-15

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  9. Mach-Zehnder recording systems for pulsed power diagnostics.

    Science.gov (United States)

    Miller, E K; Abbott, R Q; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A; Smelser, R M

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  10. Mach-Zehnder Recording Systems for Pulsed Power Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E K; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as Z-R at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History (GRH) diagnostic at OMEGA and NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  11. Radiation Hard Silicon Photonics Mach-Zehnder Modulator for HEP applications: all-Synopsys SentaurusTM Pre-Irradiation Simulation

    CERN Document Server

    Cammarata, Simone

    2017-01-01

    Silicon Photonics may well provide the opportunity for new levels of integration between detectors and their readout electronics. This technology is thus being evaluated at CERN in order to assess its suitability for use in particle physics experiments. In order to check the agreement with measurements and the validity of previous device simulations, a pure Synopsys SentaurusTM simulation of an un-irradiated Mach-Zehnder silicon modulator has been carried out during the Summer Student project. Index Terms—Silicon Photonics, Mach-Zehnder modulator, electro-optic simulation, Synopsys SentaurusTM, electro-optic measurement, HEP.

  12. Low driving voltage Mach-Zehnder interference modulator constructed from an electro-optic polymer on ultra-thin silicon with a broadband operation.

    Science.gov (United States)

    Sato, Hiromu; Miura, Hiroki; Qiu, Feng; Spring, Andrew M; Kashino, Tsubasa; Kikuchi, Takamasa; Ozawa, Masaaki; Nawata, Hideyuki; Odoi, Keisuke; Yokoyama, Shiyoshi

    2017-01-23

    An electro-optic (EO) polymer waveguide using an ultra-thin silicon hybrid has been designed and fabricated. The silicon core has the thickness of 50 nm and a width of 5 μm. The waveguide was completed after covering the cladding with the high temperature stable EO polymer. We have demonstrated a low half-wavelength voltage of 0.9 V at the wavelength of 1.55 μm by using a Mach-Zehnder interference modulator with TM mode operation. The measured modulation corresponded to an effective in-device EO coefficient of 165 pm/V. By utilizing the traveling-wave electrode on the modulator the high-frequency response was tested up to 40 GHz. The 3 dB modulation bandwidth was measured to be 23 GHz. In addition, the high frequency sideband spectral measurement revealed that a linear response of the modulation index against the RF power was confirmed up to 40 GHz signal.

  13. Co-integrated 1.3µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/s.

    Science.gov (United States)

    Ferrotti, Thomas; Blampey, Benjamin; Jany, Christophe; Duprez, Hélène; Chantre, Alain; Boeuf, Frédéric; Seassal, Christian; Ben Bakir, Badhise

    2016-12-26

    In this paper, the 200mm silicon-on-insulator (SOI) platform is used to demonstrate the monolithic co-integration of hybrid III-V/silicon distributed Bragg reflector (DBR) tunable lasers and silicon Mach-Zehnder modulators (MZMs), to achieve fully integrated hybrid transmitters for silicon photonics. The design of each active component, as well as the fabrication process steps of the whole architecture are described in detail. A data transmission rate up to 25Gb/s has been reached for transmitters using MZMs with active lengths of 2mm and 4mm. Extinction ratios of respectively 2.9dB and 4.7dB are obtained by applying drive voltages of 2.5V peak-to-peak on the MZMs. 25Gb/s data transmission is demonstrated at 1303.5nm and 1315.8nm, with the possibility to tune the operating wavelength by up to 8.5nm in each case, by using metallic heaters above the laser Bragg reflectors.

  14. All-optical DAC using counter-propagating optical and electrical pulses in a Mach-Zehnder modulator.

    Science.gov (United States)

    Lowery, Arthur James

    2014-10-20

    A novel method of converting binary-level electrical pulses into multi-level optical pulses using only a conventional traveling-wave optical modulator is presented. The method provides low inter-pulse interference due to the counter-propagating pulses, low amplitude noise, and a timing jitter determined chiefly by the quality of the optical pulse source. The method only requires one electrical drive per modulator and provides low-jitter variable-amplitude optical pulses that are suitable for shaping into a wide variety of modulation formats using a programmable optical filter.

  15. Electro-optic Mach-Zehnder Interferometer based Optical Digital Magnitude Comparator and 1's Complement Calculator

    Science.gov (United States)

    Kumar, Ajay; Raghuwanshi, Sanjeev Kumar

    2016-06-01

    The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.

  16. Assessment of Fiber Chromatic Dispersion Based on Elimination of Second-Order Harmonics in Optical OFDM Single Sideband Modulation Using Mach Zehnder Modulator

    Science.gov (United States)

    Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.

    2016-07-01

    This work addresses the analytical and numerical investigations of the transmission performance of an optical Single Sideband (SSB) modulation technique generated by a Mach Zehnder Modulator (MZM) with a 90° and 120° hybrid coupler. It takes into account the problem of chromatic dispersion in single mode fibers in Passive Optical Networks (PON), which severely degrades the performance of the system. Considering the transmission length of the fiber, the SSB modulation generated by maintaining a phase shift of π/2 between the two electrodes of the MZM provides better receiver sensitivity. However, the power of higher-order harmonics generated due to the nonlinearity of the MZM is directly proportional to the modulation index, making the SSB look like a quasi-double sideband (DSB) and causing power fading due to chromatic dispersion. To eliminate one of the second-order harmonics, the SSB signal based on an MZM with a 120° hybrid coupler is simulated. An analytical model of conventional SSB using 90° and 120° hybrid couplers is established. The latter suppresses unwanted (upper/lower) first-order and second-order (lower/upper) sidebands. For the analysis, a varying quadrature amplitude modulation (QAM) Orthogonal Frequency Division Multiplexing (OFDM) signal with a data rate of 5 Gb/s is upconverted using both of the SSB techniques and is transmitted over a distance of 75 km in Single Mode Fiber (SMF). The simulation results show that the SSB with 120° hybrid coupler proves to be more immune to chromatic dispersion as compared to the conventional SSB technique. This is in tandem with the theoretical analysis presented in the article.

  17. Multi-wavelength Operation of an Er3+-doped Fiber Laser at Room Temperature with a Novel Optical Fiber Mach-Zehnder Interferometer

    Institute of Scientific and Technical Information of China (English)

    AN Hong-Lin; LIN Xiang-Zhi; LIU Hong-Du

    2000-01-01

    A novel multi-wavelength erbium-doped fiber laser with a double-pass Mach-Zehnder fiber interferometer acting both as a comb filter and as a reflection mirror is demonstrated. The spatial hole burning effect introduced by the standing wave cavity configuration enables the simultaneous operation of multiple wavelengths in the homogeneously broadened erbium-doped fiber at room temperature. In the experiment, simultaneous oscillation of four wavelengths at room temperature has been obtained.

  18. Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links.

    Science.gov (United States)

    Witzens, Jeremy; Baehr-Jones, Thomas; Hochberg, Michael

    2010-08-02

    Slot waveguides allow joint confinement of the driving electrical radio frequency field and of the optical waveguide mode in a narrow slot, allowing for highly efficient polymer based interferometers. We show that the optical confinement can be simply explained by a perturbation theoretical approach taking into account the continuity of the electric displacement field. We design phase matched transmission lines and show that their impedance and RF losses can be modeled by an equivalent circuit and linked to slot waveguide properties by a simple set of equations, thus allowing optimization of the device without iterative simulations. We optimize the interferometers for analog optical links and predict record performance metrics (V(pi) = 200 mV @ 10 GHz in push-pull configuration) assuming a modest second order nonlinear coefficient (r(33) = 50 pm/V) and slot width (100 nm). Using high performance optical polymers (r(33) = 150 pm/V), noise figures of state of the art analog optical links can be matched while reducing optical power levels by approximately 30 times. With required optical laser power levels predicted at 50 mW, this could be a game changing improvement by bringing high performance optical analog link power requirements in the reach of laser diodes. A modified transmitter architecture allows shot noise limited performance, while reducing power levels in the slot waveguides and enhancing reliability.

  19. Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control.

    Science.gov (United States)

    Green, William; Lee, Reginald; Derose, Guy; Scherer, Axel; Yariv, Amnon

    2005-03-07

    An InGaAsP-InP optical switch geometry based on electrical control of waveguide-resonator coupling is demonstrated. Thermooptic tuning of a Mach-Zehnder interferometer integrated with a racetrack resonator is shown to result in switching with ON-OFF contrast up to 18.5 dB. The optical characteristics of this unique design enable a substantial reduction of the switching power, to a value of 26 mW in comparison with 40 mW for a conventional Mach-Zehnder interferometer switch. Modulation response measurements reveal a 3 dB bandwidth of 400 kHz and a rise time of 1.8 micros, comparing favorably with current state-of-the-art thermooptic switches.

  20. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  1. Quantum interference in an asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Trenti, A.; Borghi, M.; Mancinelli, M.; Price, H. M.; Fontana, G.; Pavesi, L.

    2016-08-01

    A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The coexistence between one-photon and two-photons interference from collinear color entangled photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two particle interference patterns. In particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter are explored in a single-port excited Mach-Zehnder interferometer. This configuration is especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same spatial mode.

  2. Mach-Zehnder Phasing Sensor for Elts

    Science.gov (United States)

    Dohlen, Kjetil; Montoya-Martinez, Luzma

    Segmented mirror technology has been successfully applied to 10m class telescopes (Keck HET GTC) and its application to future extremely large telescopes (20m NG-CFHT 30m CELT 50m EURO50 100m OWL) is required. Extensive use of adaptive optics in these telescopes puts stringent specifications on wavefront error allowing typically of the order of lambda/20 to segmentation errors. Several phasing metrology schemes adaptable to these giant telescopes are under development. We investigate a novel technique based on the Mach-Zehnder interferometer with a spatial filter in one arm. Atmospheric turbulence is tolerated in this setup if the spatial filter has the size similar to that of the seeing disk. The resulting interference pattern only contains the high-frequency spatial information including information about the piston step height. We describe the theoretical analysis of this system and show simulated and experimatal results. Different error sources are analyzed in order to provide a preliminary idea of the merits of this technique compared with other phasing techniques.

  3. Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream

    Science.gov (United States)

    Dong-Nhat, Nguyen; Malekmohammadi, Amin

    2016-06-01

    In this paper, for the first time transmission of 2.5 Gb/s duobinary signal is investigated for the downlink direction in 40 GHz optical millimeter-wave generation or up-conversion, utilizing a dual-arm LiNb{O}_3 Mach-Zehnder modulator based on different modulation schemes, namely double- and single-sideband (DSB and SSB) and optical carrier suppression (OCS). The up-converted optical millimeter-wave employing OCS modulation scheme indicates the highest back-to-back received optical power and the smallest power penalty after long propagation in the single-mode fiber, in comparison to DSB and SSB. Directly modulated laser in association with OCS modulation scheme has been used to generate duobinary optical millimeter-wave signal in order to minimize the cost and complexity of the system.

  4. Positioning approach based on Mach-Zehnder fiber sensors and a DSP processor

    Science.gov (United States)

    Wan, Xiong; Du, Tingting; Zhang, Zhimin; Zhang, Huaming; Wang, Peng

    2013-12-01

    A positioning system based on Mach-Zehnder optical fiber interferometer is proposed, which can sense vibration information along the circumference of the fiber sensor and hence be applied to positioning invasions as a safe-guard system in residence communities. A cross-correlation algorithm fulfilled with a DSP processor has been adopted to calculate the time difference of two channels of the Mach-Zehnder optical fiber interferometer. A signal identification algorithm is proposed to decrease the workload of the DSP when no vibration occurs. An experiment with 11.28 kilometers sensing fiber has been carried out, whose results show the Mach-Zehnder positioning system identifies the position of vibration instantaneously and has a 44 meters positioning error within the total sensing distance.

  5. Mach-Zehnder interferometer for movement monitoring

    Science.gov (United States)

    Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr

    2012-06-01

    Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and

  6. Mach-Zehnder Modulator Performance on the NIF South Pole Bang Time Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Beeman, B.; MacPhee, A. G.; Kimbrough, J. R.; Chow, R.; Carpenter, A.; Bond, E.; Zayas-Rivera, Z.; Bell, P.; Celeste, J.; Clancy, T.; Miller, E. K.; Edgell, D.; Donaldson, W. R.

    2013-09-01

    We present performance data for Mach-Zehnder optical modulators fielded on the National Ignition Facility (NIF) as a potential signal path upgrade for the South Pole Bang Time diagnostic. A single channel demonstration system has been deployed utilizing two modulators operating in a 90-degree In phase and Quadrature (I/Q) configuration. X-ray target emission signals are split and fed into two recording systems: a reference CRT based oscilloscope, Greenfield FTD10000, and the dual Mach-Zehnder system. Results of X-ray implosion time (bang time) determination from these two recording systems are compared and presented.

  7. Interactive tutorial to improve student understanding of single photon experiments involving a Mach-Zehnder interferometer

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2016-03-01

    We have developed and evaluated a quantum interactive learning tutorial (QuILT) on a Mach-Zehnder interferometer with single photons to expose upper-level students in quantum mechanics courses to contemporary quantum optics applications. The QuILT strives to help students develop the ability to apply fundamental quantum principles to physical situations in quantum optics and explore the differences between classical and quantum ideas. The QuILT adapts visualization tools to help students build physical intuition about counter-intuitive quantum optics phenomena with single photons including a quantum eraser setup and focuses on helping them integrate qualitative and quantitative understanding. We discuss findings from in-class evaluations.

  8. Interactive tutorial to improve student understanding of single photon experiments involving a Mach-Zehnder Interferometer

    CERN Document Server

    Marshman, Emily

    2016-01-01

    We have developed and evaluated a Quantum Interactive Learning Tutorial (QuILT) on a Mach-Zehnder Interferometer with single photons to expose upper-level students in quantum mechanics courses to contemporary quantum optics applications. The QuILT strives to help students develop the ability to apply fundamental quantum principles to physical situations in quantum optics and explore the differences between classical and quantum ideas. The QuILT adapts visualization tools to help students build physical intuition about counter-intuitive quantum optics phenomena with single photons including a quantum eraser setup and focuses on helping them integrate qualitative and quantitative understanding. We discuss findings from in-class evaluations.

  9. 60dB high-extinction auto-configured Mach--Zehnder interferometer

    CERN Document Server

    Wilkes, Callum M; Wang, Jianwei; Santagati, Raffaele; Paesani, Stefano; Zhou, Xiaoqi; Miller, David A B; Marshall, Graham D; Thompson, Mark G; O'Brien, Jeremy L

    2016-01-01

    Imperfections in integrated photonics manufacturing have a detrimental effect on the maximal achievable visibility in interferometric architectures. These limits have profound implications for further photonics technological developments and in particular for quantum photonics technologies. Active optimisation approaches, together with reconfigurable photonics, have been proposed as a solution to overcome this. In this paper, we demonstrate an ultra-high (>60 dB) extinction ratio in a silicon photonic device consisting of cascaded Mach-Zehnder interferometers, in which additional interferometers function as variable beamsplitters. The imperfections of fabricated beamsplitters are compensated using an automated progressive optimization algorithm with no requirement for pre-calibration. This work shows the possibility of integrating and accurately controlling linear-optical components for large-scale quantum information processing and other applications.

  10. 60 dB high-extinction auto-configured Mach-Zehnder interferometer

    Science.gov (United States)

    Wilkes, C. M.; Qiang, X.; Wang, J.; Santagati, R.; Paesani, S.; Zhou, X.; Miller, D. A. B.; Marshall, G. D.; Thompson, M. G.; O'Brien, J. L.

    2016-11-01

    Imperfections in integrated photonics manufacturing have a detrimental effect on the maximal achievable visibility in interferometric architectures. These limits have profound implications for further photonics technological developments and in particular for quantum photonics technologies. Active optimisation approaches, together with reconfigurable photonics, have been proposed as a solution to overcome this. In this paper, we demonstrate an ultra-high (>60 dB) extinction ratio in a silicon photonic device consisting of cascaded Mach-Zehnder interferometers, in which additional interferometers function as variable beamsplitters. The imperfections of fabricated beamsplitters are compensated using an automated progressive optimization algorithm with no requirement for pre-calibration. This work shows the possibility of integrating and accurately controlling linear-optical components for large-scale quantum information processing and other applications.

  11. Structure optimization of polymeric Mach-Zehnder rib waveguide

    Institute of Scientific and Technical Information of China (English)

    LU Rong-guo; LiU Yong-zhi; LIAO Jin-kun; LIAO Yi-tao; HAN Wen-jie

    2007-01-01

    A systematic analysis of the polymeric Mach-Zehnder rib waveguide is presented based on the calculation and optimization. The simulation is carried out with the Effective Index Method (EIM) and two-dimensional (2-D)Finite Difference Beam Propagation Method (FD-BPM). The large refractive index step between the consecutive polymer layers is reduced by using EIM and thus the precision of the calculation is ensured. The important parameters of the waveguide such as Y-junction angle and the separation gap are discussed and their relationships with the optical power propagation and the loss characteristics are investigated in this paper. The total loss of the optimized structure is 0.258 dB.

  12. Migrating the Mach-Zehnder chemical and bio-sensor to the mid-infrared region

    Science.gov (United States)

    Leidner, L.; Ewald, M.; Sieger, M.; Mizaikoff, B.; Gauglitz, G.

    2013-05-01

    The properties of integrated optical phase-modulated Mach-Zehnder interferometers (IO-MZI) are used to set up a new generation of chemical and biochemical sensors working in the mid-infrared. First applications of the MZI principle were introduced in the beginning 1990s. They range from a gas sensor to monitor organic solvent concentrations1 to setting up an immunoassay for the detection of the herbicide simazine2. Most if not all sensors of MZI type operate at wavelengths of the visible or near infrared spectrum. There are several reasons to change this strategy and move into the mid-infrared spectral range (MIR): higher manufacturing tolerances, increased evanescent field penetration depth, signal amplification by surface enhanced infrared absorption effect (SEIRA), species identification by MIR fingerprints. The basis of the planned MIR-MZI is a GaAs waveguide pattern epitaxially grown on a substrate3. As a first step towards nanostructuring the waveguide surface, chemical deposition of Au nanoparticles on GaAs transducers was established. For the use of MIR-MZI sensors in bioanalytical assay development, chemical immobilization of molecular recognition elements on GaAs transducers was carried out. The modified surfaces were characterized by atomic force microscopy (AFM), dark field microscopy, contact angle measurements and ellipsometric data as well as by a modified version of Reflectometric Interference Spectroscopy (RIfS)4. It was possible to monitor both the immobilization of gold nanoparticles and time-resolved specific binding using a model antibody antigen assay. After successful setup of relevant assays with RIfS, e.g. the detection of bacteria or endocrine disruptors, the assays are designed to be transferred onto the mid-infrared Mach-Zehnder interferometer.

  13. A Novel Dynamic Wavelength Cross-connect Based on Mach-Zehnder Interferometer Optical ad/drop Multiplexer and Optical Space Switch

    DEFF Research Database (Denmark)

    Xueyan, Zheng; Liu, Fenghai

    1999-01-01

    We have proposed a novel dynamic WXC based on MZI-OADM. The advantages of this dynamic WXC are very low differential insertion loss, using less exchanging units than reported structures, and the ability to be integrated. In experiment, the three channels from the path with maximum OADMs in a 2×2 ...

  14. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing.

    Science.gov (United States)

    Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan

    2013-05-20

    We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

  15. Silicon photonics athermal Mach-Zehnder interferometer with wide thermal and spectral operating range

    Science.gov (United States)

    Xing, Peng; Viegas, Jaime

    2015-02-01

    In the context of 3D-integrated circuit (3DIC) integration of photonic and electronic components on vertical stacks covering different domains (digital, analog, RF, optical and MEMS), the control and minimization of adverse thermal effects on the behavior of the different parts of the microsystem is a major concern. Solutions based on passive athermal design are good candidates for enabling operation of optical components over electronic ICs with variable temporal and spatial thermal load while at the same time, minimizing energy loss on thermal biasing resistive loads. In this work, an improved athermal design method and the corresponding validating fabricated prototype are presented with the aim of extending the spectral athermal operating range of a Mach-Zehnder interferometer (MZI) over a wide thermal range with minimal temperature sensitivity. The proposed approach is demonstrated with a CMOS compatible silicon-on-insulator process flow fabrication run. The fabricated MZIs have a temperature sensitivity of around 20 pm/K over a spectral range larger than 60 nm for operating temperatures in the range of 20°C to 60°C. These devices are suitable for future optical and electronic 3D IC integration.

  16. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器∗%An improved Mach-Zehnder acousto-optic mo dulator on a silicon-on-insulator platform

    Institute of Scientific and Technical Information of China (English)

    秦晨; 余辉; 叶乔波; 卫欢; 江晓清

    2016-01-01

    The interdigital transducer (IDT) of the traditional Mach-Zehnder (MZ) acousto-optic modulator on a silicon-on-insulator (SOI) platform is located outside its two arms. The crest and trough of the surface acoustic wave (SAW) are used to modulate the two arms of the MZ interferometer so as to achieve a high modulation efficiency. Therefore, the distance between the two arms must be odd multiples of half acoustic wavelength. However, since the substrate is usually not uniform, the wavelength of the SAW changes as it transmits through the surface of the device. As a result, the exact distance between the two arms is difficult to choose. On the other hand, the SAW losses a portion of energy after passing through the first arm of the MZ interferometer, so the modulation of the second arm becomes much weaker. To solve these problems, we propose a new structure where its IDT is situated in the middle of the two arms of the MZ interferometer. With this scheme, the two arms of the MZ interferometer are located exactly at the crest and the trough of the SAW, while they are modulated with equal strength. In this paper, we first use the finite element method to simulate the acoustic frequency and the surface displacement of the excited SAW. Then we deduce the refractive index variations of all layers according to their acousto-optic effects. After that, we analyze the influences of different factors on the acousto-optic modulation efficiency, including the type and size of waveguide, the thickness of zinc oxide (ZnO) layer, and the area it covers, the number of electrodes, etc. These parameters are accordingly optimized to enhance the modulation efficiency. Modeling result based on COMSOL Multiphysics indicates that when the width of the strip waveguide is 6 µm, the ZnO layer covers only the area under the IDT and has a thickness of 2.2 µm, and the number of the electrodes is 50, the effective refractive index variation of the waveguide reaches 4.08 × 10−4 provided that

  17. 一种基于空芯光纤的微型Mach-Zehnder干涉仪%A Miniature Mach-Zehnder Interferometer Based on Hollow-core optical Fiber

    Institute of Scientific and Technical Information of China (English)

    闫小军; 刘艳; 李卫东

    2016-01-01

    Miniature interferometer has a high value in many micro-sensor areas. All-fiber Mach-Zehnder (MZ) interferometer based on hollow-core optical fiber has become a hot research point in recent years. The principle of light transmission and the mechanism of interference about the all-fiber MZ interferometer are researched. In refer⁃ence to the study of the previous air-core optical fiber interferometer, a novel MZ interferometer based on hol⁃low-core optical fiber is proposed. The transmission spectrum of the MZ interferometer in the experimental environ⁃ment is verified. Experimental results show that the free spectral range of the interferometer is about 140 nm when the wavelength is 1 550 nm and the sensor arm length of the interferometer is 50μm. The new MZ interferometer is simulated by using BPM method and simulation results accord with theoretical expectations. At the same time, the stimulated high-order mode is discussed and the transmission characteristics of radiation modes are obtained.%微型干涉仪在许多微传感领域有很高的应用价值。基于空芯光纤的全光纤Mach-Zehnder干涉仪成为了近些年研究的热点。研究了全光纤MZ干涉仪的传光原理及干涉机制。在参考前人对空芯光纤干涉仪研究的基础上,提出了一种基于空芯光纤的新型MZ干涉仪。搭建实验环境对该结构的MZ干涉仪的传输谱进行了验证。实验得出,当波长为1550 nm,传感臂长度为50μm时,自由波谱范围大约为140 nm。利用BPM法对该新型MZ干涉仪进行了仿真,仿真结果符合理论预期。同时对激发出的高阶模式进行了仿真探讨,并且得到辐射模的传输特性。

  18. 一种改进的2×2 SOI Mach-Zehnder热光开关%An Improvement on 2×2 Silicon-on-Insulator Mach-Zehnder Thermo-Optical

    Institute of Scientific and Technical Information of China (English)

    杨笛; 余金中; 陈少武

    2008-01-01

    本文设计并制作了基于强限制多模干涉耦合器的2×2 SOI马赫-曾德热光开关.这种光开关采用了深刻蚀结构的多模干涉耦合器和输入/输出波导,较大地提高了干涉耦合器的性能并减少了连接耦合损耗.同时,在调制臂区域采用浅刻蚀结构,保持其单模调制状态.深刻蚀多模干涉耦合器具有优越的特性,在实验中测得不均衡度只有0.03 dB,插入损耗-0.6 dB.基于这种耦合器的新型热光开关,其插入损耗为-6.8 dB,其中包括光纤-波导耦合损耗-4.3 dB,开关时间为6.8 μs.%An improved 2×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single-mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0.03 dB and a low propagation loss of -0.6 dB. The 2×2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.

  19. Highly stable polarization independent Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-08-15

    We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.

  20. Quantum heat engines based on electronic Mach-Zehnder interferometers

    Science.gov (United States)

    Hofer, Patrick P.; Sothmann, Björn

    2015-05-01

    We theoretically investigate the thermoelectric properties of heat engines based on Mach-Zehnder interferometers. The energy dependence of the transmission amplitudes in such setups arises from a difference in the interferometer arm lengths. Any thermoelectric response is thus of purely quantum-mechanical origin. In addition to an experimentally established three-terminal setup, we also consider a two-terminal geometry as well as a four-terminal setup consisting of two interferometers. We find that Mach-Zehnder interferometers can be used as powerful and efficient heat engines which perform well under realistic conditions.

  1. Tunable Photonic Crystal Mach-Zehnder Interferometer Based on Self-collimation Effect

    Institute of Scientific and Technical Information of China (English)

    CHEN Xi-Yao; LI Hui; QIU Yi-Shen; WANG Yu-Fei; NI Bo

    2008-01-01

    @@ A theoretical model for tunable Mach-Zehnder interferometers (TMZIs) constructed in a two-dimensional pho-tonic crystal (2D PhC) is proposed.The 2D PhC consists of a square lattice of cylindric air holes in silicon.The TMZI includes two mirrors and two splitters.Light propagates between them employing a sell-collimation effect.The two interferometer branches have different path lengths.Parts of the longer branch are infiltrated with a kind of liquid crystal (LC) with ordinary and extraordinary refractive indices 1.522 and I.706, respectively.The transmission spectra at two TMZI output ports are in the shape of sinusoidal carves and have a uniform peak spacing 0.0017c/a in the frequency range from 0.26c/a to 0.27c/a.When the effective refractive index neff of the liquid crystal is increased from 1.522 to 1.706, the peaks shift to the lower frequencies over 0.0017c/a while the peak spacing is almost kept unchanged.Thus this TMZI can work as a tunable power splitter or an optical switch.For the central operating wavelength around 1550nm, its dimensions are only about tens of micron.Thus this device may be applied to photonic integrated circuits.

  2. Lateral-shearing, delay-dithering Mach-Zehnder interferometer for spatial coherence measurement.

    Science.gov (United States)

    Efimov, Anatoly

    2013-11-15

    An image-shearing interferometer of Mach-Zehnder type with corner cubes is introduced for the purpose of measuring spatial coherence at the output of inhomogeneous optical sources, such as multimode fibers (MMFs). One arm of the interferometer is modulated in optical delay to produce dynamic interference fringes. Fringe visibility and the two individual intensities are measured nearly simultaneously to allow direct calculation of the modulus of the complex degree of coherence as a function of the lateral shear between the two interferometer arms. Spatial degree of coherence is measured for a step-index MMF pumped with monochromatic and broadband optical sources.

  3. Using a Mach-Zehnder interferometer to deduce nitrogen density mapping

    Science.gov (United States)

    Boudaoud, F.; Lemerini, M.

    2015-07-01

    This work presents an optical method using the Mach-Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals 6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr. The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone-Dale relation. The obtained results are in close agreement with values available in the literature.

  4. Analisis Perbandingan Kinerja Mach-Zehnder berdasarkan Ragam Format Modulasi pada Jaringan FTTH

    Directory of Open Access Journals (Sweden)

    ZULIA NURUL KARIMAH

    2017-01-01

    Full Text Available ABSTRAKPada jurnal ini dibuat pemodelan link FTTH pada software Optisystem 7.0 untuk mengetahui pengaruh dari Kerr effect dengan membandingkan performansi serat optik kaca dan serat optik plastik berdasarkan format modulasi berupa NRZ, RZ, RZ-DPSK, RZ-DQPSK dan CSRZ. Terdapat dua skenario, dengan skenario pertama, variabel input yang diubah adalah format modulasi pada Mach-zehnder, sedangkan pada skenario kedua, variabel yang diubah adalah pemakaian serat optik yang dipakai, yaitu serat optik bahan kaca, plastik dan hybrid kaca plastik. Hasil simulasi menunjukkan dengan efek linier dan non-linier pada kabel kaca yang menghasilkan performansi jaringan dari yang terbaik, dengan Q factor di atas 6 dan BER di bawah 10-9 adalah NRZ, RZ, RZ-DPSK, CSRZ dan RZ-DQPSK. Sedangkan dengan penggunaan kabel PMMA, yang menunjukkan performansi jaringan yang baik adalah dengan konfigurasi G652D-G652D-PMMA pada format modulasi NRZ, RZ, RZ-DPSK dan RZ-DQPSK. Efek non-linier yang terjadi pada jaringan ini hanya SPM dan XPM.Kata kunci: FTTH, mach-zehnder, format modulasi, efek non-linier, GOF, POF.ABSTRACTIn this journal is creating a FTTH link on Optisystem software 7.0 to determine the effect of Kerr effect by comparing the performance of fiber optic glass and plastic optical fiber based on modulation formats such as NRZ, RZ, RZ-DPSK, RZ-DQPSK and CSRZ. There are two scenarios, first, input variables are changed based on format in Mach-zehnder modulator, while in the second scenario, the changed variable is the material of optical fiber, the materials are optical fiber glass, plastic and hybrid plastic and glass. The simulation results based on comparison with linear and nonlinear effects on glass optical fiber, which produce Q factor above 6 and BER below 10-9 are NRZ, RZ, RZ-DPSK, CSRZ and RZ-DQPSK. While the use of PMMA cable, which indicates good network performance is the configuration G652D-G652D-PMMA on the modulation format NRZ, RZ, RZ-DPSK and RZ

  5. Theoretical and experimental study on white light interferometric fiber optic sensors network configuring by tandem of Michelson and Mach-Zehnder interferometers%级联式光纤白光干涉传感网络拓扑结构理论与实验研究

    Institute of Scientific and Technical Information of China (English)

    姜海丽; 苑勇贵; 杨军; 苑立波

    2011-01-01

    In order to improve the multiplexing ability of optical sensors, based on the low interferential optic fiber sensing technology, a novel combination interferometer of Mach-Zehnder and Michelson system has been proposed and demonstrated. It consists of a Michelson interferometer and a series of tandem Mach-Zehnder interferometers which are linked with one arm of the Michelson intefferometer, forming a multi-fiber optic sensors measuring network. It can be used to measure the distribution strain or temperature, especially suitable for monitoring large scale structural deformation due to its sensing gauge length could be chosen as long as tens of meters. It also could be used in the temperature compensation mode, in which one arm of the Mach-Zehnder interferometer measures strain caused by the variation of deformation and temperature, the other arm only measures the ambient temperature for eliminating the apparent strain caused by temperature.%为了提高传感器的多路复用能力,基于低相干光纤传感技术,提出一种新型干涉仪组合拓扑结构.该结构由Michelson干涉仪的一个臂与若干个Mach-Zehnder干涉仪混合级联而成,构成了可以同时实现多传感器测量的传感网络.构建了实验系统,对传感特性进行了分析.实验结果表明:该拓扑结构可以实现一个解调干涉仪对网络系统中多个传感器的问询,可以实现应变和温度的测量.该系统中传感器的长度可自由选取,能用于大尺度结构形变的检测;也叮以配对使用,并自动补偿应变测量过程中环境温度变化带来的影响.

  6. A Novel Method to Monitor OSNR Using a Mach-Zehnder Interferometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel method to monitor optical signal to noise ratio using a Mach-Zehnder interferometer is introduced. The OSNR meter is composed of two 3dB couplers, one phase tuner and one power meter which are of low cost. The experiments show that the error of our novel method is less than 0.5dB and the dynamic range is from 10dB to 25dB. They also show that the method works well under different cases of bit rates.

  7. Linearization of Mach-Zehnder modulator using microring-based all-pass filter

    Institute of Scientific and Technical Information of China (English)

    Jianyi Yang; Fan Wang; Xiaoqing Jiang; Hongchang Qu; Yaming Wu; Minghua Wang; Yuelin Wang

    2005-01-01

    @@ By applying the microring resonator to the Mach-Zehnder (MZ) optical modulator and employing the super-linear phase change characteristic of the all-pass filter, the sublinear modulation curve of the conventional MZ modulator is highly linearized. With properly controlled power coupling between the microring and the arm of the MZ modulator, the third-order distortion can be suppressed. If the transmission coefficient is set between 0.25 and 0.42, the linearity range larger than 90% can be easily achieved. The maximum linearity range is even up to 99.5%.

  8. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    Science.gov (United States)

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  9. Spatial heterodyne spectrometer based on the Mach-Zehnder interferometer

    Science.gov (United States)

    Cai, Qisheng; Xiangli, Bin; Du, Shusong

    2015-11-01

    Spatial heterodyne spectroscopy (SHS) is a new kind of Fourier-transform spectroscopic technique capable of very high spectral resolution. In this paper, a spatial heterodyne spectrometer based on the Mach-Zehnder interferometer (MZ-SHS) is proposed. It is modified by replacing one mirror in the Mach-Zehnder interferometer with a diffraction grating. This technique retains many of the advantages of traditional SHS. Moreover, the spatial frequency of the interferogram is strictly linear with wavenumber. We describe the concept of the new MZ-SHS and elaborate the exact expression of the interferogram. Also, a design example and two kinds of imitated interferograms are presented in this paper. One is simulated in MATLAB and the other is generated in ZEMAX using ray tracing method. The retrieved spectra from these two interferograms show a good agreement with the theoretical results.

  10. Developing an Interactive Tutorial on a Mach-Zehnder Interferometer with Single Photons

    CERN Document Server

    Singh, Chandralekha

    2015-01-01

    We are developing a Quantum Interactive Learning Tutorial (QuILT) on a Mach-Zehnder Interferometer with single photons to expose upper-level students in quantum mechanics courses to contemporary applications. The QuILT strives to help students develop the ability to apply fundamental quantum principles to physical situations and explore differences between classical and quantum ideas. The QuILT adapts visualization tools to help students build physical intuition about quantum phenomena and focuses on helping them integrate qualitative and quantitative understanding. We also discuss findings from a preliminary in-class evaluation.

  11. On-chip modulation for rotating sensing of gyroscope based on ring resonator coupled with Mach-Zehnder interferometer.

    Science.gov (United States)

    Zhang, Hao; Chen, Jiayang; Jin, Junjie; Lin, Jian; Zhao, Long; Bi, Zhuanfang; Huang, Anping; Xiao, Zhisong

    2016-01-01

    An improving structure for resonance optical gyro inserting a Mach-Zehnder Interferomete (MZI) into coupler region between ring resonator and straight waveguide was proposed. The different reference phase shift parameters in the MZI arms are tunable by thermo-optic effect and can be optimized at every rotation angular rate point without additional phase bias. Four optimum paths are formed to make the gyroscope to work always at the highest sensitivity.

  12. Mach-Zehnder fiber interferometer for people monitoring

    Science.gov (United States)

    Vasinek, Vladimir; Latal, Jan; Koudelka, Petr; Siska, Petr; Vitasek, Jan; Skapa, Jan

    2010-10-01

    Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons over the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 KHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and

  13. High dynamic range microwave photonic down-conversion based on dual-parallel Mach-Zehnder modulator

    Science.gov (United States)

    Li, Hongli; Wang, Yunxin; Wang, Dayong; Rong, Lu; Jia, Yupeng; Li, Jingnan; Zhong, Xin; Yang, Dengcai; Zhou, Tao

    2016-10-01

    In order to enhance conversion efficiency and spurious free dynamic range of microwave photonic link, we present a microwave photonic down-conversion system based on an integrated dual-parallel Mach Zehnder modulator (DPMZM) and microwave photonic filter. The principle of frequency down conversion is analyzed. We demonstrate the conversion efficiency of system through theoretical derivation and simulation. The performance of the microwave photonic link is tested experimentally. It is found that the spurious free dynamic range of the proposed method is up to 102.5dB/Hz2/3 and the conversion efficiency is up to -22.01dB. The integrated dual-parallel Mach-Zehnder modulator link can serve as a good alternative to improve the conversion efficiency and spurious free dynamic range.

  14. Radiation Hard Silicon Photonics Mach-Zehnder Modulator for HEP applications: all-Synopsys Sentaurus™ Pre-Irradiation Simulation

    CERN Document Server

    Cammarata, Simone

    2017-01-01

    Silicon Photonics may well provide the opportunity for new levels of integration between detectors and their readout electronics. This technology is thus being evaluated at CERN in order to assess its suitability for use in particle physics experiments. In order to check the agreement with measurements and the validity of previous device simulations, a pure Synopsys Sentaurus™ simulation of an un-irradiated Mach-Zehnder silicon modulator has been carried out during the Summer Student project.

  15. Temperature sensitivity of waveguide Mach-Zehnder interferometer

    OpenAIRE

    Sokolov, Viktor

    2013-01-01

    This thesis is part of a project that aims to develop a sensor for the detection of methane in the air and in water based on a waveguide Mach-Zehnder interferometer. The main application of this sensor is monitoring the environment and the ability to detect a leakage of methane. The development of a sensor includes analysis of operational conditions. In this project one of the greatest concerns is temperature. The temperature difference can reach several tens of degrees in the air, and severa...

  16. Quantum logic processor: Implementation with electronic Mach-Zehnder interferometer

    Science.gov (United States)

    Sarkar, Angik; Bhattacharyya, T. K.; Patwardhan, Ajay

    2006-05-01

    An approach for implementation of quantum logic in electronic Mach-Zehnder interferometer (MZI) has been described in this letter. All single qubit gates can be achieved by electron spin manipulation using Rashba spin-orbit coupling. Double qubit gates can also be implemented using the orbital degree of freedom of the electron. The MZI can be realized with intertwined ballistic nanowires. Spin injection and detection in the system can be done by a mesoscopic Stern-Gerlach apparatus. The system can be coupled in an array to form the quantum logic processor.

  17. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure

    NARCIS (Netherlands)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; Dijk, van Paulus; Roeloffzen, Chris

    2013-01-01

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For mic

  18. Comments on X. Yin, A. Wen, Y. Chen, and T. Wang, `Studies in an optical millimeter-wave generation scheme via two parallel dual-parallel Mach-Zehnder modulators', Journal of Modern Optics, 58(8), 2011, pp. 665-673

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.

    2015-04-01

    Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.

  19. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DU), Girinagar, Pune 411 025, Maharashtra (India); Choubey, Ravi Kant [Department of Applied Physics, Amity Institute of Applied Sciences, Amity University, Noida 201 313 (India)

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  20. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    Science.gov (United States)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  1. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer.

    Science.gov (United States)

    Chu, Shu-Chun; Yang, Chao-Shun; Otsuka, Kenju

    2008-11-24

    This paper proposes a new scheme for generating vortex laser beams from a laser. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p x p vortex array beams from Ince-Gaussian modes, IG(e) (p,p) modes. An incident IG(e)(p,p) laser beam of variety order p can easily be generated from an end-pumped solid-state laser system with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation, analytically derives the vortex positions of the resulting vortex array laser beams, and discusses beam propagation effects. The resulting vortex array laser beam can be applied to optical tweezers and atom traps in the form of two-dimensional arrays, or used to study the transfer of angular momentum to micro particles or atoms (Bose-Einstein condensate).

  2. Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: theory and monolithic implementation.

    Science.gov (United States)

    Misiakos, K; Raptis, I; Salapatas, A; Makarona, E; Botsialas, A; Hoekman, M; Stoffer, R; Jobst, G

    2014-04-21

    Broad-band Mach-Zehnder interferometry is analytically described and experimentally demonstrated as an analytical tool capable of high accuracy refractive index measurements over a wide spectral range. Suitable photonic engineering of the interferometer sensing and reference waveguides result in sinusoidal TE and TM spectra with substantially different eigen-frequencies. This allows for the instantaneous deconvolution of multiplexed polarizations and enables large spectral shifts and noise reduction through filtering in the Fourier Transform domain. Due to enhanced sensitivity, optical systems can be designed that employ portable spectrum analyzers with nm range resolution without compromising the sensor analytical capability. Practical detection limits in the 10(-6)-10(-7) RIU range are achievable, including temperature effects. Finally, a proof of concept device is realized on a silicon microphotonic chip that monolithically integrates broad-band light sources and single mode silicon nitride waveguides. Refractive index detection limits rivaling that of ring resonators with externally coupled laser sources are demonstrated. Sensitivities of 20 μm/RIU and spectral shifts in the tens of a pm are obtained.

  3. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  4. Vibration induced phase noise in Mach-Zehnder atom interferometers

    CERN Document Server

    Miffre, A; Büchner, M; Trénec, G; Vigué, J; Miffre, Alain; Jacquey, Marion; B\\"{u}chner, Matthias; Vigu\\'{e}, Jacques

    2006-01-01

    The high inertial sensitivity of atom interferometers has been used to build accelerometers and gyrometers but this sensitivity makes these interferometers very sensitive to the laboratory seismic noise. This seismic noise induces a phase noise which is large enough to reduce the fringe visibility in many cases. We develop here a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are thus able to explain the observed dependence of the fringe visibility with the diffraction order. The dynamical model developed in the present paper should be very useful to further reduce this phase noise in atom interferometers and this reduction should open the way to improved interferometers.

  5. Mach-Zehnder Interferometer Based on Coupled Dielectric Pillars

    Institute of Scientific and Technical Information of China (English)

    GAO Ding-Shan; HAO Ran; ZHOU Zhi-Ping

    2007-01-01

    We propose a Mach-Zehnder interferometer (MZI) based on coupled dielectric pillars. It is composed of single-row pillar coupled waveguide modulating arms and three-row pillar waveguide 3 dB couplers. The slow light property and transmission loss of the single-row pillar modulating arm are optimized by the plane wave expansion method. A short 3dB coupler is designed based on the modes transformation in three-row pillar waveguide. Finite difference time domain simulations prove the validity of this MZI and show that it has low insertion loss of<1.1 dB and high extinction ratio of>12 dB.

  6. Binary to Octal and Octal to Binary Code Converter Using Mach-Zehnder Interferometer for High Speed Communication

    Science.gov (United States)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-05-01

    Binary to octal and octal to binary code converter is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using external gates. In this paper, binary to octal and octal to binary code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  7. Design of 4 to 2 line encoder using lithium niobate based Mach Zehnder Interferometers for high speed communication

    Science.gov (United States)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep; Raghuwanshi, Sanjeev K.

    2016-04-01

    Encoder is a device that allows placing digital information from many inputs to many outputs. Any application of combinational logic circuit can be implemented by using encoder and external gates. In this paper, 4 to 2 line encoder is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).

  8. Wavelength conversion based on cross-phase modulation in a semiconductor Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Oxenløwe, Leif Katsuo

    2001-01-01

    Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty......Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty...

  9. Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors

    Directory of Open Access Journals (Sweden)

    Lanying Zhou

    2011-05-01

    Full Text Available A fiber inline Mach-Zehnder interferometer (MZI consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10 made by stretching. The proposed fabrication method is very low cost, 1/20–1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30–350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3–5 fold by fabricating an inline micro–trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N2 is tested by the MZI sensor coated with MFI–type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.

  10. Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors.

    Science.gov (United States)

    Li, Benye; Jiang, Lan; Wang, Sumei; Zhou, Lanying; Xiao, Hai; Tsai, Hai-Lung

    2011-01-01

    A fiber inline Mach-Zehnder interferometer (MZI) consisting of ultra-abrupt fiber tapers was fabricated through a new fusion-splicing method. By fusion-splicing, the taper diameter-length ratio is around 1:1, which is much greater than those (1:10) made by stretching. The proposed fabrication method is very low cost, 1/20-1/50 of those of LPFG pair MZI sensors. The fabricated MZIs are applied to measure refractive index, temperature and rotation angle changes. The temperature sensitivity of the MZI at a length of 30 mm is 0.061 nm/°C from 30-350 °C. The proposed MZI is also used to measure rotation angles ranging from 0° to 0.55°; the sensitivity is 54.98 nm/°. The refractive index sensitivity is improved by 3-5 fold by fabricating an inline micro-trench on the fiber cladding using a femtosecond laser. Acetone vapor of 50 ppm in N(2) is tested by the MZI sensor coated with MFI-type zeolite thin film. The proposed MZI sensors are capable of in situ detection in many areas of interest such as environmental management, industrial process control, and public health.

  11. Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing

    Science.gov (United States)

    DeBrabander, Gregory N.; Boyd, Joseph T.

    1996-01-01

    Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.

  12. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section.

    Science.gov (United States)

    Yuan, Dengpeng; Dong, Ying; Liu, Yujin; Li, Tianjian

    2015-08-28

    A high-sensitivity Mach-Zehnder interferometer (MZI) biochemical sensing platform based on Silicon-in-insulator (SOI) rib waveguide with large cross section is proposed in this paper. Based on the analyses of the evanescent field intensity, the mode polarization and cross section dimensions of the SOI rib waveguide are optimized through finite difference method (FDM) simulation. To realize high-resolution MZI read-out configuration based on the SOI rib waveguide, medium-filled trenches are employed and their performances are simulated through two-dimensional finite-difference-time domain (2D-FDTD) method. With the fundamental EH-polarized mode of the SOI rib waveguide with a total rib height of 10 μm, an outside rib height of 5 μm and a rib width of 2.5 μm at the operating wavelength of 1550 nm, when the length of the sensitive window in the MZI configuration is 10 mm, a homogeneous sensitivity of 7296.6%/refractive index unit (RIU) is obtained. Supposing the resolutions of the photoelectric detectors connected to the output ports are 0.2%, the MZI sensor can achieve a detection limit of 2.74 × 10(-6) RIU. Due to high coupling efficiency of SOI rib waveguide with large cross section with standard single-mode glass optical fiber, the proposed MZI sensing platform can be conveniently integrated with optical fiber communication systems and (opto-) electronic systems, and therefore has the potential to realize remote sensing, in situ real-time detecting, and possible applications in the internet of things.

  13. Violation of a Bell-like inequality by a combination of Rayleigh scattering with a Mach-Zehnder setup

    Science.gov (United States)

    Rother, Tom

    2016-07-01

    In this paper I propose a classical optics experiment that results in a maximum violation of a Bell-like inequality. The first part is concerned with the Bell-like inequality (the so-called CHSH-inequality) itself. Its importance and its maximum violation in Quantum Mechanics (QM) are discussed in detail by employing an abstract probability state concept in a 4-dim. but classical event space. A T-matrix that represents the integral part of a corresponding Green's function as well as a statistical operator that contains a negative quasi-probability can be related to the corresponding quantum mechanical experiment. It is demonstrated that the derivation and usage of the T-matrix and the Green's function is equivalent to what is known from classical scattering theory. It is shown moreover that the negative quasi-probability of the statistical operator may be interpreted as a sink of probabilities related to two single events of the considered 4-dim. event space. A necessary condition for the violation of the CHSH-inequality is derived and discussed afterwards. In the second part of this paper I discuss a modification of the 4-dim. event space considered in the first part. It is shown that a combination of conventional Rayleigh scattering with a Mach-Zehnder setup would be able to put this modification into practice. Thus it becomes possible to achieve a maximum violation of the CHSH-inequality, if formulated in terms of intensities, on a pure classical way. The combination of classical light scattering with correlation experiments such as proposed in this paper may open new ways to study and to use the violation of Bell-like inequalities in modern optics.

  14. Laser frequency stabilisation via quasi-monolithic, unequal arm-length Mach-Zehnder interferometer with balanced DC readout

    CERN Document Server

    Gerberding, Oliver; Mehmet, Moritz; Danzmann, Karsten; Heinzel, Gerhard

    2016-01-01

    Low frequency high precision laser interferometry is subject to excess laser frequency noise coupling via arm-length differences which is commonly mitigated by locking the frequency to a stable reference system. This is crucial to achieve picometer level sensitivities in the 0.1 mHz to 1 Hz regime, where laser frequency noise is usually high and couples into the measurement phase via arm-length mismatches in the interferometers. Here we describe the results achieved by frequency stabilising an external cavity diode laser to a quasi-monolithic unequal arm-length Mach-Zehnder interferometer read out at mid-fringe via balanced detection. This stabilisation scheme has been found to be an elegant solution combining a minimal number of optical components, no additional laser modulations and relatively low frequency noise levels. The Mach-Zehnder interferometer has been designed and constructed to minimise the influence of thermal couplings and to reduce undesired stray light using the optical simulation tool IfoCAD...

  15. 基于光纤M-Z干涉的高灵敏度液体折射率传感器的实验研究%Experimentally Study on High-sensitivity Fiber-optic Refractometers Based on Mach-Zehnder Interference

    Institute of Scientific and Technical Information of China (English)

    周赢武

    2012-01-01

    A high sensitivity fiber-optic refractive index sensor based on Mach-Zehnder interferometer is proposed and fabricated. The relationship between the resonance wavelength shifts to the refractive index is studied with NaCl and glycerin solution. The experimental results show that the resonance wavelength shifts to longer wavelength with the increase of the refractive index of the surrounding media, and the wavelength shift is nearly linear to the refractive index with a sensitivity is of 4 086 nm/refractive-index as the refractive index ranges from 1. 333 to 1. 356. The sensor is easy to fabricate, compact, and will be usefull in chemical and biotechnological industry.%提出并制备了一种基于Mach-Zehnder干涉效应的高灵敏度光纤液体折射率传感器.分别利用NaCl溶液和甘油溶液,研究了传感器的透射光谱和外界介质折射率的关系.实验结果表明,随着周围介质折射率的增大,传感器干涉谱的极小值点对应的波长向长波方向漂移,在1.333~1.356的折射率变化范围内,极小值点对应的波长的漂移量和折射率的变化具有较好的线性关系,对应的灵敏度约为4086 nm/refractive-index.该传感器制作简单、结构紧凑,在生物和化学测量中具有较好的应用前景.

  16. Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing

    Science.gov (United States)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Liu, Yong

    2016-03-01

    An electrical method is proposed for the microwave characterization of dual-drive Mach-Zehnder modulators based on heterodyne mixing. The proposed method utilizes the heterodyne products between the two-tone modulated optical sidebands and frequency-shifted optical carrier, and achieves calibration-free and bias-drift-free microwave measurement of dual-drive Mach-Zehnder modulators with high resolution electrical-domain techniques. Our method avoids the extra calibration for the photodetector and reduces half the bandwidth requirement for the photodetector and the electrical spectrum analyzer through carefully choosing a half frequency relationship of the two-tone modulation. Moreover, our measurement avoids the bias drifting problem due to the insensitivity to the bias phase of the modulator under test. The frequency-dependent modulation depths and half-wave voltages are measured for a commercial dual-drive Mach-Zehnder modulator with our method, which agree well with the results obtained by the conventional optical spectrum analysis method.

  17. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements

    Science.gov (United States)

    Bai, Guang-Fu; Hu, Lin; Jiang, Yang; Tian, Jing; Zi, Yue-Jiao; Wu, Ting-Wei; Huang, Feng-Qin

    2017-08-01

    In this paper, a photonic microwave waveform generator based on a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. In this reported scheme, only one radio frequency signal is used to drive the dual-parallel Mach-Zehnder modulator. Meanwhile, dispersive elements or filters are not required in the proposed scheme, which make the scheme simpler and more stable. In this way, six variables can be adjusted. Through the different combinations of these variables, basic waveforms with full duty and small duty cycle can be generated. Tunability of the generator can be achieved by adjusting the frequency of the RF signal and the optical carrier. The corresponding theoretical analysis and simulation have been conducted. With guidance of theory and simulation, proof-of-concept experiments are carried out. The basic waveforms, including Gaussian, saw-up, and saw-down waveforms, with full duty and small duty cycle are generated at the repetition rate of 2 GHz. The theoretical and simulation results agree with the experimental results very well.

  18. Physical and chemical sensing using monolithic semiconductor optical transducers

    Science.gov (United States)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  19. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement

    Science.gov (United States)

    Deng, Shuo; Li, Min; Gao, Hongyun; Dai, Yawen

    2016-09-01

    A laser linewidth measurement method which uses a Mach-Zehnder electro-optic modulator (MZM) is proposed in a loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI). Compared with the traditional acousto-optic modulator (AOM), the electro-optic modulator has the merits of broader bandwidth, lower insertion loss, higher extinction ratio and thus, a wider application. A theoretical analysis shows that the power spectrum curve of the novel measurement system is a Lorentzian line, which fits well with experiment. The linewidth is measured to be 137 ± 7 kHz at a frequency shift of 4 GHz. Measurement of a distributed feedback Bragg (DFB) laser has manifested that the linewidth broadens from 98.5 kHz to 137.4 kHz as the operating temperature changes by 16 °C. This work will allow investigation of narrow linewidth semiconductor and fiber laser stability.

  20. Polarization independent thermally tunable erbium-doped fiber amplifier gain equalizer using a cascaded Mach-Zehnder coupler.

    Science.gov (United States)

    Sahu, P P

    2008-02-10

    A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.

  1. Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion

    Science.gov (United States)

    Zhou, Wen; Qin, Chaoyi

    2017-09-01

    We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.

  2. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    Institute of Scientific and Technical Information of China (English)

    SUN Bao; CHEN Fu-Shen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive im-pulse electric field measurement. The integrated optical sensor is based on a Mach-Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The max-imal detectable electric field range (-75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation.

  3. Event-based simulation of single-photon beam splitters and Mach-Zehnder interferometers

    NARCIS (Netherlands)

    De Raedt, H; De Raedt, K; Michielsen, K

    2005-01-01

    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit a behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam splitter and Mach-Zehnder interferometer experiments on a causal, event

  4. Analysing surface plasmon resonance phase sensor based on Mach-Zehnder interferometer technique using glycerin

    Science.gov (United States)

    Kashif, Muhammad; Bakar, A. Ashrif A.; Hashim, Fazida Hanim

    2016-12-01

    Surface Plasmon Resonance (SPR) based on Mach-Zehnder interferometer (MZI) is a very accurate tool for the detection and analysis of molecular interactions. The performance of the proposed SPR phase sensor is dependent upon multiple performance parameters that include sensitivity, repeatability, drift and the induction speed of fluid into the flow cell. The SPR Mach-Zehnder interferometer is tested for different glycerin-water concentrations to check its performance based on the different parameters. This paper highlights the enhancement of the performance of SPR phase technique based on MZI that is influenced by different parameters, measured using glycerin solutions. These four performance parameters can affect the performance of SPR based on MZI and have a particular impact on the sensor output. It also provides us information about suitable working conditions for the SPR Mach-Zehnder interferometer sensor. The experiment data shows that the sensor's sensitivity is high for small concentrations of glycerin-water mixtures. Also, any change in drift as well as in induction speed of fluid can affect the performance of SPR Mach-Zehnder interferometer. The sensitivity of SPR phase sensor is high as it can measure glycerin concentration as low as 0.05%.

  5. On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics

    Science.gov (United States)

    Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio

    2009-01-01

    For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…

  6. On the Use of a Virtual Mach-Zehnder Interferometer in the Teaching of Quantum Mechanics

    Science.gov (United States)

    Pereira, Alexsandro; Ostermann, Fernanda; Cavalcanti, Claudio

    2009-01-01

    For many students, the conceptual learning of quantum mechanics can be rather painful owing to the counter-intuitive nature of quantum phenomena. In order to enhance students' understanding of the odd behaviour of photons and electrons, we introduce a computational simulation of the Mach-Zehnder interferometer, developed by our research group. An…

  7. Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber.

    Science.gov (United States)

    Zhang, Hailiang; Wu, Zhifang; Shum, Perry Ping; Dinh, Xuan Quyen; Low, Chun Wah; Xu, Zhilin; Wang, Ruoxu; Shao, Xuguang; Fu, Songnian; Tong, Weijun; Tang, Ming

    2017-04-18

    Optical fiber sensors for strain measurement have been playing important roles in structural health monitoring for buildings, tunnels, pipelines, aircrafts, and so on. A highly sensitive strain sensor based on helical structures (HSs) assisted Mach-Zehnder interference in an all-solid heterogeneous multicore fiber (MCF) is proposed and experimentally demonstrated. Due to the HSs, a maximum strain sensitivity as high as -61.8 pm/με was experimentally achieved. This is the highest sensitivity among interferometer-based strain sensors reported so far, to the best of our knowledge. Moreover, the proposed sensor has the ability to discriminate axial strain and temperature, and offers several advantages such as repeatability of fabrication, robust structure and compact size, which further benefits its practical sensing applications.

  8. Performance of a Mach-Zehnder based analogue data recording system for use with the Gas Cherenkov Detector on the NIF

    Science.gov (United States)

    Carpenter, A. C.; Herrmann, H. W.; Beeman, B. V.; Lopez, F. E.; Hernandez, J. E.

    2016-09-01

    This paper covers the performance of a high speed analogue data transmission system. This system uses multiple Mach- Zehnder optical modulators to transmit and record fusion burn history data for the Gas Cherenkov Detector (GCD) on the National Ignition Facility. The GCD is designed to measure the burn duration of high energy gamma rays generated by Deuterium-Tritium (DT) interactions in the NIF. The burn duration of DT fusion can be as short as 10ps and the optical photons generated in the gas Cherenkov cell are measured using a vacuum photodiode with a FWHM of 55ps. A recording system with a 3dB bandwidth of ≥10GHz and a signal to noise ratio of ≥5 for photodiode output voltage of 50mV is presented. The data transmission system uses two or three Mach-Zehnder modulators and an RF amplifier to transmit data optically. This signal is received and recorded by optical to electrical converts and a high speed digital oscilloscope placed outside of the NIF Target Bay. Electrical performance metrics covered include signal to noise ratio (SNR), signal to peak to peak noise ratio, single shot dynamic range, shot to shot dynamic range, system bandwidth, scattering parameters, are shown. Design considerations such as self-test capabilities, the NIF radiation environment, upgrade compatibility, Mach-Zehnder (MZ) biasing, maintainability, and operating considerations for the use of MZs are covered. This data recording system will be used for the future upgrade of the GCD to be used with a Pulse Dilation PMT, currently under development.

  9. Refractometric sensor based on all-fiber coaxial Michelson and Mach-Zehnder interferometers for ethanol detection in fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, L; Osorio, Jonas H; Hayashi, Juliano G; Cordeiro, Cristiano M B, E-mail: lmosquera@uni.edu.pe [Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Campinas - Sao Paulo (Brazil)

    2011-01-01

    A refractometric sensor based on mechanically induced interferometers formed with long period gratings is reported. It is also shown two different setups based on a Michelson and Mach-Zehnder interferometer and its application to measure ethanol concentration in gasoline.

  10. High Accuracy Microwave Frequency Measurement Based on Single-Drive Dual-Parallel Mach-Zehnder Modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method.......A novel approach for broadband microwave frequency measurement based on bias manipulation of a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. A 10-3 relative error verifies a significant accuracy improvement by this method....

  11. Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva; Hvam, Jørn Märcher

    2010-01-01

    Optical frequency shifters are essential components of many systems. In this paper, a compact integrated optical frequency shifter is designed making use of the combination of surface acoustic waves and Mach-Zehnder interferometers. It has a very simple operation setup and can be fabricated...

  12. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  13. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.;

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can...... the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  14. A novel scheme to generate 40-GHz CSRZ pulse trains using a 10-GHz dual-parallel Mach-Zehnder modulator

    Institute of Scientific and Technical Information of China (English)

    Yanfei Xing; Caiyun Lou

    2011-01-01

    A new technique to generate 40-GHz carrier-suppressed return-to-zero (CSRZ) optical pulse trains using only a 10-GHz dual-parallel Mach-Zehnder modulator (MZM) is presented and experimentally demonstrated. The spectrum of the generated CSRZ pulses is calculated by simulation and compared with conventional MZM-based RZ and CSRZ pulse trains. The experimental results demonstrate that CSRZ pulse trains are obtained, and that the carrier and the unwanted 20-GHz low-frequency component are suppressed by 25 dB. The technique can also be extended to 160-GHz CSRZ pulse generation when 40-GHz devices are employed.%@@ A new technique to generate 40-GHz carrier-suppressed return-to-zero (CSRZ) optical pulse trains using only a 10-GHz dual-parallel Mach-Zehnder modulator (MZM) is presented and experimentally demonstrated. The spectrum of the generated CSRZ pulses is calculated by simulation and compared with conventional MZM-based RZ and CSRZ pulse trains. The experimental results demonstrate that CSRZ pulse trains are obtained, and that the carrier and the unwanted 20-GHz low-frequency component are suppressed by 25 dB. The technique can also be extended to 160-GHz CSRZ pulse generation when 40-GHz devices are employed.

  15. Integrated optical electric field sensor with telescopic dipole

    Institute of Scientific and Technical Information of China (English)

    Bao Sun; Fushen Chen; Yongjun Yang

    2008-01-01

    An integrated optical electric field sensor based on a Mach-Zehnder interferometer with the telescopic dipole is designed and fabricated, and its electrodes are segmented and connected with a telescopic dipole.The measured results show that when the frequency response is from 10kHz to 6GHz with the antenna length of 55mm, the minimum detectable electric field of 20mV/m can be obtained, and the linear dynamics range can reach 90dB at 250MHz.

  16. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    Science.gov (United States)

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-01

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  17. In Situ Observation of NaCI Crystal Growth by the Vapor Diffusion Method with a Mach-Zehnder Interferometer

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; MIAO Hong; DUAN Li; KANG Qi; HE Ling-Hui

    2011-01-01

    Vapor diffusion experiments with different thicknesses of oil barriers are observed by a real-time optical diagnostic system consisting of a Mach Zehnder interferometer, a microscope and an image processor. Spatiotemporal analysis is first employed to extract the absolute concentration evolution and supersaturation during the entire crystallization process. The nucleation and crystal growth processes are then analyzed. It is found that the crystallization process can be easily classified into four stages in our experiments, according to the analysis of interferograms and the absolute concentration curve. This can help us understand the details of crystal growth. The rule of quality change of crystals with increasing thickness of oil barriers is also analyzed, and could be interpreted by the absolute concentration variation and crystallization phase diagram.%Vapor diffusion experiments with different thicknesses of oil barriers are observed by a real-time optical diagnostic system consisting of a Mach Zehnder interferometer,a microscope and an image processor.Spatiotemporal analysis is first employed to extract the absolute concentration evolution and supersaturation during the entire crystallization process.The nucleation and crystal growth processes are then analyzed.It is found that the crystallization process can be easily classified into four stages in our experiments,according to the analysis of interferograms and the absolute concentration curve.This can help us understand the details of crystal growth.The rule of quality change of crystals with increasing thickness of oil barriers is also analyzed,and could be interpreted by the absolute concentration variation and crystallization phase diagram.The growth of large crystals with a high degree of perfection is essential in the chemical industry and the protein field.Vapor diffusion[1] is the most widely used technique in protein crystallization,the principle of which is that the solution gradually reaches

  18. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.

    2016-01-01

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2

  19. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor

    NARCIS (Netherlands)

    Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.

    2017-01-01

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2

  20. Development of an ELT XAO testbed using a Mach-Zehnder wavefront sensor: calibration of the deformable mirror

    CERN Document Server

    Delacroix, Christian; Loupias, Magali; Thiébaut, Eric; Adjali, Louisa; Leger, Jonathan; Tallon, Michel

    2015-01-01

    (abridged) Extreme adaptive optics (XAO) encounters severe difficulties to cope with the high speed (>1kHz), high accuracy and high order requirements for future extremely large telescopes. An innovative high order adaptive optics system using a self-referenced Mach-Zehnder wavefront sensor (MZWFS) allows counteracting these limitations. This sensor estimates very accurately the wavefront phase at small spatial scale by measuring intensity differences between two outputs, with a $\\lambda /4$ path length difference between its two legs, but is limited in dynamic range due to phase ambiguity. During the past few years, such an XAO system has been studied by our team in the framework of 8-meter class telescopes. In this work, we report on our latest results with the XAO testbed recently installed in our lab, and dedicated to high contrast imaging with 30m-class telescopes (such as the E-ELT or the TMT). After reminding the principle of a MZWFS and describing the optical layout of our experiment, we will show the...

  1. Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Geun [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    A tunable multiwavelength erbium-doped fiber laser based on an in-line Mach Zehnder interferometer is proposed and experimentally demonstrated. The in-line Mach Zehnder interferometer is realized by using cascaded long-period fiber gratings. The long-period fiber gratings can couple the guided core mode to several cladding modes. If two identical long-period fiber gratings are concatenated, an interference pattern can be generated, which results from an interaction of the core and the cladding modes in the second long-period fiber grating. Therefore, a simple multichannel filter based on an in-line Mach Zehnder interferometer can be realized. The wavelength spacing of the proposed multichannel filter is controlled by the number of long-period fiber gratings. We apply the proposed multichannel fiber to the generation of a multiwavelength erbium-doped fiber laser with a tunability on the order of the wavelength spacing. An erbium-doped fiber amplifier is implemented as a gain medium. The gain competition of erbium ions is suppressed by soaking the erbium-doped fiber in liquid nitrogen. The power fluctuation of the proposed multiwavelength fiber laser is measured to be less than 0.5 dB. A high-quality multiwavelength output with a high extinction ratio of more than 40 dB is achieved. The wavelength spacing of the proposed multiwavelength fiber laser is controlled by increasing the number of long-period fiber gratings. The wavelength spacing is changed from 0.8 nm to 1.6 nm discretely.

  2. Asymmetric Mach-Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection.

    Science.gov (United States)

    Chalyan, Tatevik; Guider, Romain; Pasquardini, Laura; Zanetti, Manuela; Falke, Floris; Schreuder, Erik; Heideman, Rene G; Pederzolli, Cecilia; Pavesi, Lorenzo

    2016-01-06

    In this work, we present a study of Aflatoxin M1 detection by photonic biosensors based on Si₃N₄ Asymmetric Mach-Zehnder Interferometer (aMZI) functionalized with antibodies fragments (Fab'). We measured a best volumetric sensitivity of 10⁴ rad/RIU, leading to a Limit of Detection below 5 × 10(-7) RIU. On sensors functionalized with Fab', we performed specific and non-specific sensing measurements at various toxin concentrations. Reproducibility of the measurements and re-usability of the sensor were also investigated.

  3. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    Science.gov (United States)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  4. Sensitivity distribution of a vibration sensor based on Mach-Zehnder interferometer designed inside the window system

    Science.gov (United States)

    Zboril, Ondrej; Nedoma, Jan; Cubik, Jakub; Novak, Martin; Bednarek, Lukas; Fajkus, Marcel; Vasinek, Vladimir

    2016-04-01

    Interferometric sensors are very accurate and sensitive sensors that due to the extreme sensitivity allow sensing vibration and acoustic signals. This paper describes a new method of implementation of Mach-Zehnder interferometer for sensing of vibrations caused by touching on the window panes. Window panes are part of plastic windows, in which the reference arm of the interferometer is mounted and isolated inside the frame, a measuring arm of the interferometer is fixed to the window pane and it is mounted under the cover of the window frame. It prevents visibility of the optical fiber and this arrangement is the basis for the safety system. For the construction of the vibration sensor standard elements of communication networks are used - optical fiber according to G.652D and 1x2 splitters with dividing ratio 1:1. Interferometer operated at a wavelength of 1550 nm. The paper analyses the sensitivity of the window in a 12x12 measuring points matrix, there is specified sensitivity distribution of the window pane.

  5. Analysis of frequency noise properties of 729nm extended cavity diode laser with unbalanced Mach-Zehnder interferometer

    Science.gov (United States)

    Pham, Tuan M.; Čížek, Martin; Hucl, Václav; Lazar, Josef; Hrabina, Jan; Řeřucha, Šimon; Lešundák, Adam; Obšil, Petr; Filip, Radim; Slodička, Lukáš; Číp, Ondřej

    2016-12-01

    We report on the frequency noise investigation of a linewidth-suppressed Extended Cavity Diode Laser (ECDL), working at 729 nm. Since the ECDL is intended as an excitation laser for the forbidden transition in a trapped and laser cooled 40Ca+ ion, an Hz-level linewidth is required. We present the experimental design that comprises a two-stage linewidth narrowing and a facility for frequency and noise analysis. The linewidth is first narrowed with a phase lock loop of the ECDL onto a selected component of an optical frequency comb where the frequency noise was suppressed with a fast electronic servo-loop controller that drives the laser injection current with a high bandwidth. The second stage comprises locking the laser onto a selected mode of a high-finesse passive optical cavity. The frequency analysis used an unbalanced Mach-Zehnder interferometer with a fiber spool inserted in the reference arm in order to give a general insight into the signal properties by mixing two separated beams, one of them delayed by the spool, and processing it with a spectral analyzer. Such a frequency noise analysis reveals what are the most significant noises contributions to the laser linewidth, which is a crucial information in field of ion trapping and cooling. The presented experimental results show the effect of the linewidth narrowing with the first stage, where the linewidth of ECDL was narrowed down to a kHz level.

  6. Wide Spectral Characteristics of Si Photonic Crystal Mach-Zehnder Modulator Fabricated by Complementary Metal-Oxide-Semiconductor Process

    Directory of Open Access Journals (Sweden)

    Yosuke Hinakura

    2016-04-01

    Full Text Available Optical modulators for optical interconnects require a small size, small voltage, high speed and wide working spectrum. For this purpose, we developed Si slow-light Mach-Zehnder modulators via a 180 nm complementary metal-oxide-semiconductor process. We employed 200 μm lattice-shifted photonic crystal waveguides with interleaved p-n junctions as phase shifters. The group index spectrum of slow light was almost flat at ng ≈ 20 but exhibited ±10% fluctuation over a wavelength bandwidth of 20 nm. The cutoff frequency measured in this bandwidth ranged from 15 to 20 GHz; thus, clear open eyes were observed in the 25 Gbps modulation. However, the fluctuation in ng was reflected in the extinction ratio and bit-error rate. For a stable error-free operation, a 1 dB margin is necessary in the extinction ratio. In addition, we constructed a device with varied values of ng and confirmed that the extinction ratio at this speed was enhanced by larger ng up to 60. However, this larger ng reduced the cutoff frequency because of increased phase mismatch between slow light and radio frequency signals. Therefore, ng available for 25 Gbps modulation is limited to up to 40 for the current device design.

  7. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing With High Sensitivity

    Science.gov (United States)

    Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua

    2017-01-01

    Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1–20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas. PMID:28378783

  8. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing With High Sensitivity

    Science.gov (United States)

    Huang, Xinyue; Li, Xueming; Yang, Jianchun; Tao, Chuanyi; Guo, Xiaogang; Bao, Hebin; Yin, Yanjun; Chen, Huifei; Zhu, Yuhua

    2017-04-01

    Ammonia is an important indicator among environmental monitoring parameters. In this work, thin-core fiber Mach-Zehnder interferometer deposited with poly (acrylic acid) (PAA), poly (allyamine hydrochloride) (PAH) and single-walled carbon nanotubes (SWCNTs-COOH) sensing film for the detection of ammonia gas has been presented. The thin-core fiber modal interferometer was made by fusion splicing a small section of thin-core fiber (TCF) between two standard single mode fibers (SMF). A beam propagation method (BPM) is employed for the design of proposed interferometer and numerical simulation. Based on the simulation results, interferometer with a length of 2 cm of thin-core fiber is fabricated and experimentally studied. (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film is deposited on the outer surface of thin-core fiber via layer-by-layer (LbL) self-assembly technique. The gas sensor coated with (PAH/PAA)2 + [PAH/(PAA + SWCNTs-COOH)]8 film towards NH3 gas exposure at concentrations range from 1 to 960 ppm are analyzed and the sensing capability is demonstrated by optical spectrum analyzer (OSA). Experimental results show that the characteristic wavelength shift has an approximately linear relationship in the range 1-20 ppm, which is in accordance with the numerical simulation. Thus, this paper reveals the potential application of this sensor in monitoring low concentration NH3 gas.

  9. Investigation on characteristics of self-organization in Mach-Zehnder erbium-doped fiber laser cavity

    Institute of Scientific and Technical Information of China (English)

    Fengnian Liu; Bo Liu; Bangcai Huang; Guiyun Kai; Shuzhong Yuan; Xiaoyi Dong

    2008-01-01

    The characteristics of coherent coupling in Mach-Zehnder erbium-doped fiber laser cavity are experimentally studied.By virtue of a seemly controlling of length difference between two interferometric arms,the obtained comb-like spectrum of interferometer resonator with a period of 0.06 nm commendably agrees with the theory of self-organization coherence The coherent output exits from the output mirror of a fiber Bragg grating with 4.5% reflectivity.A high coherent combining efficiency of 94% is obtained.Investigation on characteristics of the leak power opens out self-organization mechanism in Mach-Zehnder composite cavity.

  10. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  11. 多路集成有机聚合物光子学射频移相器%Multiple Output Photonic RF Phase Shifter using a novel polymer nested Mach- Zehnder modulators configuration

    Institute of Scientific and Technical Information of China (English)

    吴志浩

    2011-01-01

    This paper demonstrates a new integrated photonic RF phase shifters in the optically controlled phased array radar system and analyses the characteristics and the operation of the device . This device involves a nested Mach - Zehnder modulator and realizes the phase control of each unit by itself; low loss; high stability of the optical output intensity. Measurements of these devices show that multioutputs are independent and have highly linear RF phases over 360° with negligible RF power fluctuation ( below 3 dB ) at the modulation frequency.%本文简要介绍一种新型的集成光子学射频移相器,并对移相器的工作原理及特点进行分析。该新型移相器能够实现对每一阵元的相移量进行独立的调控、相移线性度大、插入损耗小、相移精度和幅度稳定度高等优点。结果表明,输出的射频信号的功率波动小于3dB,得到360°连续线性相移。

  12. A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks

    OpenAIRE

    Zhu, Zuqing; Pan, Zhong; Yoo, SJB

    2005-01-01

    We propose a compact and simple all-optical subcarrier-multiplexed (SCM) label-swapping system employing an integrated electroabsorption modulation laser and a semiconductor optical amplifier based Mach-Zehnder interferometer wavelength converter. The experiments demonstrated error-free all-optical label swapping for the 155-Mb/s label and 10-Gb/s payload over two optical label-switching network nodes with less than 0.7-dB power penalty on the payload. The majority. of the components in this ...

  13. Gain Flattening Filter for Hybrid Sb-Doped EDFA Using All-Fiber Mach-Zehnder Interferometers

    Institute of Scientific and Technical Information of China (English)

    Manjung Han; Youngeun Im; Woojin Shin; Uh-Chan Ryu; K. Oh

    2003-01-01

    We demonstrate a novel gain-flattening filter based on all fiber Mach-Zehnder interferometers for Sb-doped silica hybrid EDFA. A gain flatness of better than 0.9dB has been achieved for three concatenated filters in C-band.

  14. High extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer and a fiber loop mirror

    Institute of Scientific and Technical Information of China (English)

    Yonglin Huang(黄勇林); Jie Li(李杰); Guiyun Kai(开桂云); Xiaoyi Dong(董孝义)

    2003-01-01

    A novel structure of high extinction ratio multiplexer/demultiplexer with a Mach-Zehnder interferometer (MZI) and a fiber loop mirror (FLM) is proposed. The experimental results show that the extinction ratio can be enhanced about two times in comparison with the conventional MZI.

  15. Label-free detection in a lab-on-a-chip with a three-dimensional Mach-Zehnder interferometer

    NARCIS (Netherlands)

    Crespi, A.; Gu, Y.; Ngamson, B.; Dongre, C.; Hoekstra, H.J.W.M.; Vlekkert, van den H.H.; Watts, P.; Pollnau, M.; Cerullo, G.; Osellame, R.

    2010-01-01

    A Mach-Zehnder refractive index sensor is inscribed in a microfluidic lab-on-a-chip by exploiting the unique three-dimensional capabilities of femtosecond laser fabrication. This enables high sensitivity and spatially resolved label-free detection of biomolecules.

  16. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application

    Science.gov (United States)

    Huerta-Mascotte, Eduardo; Sierra-Hernandez, Juan M.; Mata-Chavez, Ruth I.; Jauregui-Vazquez, Daniel; Castillo-Guzman, Arturo; Estudillo-Ayala, Julian M.; Guzman-Chavez, Ana D.; Rojas-Laguna, Roberto

    2016-01-01

    In this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC) of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost. PMID:27294930

  17. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application

    Directory of Open Access Journals (Sweden)

    Eduardo Huerta-Mascotte

    2016-06-01

    Full Text Available In this paper, an all-fiber Mach-Zehnder interferometer (MZI based on a non-zero dispersion-shifted fiber (NZ-DSF is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs. Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost.

  18. A Core-Offset Mach Zehnder Interferometer Based on A Non-Zero Dispersion-Shifted Fiber and Its Torsion Sensing Application.

    Science.gov (United States)

    Huerta-Mascotte, Eduardo; Sierra-Hernandez, Juan M; Mata-Chavez, Ruth I; Jauregui-Vazquez, Daniel; Castillo-Guzman, Arturo; Estudillo-Ayala, Julian M; Guzman-Chavez, Ana D; Rojas-Laguna, Roberto

    2016-06-10

    In this paper, an all-fiber Mach-Zehnder interferometer (MZI) based on a non-zero dispersion-shifted fiber (NZ-DSF) is presented. The MZI was implemented by core-offset fusion splicing one section of a NZ-DSF fiber between two pieces of single mode fibers (SMFs). Here, the NZ-DSF core and cladding were used as the arms of the MZI, while the core-offset sections acted as optical fiber couplers. Thus, a MZI interference spectrum with a fringe contrast (FC) of about 20 dB was observed. Moreover, its response spectrum was experimentally characterized to the torsion parameter and a sensitivity of 0.070 nm/° was achieved. Finally, these MZIs can be implemented in a compact size and low cost.

  19. A carboxy-methyl cellulose coated humidity sensor based on Mach-Zehnder interferometer with waist-enlarged bi-tapers

    Science.gov (United States)

    Ma, Qifei; Ni, Kai; Huang, Ran

    2017-01-01

    A fiber-optic Mach-Zehnder interferometer (MZI) humidity sensor is proposed, comprising a pair of waist-enlarged bi-tapers and carboxy-methyl cellulose (CMC) coating. The MZI utilizes intermodal interference between the core mode and cladding modes for the measurement of the effective refractive index (RI) of the CMC film that varies with surrounding humidity, through change in the sensor's interference pattern. The proposed sensor is linearly responsive to relative humidity (RH) within the humidity range from 70% RH to 85% RH, with maximum sensitivity of -0.8578 dB/% RH. The advantages of this sensor are its compact size and a facile fabrication process. More importantly, humidity sensitivity can be improved by changing the thickness of the CMC film, which makes this structure a highly promising for real-time, practical RH monitoring application.

  20. A Thermally Annealed Mach-Zehnder Interferometer for High Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Zhongyao Feng

    2014-08-01

    Full Text Available An in-fiber Mach-Zehnder interferometer (MZI for high temperature measurement is proposed and experimentally demonstrated. The device is constructed of a piece of thin-core fiber (TCF sandwiched between two short sections of multimode fiber (MMF, i.e., a MMF-TCF-MMF structure. A well-defined interference spectrum is obtained owing to the core-mismatch, and the interference dips are sensitive to the ambient temperature. The experimental results show that the proposed interferometer is capable of high temperature measurement up to 875 °C with a sensitivity of 92 pm/°C over repeated measurements. The explored wavelength drop point may limit the measurement range, which can be improved by repeated thermal annealing.

  1. Manipulation of quantum states in a memory cell: controllable Mach-Zehnder interferometer

    Science.gov (United States)

    Losev, A. S.; Golubeva, T. Yu; Golubev, Yu M.

    2017-05-01

    In this article, we consider the possibility of manipulation of quantum signals, ensured by the use of the tripod-type atomic memory cell. We show that depending on a configuration of driving fields at the writing and reading, such a cell allows the signal to both be stored and transformed. It is possible to provide the operation of the memory cell in a Mach-Zehnder interferometer mode passing two successive pulses at the input. We proposed a procedure of partial signal readout that provides entanglement between the retrieved light and the atomic ensemble. Thus, we have shown that a tripod atomic cell is a promising candidate to implement quantum logical operations, including two-qubit ones, which can be performed on the basis of only one cell.

  2. Photonic crystal fiber in-line Mach-Zehnder interferometer for explosive detection.

    Science.gov (United States)

    Tao, Chuanyi; Wei, Heming; Feng, Wenlin

    2016-02-08

    We report a photonic crystal fiber (PCF) in-line Mach-Zehnder interferometer used as a gas sensor device which exhibits high sensitivity to the explosive trinitrotoluene (TNT). The interferometric sensor head is formed by embedding a segment of large-mode-area/grapefruit PCF between standard single-mode fibers via butt coupling, which produces two small air gaps in between terminated fiber ends with ceramic ferrule connectors as coupling regions, which also serve as inlet/outlet for the gas. The spectral response of the interferometer is investigated in terms of its wavelength spectrum. The selectivity to TNT vapor is achieved by immobilizing a molecular recognition ployallylamine layer on the inner surface of the holey region of the PCF. The TNT-induced variations of the interference fringes are measured and the sensing capability of the proposed sensor is demonstrated experimentally.

  3. Terahertz Detection Based on Spectral-Domain Interferometry Using Mach-Zehnder Interferometer

    Science.gov (United States)

    Ibrahim, Akram; Sharma, Gargi; Singh, Kanwarpal; Ozaki, Tsuneyuki

    2016-09-01

    We demonstrate the use of a Mach-Zehnder interferometer (MZI) to improve the performance of terahertz electric field measurements based on spectral-domain interferometry. The interferometer is introduced into the probe beam line to improve the temporal overlap between the two probe pulses. The probe pulse in the sample arm of the interferometer passes through the detection crystal and overlaps with the terahertz pulse, while the probe pulse in the reference arm does not. We measure the phase change between spectral components of these two pulses using spectral-domain interferometry. Using this new technique, we enable an unlimited temporal scanning window without the loss in the signal-to-noise ratio, thus overcoming the major limitation of conventional spectral-domain interferometry techniques for terahertz electric field detection.

  4. Phase noise due to vibrations in Mach-Zehnder atom interferometers

    CERN Document Server

    Miffre, A; Büchner, M; Trénec, G; Vigué, J

    2006-01-01

    Atom interferometers are very sensitive to accelerations and rotations. This property, which has some very interesting applications, induces a deleterious phase noise due to the seismic noise of the laboratory and this phase noise is sufficiently large to reduce the fringe visibility in many experiments. We develop a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are able to explain the observed phase noise which has been detected through the rapid dependence of the fringe visibility with the diffraction order. We think that the dynamical model developed in the present paper should be very useful to reduce the vibration induced phase noise in atom interferometers, making many new experiments feasible.

  5. Pass-through Mach-Zehnder topologies for macroscopic quantum measurements

    CERN Document Server

    Khalili, F Ya

    2011-01-01

    Several relatively small-scale experimental setups aimed on prototyping of future laser gravitational-wave detectors and testing of new methods of quantum measurements with macroscopic mechanical objects, are under development now. In these devices, not devoted directly to the gravitational-wave detection, Mach-Zehnder interferometer with pass-through Fabry-Perot cavities in the arms can be used instead of the standard Michelson/Fabry-Perot one. The advantage of this topology is that it does not contain high-reflectivity end mirrors with multilayer coatings, which Brownian noise could constitute the major part of the noise budget of the Michelson/Fabry-Perot interferometers. We consider here two variants of this topology: the "ordinary" position meter scheme, and a new variant of the quantum speed meter.

  6. Characterization of optical quantum circuits using resonant phase shifts

    CERN Document Server

    Poot, Menno

    2016-01-01

    We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases are determined as well as the coupling ratios of its directional couplers.

  7. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.......A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented...

  8. Ultra-compact and temperature-insensitive Mach-Zehnder interferometer based on one multimode waveguide on silicon.

    Science.gov (United States)

    Yang, Huizhan; Zhang, Jianhao; Zhu, Yuntao; Zhou, Xuan; He, Sailing; Liu, Liu

    2017-02-01

    An ultra-compact and temperature-insensitive Mach-Zehnder interferometer device is introduced on the silicon-on-insulator platform. The device is constructed through one straight multimode waveguide, which consists of two densely packed silicon wires with a narrow gap of varying positions along the device. The total width of the proposed Mach-Zehnder interferometer is only about 1 μm. Interference patterns with extinction ratios of better than 20 dB are achieved. Temperature insensitive operation of the proposed device is also demonstrated for both global and local temperature changes. The shift rate of the wavelength response with respect to the substrate temperature change is within ±10  pm/K in a 30 nm wavelength range.

  9. Mach-Zehnder Type Annealed Proton Exchange Waveguide and Coplanar Waveguide Modulation Electrode LiNbO3 Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    HE Jian; ZHU Xue-jun

    2007-01-01

    The characteristics of a conventional LiNbO3 intensity modulator made up of a Mach-Zehnder(MZ) type annealed proton exchange(APE) waveguide and coplanar waveguide(CPW) modulation electrode are presented. The APE waveguide characteristics and their relations with process parameters are analyzed. At the same time, the electrical characteristics of modulation electrode, such as modulation voltage, microwave effective index associated with modulation bandwidth, characteristics impedance, are also investigated in detail.

  10. 40-Gb/s star 16-QAM transmitter based on single dual-drive Mach-Zehnder modulator

    Institute of Scientific and Technical Information of China (English)

    Junming Gao; Xinyu Xu; Qingjiang Chang; Yikai Su

    2009-01-01

    We propose a 40-Gb/s star 16-ary quadrature amplitude modulation (16-QAM) transmitter using a single dual-drive Mach-Zehnder modulator (DDMZM). This transmitter is demonstrated through experiment and simulation and shows the advantage of simplicity for implementation. Simulation results indicate that error free performance could be achieved for the generated signal after 80-km standard single-mode fiber (SSMF) transmission with coherent detection scheme.

  11. Characteristics of an add-drop filter composed of a Mach-Zehnder interferometer and double ring resonators

    Institute of Scientific and Technical Information of China (English)

    Fufei Pang; Xiuyou Han; Haiwen Cai; Ronghui Qu; Zujie Fang

    2005-01-01

    @@ A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes,such as a MZI with a single ring resonator, are presented, and some of the issues about device design and fabrication are also discussed.

  12. A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    CERN Document Server

    Piron, P; Huby, E; Mawet, D; Ruane, M Karlsson ad G; Habraken, S; Absil, O; Surdej, J

    2016-01-01

    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a {\\pi} phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relativ...

  13. Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing.

    Science.gov (United States)

    Wang, Jian-Neng; Tang, Jaw-Luen

    2012-01-01

    We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

  14. Mach-Zehnder modulator modulated radio-over-fiber transmission system using dual wavelength linearization

    Science.gov (United States)

    Zhu, Ran; Hui, Ming; Shen, Dongya; Zhang, Xiupu

    2017-02-01

    In this paper, dual wavelength linearization (DWL) technique is studied to suppress odd and even order nonlinearities simultaneously in a Mach-Zehnder modulator (MZM) modulated radio-over-fiber (RoF) transmission system. A theoretical model is given to analyze the DWL employed for MZM. In a single-tone test, the suppressions of the second order harmonic distortion (HD2) and third order harmonic distortion (HD3) at the same time are experimentally verified at different bias voltages of the MZM. The measured spurious-free dynamic ranges (SFDRs) with respect to the HD2 and HD3 are improved simultaneously compared to using a single laser. The output P1 dB is also improved by the DWL technique. Moreover, a WiFi signal is transmitted in the RoF system to test the linearization for broadband signal. The result shows that more than 1 dB improvement of the error vector magnitude (EVM) is obtained by the DWL technique.

  15. Investigation on Nyquist pulse generation using a single dual-parallel Mach-Zehnder modulator.

    Science.gov (United States)

    Wu, Jian; Zang, Jizhao; Li, Yan; Kong, Deming; Qiu, Jifang; Zhou, Siyuan; Shi, Jindan; Lin, Jintong

    2014-08-25

    The generation of Nyquist pulses with a dual parallel Mach-Zehnder modulator (DPMZM) driven by a single RF signal is demonstrated theoretically and experimentally. A complete theoretical analysis is developed and the limitation of the proposed scheme is also discussed. It is theoretically proved that Nyquist pulses with a spectrum of 5 flat comb lines can be generated using a single DPMZM, which is also verified with simulation. 7 flat comb lines in frequency domain can also be obtained if a large RF driving voltage is applied to DPMZM but the generated waveforms won't present a sinc-shape. This scheme is further investigated experimentally. 40 GHz Nyquist pulses with full-width-at-half-maximum (FWHM) less than 4.65 ps, signal-to-noise ratio (SNR) better than 29.5 dB, and normalized root-mean-square error (NRMSE) less than 2.4% are generated. It is found that a tradeoff exists between the insertion loss of the DPMZM and the deviation of generated pulses. The tunability of repetition rate is experimentally verified by generation of 1 GHz to 40 GHz Nyquist pulses with SNR better than 28.4 dB and NRMSE less than 6.15%.

  16. Biosensors based on Si3N4 asymmetric Mach-Zehnder interferometers

    Science.gov (United States)

    Chalyan, Tatevik; Pasquardini, Laura; Falke, Floris; Zanetti, Manuela; Guider, Romain; Gandolfi, Davide; Schreuder, Eric; Pederzolli, Cecilia; Heideman, René G.; Pavesi, Lorenzo

    2016-04-01

    In this work, we present a study on photonic biosensors based on Si3N4 asymmetric Mach-Zehnder Interferometers (aMZI) for Aflatoxin M1 (AFM1) detection. AFM1 is an hepatotoxic and a carcinogenic toxin present in milk. The biosensor is based on an array of four Si3N4 aMZI that are optimized for 850nm wavelength. We measure the bulk Sensitivity (S) and the Limit of Detection (LOD) of our devices. In the array, three devices are exposed and have very similar sensitivities. The fourth aMZI, which is covered by SiO2, is used as an internal reference for laser (a VCSEL) and temperature fluctuations. We measured a phase sensitivity of 14300+/-400 rad/RIU. To characterize the LOD of the sensors, we measure the uncertainty of the experimental readout system. From the measurements on three aMZI, we observe the same value of LOD, which is ≍ 4.5×10-7 RIU. After the sensor characterization on homogeneous sensing, we test the surface sensing performances by flowing specific Aflatoxin M1 and non-specific Ochratoxin in 50 mM MES pH 6.6 buffer on the top of the sensors functionalized with Antigen-Recognising Fragments (Fab'). The difference between specific and non-specific signals shows the specificity of our sensors. A moderate regeneration of the sensors is obtained by using glycine solution.

  17. Temperature sensing setup based on an aluminum coated Mach-Zehnder Interferometer

    Science.gov (United States)

    Pacheco-Chacón, Eliana I.; Gallegos-Arellano, E.; Sierra-Hernandez, Juan M.; Rojas-Laguna, Roberto; Estudillo-Ayala, Julian M.; Hernandez, Emmanuel; Jauregui-Vazquez, D.; Hernandez-Garcia, J. C.

    2017-05-01

    In this paper a temperature sensing setup based on a Photonic Crystal Fiber (PCF) Mach-Zehnder Interferometer (MZI), coated with aluminum is proposed. Here, this interferometer is fabricated through the concatenation of two sections of Single Mode Fiber (SMF) with a segment of PCF between them. The SMF-PCF joint acts as beam splitter causing the excitement of PCF's, both cladding and fundamental core modes. In the PCF-SMF union, the cladding modes couple again to the core of the SMF, and interfere with the fundamental core mode, this interaction results in an interference pattern spectrum. Moreover, the MZI was coated with aluminum, using the evaporation technique. By adding a thin metal layer to the PCF section, the general thermal coefficient of the structure changes, enhancing the sensitivity of the device. Experimental results show that a visibility of 13 dBm can be obtained and a sensitivity of 250 pm/°C. Finally, the proposed structure is simple, cost effective and easy to fabricate.

  18. Stochastic dual-plane on-axis digital holography based on Mach-Zehnder interferometer

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2016-09-01

    For traditional dual-plane on-axis digital holography, the robustness is lower because it is difficult to maintain the stability of the phase difference between the object beam and the reference beam, and it may be invalid when the objects are on the surface of a medium with uneven thickness. An improved dual-plane digital holographic method based on Mach-Zehnder interferometer is presented to address these problems. Two holograms are recorded at two different planes separated by a small distance. Then, the zero-order image and conjugated image are eliminated by Fourier domain processing. In order to enhance the robustness of the system, the object is illuminated by a stochastic beam that is a speckle wave produced by a diffuser. Simulated and experimental results are shown to demonstrate that the proposed method has greater robustness than the traditional dual-plane on-axis digital holography and it can be used to imaging on the irregular surface of a transparent medium.

  19. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications.

    Science.gov (United States)

    Tan, Yanzhen; Sun, Li-Peng; Jin, Long; Li, Jie; Guan, Bai-Ou

    2013-01-14

    A Mach-Zehnder interferometer (MZI) composed by a pair of long period gratings (LPGs) fabricated in silica microfiber for sensing applications is demonstrated. Each LPG is fabricated with a pulsed CO2 laser by creating six periodical deformations along fiber length with only one scanning cycle. The length of the MZI can reach as short as 8.84 mm when the diameter of the microfiber is 9.5 μm. Compared with the ones fabricated in single-mode fibers, the present MZI is much shorter owing to the large effective-index difference between the fundamental and higher order modes. The microfiber MZI exhibits a sensitivity to surrounding refractive index (RI) of 2225 nm per refractive index unit and the temperature sensitivity of only 11.7 pm/°C. Theoretical analysis suggests that the performances of the MZI sensor can be improved by using thinner microfibers with a diameter down to 3.5 μm: The sensitivity can be greatly enhanced due to the stronger evanescent-field interaction and reduced dispersion factor; the transmission dips become narrower which benefits high-resolution measurement; the thinner fiber also allows further reduction in device length. The present device has great potential in biochemical and medical sensing due to the advantages including easy fabrication, excellent compactness and high sensitivity.

  20. SU 8 used as optical waveguide in integrated optical microsensor for biological applications

    Science.gov (United States)

    Műller, Raluca; Obreja, P.; Kusko, M.; Esinenco, D.; Tibeica, C.; Conache, G.; Buia, L.; Apostol, D.; Damian, V.; Mateescu, M.; Diaconu, Mirela; Moldovan, Lucia

    2005-08-01

    We present preliminary experiments for an integrated optical sensor based on a Mach-Zehnder interferometer for biological applications. The sensor is sensitive to refractive index change produced by the presence of a biological species in the cladding of the optical waveguide. A "window" can be patterned in the upper cladding, so that the evanescent wave can be in direct contact with the environmental (the sensitive layer). We investigated as optical waveguides a new material, SU-8, a negative photoresist well known from the development of 3D micromachmed structures. We structured, by photolithographic techniques, rib and channel optical waveguides. We studied the influence of the silicon substrate on propagation losses and the possibility to use these losses for the selective attenuation of the higher order modes on the vertical direction. As biological materials we experimented collagen, which is a bio-polymer which can bind different enzymes or antibodies.

  1. All-optical mode unscrambling on a silicon photonic chip

    CERN Document Server

    Morichetti, Francesco; Grillanda, Stefano; Peserico, Nicola; Carminati, Marco; Ciccarella, Pietro; Ferrari, Giorgio; Guglielmi, Emanuele; Sorel, Marc; Melloni, Andrea

    2015-01-01

    We demonstrate a 4-channel silicon photonic MIMO demultiplexer performing all-optical unscrambling of four mixed modes. Mode unscrambling is achieved by means of a cascaded Mach-Zehnder architecture that is sequentially reconfigured by individually monitoring each stage though integrated transparent detectors, namely Contact Less Integrated Photonic Probes (CLIPPs). Robust demultiplexing of 10 Gbit/s channels with less than -20 dB crosstalk is achieved.

  2. Fabrication and evaluation of flexible Mach-Zehnder waveguide structure embedded in a poly(dimethylsiloxane) thin film using a proton microbeam

    Science.gov (United States)

    Parajuli, Raj Kumar; Saruya, Ryota; Akutzu, Naoki; Miura, Satoshi; Kada, Wataru; Kawabata, Shunsuke; Matsubara, Yoshinori; Satoh, Takahiro; Koka, Masashi; Yamada, Naoto; Kamiya, Tomihiro; Miura, Kenta; Hanaizumi, Osamu

    2016-06-01

    A flexible Mach-Zehnder (MZ) optical waveguide was fabricated in a poly(dimethylsiloxane) (PDMS) film by proton beam writing (PBW). A focused 750 keV proton microbeam was used to fabricate a 40 × 20 mm2 MZ optical waveguide structure with a width of 8 µm embedded in a PDMS film for the single-mode light propagation of infrared (IR) laser light. The structure was measured by ion-beam-induced luminescence (IBIL) analysis and the beam fluence was optimized according to the IBIL intensity obtained from the waveguide structure. The entire structure of the MZ waveguide functioned well, confirmed by observing the near-field pattern (NFP) with a tunable IR laser (1.55 µm) for different PDMS film conditions. The optical throughput measurements for different sample configurations were obtained under continuous mechanical stress and a relatively low optical loss was observed at an inclination angle of 16°. Our results suggest that the MZ waveguide can be used for optical interlink connections under continuous mechanical stress.

  3. Distributed fiber optic strain sensor based on the Sagnac and Michelson interferometers

    Science.gov (United States)

    Udd, Eric

    1996-04-01

    By placing fiber optic gratings in a Sagnac loop a distributed strain sensor may be formed by using the light reflected from the fiber gratings as sources for balanced Michelson and Mach- Zehnder interferometers. In this manner the resulting fiber optic sensor is capable of measuring integrated strain over lengths determined by the fiber grating position, point strain and temperature at the fiber grating locations and localizing and measuring the position of a time varying signal such as an acoustic wave.

  4. Integrated optical waveguide sensor for lighting impulse electric field measurement

    Science.gov (United States)

    Zhang, Jiahong; Chen, Fushen; Sun, Bao; Chen, Kaixin

    2014-09-01

    A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10 kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10 kV/m to 370 kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000 kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.

  5. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  6. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer.

    Science.gov (United States)

    Chen, Qingming; Jin, Chao; Bao, Yuan; Li, Zhaohui; Li, Jianping; Lu, Chao; Yang, Liang; Li, Guifang

    2014-02-10

    We propose and experimentally demonstrate a novel ultra-long range and sensitive distributed fiber vibration sensor. Only one unidirectional Mach-Zehnder interferometer (MZI) is employed in this scheme as the sensing element. In this sensor structure, we utilize chromatic dispersion-induced walk-off effect between the vibration signals sensed by two distributed feedback (DFB) lasers at different wavelengths to locate the vibration position. Vibration signals with frequencies up to 9 MHz can be detected and the spatial resolution of 31 m is achieved over 320 km of the standard single mode fiber. Monitoring multiple vibration sources can also be realized using this scheme.

  7. Integrated optic devices based on nonlinear optical polymers

    Science.gov (United States)

    van Tomme, Emmanuel; van Daele, Peter P.; Baets, Roel G.; Lagasse, Paul E.

    1991-03-01

    An examination is made of the state of the art of nonlinear optical polymeric materials in view of their potential advantages. It is shown that these organic materials have many attractive features compared to LiNbO3 and III-V semiconductors with regard to their use in integrated optic circuits, especially since the level of integration is ever increasing. Considering more specifically electro-optic devices, a description is given of some of the theoretical background and basic properties. These polymers have already demonstrated a very high and extremely fast electro-optic effect compared to LiNbO3. It is also shown how low-loss waveguides can be fabricated by using easy techniques such as direct UV bleaching. The performance of phase modulators, Mach-Zehnder interferometers, and 2 x 2 space switches built with such polymers is already very promising. The results described in this study indicate a rapid rate of progress made by this technology, and one can expect that polymers in general and NLO polymers in particular will play an increasingly important role in integrated optics.

  8. Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach-Zehnder interferometry

    Science.gov (United States)

    Irandoost, M. S.; Ashjaee, M.; Askari, M. H.; Ahmadi, S.

    2015-11-01

    In this paper partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame is established on an axisymmetric co-annular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame characteristics for methane/air axisymmetric partially premixed flame using Mach-Zehnder interferometry. Different equivalence ratios (φ=1.4-2.2) and Reynolds numbers (Re=100-1200) are considered in the study. Flame generic visible appearance and the corresponding fringe map structures are also investigated. It is seen that the fringe maps are poorly influenced by equivalence ratio variations at constant Reynolds number but are significantly affected by Reynolds number variations in constant equivalence ratio. Temperatures obtained from optical techniques are compared with those obtained from thermocouples and good agreement is observed. It is concluded that the effect of Reynolds number increment on maximum flame temperature is negligible while equivalence ratio reduction increases maximum flame temperature substantially.

  9. Comparisons of multi-wavelength oscillations using Sagnac loop mirror and Mach-Zehnder interferometer for ytterbium doped fiber lasers

    Science.gov (United States)

    Moghaddam, M. R. A.; Harun, S. W.; Shahi, S.; Lim, K. S.; Ahmad, H.

    2010-02-01

    A multiwavelength Ytterbium-doped fiber ring laser operating at 1030 nm region is demonstrated using a Sagnac loop mirror and a Mach-Zehnder interferometer. We report the Performance comparisons of multi-wavelength oscillations in Yb3+ doped fiber lasers (YDFL) with typical commercial ytterbium doped silica fibers. By adjusting the polarization controller (PC), a widely tunable laser range of 22 nm from 1030 nm to 1050 nm is obtained. The Mach-Zehnder interferometer (MZI) design has exhibited simplicity in the operation for controlling the smallest wavelength spacing compared to Sagnac loop mirror method. In our observations, the smallest achieved stable wavelength spacing in Sagnac loop mirror setup and MZI setup were 2.1 nm and 0.7 nm, respectively. In case of nine-wavelength operation with a MZI setup, the stability, Full Width at Half Maximum (FWHM) and side mode suppression ratio (SMSR) of laser lines are not affected by increasing pump power, While for above four wavelength operation, the laser stability with Sagnac loop mirror becomes worse specially for higher input pump power and the power fluctuation among the wave-lengths would be also slightly larger.

  10. WDM-CAP-PON integration with VLLC system based on optical frequency comb

    Science.gov (United States)

    He, Jing; Dong, Huan; Deng, Rui; Shi, Jin; Chen, Lin

    2016-09-01

    In this paper, a wavelength division multiplexing carrier-less amplitude phase modulation passive optical network (WDM-CAP-PON) integration with visible laser light communication (VLLC) system is proposed and experimentally demonstrated. To reduce the cost of WDM system, the optical frequency comb scheme using one Mach-Zehnder modulator (MZM) is utilized and five flat optical combs can be generated. Meanwhile, a blue laser diode (LD) as a VLLC optical source can provide high data rate and long transmission distance. Utilizing overlap frequency domain equalization (OFDE) and negative chirp of MZM, the system performance in both Q-factor and receiver sensitivity can be improved. After 20 km standard single mode fiber (SSMF) and 4.5 m free space transmission, the experimental results show that 10 Gb/s CAP signal can be achieved under 7% forward error correction (FEC) limit of 3 . 8 × 10-3.

  11. 二氧化硅波导马赫-泽德型2×2热光开关损耗对设计与加工精度的依赖性研究%Study of the Precision Dependence of 2 × 2 Silicon-on-insulator Mach-zehnder Thermo-optical Switch Performance

    Institute of Scientific and Technical Information of China (English)

    王军; 付秀华; 郭丽君

    2016-01-01

    用有限差分光束传播法(Three-dimensional beam Propagation Model,3D-BPM)三维模拟技术,系统研究了基于单模波导定向耦合器的马赫-泽德2×2热光开关对器件的设计方法及加工精度的依赖关系.由于器件的光学损耗与器件结构误差有很大的影响,所以将实际测得的加工误差转换为公差后引入到设计中,对器件的性能进行优化,使器件的插入损耗改进到1.5dB以下,即芯片上的光损耗减小到0.5dB以下,隔离度提高到20dB以上,可提高实际产品设计与生产的成功率.%The fabrication precision dependence and the design method of a 2×2 switch structure characteristics are sys-tematically studied with three-dimensional beam propagation method. It turns out that the errors of the device influence the optical performance a lot. Thus, the fabrication precision errors were adopted and introduced them into the perfor-mance simulations and optimization of the 2×2 optical switch to reduce the optical on-chip loss of 0.5dB,the insertion loss less than 1.5dB,and an isolation of 20dB. Thereby,it's good to improve the success rate of the design and pro-duce of the optical communication devices.

  12. Effect of Radiation on a Mach-Zehnder Interferometer Silicon Modulator for HL-LHC data Transmission Applications

    CERN Document Server

    El Nasr-Storey, Sarah Seif; Baudot, Charles; Detraz, Stephane; Fedeli, Jean Marc; Marris-Morini, Delphine; Olantera, Lauri; Pezzullo, Giuseppe; Sigaud, Christophe; Soos, Csaba; Troska, Jan; Vasey, Francois; Vivien, Laurent; Zeiler, Marcel; Ziebell, Melissa

    2015-01-01

    High-speed Mach-Zehnder interferometer silicon modulators were irradiated with neutrons and X-rays in two separate radiation tests. The devices were exposed to a total fluence of 1.2 x 10$^{15}$ neutrons/cm$^2$ and a total ionizing dose of 1.3 MGy; levels comparable to the worst radiation levels for a tracking detector after 10 years of operation at the High- Luminosity LHC. Our measurements indicate that the devices performance does not significantly degrade after exposure to nonionizing radiation and begins to be affected by ionizing radiation after a dose of a few hundred kGy; the phase-shift for an applied reverse bias of 1 V is 10% of its pre-irradiated value after 600 kGy of received ionizing dose.

  13. Refractive index sensing performance analysis of photonic crystal Mach-Zehnder interferometer based on BP neural network optimization

    Science.gov (United States)

    Chen, Ying; Liu, Teng; Wang, Wenyue; Zhu, Qiguang; Bi, Weihong

    2015-04-01

    According to the band gap and photon localization characteristics, the single-arm notching and the double-arm notching Mach-Zehnder interferometer (MZI) structures based on 2D triangular lattice air hole-typed photonic crystal waveguide are proposed. The back-propagation (BP) neural network is introduced to optimize the structural parameters of the photonic crystal MZI structure, which results in the normalized transmission peak increasing from 85.3% to 97.1%. The sensitivity performances of the two structures are compared and analyzed using the Salmonella solution samples with different concentrations in the numerical simulation. The results show that the sensitivity of the double-arm notching structure is 4583 nm/RIU, which is about 6.4 times of the single-arm notching structure, which can provide some references for the optimization of the photonic devices and the design of high-sensitivity biosensors.

  14. Grazing angle Mach-Zehnder interferometer using reflective phase gratings and a polychromatic, un-collimated light source.

    Science.gov (United States)

    Kemble, Camille K; Auxier, Julie; Lynch, Susanna K; Bennett, Eric E; Morgan, Nicole Y; Wen, Han

    2010-12-20

    Normal incidence Talbot-Lau interferometers in x-ray applications have the drawbacks of low fringe visibility with polychromatic sources when the wave propagation distance is increased to achieve higher phase sensitivity, and when fabrication limits the attainable grating density. In contrast, reflective gratings illuminated at grazing angles have dramatically higher effective densities than their physical values. However, new designs are needed for far field interferometers using grazing angle geometry with incoherent light sources. We show that, with the appropriate design and choice of reflective phase gratings, there exist pairs of interfering pathways of exactly equal lengths independent of the incoming beam's incidence angle and wavelength. With a visible light grazing angle Mach-Zehnder interferometer, we show the conditions for achieving near ideal fringe visibility and demonstrate both absolute and differential phase-contrast imaging. We also describe the design parameters of an x-ray interferometer and key factors for its implementation.

  15. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.

    Science.gov (United States)

    Canagasabey, Albert; Michie, Andrew; Canning, John; Holdsworth, John; Fleming, Simon; Wang, Hsiao-Chuan; Aslund, Mattias L

    2011-01-01

    Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are w(L) (MZI) = (1.6 ± 0.2) kHz and w(L) (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  16. Twist and temperature characteristics of the PD-NSN fiber structure based on in-line Mach-Zehnder interferometer

    Science.gov (United States)

    Dong, Yue; Sun, Chunran; Xiao, Han; Dong, Changbin; Jian, Shuisheng

    2017-01-01

    A novel polarization-dependent (PD) no core-single mode-no core (NSN) fiber structure for twist and temperature sensing has been experimentally investigated. The proposed structure simply involves a section of polarization maintain fiber sandwiched into NSN fiber structure, only using the splicing method. We have analyzed and demonstrated the transmission characteristics of the no core fiber (NCF) with the different lengths. Experimental results indicate that the extinction ratio of the PD-NSN fiber structure comb spectrum based on Mach-Zehnder interferometer (MZI) various with twist rate. The maximum sensitivity of 0.33904 dB/(rad/m) for range from -240° to 360° is achieved. The temperature sensitivity of the proposed structure reaches 41.89 pm/°C for temperature ranging from 20 to 70 °C in the experiment. By using the peak-wavelength discrimination method, the proposed sensor can overcome the temperature and twist cross-sensitivity effects.

  17. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    Science.gov (United States)

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-07

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.

  18. A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers

    Directory of Open Access Journals (Sweden)

    Simon Fleming

    2011-09-01

    Full Text Available Linewidth measurements of a distributed feedback (DFB fibre laser are made using delayed self heterodyne interferometry (DHSI with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are wL (MZI = (1.6 ± 0.2 kHz and wL (MI = (1.4 ± 0.1 kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  19. Guided-Wave Optical Biosensors

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; Casamassima, Biagio; De Leonardis, Francesco

    2007-01-01

    Guided-wave optical biosensors are reviewed in this paper. Advantages related to optical technologies are presented and integrated architectures are investigated in detail. Main classes of bio receptors and the most attractive optical transduction mechanisms are discussed. The possibility to use Mach-Zehnder and Young interferometers, microdisk and microring resonators, surface plasmon resonance, hollow and antiresonant waveguides, and Bragg gratings to realize very sensitive and selective, ultra-compact and fast biosensors is discussed. Finally, CMOS-compatible technologies are proved to be the most attractive for fabrication of guided-wave photonic biosensors.

  20. New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor

    NARCIS (Netherlands)

    Schipper, E.F.; Bergevoet, A.J.H.; Kooyman, R.P.H.; Greve, J.

    1997-01-01

    Concentrations of analytes can be determined within a few minutes using on-line analysis of the immunobinding kinetics in a solid phase immunoassay. This approach has been applied to the detection of atrazine. Atrazine is detected, at concentrations around the European Community limit (0.1 ¿g/l) by

  1. New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor

    NARCIS (Netherlands)

    Schipper, E.F.; Schipper, E.F.; Bergevoet, A.J.H.; Kooyman, R.P.H.; Greve, Jan

    1997-01-01

    Concentrations of analytes can be determined within a few minutes using on-line analysis of the immunobinding kinetics in a solid phase immunoassay. This approach has been applied to the detection of atrazine. Atrazine is detected, at concentrations around the European Community limit (0.1 ¿g/l) by

  2. Design and simulation of integrated optical interferometers fabricated in polymer foils

    Science.gov (United States)

    Xiao, Yanfen; Hofmann, Meike; Zappe, Hans

    2015-02-01

    Integrated optical Mach-Zehnder interferometers (MZI) can be used as high sensitivity sensors through the interaction of the evanescent field of the waveguide with liquids or gases surrounding the sensor. We present here the design of polymer-based MZIs fabricated by hot-embossing and printing technologies. Simulations of an integrated MZI system with regard to variations of the waveguide cross-section and the refractive indices of the core layer are carried out to guarantee single mode behavior and optimize high sensitivity to external refractive index changes of analytes. The simulation of propagation losses induced by the Y-coupleres is also presented. Furthermore, transmission as a function of different interaction window lengths are also simulated on the entire MZI structure using a mixture of water and ethanol as an analyte on the sensing arm. Finally, we calculate the coupling efficiency of a laser diode into a tapered waveguide and estimate that a value of 30% is possible.

  3. Measurement of the thermo-optical effect of integrated waveguides

    Science.gov (United States)

    Kremmel, Johannes; Lamprecht, Tobias; Michler, Markus

    2016-05-01

    Thermo-optical switches are widely used in integrated optics and various types of integrated optical structures have been reported in literature. These structures include, but are not limited to Mach-Zehnder-Interferometer (MZI) switches and digital optical switches. The thermo-optical effect depends on the refractive index, the polarizability and the density of a material. The polarizability effect can often be neglected and the change of refractive index is dominated by a density change due to the thermal expansion of the material. We report herein a new method to measure the thermo-optical effect of waveguides directly, using integrated MZIs fabricated in polymer waveguide technology. Common methods rely on macroscopic samples, but the properties can differ significantly for micro-structured waveguides. Using a floodlight halogen rod lamp and metal-shields, we realized a radiation heater with a trapezoidal-shaped heating pattern. While the heating occurred from the bottom side, a thermocouple was placed on top of the sample. By dynamically measuring the temperature and the corresponding output-power of the MZI, the temperature difference between constructive and destructive interference can be determined. Multiple measurements of different sample MZIs exhibit an average thermo-optical coefficient (TOC) of 1.6 ∗ 10-4 1/K .

  4. 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect

    Science.gov (United States)

    Wang, Shun; Lu, Ping; Zhao, Shui; Liu, Deming; Yang, Wei; Zhang, Jiangshan

    2014-06-01

    We demonstrated a 2-μm switchable dual-wavelength fiber laser with cascaded filter structure based on dual-channel Mach-Zehnder interferometer and spatial mode beating effect. Few-mode fiber-embedded Sagnac ring configuration and a Mach-Zehnder interferometer are cascaded to form a multiwavelength filter for our previous 2-μm fiber laser. By adopting suitable fiber length and adjusting the polarization controller, we obtained a 2-μm dual-wavelength fiber laser with switchable wavelength interval. Experimental results revealed that the proposed laser shows higher quality and better stability compared with our previous work and it has potential applications in the fields of atmospheric propagation and microwave photonics.

  5. Aluminum nitride electro-optic phase shifter for backend integration on silicon.

    Science.gov (United States)

    Zhu, Shiyang; Lo, Guo-Qiang

    2016-06-13

    An AlN electro-optic phase shifter with a parallel plate capacitor structure is fabricated on Si using the back-end complementary metal-oxide-semiconductor technology, which is feasible for multilayer photonics integration. The modulation efficiency (Vπ⋅Lπ product) measured from the fabricated waveguide-ring resonators and Mach-Zehnder Interferometer (MZI) modulators near the 1550-nm wavelength is ∼240 V⋅cm for the transverse electric (TE) mode and ∼320 V⋅cm for the transverse magnetic (TM) mode, from which the Pockels coefficient of the deposited AlN is deduced to be ∼1.0 pm/V for both TE and TM modes. The methods for further modulation efficiency improvement are addressed.

  6. Ultrafast Laser Fabrication of Novel Fiber Mach-Zehnder Interferometer Sensors and Its Cost-Effective Alternative Manufacturing Methods

    Institute of Scientific and Technical Information of China (English)

    Wang Sumei; Jiang Lan; Li Benye; Zhao Longjiang; Yang Jinpeng; Wang Mengmeng; Xiao Hai; Lu Yongfeng; Hai-Lung Tasi

    2011-01-01

    The recent progresses of fiber sensor fabrication in our group are reviewed. Novel inline fiber Mach-Zehnder interferometer (MZI) sensors with various structures are proposed and manufactured by femtosecond laser fabrication and fusion splicing for high-quality sensing of refractivity-sensitive parameters such as temperature, concentration, humidity, pressure, stress and strain., a) for an MZI sensor with a trench on a single-mode fiber, the refractive index (RI) sensitivity of acetone vapor is about 10 nm/RIU (refractive index unit) and the temperature sensitivity is 51.5 pm/℃ from 200 to 875℃ ; b) For an MZI consisting of two micro-air-cavities, the sensitivity is501.5 nm/RIU and the detection limit is 1. 994 × 10 RIU at the refractive index of 1.4; c) to reduce the fabrication cost, a new fusion-splicing based method is proposed to fabricate MZI sensors; the sensitivity is 664.57 nm/RIU witha detection limit of 1.5 x 10 RIU and its cost is tens of times cheaper than those of commercialized long period fiber Gratings; Also, 5×10 acetone vapors are successfully detected by the MZI sensors coated with zeolite thin films.

  7. Time-dependent simulation and analytical modelling of electronic Mach-Zehnder interferometry with edge-states wave packets

    Science.gov (United States)

    Beggi, Andrea; Bordone, Paolo; Buscemi, Fabrizio; Bertoni, Andrea

    2015-12-01

    We compute the exact single-particle time-resolved dynamics of electronic Mach-Zehnder interferometers based on Landau edge-states transport, and assess the effect of the spatial localization of carriers on the interference pattern. The exact carrier dynamics is obtained by solving numerically the time-dependent Schrödinger equation with a suitable 2D potential profile reproducing the interferometer design. An external magnetic field, driving the system to the quantum Hall regime with filling factor one, is included. The injected carriers are represented by a superposition of edge states, and their interference pattern—controlled via magnetic field and/or area variation—reproduces the one of (Ji et al 2003 Nature 422 415). By tuning the system towards different regimes, we find two additional features in the transmission spectra, both related to carrier localization, namely a damping of the Aharonov-Bohm oscillations with increasing difference in the arms length, and an increased mean transmission that we trace to the energy-dependent transmittance of quantum point contacts. Finally, we present an analytical model, also accounting for the finite spatial dispersion of the carriers, able to reproduce the above effects.

  8. A chitosan-coated humidity sensor based on Mach-Zehnder interferometer with waist-enlarged fusion bitapers

    Science.gov (United States)

    Ni, Kai; Chan, Chi Chiu; Chen, Lihan; Dong, Xinyong; Huang, Ran; Ma, Qifei

    2017-01-01

    A novel humidity sensor, which adopts a Mach-Zehnder interferometer (MZI) in normal single mode fiber (SMF) modified by the deposition of chitosan (a moisture-sensitive natural polymer) on the cladding, is proposed and experimentally demonstrated. It is fabricated by the fusion splicing of a segment between the two SMF with waist-enlarged fusion bitapers. This all-fiber MZI based on SMF incorporates intermodal interference between the core mode and the cladding mode. Due to the fact that it is sensitive to external refractive index and that the RI of the chitosan multi-layer film coat depends on the environmental humidity, the SMF-MZI with a chitosan coating layer of nanometer thickness is employed in humidity measuring. The sensitivity of ∼119.6 pm/RH (relative humidity unit) is achieved within the range from 10% to 90% on the experimental level. Moreover, the chitosan coat has good biocompatibility for in vivo biomedical applications like immunosensing and DNA hybridization detection in the near future.

  9. All-optical Data Vortex node using an MZI-SOA switch array

    DEFF Research Database (Denmark)

    Jung, H.D.; Tafur Monroy, Idelfonso; Koonen, A.M.J.;

    2007-01-01

    We propose and demonstrate a new structure of a Data Vortex switch node for all-optical routing of wavelength-division-multiplexing (WDM) 10-Gb/s optical packets. The proposed node consists of two Mach-Zehnder interferometers with integrated semiconductor optical amplifier: an optical AND gate...... and a high-speed optical switch. In the experiment, WDM 10-Gb/s data packets are successfully routed with 1-dB power penalty at a bit-error rate of 10(-9)....

  10. Multi-step surface functionalization of polyimide based evanescent wave photonic biosensors and application for DNA hybridization by Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Melnik, Eva [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria); Bruck, Roman [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Hainberger, Rainer, E-mail: rainer.hainberger@ait.ac.at [Health and Environment Department, Nano Systems, AIT Austrian Institute of Technology GmbH, Donau-City-Strasse 1, 1220 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@univie.ac.at [Department of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna (Austria)

    2011-08-12

    Highlights: {yields} We realize a biosensing platform for polyimide evanescent photonic wave sensors. {yields} We show that the surface functionalization via silanisation and biotinylation followed by streptavidin immobilization do not destroy or damage the thin polyimide film. {yields} A highly dense streptavidin layer enables the immobilisation of biotinylated ligands such as biotinylated ssDNA for the selective measurement of DNA hybridization. - Abstract: The process of surface functionalization involving silanization, biotinylation and streptavidin bonding as platform for biospecific ligand immobilization was optimized for thin film polyimide spin-coated silicon wafers, of which the polyimide film serves as a wave guiding layer in evanescent wave photonic biosensors. This type of optical sensors make great demands on the materials involved as well as on the layer properties, such as the optical quality, the layer thickness and the surface roughness. In this work we realized the binding of a 3-mercaptopropyl trimethoxysilane on an oxygen plasma activated polyimide surface followed by subsequent derivatization of the reactive thiol groups with maleimide-PEG{sub 2}-biotin and immobilization of streptavidin. The progress of the functionalization was monitored by using different fluorescence labels for optimization of the chemical derivatization steps. Further, X-ray photoelectron spectroscopy and atomic force microscopy were utilized for the characterization of the modified surface. These established analytical methods allowed to derive information like chemical composition of the surface, surface coverage with immobilized streptavidin, as well as parameters of the surface roughness. The proposed functionalization protocol furnished a surface density of 144 fmol mm{sup -2} streptavidin with good reproducibility (13.9% RSD, n = 10) and without inflicted damage to the surface. This surface modification was applied to polyimide based Mach-Zehnder interferometer

  11. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    Science.gov (United States)

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  12. Investigation of a field-widened Mach-Zehnder receiver to extend Fe Doppler lidar wind measurements from the thermosphere to the ground.

    Science.gov (United States)

    Smith, John A; Chu, Xinzhao

    2016-02-20

    A receiver employing a field-widened Mach-Zehnder interferometer (MZI) is investigated for extending the wind measurement range of a narrow-band Fe Doppler lidar operating at 372 nm from its existing measurement range in the mesosphere and lower thermosphere (MLT) down to near the ground. This design uses the multiple transmitted frequencies available from the base Fe Doppler lidar in combination with a novel MZI receiver to make a measurement of the Doppler shift that rejects the influence of atmospheric parameters such as the aerosol backscatter ratio, temperature, and pressure of the lidar volume and receiver parameters such as the geometric overlap, the chopper function, and any other factor affecting the proportion of the signal in both channels of the MZI equally. A ratio is constructed from the three frequencies and two channels of the interferometer that exhibits a measurement performance of 1.75 times the Cramer-Rao lower bound, which is comparable to the dual MZI (DMZ) while preserving the insensitivity to backscatter spectrum of the quad MZI (QMZ). In addition, we show how the use of multiple transmitted frequencies can yield a wind measurement wherein the accuracy is insensitive to the optical imperfection and misalignment of the MZI or any other factor that affects the contrast, though the precision is still impacted by the fringe contrast. Simply adding a second surface mirror of a particular thickness to the basic tilted MZI can allow the field of the MZI to be widened sufficiently for most resonance Doppler lidar receivers in operation today. Provided that the detection sensitivity in each channel is known, the original resonance fluorescence and Rayleigh scattering signals can be recovered by simply scaling and adding the contributions from both channels. Consequently, the wind and temperature from the MLT region and the temperature from the Rayleigh region can be derived alongside the Rayleigh Doppler wind measurement without compromising the

  13. Optimal calculations for the transmission field of Mach-Zehnder channel waveguide switches%Mach-Zehnder条形光波导开关传输光场的优化计算

    Institute of Scientific and Technical Information of China (English)

    王超燕; 任一涛; 孟荣; 杨贵荣

    2011-01-01

    结合有效折射率法和有限差分光束传播法,实现对三维光波导结构计算的降维处理,运用二维有效折射率--有限差分光束传播方法(EI-FD-BPM)计算Mach-Zehnder光波导开关的传输光场;通过比较不同的光波导结构,优化得到具有较高输出能量的条形光波导光开关及其最佳的结构设计参数(横截面尺寸,器件结构及其尺寸等).表明用二维EI-FD-BPM方法代替三维有限差分光束传播(FD-BPM)方法进行光波导器件设计计算是简便可行的,能有效地减少计算量,节约计算时间,2个方法彼此间的结果差异(对小尺寸光波导结构)在1.5%以内,该方法可在具有较高的计算精度条件下为光波导器件的制备设计提供理论依据.%Calculations for three - dimensional optical waveguides are successfully simplified into two - dimensional ones by combining the effective index method (EIM) with the finite difference beam propagation method ( FD - BPM) , and the optical transmission field of Mach - Zehnder switches is calculated and analyzed by two - dimensional effective index - finite difference beam propagation method (EI - FD - BPM). The structure parameters (e. g. the cross section of channel waveguide, the switch structure and its size) of Mach - Zehnder waveguide switches are optimized and a waveguide switch with higher transmission efficiency is achieved. It is demonstrated that the use of a two - dimensional EI - FD - BPM is feasible and easier instead of a three - dimensional FD - BPM, which the result difference from the two methods for the small waveguide structure is within 1.5% ,and the calculations are reduced greatly, thus save time effectively. The approach provides theoretical guide for the designing and fabricating optical waveguide device at a high accuracy.

  14. Wavelength-agile integrated optical transmitters for analog applications

    Science.gov (United States)

    Johansson, Leif A.; Chen, Chin-Hui; Akulova, Yuliya A.; Fish, Gregory A.; Coldren, Larry A.

    2003-12-01

    A summary of current work involving the development of high performance, wavelength-tunable integrated optical transmitters for analog applications is given. The performance of sampled-grating DBR lasers integrated with an SOA and an electroabsorption or Mach-Zehnder modulator is evaluated in terms of E/O conversion efficiency, noise performance and dynamic range. Optimization options to maximize either gain, noise figure or spurious-free dynamic range in analog link applications are discussed. It is shown how the combination of chip-scale integration and the use of bulk waveguide Franz-Keldysh absorption allows coupling of a large optical power level into the electroabsorption modulator, and its effects on the modulation response and analog link performance. Link results on an integrated SGDBR-SOA-EAM device includes a sub-octave SFDR in the 125 to 127 dB/Hz4/5 range and a broadband SFDR of 103-107 dB/Hz2/3 limited by third order intermodulation products or 95-98 dB/Hz1/2, limited by second order intermodulation products, over a 1528 to 1573 nm wavelength range.

  15. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Divya [Department of Physics, National Institute of Technology Calicut, Kerala, 673601 (India); P, Vibin Antony; Sajith, V.; Sobhan, C. B. [School of Nano Science and Technology, National Institute of Technology Calicut, Kerala, 673601 (India)

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  16. In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zhifang [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China); OPTIMUS, School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637553 (Singapore); Liu Yange; Wang Zhi; Han Tingting; Li Shuo [Key Laboratory of Optical Information and Technology, Ministry of Education and Institute of Modern Optics, Nankai University, Tianjin 300071 (China); Jiang Meng; Ping Shum, Perry [OPTIMUS, School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637553 (Singapore); CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Quyen Dinh, Xuan [CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Thales Solutions Asia Pte Ltd, R and T Department, 28 Changi North Rise, Singapore 498755 (Singapore)

    2012-10-01

    We report a compact in-line Mach-Zehnder interferometer combining a microtaper with a long-period grating (LPG) in a section of all-solid photonic bandgap fiber. Theoretical and experimental investigations reveal that the interferometer works from the interference between the fundamental core mode and the LP{sub 01} cladding supermodes. The mechanism underlying the mode coupling caused by the microtaper can be attributed to a bandgap-shifting as the fiber diameter is abruptly scaled down. In addition, the interferometer designed to strengthen the coupling ratio of the long-period grating has a promising practical application in the simultaneous measurement of curvature and temperature.

  17. Zero-Chirp Return-to-Zero Pulses Generation with Two Single-Driver z-Cut Mach-Zehnder Modulators

    Institute of Scientific and Technical Information of China (English)

    QIN Xi; CAO Ji-Hong; ZHANG Feng; WANG Mu-Guang; ZHANG Jian-Yong; JIAN Shui-Sheng

    2007-01-01

    A novel method is proposed to suppress the frequency chirp of single-driver z-cut Mach-Zehnder modulators.Theoretical analysis shows that by multiplying the output pulses of a half clock frequency driving single-driver z-cut modulator with the one delayed odd multiple bit duration,the frequency chirp can be removed entirely,and return-to-zero(RZ)pulses with duty cycles of about 25% and 56% are obtained.An experimental scheme is proposed to validate the proposed method.The experimental results show that perfect 40 GHz zero-chirp RZ pulses can be obtained by using this scheme.

  18. Switchable Multi-Wavelength Erbium-Doped Fiber Lasers Based on a Mach-Zehnder Interferometer Using a Twin-Core Fiber

    Institute of Scientific and Technical Information of China (English)

    FENG Su-Chun; XU Ou; LU Shao-Hua; JIAN Shui-Sheng

    2009-01-01

    A switchable multi-wavelength erbium-doped fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer comb filter at room temperature is presented.The comb filter is formed by splicing a section of twin-core fiber between two single mode fibers.By adjusting the states of the polarization controller appropriately,the laser can be made to operate in stable single-,dual- and three-wavelength lazing states.The operation principle is based on spectral hole burning induced by the saturated effect and polarization hole burning.

  19. Integrated optical biosensor for rapid detection of bacteria

    Science.gov (United States)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  20. SOI-Based 16×16 Thermo-Optic Waveguide Switch Matrix

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan-Yuan; LI Yan-Ping; SUN Fei; YANG Di; CHEN Shao-Wu; YU Jin-Zhong

    2006-01-01

    @@ A 16 × 16 thermo-optic waveguide switch matrix has been designed and fabricated on silicon-on-insulator wafer.For reducing device length, blocking switch matrix configuration is chosen. The building block of the matrix is a 2 × 2 switch cell with a Mach-Zehnder interferometer configuration, where a multi-mode interferometer serves as splitter/combiners. Spot size converters and isolating grooves are integrated on the same chip to reduce loss and power consumption. Average power consumption of the switch cell is 220mW. The switching time of a switch cell is less than 3 μs.

  1. A nano/micro `meso' scale self-calibrating integrated optical wavelength and intensity meter

    Science.gov (United States)

    Caulfield, H. J.; Zavalin, A.

    2006-07-01

    Wavelength-division multiplexing has become the dominant approach to utilizing the massive bandwidth of optical fibers and integrated optics, including those based on a photonic crystal approach and recent nanotechnology achievements. For tunable sources and tunable receivers, it is desirable to measure the wavelength accurately and quickly. Unfortunately, current wavelength-measurement devices are not integrated and not fast enough to support 1 Gbit/s and higher requirements of the modern communication lines. We show here how to make an integrated optical system that results in an intensity-independent wavelength determination and a wavelength-independent intensity determination at ultra-short pulse duration or higher than ˜1-GHz bandwidth. The two output beams from a Mach-Zehnder interferometer, tuned to 3 dB at each output at the beginning of the wavelength-measurement range, provide all of the needed information. We show how a simple fast wavelength meter can be built into a silicon - or other - optical chip. It employs fuzzy metrology using both outputs of an integrated interferometer.

  2. A Complete Mathematical Model to Study the Characteristics of an Arbitrary Geometry LiNbO3 Structure for a High-Speed Mach-Zehnder Modulator for RADAR Applications

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Singh, Mandeep; Sharma, Reena

    2017-06-01

    In graded index fiber, some degree of ellipticity is found. So it is important to study the effect which is little bit different from circularity. With the help of a new method illustrated in this paper, the core fields in case of non-circular profile can be written in a more simple way. The convenient feature of this method is that mode patterns can be found by simple analysis of algebraic equations. Ray path propagations in graded non-circular fibers were already studied by researchers. However, we provide the analysis of mode field using Wentzel-Kramers-Brillouin (WKB) method. In our analysis, the core fields of step index fibers are considered assuming the elliptical core-cladding interface followed by the limiting cases with focus approaches to infinity and focus approaches to zero. Finally, modes for parabolic profile with circular refractive index are discussed with the concept of bounded and leaky modes. The convenient feature of this method is that mode patterns can be analytically studied. In this paper, the main focus is also on the experimental characteristic of optical communication link and of their components. We give an introduction to optical fiber systems and various phenomena related to it. The phenomena of attenuation and dispersion are discussed elaborately and details are provided through experimental observation and verification. All the details about various topics mentioned above are concluded and verified through experiments. This type of an arbitrary optical waveguide structure has a vast application in microwave engineering where the high-speed Mach-Zehnder modulator is going to deployed.

  3. Silicon Integrated Dual-Mode Interferometer with Differential Outputs

    Directory of Open Access Journals (Sweden)

    Niklas Hoppe

    2017-09-01

    Full Text Available The dual-mode interferometer (DMI is an attractive alternative to Mach-Zehnder interferometers for sensor purposes, achieving sensitivities to refractive index changes close to state-of-the-art. Modern designs on silicon-on-insulator (SOI platforms offer thermally stable and compact devices with insertion losses of less than 1 dB and high extinction ratios. Compact arrays of multiple DMIs in parallel are easy to fabricate due to the simple structure of the DMI. In this work, the principle of operation of an integrated DMI with differential outputs is presented which allows the unambiguous phase shift detection with a single wavelength measurement, rather than using a wavelength sweep and evaluating the optical output power spectrum. Fluctuating optical input power or varying attenuation due to different analyte concentrations can be compensated by observing the sum of the optical powers at the differential outputs. DMIs with two differential single-mode outputs are fabricated in a 250 nm SOI platform, and corresponding measurements are shown to explain the principle of operation in detail. A comparison of DMIs with the conventional Mach-Zehnder interferometer using the same technology concludes this work.

  4. Design and Fabrication of a Monolithic Optoelectronic Integrated Circuit Chip Based on CMOS Compatible Technology

    Institute of Scientific and Technical Information of China (English)

    GUO Wei-Feng; ZHAO Yong; WANG Wan-Jun; SHAO Hai-Feng; YANG Jian-Yi; JIANG Xiao-Qing

    2012-01-01

    A monolithic optoelectronic integrated circuit chip on a silicon-on-insulator is designed and fabricated based on complementary metal oxide semiconductor compatible technology.The chip integrates an optical Mach-Zehnder modulator (MZM) and a CMOS driving circuit with the amplification function.Test results show that the extinction ratio of the MZM is close to 20dB and the small-signal gain of the CMOS driving circuit is about 26.9dB.A 50m V 10 MHz sine wave signal is amplified by the driving circuit,and then drives the MZM successfully.%A monolithic optoelectronic integrated circuit chip on a silicon-on-insulator is designed and fabricated based on complementary metal oxide semiconductor compatible technology. The chip integrates an optical Mach-Zehnder modulator (MZM) and a CMOS driving circuit with the amplification function. Test results show that the extinction ratio of the MZM is close to 20 dB and the small-signal gain of the CMOS driving circuit is about 26.9dB. A 50mV 10MHz sine wave signal is amplified by the driving circuit, and then drives the MZM successfully.

  5. Violation of a Bell-like inequality by a combination of Rayleigh scattering with a Mach-Zehnder setup

    OpenAIRE

    Rother, Tom

    2016-01-01

    In this paper I propose a classical optics experiment that results in a maximum violation of a Bell-like inequality. The first part is concerned with the Bell-like inequality (the so-called CHSH-inequality) itself. Its importance and its maximum violation in Quantum Mechanics (QM) are discussed in detail by employing an abstract probability state concept in a 4-dim. but classical event space. A T-matrix that represents the integral part of a corresponding Green's function as well as a sta...

  6. Standing waves in fiber-optic interferometers.

    Science.gov (United States)

    de Haan, V; Santbergen, R; Tijssen, M; Zeman, M

    2011-10-10

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.

  7. Exploration of Whole Atmosphere Lidar: Mach-zehnder Receiver to Extend Fe Doppler Lidar Wind Measurements from the Thermosphere to the Ground

    Science.gov (United States)

    Smith, John A.; Chu, Xinzhao

    2016-06-01

    A receiver employing a field-widened Mach-Zehnder interferometer (MZI) is investigated for extending the wind measurement range of a narrowband Fe Doppler (372 nm) lidar from its existing measurement range in the mesosphere and lower thermosphere (MLT) down to the ground. This design uses the multiple transmitted frequencies available from the base Fe Doppler lidar in combination with an MZI receiver to make a measurement of the Doppler shift from Rayleigh-Mie scattering that is independent of aerosol backscatter ratio, temperature and pressure of the lidar volume and also independent of geometric overlap, the chopper function and any other factor affecting the signal in both MZI channels equally. A ratio is constructed from the three frequencies and two channels of the interferometer that exhibits a measurement performance of 1.75 times the Cramer-Rao lower bound, which is comparable to the dual MZI (DMZ) while preserving the insensitivity to backscatter spectrum of the quad MZI (QMZ). Using actual data obtained recently from the Fe Doppler lidar, we show the expected measurement performance of this whole atmosphere lidar instrument concept.

  8. Design and experimental verification of a novel Mie Doppler wind lidar based on all-fiber Mach-Zehnder frequency discriminator

    Science.gov (United States)

    Wang, Li; Gao, Fei; Wang, Jun; Yan, Qing; Chang, Bo; Hua, Dengxin

    2017-04-01

    Spaceborne Doppler wind lidar is currently one of the hot spots on the lidar technology. The all-fiber Mach-Zehnder interferometer (FMZI) as a frequency discriminator of Doppler wind lidar is proposed for profiling the atmospheric wind velocity. The frequency discriminator system parameters are optimized, and the retrieval method of wind velocity based on FMZI is deduced. The arm length difference of FMZI for the aerosol backscattering signal is optimized to be 74.8 cm at the laser wavelength of 532 nm. The maximum system sensitivity for wind profiling can reach up to 2.62%/(m/s), and the dynamic range of wind velocity is ±18.2 m/s. The system simulation shows that the detection range is up to 6.7 km for 1 m/s wind velocity error at a wind velocity of 15 m/s with laser energy of 250 mJ and telescope diameter of 406 mm. A rotating disc experimental system is designed to simulate the atmospheric wind field for verifying the feasibility of the system, and the results show that there is good agreement between the retrieved wind velocity and simulated wind velocity. The simulation and experimental test results show that FMZI is feasible as a frequency discriminator and can be suitable for direct Mie Doppler lidar, especially for satellite-based platform lidar due to its desirable characteristics, including its small volume, light weight, good stability and compact structure.

  9. Development and Application of Integrated Optical Sensors for Intense E-Field Measurement

    Directory of Open Access Journals (Sweden)

    Zhanqing Yu

    2012-08-01

    Full Text Available The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI, coupler interferometer (CI and common path interferometer (CPI. The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics.

  10. Single-side-band optical modulation in SCM systems for high-speed optical transmission

    Institute of Scientific and Technical Information of China (English)

    李忠义; 廖同庆

    2009-01-01

    In order to decrease dispersion penalty and increase the optical bandwidth efficiency,an optical single-side-band modulation(SSBM) scheme in sub-carrier multiplexing(SCM) is proposed.The principle of the SSBM is analytically presented,and a configuration for generating optical SSB signal is proposed using a balanced Mach-Zehnder electro-optic modulator.

  11. Integrated optical silicon IC compatible nanodevices for biosensing applications

    Science.gov (United States)

    Lechuga, Laura M.; Sepulveda, Borja; Llobera, Andreu; Calle, Ana; Dominguez, Carlos M.

    2003-04-01

    Biological and chemical sensing is one of the application fields where integrated optical nanodevices can play an important role [1]. We present a Silicon Integrated Mach-Zehnder Interferometer Nanodevice using a Total Internal Refraction waveguide configuration. The induced changes due to a biomolecular interactions in the effective refractive index of the waveguide,is monitored by the measurement of the change in the properties of the propagating light. For using this device as a biosensor, the waveguides of the structure must verify two conditions: work in the monomode regime and to have a Surface Sensivity as high as possible in the sensing arm. The MZI device structure is: (i) a Si wafer with a 500 mm thickness (ii) a 2 mm thick thermal Silicon-Oxide layer with a refractive index of 1.46 (iii) a LPCVD Silicon Nitride layer of 100 nm thickness and a refractive index of 2.00, which is used as the guiding layer. To achieve monomode behavior is needed to define a rib structure, with a depth of only 3 nm, on the Silicon Nitride layer by a lithographic step. This rib structure is performed by RIE and is the most critical step in the microfabrication of the device. Over the structure a protective layer of LPCVD SiO2 is deposited, with a 2 mm thickness and a refractive index of 1.46, which is patterned (photolithography) and etched (RIE) to define the sensing arm. The high sensivity of these devices makes them quite suitable for biosensing applications. For that, without loosing their activity the receptors biomolecules are covanlently immobilized, at nanometer scale , on the sensor area surface. Biospecific molecular recognition takes places when the complementary analyte to the receptor is flowed over the receptor using a flow system. Several biosensing applications have been performed with this device as enviromental pollutant control, immunosensing or genetic detection.

  12. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  13. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    Science.gov (United States)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  14. Spectral interferometric sensors for gases and liquids using integrated optical devices

    Science.gov (United States)

    Ingenhoff, Jan; Gauglitz, Guenter; Fabricius, Norbert

    1993-04-01

    Investigations for a sensor application with an integrated optical (IO) interferometric arrangement are presented. One of the two waveguide arms of an IO-Mach-Zehnder- interferometer is covered with a thin layer of polysiloxane (superstrate), which is sensitive to hydrocarbons. The dielectric IO-devices are fabricated by IOT. Gases of organic compounds including halogenated and non-halogenated hydrocarbons cause a change of the polysiloxan's refractive index followed by an increase or decrease of the effective refractive index of the covered waveguide arm. The resulting phase shift between the guided light in the measuring and the reference arm depends on the detection wavelength and the concentration of gas. Using an LED as the light source the spectral interferogram becomes observable and so order and phase of the signal can be determined. The aim of this work is the development of a reversibly working, miniaturized sensor with a short response time. The advantages of spectral observation of the interference are discussed. A comparison between measured and calculated spectral interference signals is given.

  15. Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer.

    Science.gov (United States)

    Song, Binbin; Zhang, Hao; Liu, Bo; Lin, Wei; Wu, Jixuan

    2016-07-15

    A label-free DNA biosensor based on microfiber-assisted Mach-Zehnder interferometer (MAMZI) for in-situ real-time DNA hybridization kinetics detection has been proposed and experimentally demonstrated. A microfiber of hundreds of microns in length is fabricated by tapering a segment of standard single-mode fiber (SMF) to construct the U-shaped microcavity between the lead-in and lead-out SMFs. Thanks to the mode field mismatching between the SMF and microfiber, the incident guided mode light would separate into two beams that respectively propagate in the air microcavity and the microfiber. Consequently, interference between different light modes would occur at the joint between the microfiber and the lead-out SMF. Experimental results indicate that owing to the participation of opening cavity modes in the modal interference process, the interferometric spectrum of our proposed microcavity sensor is highly sensitive to the variation of environmental refractive index (RI), especially for the RI range around 1.34 which is useful for most biological applications. The microfiber functionalization is achieved by stepwise modifying the microfiber with monolayer Poly-l-lysine (PLL) and single-stranded DNA (ssDNA) probes to produce the sensitive surface that could uniquely attach specific target ssDNAs. The fiber surface functionalization as well as DNA hybridization processes have been experimentally investigated for different target ssDNA solutions in real time. The interferometric transmission spectrum shows large wavelength shift for different biological phases, and a detection limit conservatively down to 0.0001pmol/μL has been acquired by employing the U-shaped microcavity of 176.88μm in length. Our proposed DNA biosensor possesses several advantages such as compact size, ease of fabrication, and strong response for DNA hybridization, which make it a promising candidate for potential applications in such rapidly expanding areas as medical diagnosis, cancer

  16. Classical and quantum interference in multiband optical Bloch oscillations

    CERN Document Server

    Longhi, S

    2010-01-01

    Classical and quantum interference of light propagating in arrays of coupled waveguides and undergoing multiband optical Bloch oscillations (BOs) with negligible Zener tunneling is theoretically investigated. In particular, it is shown that Mach-Zehnder-like interference effects spontaneously arise in multiband BOs owing to beam splitting and subsequent beam recombination occurring in one BO cycle. As a noteworthy example of quantum interference, we discuss the doubling of interference fringes in photon counting rates for a correlated photon pair undergoing two-band BOs, a phenomenon analogous to the manifestation of the de Broglie wavelength of an entangled biphoton state observed in quantum Mach-Zehnder interferometry.

  17. Fiber Optic Fourier Transform White-Light Interferometry

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Cai-Jie Tang

    2008-01-01

    Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.

  18. A versatile, inexpensive integrated photonics platform

    CERN Document Server

    Shainline, Jeffrey M; Nader, Nima; Gentry, Cale M; Cossel, Kevin C; Popović, Miloš; Newbury, Nathan R; Nam, Sae Woo; Mirin, Richard P

    2016-01-01

    We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-$Q$ ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 \\degree C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.

  19. Photonics integrations enabling high-end applications of InP in optical data transmissions

    Science.gov (United States)

    Zhang, Jiaming; Frateschi, Newton; Jambunathan, Ram; Choi, Wonjin; Bond, Aaron E.

    2005-10-01

    We present here results from a uniquely designed InP modulator chip combined with advanced packaging concepts, which enables high-end applications in optical data communications. An electroabsorption (EA) modulator, with a strained InGaAsP or InGaAlAs multiple quantum well structure, is monolithically integrated with a semiconductor optical amplifier. This design offers broad wavelength tunability while maintaining high extinction ratio, high optical output power, and high dispersion tolerance. The amplified EA modulator chip is co-packaged with a distributed feed back (DFB) laser ensuring separate optimization of the laser and modulator sections. The optical isolator, placed between the laser and modulator, completely eliminates adiabatic chirp. This Telcordia-qualified laser integrated modulator platform enables superior performance previously not thought possible for InP absorption based modulators. 11dB of dynamic extinction ratio, 5dBm of modulated output power, and +/-1200ps/nm or +1600ps/nm dispersion tolerance can be simultaneously achieved in un-amplified 10Gb/s data transmission. Full C-band tunability using a single device is also demonstrated with the LIM module. Extensive simulations and transmission system evaluations shows that with the controllable chirp, the cost-effective LIM performs as well as a Mach-Zehnder modulator in dispersion managed and amplified long-haul WDM systems. Lastly, the first uncooled 10Gb/s long-reach operation at 1550nm was demonstrated with LIM packages. Using a simple control algorithm, a constant modulated output power of 1dBm with less than 1dB dispersion penalty over 1600ps/nm single mode fiber is achieved in an 80 degrees environmental temperature range without any module temperature control. Utilizing the Al-based material system, also allows a reduced variation of the extinction ratio.

  20. Towards a manufacturing ecosystem for integrated photonic sensors (Conference Presentation)

    Science.gov (United States)

    Miller, Benjamin L.

    2017-03-01

    Laboratory-scale demonstrations of optical biosensing employing structures compatible with CMOS fabrication, including waveguides, Mach-Zehnder interferometers, ring resonators, and photonic crystals, have provided ample validation of the promise of these technologies. However, to date there are relatively few examples of integrated photonic biosensors in the commercial sphere. The lack of successful translation from the laboratory to the marketplace is due in part to a lack of robust manufacturing processes for integrated photonics overall. This talk will describe efforts within the American Institute for Manufacturing Photonics (AIM Photonics), a public-private consortium funded by the Department of Defense, State governments, Universities, and Corporate partners to accelerate manufacturing of integrated photonic sensors.

  1. Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing

    Science.gov (United States)

    Blanco, F. J.; Agirregabiria, M.; Berganzo, J.; Mayora, K.; Elizalde, J.; Calle, A.; Dominguez, C.; Lechuga, L. M.

    2006-05-01

    The fabrication, characterization and packaging of novel microfluidic-optical integrated biosensors for label-free biochemical detection is presented in this paper. The integrated device consists of a three-dimensional embedded microchannel network fabricated using enhanced CMOS compatible SU-8 multilevel polymer technology on top of a wafer containing Mach-Zehnder Interferometer (MZI) nanophotonic biosensor devices. PMMA housing provides connection to the macro-world and ensures robust leakage-free flow operation of the devices. This macro-microfluidic module can operate at pressure drops up to 1000 kPa. Fluid flow experiments have been performed in order to demonstrate the robustness of our microfluidic devices. The devices have been designed to operate under continuous flow. Steady-state flow rates ranging from 1 to 100 µl min-1 at pressure drops ranging from 10 to 500 kPa were measured in the laminar flow regime. Experimental results are in good agreement with laminar flow theory. The first interferometric sensing measurements are presented in order to demonstrate the functionality of these novel integrated devices for lab-on-a-chip and label-free biosensing applications. A bulk refractive index detection limit of 3.8 × 10-6 was obtained, close to the minimum detected up to now by label-free biosensor devices without microfluidic integration. As far as we know, this is the first time that a label-free biosensor device is integrated within a microfluidic network using a wafer-level CMOS compatible process technology.

  2. Application of fiber optic interferometers for Cook-off measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Scholtes, J.H.G.; Meer, B.J. van der

    2000-01-01

    A fiber optic interferometer comprising of a Sagnac interferometer and a Mach-Zehnder interferometer was developed. The interferometer enabled detection of explosive subtonic expansion velocities during the Cook-off test. The system enabled a comparison between the results of the two interferometer

  3. Path-length-resolved optical Doppler perfusion monitoring

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt

    2007-01-01

    We report the first path-length-resolved perfusion measurements on human skin measured with a phase-modulated low-coherence Mach-Zehnder interferometer with spatially separated fibers for illumination and detection. Optical path lengths of Doppler shifted and unshifted light and path-length-dependen

  4. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems.

    Science.gov (United States)

    Wang, Shipeng; Wu, Hao; Tsang, Hon Ki; Dai, Daoxin

    2016-11-15

    An integrated reconfigurable optical add-drop multiplexer (ROADM) for mode-division-multiplexing systems is proposed and demonstrated for the first time, to the best of our knowledge. The present ROADM with four mode-channels is composed of a four-channel mode demultiplexer, four identical 2×2 thermo-optic Mach-Zehnder switches (MZSs), and a four-channel mode multiplexer, which are integrated monolithically on silicon. All the devices are designed for operation with TM polarization. The ROADM can add/drop any one of the mode channels freely by thermally turning on/off the corresponding MZS. For the added/dropped mode-channels, the excess loss is 1-5 dB, and the extinction ratio is 15-20 dB in the wavelength range of 1535-1565 nm.

  5. Full-C-band, sub-GHz-resolution Nyquist-filtering (de)interleaver in photonic integrated circuit

    CERN Document Server

    Zhuang, Leimeng; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2015-01-01

    Nyquist wavelength division (de)multiplexing (N-WDM) is a highly promising technique for next-generation high-speed elastic networks. In N-WDM, Nyquist filtering is an essential function that governs the channel spectral efficiency. However, most Nyquist filter implementations to date require either expensive, power-hungry digital electronics or complex arrangements of bulky optical components, hindering their adoption for important functions such as Nyquist channel shaping and reconfigurable optical add-drop multiplexers (ROADMs) for Nyquist super-channels. Here, we present a distinctive solution with low-cost, power-efficient, and simple-device natures, which is an on-chip optical Nyquist-filtering (de)interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% transition band. This unprecedented performance is provided by a simple photonic integrated circuit comprising a two-ring-resonator-assisted Mach-Zehnder interferometer, which features high circuit compactness using high-index-co...

  6. O tema da dualidade onda-partícula na educação profissional em radiologia médica a partir da simulação do interferômetro de Mach-Zehnder

    OpenAIRE

    Netto, Jader da Silva; Ostermann,Fernanda; Prado,Sandra Denise

    2011-01-01

    Neste artigo apresenta-se a aplicação de uma proposta de introdução de tópicos de física moderna a estudantes de um curso técnico na área da saúde e a avaliação de um software tipo bancada virtual que simula o interferômetro de Mach-Zehnder. A teoria sociointeracionista de Vygotsky e a ênfase curricular Ciência- Tecnologia-Sociedade foram tomados como referenciais. No âmbito do Mestrado Profissional em Ensino de Física da Universidade Federal do Rio Grande do Sul (UFRGS), fez-se a aplicação d...

  7. O tema da dualidade onda-partícula na educação profissional em radiologia médica a partir da simulação do interferômetro de Mach-Zehnder

    OpenAIRE

    Silva Neto,Jader da; Ostermann,Fernanda; Prado,Sandra Denise

    2011-01-01

    Neste artigo apresenta-se a aplicação de uma proposta de introdução de tópicos de física moderna a estudantes de um curso técnico na área da saúde e a avaliação de um software tipo bancada virtual que simula o interferômetro de Mach-Zehnder. A teoria sociointeracionista de Vygotsky e a ênfase curricular Ciência-Tecnologia-Sociedade foram tomados como referenciais. No âmbito do Mestrado Profissional em Ensino de Física da Universidade Federal do Rio Grande do Sul (UFRGS), fez-se a aplicação de...

  8. O tema da dualidade onda-partícula na educação profissional em radiologia médica a partir da simulação do interferômetro de Mach-Zehnder

    OpenAIRE

    Silva Neto,Jader da; Ostermann, Fernanda; Prado, Sandra Denise

    2011-01-01

    Neste artigo apresenta-se a aplicação de uma proposta de introdução de tópicos de física moderna a estudantes de um curso técnico na área da saúde e a avaliação de um software tipo bancada virtual que simula o interferômetro de Mach-Zehnder. A teoria sociointeracionista de Vygotsky e a ênfase curricular Ciência-Tecnologia-Sociedade foram tomados como referenciais. No âmbito do Mestrado Profissional em Ensino de Física da Universidade Federal do Rio Grande do Sul (UFRGS), fez-se a aplicação de...

  9. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer and its application in microwave generation

    Science.gov (United States)

    Wang, Fei; Xu, En-Ming; Dong, Jian-Ji; Zhang, Xin-Liang

    2011-05-01

    A tunable and switchable single-longitudinal-mode (SLM) dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer (MZI) filter was proposed and demonstrated, which can be applied in microwave generation. By incorporating a high extinction ratio (ER) dual-pass MZI into an erbium-doped fiber ring cavity, SLM dual-wavelength lasing can be achieved even using a MZI with relatively little free spectrum range (FSR), and by beating the two wavelengths at a photodetector, a 9.76 GHz microwave signal with a 3-dB bandwidth of less than 10 kHz is obtained. Moreover, by direct linking the two outputs of the MZI, the high ER dual-pass MZI is easily reconfigured as a half FSR dual-pass MZI. Using this structure, switchable SLM dual-wavelength lasing can be conveniently realized.

  10. Distribution of DVB-C Channels over an Externally Modulated Optical Link

    Science.gov (United States)

    Andrade, Paulo; Lima, Mário; Teixeira, António

    2012-03-01

    In this paper, we will study, via simulation, the transmission of DVB-C channels over an external modulated optical link using a Mach-Zehnder modulator (MZM). We will also observe the consequences of biasing the MZM near its transmission minimum point, which allows higher carrier to noise ratio at the transmitter, but increases second-order distortion at the receiver.

  11. Optical Generation of Single- or Two-Mode Excited Entangled Coherent States

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-Zhong; JING Hui; ZHANG Xian-Zhou

    2008-01-01

    With nonlinear Mach-Zehnder interferometer (NLMZI) and a type-Ⅰ beta-barium borate (BBO) crystal, we optically generate single-mode excited entangled coherent states. This scheme can be easily generalized to generate two-mode excited entangled coherent states. We simply analyse different influences of single- and two-mode photon excitations on entangled coherent states.

  12. Optical Measurement Techniques for Optical Fiber and Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    D.Y.; Kim; Y.; Park; N.H.; Seong; Y.C.Youk; J.Y.; Lee; S.; Moon; I.H.; Shin; H.S.; Ryu

    2003-01-01

    We describe three major optical characterization methods for fiber and fiber devices. A simple servo controlled scanning fiber-optic confocal microscope is proposed for determining the refractive index profile of an optical fiber. To measure the chromatic dispersion of a short length fiber a Mach-Zehnder fiber interferometer with a novel interferometric distance meter is introduced. At the end, a tomographic method is demonstrated for determining the 2-D stress profile of a fiber.

  13. Birefringence measurement in polarization-sensitive optical coherence tomography using differential-envelope detection method

    Science.gov (United States)

    Kuo, Wen-Chuan; Lin, Shey-Chien; Chuang, Chung-Yu

    2010-05-01

    In this research, we integrated two demodulating logarithmic amplifiers with one differential amplifier for use in a Mach-Zehnder interferometer so as to obtain a two-channel polarization-sensitive optical coherence tomography system. Birefringence signals can be acquired using this system along with a differential-envelope detection method. Because the two orthogonal polarizations are common-path propagation, common noise originating from background fluctuations or multiple scattering in turbid media can be reduced to improve the detection sensitivity and accuracy of birefringence measurement. Besides, this simple and effective technique is an analog detection method and is capable of providing high temporal response; it can also help obtain a high time-bandwidth product as compared to the conventional method of using a numerical method with a limited sampling rate. The feasibility of the proposed system is supported by theory and is also shown by performing experiments involving a human vessel, which is a highly scattering medium with weak birefringence.

  14. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    Science.gov (United States)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive

  15. Fabrication of 2×2 Thermo-Optic Switches with Organic-Inorganic Hybrid Materials Prepared by Sol-Gel Technique

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    2×2 Mach-Zehnder interferometric thermo-optic switch was fabricated with organic/inorganic hybrid materials by sol-gel technique and direct UV patterning. The switching time of device was measured to be 4.2 ms and switching power 9.3 mW.

  16. Efficient and robust regenerative all-optical wavelength converter for C- and L-band (80 nm span) and for data rates up to 40 Gbit/s

    DEFF Research Database (Denmark)

    Dülk, M.; Fischer, St.; Gamper, E.;

    2000-01-01

    We present a monolithically integrated Mach_Zehnder interferometer module for efficient regenerative (2R and 3R) wavelength conversion at bit rates up to 40 Gbit/s covering the 80 nm wavelength span of the C- and L-band....

  17. Mach-Zehnder Interferometer Thermo-Optical Modulator with Fast Response%快速响应SOI马赫曾德热光调制器

    Institute of Scientific and Technical Information of China (English)

    魏红振; 余金中; 夏金松; 严清峰; 刘忠立; 房昌水

    2002-01-01

    给出了Y分支MZI热光调制器的模型,实验研制了基于SOI(silicon-on-insulator)的MZI热光调制器,调制器的消光比为-16.5dB,开关的上升时间为10μs,下降时间为20μs,相应的功耗为0.39W.

  18. All-Optical Regenerative OTDM Add/Drop Multiplexing at 40 Gbit/s using Monolithic InP Mach-Zehnder Interferometer

    DEFF Research Database (Denmark)

    Buxens, Alvaro A.; Clausen, Anders; Poulsen, Henrik Nørskov;

    2000-01-01

    We report a novel method for simultaneous add-drop multiplexing in OTDM systems which includes regenerative capabilities and perfect clearing of the drop channel time slot. The principle has been demonstrated at 40 Gb/s showing an excellent performance....

  19. Interferometric Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Hae Young Choi

    2012-02-01

    Full Text Available Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  20. Interferometric fiber optic sensors.

    Science.gov (United States)

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair.

  1. Development of a novel polymeric fiber-optic magnetostrictive metal detector

    Science.gov (United States)

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-03-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber- optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the straininduced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  2. Development of a novel polymeric fiber-optic magnetostrictive metal detector.

    Science.gov (United States)

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

  3. Development of a novel polymeric fiber-optic magnetostrictive metal detector

    OpenAIRE

    Hua, Wei-Shu; Hooks, Joshua Rosenberg; Wu, Wen-Jong; Wang, Wei-Chih

    2010-01-01

    The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber–optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection...

  4. Microfabrication with femtosecond laser processing : (A) laser ablation of ferrous alloys, (B) direct-write embedded optical waveguides and integrated optics in bulk glasses.

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Junpeng; McDaniel, Karen Lynn; Palmer, Jeremy Andrew; Yang, Pin; Griffith, Michelle Lynn; Vawter, Gregory Allen; Harris, Marc F.; Tallant, David Robert; Luk, Ting Shan; Burns, George Robert

    2004-11-01

    -write optical waveguides and integrated optics in bulk glass. The effects of laser and environmental parameters on such aspects as removal rate, feature size, feature definition, and ablation angle during the ablation process of metals were studied. In addition, the manufacturing requirements for component fabrication including precision and reproducibility were investigated. The effect of laser processing conditions on the optical properties of direct-written waveguides and an unusual laser-induced birefringence in an optically isotropic glass are reported. Several integrated optical devices, including a Y coupler, directional coupler, and Mach-Zehnder interferometer, were made to demonstrate the simplicity and flexibility of this technique in comparison to the conventional waveguide fabrication processes.

  5. Polymer integrated waveguide optical biosensor by using spectral splitting effect

    Science.gov (United States)

    Han, Xiaonan; Han, Xiuyou; Shao, Yuchen; Wu, Zhenlin; Liang, Yuxin; Teng, Jie; Bo, Shuhui; Morthier, Geert; Zhao, Mingshan

    2017-02-01

    The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 104 nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.

  6. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  7. Measurement of Frequency Shift Characteristics Based on LiNbO3 Waveguide Electro-Optic Intensity Modulator

    Institute of Scientific and Technical Information of China (English)

    Zhou Meng; Hui-Juan Zhou; Yi Liao; Qiong Yao

    2008-01-01

    High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communi-cation and sensor. This paper reports the research results on the measurement of frequency shift character-istics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift character-istics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.

  8. Characterization and Performance Comparison of Low-Voltage, High-Speed, Push-Pull and Traveling-Wave Silicon Mach-Zehnder Modulators

    Science.gov (United States)

    2014-03-27

    combination of the PNA internally changing to a mixer with more noise, and the low level of input optical power to the LCA ...loop and not closed-loop motors , so a recursive search algorithm was developed to ensure that the power optimization algorithm accurately and...location where the highest power reading was found. Because of the fact that the motor is open-loop, the position to which the algorithm returns is not

  9. Electro-optic properties of indium/erbium-codoped lithium niobate crystal for integrated optics

    Science.gov (United States)

    Du, Wan-Ying; Zhang, Zi-Bo; Ren, Shuai; Wong, Wing-Han; Yu, Dao-Yin; Pun, Edwin Yue-Bun; Zhang, De-Long

    2017-02-01

    Clamped and unclamped electro-optic coefficients γ13 and γ33 of In3+/Er3+-codoped LiNbO3 crystals, which were grown by Czochralski method from the melts containing 0.5 mol% Er2O3 while varied In2O3 contents of 0.0, 0.5, 1.0 and 1.5 mol%, were measured by Mach-Zehnder interferometry. The results show that In3+/Er3+ codoping does not cause change of γ13 and γ33, and both γ13 and γ33 can be regarded as unchanged in the studied In3+ concentration range of 0-2.6 mol% (in crystal) within the experimental error of 3%. The small doping effect is desired in light of the electro-optic application of the crystal. A qualitative, comprehensible explanation for the small effect is given on the basis of the EO coefficient model of LiNbO3 and doping effect on the defect structure of LiNbO3.

  10. Integrated Optics Some Aspects

    Directory of Open Access Journals (Sweden)

    R. Hradaynath

    1990-01-01

    Full Text Available Status of some key individual integrated optics components, their application in the field of telecommunications, integrated optoelectronic circuits, fibre optics sensors, optical interconnects and logic devices are highlighted in this paper. Possibilities of opto-opto processors in the computers field are also outlined.

  11. An Electro-Optic Modulator Based on GeO2-Doped Silica Ridge Waveguides with Thermal Poling

    Institute of Scientific and Technical Information of China (English)

    曹霞; 何赛灵

    2003-01-01

    A Mach-Zehnder electro-optic modulator is designed and fabricated based on upper-clad GeO2-doped silica ridge waveguides with thermal poling. The electro-optic coefficient obtained is about 0.05 pm/V and is polarizationinsensitive. An extinction ratio of over 17dB is achieved. The transmission loss of the modulator for the TE mode is 2-3 dB higher than that for the TM mode after the poling.

  12. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  13. Multi-format all-optical processing based on a large-scale, hybridly integrated photonic circuit.

    Science.gov (United States)

    Bougioukos, M; Kouloumentas, Ch; Spyropoulou, M; Giannoulis, G; Kalavrouziotis, D; Maziotis, A; Bakopoulos, P; Harmon, R; Rogers, D; Harrison, J; Poustie, A; Maxwell, G; Avramopoulos, H

    2011-06-01

    We investigate through numerical studies and experiments the performance of a large scale, silica-on-silicon photonic integrated circuit for multi-format regeneration and wavelength-conversion. The circuit encompasses a monolithically integrated array of four SOAs inside two parallel Mach-Zehnder structures, four delay interferometers and a large number of silica waveguides and couplers. Exploiting phase-incoherent techniques, the circuit is capable of processing OOK signals at variable bit rates, DPSK signals at 22 or 44 Gb/s and DQPSK signals at 44 Gbaud. Simulation studies reveal the wavelength-conversion potential of the circuit with enhanced regenerative capabilities for OOK and DPSK modulation formats and acceptable quality degradation for DQPSK format. Regeneration of 22 Gb/s OOK signals with amplified spontaneous emission (ASE) noise and DPSK data signals degraded with amplitude, phase and ASE noise is experimentally validated demonstrating a power penalty improvement up to 1.5 dB.

  14. Phase-Locking and Coherent Power Combining of Broadband Linearly Chirped Optical Waves

    Science.gov (United States)

    2012-11-05

    high-power fiber amplifiers, and also has potential applications in electronic beam steering for LIDAR and 3-D imaging systems. The output power of...O pt ic a l f re qu en cy ω L Time τ ω 0 + ξ t Delay τ Coupler Frequency shifter Swept- frequency laser (SFL) Photodetector (PD) ξτ Fig. 1...a negative feedback loop. SCL: Semiconductor laser, MZI: Mach-Zehnder interferometer, PD: Photodetector . (b) and (c) Measured slope of the optical

  15. Applications of Optical Interferometer Techniques for Precision Measurements of Changes in Temperature, Growth and Refractive Index of Materials

    Directory of Open Access Journals (Sweden)

    Rami Reddy Bommareddi

    2014-05-01

    Full Text Available Optical metrology techniques used to measure changes in thickness; temperature and refractive index are surveyed. Optical heterodyne detection principle and its applications for precision measurements of changes in thickness and temperature are discussed. Theoretical formulations are developed to estimate crystal growth rate, surface roughness and laser cooling/heating of solids. Applications of Michelson and Mach-Zehnder interferometers to measure temperature changes in laser heating of solids are described. A Mach-Zehnder interferometer is used to measure refractive index and concentration variations of solutions in crystal growth experiments. Additionally, fluorescence lifetime sensing and fluorescence ratio method are described for temperature measurement. For all the above techniques, uncertainty calculations are included.

  16. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  17. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  18. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  19. Experimental and theoretical investigation of electro-optic and all-optical implementations of wavelength converting 2R-regenerators

    DEFF Research Database (Denmark)

    Wolfson, David; Mikkelsen, Benny; Danielsen, Søren Lykke

    1998-01-01

    We investigate and compare the regenerative capability of electro-optic wavelength converters based on electrically controlled external Mach-Zehnder (MZ) modulators and all-optical wavelength converters based on all-optically controlled external MZ modulators. The latter incorporates semiconductor...... optical amplifiers (SOAs) as optically controlled phase shifters. Experiments demonstrate a 5-6 dB noise suppression capability for both the electro-optic and the all-optical implementation of the wavelength-converting regenerators. The performance can be further improved by cascading two converters...

  20. Fabrication of an InP/GaInAsP based integrated gain-coupled DFB laser/M-Z phase modulator for 10Gb/sec fiber optic transmission

    Energy Technology Data Exchange (ETDEWEB)

    Puetz, N.; Adams, D.M.; Rolland, C.; Moore, R.; Mallard, R. [Bell-Northern Research, Ottawa, Ontario (Canada)

    1996-12-31

    The monolithic integration of lasers and modulators is an attractive approach for the manufacture of compact, low-chirp light sources with low packaging costs for high bit rate (10Gb/s) long haul fiber optic transmission systems. In this presentation the authors describe the fabrication of an InGaAsP/InP-based Mach/Zehnder phase modulator with a gain-coupled DFB laser which achieves 10Gb/s transmission at 1.55 {micro}m over 100km of non-dispersion shifted fiber. The use of an interferometric modulator provides greater freedom for the control of chirp when compared to modulation by electroabsorption. A strained layer multi quantum well gain-coupled DFB laser was employed for the cw-source because of its potential for very high yield of devices which laser in a single mode and for its greater immunity to external reflection. The integration of a phase modulator with a laser requires the deposition of InGaAsP-based quantum wells with different thicknesses over different, but adjacent areas of the InP substrate. Previous efforts of this kind employed Selective Area Epitaxy. Although SAE is an elegant method of locally varying thicknesses of epitaxial films it does not allow the independent growth of different numbers of quantum wells. Therefore, it reduces the designer`s flexibility in choosing the optimum parameters for wells and barriers as well as confinement layers (thickness, number, composition, doping) independently for both the laser and the modulator. For exactly that reason the authors have decided to pursue the butt-coupled approach and deposit the layer sequences for laser and modulator in 2 separate growth runs.

  1. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits.

    Science.gov (United States)

    Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming

    2014-08-25

    A transparent reconfigurable optical interleaver module composed of cascaded AWGs-based wavelength-channel-selector/interleaver monolithically integrated with multimode interference (MMI) variable optical attenuators (VOAs) and Mach-Zehnder interferometer (MZI) switch arrays was designed and fabricated using polymer photonic lightwave circuits. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and caldding, respectively. Thermo-optic (TO) tunable wavelength transfer matrix (WTM) function of the module can be achieved for optical routing network. The one-chip transmission loss is ~ 6 dB and crosstalk is less than ~25 dB for transverse-magnetic (TM) mode. The crosstalk and extinction ratio of the MMI VOAs were measured as -15.2 dB and 17.5 dB with driving current 8 mA, respectively. The modulation depth of the TO switches is obtained as ~18.2 dB with 2.2 V bias. Proposed novel interleaver module could be well suited for DWDM optical communication systems.

  2. Parallel optical sampler

    Energy Technology Data Exchange (ETDEWEB)

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  3. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  4. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    Energy Technology Data Exchange (ETDEWEB)

    E. K. Miller, G. S. Macrum, I. J. McKenna, et al.

    2007-12-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  5. Optimum source concepts for optical intersatellite links with RZ coding

    Science.gov (United States)

    Strasser, Martin M.; Winzer, Peter J.; Leeb, Walter R.

    2001-06-01

    We discuss several potential methods of generating optical RZ data signals, distinguishing between direct RZ modulation and modulation of a primary pulse train which is either generated by using a modelocked laser, by sinusoidally driving of an external modulator, or by gainswitching of a laser diode. We analyze the properties of each method with regard to the most critical aspects for space-borne laser communication systems such as repetition rate, duty cycle, extinction ratio, frequency chirp, timing jitter, robustness, complexity, commercial availability, and lifetime. Most modelocked lasers are highly sensitive to ambient perturbations, necessitating accurate temperature control and mechanical stabilization. Also, they typically provide pulses with less than 10% duty cycle, which can result in a decreased sensitivity of optically preamplified receivers. Directly modulated semiconductor lasers are compact and robust but suffer from large frequency chirp, which deteriorates the receiver sensitivity. One reliable RZ source is a conventional DFB semiconductor laser with two intensity modulators, one for pulse generation and one for data modulation. Both Mach-Zehnder modulators co-packaged with a laser diode or monolithically integrated electroabsorption modulators should be considered. These modulators can provide almost transform-limited pulses at high repetition rates and with duty cycles of about 30%. Robustness and lifetime are highly promising.

  6. InP chip scale integration platform for high performance tunable lasers

    Science.gov (United States)

    Simes, Robert J.; Fish, Gregory A.; Abraham, Patrick; Akulova, Yuliya A.; Coldren, Christopher W.; Focht, Marlin; Hall, Eric M.; Larson, Mike C.; Marchand, Hugues; Kozodoy, Peter; Dahl, Anders; Koh, Ping C.; Strand, T.

    2003-12-01

    Tunable semiconductor lasers have been listed in numerous critical technology lists for future optical communication systems. Lasers with full band tuning ranges (C or L) allow reduction of the inventory cost and simplify deployment and operation of existing systems in addition to enabling wavelength agile networking concepts in future systems. Furthermore, monolithic integration of full band tunable lasers with modulators to form complete transmitters offers the most potential for reducing system size, weight, power consumption, and cost. This paper summarizes design, fabrication technology, and performance characteristics of widely tunable CW sources and transmitters based on chip scale integration of a Sampled Grating Distributed Bragg Reflector (SG DBR) laser with a Semiconductor Optical Amplifier (SOA) and Electroabsorption (EA) or Mach Zehnder (MZ) modulator. Widely tunable CW sources based on SG-DBR lasers exhibit high fiber coupled output power (20 mW CW) and side mode suppression ratio (>40 dB), low relative intensity noise (below -140 dB/Hz) and line width ( 10 dB, and error-free transmission over 350 km of standard fiber at 2.5 Gb/s across a 40 nm tuning range. Monolithic integration of widely tunable lasers with MZ modulators allow for further extension of bit rate (10 Gb/s and beyond) and transmission distances through precise control of the transient chirp of the transmitter. Systematic investigations of accelerated aging confirm that reliability of these widely-tunable transmitters is sufficient for system deployment.

  7. Large-scale optical diffraction tomography for inspection of optical plastic lenses

    CERN Document Server

    Kim, Kyoohyun; Park, YongKeun

    2015-01-01

    Herein is presented an optical diffraction tomography (ODT) technique for measuring 3-D refractive index (RI) maps of optical plastic lenses. A Mach-Zehnder interferometer was used to measure multiple complex optical fields of a plastic lens immersed in RI matching oil, at various rotational orientations. From this, ODT was used to reconstruct a 3-D RI distribution of the plastic lens with unprecedented RI sensitivity (dn = 4.21 x 10^-5) and high resolution (12.8 um). As a demonstration, 3-D RI distributions of a 2-mm-diameter borosilicate sphere and a 5-mm-diameter plastic lens

  8. Low power all optical switches

    Institute of Scientific and Technical Information of China (English)

    Alireza Bananej; LI Chun-fei 李淳飞

    2004-01-01

    In this paper, we propose a new design of all fiber optical switches by using a high finesse ring resonator (RR) side coupled Mach-Zehnder interferometer. We will show that by compensating the total loss in the RR the switching power can be decreased greatly and by loss, compensating the bistability effect in RR can be cancelled and the switching performance can be improved. In addition, we will show that by using Erbium doped fiber for fabricating the RR we can obtain switching power threshold in mW range.

  9. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Kort Bremer

    2017-02-01

    Full Text Available Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs and textile net structures (TNSs based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well.

  10. Angular and radial mode analyzer for optical beams.

    Science.gov (United States)

    Abouraddy, Ayman F; Yarnall, Timothy M; Saleh, Bahaa E A

    2011-12-01

    We describe an approach to determining both the angular and the radial modal content of a scalar optical beam in terms of optical angular momentum modes. A modified Mach-Zehnder interferometer that incorporates a spatial rotator to determine the angular modes and an optical realization of the fractional Hankel transform (fHT) to determine the radial modes is analyzed. Varying the rotation angle and the order of the fHT produces a two-dimensional (2D) interferogram from which we extract the modal coefficients by simple 2D Fourier analysis.

  11. Experimental study of the optical fiber characteristics by digital hologram

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-juan; FU Xing-hu; WANG Ting-yun

    2011-01-01

    The characteristics of optical fiber are quite important for improving the performance of optical fiber communication and sensor systems. Based on the Mach-Zehnder interferometer, a new measuring method is proposed and the digital holo- grams between the single mode fibers (SMFs) and specialty double-cladding (DC) fibers are analyzed. The experimental results show that the fringe density can be changed under the conditions of coaxial and off-axial interferences. Therefore it can be used to analyze the optical fiber characteristics including refractive index distribution, fiber modes, phase diff- erence, etc.

  12. Research of high speed optical switch based on compound semiconductor

    Institute of Scientific and Technical Information of China (English)

    WANG MingHua; QI Wei; YU Hui; JIANG XiaoQing; YANG JianYi

    2009-01-01

    High-speed optical switch and its array are the crucial components of all-optical switching system. This paper presents the analytical model of a total-internal-reflection (TIR) optical switch. By employing the carrier injection effect in GaAs and the GaAs/AlGaAs double heterojunction structure, the X-junction TIR switch and the Mach-Zehnder interference (MZI) switch are demonstrated at 1.55 IJm. The measured results show that the extinction ratio of both switches exceeds 20 dB. The switching speed reaches the scale of 10 ns.

  13. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device

    Science.gov (United States)

    Zhang, Chonglei; Min, Changjun; Yuan, X.-C.

    2016-12-01

    We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.

  14. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators.

    Science.gov (United States)

    Yan, Hai; Xu, Xiaochuan; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chakravarty, Swapnajit; Chen, Ray T

    2016-12-01

    In an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r33, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration. The proposed structure takes advantage of the strong mode confinement within a low-index region in a conventional slot waveguide and the slow-light enhancement from the 1D PC structure. Its simple geometry makes it robust to resist fabrication imperfections and helps reduce the propagation loss. Using it as a phase shifter in a Mach-Zehnder interferometer structure, an integrated silicon-organic hybrid EO modulator was experimentally demonstrated. The observed effective EO coefficient is as high as 490 pm/V. The measured half-wave voltage and length product is less than 1  V·cm and can be further improved. A potential bandwidth of 61 GHz can be achieved and further improved by tailoring the doping profile. The proposed structure offers a competitive novel phase-shifter design, which is simple, highly efficient, and with low optical loss, for on-chip silicon-organic hybrid EO modulators.

  15. Design of optical seven-segment decoder using Pockel's effect inside lithium niobate-based waveguide

    Science.gov (United States)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2017-01-01

    Seven-segment decoder is a device that allows placing digital information from many inputs to many outputs optically, having 11 Mach-Zehnder interferometers (MZIs) for their implementation. The layout of the circuit is implemented to fit the electrical method on an optical logic circuit based on the beam propagation method (BPM). Seven-segment decoder is proposed using electro-optic effect inside lithium niobate-based MZIs. MZI structures are able to switch an optical signal to a desired output port. It consists of a mathematical explanation about the proposed device. The BPM is also used to analyze the study.

  16. Quantum Computations with Transverse Modes of an Optical Field Propagating in Waveguides

    Institute of Scientific and Technical Information of China (English)

    符建; 唐少芳

    2003-01-01

    A fully optical method to perform quantum computation with transverse modes of the optical field propagating in waveguide is proposed by supplying the prescriptions for a universal set of quantum gates. The proposal for quantum computation is based on implementing a quantum bit with two normal modes of multi-mode waveguides. The proposed C-NOT gate has the potential of being more compact and easily realized than some optical implementations, since it is based on planar lightwave circuit technology and can be constructed by using Mach-Zehnder interferometer having semiconductor optical amplifiers with very large refractive nonlinearity in its arms.

  17. Design of integrated YIG-based isolators and high-speed modulators

    Science.gov (United States)

    Firby, C. J.; Elezzabi, A. Y.

    2016-03-01

    In this work, we present the design of integrable magnetoplasmonic isolators and modulators, based on a longrange magnetoplasmonic waveguide structure. With the addition of magnetized cerium-substituted yttrium iron garnet waveguides and planar samarium-cobalt biasing magnets to a Mach-Zehnder interferometer (MZI), we show that an efficient isolator architecture can be implemented with insertion loss of 2.51 dB and an isolation of 22.82 dB within a small footprint of 6:4 x 10-3 mm2. Additionally, employing bismuth-substituted yttrium iron garnet in a MZI and transient magnetic fields from nearby transmission lines, we propose a high-speed electrical-to-optical clock multiplier. Such a device exhibits a modulation depth of 16.26 dB, and an output modulation frequency of 279.9 MHz. Thus, input clock signals can be multiplied by factors of 2:1 x 103. These devices are envisioned as fundamental constituents of future integrated nanoplasmonic circuits.

  18. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    Science.gov (United States)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld; Cai, Xinlun; Zhou, Xiaoqi; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-06-01

    Quantum key distribution provides an efficient means to exchange information in an unconditionally secure way. Historically, quantum key distribution protocols have been based on binary signal formats, such as two polarization states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both the coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable manner. Our demonstration paves the way to utilize state-of-the-art multicore fibers for noise tolerance high-dimensional quantum key distribution, and boost silicon photonics for high information efficiency quantum communications.

  19. Thermal characterization of optical fibers using wavelength-sweeping interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Luc; Pfeiffer, Pierre; Serio, Bruno; Twardowski, Patrice

    2010-06-20

    In this paper, we report a new method of thermal characterization of optical fibers using wavelength-sweeping interferometry and discuss its advantages compared to other techniques. The setup consists of two temperature-stabilized interferometers, a reference Michelson and a Mach-Zehnder, containing the fiber under test. The wavelength sweep is produced by an infrared tunable laser diode. We obtained the global phase shift coefficients of a large effective area fiber and gold-coated fiber optics with a 10{sup -7} accuracy.

  20. Deep ultraviolet laser micromachining of novel fibre optic devices

    Science.gov (United States)

    Li, J.; Dou, J.; Herman, P. R.; Fricke-Begemann, T.; Ihlemann, J.; Marowsky, G.

    2007-04-01

    A deep ultraviolet F2 laser, with output at 157-nm wavelength, has been adopted for micro-shaping the end facets of single and multi-mode silica optical fibres. The high energy 7.9-eV photons drive strong interactions in the wide-bandgap silica fibres to enable the fabrication of surface-relief microstructures with high spatial resolution and smooth surface morphology. Diffraction gratings, focusing lenses, and Mach-Zehnder interferometric structures have been micromachined onto the cleaved-fibre facets and optically characterized. F2-laser micromachining is shown to be a rapid and facile means for direct-writing of novel infibre photonic components.

  1. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window.

  2. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    Science.gov (United States)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  3. Optical under-sampling by using a broadband optical comb with a high average power.

    Science.gov (United States)

    Sherman, Alexander; Horowitz, Moshe; Zach, Shlomo

    2014-06-30

    We demonstrate a new method to improve the performance of photonic assisted analog to digital converters (ADCs) that are based on frequency down-conversion obtained by optical under-sampling. The under-sampling is performed by multiplying the radio frequency signal by ultra-low jitter broadband phase-locked optical comb. The comb wave intensity has a smooth periodic function in the time domain rather than a train of short pulses that is currently used in most photonic assisted ADCs. Hence, the signal energy at the photo-detector output can be increased and the signal to noise ratio of the system might be improved without decreasing its bandwidth. We have experimentally demonstrated a system for electro-optical under-sampling with a 6-dB bandwidth of 38.5 GHz and a spur free dynamic range of 99 dB/Hz(2/3) for a signal with a carrier frequency of 35.8 GHz, compared with 94 dB/Hz(2/3) for a signal at 6.2 GHz that was obtained in the same system when a pulsed optical source was used. The optical comb was generated by mixing signals from two dielectric resonator oscillators in a Mach-Zehnder modulator. The comb spacing is equal to 4 GHz and its bandwidth was greater than 48 GHz. The temporal jitter of the comb measured by integrating the phase noise in a frequency region of 10 kHz to 10 MHz around comb frequencies of 16 and 20 GHz was only about 15 and 11 fs, respectively.

  4. Polymer Electro-optic Modulator Linear Bias Using the Thermo-optic Effect

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-Qiang; CHEN Chang-Ming; LI Xiao-Dong; WANG Xi-Bin; YANG Tian-Fu; ZHANG Da-Ming; WANG Fei; XIE Zhi-Yuan

    2012-01-01

    A quasi-rectangular waveguide polymer Mach-Zehnder (M-Z) electro-optic (EO) modulator based on an organic/inorganic hybrid material with thermal bias control is fabricated and demonstrated. Linear bias for the modulator is obtained through thermo-optic effect. The optical output is adjusted by changing phase difference between the two arms of the M-Z interferometer. A power consumption of 16.1 mW for π phase change is observed owing to the application of silica cladding. This approach is proved to be effective to suppress direct current drift in polymer EO modulators.%A quasi-rectangular waveguide polymer Mach-Zehnder (M-Z) electro-optic (EO) modulator based on an organic/inorganic hybrid material with thermal bias control is fabricated and demonstrated.Linear bias for the modulator is obtained through thermo-optic effect.The optical output is adjusted by changing phase difference between the two arms of the M-Z interferometer.A power consumption of 16.1 m W for π phase change is observed owing to the application of silica cladding.This approach is proved to be effective to suppress direct current drift in polymer EO modulators.

  5. Event-based Corpuscular Model for Quantum Optics Experiments

    CERN Document Server

    Michielsen, K; De Raedt, H

    2010-01-01

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a unified description of multiple-beam fringes of a plane parallel plate, single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum erasers, two-beam interference, double-slit, and Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments.

  6. Hybrid silicon evanescent approach to optical interconnects

    Science.gov (United States)

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N.; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-Hao; Jones, Richard; Bowers, John E.

    2009-06-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III-V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication process. Electrically pumped hybrid silicon distributed feedback and distributed Bragg reflector lasers with integrated hybrid silicon photodetectors are demonstrated coupled to SOI waveguides, serving as the reliable on-chip single-frequency light sources. For the external signal processing, Mach-Zehnder interferometer modulators are demonstrated, showing a resistance-capacitance-limited, 3 dB electrical bandwidth up to 8 GHz and a modulation efficiency of 1.5 V mm. The successful implementation of quantum well intermixing technique opens up the possibility to realize multiple III-V bandgaps in this platform. Sampled grating DBR devices integrated with electroabsorption modulators (EAM) are fabricated, where the bandgaps in gain, mirror, and EAM regions are 1520, 1440 and 1480 nm, respectively. The high-temperature operation characteristics of the HSEP are studied experimentally and theoretically. An overall characteristic temperature ( T 0) of 51°C, an above threshold characteristic temperature ( T 1) of 100°C, and a thermal impedance ( Z T ) of 41.8°C/W, which agrees with the theoretical prediction of 43.5°C/W, are extracted from the Fabry-Perot devices. Scaling this platform to larger dimensions is demonstrated up to 150 mm wafer diameter. A vertical outgassing channel design is developed to accomplish high-quality III-V epitaxial transfer to silicon in a timely and dimension-independent fashion.

  7. Silicon Modulators, Switches and Sub-systems for Optical Interconnect

    Science.gov (United States)

    Li, Qi

    Silicon photonics is emerging as a promising platform for manufacturing and integrating photonic devices for light generation, modulation, switching and detection. The compatibility with existing CMOS microelectronic foundries and high index contrast in silicon could enable low cost and high performance photonic systems, which find many applications in optical communication, data center networking and photonic network-on-chip. This thesis first develops and demonstrates several experimental work on high speed silicon modulators and switches with record performance and novel functionality. A 8x40 Gb/s transmitter based on silicon microrings is first presented. Then an end-to-end link using microrings for Binary Phase Shift Keying (BPSK) modulation and demodulation is shown, and its performance with conventional BPSK modulation/ demodulation techniques is compared. Next, a silicon traveling-wave Mach- Zehnder modulator is demonstrated at data rate up to 56 Gb/s for OOK modulation and 48 Gb/s for BPSK modulation, showing its capability at high speed communication systems. Then a single silicon microring is shown with 2x2 full crossbar switching functionality, enabling optical interconnects with ultra small footprint. Then several other experiments in the silicon platform are presented, including a fully integrated in-band Optical Signal to Noise Ratio (OSNR) monitor, characterization of optical power upper bound in a silicon microring modulator, and wavelength conversion in a dispersion-engineered waveguide. The last part of this thesis is on network-level application of photonics, specically a broadcast-and-select network based on star coupler is introduced, and its scalability performance is studied. Finally a novel switch architecture for data center networks is discussed, and its benefits as a disaggregated network are presented.

  8. Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response

    Science.gov (United States)

    Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki

    2016-07-01

    In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.

  9. Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Gosciniak, J.; Markey, L.; Dereux, A.;

    2012-01-01

    Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at telecom wavelengths and controlled via the thermo-optic effect are reported. Two fabricated structures with Cytop substrate and a ridge made of PMMA or a cycloaliphatic acrylate polymer (CAP) were considered...... showing low switching power of 2.35 mW and switching time in the range of microseconds for a CAP ridge and milliseconds switching time for a PMMA ridge. Full output modulation is demonstrated for the structure with a CAP ridge and 40% modulation with a PMMA ridge. (C) 2012 Optical Society of America...

  10. Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.

    Science.gov (United States)

    Heebner, John E; Lepeshkin, Nick N; Schweinsberg, Aaron; Wicks, G W; Boyd, Robert W; Grover, Rohit; Ho, P T

    2004-04-01

    We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a pi-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach-Zehnder interferometer.

  11. Ferroelectric BaTiO3 thin-film optical waveguide modulators

    OpenAIRE

    Petraru, A.; Schubert, J; Schmid, M.; Buchal, Ch.

    2002-01-01

    High-quality BaTiO3 epitaxial thin films on MgO substrates have been grown by pulsed-laser deposition. Both, c-axis and a-axis BaTiO3 orientations were studied. Mach-Zehnder optical waveguide modulators with a fork angle of 1.7degrees have been fabricated by ion-beam etching. The waveguides are of the ridge type, the BaTiO3 thickness is 1 mum, the ridge step 50 nm, and the width 2 mum. Light was coupled into the waveguides from optical fibers. The BaTiO3 waveguide propagation losses are 2-3 d...

  12. Improving the All-Optical Response of SOAs Using a Modulated Holding Signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Nielsen, Mads Lønstrup; Mørk, Jesper

    2004-01-01

    A method for increasing the all-optical modulation bandwidth of semiconductor optical amplifiers (SOAs) by use of a cross-gain-modulated (XGM) holding signal is suggested and analyzed. The bandwidth improvement is numerically demonstrated by studying wavelength conversion in an SOA-based Mach......-Zehnder interferometer (MZI) at 160 and 40 Gb/s. The new scheme is predicted to improve the extinction ratio and the minimum mark output power, as well as to reduce the amplitude jitter of the wavelength converted signal....

  13. Tuneable planar integrated optical systems.

    Science.gov (United States)

    Amberg, M; Oeder, A; Sinzinger, S; Hands, P J W; Love, G D

    2007-08-20

    Planar integrated free-space optical systems are well suited for a variety of applications, such as optical interconnects and security devices. Here, we demonstrate for the first time dynamic functionality of such microoptical systems by the integration of adaptive liquid-crystal-devices.

  14. Optical biosensor technologies for molecular diagnostics at the point-of-care

    Science.gov (United States)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  15. Photonic integration using asymmetric twin-waveguides

    Science.gov (United States)

    Studenkov, Pavel V.

    . Finally, an ATG-based monolithic Mach-Zehnder Terahertz Optical Asymmetric Demultiplexer (MZ-TOAD) was successfully fabricated and tested. Used as an ultrafast all-optical switch, it had a 28 ps switching window for the optical control pulse energies from 0.7 to 2.8 pJ. A version of the MZ-TOAD was also operated as a wavelength converter with a 12 dB dc extinction ratio.

  16. Fiber optic to integrated optical chip coupler

    Science.gov (United States)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  17. Modeling of high-quality factor XNOR gate using quantum-dot semiconductor optical amplifiers at 1 Tb/s

    Energy Technology Data Exchange (ETDEWEB)

    Kotd, Amer, E-mail: amer_22003@yahoo.com, E-mail: kotb@phys.uconn.edu [Department of Physics, Faculty of Science, Fayoum University, Fayoum, (Egypt)

    2015-06-15

    The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor (Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ∼1 Tb/s. (author)

  18. Two all-optical logic gates in a single photonic interferometer

    Science.gov (United States)

    Araújo, Antônio; Oliveira, Antônio; Martins, Francisco; Coelho, Amarílio; Fraga, Wilton; Nascimento, José

    2015-11-01

    In this paper is presented the all-optical AND and OR gates with high contrast ratio in a single interferometric configuration, i.e., when two logic signals are modulated in the input of the interferometer, so we have the OR gate in the first output and the AND gate in the second output. These logic gates were obtained by numerical investigation of the Mach-Zehnder interferometer constituted of dual-core nonlinear photonic crystal fiber operating with ultrashort fundamental solitons of 100 fs. To represent the logic information, pulse amplitude modulation by amplitude shift-keying was used.

  19. Fast and low power Michelson interferometer thermo-optical switch on SOI.

    Science.gov (United States)

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L

    2008-09-29

    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  20. A 4 × 4 Strictly Nonblocking Silicon-on-Insulator Thermo-Optic Switch Matrix

    Institute of Scientific and Technical Information of China (English)

    YANG Di; LI Yan-Ping; CHEN Shao-Wu; YU Jin-Zhong

    2005-01-01

    @@ A 4 × 4 strictly nonblocking thermo-optic switch matrix implemented with a 2 × 2 Mach-Zehnder switch unit was fabricated in silicon-on-insulator wafer. Insertion losses of the shortest and the longest path in the device are about 14.8dB and 19.2dB, respectively. The device presents a very low loss dependent on wavelength. For one switch unit, the power consumption needed for operation is measured to be 0.270 W-0.288 W and the switching time is about 13 ± 1μs.

  1. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure

    DEFF Research Database (Denmark)

    Ding, Yunhong; Pu, Minhao; Liu, Liu

    2011-01-01

    A novel and simple bandwidth and wavelength-tunable optical bandpass filter based on silicon microrings in a Mach-Zehnder interferometer (MZI) structure is proposed and demonstrated. In this filter design, the drop transmissions of two microring resonators are combined to provide the desired...... tunability. A detailed analysis and the design of the device are presented. The shape factor and extinction ratio of the filter are optimized by thermally controlling the phase difference between the two arms of the MZI. Simultaneous bandwidth and wavelength tunability with in-band ripple control...

  2. 基于双平行调制器光毫米的产生与测试%Optical Generation and Test of Millimeter-Wave Signals Based on a DPMZM

    Institute of Scientific and Technical Information of China (English)

    孙小续; 李立扬

    2012-01-01

    A new scheme for photonic generation of millimeter-wave signal(MMW) is presented, which generates frequency- quadrupled MMW based on optical coherent technology using an integrated dual-parallel Mach-Zehnder modulator (DPMZM). The complicated signal process and phase-locked-loop technology are not necessary. What is more, this method has the advantages of stable frequency, low jitter and high signal to noise ratio(SNR), which can be widely used to calibrate the O/E converter.%提出了一种光载毫米波产生新方案,采用双平行马赫曾德调制器(DPMZM),基于线性的光相干技术,产生四倍频的毫米波信号。该技术不需要复杂的电信号处理,以及射频信号的锁相技术,便可产生稳定的毫米波信号。该方法产生的毫米波信号具有频率稳定、抖动小、信噪比高等优点,可以广泛应用于光电器件测试与校准。

  3. Optimized setup for integral refractive index direct determination applying digital holographic microscopy by reflection and transmission

    Science.gov (United States)

    Frómeta, M.; Moreno, G.; Ricardo, J.; Arias, Y.; Muramatsu, M.; Gomes, L. F.; Palácios, G.; Palácios, F.; Velázquez, H.; Valin, J. L.; Ramirez Q, L.

    2017-03-01

    In this paper the integral refractive index of a microscopic sample was directly measured by applying Digital Holographic Microscopy (DHM) capturing transmission and reflection holograms simultaneously, of the same sample's region, using Mach-Zehnder and Michelson micro interferometers for transmission and reflection holograms capture and modeling the 3D sample in a medium of known refractive index nm. The system was calibrated using standard polystyrene sphere immersed in water with known diameter and refractive index, and the method was applied for erythrocyte integral refractive index determination. The results are in accordance with predicted, the measurements error of the order of ± 0.005 in absolute values.

  4. Integrated Optics Theory and Technology

    CERN Document Server

    Hunsperger, Robert G

    2009-01-01

    Integrated Optics: Theory and Technology explains the subject of optoelectronic devices and their use in integrated optics and fiber optic systems. The text emphasizes the physics of how devices work and how they can be used in various applications. Mathematical derivations and the development of design equations are provided where necessary to explain phenomena and engineering principles, but a strong effort has been made to avoid obscuring important concepts with mathematical details. Illustrations and references from technical journals have been used to demonstrate the relevance of the theory to currently important topics in industry. This sixth edition of Integrated Optics: Theory and Technology includes updates and revisions in all chapters, as well as a completely new chapter on nanophotonics. Problems are included at the end of each chapter to develop students' knowledge. Scientists, engineers, students and engineering managers can utilize this book to obtain an overall view of the theory and the most ...

  5. Integrated Optical Circuit Devices

    Science.gov (United States)

    1975-02-01

    with a carrier frequency exactly at phase match (w ■ OJQ). 68 I I’ I HI III I "I ■ ^^^^^m^r^^ REFLECTION COEFFICIENT...34 Applied Optics, v9, n 11,p 2444-2452, November 1^70 Marcuse , D., "TL Modes of Graded-Index Slab Waveguides," IFFt J of Quantum Electronics v QF

  6. Modeling of all-optical even and odd parity generator circuits using metal-insulator-metal plasmonic waveguides

    Science.gov (United States)

    Singh, Lokendra; Bedi, Amna; Kumar, Santosh

    2017-01-01

    Plasmonic metal-insulator-metal (MIM) waveguides sustain excellent property of confining the surface plasmons up to a deep subwavelength scale. In this paper, linear and S-shaped MIM waveguides are cascaded together to design the model of Mach-Zehnder interferometer (MZI). Nonlinear material has been used for switching of light across its output ports. The structures of even and odd parity generators are projected by cascading the MZIs. Parity generator and checker circuit are used for error correction and detection in an optical communication system. Study and analysis of proposed designs are carried out by using the MATLAB simulation and finite-differencetime-domain (FDTD) method.

  7. Generation of three-mode W-type entangled coherent states in free-travelling optical fields

    Institute of Scientific and Technical Information of China (English)

    Yu Guo; Leman Kuang

    2008-01-01

    @@ We propose a scheme for generation of three-mode W-type entangled coherent states (ECSs) in freetravelling optical fields by using a single-photon source, coherent state sources, beam splitters, photodetectors, and three-mode cross-Kerr media. The scheme consists of a Mach-Zehnder interferometer (MZI)in which each arm contains a cross-Kerr medium. We calculate the success probability of the generated W-type ECSs, and the total success probability is unity under the ideal conditions.

  8. Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion.

    Science.gov (United States)

    Rolland, A; Brunel, M; Loas, G; Frein, L; Vallet, M; Alouini, M

    2011-02-28

    Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10-60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5×10⁻¹¹. The principle is applicable to beat notes in the millimeter-wave range.

  9. Integration of active optical components

    Science.gov (United States)

    Wipiejewski, Torsten; Akulova, Yuliya A.; Fish, Gregory A.; Schow, Clint L.; Koh, Ping; Karim, Adil; Nakagawa, Shigeru; Dahl, Anders; Kozodoy, Peter; Matson, Alex; Short, Bradley W.; Turner, Chuck M.; Penniman, Steven; Larson, Michael C.; Coldren, Christopher W.; Coldren, Larry A.

    2003-06-01

    Integration of active optical components typically serves five goals: enhanced performance, smaller space, lower power dissipation, higher reliability, and lower cost. We are manufacturing widely tunable laser diodes with an integrated high speed electro absorption modulator for metro and all-optical switching applications. The monolithic integration combines the functions of high power laser light generation, wavelength tuning over the entire C-band, and high speed signal modulation in a single chip. The laser section of the chip contains two sampled grating DBRs with a gain and a phase section between them. The emission wavelength is tuned by current injection into the waveguide layers of the DBR and phase sections. The laser light passes through an integrated optical amplifier before reaching the modulator section on the chip. The amplifier boosts the cw output power of the laser and provides a convenient way of power leveling. The modulator is based on the Franz-Keldysh effect for a wide band of operation. The common waveguide through all sections minimizes optical coupling losses. The packaging of the monolithically integrated chip is much simpler compared to a discrete or hybrid solution using a laser chip, an SOA, and an external modulator. Since only one optical fiber coupling is required, the overall packaging cost of the transmitter module is largely reduced. Error free transmission at 2.5Gbit/s over 200km of standard single mode fiber is obtained with less than 1dB of dispersion penalty.

  10. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    Science.gov (United States)

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.

  11. Optical waveguide device with an adiabatically-varying width

    Science.gov (United States)

    Watts; Michael R. , Nielson; Gregory N.

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  12. Polarizing Filter for Integrated Optics

    Science.gov (United States)

    Ramer, O. G.; Goss, W. C.; Goldstein, R.

    1986-01-01

    Polarizing filter for titanium-doped lithium niobate light waveguide suppresses transverse magnetic (TM) mode of light propagation while allowing transverse electric (TE) mode to continue on its way. Filter - lithium niobate crystal - is expected to find many applications in integrated optical circuits.

  13. 20 Gb/s WDM-OFDM-PON over 20-km single fiber uplink transmission using optical millimeter-wave signal seeding with rate adaptive bit-power loading

    Science.gov (United States)

    Kartiwa, Iwa; Jung, Sang-Min; Hong, Moon-Ki; Han, Sang-Kook

    2013-06-01

    We experimentally demonstrate the use of millimeter-wave signal generation by optical carrier suppression (OCS) method using single-drive Mach-Zehnder modulator as a light sources seed for 20 Gb/s WDM-OFDM-PON in 20-km single fiber loopback transmission based on cost-effective RSOA modulation. Practical discrete rate adaptive bit loading algorithm was employed in this colorless ONU system to maximize the achievable bit rate for an average bit error rate (BER) below 2 × 10-3.

  14. Optical phase noise engineering via acousto-optic interaction and its interferometric applications

    CERN Document Server

    Satapathy, Nandan; Bannerjee, Sourish; Ramachandran, Hema

    2013-01-01

    We exercise rapid and fine control over the phase of light by transferring digitally gen- erated phase jumps from radio frequency (rf) electrical signals onto light by means of acousto-optic interaction. By tailoring the statistics of phase jumps in the electrical signal and thereby engineering the optical phase noise, we manipulate the visibil- ity of interference fringes in a Mach-Zehnder interferometer that incorporates two acousto-optic modulators. Such controlled dephasing finds applications in modern experiments involving the spread or diffusion of light in an optical network. Further, we analytically show how engineered partial phase noise can convert the dark port of a stabilised interferometer to a weak source of highly correlated photons.

  15. On the digital holographic interferometry of fibrous material, I: Optical properties of polymer and optical fibers

    Science.gov (United States)

    Yassien, K. M.; Agour, M.; von Kopylow, C.; El-Dessouky, H. M.

    2010-05-01

    Digital holographic interferometry (DHI) was utilized for investigating the optical properties of polymer and optical fibers. The samples investigated here were polyvinylidene fluoride (PVDF) polymer fiber and graded-index (GRIN) optical fiber. The phase shifting Mach-Zehnder interferometer was used to obtain five phase-shifted holograms, in which the phase difference between two successive holograms is π/2, for each fiber sample. These holograms were recorded using a CCD camera and were combined to gain the complex wavefield, which was numerically reconstructed using the convolution approach into amplitude and phase distributions. The reconstructed phase distribution was used to determine the refractive index, birefringence and refractive index profile of the studied samples. The mean refractive index has been measured with an accuracy up to 4×10 -4. The main advantage of DHI is to overcome the manual focusing limitations by means of the numerical focusing. The results showed accurate measurements of the optical properties of fibers.

  16. Integrated optics theory and technology

    CERN Document Server

    Hunsperger, Robert G

    1984-01-01

    Our intent in producing this book was to provide a text that would be comprehensive enough for an introductory course in integrated optics, yet concise enough in its mathematical derivations to be easily readable by a practicing engineer who desires an overview of the field. The response to the first edition has indeed been gratifying; unusually strong demand has caused it to be sold out during the initial year of publication, thus providing us with an early opportunity to produce this updated and improved second edition. This development is fortunate, because integrated optics is a very rapidly progressing field, with significant new research being regularly reported. Hence, a new chapter (Chap. 17) has been added to review recent progress and to provide numerous additional references to the relevant technical literature. Also, thirty-five new problems for practice have been included to supplement those at the ends of chapters in the first edition. Chapters I through 16 are essentially unchanged, except for ...

  17. Performance analysis of the ultra-linear optical intensity modulator

    Science.gov (United States)

    Madamopoulos, Nicholas; Dingel, Benjamin

    2006-10-01

    The linear optical intensity modulator is a key component in any broadband optical access-based analog fiber-optic link systems such as sub-carrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. Previously, we have proposed a super-linear optical modulator, having SFDR = 130 -140 dB-Hz 2/3, based on a unique combination of phase-modulator (PM) and a weak ring resonator (RR) modulator within a Mach-Zehnder interferometer (MZI). We presented some of its unique features. In this paper, we characterize further this ultra-linear optical intensity modulator, analyze its RF performance and provide method for parameter optimization. Other excellent features of this modulator design such as high manufacturing tolerance, effect of link insertion loss, adaptive characteristic and device simplicity are also discussed.

  18. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties

    Science.gov (United States)

    Cao, Tianlin; Zhao, Fanyu; Da, Zulin; Qiu, Fengxian; Yang, Dongya; Guan, Yijun; Cao, Guorong; Zhao, Zerun; Li, Jiaxin; Guo, Xiaotong

    2016-10-01

    In this work, a novel graphene oxide-polyimide (GOPI) as optical waveguide material was prepared. The structure, mechanical, thermal property and morphology of the GOPI was characterized by using fourier transform infrared, UV-visible spectroscopy, near-infrared spectrum, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscope and transmission electron microscopy. The thermo-optic coefficients (dn/dT) are -9.16 × 10-4 (532 nm), -7.56 × 10-4 (650 nm) and -4.82 × 10-4 (850 nm) °C-1, respectively. Based on the thermo-optic effect of prepared GOPI as waveguide material, a Y-branch with branching angle of 0.143° and Mach-Zehnder thermo-optic switches were designed. Using finite difference beam propagation method (FD-BPM) method, the simulation results such as power consumptions and response times of two different thermo-optic switches were obtained.

  19. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  20. On the Digital Holographic Interferometry of Fibrous Material, I. Optical Properties of Polymer and Optical Fibers

    CERN Document Server

    Yassien, Khaled M; von Kopylow, Christoph; Dessouky, Hassan M El; 10.1016/j.optlaseng.2009.12.003

    2012-01-01

    The digital holographic interferometry (DHI) was utilized for investigating the optical properties of polymer and optical fibers. The samples investigated here were polyvinylidene fluoride (PVDF) polymer fiber and graded-index (GRIN) optical fiber. The phase shifting Mach-Zehnder interferometer was used to obtain five phase-shifted holograms, in which the phase difference between two successive holograms is pi/2, for each fiber sample. These holograms were recorded using a CCD camera and were combined to gain a complex wavefield, which was numerically reconstructed using the convolution approach into amplitude and phase distributions. The reconstructed phase distribution was used to determine the refractive index, birefringence and refractive index profile of the studied samples. The mean refractive index has been measured with accuracy up to 4 {\\times} 10-4. The main advantage of DHI is to overcome the manual focusing limitations by means of the numerical focusing. The results showed accurate measurements of...

  1. Quantum photonics hybrid integration platform

    CERN Document Server

    Murray, Eoin; Meany, Thomas; Flother, Frederick F; Lee, James P; Griffiths, Jonathan P; Jones, Geb A C; Farrer, Ian; Ritchie, David A; Bennet, Anthony J; Shields, Andrew J

    2015-01-01

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to an SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO2 cladding. A tuneable Mach Zehnder modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single photon nature of the emission was veri?ed by an on-chip Hanbury Brown and Twiss measurement.

  2. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  3. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    Science.gov (United States)

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

  4. Phase sensor for solar adaptive-optics

    CERN Document Server

    Kellerer, Aglae

    2011-01-01

    Wavefront sensing in solar adaptive-optics is currently done with correlating Shack-Hartmann sensors, although the spatial- and temporal-resolutions of the phase measurements are then limited by the extremely fast computing required to correlate the sensor signals at the frequencies of daytime atmospheric-fluctuations. To avoid this limitation, a new wavefront-sensing technique is presented, that makes use of the solar brightness and is applicable to extended sources. The wavefront is sent through a modified Mach-Zehnder interferometer. A small, central part of the wavefront is used as reference and is made to interfere with the rest of the wavefront. The contrast of two simultaneously measured interference-patterns provides a direct estimate of the wavefront phase, no additional computation being required. The proposed optical layout shows precise initial alignment to be the critical point in implementing the new wavefront-sensing scheme.

  5. Universal Bound on Sampling Bosons in Linear Optics

    CERN Document Server

    Yung, Man-Hong; Huh, Joonsuk

    2016-01-01

    In linear optics, photons are scattered in a network through passive optical elements including beamsplitters and phase shifters, leading to many intriguing applications in physics, such as Mach-Zehnder interferometry, Hong-Ou-Mandel effect, and tests of fundamental quantum mechanics. Here we present a general analytic expression governing the upper limit of the transition amplitudes in sampling bosons, through all realizable linear optics. Apart from boson sampling, this transition bound results in many other interesting applications, including behaviors of Bose-Einstein Condensates (BEC) in optical networks, counterparts of Hong-Ou-Mandel effects for multiple photons, and approximating permanents of matrices. Also, this general bound implies the existence of a polynomial-time randomized algorithm for estimating transition amplitudes of bosons, which represents a solution to an open problem raised by Aaronson and Hance in 2012.

  6. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    Science.gov (United States)

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-02-24

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.

  7. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong; Kim; Sang-Yung; Shin; Doo-Sun; Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than -10 dB.

  8. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong Kim; Sang-Yung Shin; Doo-Sun Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than-10 dB.

  9. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  10. Linearized broadband optical detector: study and implementation of optical phase-locked loop

    Science.gov (United States)

    Murakowski, Janusz; Schneider, Garrett J.; Schuetz, Christopher A.; Shi, Shouyuan; Prather, Dennis W.

    2013-12-01

    Optical phase-locked loop (OPLL) is used to improve the linearity of an optical link for transmission of analog signals. The finite loop delay and the presence of a low-pass filter, required for stable loop operation, lead to a nontrivial frequency response. Here, the linearity improvement in OPLL is investigated, and simple relation among the loop delay, the open-loop gain, and the loop-filter bandwidth that must be satisfied for stable operation of the OPLL is found. This relation is used to determine the fundamental limit on spur-free dynamic range (SFDR) improvement that OPLL can offer over a conventional Mach-Zehnder (MZ)-type detector.

  11. A cost-effective WDM-PON architecture simultaneously supporting wired, wireless and optical VPN services

    Science.gov (United States)

    Wu, Yanzhi; Ye, Tong; Zhang, Liang; Hu, Xiaofeng; Li, Xinwan; Su, Yikai

    2011-03-01

    It is believed that next-generation passive optical networks (PONs) are required to provide flexible and various services to users in a cost-effective way. To address this issue, for the first time, this paper proposes and demonstrates a novel wavelength-division-multiplexed PON (WDM-PON) architecture to simultaneously support three types of services: 1) wireless access traffic, 2) optical virtual passive network (VPN) communications, and 3) conventional wired services. In the optical line terminal (OLT), we use two cascaded Mach-Zehnder modulators (MZMs) on each wavelength channel to generate an optical carrier, and produce the wireless and the downstream traffic using the orthogonal modulation technique. In each optical network unit (ONU), the obtained optical carrier is modulated by a single MZM to provide the VPN and upstream communications. Consequently, the light sources in the ONUs are saved and the system cost is reduced. The feasibility of our proposal is experimentally and numerically verified.

  12. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  13. Fiber optic stress-independent helical torsion sensor.

    Science.gov (United States)

    Fernandes, Luís A; Grenier, Jason R; Aitchison, J Stewart; Herman, Peter R

    2015-02-15

    Femtosecond laser-fabricated waveguides have been formed into helical paths throughout the cladding of single-mode optical fibers to demonstrate a strain-independent fiber torsion sensor. A comparison between a Bragg grating sensor and a Mach-Zehnder based on helical waveguides (HWs) showed a much weaker twist sensitivity of 1.5 pm/(rad/m) for the grating in contrast with a value of 261 pm/(rad/m) for the interferometer. The HW geometry provided an unambiguous determination of the rotational direction of the twist while facilitating a convenient and efficient means for optical coupling into the single-mode core of the fiber. The flexible three-dimensional writing by the femtosecond laser fabrication method enabled the direct inscription of compact and robust optical cladding devices without the need for combining or splicing multiple-fiber segments.

  14. Optical encryption using photon-counting polarimetric imaging.

    Science.gov (United States)

    Maluenda, David; Carnicer, Artur; Martínez-Herrero, Rosario; Juvells, Ignasi; Javidi, Bahram

    2015-01-26

    We present a polarimetric-based optical encoder for image encryption and verification. A system for generating random polarized vector keys based on a Mach-Zehnder configuration combined with translucent liquid crystal displays in each path of the interferometer is developed. Polarization information of the encrypted signal is retrieved by taking advantage of the information provided by the Stokes parameters. Moreover, photon-counting model is used in the encryption process which provides data sparseness and nonlinear transformation to enhance security. An authorized user with access to the polarization keys and the optical design variables can retrieve and validate the photon-counting plain-text. Optical experimental results demonstrate the feasibility of the encryption method.

  15. Optical notch filter design based on digital signal processing

    Institute of Scientific and Technical Information of China (English)

    GUO Sen; ZHANG Juan; LI Xue

    2011-01-01

    Based on digital signal processing theory, a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure. The method is simple and effective, and it can be used to implement the designing of the optical notch filter which has arbitrary number of notch points in one free spectrum range (FSR). A design example of notch filter based on cascaded single-fiber-rings is given. On this basis, an improved cascaded double-fiber-rings structure is presented to eliminate the effect of phase shift caused by the single-fiber-ring structure. This new structure can improve the stability and applicability of system. The change of output intensity spectrum is finally investigated for each design parameter and the tuning characteristics of the notch filter are also discussed.

  16. A Model of Magneto-mechano-optical Transfer in Fibre-optic Magnetic Sensors with Magnetostrictive Films

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-yan; SI Yong-min

    2004-01-01

    Fibre-optic magnetic sensors with magnetostrictive films are used as all-fibre Mach-Zehnder interferometer to detect the optical phase shift, which is caused by the magnetostriction-induced strains transferred from the msgnetostrictive film to the fibre. A theoretical model based on the plane strain approximation and uniform axial strain is developed to determine the magneto-mechano-optical transfer relations in this kind of sensors. The expression for the model is presented as well as relation of the phase shift in the fibre to the magnetic and elastic properties of the magnetostrictive film coated on the fibre. And from the model, the thickness of the film has significant influence on the phase shift.

  17. A single-shot, multiwavelength electro-optic data-acquisition system for inertial confinement fusion applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, W. R.; Zhao, C.; Ji, L.; Roides, R. G. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Miller, K. [National Security Technology, Santa Barbara, California 93111 (United States); Beeman, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    Electro-optic data-acquisition systems encode the output from voltage-history diagnostics onto optical signals. The optical signals can propagate long distances over fiber-optic links without degrading the bandwidth of the encoded signal while protecting the recording electronics from overvoltage damage. The sinusoidal response and tolerance to high-input voltages of the Mach-Zehnder modulator used for the encoding leads to the additional advantage of a high dynamic range and a reduced need for manually swapping attenuators. We have demonstrated a single-shot, electro-optic data-acquisition system with a 600:1 dynamic range. This system provides optical isolation and a bandwidth of 6 GHz. The prototype system uses multiple optical wavelengths to allow for the multiplexing of up to eight signals onto one photodetector.

  18. Fiber optic liquid refractive index sensor

    Science.gov (United States)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  19. Design and Performance Investigation for the Optical Combinational Networks at High Data Rate

    Science.gov (United States)

    Tripathi, Devendra Kr.

    2017-05-01

    This article explores performance study for optical combinational designs based on nonlinear characteristics with semiconductor optical amplifier (SOA). Two configurations for optical half-adder with non-return-to-zero modulation pattern altogether with Mach-Zehnder modulator, interferometer at 50-Gbps data rate have been successfully realized. Accordingly, SUM and CARRY outputs have been concurrently executed and verified for their output waveforms. Numerical simulations for variation of data rate and key design parameters have been effectively executed outcome with optimum performance. Investigations depict overall good performance of the design in terms of the extinction factor. It also inferred that all-optical realization based on SOA is competent scheme, as it circumvents costly optoelectronic translation. This could be well supportive to erect larger complex optical combinational circuits.

  20. Ultrafast Radiation Detection by Modulation of an Optical Probe Beam

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, S P; Lowry, M E

    2006-02-22

    We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors are proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S

  1. Isolation of Integrated Optical Acousto-Optic Switch

    Institute of Scientific and Technical Information of China (English)

    XIAO Li-Feng; LIU Ying; WANG Wei-Peng; GENG Fan

    2006-01-01

    @@ Isolation of a new structured acousto-optic switch based on an integrated optical polarization-independent quasicollinear acousto-optic tunable filter is studied in detail. The factors that influence the isolation of the optical switch are analysed, the expressions of the isolation are educed, and the isolation of the device is measured in experiment. It is found that the isolation mainly depends on the TE/TM mode intensity ratio, the mode-splitter extinction rate, and the conversion efficiency.

  2. Deep ultraviolet laser micromachining of novel fibre optic devices

    Energy Technology Data Exchange (ETDEWEB)

    Li, J [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Ontario M5S 3G4 (Canada); Dou, J [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Ontario M5S 3G4 (Canada); Herman, P R [The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Ontario M5S 3G4 (Canada); Fricke-Begemann, T [Laser-Laboratorium Goettingen e.V., D-37077 Goettingen (Germany); Ihlemann, J [Laser-Laboratorium Goettingen e.V., D-37077 Goettingen (Germany); Marowsky, G [Laser-Laboratorium Goettingen e.V., D-37077 Goettingen (Germany)

    2007-04-15

    A deep ultraviolet F{sub 2} laser, with output at 157-nm wavelength, has been adopted for micro-shaping the end facets of single and multi-mode silica optical fibres. The high energy 7.9-eV photons drive strong interactions in the wide-bandgap silica fibres to enable the fabrication of surface-relief microstructures with high spatial resolution and smooth surface morphology. Diffraction gratings, focusing lenses, and Mach-Zehnder interferometric structures have been micromachined onto the cleaved-fibre facets and optically characterized. F{sub 2}-laser micromachining is shown to be a rapid and facile means for direct-writing of novel infibre photonic components.

  3. Direct Tunneling Delay Time Measurement in an Optical Lattice.

    Science.gov (United States)

    Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D

    2016-07-01

    We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.

  4. Integrated optical devices for photonics instrumentation systems

    Energy Technology Data Exchange (ETDEWEB)

    McWright, G.M.; Lafaw, D.A.; Lowry, M.; Tindall, W.

    1990-01-01

    We discuss the design, fabrication, and evaluation of high speed integrated optical devices for application to photonics instrumentation systems. Specifically, we have demonstrated integrated optical devices with bandwidths in excess of 25 GHz and implemented these devices in single-shot, streak camera based recording schemes. 5 refs., 6 figs.

  5. Integrated-optics-based optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, D.V.

    2013-01-01

    Optical coherence tomography (OCT) is a high resolution, imaging technique that has developed over the last 20 years from a complicated laboratory setup into a ready-to-use commercially available device. Instead of using electronic time gating as being used by ultrasound (US) imaging, in OCT, the op

  6. Integrated optics approach for advanced semiconductor lasers

    Science.gov (United States)

    Suematsu, Yasuharu; Arai, Shigehisa

    1987-11-01

    Recent advances in the field of semiconductor integrated optics are reviewed from the point of view of monolithic integration of semiconductor lasers and other optical components and/or devices. Emphasis is placed on dynamic-single-mode (DSM) lasers, such as DFB and DBR lasers, intended for highly stable single-wavelength light sources for such monolithic integration. The realization of high-performance DSM lasers and the fabrication techniques of monolithically integrated optical devices and circuits are briefly reviewed. A variety of potential applications is discussed.

  7. A full-duplex optical access system with hybrid 64/16/4QAM-OFDM downlink

    Science.gov (United States)

    He, Chao; Tan, Ze-fu; Shao, Yu-feng; Cai, Li; Pu, He-sheng; Zhu, Yun-le; Huang, Si-si; Liu, Yu

    2016-09-01

    A full-duplex optical passive access scheme is proposed and verified by simulation, in which hybrid 64/16/4-quadrature amplitude modulation (64/16/4QAM) orthogonal frequency division multiplexing (OFDM) optical signal is for downstream transmission and non-return-to-zero (NRZ) optical signal is for upstream transmission. In view of the transmitting and receiving process for downlink optical signal, in-phase/quadrature-phase (I/Q) modulation based on Mach-Zehnder modulator (MZM) and homodyne coherent detection technology are employed, respectively. The simulation results show that the bit error ratio ( BER) less than hardware decision forward error correction (HD-FEC) threshold is successfully obtained over transmission path with 20-km-long standard single mode fiber (SSMF) for hybrid downlink modulation OFDM optical signal. In addition, by dividing the system bandwidth into several subchannels consisting of some continuous subcarriers, it is convenient for users to select different channels depending on requirements of communication.

  8. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    Directory of Open Access Journals (Sweden)

    Md. Rajibul Islam

    2014-04-01

    Full Text Available Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

  9. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review.

    Science.gov (United States)

    Islam, Md Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-04-24

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed.

  10. Spatial coherence at the output of multimode optical fibers.

    Science.gov (United States)

    Efimov, Anatoly

    2014-06-30

    The modulus of the complex degree of coherence is directly measured at the output of a step-index multimode optical fiber using lateral-sheering, delay-dithering Mach-Zehnder interferometer. Pumping the multimode fiber with monochromatic light always results in spatially-coherent output, whereas for the broadband pumping the modal dispersion of the fiber leads to a partially coherent output. While the coherence radius is a function of the numerical aperture only, the residual coherence outside the main peak is an interesting function of two dimensionless parameters: the number of non-degenerate modes and the ratio of the modal dispersion to the coherence time of the source. We develop a simple model describing this residual coherence and verify its predictions experimentally.

  11. Design guideline for plasmonic 16-QAM optical modulator

    Science.gov (United States)

    Al-mfrji, Alhuda A.; Tawfeeq, Shelan K.; Fyath, Raad S.

    2016-09-01

    This paper presents the design and investigation of 16-QAM optical modulator based on plasmonic-polymer hybrid slot waveguides. The design is CMOS-compatible and uses dual-parallel Mach-Zehnder modulator (DPMZM) followed by a phase modulator (PM). Careful consideration is given to design low loss photonic-plasmonic interfaces to ensure efficient coupling between silicon and plasmonic waveguide. The effect of slot widths on device performance is investigated comprehensively using COMSOL software simulation along with analytical analysis for both gold and silver contact. The results can be used as a guideline to design compact and high speed all-plasmonic 16-QAM modulators for 1550 nm wavelength communication systems.

  12. EIT-based MZ-MMI all-optical switch

    Science.gov (United States)

    Bahrami, A.; Rostami, A.; Nazari, F.; Abbasian, K.

    2010-11-01

    We propose a new control structure for all-optical switching in multimode inference (MMI)-based Mach-Zehnder interferometer (MZI) devices. This structure is composed of an MZI doped by three-level nanocrystals for the realization of electromagnetically induced transparency (EIT) in the lower arm. We use two different intensities of control field for two states of the proposed switch. Using a control field in both of the two switching states is necessary, where the EIT region is transparent. By changing the intensity of the control field, the refractive index of the doped region changes, which makes the phase difference between the two arms of the MZI. Hence, the switching operation takes place. Simulation results show that the extinction ratio of the device is -32dB in the worst case.

  13. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  14. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  15. Direct UV-written integrated optical components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    2004-01-01

    Direct UV writing is an emerging method for flexible, low cost fabrication of integrated optical waveguides and components. The performance of UV written components can be similar to that achieved with more elaborate fabrication techniques.......Direct UV writing is an emerging method for flexible, low cost fabrication of integrated optical waveguides and components. The performance of UV written components can be similar to that achieved with more elaborate fabrication techniques....

  16. Integrated optical fiber lattice accumulators

    OpenAIRE

    Atherton, Adam F

    1997-01-01

    Approved for public release; distribution is unlimited. Sigma-delta modulators track a signal by accumulating the error between an input signal and a feedback signal. The accumulated energy is amplitude analyzed by a comparator. The comparator output signal is fed back and subtracted from the input signal. This thesis is primarily concerned with designing accumulators for inclusion in an optical sigma-delta modulator. Fiber lattice structures with optical amplifiers are used to perform the...

  17. Thermo-optic switch device based on Norland optical adhesive%基于Norland紫外固化胶的热光开关器件

    Institute of Scientific and Technical Information of China (English)

    王旗; 王希斌; 孙小强; 田亮; 王菲; 张大明

    2012-01-01

    采用新型聚合物材料Norland紫外固化胶(NOA)制备了聚合物M-Z型热光开关器件。对NOA薄膜材料的光学性质进行了表征,采用感应耦合等离子体(ICP)方法制备出形貌良好的波导器件。测得在1 550 nm波长下,长2.2 cm的直波导插入损耗为8.3 dB。在电极上施加直流信号,测得热光开关的消光比为11 dB,驱动功率为85 mW。引入直流偏置网络,获得了器件的开关特性曲线,测得开关器件的上升时间为1.085 ms,下降时间为489.5μs。实验结果表明:NOA材料在热光开关及其它聚合物光波导集成器件的制备中具有很大的应用潜力。%Norland Optical Adhesive(NOA),a new type of polymer material,is used to fabricate the Mach-Zehnder thermo-optic switch in this paper.The optical properties of NOA film materials are characterized.The waveguides with good profiles are fabricated by the Inductively Coupled Plasma(ICP) method.The insertion loss of a 2.2 cm-length straight waveguide is 8.3 dB at 1 550 nm.The extinction ratio of the thermo-optic switch is 11 dB and the driving power is 83 mW when the DC bias is loaded on the electrodes.The switching property of the device is tested with DC bias,and the rise time and the fall time of the switch are 1.085 ms and 489.5 μs,respectively.Experimental results show that the NOA material has great potentials in fabricating thermo-optic switches and other polymer waveguide integrated devices.

  18. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong

    2017-10-01

    In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.

  19. A Strip-Loading Optical Waveguide Using Well Poled Stability Organic/Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    GAO Wei-Nan; TIAN Mei-Qiang; SUN Xiao-Qiang; WANG Wei; DENG Ling; GAO Lei; ZHANG Da-Ming

    2009-01-01

    An optical waveguide for a polymer modulator based on organic/inorganic hybrid electro-optic (EO) materials is designed and fabricated by utilizing a strip-loading structure.This hybrid material has a controllable refractive index,high EO coefficient and good poled stability,which are suitable for the EO modulators and switches.The embedded waveguide made of the above EO material can reduce the coupling loss. The light is coupled into the gnided-core layer and then undergoes a transition from the buried waveguide into the EO material.Obvious modulation is observed by application of ac voltage to the EO material.The measured Vπ of co-planar waveguide (CPW) is 5 V for the Mach-Zehnder (MZ) modulator in length of 3.5cm.

  20. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    Science.gov (United States)

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  1. Digital coherent superposition of optical OFDM subcarrier pairs with Hermitian symmetry for phase noise mitigation.

    Science.gov (United States)

    Yi, Xingwen; Chen, Xuemei; Sharma, Dinesh; Li, Chao; Luo, Ming; Yang, Qi; Li, Zhaohui; Qiu, Kun

    2014-06-02

    Digital coherent superposition (DCS) provides an approach to combat fiber nonlinearities by trading off the spectrum efficiency. In analogy, we extend the concept of DCS to the optical OFDM subcarrier pairs with Hermitian symmetry to combat the linear and nonlinear phase noise. At the transmitter, we simply use a real-valued OFDM signal to drive a Mach-Zehnder (MZ) intensity modulator biased at the null point and the so-generated OFDM signal is Hermitian in the frequency domain. At receiver, after the conventional OFDM signal processing, we conduct DCS of the optical OFDM subcarrier pairs, which requires only conjugation and summation. We show that the inter-carrier-interference (ICI) due to phase noise can be reduced because of the Hermitain symmetry. In a simulation, this method improves the tolerance to the laser phase noise. In a nonlinear WDM transmission experiment, this method also achieves better performance under the influence of cross phase modulation (XPM).

  2. Integrated optical biosensor system (IOBS)

    Science.gov (United States)

    Grace, Karen M.; Sweet, Martin R.; Goeller, Roy M.; Morrison, Leland Jean; Grace, Wynne Kevin; Kolar, Jerome D.

    2007-10-30

    An optical biosensor has a first enclosure with a pathogen recognition surface, including a planar optical waveguide and grating located in the first enclosure. An aperture is in the first enclosure for insertion of sample to be investigated to a position in close proximity to the pathogen recognition surface. A laser in the first enclosure includes means for aligning and means for modulating the laser, the laser having its light output directed toward said grating. Detection means are located in the first enclosure and in optical communication with the pathogen recognition surface for detecting pathogens after interrogation by the laser light and outputting the detection. Electronic means is located in the first enclosure and receives the detection for processing the detection and outputting information on the detection, and an electrical power supply is located in the first enclosure for supplying power to the laser, the detection means and the electronic means.

  3. Harnessing optical forces in integrated photonic circuits.

    Science.gov (United States)

    Li, Mo; Pernice, W H P; Xiong, C; Baehr-Jones, T; Hochberg, M; Tang, H X

    2008-11-27

    The force exerted by photons is of fundamental importance in light-matter interactions. For example, in free space, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles. This optical force is expected to be greatly enhanced in integrated photonic circuits in which light is highly concentrated at the nanoscale. Harnessing the optical force on a semiconductor chip will allow solid state devices, such as electromechanical systems, to operate under new physical principles. Indeed, recent experiments have elucidated the radiation forces of light in high-finesse optical microcavities, but the large footprint of these devices ultimately prevents scaling down to nanoscale dimensions. Recent theoretical work has predicted that a transverse optical force can be generated and used directly for electromechanical actuation without the need for a high-finesse cavity. However, on-chip exploitation of this force has been a significant challenge, primarily owing to the lack of efficient nanoscale mechanical transducers in the photonics domain. Here we report the direct detection and exploitation of transverse optical forces in an integrated silicon photonic circuit through an embedded nanomechanical resonator. The nanomechanical device, a free-standing waveguide, is driven by the optical force and read out through evanescent coupling of the guided light to the dielectric substrate. This new optical force enables all-optical operation of nanomechanical systems on a CMOS (complementary metal-oxide-semiconductor)-compatible platform, with substantial bandwidth and design flexibility compared to conventional electrical-based schemes.

  4. Pigtailing of integrated optical components

    DEFF Research Database (Denmark)

    Zenth, Karin

    2001-01-01

    , but also a silicon motherboard for laser diode pigtailing and a Variable Optical Attenuator have been realized. The pigtailing method consists of three major parts: a waveguide chip with alignment trenches, a fiber array with alignment trenches, and a top plate with alignment rails. The top plate aligns...

  5. CAD Integration : new optical design possibilities

    Science.gov (United States)

    Haumonte, Jean-Baptiste; Venturino, Jean-Claude

    2005-09-01

    The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.

  6. High-speed 2×2 silicon-based electro-optic switch with nanosecond switch time

    Institute of Scientific and Technical Information of China (English)

    Xu Xue-Jun; Chen Shao-Wu; Xu Hai-Hua; Sun Yang; Yu Yu-De; Yu Jin-Zhong; Wang Qi-Ming

    2009-01-01

    A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a VπLπ figure of merit of 0.145 V.cm and the extinction ratios of two output ports and cross talk are 40 dB,28 dB and -28 dB,respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge axe also demonstrated.

  7. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift.

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Yokoi, Hideki; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2017-01-09

    We fabricated a magneto-optical (MO) isolator with a TE mode nonreciprocal phase shift. The isolator is based on a Mach-Zehnder interferometer composed of 3-dB directional couplers, a reciprocal phase shifter, and a nonreciprocal phase shifter. To realize TE mode operation in the optical isolator, we designed a novel waveguide structure composed of a hydrogenated amorphous silicon waveguide with an asymmetric MO garnet lateral clad on a garnet substrate. The isolator operation is successfully demonstrated in a fabricated device showing the different transmittances between forward and backward directions. The maximum isolation of the fabricated isolator is 17.9 dB at a wavelength of 1561 nm for the TE mode.

  8. High Cost Performance Organic-Inorganic Hybrid Material for Electro-optic Devices

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; ZHU Gui-Hua; SUN Xiao-Qiang; LI Tong; GAO Wei-Nan; ZHANG Da-Ming; HOU A-lin

    2009-01-01

    We report a low-cost electro-optic (EO) sol-gel material with large EO coefficient and excellent poling stability for EO devices. Disperse red 1 (DR1) chromophore is doped in the three-dimensional silicon dioxide/titanium dioxide network possessing a high γ33 (88pm/V at 1300 nm wavelength and 71 pm/V at 1550nm wavelength). Favourable poled stability (less than 5% relaxed after 2500 hours at 80 ℃) and low absorption are demonstrated. Strip-loaded waveguide Mach-Zehnder (M-Z) modulators are implemented based on this synthesized EO material, showing 7 V half-wave voltage and less than 9dB insertion loss at 1550nm wavelength.

  9. Fiber-optic project-fringe interferometry with sinusoidal phase modulating system

    Science.gov (United States)

    Zhang, Fukai; Duan, Fajie; Lv, Changrong; Duan, Xiaojie; Bo, En; Feng, Fan

    2013-06-01

    A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach-Zehnder interferometer structure and Young's double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.

  10. Principle of Quantum Key Distribution on an Optical Fiber Based on Time Shifts of TB Qubits

    Science.gov (United States)

    Zadorin, A. S.; Makhorin, D. A.

    2016-07-01

    The possibility of the physical realization of a quantum key distribution scheme in an optical-fiber communication channel based on time coding of two- and three-level single-photon quantum states is demonstrated. It is proposed to employ shifts of TB qubits (time-bin qubits) as protected code combinations, transmitted over a quantum channel, and for registering individual photons - the corresponding qutrits prepared in unbalanced Mach-Zehnder interferometers. The possibility of enhancing the level of protection of the code combinations as a result of taking into account information about qubit basis states and their statistics is indicated. A computer model of the time coding of TB qubits based on the BB84 protocol is developed, and results of calculations confirming the realizability of the indicated principle are presented.

  11. Prospects For Optical Instruments Using Integrated Optics And Components

    Science.gov (United States)

    Yeoman, M. L.

    1989-10-01

    Integrated optical instruments and their components are described by comparison with existing technology and the potential advantages of the new systems are outlined. Fundamental problems of material fabrication need to be overcome before a truly integrated circuit becomes feasible but useful advances are being made by combining discrete with integrated components in hybrid systems. A very large investment programme in R & D is underway in Europe, the U.S.A. and Japan. The first products to emerge in instrumental form have not yet had a significant influence on industrial and commercial markets. Future prospects will depend upon improvements in capability, reliability and on cost reductions.

  12. Integrated Optical Transmitter and Receiver

    Science.gov (United States)

    1981-09-18

    Laser Development --Further laser development await the servicing of the GaAlAs/GaAs MOCVD reactor (see section D). During this period, work focused on continued high-speed measurements of narrow-diffused stripe laser structures grown by MOCVD, to be implemented into the integrated transmitter structure. Problems Encountered and/or Anticipated Work continued on isolating causes for growth control problems encountered last month on the GaAlAs/GaAs MOCVD system. These include inability to accurately tune the properties of the GaAlAs

  13. Integrated FBG sensors interrogator in silicon photonic platform using active interferometer monitoring

    Science.gov (United States)

    Marin, Y. E.; Nannipieri, T.; Di Pasquale, F.; Oton, C. J.

    2016-05-01

    We experimentally demonstrate the feasibility of Fiber Bragg Grating sensors interrogation using integrated unbalanced Mach-Zehnder Interferometers (MZI) and phase sensitive detection in silicon-on-insulator (SOI) platform. The Phase- Generated Carrier (PGC) demodulation technique is used to detect phase changes, avoiding signal fading. Signal processing allows us to extract the wavelength shift from the signal patterns, allowing accurate dynamic FBG interrogation. High resolution and low cost chips with multiple interrogators and photodetectors on board can be realized by exploiting the advantages of large scale fabrication capabilities of well-established silicon based industrial infrastructures. Simultaneous dynamic reading of a large number of FBG sensors can lead to large volume market applications of the technology in several strategic industrial fields. The performance of the proposed integrated FBG interrogator is validated by comparing with a commercial FBG readout based on a spectrometer and used as a reference.

  14. Materials and integration schemes for above-IC integrated optics

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Rangarajan, Balaji; Kovalgin, Alexey Yu

    2014-01-01

    A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon deposi

  15. Integrated Optical Asymmetric Coupler Pressure Sensor

    Science.gov (United States)

    Kiyat, Isa; Kocabas, Coskun; Aydinli, Atilla

    2004-05-01

    Analysis of a novel pressure sensor based on a silicon-on-insulator (SOI) asymmetric vertical coupler is presented. The integrated optical component is a coupler composed of a single mode (SM) low index waveguide and a thin silicon slab. High sensitivities of about 0.14 rad.kPa-1 should be achieved.

  16. Integrated optical sensors for the chemical domain

    NARCIS (Netherlands)

    Lambeck, Paul V.

    2006-01-01

    During the last decade there has been a rapidly growing interest in integrated optical (IO) sensors, expecially because many of them principally allow for sensitive, real time, label-free-on-site measurements of the concentration of (bio-)chemical species. This review aims at giving an overview of t

  17. Integrated optical sensors for the chemical domain

    NARCIS (Netherlands)

    Lambeck, Paul

    2006-01-01

    During the last decade there has been a rapidly growing interest in integrated optical (IO) sensors, expecially because many of them principally allow for sensitive, real time, label-free-on-site measurements of the concentration of (bio-)chemical species. This review aims at giving an overview of t

  18. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  19. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    Science.gov (United States)

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  20. Novel wavelength division multiplex-radio over fiber-passive optical network architecture for multiple access points based on multitone generation and triple sextupling frequency

    Science.gov (United States)

    Cheng, Guangming; Guo, Banghong; Liu, Songhao; Huang, Xuguang

    2014-01-01

    An innovative wavelength division multiplex-radio over fiber-passive optical network architecture for multiple access points (AP) based on multitone generation and triple sextupling frequency is proposed and demonstrated. A dual-drive Mach-Zehnder modulator (DD-MZM) is utilized to realize the multitone generation. Even sidebands are suppressed to make the adjacent frequency separation twice the frequency of the local oscillator by adjusting the modulation voltage of the DD-MZM. Due to adopting three fiber Bragg gratings to reflect the unmodulated sidebands for uplink communications source free at optical network unit (ONU), is achieved. The system can support at least three APs at one ONU simultaneously with a 30 km single-mode fiber (SMF) transmission and 5 Gb/s data rate both for uplink and downlink communications. The theoretical analysis and simulation results show the architecture has an excellent performance and will be a promising candidate in future hybrid access networks.

  1. Ultraviolet imprinting and aligned ink-jet printing for multilayer patterning of electro-optic polymer modulators.

    Science.gov (United States)

    Lin, Xiaohui; Ling, Tao; Subbaraman, Harish; Zhang, Xingyu; Byun, Kwangsub; Guo, L Jay; Chen, Ray T

    2013-05-15

    The present work demonstrates an electro-optic polymer-based Mach-Zehnder (MZ) modulator fabricated utilizing advanced ultraviolet (UV) imprinting and aligned ink-jet printing technologies for patterning and layer deposition. The bottom electrode layer is designed and directly ink-jet printed on the substrate to form the patterned layer. The waveguide structure is formed into a bottom cladding polymer using a transparent flexible mold-based UV imprinting method. All other layers can be ink-jet printed. The top electrode is aligned and printed over the MZ arm. The modulator demonstrates a V-pi of 8 V at 3 kHz. This technology shows great potential in minimizing the fabrication complexity and roll-to-roll compatibility for manufacturing low cost, lightweight, and conformal modulators at high throughput.

  2. 40  Gb/s DWDM Structure with Optical Phase Configuration for Long-Haul Transmission System

    Science.gov (United States)

    Lin, Hsiu-Sheng; Lai, Po-Chou

    2017-03-01

    We propose the experimental transport of 48 channels with 40 Gbit/s dense wavelength-division multiplexing (DWDM) system that uses single-mode fiber (SMF) in combination with dispersion compensation fiber (DCF) which is a dispersion compensation device, in C and L band wavelength range to solve the dispersion program. The DWDM system scheme employing single Mach-Zehnder modulation (MZM) return-to-zero differential phase-shift keying (RZ-DPSK) modulation format with hybrid Raman/EDFA (Erbium-doped fiber amplifier) configuration to improve transmission signal, and employing an optical phase conjugation (OPC) configuration in the middle line. That can compensate for dispersion impairment and improve nonlinear effects to investigate transmission distance performances.

  3. Multicomponent glass fiber optic integrated structures

    Science.gov (United States)

    Pysz, Dariusz; Kujawa, Ireneusz; Szarniak, Przemyslaw; Franczyk, Marcin; Stepien, Ryszard; Buczynski, Ryszard

    2005-09-01

    A range of integrated fiber optic structures - lightguides, image guides, multicapillary arrays, microstructured (photonic) fibers - manufactured in the Institute of Electronic Materials Technology (ITME) is described. All these structures are made of multicomponent glasses (a part of them melted in ITME). They can be manufactured in similar multistep process that involves drawing glass or lightguide rods and tubes preparing glass performs, stacking a bundle with rods and (or) tubes, drawing multifiber or multicapillary performs. Structure formation, technological process, characterization and applications of different integrated structures are presented.

  4. Ultra Small Integrated Optical Fiber Sensing System

    Directory of Open Access Journals (Sweden)

    Peter Van Daele

    2012-09-01

    Full Text Available This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL, fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  5. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.;

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely with the in......In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  6. Optical integration of CAD/CAM materials.

    Science.gov (United States)

    Güth, Jan-Frederik; Magne, Pascal

    The optical integration (OI) of monolithic CAD/CAM materials under 4 illuminations was evaluated using a standardized and clinically relevant method. Eighteen inlays were manufactured and placed (glycerin gel). Standardized photos were taken under 4 illuminations (neutral white light direct and indirect illumination, cross-polarized light, fluorescent light). Six evaluators defined the optical integration score (OIS) as the "visibility" of the restoration (0 = worst OI, 4 = optimal OI). The intact tooth served as control. The null hypothesis was that different illuminations did not influence the OI of CAD/CAM inlays. One-way ANOVA, followed by Scheffe's post hoc, was applied (P = 0.05). Neutral light direct illumination: OIS between 2.67 (IPS e.max CAD LT A1, ENAMIC A1) and 3.83 (IPS e.max CAD HT A1) with a mean of 3.28 (± 0.339). Indirect illumination: OIS from 1.00 (Paradigm MZ100 A1) to 2.41 (ENAMIC A1) with a mean of 1.88 (± 0.598). Fluorescent light: OIS between 0.75 and 3.25 with a mean of 1.67 (± 1.025). ENAMIC and VITA BLOCS Mark II showed the best optical integration in fluorescence. IPS e.max CAD, Paradigm MZ 100 demonstrated low fluorescence; Lava Ultimate high fluorescence. OI was influenced by different illumination. A simple method accessible to clinicians for additional evaluation of CAD/CAM materials in daily practice is presented. All materials showed excellent OI under direct illumination with neutral white light. The most pronounced differences in optical integration between tooth and evaluated materials were observed under fluorescent light.

  7. Monolithically integrated interferometer for optical displacement measurement

    Science.gov (United States)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  8. Collimating slicer for optical integral field spectroscopy

    Science.gov (United States)

    Laurent, Florence; Hénault, François

    2016-07-01

    Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element of a given field. It is a powerful tool which rearranges the data cube represented by two spatial dimensions defining the field and the spectral decomposition (x, y, λ) in a detector plane. In IFS, the "spatial" unit reorganizes the field, the "spectral" unit is being composed of a classical spectrograph. For the spatial unit, three main techniques - microlens array, microlens array associated with fibres and image slicer - are used in astronomical instrumentations. The development of a Collimating Slicer is to propose a new type of optical integral field spectroscopy which should be more compact. The main idea is to combine the image slicer with the collimator of the spectrograph mixing the "spatial" and "spectral" units. The traditional combination of slicer, pupil and slit elements and spectrograph collimator is replaced by a new one composed of a slicer and spectrograph collimator only. After testing few configurations, this new system looks very promising for low resolution spectrographs. In this paper, the state of art of integral field spectroscopy using image slicers will be described. The new system based onto the development of a Collimating Slicer for optical integral field spectroscopy will be depicted. First system analysis results and future improvements will be discussed.

  9. Integration of active and passive polymer optics

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    protrusions and an integrated metal shadow mask. In the CNP process, a combined UV mask and nanoimprint stamp is embossed into the resist, which is softened by heating, and UV exposed. Hereby the mm to m m sized features are defined by the UV exposure through the metal mask, while nm-scale features are formed......We demonstrate a wafer scale fabrication process for integration of active and passive polymer optics: Polymer DFB lasers and waveguides. Polymer dye DFB lasers are fabricated by combined nanoimprint and photolithography (CNP). The CNP fabrication relies on an UV transparent stamp with nm sized...... by mechanical deformation (nanoimprinting). The lasers are integrated with undoped SU-8 polymer waveguides. The waferscale fabrication process has a yield above 90% and the emission wavelengths are reproduced within 2 nm. Confinement of the light on the chip is demonstrated, and the influence on the laser...

  10. Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies

    Directory of Open Access Journals (Sweden)

    Ivan Gusachenko

    2015-07-01

    Full Text Available Precise control of particle positioning is desirable in many optical propulsion and sorting applications. Here, we develop an integrated platform for particle manipulation consisting of a combined optical nanofiber and optical tweezers system. We show that consistent and reversible transmission modulations arise when individual silica microspheres are introduced to the nanofiber surface using the optical tweezers. The observed transmission changes depend on both particle and fiber diameter and can be used as a reference point for in situ nanofiber or particle size measurement. Thence, we combine scanning electron microscope (SEM size measurements with nanofiber transmission data to provide calibration for particle-based fiber assessment. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and facilitates studies of optical binding and light-particle interaction dynamics.

  11. Active materials for integrated optic applications

    Science.gov (United States)

    Hayden, Joseph S.; Funk, David S.; Veasey, David L.; Peters, Philip M.; Sanford, Norman A.

    1999-11-01

    The ability to engineer glass properties through the selection and adjustment of chemical composition continues to make glass a leading material in both active and passive applications. The development of optimal glass compositions for integrated optical applications requires a number of considerations that are often at variance with one another. Of critical importance is that the glass offers compatibility with standard ion exchange technologies, allowing fabrication of guided wave structures. In addition, for application as an active material, the resultant structures must be characterized by absence of inclusions and low absorption at the lasing wavelength, putting demands on both the selection and identity of the raw materials used to prepare the glass. We report on the development of an optimized glass composition for integrated optic applications that combines good laser properties with good chemical durability allowing for a wide range of chemical processing steps to be employed without substrate deterioration. In addition, care was taken during the development of this glass to insure that the selected composition was consistent with manufacturing technology for producing high optical quality glass. We present the properties of the resultant glasses, including results of detailed chemical and laser properties, for use in the design and modeling of active waveguides prepared with these glasses.

  12. MPACVD processing technologies for planar integrated optics

    Science.gov (United States)

    Li, Cheng-Chung; Boudreau, Robert A.; Bowen, Terry P.

    1998-06-01

    Optical circuits based on low-loss glass waveguide are the practical and promising approaches to integrate different functional components for optical communication system. Microwave plasma assisted chemical vapor deposition produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. A microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer thus deposited on the substrates with reasonable high growth rate. Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The main emphasis has been on optimizing the deposition parameters and reproducibility. An uniform, low-loss film can be made by properly balancing the precursor flows. The refractive index of deposited film can also be controlled by adjusting the flow ratio of SiCl4 and GeCl4 bubblers. Deposited films was characterized by prism coupler, loss measurement, residual stress, and composition analysis. The resulted refractive index step can be varied between 1.46 to 1.60. Waveguide can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on mask layer. Core layer was remove by the plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma etch. Etch rate of 3000-4000 angstrom/min has been achieved by using ICP compared to typical etch rate of 200-300 angstrom/min by using conventional RIE.

  13. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    Science.gov (United States)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the

  14. Completely integrable models of nonlinear optics

    Indian Academy of Sciences (India)

    Andrey I Maimistov

    2001-11-01

    The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modified Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.

  15. 3D integral imaging with optical processing

    Science.gov (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  16. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  17. Integrated optical addressing of an ion qubit.

    Science.gov (United States)

    Mehta, Karan K; Bruzewicz, Colin D; McConnell, Robert; Ram, Rajeev J; Sage, Jeremy M; Chiaverini, John

    2016-12-01

    The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual (88)Sr(+) ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e(2) radius along the trap axis, and we measure crosstalk errors between 10(-2) and 4 × 10(-4) at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.

  18. Integrated optical addressing of an ion qubit

    Science.gov (United States)

    Mehta, Karan K.; Bruzewicz, Colin D.; McConnell, Robert; Ram, Rajeev J.; Sage, Jeremy M.; Chiaverini, John

    2016-12-01

    The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual 88Sr+ ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e2 radius along the trap axis, and we measure crosstalk errors between 10-2 and 4 × 10-4 at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.

  19. Optical carrier-based microwave interferometers for sensing application

    Science.gov (United States)

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Xiao, Hai

    2014-06-01

    Optical fiber interferometers (OFIs) have been extensively utilized for precise measurements of various physical/chemical quantities (e.g., temperature, strain, pressure, rotation, refractive index, etc.). However, the random change of polarization states along the optical fibers and the strong dependence on the materials and geometries of the optical waveguides are problematic for acquiring high quality interference signal. Meanwhile, difficulty in multiplexing has always been a bottleneck on the application scopes of OFIs. Here, we present a sensing concept of optical carrier based microwave interferometry (OCMI) by reading optical interferometric sensors in microwave domain. It combines the advantages from both optics and microwave. The low oscillation frequency of the microwave can hardly distinguish the optical differences from both modal and polarization dispersion making it insensitive to the optical waveguides/materials. The phase information of the microwave can be unambiguitly resolved so that it has potential in fully distributed sensing. The OCMI concept has been implemented in different types of interferometers (i.e., Michelson, Mach-Zehnder, Fabry-Perot) among different optical waveguides (i.e., singlemode, multimode, and sapphire fibers) with excellent signal-to-noise ratio (SNR) and low polarization dependence. A spatially continuous distributed strain sensing has been demonstrated.

  20. Integral window hermetic fiber optic components

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  1. The GRAVITY integrated optics beam combination

    Science.gov (United States)

    Jocou, L.; Perraut, K.; Nolot, A.; Berger, J. P.; Moulin, T.; Labeye, P.; Lacour, S.; Perrin, G.; Lebouquin, J. B.; Bartko, H.; Thiel, M.; Eisenhauer, F.

    2010-07-01

    Gravity is a 2nd generation interferometric instrument for VLTI. It will combine 4 telescopes in dual feed in the K band to study general relativity effects around the Galactic Center black hole. The concept of Gravity is based on two equivalent beam combiner instruments: the scientific one fed by the science target (Sgr A*) and the fringe tracker fed by a bright reference star (See Gillessen et al.1). Both beam combination instruments are based on silica on silicon integrated optics (IO) component glued to fluoride glass fiber array. The beam combiners are implemented in a cryogenic vessel cooled at 200°K and back-illuminated by a high power laser used for metrology (Bartko et al.2). This paper is dedicated to the description of the development of the integrated beam combiner assembly.

  2. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  3. Integrated optical addressing of an ion qubit

    CERN Document Server

    Mehta, Karan K; McConnell, Robert; Ram, Rajeev J; Sage, Jeremy M; Chiaverini, John

    2015-01-01

    Scalable implementation of the optics required to control trapped atomic ions' quantum states will be required to construct large-scale ion trap quantum information processors. All experiments in ion traps so far have employed approaches cumbersome to scale to even a few tens of qubits, with the majority relying on manipulation of free space beams with bulk optics. Here we demonstrate lithographically defined nanophotonic dielectric waveguides integrated within a linear surface-electrode ion trap chip, and qubit addressing at multiple locations via focusing grating couplers that emit through openings in the trap electrodes to an ion trapped 50 $\\mu$m above the chip. We perform quantum coherent operations using visible light routed in and emitted from silicon nitride waveguides and couplers, on the optical qubit transition in individual $^{88}$Sr$^+$ ions. The addressing beam is focused near the ion position with a 2 $\\mu$m 1/$e^2$-radius along the trap axis, and we measure crosstalk errors between $10^{-2}$ a...

  4. Fast integral methods for integrated optical systems simulations: a review

    Science.gov (United States)

    Kleemann, Bernd H.

    2015-09-01

    Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non

  5. Integrated optics for astronomical interferometry; 1, Concept and astronomical applications

    CERN Document Server

    Malbet, M; Schanen-Duport, J P; Berger, J P; Rousselet-Perraut, K; Benech, P

    1999-01-01

    We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integra...

  6. Integral relations of optical characteristics involving pairs of condensed medium

    Science.gov (United States)

    Sakhnovskyj, Mykhajlo Y.; Tymochko, Bogdan M.; Rudeichuk, Volodymyr M.; Dominikov, Mickolay M.

    2015-11-01

    The integral relations among optical invariants and elipsometric parameters of light are obtained in this paper. It is shown, that among optical invariants there is an integral relation, similar to Kramers-Kronig relation for complex dielectric conductivity or a complex index of refraction. The possibility to determine the spectral values of conductivity through the integral transform of optical invariants or ellipsometric angles is discussed.

  7. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2017-01-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  8. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  9. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given.......We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  10. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  11. Stripline kicker for integrable optics test accelerator

    CERN Document Server

    Antipov, Sergey A; Lebedev, Valeri; Valishev, Alexander

    2016-01-01

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  12. Effect of coating on the strain transfer of optical fiber sensors.

    Science.gov (United States)

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2011-01-01

    Optical fiber strain sensors with light weight, small dimensions and immunity to electromagnetic interference are widely used in structural health monitoring devices. As a sensor, it is expected that the strains between the optical fiber and host structure are the same. However, due to the shear deformation of the protective coating, the optical fiber strain is different from that of host structure. To improve the measurement accuracy, the strain measured by the optical fiber needs to be modified to reflect the influence of the coating. In this investigation, a theoretical model of the strain transferred from the host material to the optical fiber is developed to evaluate the interaction between the host material and coating. The theoretical predictions are validated with a numerical analysis using the finite element method. Experimental tests are performed to reveal the differential strains between the optical fiber strain sensor and test specimen. The Mach-Zehnder interferometric type fiber-optic sensor is adopted to measure the strain. Experimental results show that the strain measured at the optical fiber is lower than the true strain in the test specimen. The percentage of strain in the test specimen actually transferred to the optical fiber is dependent on the bonded length of the optical fiber and the protective coating. The general trend of the strain transformation obtained from both experimental tests and theoretical predictions shows that the longer the bonded length and the stiffer the coating the more strain is transferred to the optical fiber.

  13. Integrated optical investigation of two light-sensitive proteins

    Science.gov (United States)

    Fábián, László; Krekic, Szilvia; Tóth-Boconádi, Rudolf; Taneva, Stefka G.; Bálint, Agneta M.; Nánai, László; Dér, András

    2017-01-01

    Integrated optics is one of the most intensively investigated fields when working on alternative methods to overcome the disadvantages of integrated electronics. Besides inorganic active optical crystals, dyes and polymers, molecules of biological origin with suitable nonlinear optical properties can also find applications in integrated optical - biophotonic - devices. The state-of-the-art photonic integration technology is ready to provide the passive elements of integrated optical circuits. The bottle-neck in integrated optics is to find a proper nonlinear optical material that is supposed to be the cladding medium in waveguide-based photonic applications, performing light-controlled active functions. Based on our earlier results, here we present the experimental demonstration of subpicosecond photonic switching with an alternative approach, where the active role is performed by a biological material, the chromoprotein bacteriorhodopsin. Moreover, measurements of the light-induced refractive index change performed on a dried film of the Photoactive Yellow Protein are also presented. Our findings show that these photochromic pigments can be promising candidates as active nonlinear optical materials for all-optical data processing in future biophotonic applications. These results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunication technologies.

  14. FSK Modulation Scheme for High-Speed Optical Transmission

    Institute of Scientific and Technical Information of China (English)

    Nan Chi; Wuliang Fang; Yufeng Shao; Junwen Zhang; Li Tao

    2012-01-01

    In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we

  15. Preparation, thermo-optic property and simulation of optical switch based on azo benzothiazole polymer

    Science.gov (United States)

    Cao, Zhijuan; Qiu, Fengxian; Wang, Qing; Cao, Guorong; Guan, Yijun; Zhuang, Lin; Xu, Xiaolong; Wang, Jie; Chen, Qian; Yang, Dongya

    2013-04-01

    An azo chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the chromophore molecule BTPD was polymerized with NJ-210 and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polymer (BTPU). The structures of BTPD and BTPU were characterized using the Fourier transform infrared, UV-visible spectroscopy, DSC and TGA. The physical properties of the obtained BTPU were investigated. The refractive index ( n) of BTPU was demonstrated at different temperature and wavelength (532, 650 and 850 nm) using attenuated total reflection technique. The transmission loss and dispersion characteristic of BTPU film were investigated using the CCD digital imaging devices and Sellmeyer equation. A Y-branch and 2 × 2 Mach-Zehnder interferometer (MZI) polymeric thermo-optic switches based on the thermo-optic effect of prepared BTPU were proposed and the performance of switches was simulated. The results indicated that the power consumption of the Y-branch thermo-optic switch could be only 0.6 mW. The Y-branch and MZI switching rising and falling times obtained were 8.0 and 1.8 ms.

  16. Relation between noise and resolution in integrated optical refractometric sensing

    NARCIS (Netherlands)

    Hoekstra, H.J.W.M.; Lambeck, P.V.; Uranus, H.P.; Koster, T.M.

    2008-01-01

    The paper presents a general theory for integrated optical (IO) sensing devices of the refractometric type, which relates noise and device parameters to the resolution of the measurand induced modal index changes. The theory is applied for length optimization of a number of integrated optical sensin

  17. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  18. Model GC1312S Multifunction Integrated Optical Circuit Devices

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Model GC1312S multifunction integrated optical circuit device (MIOC) used in inertial-grade interferometric fiber optics gyroscopes (IFOGs) is fabricated by annealing and proton exchange process (APE). The unique feature of the device is the incorporation of the beat detection circuit besides all the features the conventional single Y-branch multifunction integrated optical circuit devices have. The device structure, operation principle and typical characteristics, etc., are briefly presented in this paper.

  19. Superconducting single-photon detectors for integrated quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, Oliver

    2016-01-29

    This thesis reports on the implementation and characterization of a fully integrated single-photon detector. Several detector circuits are realized and it is shown that the detectors exhibit supreme detection performance over a wide optical spectrum. The detectors' scalability is showcased by the parallel operation of multiple detectors within a single integrated circuit. These demonstrations are essential for future developments in integrated quantum optics.

  20. Integrated optical transceiver with electronically controlled optical beamsteering

    Energy Technology Data Exchange (ETDEWEB)

    Davids, Paul; DeRose, Christopher; Tauke-Pedretti, Anna

    2017-08-22

    A beam-steering optical transceiver is provided. The transceiver includes one or more modules, each comprising an antenna chip and a control chip bonded to the antenna chip. Each antenna chip has a feeder waveguide, a plurality of row waveguides that tap off from the feeder waveguide, and a plurality of metallic nanoantenna elements arranged in a two-dimensional array of rows and columns such that each row overlies one of the row waveguides. Each antenna chip also includes a plurality of independently addressable thermo-optical phase shifters, each configured to produce a thermo-optical phase shift in a respective row. Each antenna chip also has, for each row, a row-wise heating circuit configured to produce a respective thermo-optic phase shift at each nanoantenna element along its row. The control chip includes controllable current sources for the independently addressable thermo-optical phase shifters and the row-wise heating circuits.

  1. Design and characterization of SiON integrated optics components for optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, V. Duc; Kalkman, J.; Ismail, N.; Sun, F.; Worhoff, Kerstin; Driessen, A.; Pollnau, Markus; van Leeuwen, Ton

    2009-01-01

    Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical

  2. Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber

    DEFF Research Database (Denmark)

    Ho, Bo-Yan; Su, Hsien-Pin; Tseng, Yu-Pei;

    2015-01-01

    with a maximum interferometric contrast over 35dB. The temperature-induced resonant wavelength blue-shifts 70.4 nm for the MZI with an LC length of 9.79 mm and the wavelength temperature sensitivity of -1.55 nm/degrees C is easily achieved as the temperature increases from 25 degrees C to 77 degrees C. (C)2015...

  3. Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Gard, Bryan T.; You, Chenglong; Singh, Robinjeet; Lee, Hwang; Corbitt, Thomas R.; Dowling, Jonathan P. [Louisiana State University, Baton Rouge, LA (United States); Mishra, Devendra K. [Louisiana State University, Baton Rouge, LA (United States); V.S. Mehta College of Science, Physics Department, Bharwari, UP (India)

    2017-12-15

    The use of an interferometer to perform an ultra-precise parameter estimation under noisy conditions is a challenging task. Here we discuss nearly optimal measurement schemes for a well known, sensitive input state, squeezed vacuum and coherent light. We find that a single mode intensity measurement, while the simplest and able to beat the shot-noise limit, is outperformed by other measurement schemes in the low-power regime. However, at high powers, intensity measurement is only outperformed by a small factor. Specifically, we confirm, that an optimal measurement choice under lossless conditions is the parity measurement. In addition, we also discuss the performance of several other common measurement schemes when considering photon loss, detector efficiency, phase drift, and thermal photon noise. We conclude that, with noise considerations, homodyne remains near optimal in both the low and high power regimes. Surprisingly, some of the remaining investigated measurement schemes, including the previous optimal parity measurement, do not remain even near optimal when noise is introduced. (orig.)

  4. A novel and small curvature sensor based on butterfly-shape Mach-Zehnder interferometer

    Science.gov (United States)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-04-01

    A novel hollow-core fiber (HCF) curvature sensor based on a tapered HCF sandwiched between two single mode fibers (Butterfly-Shape Structure) is proposed and experimentally demonstrated. The collapsed region around the first fusion interface excites the high-order modes, and the butterfly shape couples the high-order modes back into the core and interferes with the fundamental mode in the second fusion interface. Simulation of the butterfly-shape structure is carried out using the beam propagation method to determine an optimized size of sensing element. The experimental results show that the variation of the interference spectrum light intensity is almost linearly proportional to the change of curvature, and the curvature sensitivity and resolution of the proposed sensor can be up to -10.9041dB / m-1 and 0.000917m-1 respectively in the range from 0.387 to 1.285 m-1. The proposed curvature sensor is compact size, high sensitive, and inexpensive.

  5. Comment on "Particle path through a nested Mach-Zehnder interferometer"

    Science.gov (United States)

    Vaidman, L.

    2017-06-01

    Griffiths [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115] analyzed, in the framework of a consistent histories interpretation, the controversy regarding the approach to the past of a quantum particle introduced by Vaidman [Phys. Rev. A 87, 052104 (2013), 10.1103/PhysRevA.87.052104]. I argue that Griffith's criticism of my approach using an analysis of experiments with weak probes is unfounded.

  6. Platforms for integrated nonlinear optics compatible with silicon integrated circuits

    CERN Document Server

    Moss, David J

    2014-01-01

    Nonlinear photonic chips are capable of generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in CMOS-compatible platforms for nonlinear optics, focusing on Hydex glass and silicon nitride and briefly discuss the promising new platform of amorphous silicon. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.

  7. Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses

    Institute of Scientific and Technical Information of China (English)

    Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc

    2003-01-01

    This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.

  8. Integrating 4G Optics (Conference Presentation)

    Science.gov (United States)

    Tabiryan, Nelson V.; Hwang, Jeoungyeon; Steeves, Diane M.; Kimball, Brian R.; Bunning, Timothy J.; White, Timothy J.

    2016-09-01

    The thickness of functional layers in liquid crystal photonics devices is negligibly small compared to the substrates. New opportunities provided by multilayer 4G optical systems require minimizing the thickness of each layer. We report about our progress made by developing technology of thin flexible substrates, functional polymer films, solid electro-optical layers, and graphene oxide based electro-conductive coatings.

  9. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  10. Graphene nanopore with a self-integrated optical antenna.

    Science.gov (United States)

    Nam, SungWoo; Choi, Inhee; Fu, Chi-cheng; Kim, Kwanpyo; Hong, SoonGweon; Choi, Yeonho; Zettl, Alex; Lee, Luke P

    2014-10-08

    We report graphene nanopores with integrated optical antennae. We demonstrate that a nanometer-sized heated spot created by photon-to-heat conversion of a gold nanorod resting on a graphene membrane forms a nanoscale pore with a self-integrated optical antenna in a single step. The distinct plasmonic traits of metal nanoparticles, which have a unique capability to concentrate light into nanoscale regions, yield the significant advantage of parallel nanopore fabrication compared to the conventional sequential process using an electron beam. Tunability of both the nanopore dimensions and the optical characteristics of plasmonic nanoantennae are further achieved. Finally, the key optical function of our self-integrated optical antenna on the vicinity of graphene nanopore is manifested by multifold fluorescent signal enhancement during DNA translocation.

  11. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  12. Amplifying waveguide optical isolator with an integrated electromagnet

    OpenAIRE

    2007-01-01

    We have demonstrated an amplifying waveguide optical isolator with an integrated electromagnet. This provides a solution to the generally poor magnetic remanence of this type of isolator. The proof of principle is presented and optimization routes are discussed.

  13. Fibre-Optic Strain Measurement For Structural Integrity Monitoring

    NARCIS (Netherlands)

    Bruinsma, A.J.A.; Zuylen, P. van; Lamberts, C.W.; Krijger, A.J.T. de

    1984-01-01

    A method is demonstrated for monitoring the structural integrity of large structures, using an optical fibre. The strain distribution along the structure is monitored by measuring the attentuation of light along the length of the fibre.

  14. Integrated Radio and Optical Communication (iROC)

    Science.gov (United States)

    Raible, Daniel; Romanofsky, Robert; Pease, Gary; Kacpura, Thomas

    2016-01-01

    This is an overview of the Integrated Radio and Optical Communication (iROC) Project for Space Communication and Navigation Industry Days. The Goal is to develop and demonstrate new, high payoff space technologies that will promote mission utilization of optical communications, thereby expanding the capabilities of NASA's exploration, science, and discovery missions. This is an overview that combines the paramount features of select deep space RF and optical communications elements into an integrated system, scalable from deep space to near earth. It will realize Ka-band RF and 1550 nanometer optical capability. The approach is to prototype and demonstrate performance of key components to increase to TRL-5, leading to integrated hybrid communications system demonstration to increase to TRL-5, leading to integrated hybrid communications system demonstration.

  15. UV-written Integrated Optical 1xN Splitters

    DEFF Research Database (Denmark)

    Olivero, Massimo; Svalgaard, Mikael

    2006-01-01

    The first demonstration of UV-written, silica-on-silicon integrated optical 1×N power splitters with up to 32 outputs ports is presented. The fabricated components exhibit 450 nm bandwidth, low excess loss and good channel uniformity.......The first demonstration of UV-written, silica-on-silicon integrated optical 1×N power splitters with up to 32 outputs ports is presented. The fabricated components exhibit 450 nm bandwidth, low excess loss and good channel uniformity....

  16. Design of integrated hybrid silicon waveguide optical gyroscope.

    Science.gov (United States)

    Srinivasan, Sudharsanan; Moreira, Renan; Blumenthal, Daniel; Bowers, John E

    2014-10-20

    We propose and analyze a novel highly integrated optical gyroscope using low loss silicon nitride waveguides. By integrating the active optical components on chip, we show the possibility of reaching a detection limit on the order of 19°/hr/√Hz in an area smaller than 10 cm(2). This study examines a number of parameters, including the dependence of sensitivity on sensor area.

  17. Network Integration of Distributed Optical Fiber Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    Gui-Yan Li; Hong-Lin Liu; Zai-Xuan Zhang

    2008-01-01

    The integration of distributed optical fiber temperature sensor with supervisory control and data acquisition (SCADA) system is proposed and implemented. In the implementation of the integration, both the compatibility with traditional system and the characteristics of distributed optical fiber temperature sensor is considered before Modbus TCP/IP protocol is chosen. The protocol is implemented with open source component Indy. The Modbus TCP/IP protocol used in the system is proved to be fast and robust.

  18. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  19. Nonlinear Optics in Doped Silica Glass Integrated Waveguide Structures

    CERN Document Server

    Duchesne, David; Razzari, Luca; Morandotti, Roberto; Little, Brent; Chu, Sai T; Moss, David J

    2015-01-01

    Integrated photonic technologies are rapidly becoming an important and fundamental milestone for wideband optical telecommunications. Future optical networks have several critical requirements, including low energy consumption, high efficiency, greater bandwidth and flexibility, which must be addressed in a compact form factor.

  20. SiON technology for integrated optical sensors

    NARCIS (Netherlands)

    Lambeck, P.V.; Wörhoff, Kerstin; Righini, Giancarlo C.

    2002-01-01

    Silicon oxynitride (SiON)- technology has been widely accepted for realizing integrated optical devices for application in optical telecommunication. Some of the severe requirements put in this field to devices and hence to technology are more relaxed in sensing applications, but other ones pop up i

  1. Optical amplification in photonic integrated circuits

    NARCIS (Netherlands)

    Pollnau, Markus

    2005-01-01

    The recent results in the field of fabrication, characterization, and applications of optical waveguides in doped hard crystalline materials, specifically in Ti-doped sapphire and Yb-doped $KY(WO_4)_2$, are reviewed.

  2. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators

    Science.gov (United States)

    Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu

    2008-11-01

    A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.

  3. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

  4. Neuromorphic opto-electronic integrated circuits for optical signal processing

    Science.gov (United States)

    Romeira, B.; Javaloyes, J.; Balle, S.; Piro, O.; Avó, R.; Figueiredo, J. M. L.

    2014-08-01

    The ability to produce narrow optical pulses has been extensively investigated in laser systems with promising applications in photonics such as clock recovery, pulse reshaping, and recently in photonics artificial neural networks using spiking signal processing. Here, we investigate a neuromorphic opto-electronic integrated circuit (NOEIC) comprising a semiconductor laser driven by a resonant tunneling diode (RTD) photo-detector operating at telecommunication (1550 nm) wavelengths capable of excitable spiking signal generation in response to optical and electrical control signals. The RTD-NOEIC mimics biologically inspired neuronal phenomena and possesses high-speed response and potential for monolithic integration for optical signal processing applications.

  5. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  6. Improved performance of traveling wave directional coupler modulator based on electro-optic polymer

    CERN Document Server

    Zhang, Xingyu; Lin, Che-yun; Wang, Alan X; Hosseini, Amir; Lin, Xiaohui; Chen, Ray T

    2014-01-01

    Polymer based electro-optic modulators have shown great potentials in high frequency analog optical links. Existing commercial LiNibO3 Mach-Zehnder modulators have intrinsic drawbacks in linearity to provide high fidelity communication. In this paper, we present the design, fabrication and characterization of a traveling wave directional coupler modulator based on electro-optic polymer, which is able to provide high linearity, high speed, and low optical insertion loss. A silver ground electrode is used to reduce waveguide sidewall roughness due to the scattering of UV light in photolithography process in addition to suppressing the RF loss. A 1-to-2 multi-mode interference 3dB-splitter, a photobleached refractive index taper and a quasi-vertical taper are used to reduce the optical insertion loss of the device. The symmetric waveguide structure of the MMI-fed directional coupler is intrinsically bias-free, and the modulation is obtained at the 3-dB point regardless of the ambient temperature. By achieving lo...

  7. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

    Science.gov (United States)

    Ramadan, W A; Wahba, H H; Shams El-Din, M A

    2014-11-01

    We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending.

  8. Optical nanofiber integrated into an optical tweezers for particle probing and manipulation

    CERN Document Server

    Frawley, Mary C; Truong, Viet Giang; Chormaic, Sile Nic

    2014-01-01

    We present an integrated platform for particle manipulation consisting of a combined optical nanofiber and optical tweezers system. Individual silica microspheres were introduced to the nanofiber at arbitrary points using the optical tweezers, thereby producing pronounced dips in the fiber transmission. We show that such consistent and reversible transmission modulations depend on both particle and fiber diameter, and may be used as a reference point for in-situ nanofiber or particle size calibration. Particle arrays can be released from the optical tweezers onto the nanofiber and are propelled along the fiber length via guided light. We also demonstrate how the optical tweezers can be used to create a "particle jet" to feed a supply of microspheres to the nanofiber surface, forming a particle conveyor belt. This integrated optical platform provides a method for selective evanescent field manipulation of micron-sized particles and may facilitate studies of optical binding and light-particle interaction dynami...

  9. All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2016-10-01

    We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

  10. Optical inspection of liquid crystal variable retarder inhomogeneities.

    Science.gov (United States)

    Vargas, Javier; Uribe-Patarroyo, Néstor; Antonio Quiroga, Juan; Alvarez-Herrero, Alberto; Belenguer, Tomás

    2010-02-01

    Liquid crystal variable retarders (LCVRs) are starting to be widely used in optical systems because of their capacity to provide a controlled variable optical retardance between two orthogonal components of incident polarized light or to introduce a known phase shifting (PS) between coherent waves, both by means of an applied voltage. Typically, the retardance or PS introduced by an LCVR is not homogeneous across the aperture. On the one hand, the LCVR glass substrates present a global bend that causes an overall variation of the retardance or PS. On the other hand, in the manufacturing process of an LCVR, there sometimes appears a set of micro-air bubbles that causes local retardance or PS inhomogeneities. In this work, we present an interferometric technique based on a Mach-Zehnder interferometer that is insensitive to vibrations and capable of inspecting and characterizing the LCVR's retardance or PS inhomogeneities. The feasibility of the proposed method is demonstrated in the experimental results, where the LCVR retardance is measured with an error of about 0.2 rad. The thickness of possible micro-air bubbles is obtained with a resolution of about 50 nm.

  11. A Software Tool for Integrated Optical Design Analysis

    Science.gov (United States)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  12. Proposed smart integrated-optical preprocessor using holographic subtraction

    Science.gov (United States)

    Verber, C. M.; Vahey, D. W.

    1979-01-01

    The paper presents a proposed integrated-optical preprocessor with a holographic subtraction. It is based on an optical analog of a set of N analog voltages formed by passing an optical plane wave, confined in an electrooptic waveguide, under a set of N electrodes to which the voltages are applied; in the limit in which diffraction is ignored, the wavefront of the emerging guided wave will have superimposed upon it N discrete phase shifts. Processors which operate upon voltages encoded in this manner are being fabricated; they include a comparator in which incoming data are compared to a holographic record of the optical analog of a reference set, and a 'smart' system based upon holographic self-subtraction, in which the processor can independently adapt to changes in background information. The preprocessor operation is described in the screening, identification, and the self-subtraction modes, and implementation of devices in an integrated optical configuration is discussed.

  13. Optical Leaky-Wave Antenna Integrated in Ring Resonator

    CERN Document Server

    Guclu, Caner; Boyraz, Ozdal; Capolino, Filippo

    2014-01-01

    A leaky-wave antenna at optical frequencies is designed and integrated with a ring resonator at 1550 nm wavelength. The leaky wave is generated by using periodic perturbations in the integrated dielectric waveguide that excite the -1 spatial harmonic. The antenna consists of a dielectric waveguides with semiconductor corrugations, and it is compatible with CMOS fabrication technology. We show that integrating the leaky wave antenna in an optical ring resonator that is fed by directional couplers, we can improve the electronic control of the radiation through carrier injection into the semiconductor corrugations.

  14. Progresses in 3D integral imaging with optical processing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Corral, Manuel; Martinez-Cuenca, Raul; Saavedra, Genaro; Navarro, Hector; Pons, Amparo [Department of Optics. University of Valencia. Calle Doctor Moliner 50, E46 100, Burjassot (Spain); Javidi, Bahram [Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269-1157 (United States)], E-mail: manuel.martinez@uv.es

    2008-11-01

    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  15. Integrated Diffractive Optics for Surface Ion Traps

    Science.gov (United States)

    Streed, Erik; Ghadimi, Moji; Blums, Valdis; Norton, Benjamin; Connor, Paul; Amini, Jason; Volin, Curtis; Lobino, Mirko; Kielpinski, David

    2016-05-01

    Photonic interconnects are a bottleneck to achieving large-scale trapped ion quantum computing. We have modified a Georgia Tech Research Institute microwave chip trap by using e-beam lithography to write reflective diffractive collimating optics (80 μm x 127 μm, f=58.6 μm, λ=369.5nm) on the center electrode. The optics have an NA of 0.55 x 0.73, capturing 13.2% of the solid angle. To evaluate the optics 174Yb+ was loaded by isotope selective photo-ionization from a thermal oven and then shuttled to imaging sites. Near diffraction limited sub-wavelength ion images were obtained with an observed spot sized FWHM of 338 nm x 268 nm vs. a diffraction limit of 336 nm x 257 nm. The total photon collection efficiency was measured to be 5.2+/-1.2%. Coupling into a single mode fiber of up to 2.0+/-0.6% was observed, limited by mismatch in the coupling optics. Image mode quality indicates coupling up to 4% may be possible. Funding from Australian Research Council and IARPA.

  16. CAD integration: opening up new optical design possibilities; Technical Digest

    Science.gov (United States)

    Haumonte, Jean-Baptiste; Venturino, Jean-Claude

    2005-05-01

    The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer produtcs. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to shre information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.

  17. Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations

    Science.gov (United States)

    Dube, C. M.; Wang, Tom D.; Melton, Robert G.; Jenson, David W.; Koharchik, Mike

    1988-02-01

    The feasibility is assessed of using fiber optic strain sensors embedded in a composite material to measure the magnitude and frequency of structural vibrations for control of flexible elements. This study demonstrates the ability to embed fiber optic strain sensors in a composite material, determines the performance of these sensors, identifies active control system architectures that are matched to the fiber optic system measurands to damp vibrations of large space structures, and estimates the stability achievable by these methods. A detailed laboratory study was performed using a wide band closed-loop-fiber Mach-Zehnder interferometer to conduct transverse vibration measurements on sub-scale composite elements with embedded fiber sensors. The interferometer detects vibrations by measuring the strain transferred by the composite to the embedded optical fiber. The strain sensor demonstrated the ability to track the vibrations of a cantilever beam over a frequency bandwidth ranging from approximately 5 Hz to almost 1000 Hz. The sensor was unable to detect dc strains because of thermal drift and laser power fluctuations. These factors produced a drift in the dc signal level, which was indistinguishable from static strain measurements. Beyond 1000 Hz, the composite element was unable to follow the drive mechanism. The noise equivalent strain was epsilon is approximately 10 to the minus 10th power.

  18. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  19. Integrated optical buffers for packet-switched networks

    Science.gov (United States)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  20. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...