Sample records for m5 wenan earthquake

  1. Multi-dipole observation system and study on the abnormal variation of the geoelectric field observed at Capital Circle area before the Wen'an Ms5.1 earthquake

    Institute of Scientific and Technical Information of China (English)

    MA Qin-zhong


    On July 4, 2006, a Ms 5.1 earthquake occurred in Wen'an county of Hebei Province f which the epicenter is near the Beijing city. The six geoelectric field monitoring stations have been in operation for several years around the Beijing area to examine the relationship between electric field changes and earthquake. This paper firstly explains the principle of the eliminating noise method by using multi-dipole observation system of the geoelectric field. Then the data observed at the stations are studied and a lot of abnormal signals preceding the Wen'an earthquake are selected, of which five abnormal signals of the geoelectric field are finally recognized as the precursory signals. The result shows that ① there probably exists the precursory signals of the geoelectric field preceding the Wen'an earthquake; ② there are sensitive sites in the spatial distribution of the abnormal variation of the geoelectric field before the quack; ~ the anomalous signals do not appear synchronously, and their durations are not same at different stations; ④ the amplitudes of the abnormal signals recorded at Baodi station are small, but large at Changli station, while the latter is farther from the epicentral area than the former.

  2. The sinusoidal periodicity nature for M>=5 global earthquakes

    CERN Document Server

    Zhang, Z X


    By using the M>=5 global earthquake data for Jan. 1950 to Dec. 2015, we performed statistical analyses for the parameters magnitude, time, and depth on a yearly scale. The magnitude spectrum, which is the earthquake number accumulated at different magnitudes, had an exponential distribution. For the first time, we report a very significant characteristic of the sinusoidal periodic variation in the spectral index. The cycle of the sine function fitting was 30.98 years. The concept of annual equivalent total magnitude (AETM) of total released energy for each year was introduced and the trend variation of AETM year by year was studied. Overall, the global AETM of earthquakes with M>=5 displayed a certain upward trend as the years elapsed. At the same time, the change of the average epicenter depth of the global earthquakes (M>=5) in each year was analyzed.

  3. Variation of gravity before the Alxa Zuoqi M5.8 earthquake

    Directory of Open Access Journals (Sweden)

    Jianlin Feng


    Full Text Available In this study, a classic survey adjustment computation method was used for data obtained in the Inner Mongolia and Ningxia gravimetric networks between September 2013 and April 2015 so as to investigate the variation of gravity before the Alxa Zuoqi M5.8 earthquake. The relationship between gravity variation and the Alxa Zuoqi M5.8 earthquake was analyzed. The results showed that: (1 the severe variation in gravity field at the test sites before the Alxa Zuoqi M5.8 earthquake, as well as the subsequent accelerated rising, might be an earthquake precursor; (2 the Alxa Zuoqi M5.8 earthquake occurred at the turning point where the high-gravity gradient zone changed from the NE direction to NW.

  4. San Andreas Fault, California, M 5.5 or greater Earthquakes 1800-2000 (United States)

    Toppozada, T.; Branum, D.; Reichle, M.; Hallstrom, C.


    The San Andreas fault has been the most significant source of major California earthquakes since 1800. From 1812 to 1906 it generated four major earthquakes of M 7.2 or greater in two pairs on two major regions of the fault. A pair of major earthquakes occurred on the Central to Southern region, where the 1857 faulting overlapped the 1812 earthquake faulting. And a pair of major earthquakes occurred on the Northern region, where the 1906 faulting overlapped the 1838 earthquake faulting. The 1812 earthquake resulted from a rupture of up to about 200 km, from the region of Cajon Pass to as far as about 50 km west of Fort Tejon (Sieh and others, 1989). This rupture is the probable source of both the destructive 1812.12.8 "San Juan Capistrano" and the 1812.12.21 "Santa Barbara Channel" earthquakes. The 1838 earthquake's damage effects throughout the Bay area, from San Francisco to Santa Clara Valley and Monterey, were unequalled by any Bay area earthquake other than the 1906 event. The mainshock's effects, and numerous strong probable aftershocks in the San Juan Bautista vicinity in the following three years, suggest 1838 faulting from San Francisco to San Juan Bautista, and M about 7.4. The 630 km length of the San Andreas fault between San Francisco and Cajon Pass ruptured in the 1838 and 1857 earthquakes, except for about 75 km between Bitterwater and San Juan Bautista. The 1840-1841 probable aftershocks of the 1838 event occurred near San Juan Bautista, and the foreshocks and aftershocks of the 1857 event occurred near Bitterwater. In the Bitterwater area, strong earthquakes continued to occur until the 1885 earthquake of M 6.5. Near Parkfield, 40 to 70 km southeast of Bitterwater, M 5.5 or greater earthquakes have occurred from the 1870s to the 1960s. In the total Bitterwater to Parkfield zone bracketing the northern end of the 1857 rupture, the seismicity and moment release has decreased steadily since 1857, and has tended to migrate southeastward with time. The

  5. The November 2011 M5.7 Oklahoma Earthquake: Induced or Triggered? (United States)

    Sumy, D. F.; Cochran, E. S.; Aminzadeh, F.


    On 6 November 2011, a M5.7 right-lateral strike-slip earthquake ruptured a section of the Wilzetta fault that strikes approximately N55E in Prague, Oklahoma. This earthquake was preceded by a right-lateral strike-slip M5.0 foreshock that occurred on 5 November 2011 and followed by a left-lateral strike-slip M5.0 aftershock that occurred on 8 November 2011. Seismicity during the sequence delineates three distinct near-vertical fault planes. The M5.0 foreshock was within several hundred meters of two active, high-volume injection wells, and thus was interpreted as potentially induced by Keranen et al. [2013]. Immediately following the M5.0 foreshock, three temporary seismometers were installed, with additional 44 stations installed after the M5.7 mainshock. These 47 stations recorded thousands of foreshocks and aftershocks that surrounded the three M≥5.0 events. We hypothesize that while the M5.0 foreshock (Event A) is potentially induced by anthropogenic activities, the static stress change imparted by this event triggered the M5.7 mainshock (Event B). To investigate this hypothesis, we calculate the static Coulomb stress change on 110 focal mechanism solutions examined in this study. Many of the focal mechanisms are consistent with the rupture planes defined by the seismicity of Events A and B. However, several of the focal mechanism solutions exhibit dip-slip focal mechanisms and/or are more consistent with the M5.0 aftershock (Event C). Event C occurs on a previously unmapped, east-west striking left-lateral fault plane, which differs substantially from the orientation of Events A and B. The diverse range of focal mechanism solutions suggests complex fault interactions within the Wilzetta fault system. Based on these focal mechanism solutions, we investigate the static stress changes imparted on the aftershocks that result from each of the M≥5.0 earthquakes. We find that the stress change induced by the Event A increases the stress at the hypocentral location

  6. Damage and Shaking Intensity in the M5.7 Canyondam Earthquake (United States)

    Boatwright, J.; Chapman, K.; Gold, M. B.; Hardebeck, J. L.


    An M5.7 earthquake occurred southeast of Lake Almanor, CA, at 8:47 PM on May 23, 2013. Double-difference relocations of the main shock and aftershocks indicate that the earthquake nucleated at 11 km depth and ruptured up dip on a fault striking 292° and dipping 70° to the northeast. The earthquake cracked foundations, broke chimneys, and ruptured plumbing around Lake Almanor. We canvassed communities around the lake and to the south and east for earthquake damage, adding reports from our interviews to the geocoded 'Did You Feel It?' reports and to a set of damage reports collected by the Plumas County Office of Emergency Services. Three communities suffered significant damage. In Lake Almanor West, 14 km and 290° from the hypocenter, one wood-frame house was shifted on its foundation, the cripple wall of another house was racked, and water and gas pipes in five houses were ruptured. This damage indicates the shaking approached MMI 8. In Lake Almanor Country Club, 10 km and 310° from the hypocenter, more than 40 chimneys were cracked, broken, or collapsed, a coupling for the municipal water tank was ruptured, and a 200-foot long fissure opened on a slope facing the lake. This damage indicates shaking between MMI 7 and MMI 8, consistent with the accelerograph recording of PGA = 38% g and PGV = 30 cm/s at the Fire Station in Lake Almanor Country Club. This CSMIP station and a PG&E station on the crest of the Butt Valley Dam obtained the only recordings within 50 km of the epicenter. In Hamilton Branch, 10 km and 345° from the hypocenter, a foundation of a wood-frame house was damaged, and 14 chimneys and a water pipe were broken, indicative of MMI 7 shaking. All three communities are underlain by Tertiary and Quaternary basalts. The communities of Chester, Westwood, and Greenville were less damaged, suffering cracked drywall, broken windows, and objects thrown from shelves. The intensities in the three most strongly damaged communities increase as the azimuth

  7. Coseismic and postseismic deformation due to the 2007 M5.5 Ghazaband fault earthquake, Balochistan, Pakistan (United States)

    Fattahi, H.; Amelung, F.; Chaussard, E.; Wdowinski, S.


    Time series analysis of interferometric synthetic aperture radar data reveals coseismic and postseismic surface displacements associated with the 2007 M5.5 earthquake along the southern Ghazaband fault, a major but little studied fault in Pakistan. Modeling indicates that the coseismic surface deformation was caused by ~9 cm of strike-slip displacement along a shallow subvertical fault. The earthquake was followed by at least 1 year of afterslip, releasing ~70% of the moment of the main event, equivalent to a M5.4 earthquake. This high aseismic relative to the seismic moment release is consistent with previous observations for moderate earthquakes (M < 6) and suggests that smaller earthquakes are associated with a higher aseismic relative to seismic moment release than larger earthquakes.

  8. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence (United States)

    Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.


    In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.

  9. Geomechanical modeling of the nucleation process of Australia's 1989 M5.6 Newcastle earthquake (United States)

    Klose, Christian D.


    Inherent to black-coal mining in New South Wales (Australia) since 1801, the discharge of ground water may have triggered the M5.6 Newcastle earthquake in 1989. 4-dimensional geomechanical model simulations reveal that widespread water removal and coal as deep as a 500 m depth resulted in an unload of the Earth's crust. This unload caused a destabilization process of the pre-existing Newcastle fault in the interior of the crust beneath the Newcastle coal field. In tandem, an increase in shear stress and a decrease in normal stress may have reactivated this reverse fault. Over the course of the last fifty years, elevated levels of lithostatic stress alterations have accelerated. In 1991, based on the modeling of the crust's elastostatic response to the unload, there has been the minimal critical shear stress changes of 0.01 Mega Pascal (0.1 bar) that reached the Newcastle fault at a depth where the 1989 mainshock nucleated. Hence, it can be anticipated that other faults might also be critically stressed in that region for a couple of reasons. First, the size of the area (volume) that is affected by the induced stress changes is larger than the ruptured area of the Newcastle fault. Second, the seismic moment magnitude of the 1989 M5.6 Newcastle earthquake is associated with only a fraction of mass removal (1 of 55), following McGarr's mass-moment relationship. Lastly, these findings confirm ongoing seismicity in the Newcastle region since the beginning of the 19th century after a dormant period of 10,000 years of no seismicity.

  10. Ionospheric GPS TEC Anomalies and M >= 5.9 Earthquakes in Indonesia during 1993 - 2002

    Directory of Open Access Journals (Sweden)

    Sarmoko Saroso


    Full Text Available Indonesia is one of the most seismically active regions in the world, containing numerous active volcanoes and subject to frequent earthquakes with epicenters distributed along the same regions as volcanoes. In this paper, a case study is carried out to investigate pre-earthquake ionospheric anomalies in total electron content (TEC during the Sulawesi earthquakes of 1993 - 2002, and the Sumatra-Andaman earthquake of 26 December 2004, the largest earthquake in the world since 1964. It is found that the ionospheric TECs remarkably decrease within 2 - 7 days before the earthquakes, and for the very powerful Sumatra-Andaman earthquake, the anomalies extend up to about 1600 km from the epicenter.

  11. Database of potential sources for earthquakes larger than M 5.5 in Italy. Version 2.0-2001

    Energy Technology Data Exchange (ETDEWEB)

    Valensise, G.; Pantatosti, D. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)


    This volume presents and describes Version 2.0 of the Database of potential sources for earthquakes larger than M 5.5 in Italy (also referred to as DISS, the acronym of the short form database of Italy's seismogenic sources, or simply as database) that was first conceived at the Istituto Nazionale di Geofisica e Vulcanologia of Rome in 1996.

  12. Macroseismic intensity investigation of the November 2014, M=5.7, Vrancea (Romania crustal earthquake

    Directory of Open Access Journals (Sweden)

    Angela Petruta Constantin


    Full Text Available On November 22, 2014 at 21:14:17 local hour (19:14:17 GMT a  ML=5.7 crustal earthquake occurred in the area of Marasesti city of Vrancea county (Romania - the epicenter was located at north latitude 45.87° and east longitude 27.16°, with a focal depth of 39 km. This earthquake is the main shock of a sequence that started with this and lasted until the end of January. During the sequence, characterized by the absence of foreshocks, a number of 75 earthquakes were recorded in 72 hours, the largest of which occurred in the same day with the main shock, at 22:30 (ML= 3.1. The crustal seismicity of Vrancea seismogenic region is characterized by moderate earthquakes with magnitudes that have not exceeded MW 5.9, this value being assigned to an earthquake that occurred in historical times on March 1, 1894 (Romplus catalogue. Immediately after the 2014 earthquake occurrence, the National Institute for Earth Physics (NIEP sent macroseismic questionnaires in all affected areas, in order to define the macroseismic field of ground shaking. According to macroseismic questionnaires survey, the intensity of epicentral area reached VI MSK, and the seismic event was felt in all the extra-Carpathian area. This earthquake caused general panic and minor to moderate damage to the buildings in the epicentral area and the northeast part of country. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale.

  13. A study on the focal parameters of Shidian M=5.9 earthquake sequences in 2001

    Institute of Scientific and Technical Information of China (English)

    QIN Jia-zheng; QIAN Xiao-dong; YE Jian-qing


    On the basis of about 300 earthquake wave forms observed in the Shidian MS=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal parameters of these earthquake sequences. The results show that within the magnitude range of 1.5~5.3, the seismic moments are 1010~1016 N·m, the corner frequencies are 0.2~0.8 Hz, radii of the focal rupture are 200~2 500 m and the stress drops are 0.1×105~20×105Pa. Through the statistical analyses of variation of corner frequency fc and stress drop △σwith time, it is discovered that the average corner frequency of the foreshock sequences is obviously lower than that of the aftershock sequences. Contrarily, the average stress drops △σ of the foreshock sequences are clearly higher than that of the aftershocks. It is considered that these variation characteristics of average corner frequency and stress drops before and after the main shock have index significance to the precursory information before a strong earthquake. The higher stress drops for the foreshock sequences show that the higher shear stresses have been stored in the area of main shock. After the main shock, most of the stresses have been released, so the aftershock sequences show a rupture process of lower stresses.

  14. Coulomb static stress interactions between M>5 earthquakes and major active faults in Northern California (United States)

    Segou, M.; Parsons, T.; Kalkan, E.


    We have calculated Coulomb stress changes between 1980-2006 in Northern California from fourteen events as well as from the major historic ruptures of 1865, 1868 and 1906. The seismic and fault geometry parameters are taken from the Working Group on California Earthquake Probabilities report (2008). We assess the static Coulomb stress hypothesis as a triggering mechanism for the aftershock sequences of these events using the high accuracy earthquake catalog of Waldhauser and Schaff (2008), which is based on waveform cross-correlation and double-difference methods. We examined the sensitivity of static Coulomb stress changes due to source parametrization by considering different rupture models and aftershock fault orientations for each event. To quantify the variability due to slip distribution, we used both a uniform and variable slip model. Source fault geometry corresponds to: (1) a fault plane suggested by the Global Centroid Moment Tensor (GCMT) and (2) the related mapped fault. In order to analyze the impact of the receiving fault geometry, we used: (1) geometry similar to the source and (2) optimally oriented fault planes for failure (King et al., 1994), taking into account the regional stress field derived in Hardebeck and Michael (2004) from focal mechanism analysis. The sensitivity of the calculations to different focal depths and apparent coefficients of friction (0.1-0.8) has been also investigated.

  15. Some anomalous behaviour of vertebrates and insects preceding M5+ earthquakes in the North Western Apennines (Italy) (United States)

    Straser, Valentino


    Earthquakes with a magnitude greater than M5+ are an unusual event in the seismic area of the Frignano District and the areas surrounding Parma in the North Western Apennines (Italy). Only two seismic events have occurred in the last four years: on 23 December 2008 (M5.1) and on 27 January 2012 (M5.4). The earthquake of 23 December 2008 allowed the verification of unusual behaviour in man and animals in the run-up to the main shock, in addition to anomalies of an electromagnetic type. An initial study showed that there are elements of coincidence between the seismic events and the number of admissions to hospitals around the epicentre: in the month of December 2008, the days with the greatest number of admissions coincided with seismic shocks. A half hour before the main event of 23 December, recorded at 16:24:21 local time (see: INGV), a slowworm (Anguis fragilis) left its hibernation site and died shortly afterwards from the cold on a road, as did a viper (Vipera aspis) found near some dwellings in an area around twenty kilometres from the epicentre. The investigation proceeded in 2009, but this time based on the number of daily admissions to the hospital A&E department, between June and December 2009. During the six months of the investigation, the maximum number of emergencies was 9 per day, while the earthquakes were in line with the usual number and magnitude for the Frignano seismic district. The earthquakes from June to December 2009 numbered 10, with a magnitude from M2.5 to M3.6. In 8 cases, in the 48 hours preceding the occurrence of the seism, there was a greater number of hospital emergencies. The subsequent occasion to check on a possible relationship between anomalous behaviour in animals and a seism occurred on 27 January 2012 (see: INGV), when an earthquake with a magnitude of M5.4 shook the North Western Apennines, thankfully without resulting in victims. Like 2008, in an area around fifteen kilometres from the epicentre, a grass snake (Zamenis

  16. Resolving Rupture Directivity of Moderate Strike-Slip Earthquakes in Sparse Network with Ambient Noise Location: A Case Study with the 2011 M5.6 Oklahoma Earthquake (United States)

    He, X.; Ni, S.


    Earthquake rupture directivity is essential for improving reliability of shakemap and understanding seismogenic processes by resolving the ruptured fault. Compared with field geological survey and InSAR technique, rupture directivity analysis based on seismological data provides rapid characterization of the rupture finiteness parameters or is almost the only way for resolving ruptured fault for earthquakes weaker than M5. In recent years, ambient seismic noise has been widely used in tomography and as well as earthquake location. Barmin et al. (2011) and Levshin et al. (2012) proposed to locate the epicenter by interpolating the estimated Green's functions (EGFs) determined by cross-correlation of ambient noise to arbitrary hypothetical event locations. This method does not rely on an earth model, but it requires a dense local array. Zhan et al. (2011) and Zeng et al. (2014) used the EGFs between a nearby station and remote stations as calibration for 3D velocity structure and then obtained the centroid location. In contrast, the hypocenter can be determined by P wave onsets. When assuming unilateral rupture, we can resolve the rupture directivity with relative location of the centroid location and hypocenter. We apply this method to the 2011 M5.6 Oklahoma earthquake. One M4.8 foreshock and one M4+ aftershock are chosen as reference event to calibrate the systematic bias of ambient noise location. The resolved rupture plane strikes southwest-northeast, consistent with the spatial distribution of aftershocks (McNamara et al., 2015) and finite fault inversion result (Sun et al., 2014). This method works for unilaterally ruptured strike-slip earthquakes, and more case studies are needed to test its effectiveness.

  17. Geochemical evolution of groundwaterof the Iblean Foreland (Southeastern Sicily after the December 13, 1990 earthquake (M = 5.4

    Directory of Open Access Journals (Sweden)

    S. Tersigni


    Full Text Available Geochemical surveys were performed by the Istituto Nazionale di Geofisica (ING, between December 1990 and July 1991, in the framework of an interdisciplinary task study throughout the Siracusa epicentral area: these studies were aimed at col1ecting specific information on the geochemical patterns of fluids, in relation to the geodynamic and seismic evolution of the nol1hern Iblean Foreland area, stal1ing from the December, 13, 1990 Syracuse earthquake (M = 5,4. The results of the hydrogeochemical surveys, discussed in this paper, were in part unexpected. In particular, a steady decrease of the PCO2 va1ues, after the eal1hquake, in ground- waters of the epicentral area, along a NNW-SSE fault bordering the Augusta Graben (Brucoli Sulphureous Spring, was observed. This observation enabled us to reconstruct the geochemical processes triggered by the earthquake: a sudden and strong release of CO2 of deep origin, probably related to a pore pressure uprising and/or to a water/rock interaction changes in the vicinity of the seismogenic structure. The existence of deep- fluid uprising (CO2, 222Rn, NHj, H2S, as well as the variation in time of geochemica1 flows accompanying seismic activity along this NNW-SSE anomalous-sites 1ine, within the whole Iblean Foreland, witnes., the activity (as concern as fluidodynamic and geochemistry of the NNW-SSE striking Ibleo-Maltese Escarpment fault system. This fact can be taken into account in locating the seismogenic structure responsible for the 1990 earthquake, like a contribution of the geochemical methods applied to seismotectonics. During June 1992, a more complete ana1ysis of the Iblean Foreland groundwaters was performed, co1lecting data on the geochemi- ca1 feature, of the different aquifers in aseismic period. Mu1tivariable statistics, chemical equilibria studies and mapping with our geochemical data, were also performed.

  18. The 3-D aftershock distribution of three recent M5~5.5 earthquakes in the Anza region,California (United States)

    Zhang, Q.; Wdowinski, S.; Lin, G.


    The San Jacinto fault zone (SJFZ) exhibits the highest level of seismicity compared to other regions in southern California. On average, it produces four earthquakes per day, most of them at depth of 10-17 km. Over the past decade, an increasing seismic activity occurred in the Anza region, which included three M5~5.5 events and their aftershock sequences. These events occurred in 2001, 2005, and 2010. In this research we map the 3-D distribution of these three events to evaluate their rupture geometry and better understand the unusual deep seismic pattern along the SJFZ, which was termed "deep creep" (Wdowinski, 2009). We relocated 97,562 events from 1981 to 2011 in Anza region by applying the Source-Specific Station Term (SSST) method (Lin et al., 2006) and used an accurate 1-D velocity model derived from 3-D model of Lin et al (2007) and used In order to separate the aftershock sequence from background seismicity, we characterized each of the three aftershock sequences using Omori's law. Preliminary results show that all three sequences had a similar geometry of deep elongated aftershock distribution. Most aftershocks occurred at depth of 10-17 km and extended over a 70 km long segments of the SJFZ, centered at the mainshock hypocenters. A comparative study of other M5~5.5 mainshocks and their aftershock sequences in southern California reveals very different geometrical pattern, suggesting that the three Anza M5~5.5 events are unique and can be indicative of "deep creep" deformation processes. Reference 1.Lin, G.and Shearer,P.M.,2006, The COMPLOC earthquake location package,Seism. Res. Lett.77, pp.440-444. 2.Lin, G. and Shearer, P.M., Hauksson, E., and Thurber C.H.,2007, A three-dimensional crustal seismic velocity model for southern California from a composite event method,J. Geophys.Res.112, B12306, doi: 10.1029/ 2007JB004977. 3.Wdowinski, S. ,2009, Deep creep as a cause for the excess seismicity along the San Jacinto fault, Nat. Geosci.,doi:10.1038/NGEO684.

  19. TheQc value of coda for EryuanM 5.5 earthquake in Yunan Province in the year 2013%2013年云南洱源M 5.5地震尾波Qc值

    Institute of Scientific and Technical Information of China (English)

    高琼; 李孝宾; 陈佳; 王军


    2013年3月3日云南洱源发生M 5.5地震,选取地震发生前后洱源地震台记录的40个数字化地震波形,基于地方震尾波单次散射模型,测算震源区尾波 Qc ( f )值。结果表明,当中心频率取3.0—18 Hz时,洱源地区尾波Qc值为181.08—692.88,得到Qc值与频率f的关系为Qc(f)=87.4f0.739,表明该区属中等构造活动地区。%AnM 5.5 earthquake occurred in Eryuan of Yunnan Province on Mar.3, 2013. Using forty digital data before and after Eryuan earthquake recorded by Eryuan Seismic Station, based on the single scattering theory of coda waves for local earthquakes, theQc value of coda at the source region has been estimated. The results show that theQc value of coda waves at Eryuan region is in the range of 181.08—692.88 when central frequency is in the range of 3.0—18.0 Hz. It was obtained that the relationship between codaQc and frequencyf isQc ( f ) = 87.4f0.739 in this area, so the seismic area belongs to moderate tectonic activity area.

  20. Monitoring the Corniglio Landslide (Parma, Italy) before and after the M=5.4 earthquake of December 2008 (United States)

    Virdis, S.; Guastaldi, E.; Rindinella, A.; Disperati, L.; Ciulli, A.


    In this work we present the results of monitoring the Corniglio landslide (CL), a large landslide located in the Northern Apennines, by integrating traditional geomorphologic and geological surveys, digital photogrammetry, GPS and geostatistics. The CL spreads over an area of about 3 km x 1 km, close to Corniglio village (Parma, Italy). We propose a new kinematic framework for the CL as Deep-Seated Slope Gravitational Deformation (DSGSD). Surveys were carried out in six periods, in July and September 2006, March and August 2007, July 2008 (after a M=4 earthquake of 28 December 2007, 10 km far from Corniglio), and finally January 2009 (after several earthquakes occurred in the last days of December 2008, with magnitude from 4 to 5.4 and epicentres located less than 30 km far from Corniglio). Geological survey, interpretation of orthophotographs related to 1976, 1988, 1994, 1996, 1998, 2005, and satellite imagery related to 2003 were integrated for analysing the state of activity of landslide from 1976 to 2009, quantifying the ground displacement vectors. A RTK GPS survey was periodically carried out in order to locate the crown of the main landslide scarp and to identify reactivation of the CL after the earthquakes of the end of December 2008. Then, kriged multitemporal maps representing azimuth and module of ground displacement vectors were built, by evaluating the displacement with time of homologous ground targets on the multitemporal remotely sensed images. Measuring of ground deformations was performed on imagery related to the periods between December 1994 to July 1996, between October and November 1996, as well as the recurrent activity from October 1998 to 2003. In some sector of the main body of the landslide we estimated 70 m of total of ground displacement. The fieldwork results and photogeologic interpretation performed along the the Bratica valley, to the east of the CL, suggest that the occurrence of rigid behaviour lithotypes (Mt. Caio calcareous

  1. Geomagnetic signal induced by the M5.7 earthquake occurred on September 24-th, 2016, in the seismic active Vrancea zone, Romania (United States)

    Stanica, Dumitru; Armand Stanica, Dragos


    In this paper, we used the geomagnetic time series collected in real time by the electromagnetic monitoring system, placed at the Geomagnetic Observatory Provita de Sus, to emphasize possible relationships between the pre-seismic anomalous behavior of the normalized function Bzn and M5.7 earthquake occurrence in Vrancea seismic active zone, on September 24, 2016. It has already been demonstrated (Stanica and Stanica, 2012, Stanica et al., 2015) that for a 2D geoelectric structure, in pre-seismic conditions, the normalized function Bzn has significant changes in magnitudes due to the electrical conductivity changes, possibly associated with the earthquake-induced rupture-processes and high-pressure fluid flow through the faulting systems developed inside the Vrancea seismogenic volume and along the Carpathian electrical conductivity anomaly. In this circumstances, the daily mean distributions of the Bzn = Bz/Bperp (where Bz is vertical component of the geomagnetic field; Bperp is geomagnetic component perpendicular to the geoelectric strike) and its standard deviation (SD) are performed in the ULF frequency range 0.001Hz to 0.0083Hz by using both the FFT band-pass filter analysis and statistical analysis based on a standardized random variable equation. After analyzing the pre-seismic anomalous intervals, a pre-seismic geomagnetic signal greater than 5 SD was identified on September 22, 2016, what means a lead time of 2 days before the M5.7 earthquake occurred on September 24, emphasized in real time on the web site ( The final conclusion is that the proposed geomagnetic methodology might be used to provide suitable information for the extreme seismic hazard assessment and risk mitigation. References: Dumitru Stanica and Dragos Armand Stanica, Earthquakes precursors, in "Earthquake Research and Analysis-Statistical Studies, Observations and Planning" Book 5, edited by: Dr. Sebastiano D'Amico, ISBN 978-953-51-0134-5, InTech open access publisher

  2. Influence of the impoundment of the Three Gorges Reservoir on the micro-seismicity and the 2013 M5.1 Badong earthquake (Yangtze, China) (United States)

    Zhang, Huai; Cheng, Huihong; Pang, Yajin; Shi, Yaolin; Yuen, David A.


    On December 16, 2013, right after the Three Gorges Reservoir (TGR) reached its highest annual water level, a powerful M5.1 earthquake occurred in Badong County, China's Hubei Province. The epicenter is 5.5 km away from the upstream boundary and 100 km from the dam. Was this earthquake triggered by the impoundment of the TGR, and what are its subsequences? To answer these questions, we constructed a coupled three-dimensional poroelastic finite element model to examine the ground surface deformation, the Coulomb failure stress change (ΔCFS) due to the variation of elastic stress and pore pressure, and the elastic strain energy potential accumulation in the TGR region upon the occurrence of this event. Our calculated maximum surface deformation values beneath the TGR compare well with GPS observations, which validates our numerical model. At the hypocenter of the earthquake, ΔCFS is around 8.0 ∼ 11.0 kPa, revealing that it may be eventually triggered by the impoundment. We also discovered that the total elastic strain energy potential accumulation due to the impounded water load is around 1.7 × 1012 J, merely equivalent to 0.01% of the total energy released by this event, indicating that this earthquake is predominately controlled by the typical regional tectonic settings as well as the weak fault zones, and the reservoir impoundment might only facilitate its procedure or occurrence. Furthermore, the stress level in this region remains high after this earthquake and the subsequent reservoir-triggered micro-seismicity or even bigger event are highly possible.

  3. Continuous Pressure and Temperature Monitoring in Lower Arbuckle Saline Aquifer in Wellington Field, Sumner County, Kansas - Response to the M5.8 Pawnee Earthquake (United States)

    Watney, W. L.; Bidgoli, T. S.; Victorine, J.; Simpson, P.; Holubnyak, Y.; Nolte, K.; Tsoflias, G. P.; Wreath, D.; Birdie, T. R.


    Since April 2016 a downhole P/T gauge has been continuously recording high-resolution data (1 /sec, 0.7 kP and 0.01 ºC accuracy) in the lower Arbuckle saline aquifer at a depth of 1524 m in the Berexco Wellington KGS #1-28 well. The cased well was perforated and tested in August 2011 and has remained idle since. The wellsite located in south-central Kansas has experienced the introduction of numerous, low magnitude earthquakes since early 2015. The downhole pressure measured at the start of continuous monitoring in April 2016 was 216 kP above pressures measured five years before in August 2011. Pressure has risen at a rate of up to 4.1 kP /mo until 9-1-16, two-days prior to the Pawnee earthquake, after which time, long-term pressure has remained essentially level (mid October 2017). In addition, short-term, multiple, hours-long, asymmetric pressure spikes of up to 345 kP accompanied by temperature falls of 0.3 ºC have been observed. The M5.8 Pawnee earthquake was detected by pressure oscillations (1.4 to 5.5 kP and 0.1 sec freq) coinciding closely with the larger amplitude portion of the earthquake's CODA. Oscillations are attributed local aquifer and wellbore effects from the wave train of the passing earthquake. The validation of a regional pressure field forecasted by simulation of brine disposal by Bidgoli et al. (2016) suggests hydrologic continuity of the regional Arbuckle aquifer and a possible explanation for the observed expansion of the seismicity linked to the pressure field. Short term spikes of pressure increases and temperature falls suggest cooler brine entering casing perforations that accompany the pressure increase. These short term anomalies are attributed to changes in disposal rates and casing pressure of wells in the local vicinity. The leveling off of pressure that occurred 2-days before the Pawnee earthquake may be just a coincidence, but could potentially have occurred either from moving brine from the Arbuckle into another formation or

  4. Drilling into seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines (DSeis) (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Cichowicz, Artur; Onstott, Tullis; Kieft, Tom; Boettcher, Margaret; Wiemer, Stefan; Ziegler, Martin; Janssen, Christoph; Shapiro, Serge; Gupta, Harsh; Dight, Phil


    Several times a year, mining-induced earthquakes with magnitudes equal to or larger than 2 take place only a few tens of meters away from active workings in South African gold mines at depths of up to 3.4 km. The largest event recorded in mining regions, a M5.5 earthquake, took place near Orkney, South Africa on 5 August 2014, with the upper edge of the activated fault being only some hundred meters below the nearest mine workings (3.0 km depth). This is one of the rare events for which detailed seismological data are available, both from surface and underground seismometers and strainmeters, allowing for a detailed seismological analysis and comparison with in-situ observed data. Therefore, this earthquake calls for drilling to investigate the seismogenic zones before aftershocks diminish. Such a project will have a significantly better spatial coverage (including nuclei of ruptures, strong motion sources, asperities, and rupture edges) than drilling in seismogenic zones of natural large earthquakes and will be possible with a lower risk and at much smaller costs. In seismogenic zones in a critical state of stress, it is difficult to delineate reliably the local spatial variation in both directions and magnitudes of principal stresses (3D full stress tensor) reliably. However, we have overcome this problem. We are able to numerically model stress better than before, enabling us to orient boreholes so that the chance of stress-induced damage during stress measurement is minimized, and enabling us to measure the full 3D stress tensor successively in a hole within reasonable time even when stresses are as large as those expected in seismogenic zones. Better recovery of cores with less stress-induced damage during drilling is also feasible. These will allow us to address key scientific questions in earthquake science and associated deep biosphere activities which have remained elusive. We held a 4-day workshop sponsored by ICDP and Ritsumeikan University in October

  5. Anomalous CO2 content in the Gallicano thermo-mineral spring (Serchio Valley, Italy) before the 21 June 2013, Alpi Apuane earthquake (M = 5.2) (United States)

    Pierotti, L.; Botti, F.; D'Intinosante, V.; Facca, G.; Gherardi, F.

    Since late 2002, a continuous automatic monitoring network is operating in Tuscany, Central Italy, to investigate the geochemical response of selected aquifers to local seismic activity. The monitoring is aimed at identifying possible earthquake geochemical precursors. The network is currently constituted by six stations, all equipped with sensors for the measurement of temperature, pH, redox potential, electrical conductivity, CO2 and CH4 dissolved concentration, that have been installed in the areas of highest seismic risk of the region. By combining geochemical data gathered from the automatic station of Gallicano (Garfagnana, Northern Tuscany), and obtained via chemical analyses of spring water samples collected during periodic field surveys in the area surrounding this station, the most significant aspects of the deep fluid circulation paths feeding the Gallicano thermo-mineral system have been investigated, and the geochemical baseline of the Gallicano spring defined. The CO2 continuous signal recorded by the Gallicano automatic station has been then processed over the period 2003-2013 in the search for anomalies possibly related to local seismic activity. A substantial anomaly in CO2 content has been observed at Gallicano in conjunction with the Alpi Apuane earthquake (M = 5.2) of 21 June 2013.

  6. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake

    Directory of Open Access Journals (Sweden)

    T. Bleier


    Full Text Available Several electromagnetic signal types were observed prior to and immediately after 30 October 2007 (Local Time M5.4 earthquake at Alum Rock, Ca with an epicenter ~15 km NE of San Jose Ca. The area where this event occurred had been monitored since November 2005 by a QuakeFinder magnetometer site, unit 609, 2 km from the epicenter. This instrument is one of 53 stations of the QuakeFinder (QF California Magnetometer Network-CalMagNet. This station included an ultra low frequency (ULF 3-axis induction magnetometer, a simple air conductivity sensor to measure relative airborne ion concentrations, and a geophone to identify the arrival of the P-wave from an earthquake. Similar in frequency content to the increased ULF activity reported two weeks prior to the Loma Prieta M7.0 quake in 1989 (Fraser-Smith, 1990, 1991, the QF station detected activity in the 0.01–12 Hz bands, but it consisted of an increasing number of short duration (1 to 30 s duration pulsations. The pulsations peaked around 13 days prior to the event. The amplitudes of the pulses were strong, (3–20 nT, compared to the average ambient noise at the site, (10–250 pT, which included a component arising from the Bay Area Rapid Transit (BART operations. The QF station also detected different pulse shapes, e.g. negative or positive only polarity, with some pulses including a combination of positive and negative. Typical pulse counts over the previous year ranged from 0–15 per day, while the count rose to 176 (east-west channel on 17 October, 13 days prior to the quake. The air conductivity sensor saturated for over 14 h during the night and morning prior to the quake, which occurred at 20:29 LT. Anomalous IR signatures were also observed in the general area, within 50 km of the epicenter, during the 2 weeks prior to the quake. These three simultaneous EM phenomena were compared with data collected over a 1–2-year period at the site. The data was also compared against accounts of air

  7. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis) (United States)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas


    other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  8. Rapid Field Response to the 3 September 2016 M5.8 Earthquake Near Pawnee, Oklahoma: Summary of Structural Damage and Liquefaction Observations (United States)

    Bennett, S. E. K.; Streig, A. R.; Chang, J. C.; Hornsby, K. T.; Woelfel, I. E.; Andrews, R. D.; Briggs, R. W.; McNamara, D. E.; Williams, R. A.; Wald, D. J.


    The Mw5.8 Pawnee, Oklahoma earthquake occurred on 03 September 2016 (07:02:44 local time; depth 5.6 km) in a rural, sparsely populated area. The USGS, Mw-phase moment tensor indicated slip occurred on a sub-vertical fault plane, striking WNW or NNE. Relocations of this mainshock and a dozen aftershocks (Mw 2.5-3.6) in the day following the event were broadly aligned along a WNW trend. These data, along with USGS `Did You Feel It?' and ShakeMap products, helped guide our field response. Our team arrived to the epicentral region 10 hours after the mainshock and spent the next 1.5 days examining 60 km of paved and dirt roads across a 40 km2 area for evidence of surface deformation, liquefaction, and structural damage. We completed a 2 km-long, NNE transect on foot centered on the epicenter, perpendicular to the suspected WNW-striking source fault. No surface rupture was observed during our reconnaissance surveys. We interviewed 10 residents within a 1-6 km radius of the epicenter, who reported up to 30 seconds of shaking. Structural damage was common and ranged from minor to moderate. Failure and collapse of masonry chimneys and exterior house facades made of stone or brick was common near the epicenter, yet a few were undamaged. At several locations, damage patterns suggest an E-W shaking direction; for example, only the western wall of a century-old unreinforced brick storage building failed, elevated fuel tanks shook E-W, and most metal straps securing a trailer home to its cinder-block foundation were sheared in an E-W direction. One earthquake-related injury was caused by chimney bricks that struck a man on the head. Strong ground motion cracked foundations and interior walls at many homes near the epicenter. Minor ground settlement and ground cracking was observed in artificial fill surrounding houses and along the crests of small earthen dams. A large barn fire was attributed to the earthquake. Landowners reported sand blows in farm fields underlain by sandy

  9. Precursory pattern of tidal triggering of earthquakes in six regions of China: the possible relation to the crustal heterogeneity

    Directory of Open Access Journals (Sweden)

    Q. Li


    Full Text Available We found the possible correlation between the precursory pattern of tidal triggering of earthquakes and the crustal heterogeneities, which is of particular importance to the researchers in earthquake prediction and earthquake hazard prevention. We investigated the connection between the tidal variations and earthquake occurrence in the Liyang, Wunansha, Cangshan, Wenan, Luquan and Yaoan regions of China. Most of the regions show a higher correlation with tidal triggering in several years preceding the large or destructive earthquakes compared to other times, indicating that the tidal triggering may inherently relate to the nucleation of the destructive earthquakes during this time. In addition, the analysis results indicate that the Liyang, Cangshan and Luquan regions, with stronger heterogeneity, show statistically significant effects of tidal triggering preceding the large or destructive earthquakes, while the Wunansha, Wenan and Yaoan regions, with relatively weak heterogeneity, show statistically insignificant effects of it, signifying that the precursory pattern of tidal triggering of earthquakes in these six regions is possibly related to the heterogeneities of the crustal rocks. The above results suggest that when people try to find the potential earthquake hazardous areas or make middle–long-term earthquake forecasting by means of precursory pattern of the tidal triggering, the crustal heterogeneity in these areas has to be taken into consideration for the purpose of increasing the prediction efficiency. If they do not consider the influence of crustal heterogeneity on the tidal triggering of earthquakes, the prediction efficiency might greatly decrease.

  10. Earthquake

    Institute of Scientific and Technical Information of China (English)


    正A serious earthquake happened in Wenchuan, Sichuan. Over 60,000 people died in the earhtquake, millins of people lost their homes. After the earthquake, people showed their love in different ways. Some gave food, medicine and everything necessary, some gave money,


    Institute of Scientific and Technical Information of China (English)

    杨又陵; 张翼


    分析了新疆石河子M5.4地震前震中250 km范围内定点形变的观测资料,认为从2002年5月到震前,单测项异常随时间起伏,多台异常在时间上连续发展并呈增加趋势,震前20天位于震中附近的台站出现临震突变;异常在空间呈现由西向东、由南向北,逐渐向震中区发展的态势.与1996年沙湾M5.2地震前的形变异常进行比较,认为存在较大的差异.

  12. 采用线性单事件方法重新定位云南洱源5.5级地震%Using linear single event method for the seismic location of Eryuan M5.5 earthquake

    Institute of Scientific and Technical Information of China (English)

    张华英; 王军; 邓嘉美; 李灿全


    采用田玥提出的一种新地震定位新方法——完全线性单事件定位方法,以Matlab为开发工具编制一款地震定位软件,对2013年3月3日洱源5.5级地震进行重新定位,得到了理想的震源坐标以及发震时刻。%Seismic locating is one of the classic and basic problems in seismology. There are a lot of methods for earthquake location. With Matlab software, a new location program is developed based on the linear location method for single event presented by Tian. The program is adopted for reposition of EryuanM 5.5 earthquake on March 3, 2013 and ideal force coordination and original time are obtained.

  13. Supersymmetric Perturbations of the M5 brane

    CERN Document Server

    Niarchos, Vasilis


    We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the $\\kappa$-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspond...

  14. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. (United States)

    Fink-Jensen, Anders; Fedorova, Irina; Wörtwein, Gitta; Woldbye, David P D; Rasmussen, Thøger; Thomsen, Morgane; Bolwig, Tom G; Knitowski, Karen M; McKinzie, David L; Yamada, Masahisa; Wess, Jürgen; Basile, Anthony


    Muscarinic cholinergic receptors of the M5 subtype are expressed by dopamine-containing neurons of the ventral tegmentum. These M5 receptors modulate the activity of midbrain dopaminergic neurons, which play an important role in mediating reinforcing properties of abused psychostimulants like cocaine. The potential role of M5 receptors in the reinforcing effects of cocaine was investigated using M5 receptor-deficient mice in a model of acute cocaine self-administration. The M5-deficient mice self-administered cocaine at a significantly lower rate than wild-type controls. In the conditioned place preference procedure, a classic test for evaluating the rewarding properties of drugs, M5-deficient mice spent significantly less time in the cocaine-paired compartment than control mice. Moreover, the severity of the cocaine withdrawal syndrome (withdrawal-associated anxiety measured in the elevated plus-maze) was significantly attenuated in mice lacking the M5 receptor. These results demonstrate that M5 receptors play an important role in mediating both cocaine-associated reinforcement and withdrawal.

  15. Application of Subspace Detection to the 6 November 2011 M5.6 Prague, Oklahoma Aftershock Sequence (United States)

    McMahon, N. D.; Benz, H.; Johnson, C. E.; Aster, R. C.; McNamara, D. E.


    Subspace detection is a powerful tool for the identification of small seismic events. Subspace detectors improve upon single-event matched filtering techniques by using multiple orthogonal waveform templates whose linear combinations characterize a range of observed signals from previously identified earthquakes. Subspace detectors running on multiple stations can significantly increasing the number of locatable events, lowering the catalog's magnitude of completeness and thus providing extraordinary detail on the kinematics of the aftershock process. The 6 November 2011 M5.6 earthquake near Prague, Oklahoma is the largest earthquake instrumentally recorded in Oklahoma history and the largest earthquake resultant from deep wastewater injection. A M4.8 foreshock on 5 November 2011 and the M5.6 mainshock triggered tens of thousands of detectable aftershocks along a 20 km splay of the Wilzetta Fault Zone known as the Meeker-Prague fault. In response to this unprecedented earthquake, 21 temporary seismic stations were deployed surrounding the seismic activity. We utilized a catalog of 767 previously located aftershocks to construct subspace detectors for the 21 temporary and 10 closest permanent seismic stations. Subspace detection identified more than 500,000 new arrival-time observations, which associated into more than 20,000 locatable earthquakes. The associated earthquakes were relocated using the Bayesloc multiple-event locator, resulting in ~7,000 earthquakes with hypocentral uncertainties of less than 500 m. The relocated seismicity provides unique insight into the spatio-temporal evolution of the aftershock sequence along the Wilzetta Fault Zone and its associated structures. We find that the crystalline basement and overlying sedimentary Arbuckle formation accommodate the majority of aftershocks. While we observe aftershocks along the entire 20 km length of the Meeker-Prague fault, the vast majority of earthquakes were confined to a 9 km wide by 9 km deep

  16. Nowcasting Earthquakes (United States)

    Rundle, J. B.; Donnellan, A.; Grant Ludwig, L.; Turcotte, D. L.; Luginbuhl, M.; Gail, G.


    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system, and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(nearthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(nearthquake cycle in the defined region at the current time.

  17. Earthquake Facts (United States)

    Jump to Navigation Earthquake Facts The largest recorded earthquake in the United States was a magnitude 9.2 that struck Prince William Sound, ... we know, there is no such thing as "earthquake weather" . Statistically, there is an equal distribution of ...

  18. Nowcasting earthquakes (United States)

    Rundle, J. B.; Turcotte, D. L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G.


    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(n < n(t)) for the current count n(t) for the small earthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(n < n(t)). EPS is therefore the current level of hazard and assigns a number between 0% and 100% to every region so defined, thus providing a unique measure. Physically, the EPS corresponds to an estimate of the level of progress through the earthquake cycle in the defined region at the current time.

  19. The Blue Straggler Population of the Globular Cluster M5

    CERN Document Server

    Lanzoni, B; Ferraro, F R; Mancini, C; Beccari, G; Rood, R T; Mapelli, M; Sigurdsson, S


    By combining high-resolution HST and wide-field ground based observations, in ultraviolet and optical bands, we study the Blue Stragglers Star (BSS) population of the galactic globular cluster M5 (NGC 5904) from its very central regions up to its periphery. The BSS distribution is highly peaked in the cluster center, decreases at intermediate radii and rises again outward. Such a bimodal distribution is similar to those previously observed in other globular clusters (M3, 47Tucanae, NGC6752). As for these clusters, dynamical simulations suggest that, while the majority of BSS in M5 could be originated by stellar collisions, a significant fraction (20-40%) of BSS generated by mass transfer processes in primordial binaries is required to reproduce the observed radial distribution. A candidate BSS has been detected beyond the cluster tidal radius. If confirmed, this could represent an interesting case of an "evaporating" BSS.

  20. Wilson Loops for M2- and M5-brane spaces

    CERN Document Server

    Quijada, Edward


    We calculate the quark and anti-quark interaction energy in different positions in spaces generated by $N$ coincident $M2$- and $M5$-branes. We use the Maldacena-Rey-Yee method for calculating this energy as a function of quark-antiquark separation. We obtain the solution for these problems as integrals of the metric elements. For limiting regimes we find simpler solutions for which some potentials exhibit a confinement behavior.

  1. Supersymmetric attractors, topological strings, and the M5-brane CFT (United States)

    Guica, Monica M.

    One of the purposes of this thesis is to present the consistent and unifying picture that emerges in string and M-theory with eight supercharges. On one hand, this involves classifying and relating supersymmetric objects that occur in N = 2 compactifications of string and M-theory on a Calabi-Yau manifold. These come in a surprisingly wide variety of four and five-dimensional black holes, black rings and their sometimes very complicated bound states. On the other hand, the topological string also makes its appearance in theories with eight supercharges, and turns out to compute certain black hole degeneracies. We dedicate the introduction and the first chapter to summarizing and reviewing the beautiful relationships between black holes, black rings, their dual conformal field theory and the topological string, and we also outline the remaining puzzles and issues. Some of the black holes in question can be obtained by multiply-wrapping an M-theory M5-brane on a self-intersecting four-cycle in the Calabi-Yau manifold. Their dual microscopic description is known, and consists of a two-dimensional conformal field theory (CFT) which is the low-energy limit of the gauge theory that resides on the worldvolume of the M5 brane. We show that in a certain limit the M5-brane CFT is - perhaps surprisingly - able to reproduce the entropy of a completely different type of black holes, those obtained from wrapped M2-branes, whose microscopic description has not yet been understood. We also argue that certain black hole bound states should also be described by the same CFT, which suggests a unifying description of the various black objects in eight-supercharge supergravity theories. Finally, we describe and present a proof of the so-called OSV conjecture, which states that the mixed partition function of N = 2 four-dimensional BPS black holes equals the modulus square of the type A topological string partition function. We also attempt to use this relationship to better understand

  2. The geometry of the M5-branes and TQFTs

    CERN Document Server

    Bonelli, G


    The calculation of the partition function for N M5-branes is addressed for the case in which the worldvolume wraps a manifold $T^2\\times M_4$, where $M_4$ is simply connected and Kaehler. This is done in a compactification of M-theory which induces the Vafa-Witten theory on $M_4$ in the limit of vanishing torus volume. The results follow from the equivalence of the BPS spectrum counting in the complementary limit of vanishing $M_4$ volumes and from a classification of the the moduli space of quantum vacua of the supersymmetric twisted theory in terms of associated spectral covers. This reduces the problem of the moduli counting to algebraic equations.

  3. 3D supergravity from wrapped M5-branes

    CERN Document Server

    Karndumri, Parinya


    Through consistent Kaluza-Klein reduction, we construct 3D N=2 gauged supergravities corresponding to twisted compactifications of M5-branes on a product of Riemann surfaces, including Kahler-Einstein four-manifolds. We extend the reduction to fermionic supersymmetry variations in order to determine the 3D Killing spinor equations and classify all (timelike) supersymmetric solutions. We show that the superpotential T dictates all supersymmetric solutions, not just AdS3 vacua. As a by-product, we identify an infinite class of new supersymmetric warped AdS3 (Godel) and warped dS3 critical points. Moreover, we show that T encodes the central charge and R symmetry of the dual N = (0,2) SCFTs in the large N limit. Upon uplift to 11D, we use this result to write the higher-dimensional geometries in canonical form and discuss the relation to existing classifications of supersymmetric AdS3 geometries.

  4. M3与M5的MICM鉴别

    Institute of Scientific and Technical Information of China (English)

    索翠平; 李寅; 赵霞


    @@ 急性早幼粒细胞自血病(M3型,acute promyelocytic leukemia,APL)和急性单核细胞白血病(M5型,acute monocytic leukemia,AMOL)同属于急性非淋巴细胞白血病.二者在临床与形态上均有相似之处,特别是细颗粒型急性早幼粒细胞白血病(M3b)在形态上更易被误诊为急性单核细胞白血病.但二者的治疗与预后却有很大的区别.在此,结合MICM分型原则对二者加以鉴别,以免造成误诊,导致不应有的后果.

  5. Groundwater Level Prediction using M5 Model Trees (United States)

    Nalarajan, Nitha Ayinippully; Mohandas, C.


    Groundwater is an important resource, readily available and having high economic value and social benefit. Recently, it had been considered a dependable source of uncontaminated water. During the past two decades, increased rate of extraction and other greedy human actions have resulted in the groundwater crisis, both qualitatively and quantitatively. Under prevailing circumstances, the availability of predicted groundwater levels increase the importance of this valuable resource, as an aid in the planning of groundwater resources. For this purpose, data-driven prediction models are widely used in the present day world. M5 model tree (MT) is a popular soft computing method emerging as a promising method for numeric prediction, producing understandable models. The present study discusses the groundwater level predictions using MT employing only the historical groundwater levels from a groundwater monitoring well. The results showed that MT can be successively used for forecasting groundwater levels.

  6. 3D supergravity from wrapped M5-branes (United States)

    Karndumri, Parinya; Ó Colgáin, Eoin


    Through consistent Kaluza-Klein reduction, we construct 3D N=2 gauged supergravities corresponding to twisted compactifications of M5-branes on a product of constant curvature Riemann surfaces, including Kähler-Einstein four-manifolds. We extend the reduction to fermionic supersymmetry variations in order to determine the 3D Killing spinor equations and classify all timelike supersymmetric solutions. As a by-product, we identify an infinite class of new supersymmetric warped AdS 3 (Gödel) and warped dS 3 solutions. Moreover, we show that the superpotential T encodes the central charge and R symmetry of the dual N=(0,2) SCFTs in the large N limit. We demonstrate that the R symmetry matches the canonical U(1) isometry from existing classifications of supersymmetric AdS 3 solutions to 11D supergravity with N=(0,2) supersymmetry.

  7. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina


    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  8. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)


    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  9. A Massive Neutron Star in the Globular Cluster M5

    CERN Document Server

    Freire, Paulo C C; Berg, Maureen van den; Hessels, Jason W T


    We report the results of 18 years of Arecibo timing of two pulsars in the globular cluster NGC 5904 (M5), PSR B1516+02A and PSR B1516+02B. This has allowed the measurement of the proper motions of these pulsars and of the cluster. PSR B1516+02B is a 7.95-ms pulsar in a binary system with a ~0.2 solar-mass companion and an orbital period of 6.86 days. In deep HST images, no optical counterpart is detected at the position of the pulsar, implying the companion is either a white dwarf or a low-mass MS star. The eccentricity of the orbit (e = 0.14) has allowed a measurement of the rate of advance of periastron: 0.0136 +/ 0.0007 degrees per year. It is very likely that the periastron advance is due to the effects of general relativity; the total mass of the binary system is then 2.14 +/- 0.16 solar masses. The small measured mass function implies, in a statistical sense, that a very large fraction of this total mass is contained in the pulsar: 1.94 +0.17/-0.19 solar masses (1 sigma$); there is a 5 % probability tha...

  10. Precision radial velocities of 15 M5 - M9 dwarfs

    CERN Document Server

    Barnes, J R; Jones, H R A; Jeffers, S V; Rojo, P; Arriagada, P; Jordan, A; Minniti, D; Tuomi, M; Pinfield, D; Anglada-Escude, G


    We present radial velocity measurements of a sample of M5V-M9V stars from our Red-Optical Planet Survey, ROPS, operating at 0.65-1.025 micron. Radial velocities for 15 stars, with r.m.s. precision down to 2.5 m/s over a week long time scale are achieved using Thorium-Argon reference spectra. We are sensitive to planets with m_psin(i) >= 1.5 MEarth (3 MEarth at 2-sigma) in the classical habitable zone and our observations currently rule out planets with m_psin(i) > 0.5 MJup at 0.03 AU for all our targets. A total of 9 of the 15 targets exhibit r.m.s. 10 MEarth in 0.03 AU orbits. Since the mean rotation velocity is of order 8 km/s for an M6V star and 15 km/s by M9V, we avoid observing only slow rotators that would introduce a bias towards low axial inclination i << 90 deg systems, which are unfavourable for planet detection. Our targets with the highest vsini values exhibit radial velocities significantly above the photon-noise limited precision, even after accounting for vsini. We therefore monitored st...

  11. Supersymmetric M5 brane theories on R × CP2 (United States)

    Kim, Hee-Cheol; Lee, Kimyeong


    We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant 1/{g_{{YM}^2}}=k/{4{π^2}} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1 , 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU( N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Z k modding of the AdS7 × S4 geometry, we speculate that the M region is for k ≲ N 1/3 and the type IIA region is N 1/3 ≲ k ≲ N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.

  12. Remotely triggered earthquakes following moderate main shocks (United States)

    Hough, S.E.


    Since 1992, remotely triggered earthquakes have been identified following large (M > 7) earthquakes in California as well as in other regions. These events, which occur at much greater distances than classic aftershocks, occur predominantly in active geothermal or volcanic regions, leading to theories that the earthquakes are triggered when passing seismic waves cause disruptions in magmatic or other fluid systems. In this paper, I focus on observations of remotely triggered earthquakes following moderate main shocks in diverse tectonic settings. I summarize evidence that remotely triggered earthquakes occur commonly in mid-continent and collisional zones. This evidence is derived from analysis of both historic earthquake sequences and from instrumentally recorded M5-6 earthquakes in eastern Canada. The latter analysis suggests that, while remotely triggered earthquakes do not occur pervasively following moderate earthquakes in eastern North America, a low level of triggering often does occur at distances beyond conventional aftershock zones. The inferred triggered events occur at the distances at which SmS waves are known to significantly increase ground motions. A similar result was found for 28 recent M5.3-7.1 earthquakes in California. In California, seismicity is found to increase on average to a distance of at least 200 km following moderate main shocks. This supports the conclusion that, even at distances of ???100 km, dynamic stress changes control the occurrence of triggered events. There are two explanations that can account for the occurrence of remotely triggered earthquakes in intraplate settings: (1) they occur at local zones of weakness, or (2) they occur in zones of local stress concentration. ?? 2007 The Geological Society of America.

  13. Holographic cosmology from a system of M2–M5 branes

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir, E-mail: [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Setare, Mohammad Reza, E-mail: [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Ali, Ahmed Farag, E-mail: [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt)


    In this paper, we analyze the holographic cosmology using a M2–M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  14. Holographic cosmology from a system of M2-M5 branes (United States)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag


    In this paper, we analyze the holographic cosmology using a M2-M5 brane configuration. In this configuration, a M2-brane will be placed in between a M5-brane and an anti-M5-brane. The M2-brane will act as a channel for energy to flow from an anti-M5-brane to a M5-brane, and this will increase the degrees of freedom on the M5-brane causing inflation. The inflation will end when the M5-brane and anti-M5-brane get separated. However, at a later stage the distance between the M5-brane and the anti-M5-bran can reduce and this will cause the formation of tachyonic states. These tachyonic states will again open a bridge between the M5-branes and the anti-M5-branes, which will cause further acceleration of the universe.

  15. Earthquake Source and Ground Motion Characteristics of Great Kanto Earthquakes (United States)

    Somerville, P. G.; Sato, T.; Wald, D. J.; Graves, R. W.; Dan, K.


    This paper describes the derivation of a rupture model of the 1923 Kanto earthquake, and the estimation of ground motions that occurred during that earthquake and that might occur during future great Kanto earthquakes. The rupture model was derived from the joint inversion of geodetic and teleseismic data. The leveling and triangulation data place strong constraints on the distribution and orientation of slip on the fault. The most concentrated slip is in the shallow central and western part of the fault. The location of the hypocenter on the western part of the fault gives rise to strong near fault rupture directivity effects, which are largest toward the east in the Boso Peninsula. To estimate the ground motions caused by this earthquake, we first calibrated 1D and 3D wave propagation path effects using the Odawara earthquake of 5 August 1990 (M 5.1), the first earthquake larger than M 5 in the last 60 years near the hypocenter of the 1923 Kanto earthquake. The simulation of the moderate-sized Odawara earthquake demonstrates that the 3D velocity model works quite well at reproducing the recorded long-period (T > 3.33 sec) strong motions, including basin-generated surface waves, for a number of sites located throughout the Kanto basin region. Using this validated 3D model along with the rupture model described above, we simulated the long-period (T > 4 sec) ground motions in this region for the 1923 Kanto earthquake. The largest ground motions occur east of the epicenter along the central and southern part of the Boso Peninsula. These large motions arise from strong rupture directivity effects and are comprised of relatively simple, source-controlled pulses with a dominant period of about 10 sec. Other rupture models and hypocenter locations generally produce smaller long period ground motion levels in this region that those of the 1923 event. North of the epicentral region, in the Tokyo area, 3D basin-generated phases are quite significant, and these phases

  16. Earthquake Hazards Program: Earthquake Scenarios (United States)

    U.S. Geological Survey, Department of the Interior — A scenario represents one realization of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture geometry and estimating...

  17. Earthquake engineering research: 1982 (United States)

    The Committee on Earthquake Engineering Research addressed two questions: What progress has research produced in earthquake engineering and which elements of the problem should future earthquake engineering pursue. It examined and reported in separate chapters of the report: Applications of Past Research, Assessment of Earthquake Hazard, Earthquake Ground Motion, Soil Mechanics and Earth Structures, Analytical and Experimental Structural Dynamics, Earthquake Design of Structures, Seismic Interaction of Structures and Fluids, Social and Economic Aspects, Earthquake Engineering Education, Research in Japan.

  18. On near-source earthquake triggering (United States)

    Parsons, T.; Velasco, A.A.


    When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.

  19. Coping with earthquakes induced by fluid injection (United States)

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul S.; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne


    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  20. Connecting slow earthquakes to huge earthquakes. (United States)

    Obara, Kazushige; Kato, Aitaro


    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  1. Connecting slow earthquakes to huge earthquakes (United States)

    Obara, Kazushige; Kato, Aitaro


    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes.

  2. Stress triggering and the Canterbury earthquake sequence (United States)

    Steacy, Sandy; Jiménez, Abigail; Holden, Caroline


    The Canterbury earthquake sequence, which includes the devastating Christchurch event of 2011 February, has to date led to losses of around 40 billion NZ dollars. The location and severity of the earthquakes was a surprise to most inhabitants as the seismic hazard model was dominated by an expected Mw > 8 earthquake on the Alpine fault and an Mw 7.5 earthquake on the Porters Pass fault, 150 and 80 km to the west of Christchurch. The sequence to date has included an Mw = 7.1 earthquake and 3 Mw ≥ 5.9 events which migrated from west to east. Here we investigate whether the later events are consistent with stress triggering and whether a simple stress map produced shortly after the first earthquake would have accurately indicated the regions where the subsequent activity occurred. We find that 100 per cent of M > 5.5 earthquakes occurred in positive stress areas computed using a slip model for the first event that was available within 10 d of its occurrence. We further find that the stress changes at the starting points of major slip patches of post-Darfield main events are consistent with triggering although this is not always true at the hypocentral locations. Our results suggest that Coulomb stress changes contributed to the evolution of the Canterbury sequence and we note additional areas of increased stress in the Christchurch region and on the Porters Pass fault.

  3. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone


    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  4. Is Earthquake Triggering Driven by Small Earthquakes?

    CERN Document Server

    Helmstetter, A


    Using a catalog of seismicity for Southern California, we measure how the number of triggered earthquakes increases with the earthquake magnitude. The trade-off between this scaling and the distribution of earthquake magnitudes controls the relative role of small compared to large earthquakes. We show that seismicity triggering is driven by the smallest earthquakes, which trigger fewer aftershocks than larger earthquakes, but which are much more numerous. We propose that the non-trivial scaling of the number of aftershocks emerges from the fractal spatial distribution of aftershocks.

  5. Predictable earthquakes? (United States)

    Martini, D.


    acceleration) and global number of earthquake for this period from published literature which give us a great picture about the dynamical geophysical phenomena. Methodology: The computing of linear correlation coefficients gives us a chance to quantitatively characterise the relation among the data series, if we suppose a linear dependence in the first step. The correlation coefficients among the Earth's rotational acceleration and Z-orbit acceleration (perpendicular to the ecliptic plane) and the global number of the earthquakes were compared. The results clearly demonstrate the common feature of both the Earth's rotation and Earth's Z-acceleration around the Sun and also between the Earth's rotational acceleration and the earthquake number. This fact might means a strong relation among these phenomena. The mentioned rather strong correlation (r = 0.75) and the 29 year period (Saturn's synodic period) was clearly shown in the counted cross correlation function, which gives the dynamical characteristic of correlation, of Earth's orbital- (Z-direction) and rotational acceleration. This basic period (29 year) was also obvious in the earthquake number data sets with clear common features in time. Conclusion: The Core, which involves the secular variation of the Earth's magnetic field, is the only sufficiently mobile part of the Earth with a sufficient mass to modify the rotation which probably effects on the global time distribution of the earthquakes. Therefore it might means that the secular variation of the earthquakes is inseparable from the changes in Earth's magnetic field, i.e. the interior process of the Earth's core belongs to the dynamical state of the solar system. Therefore if the described idea is real the global distribution of the earthquakes in time is predictable.

  6. Defeating Earthquakes (United States)

    Stein, R. S.


    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  7. Modified mercalli intensities for nine earthquakes in central and western Washington between 1989 and 1999 (United States)

    Brocher, Thomas M.; Dewey, James W.; Cassidy, John F.


    We determine Modified Mercalli (Seismic) Intensities (MMI) for nine onshore earthquakes of magnitude 4.5 and larger that occurred in central and western Washington between 1989 and 1999, on the basis of effects reported in postal questionnaires, the press, and professional collaborators. The earthquakes studied include four earthquakes of M5 and larger: the M5.0 Deming earthquake of April 13, 1990, the M5.0 Point Robinson earthquake of January 29, 1995, the M5.4 Duvall earthquake of May 3, 1996, and the M5.8 Satsop earthquake of July 3, 1999. The MMI are assigned using data and procedures that evolved at the U.S. Geological Survey (USGS) and its Department of Commerce predecessors and that were used to assign MMI to felt earthquakes occurring in the United States between 1931 and 1986. We refer to the MMI assigned in this report as traditional MMI, because they are based on responses to postal questionnaires and on newspaper reports, and to distinguish them from MMI calculated from data contributed by the public by way of the internet. Maximum traditional MMI documented for the M5 and larger earthquakes are VII for the 1990 Deming earthquake, V for the 1995 Point Robinson earthquake, VI for the 1996 Duvall earthquake, and VII for the 1999 Satsop earthquake; the five other earthquakes were variously assigned maximum intensities of IV, V, or VI. Starting in 1995, the Pacific Northwest Seismic Network (PNSN) published MMI maps for four of the studied earthquakes, based on macroseismic observations submitted by the public by way of the internet. With the availability now of the traditional USGS MMI interpreted for all the sites from which USGS postal questionnaires were returned, the four Washington earthquakes join a rather small group of earthquakes for which both traditional USGS MMI and some type of internet-based MMI have been assigned. The values and distributions of the traditional MMI are broadly similar to the internet-based PNSN intensities; we discuss some

  8. Retrospective stress-forecasting of earthquakes (United States)

    Gao, Yuan; Crampin, Stuart


    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  9. Hurricane Sandy and earthquakes




    Submit for consideration the connection between formation of a hurricane Sandy and earthquakes. As a rule, weather anomalies precede and accompany earthquakes. The hurricane Sandy emerged 2 days prior to strong earthquakes that occurred in the area. And the trajectory of the hurricane Sandy matched the epicenter of the earthquakes. Possibility of early prediction of natural disasters will minimize the moral and material damage.

  10. Multiplicative earthquake likelihood models incorporating strain rates (United States)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.


    SUMMARYWe examine the potential for strain-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and strain-rates for the New Zealand region. Three components of the strain rate estimated from GPS data over the period 1991-2011 are considered: the shear, rotational and dilatational strain rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the strain rate estimates. The shear strain rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including strain rates are significantly more informative than the best models excluding strain rates in both the fitting and testing period. A hybrid that combines the shear and dilatational strain rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational strain rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.

  11. Smartphone-Based Earthquake and Tsunami Early Warning in Chile (United States)

    Brooks, B. A.; Baez, J. C.; Ericksen, T.; Barrientos, S. E.; Minson, S. E.; Duncan, C.; Guillemot, C.; Smith, D.; Boese, M.; Cochran, E. S.; Murray, J. R.; Langbein, J. O.; Glennie, C. L.; Dueitt, J.; Parra, H.


    Many locations around the world face high seismic hazard, but do not have the resources required to establish traditional earthquake and tsunami warning systems (E/TEW) that utilize scientific grade seismological sensors. MEMs accelerometers and GPS chips embedded in, or added inexpensively to, smartphones are sensitive enough to provide robust E/TEW if they are deployed in sufficient numbers. We report on a pilot project in Chile, one of the most productive earthquake regions world-wide. There, magnitude 7.5+ earthquakes occurring roughly every 1.5 years and larger tsunamigenic events pose significant local and trans-Pacific hazard. The smartphone-based network described here is being deployed in parallel to the build-out of a scientific-grade network for E/TEW. Our sensor package comprises a smartphone with internal MEMS and an external GPS chipset that provides satellite-based augmented positioning and phase-smoothing. Each station is independent of local infrastructure, they are solar-powered and rely on cellular SIM cards for communications. An Android app performs initial onboard processing and transmits both accelerometer and GPS data to a server employing the FinDer-BEFORES algorithm to detect earthquakes, producing an acceleration-based line source model for smaller magnitude earthquakes or a joint seismic-geodetic finite-fault distributed slip model for sufficiently large magnitude earthquakes. Either source model provides accurate ground shaking forecasts, while distributed slip models for larger offshore earthquakes can be used to infer seafloor deformation for local tsunami warning. The network will comprise 50 stations by Sept. 2016 and 100 stations by Dec. 2016. Since Nov. 2015, batch processing has detected, located, and estimated the magnitude for Mw>5 earthquakes. Operational since June, 2016, we have successfully detected two earthquakes > M5 (M5.5, M5.1) that occurred within 100km of our network while producing zero false alarms.

  12. Tohoku earthquake: a surprise?

    CERN Document Server

    Kagan, Yan Y


    We consider three issues related to the 2011 Tohoku mega-earthquake: (1) how to evaluate the earthquake maximum size in subduction zones, (2) what is the repeat time for the largest earthquakes in Tohoku area, and (3) what are the possibilities of short-term forecasts during the 2011 sequence. There are two quantitative methods which can be applied to estimate the maximum earthquake size: a statistical analysis of the available earthquake record and the moment conservation principle. The latter technique studies how much of the tectonic deformation rate is released by earthquakes. For the subduction zones, the seismic or historical record is not sufficient to provide a reliable statistical measure of the maximum earthquake. The moment conservation principle yields consistent estimates of maximum earthquake size: for all the subduction zones the magnitude is of the order 9.0--9.7, and for major subduction zones the maximum earthquake size is statistically indistinguishable. Starting in 1999 we have carried out...

  13. Emergency therapeutic leukapheresis in a case of acute myeloid leukemia M5 (United States)

    Ranganathan, Sudha; Sesikeran, Shyamala; Gupta, Vineet; Vanajakshi


    Cell separators in India are routinely used for plateletpheresis, peripheral blood stem cell collections and therapeutic plasma exchange. Therapeutic leukapheresis, particularly as an emergency procedure, has been uncommonly performed and reported. Here, a case of a 53-year-old male, diagnosed with acute myeloid leukemia subtype M5 (AML M5) with hyperleukocytosis, who underwent emergency leukaphereis, is reported. After two procedures, there was a decrease of WBC count by 85%, which enabled cytotoxic therapy to be initiated. PMID:20041073

  14. Earthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake (United States)

    Yoshida, Shingo


    During the passage of the seismic waves from the M7.3 Kumamoto, Kyushu, earthquake on April 16, 2016, a M5.7 [semiofficial value estimated by the Japan Meteorological Agency (JMA)] event occurred in the central part of Oita prefecture, approximately 80 km far away from the mainshock. Although there have been a number of reports that M 5 triggered events. In this paper, we firstly confirm that this event is a M6-class event by re-estimating the magnitude using the strong-motion records of K-NET and KiK-net, and crustal deformation data at the Yufuin station observed by the Geospatial Information Authority of Japan. Next, by investigating the aftershocks of 45 mainshocks which occurred over the past 20 years based on the JMA earthquake catalog (JMAEC), we found that the delay time of the 2016 M5.7 event in Oita was the shortest. Therefore, the M5.7 event could be regarded as an exceptional M > 5 event that was triggered by passing seismic waves, unlike the usual triggered events and aftershocks. Moreover, a search of the JMAEC shows that in the 2016 Oita aftershock area, swarm earthquake activity was low over the past 30 years compared with neighboring areas. We also found that in the past, probably or possibly triggered events frequently occurred in the 2016 Oita aftershock area. The Oita area readily responds to remote triggering because of high geothermal activity and young volcanism in the area. The M5.7 Oita event was triggered by passing seismic waves, probably because large dynamic stress change was generated by the mainshock at a short distance and because the Oita area was already loaded to a critical stress state without a recent energy release as suggested by the past low swarm activity.[Figure not available: see fulltext.

  15. Identification of novel genomic aberrations in AML-M5 in a level of array CGH.

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    Full Text Available To assess the possible existence of unbalanced chromosomal abnormalities and delineate the characterization of copy number alterations (CNAs of acute myeloid leukemia-M5 (AML-M5, R-banding karyotype, oligonucelotide array CGH and FISH were performed in 24 patients with AML-M5. A total of 117 CNAs with size ranging from 0.004 to 146.263 Mb was recognized in 12 of 24 cases, involving all chromosomes other than chromosome 1, 4, X and Y. Cryptic CNAs with size less than 5 Mb accounted for 59.8% of all the CNAs. 12 recurrent chromosomal alterations were mapped. Seven out of them were described in the previous AML studies and five were new candidate AML-M5 associated CNAs, including gains of 3q26.2-qter and 13q31.3 as well as losses of 2q24.2, 8p12 and 14q32. Amplication of 3q26.2-qter was the sole large recurrent chromosomal anomaly and the pathogenic mechanism in AML-M5 was possibly different from the classical recurrent 3q21q26 abnormality in AML. As a tumor suppressor gene, FOXN3, was singled out from the small recurrent CNA of 14q32, however, it is proved that deletion of FOXN3 is a common marker of myeloid leukemia rather than a specific marker for AML-M5 subtype. Moreover, the concurrent amplication of MLL and deletion of CDKN2A were noted and it might be associated with AML-M5. The number of CNA did not show a significant association with clinico-biological parameters and CR number of the 22 patients received chemotherapy. This study provided the evidence that array CGH served as a complementary platform for routine cytogenetic analysis to identify those cryptic alterations in the patients with AML-M5. As a subtype of AML, AML-M5 carries both common recurrent CNAs and unique CNAs, which may harbor novel oncogenes or tumor suppressor genes. Clarifying the role of these genes will contribute to the understanding of leukemogenic network of AML-M5.

  16. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake (United States)

    Grant Ludwig, Lisa; Parker, Jay W.; Rundle, John B.; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott


    Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike‐slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike‐slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north‐south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left‐lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still‐locked deeper structures. A future M6.1–6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping. PMID:27981074

  17. Earthquake Damage - General (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An earthquake is the motion or trembling of the ground produced by sudden displacement of rock in the Earth's crust. Earthquakes result from crustal strain,...

  18. Earthquake Notification Service (United States)

    U.S. Geological Survey, Department of the Interior — The Earthquake Notification Service (ENS) is a free service that sends you automated notifications to your email or cell phone when earthquakes happen.

  19. Earthquakes: hydrogeochemical precursors (United States)

    Ingebritsen, Steven E.; Manga, Michael


    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  20. Earthquakes in Southern California (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in Southern California. This set of slides shows earthquake damage from the following events: Imperial Valley, 1979,...


    Institute of Scientific and Technical Information of China (English)



    Two measures of earthquakes, the seismic moment and the broadband radiated energy, show completely different scaling relations. For shallow earthquakes worldwide from January 1987 to December 1998, the frequency distribution of the seismic moment shows a clear kink between moderate and large earthquakes, as revealed by previous works. But the frequency distribution of the broadband radiated energy shows a single power law, a classical Gutenberg-Richter relation. This inconsistency raises a paradox in the self-organized criticality model of earthquakes.

  2. Children's Ideas about Earthquakes (United States)

    Simsek, Canan Lacin


    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  3. Earthquake and Schools. [Videotape]. (United States)

    Federal Emergency Management Agency, Washington, DC.

    Designing schools to make them more earthquake resistant and protect children from the catastrophic collapse of the school building is discussed in this videotape. It reveals that 44 of the 50 U.S. states are vulnerable to earthquake, but most schools are structurally unprepared to take on the stresses that earthquakes exert. The cost to the…

  4. School Safety and Earthquakes. (United States)

    Dwelley, Laura; Tucker, Brian; Fernandez, Jeanette


    A recent assessment of earthquake risk to Quito, Ecuador, concluded that many of its public schools are vulnerable to collapse during major earthquakes. A subsequent examination of 60 buildings identified 15 high-risk buildings. These schools were retrofitted to meet standards that would prevent injury even during Quito's largest earthquakes. US…

  5. Redefining Earthquakes and the Earthquake Machine (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John


    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  6. Redefining Earthquakes and the Earthquake Machine (United States)

    Hubenthal, Michael; Braile, Larry; Taber, John


    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  7. Operational earthquake forecasting can enhance earthquake preparedness (United States)

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.


    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  8. Structure and abrasive wear resistance of R6M5 steel-tungsten carbide composite coatings (United States)

    Gnyusov, S. F.


    Features of the structure formation, composition, and abrasive wear resistance of R6M5 steel-tungsten carbide (R6M5-WC) composite coatings have been studied as dependent on the WC content. The introduction of ˜20 wt % WC into the hardening composition leads to an increase in the fraction of M6C carbide (in the form of eutectic inclusions with average size ˜5.9 μm at grain boundaries and dispersed ˜0.25 μm particles in the volume of grains), while a large proportion of metastable austenite (˜88 vol %) is still retained. The R6M5-WC coatings exhibit high abrasive wear resistance, which is ensured by the γ → α' martensite transformation during friction and a muiltimodal size distribution of hardening particles.

  9. Large scale validation of the M5L lung CAD on heterogeneous CT datasets

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Torres, E., E-mail:, E-mail: [CEADEN, Havana 11300, Cuba and INFN, Sezione di Torino, Torino 10125 (Italy); Fiorina, E.; Pennazio, F.; Peroni, C. [Department of Physics, University of Torino, Torino 10125, Italy and INFN, Sezione di Torino, Torino 10125 (Italy); Saletta, M.; Cerello, P., E-mail:, E-mail: [INFN, Sezione di Torino, Torino 10125 (Italy); Camarlinghi, N.; Fantacci, M. E. [Department of Physics, University of Pisa, Pisa 56127, Italy and INFN, Sezione di Pisa, Pisa 56127 (Italy)


    Purpose: M5L, a fully automated computer-aided detection (CAD) system for the detection and segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on several image datasets. Methods: M5L is the combination of two independent subsystems, based on the Channeler Ant Model as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural approach. The lungCAM was upgraded with a scan equalization module and a new procedure to recover the nodules connected to other lung structures; its classification module, which makes use of a feed-forward neural network, is based of a small number of features (13), so as to minimize the risk of lacking generalization, which could be possible given the large difference between the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans from three independent datasets, including a detailed analysis of the full Lung Image Database Consortium/Image Database Resource Initiative database, which is not yet found in literature. Results: The lungCAM and M5L performance is consistent across the databases, with a sensitivity of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems is also presented. Conclusions: The M5L performance on a large and heterogeneous dataset is stable and satisfactory, although the development of a dedicated module for GGOs detection could further improve it, as well as an iterative optimization of the training procedure. The main aim of the present study was accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate for supporting radiologists on large

  10. Comparing M5 Model Trees and Neural Networks for River Level Forecasting (United States)

    Khan, S.; See, L.


    Artificial neural networks (ANNs) have been the subject of much research activity in hydrological modelling over the last decade yet this represents only one data-driven modelling approach from among a very rich set. M5 model trees are an example of a technique that has had little application in the hydrological domain yet the results are promising (Solomatine and Xue, 2004). They are a machine learning approach that combines regression trees and classification. The input space is partitioned into subsets based on entropy measures, and regression equations are then fit to these subsets. The advantages over ANNs are (a) their ability to provide knowledge in the form of a decision tree and (b) much faster training times. This has important implications for operational use as they are not black box models. In this study ANNs, M5 model trees and time series analysis have been used to develop models to predict river levels at a gauging station in the River Ouse catchment in Northern England. Two lead times have been used: t+6 and t+24 hours. The input data consisted of historical levels at the gauging stations, upstream level data and rainfall from five rain gauges across the catchment, determined by correlation with the output. The results of the study showed that the ANNs outperformed both the M5 model trees and time series approaches when considering global goodness-of-fit measures such as root mean squared error and coefficient of efficiency. However, the difference in performance between the ANNs and M5 model trees was not large, e.g. 1 percent difference in coefficient of efficiency for t+6 hours. When considering the longer lead time of t+24 hours, the performance of the ANNs and M5 model trees almost converged. The M5 model tree, however, also provides the rules of operation. The first partition for both the t+6 and t+24 hour models was determined by the value of the river level at one of the upstream stations. The individual regression equations associated with

  11. Hidden selection rules, M5-instantons and fluxes in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, & I.N.F.N. Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, 69120 Heidelberg (Germany)


    We introduce a new approach to investigate the selection rules governing the contributions of fluxed M5-instantons to the F-theory four-dimensional effective action, with emphasis on the generation of charged matter F-terms. The structure of such couplings is unraveled by exploiting the perturbative and non-perturbative homological relations, introduced in our companion paper, which encode the interplay between the self-dual 3-form flux on the M5-brane, the background 4-form flux and certain fibral curves. The latter are wrapped by time-like M2-branes representing matter insertions in the instanton path integral. In particular, we clarify how fluxed M5-instantons detect the presence of geometrically massive U(1)s which are responsible for ‘hidden’ selection rules. We discuss how for non-generic embeddings the M5-instanton can probe ‘locally massless’ U(1) symmetries if the rank of its Mordell-Weil group is enhanced compared to that of the bulk. As a phenomenological off-spring we propose a new type of non-perturbative corrections to Yukawa couplings which may change the rank of the Yukawa matrix. Along the way, we also gain new insights into the structure of massive U(1) gauge fluxes in the stable degeneration limit.

  12. Earthquake Science: a New Start

    Institute of Scientific and Technical Information of China (English)

    Chen Yun-tai


    @@ Understanding the mechanisms which cause earthquakes and thus earthquake prediction, is inher-ently difficult in comparison to other physical phenom-ena. This is due to the inaccessibility of the Earth's inte-rior, the infrequency of large earthquakes, and the com-plexities of the physical processes involved. Conse-quently, in its broadest sense, earthquake science--the science of studying earthquake phenomena, is a com-prehensive and inter-disciplinary field. The disciplines involved in earthquake science include: traditional seismology, earthquake geodesy, earthquake geology, rock mechanics, complex system theory, and informa-tion and communication technologies related to earth-quake studies.

  13. Bidirectional feedback observed between a magmatic intrusion and shallow earthquake (United States)

    Ebmeier, Susanna; Elliott, John; Nocquet, Jean-Mathieu; Biggs, Juliet; Mothes, Patricia; Jarrín, Paúl; Yépez, Marco; Aguaiza, Santiago; Lundgren, Paul; Samsonov, Sergey


    Moderate volcano-tectonic earthquakes (M 5-6) during volcanic unrest are unusual, and tend to be associated with major stress perturbations to the crust, occurring during episodes of rifting or the onset of volcanic eruptions. The feedback from such events may be positive, easing magma ascent and eruption, or, as we demonstrate here, negative, hindering any further magma movement. We present measurements of deformation at Chiles-Cerro Negro volcanoes on the Ecuador-Colombian border. There was previously no record of historical activity at either volcano, but between 2013 and early 2015 there were three episodes of unrest characterised by swarms of volcano-tectonic earthquakes of increasing energy and duration and thought to be associated with the hydrothermal system. In October 2014, magmatic processes not only caused many thousands of small earthquakes per day, but culminated in a Mw 5.6 earthquake located on a system of active tectonic faults that last ruptured in 1868. We find that inflation of a mid-crustal magmatic source ~10 km south of the volcanoes ceased abruptly at the time of the earthquake, after which time the rate of seismicity also began a gradual decline. The Chiles-Cerro Negro unrest is therefore an interesting example of magma ascent triggering a moderate earthquake on a tectonic fault and subsequently being inhibited by co-seismic stress changes. This is an important observation for the interpretation of moderate earthquakes during volcanic unrest in terms of evolving hazard.

  14. Stress transfer by the 1988-1989 M = 5.3 and 5.4 Lake Elsman foreshocks to the Loma Prieta fault: Unclamping at the site of peak mainshock slip (United States)

    Perfettini, Hugo; Stein, Ross S.; Simpson, Robert; Cocco, Massimo


    We study the stress transferred by the June 27, 1988, M = 5.3 and August 8, 1989, M = 5.4 Lake Elsman earthquakes, the largest events to strike within 15 km of the future Loma Prieta rupture zone during 74 years before the 1989 M = 6.9 Loma Prieta earthquake. We find that the first Lake Elsman event brought the rupture plane of the second event 0.3-1.6 bars (0.03-0.16 MPa) closer to Coulomb failure but that the Lake Elsman events did not bring the future Loma Prieta hypocentral zone closer to failure. Instead, the Lake Elsman earthquakes are calculated to have reduced the normal stress on (or "undamped") the Loma Prieta rupture surface by 0.5-1.0 bar (0.05-0.10 MPa) at the site where the greatest slip subsequently occurred in the Loma Prieta earthquake. This association between the sites of peak unclamping and slip suggests that the Lake Elsman events did indeed influence the Loma Prieta rupture process. Unclamping the fault would have locally lowered the resistance to sliding. Such an effect could have been enhanced if the lowered normal stress permitted fluid infusion into the undamped part of the fault. Although less well recorded, the ML = 5.0 1964 and ML = 5.3 1967 Corralitos events struck within 10 km of the southwest end of the future Loma Prieta rupture. No similar relationship between the normal stress change and subsequent Loma Prieta slip is observed, although the high-slip patch southwest of the Loma Prieta epicenter corresponds roughly to the site of calculated Coulomb stress increase for a low coefficient of friction. The Lake Elsman-Loma Prieta result is similar to that for the 1987 M = 6.2 Elmore Ranch and M = 6.7 Superstition Hills earthquakes, suggesting that foreshocks might influence the distribution of mainshock slip rather than the site of mainshock nucleation.

  15. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui


    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  16. Phase evolution and microwave dielectric properties of A5M5O17-type ceramics

    Directory of Open Access Journals (Sweden)

    Ali Murad


    Full Text Available A number of A5M5O17 (A = Na, Ca, Sr, La, Nd, Sm, Gd, Dy, Yb; B = Ti, Nb, Ta type compounds were prepared by a solid-state sintering route and characterized in terms of structure, microstructure and microwave dielectric properties. The compatibility of rare earths with mixed niobate/tantalate and titanate phases was investigated. The larger ionic radii mismatch resulted in the formation of pyrochlore and/or mixed phases while in other cases, pure A5M5O17 phase was formed. The samples exhibited relative permittivity in the range of 35 to 82, quality factor (Q × fo = 897 GHz to 11946 GHz and temperature coefficient of resonance frequency (τf = -120 ppm/°C to 318 ppm/°C.

  17. M5-brane in three-form flux and multiple M2-branes

    CERN Document Server

    Ho, Pei-Ming; Matsuo, Yutaka; Shiba, Shotaro


    We investigate the Bagger-Lambert-Gustavsson model associated with the Nambu-Poisson algebra as a theory describing a single M5-brane. We argue that the model is a gauge theory associated with the volume-preserving diffeomorphism in the three-dimenisonal internal space. We derive gauge transformations, actions, supersymmetry transformations, and equations of motions in terms of six-dimensional fields. The equations of motions are written in gauge-covariant form, and the equations for tensor fields have manifest self-dual structure. We demonstrate that the double dimensional reduction of the model reproduces the non-commutative U(1) gauge theory on a D4-brane with a small non-commutativity parameter. We establish relations between parameters in the BLG model and those in M-theory. This shows that the model describes an M5-brane in a large C-field background.

  18. 3d $\\mathcal{N}=2$ minimal SCFTs from Wrapped M5-branes

    CERN Document Server

    Bae, Jin-Beom; Lee, Jaehoon


    We study CFT data of 3-dimensional superconformal field theories (SCFTs) arising from wrapped two M5-branes on closed hyperbolic 3-manifolds. Via so-called 3d/3d correspondence, central charges of these SCFTs are related to a $SL(2)$ Chern-Simons (CS) invariant on the 3-manifolds. We give a rigorous definition of the invariant in terms of resurgence theory and a state-integral model for the complex CS theory. We numerically evaluate the central charges for several closed 3-manifolds with small hyperbolic volume. The computation suggests that the wrapped M5-brane systems give infinitely many discrete SCFTs with small central charges. We also analyze these `minimal' SCFTs in the eye of 3d $\\mathcal{N}=2$ superconformal bootstrap.

  19. Riding the Populist Web: Contextualizing the Five Star Movement (M5S in Italy

    Directory of Open Access Journals (Sweden)

    Liza Lanzone


    Full Text Available This article focuses on three mechanisms to explain the rise of populist movements across Europe. They are politicization of resentment, exploitation of social cleavages, and polarization of resentment and feelings of non-representation. We conceptualize populism as a strategic power game aiming to transform potential majorities into real ones by creating or reframing social cleavages. Our theoretical model is used to explain the rise of the Five Star Movement (M5S. Beppe Grillo’s M5S gained notoriety on the national political scene in Italy just before the 2013 elections and succeeded in get-ting nearly 25 percent of the overall vote. Moreover, it was the only political force that was able to attract votes across the different regions in Italy, making it the country’s only truly national party.

  20. 奥林巴斯OM—DE—M5数码相机测试

    Institute of Scientific and Technical Information of China (English)



  1. Functional dissection of Streptococcus pyogenes M5 protein: the hypervariable region is essential for virulence.

    Directory of Open Access Journals (Sweden)

    Johan Waldemarsson

    Full Text Available The surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here. Mixed infection experiments with wild type bacteria demonstrated that mutants lacking the N-terminal hypervariable region (HVR or the Fg-binding B-repeat region were strongly attenuated, while a mutant lacking the conserved C-repeats was only slightly attenuated. Because the HVR of M5 is not required for phagocytosis resistance, our data imply that this HVR plays a major but unknown role during acute infection. The B-repeat region is required for phagocytosis resistance and specifically binds Fg, suggesting that it promotes virulence by binding Fg. However, B-repeat mutants were attenuated even in Fg-deficient mice, implying that the B-repeats may have a second function, in addition to Fg-binding. These data demonstrate that two distinct M5 regions, including the HVR, are essential to virulence during the early stages of an infection. In particular, our data provide the first in vivo evidence that the HVR of an M protein plays a major role in virulence, focusing interest on the molecular role of this region.

  2. Holography of Wrapped M5-branes and Chern-Simons theory


    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin


    We study three-dimensional superconformal field theories on wrapped M5-branes. Applying the gauge/gravity duality and the recently proposed 3d–3d relation, we deduce quantitative predictions for the perturbative free energy of a Chern–Simons theory on hyperbolic 3-space. Remarkably, the perturbative expansion is expected to terminate at two-loops in the large N limit. We check the correspondence numerically in a number of examples, and confirm the N3 scaling with precise coefficients.

  3. Reduction of earthquake disasters

    Institute of Scientific and Technical Information of China (English)

    陈顒; 陈祺福; 黄静; 徐文立


    The article summarizes the researches on mitigating earthquake disasters of the past four years in China. The studyof earthquake disasters′ quantification shows that the losses increase remarkably when population concentrates inurban area and social wealth increase. The article also summarizes some new trends of studying earthquake disas-ters′ mitigation, which are from seismic hazard to seismic risk, from engineering disaster to social disaster andintroduces the community-centered approach.

  4. Overview of the critical disaster management challenges faced during Van 2011 earthquakes. (United States)

    Tolon, Mert; Yazgan, Ufuk; Ural, Derin N; Goss, Kay C


    On October 23, 2011, a M7.2 earthquake caused damage in a widespread area in the Van province located in eastern Turkey. This strong earthquake was followed by a M5.7 earthquake on November 9, 2011. This sequence of damaging earthquakes led to 644 fatalities. The management during and after these earthquake disaster imposed many critical challenges. In this article, an overview of these challenges is presented based on the observations by the authors in the aftermath of this disaster. This article presents the characteristics of 2011 Van earthquakes. Afterward, the key information related to the four main phases (ie, preparedness, mitigation, response, and recovery) of the disaster in Van is presented. The potential strategies that can be taken to improve the disaster management practice are identified, and a set of recommendations are proposed to improve the existing situation.


    Institute of Scientific and Technical Information of China (English)

    邓志辉; 胡勐乾; 周斌; 陆远忠; 陶京玲; 马晓静; 姜辉; 李红


    With the advances in simulation techniques and understanding of geodynamic processes, numerical simulation is likely to play an increasingly important role in the research of seismic hazard analysis and earthquake prediction. In this paper,on the basis of the paper "A preliminary study on the application of numerical simulation methods to earthquake prediction research ( I ) " , the possible application of uncoordinated deformation analysis, Coulomb stress changes and earthquake probability modeling to the study of earthquake prediction is further discussed.When rock deforms from the elastic into the yield stage, the system is in a critical unstable state, the rock movement may deviate from the normal track and become complicated. The study results show that,before Wenan earthquake( Ms 5. 1 ) on July 4,2006, GPS velocity was well consistent with the numerical simulation speed in most areas of North China, while there were some differences in some regions, especially in the northeast of the North China Plain block, where big inconsistency in movement characteristics occurred, resulting perhaps from the preparation of Wenan earthquake.Research on earthquakes triggered by Coulomb stress change is a focus problem now. Numerical simulation may play an important role in the analysis of Coulomb stress changes. By constructing three-dimensional dynamic model, the effect of various factors on the value and distribution of Coulomb stress change can be simulated, and more realistic results can be obtained. By numerical simulation of Coulomb stress changes to seismic activities beneath Sichuan Zipingpu reservoirs, it is found that with the increase of reservoir water storage time,the pore pressure diffusion in the effective additional stress field will be gradually expanded to the range of more than 10km underground. The regional effective additional stress field and seismic activities show different characteristics in several typical regions.The United States Southern

  6. Zircaloy-4 and M5 high temperature oxidation and nitriding in air

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et Surete Nucleaire, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail:; Dupont, T.; Schmet, B.; Enoch, F. [Universite Technologique de Troyes, BP 2060, 10010 Troyes (France)


    For the purpose of nuclear power plant severe accident analysis, degradation of Zircaloy-4 and M5 cladding tubes in air at high temperature was investigated by thermo-gravimetric analysis, in isothermal conditions, in a 600-1200 deg. C temperature range. Alloys were investigated either in a 'as received' bare state, or after steam pre-oxidation at 500 {sup o}C to simulate in-reactor corrosion. At the beginning of air exposure, the oxidation rate obeys a parabolic law, characteristic of solid-state diffusion limited regime. Parabolic rate constants compare, for Zircaloy-4 as well as for M5, with recently assessed correlations for high temperature Zircaloy-4 steam-oxidation. A thick layer of dense protective zirconia having a columnar structure forms during this diffusion-limited regime. Then, a kinetic transition (breakaway type) occurs, due to radial cracking along the columnar grain boundaries of this protective dense oxide scale. The breakaway is observed for a scale thickness that strongly increases with temperature. At the lowest temperatures, the M5 alloy appears to be breakaway-resistant, showing a delayed transition compared to Zircaloy-4. However, for both alloys, a pre-existing corrosion scale favours the transition, which occurs much earlier. The post transition kinetic regime is linear only for the lowest temperatures investigated. From 800 deg. C, a continuously accelerated regime is observed and is associated with formation of a strongly porous non-protective oxide. A mechanism of nitrogen-assisted oxide growth, involving formation and re-oxidation of ZrN particles, as well as nitrogen associated zirconia phase transformations, is proposed to be responsible for this accelerated degradation.

  7. Status of E-ELT M5 scale-one demonstrator (United States)

    Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick


    The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.

  8. Earthquakes and Schools (United States)

    National Clearinghouse for Educational Facilities, 2008


    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  9. More Earthquake Misery

    Institute of Scientific and Technical Information of China (English)


    Less than four months after the devastation of the Wenchuan earthquake on May 12, another quake brings further death and destruction to southwest China on August 30, a 6.1-magnitude earthquake hit southwest China, the border of Sichuan Province and Yunnan Province. Panzhihua City, Huili County in Sichuan and Yuanmou County and Yongren County in Yunnan were worst hit.

  10. Bam Earthquake in Iran

    CERN Multimedia


    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  11. Holography of wrapped M5-branes and Chern–Simons theory

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics, Research Institute of Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Lee, Sangmin [Center for Theoretical Physics, College of Liberal Studies, Seoul National University, Seoul 151-742 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)


    We study three-dimensional superconformal field theories on wrapped M5-branes. Applying the gauge/gravity duality and the recently proposed 3d–3d relation, we deduce quantitative predictions for the perturbative free energy of a Chern–Simons theory on hyperbolic 3-space. Remarkably, the perturbative expansion is expected to terminate at two-loops in the large N limit. We check the correspondence numerically in a number of examples, and confirm the N{sup 3} scaling with precise coefficients.

  12. New variables in M5 (NGC 5904) and some identification corrections

    CERN Document Server

    Ferro, A Arellano; Giridhar, S; Luna, A; Muneer, S


    We report twelve variables not previously detected in the globular cluster M5 (NGC 5904); one SX Phe and eleven semi-regular variables (SR). Their identifications, equatorial coordinates, ephemerides, and light curves are given. Furthermore, we have explored the light curves of a group of stars whose variability has not been confirmed and that are marked as probable non- variables in the CVSGC. Finally, we offer detailed identifications for some of the known variables in crowded regions that were misidentified in previous studies. We shall also address the cases of the cataclysmic variable or U Gem type V101 and of the variable blue straggler V159.

  13. Demand surge following earthquakes (United States)

    Olsen, Anna H.


    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  14. Modeling earthquake dynamics (United States)

    Charpentier, Arthur; Durand, Marilou


    In this paper, we investigate questions arising in Parsons and Geist (Bull Seismol Soc Am 102:1-11, 2012). Pseudo causal models connecting magnitudes and waiting times are considered, through generalized regression. We do use conditional model (magnitude given previous waiting time, and conversely) as an extension to joint distribution model described in Nikoloulopoulos and Karlis (Environmetrics 19: 251-269, 2008). On the one hand, we fit a Pareto distribution for earthquake magnitudes, where the tail index is a function of waiting time following previous earthquake; on the other hand, waiting times are modeled using a Gamma or a Weibull distribution, where parameters are functions of the magnitude of the previous earthquake. We use those two models, alternatively, to generate the dynamics of earthquake occurrence, and to estimate the probability of occurrence of several earthquakes within a year or a decade.

  15. A New Overview of Secular Period Changes of RR Lyrae stars inM5

    CERN Document Server

    Ferro, A Arellano; Kains, N; Luna, A


    Secular period variations, $\\beta=\\dot{P}$, in 76 RR Lyrae stars in the globular cluster M5 are analysed using our most recent CCD $V$ photometry and the historical photometric database available in the literature since 1889. This provides a time baseline of up to 118 years for these variables. The analysis was performed using two independent approaches: first, the classical $O-C$ behaviour of the time of maximum light, and second, via a grid $(P,\\beta)$, where the solution producing the minimum scatter in the phased light curve is chosen. The results of the two methods agree satisfactorily. This allowed a new interpretation of the nature of the period changes in many RR Lyrae stars in M5. It is found that in $96\\%$ of the stars studied no irregular or stochastic variations need to be claimed, but that $66\\%$ of the population shows steady period increases or decreases, and that $34\\%$ of the periods seem to have been stable over the last century. The lack of systematic positive or negative period variations ...

  16. Forecasting Shaharchay River Flow in Lake Urmia Basin using Genetic Programming and M5 Model Tree

    Directory of Open Access Journals (Sweden)

    S. Samadianfard


    Full Text Available Introduction: Precise prediction of river flows is the key factor for proper planning and management of water resources. Thus, obtaining the reliable methods for predicting river flows has great importance in water resource engineering. In the recent years, applications of intelligent methods such as artificial neural networks, fuzzy systems and genetic programming in water science and engineering have been grown extensively. These mentioned methods are able to model nonlinear process of river flows without any need to geometric properties. A huge number of studies have been reported in the field of using intelligent methods in water resource engineering. For example, Noorani and Salehi (23 presented a model for predicting runoff in Lighvan basin using adaptive neuro-fuzzy network and compared the performance of it with neural network and fuzzy inference methods in east Azerbaijan, Iran. Nabizadeh et al. (21 used fuzzy inference system and adaptive neuro-fuzzy inference system in order to predict river flow in Lighvan river. Khalili et al. (13 proposed a BL-ARCH method for prediction of flows in Shaharchay River in Urmia. Khu et al. (16 used genetic programming for runoff prediction in Orgeval catchment in France. Firat and Gungor (11 evaluated the fuzzy-neural model for predicting Mendes river flow in Turkey. The goal of present study is comparing the performance of genetic programming and M5 model trees for prediction of Shaharchay river flow in the basin of Lake Urmia and obtaining a comprehensive insight of their abilities. Materials and Methods: Shaharchay river as a main source of providing drinking water of Urmia city and agricultural needs of surrounding lands and finally one of the main input sources of Lake Urmia is quite important in the region. For obtaining the predetermined goals of present study, average monthly flows of Shaharchay River in Band hydrometric station has been gathered from 1951 to 2011. Then, two third of mentioned

  17. M5C2 carbide precipitates in a high-Cr martensitic steel (United States)

    Shen, Yinzhong; Ji, Bo; Zhou, Xiaoling


    The precipitate phases in an advanced 11% Cr martensitic steel, expected to be used at 650 °C, have been investigated to understand the effect of precipitates on the creep-rupture strength of the steel. M23C6 and MX precipitates were dominant phases in this steel. Needle-like precipitates with a typical length of 180 nm and width of 20 nm; and metallic-element compositions of 53-74Fe, 16-26Cr, 3-18Ta, 2-8W, and 2-4Co (at%); were observed mainly within the martensite laths of the normalized-and-tempered steel. The needle-like precipitates have been identified as monoclinic carbide M5C2, which is not known to have been reported previously in high chromium steels, or in heat-resistant steels those have been normalized-and-tempered. This indicates that the formation of M5C2 carbides can occur in heat-resistant steels produced under appropriate tempering conditions, and that this does not require long-term isothermal aging or creep testing, in all cases.

  18. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B


    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... using M (5) (-/-) mice backcrossed to the C57BL/6NTac strain. STATISTICAL ANALYSES: Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  19. Earthquake forecast enrichment scores

    Directory of Open Access Journals (Sweden)

    Christine Smyth


    Full Text Available The Collaboratory for the Study of Earthquake Predictability (CSEP is a global project aimed at testing earthquake forecast models in a fair environment. Various metrics are currently used to evaluate the submitted forecasts. However, the CSEP still lacks easily understandable metrics with which to rank the universal performance of the forecast models. In this research, we modify a well-known and respected metric from another statistical field, bioinformatics, to make it suitable for evaluating earthquake forecasts, such as those submitted to the CSEP initiative. The metric, originally called a gene-set enrichment score, is based on a Kolmogorov-Smirnov statistic. Our modified metric assesses if, over a certain time period, the forecast values at locations where earthquakes have occurred are significantly increased compared to the values for all locations where earthquakes did not occur. Permutation testing allows for a significance value to be placed upon the score. Unlike the metrics currently employed by the CSEP, the score places no assumption on the distribution of earthquake occurrence nor requires an arbitrary reference forecast. In this research, we apply the modified metric to simulated data and real forecast data to show it is a powerful and robust technique, capable of ranking competing earthquake forecasts.

  20. Phase Transformations and Earthquakes (United States)

    Green, H. W.


    Phase transformations have been cited as responsible for, or at least involved in, "deep" earthquakes for many decades (although the concept of "deep" has varied). In 1945, PW Bridgman laid out in detail the string of events/conditions that would have to be achieved for a solid/solid transformation to lead to a faulting instability, although he expressed pessimism that the full set of requirements would be simultaneously achieved in nature. Raleigh and Paterson (1965) demonstrated faulting during dehydration of serpentine under stress and suggested dehydration embrittlement as the cause of intermediate depth earthquakes. Griggs and Baker (1969) produced a thermal runaway model of a shear zone under constant stress, culminating in melting, and proposed such a runaway as the origin of deep earthquakes. The discovery of Plate Tectonics in the late 1960s established the conditions (subduction) under which Bridgman's requirements for earthquake runaway in a polymorphic transformation could be possible in nature and Green and Burnley (1989) found that instability during the transformation of metastable olivine to spinel. Recent seismic correlation of intermediate-depth-earthquake hypocenters with predicted conditions of dehydration of antigorite serpentine and discovery of metastable olivine in 4 subduction zones, suggests strongly that dehydration embrittlement and transformation-induced faulting are the underlying mechanisms of intermediate and deep earthquakes, respectively. The results of recent high-speed friction experiments and analysis of natural fault zones suggest that it is likely that similar processes occur commonly during many shallow earthquakes after initiation by frictional failure.

  1. The key role of eyewitnesses in rapid earthquake impact assessment (United States)

    Bossu, Rémy; Steed, Robert; Mazet-Roux, Gilles; Roussel, Frédéric; Etivant, Caroline


    Uncertainties in rapid earthquake impact models are intrinsically large even when excluding potential indirect losses (fires, landslides, tsunami…). The reason is that they are based on several factors which are themselves difficult to constrain, such as the geographical distribution of shaking intensity, building type inventory and vulnerability functions. The difficulties can be illustrated by two boundary cases. For moderate (around M6) earthquakes, the size of potential damage zone and the epicentral location uncertainty share comparable dimension of about 10-15km. When such an earthquake strikes close to an urban area, like in 1999, in Athens (M5.9), earthquake location uncertainties alone can lead to dramatically different impact scenario. Furthermore, for moderate magnitude, the overall impact is often controlled by individual accidents, like in 2002 in Molise, Italy (M5.7), in Bingol, Turkey (M6.4) in 2003 or in Christchurch, New Zealand (M6.3) where respectively 23 out of 30, 84 out of 176 and 115 out of 185 of the causalities perished in a single building failure. Contrastingly, for major earthquakes (M>7), the point source approximation is not valid anymore, and impact assessment requires knowing exactly where the seismic rupture took place, whether it was unilateral, bilateral etc.… and this information is not readily available directly after the earthquake's occurrence. In-situ observations of actual impact provided by eyewitnesses can dramatically reduce impact models uncertainties. We will present the overall strategy developed at the EMSC which comprises of crowdsourcing and flashsourcing techniques, the development of citizen operated seismic networks, and the use of social networks to engage with eyewitnesses within minutes of an earthquake occurrence. For instance, testimonies are collected through online questionnaires available in 32 languages and automatically processed in maps of effects. Geo-located pictures are collected and then

  2. Earthquake-induced Landslidingand Ground Damage In New Zealand (United States)

    Hancox, G. T.; Perrin, N. D.; Dellow, G. D.

    A study of landsliding caused by 22 historical earthquakes in New Zealand was completed at the end of 1997 (Hancox et al., 1997). The main aims of that study were to determine: (a) the nature and extent of landsliding and other ground damage (sand boils, subsidence and lateral spreading due to soil liquefaction) caused by historical earthquakes; (b) relationships between landsliding and earthquake magnitude, epicentre, faulting, geology and topography; (c) improved environmental criteria and ground classes for assigning MM intensities and seismic hazard assessments in N.Z. The data and results of the 1997 study have recently been summarised and expanded (Hancox et al., in press), and are described in this paper. Relationships developed from these studies indicate that the minimum magnitude for earthquake-induced landsliding (EIL) in N.Z. is about M 5, with significant landsliding occurring at M 6 or greater. The minimum MM intensity for landsliding is MM6, while the most common intensities for significant landsliding are MM7-8. The intensity threshold for soil liquefaction in New Zealand was found to be MM7 for sand boils, and MM8 for lateral spreading, although such effects may also occur at one intensity level lower in highly susceptible materials. The minimum magnitude for liquefaction phenomena in N.Z. is about M 6, compared to M 5 overseas where highly susceptible soils are probably more widespread. Revised environmental response criteria (landsliding, subsidence, liquefaction-induced sand boils and lateral spreading) have also been established for the New Zealand MM Intensity Scale, and provisional landslide susceptibility Ground Classes developed for assigning MM intensities in areas where there are few buildings. Other new data presented include a size/frequency distribution model for earthquake-induced landslides over the last 150 years and a preliminary EIL Opportunity model for N.Z. The application of EIL data and relationships for seismic hazard

  3. Earthquake Disaster Management and Insurance

    Institute of Scientific and Technical Information of China (English)


    As one of the most powerful tools to reduce the earthquake loss, the Earthquake Disaster Management [EDM] and Insurance [EI] have been highlighted and have had a great progress in many countries in recent years. Earthquake disaster management includes a series of contents, such as earthquake hazard and risk analysis, vulnerability analysis of building and infrastructure, earthquake aware training, and building the emergency response system. EI, which has been included in EDM after this practice has been...

  4. Neutrino and axion bounds from the globular cluster M5 (NGC 5904). (United States)

    Viaux, N; Catelan, M; Stetson, P B; Raffelt, G G; Redondo, J; Valcarce, A A R; Weiss, A


    The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.

  5. Higher Derivative Corrections and Central Charges from Wrapped M5-branes

    CERN Document Server

    Baggio, Marco; Mayerson, Daniel R; Robbins, Daniel; Wecht, Brian


    We compute four-derivative corrections to the AdS supergravity actions arising from the near-horizon geometry of N M5-branes wrapped on either one or two Riemann surfaces. This setup features the novel presence of both gauged isometries as well as nontrivial hypermultiplets. We argue that the 5d Chern-Simons terms receive not only higher-derivative corrections but also contributions from Killing vector parameters, which we find must also be corrected. We check the central charges found by our supergravity methods against the dual field theory results and find perfect agreement at leading and subleading order in N. Along the way, we find higher derivative corrections to general AdS_5 and AdS_3x\\Sigma_g geometries.

  6. Witten indices of abelian M5 brane on $\\mathbb{R}\\times S^5$

    CERN Document Server

    Bak, Dongsu


    Witten indices and partition functions are computed for abelian 6d tensor and hypermultiplets on $\\mathbb{R}\\times S^5$ in Lorentzian signature in an R gauge field background which preserves some supersymmetry. We consider a generic supersymmetric squashing that also admits squashing of the Hopf fiber. Wick rotation to Euclidean M5 brane amounts to Wick rotation of squashing parameters and the hypermultiplet mass parameter. We compute Casimir energies for tensor and hypermultiplets separately for general squashing, and match these with the corresponding gravitational anomaly polynomials. We extract Witten indices on $\\mathbb{R}\\times \\mathbb{CP}^2$ and find that this is zero, again matching with the vanishing anomaly polynomial on an odd dimensional space.

  7. Earthquakes and emergence (United States)

    Earthquakes and emerging infections may not have a direct cause and effect relationship like tax evasion and jail, but new evidence suggests that there may be a link between the two human health hazards. Various media accounts have cited a massive 1993 earthquake in Maharashtra as a potential catalyst of the recent outbreak of plague in India that has claimed more than 50 lives and alarmed the world. The hypothesis is that the earthquake may have uprooted underground rat populations that carry the fleas infected with the bacterium that causes bubonic plague and can lead to the pneumonic form of the disease that is spread through the air.

  8. Earthquake engineering in Peru (United States)

    Vargas, N.J


    During the last decade, earthquake engineering research in Peru has been carried out at the Catholic University of Peru and at the Universidad Nacional de Ingeniera (UNI). The Geophysical Institute (IGP) under the auspices of the Organization of American States (OAS) has initiated in Peru other efforts in regional seismic hazard assessment programs with direct impact to the earthquake engineering program. Further details on these programs have been reported by L. Ocola in the Earthquake Information Bulletin, January-February 1982, vol. 14, no. 1, pp. 33-38. 

  9. Stochastic nature of earthquake ground motion (United States)

    Kostić, Srđan; Vasović, Nebojša; Perc, Matjaž; Toljić, Marinko; Nikolić, Dobrica


    In this paper, we analyze the irregular behavior of earthquake ground motion as recorded during the Kraljevo M5.4 earthquake, which occurred on November 3rd, 2010 in Serbia. We perform the analysis for the ground accelerations recorded at 6 seismological stations: Grua, Ruda, Rada, Bara, Zaga and Bdva. The latter were carefully chosen based on their corresponding tectonic zone and the local geological setting. For each station, we analyze the horizontal component of the ground acceleration in the north-south direction, which is the one of primary interest for engineering design. We employ surrogate data testing and methods of nonlinear time series analysis. The obtained results indicate that strong ground accelerations are stochastic, in particular belonging to a class of linear stationary stochastic processes with Gaussian inputs or distorted by a monotonic, instantaneous, time-independent nonlinear function. This type of motion is detected regardless of the corresponding tectonic setting and the local geological conditions. The revealed stochastic nature is in disagreement with the frequently assumed deterministically chaotic nature of earthquake ground motion.

  10. Tweet Earthquake Dispatch (TED) (United States)

    U.S. Geological Survey, Department of the Interior — The USGS is offering earthquake alerts via two twitter accounts: @USGSted and @USGSBigQuakes. On average, @USGSted and @USGSBigQuakes will produce about one tweet...

  11. 1988 Spitak Earthquake Database (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1988 Spitak Earthquake database is an extensive collection of geophysical and geological data, maps, charts, images and descriptive text pertaining to the...

  12. Earthquake Damage to Schools (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of slides graphically illustrates the potential danger that major earthquakes pose to school structures and to the children and adults who happen to be...

  13. Prediction Capabilities of VLF/LF Emission as the Main Precursor of Earthquake

    CERN Document Server

    Kachakhidze, Manana


    Recent satellite and ground-based observations proved that in earthquake preparation period in the seismogenic area we have VLF/LF and ULF electromagnetic emissions. According to the opinion of the authors of the present paper this phenomenon is more universal and reliable than other earthquake indicators. Hypothetically, in case of availability of adequate methodological grounds, in the nearest future, earth VLF/LF electromagnetic emission might be declared as the main precursor of earthquake. In particular, permanent monitoring of frequency spectrum of earth electromagnetic emission generated in the earthquake preparation period might turn out very useful with the view of prediction of large (M 5) inland earthquakes. The present paper offers a scheme of the methodology according to which the reality of the above given hypothesis can be checked up. To prove the prediction capabilities of earth electromagnetic emission we have used avalanche-like unstable model of fault formation and an analogous model of ele...

  14. Injection-induced earthquakes. (United States)

    Ellsworth, William L


    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  15. Injection-induced earthquakes (United States)

    Ellsworth, William L.


    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  16. EnVision M5 Venus Orbiter Proposal: Opportunities and Challenges (United States)

    Ghail, Richard; Wilson, Colin F.; Widemann, Thomas


    The core goal of EnVision is to detect activity and measure rates of change on Venus, including geological and geochemical cycles involving the interior, surface and atmosphere.It will observe >20% of the surface with all instruments and will obtain gravity and emissivity data globally. The instrument suite for M5 is under review but will likely comprise the same three instruments as at M4: VenSAR, VEM and SRS.VenSAR. The largest payload instrument is a phased array S-band radar, developed from the UK's low-cost NovaSAR-S instrument optimized for Venus. Use of spacecraft pointing for side-looking, instead of a fixed slant, simplifies the observation strategy to three pairs of ~9 minute/orbit (~36° latitude, ~3800 km) pass-to-pass InSAR swaths, two ~9 minute/orbit multipolar (HH-HV-VV) swaths at lower incidence angle for stereo mapping, two ~3 minute/orbit (~12° latitude, ~1300 km) high resolution swath and 1 to 2 S-band emissivity swaths per day plus 50 km2 ~1 m resolution sliding spotlight images. In addition, InSAR will be acquired along a narrow equatorial strip and across the North Pole to measure variability in the spin rate and axis.VEM. The Venus Emissivity Mapper suite comprises two UV and IR spectrometer channels in addition to the VEM-M IR mapping. A filter array provides wavelength stability and maximizes signal to the focal plane array (FPA). VEM-H is high-resolution, nadir-pointing, infrared spectrometer, the ideal instrument to enable characterization of volcanic plumes released from the surface of Venus by observing SO2, H2O and HDO through the 1 µm, 1.7 µm, and 2-2.3 µm atmospheric windows. Specifically, VEM-H is a redesign of the LNO (Limb, Nadir and Occultation) channel of NOMAD, retaining much heritage from the original with minor modifications to meet the science objectives of the M5 EnVision mission. The third channel, VEM-UV is an upper-atmosphere UV spectrometer dedicated to global SO2 & sulfur cycles.SRS. The Subsurface Radar Sounder

  17. Charles Darwin's earthquake reports (United States)

    Galiev, Shamil


    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  18. RR Lyrae stars and the horizontal branch of NGC 5904 (M5)

    CERN Document Server

    Ferro, A Arellano; Bramich, D M; Giridhar, Sunetra; Ahumada, J A; Muneer, S


    We report the distance and [Fe/H] value for the globular cluster NGC 5904 (M5) derived from the Fourier decomposition of the light curves of selected RRab and RRc stars. The aim in doing this was to bring these parameters into the homogeneous scales established by our previous work on numerous other globular clusters, allowing a direct comparison of the horizontal branch luminosity in clusters with a wide range of metallicities. Our CCD photometry of the large variable star population of this cluster is used to discuss light curve peculiarities, like Blazhko modulations, on an individual basis. New Blazhko variables are reported. From the RRab stars we found [Fe/H]$_{\\rm UVES} = -1.335 \\pm 0.003{\\rm(statistical)} \\pm 0.110{\\rm(systematic)}$, and a distance of $7.6\\pm 0.2$ kpc, and from the RRc stars we found [Fe/H]$_{\\rm UVES}$ = $-1.39 \\pm 0.03{\\rm(statistical)} \\pm 0.12{\\rm(systematic)}$ and a distance of $7.5 \\pm 0.3$ kpc. The results for RRab and RRc stars should be considered independent since they come ...

  19. Wavelet coupled MARS and M5 Model Tree approaches for groundwater level forecasting (United States)

    Rezaie-balf, Mohammad; Naganna, Sujay Raghavendra; Ghaemi, Alireza; Deka, Paresh Chandra


    In this study, two different machine learning models, Multivariate Adaptive Regression Splines (MARS) and M5 Model Trees (MT) have been applied to simulate the groundwater level (GWL) fluctuations of three shallow open wells within diverse unconfined aquifers. The Wavelet coupled MARS and MT hybrid models were developed in an attempt to further increase the GWL forecast accuracy. The Discrete Wavelet Transform (DWT) which is particularly effective in dealing with non-stationary time-series data was employed to decompose the input time series into various sub-series components. Historical data of 10 years (August-1996 to July-2006) comprising monthly groundwater level, rainfall, and temperature were used to calibrate and validate the models. The models were calibrated and tested for one, three and six months ahead forecast horizons. The wavelet coupled MARS and MT models were compared with their simple counterpart using standard statistical performance evaluation measures such as Root Mean Square Error (RMSE), Normalized Nash-Sutcliffe Efficiency (NNSE) and Coefficient of Determination (R2) . The wavelet coupled MARS and MT models developed using multi-scale input data performed better compared to their simple counterpart and the forecast accuracy of W-MARS models were superior to that of W-MT models. Specifically, the DWT offered a better discrimination of non-linear and non-stationary trends that were present at various scales in the time series of the input variables thus crafting the W-MARS models to provide more accurate GWL forecasts.

  20. Lithium abundances in globular cluster giants: NGC 6218 (M12) and NGC 5904 (M5)

    CERN Document Server

    D'Orazi, Valentina; Gratton, Raffaele G; Lattanzio, John C; Bragaglia, Angela; Carretta, Eugenio; Lucatello, Sara; Momany, Yazan


    Convergent lines of evidence suggest that globular clusters host multiple stellar populations. It appears that they experience at least two episodes of star formation whereby a fraction of first-generation stars contribute astrated ejecta to form the second generation(s). To identify the polluting progenitors we require distinguishing chemical signatures such as that provided by lithium. Theoretical models predict that lithium can be synthesised in AGB stars, whereas no net Li production is expected from other candidates. It has been shown that in order to reproduce the abundance pattern found in M4, Li production must occur within the polluters, favouring the AGB scenario. Here we present Li and Al abundances for a large sample of RGB stars in M12 and M5. These clusters have a very similar metallicity, whilst demonstrating differences in several cluster properties. Our results indicate that the first-generation and second-generation stars share the same Li content in M12; we recover an abundance pattern simi...

  1. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars

    Energy Technology Data Exchange (ETDEWEB)

    Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440UCB Boulder, CO 80309-0440 (United States); Fontenla, Juan [NorthWest Research Associates Inc., 3380 Mitchell Ln, Boulder, CO 80301 (United States); France, Kevin, E-mail:, E-mail:, E-mail: [CASA, University of Colorado, 593UCB Boulder, CO 80309-0593 (United States)


    Extreme ultraviolet (EUV) radiations (10-117 nm) from host stars play important roles in the ionization, heating, and mass loss from exoplanet atmospheres. Together with the host star's Lyα and far-UV (117-170 nm) radiation, EUV radiation photodissociates important molecules, thereby changing the chemistry in exoplanet atmospheres. Since stellar EUV fluxes cannot now be measured and interstellar neutral hydrogen completely obscures stellar radiation between 40 and 91.2 nm, even for the nearest stars, we must estimate the unobservable EUV flux by indirect methods. New non-LTE semiempirical models of the solar chromosphere and corona and solar irradiance measurements show that the ratio of EUV flux in a variety of wavelength bands to the Lyα flux varies slowly with the Lyα flux and thus with the magnetic heating rate. This suggests and we confirm that solar EUV/Lyα flux ratios based on the models and observations are similar to the available 10-40 nm flux ratios observed with the Extreme Ultraviolet Explorer (EUVE) satellite and the 91.2-117 nm flux observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite for F5 V-M5 V stars. We provide formulae for predicting EUV flux ratios based on the EUVE and FUSE stellar data and on the solar models, which are essential input for modeling the atmospheres of exoplanets.

  2. From earthquake intensities to earthquake sources: extending the contribution of historical seismology to seismotectonic studies

    Directory of Open Access Journals (Sweden)

    G. Valensise


    Full Text Available The epicentral locations and magnitudes of the events reported in the Catalogue of Strong Italian Earthquakes are obtained from intensity data through a standardized and established algorithm. However, we contend that the dense and homogeneously collected data sets presented in this catalogue can also be used to assess the location, physical dimensions and orientation of the earthquake source on purely historical grounds. The method we describe is of special value for older earthquakes and for all events that fall in areas where the understanding of faulting and tectonics is limited. At the end of the calculations the seismic source is represented as an oriented "rectangle", the length and width of which are obtained from moment magnitude through empirical relationships. This rectangle is meant to represent the actual surface projection of the seismogenic fault or, at least, the projection of the portion of the Earth crust where a given seismic source is likely to be located. Sources derived through this procedure can then be juxtaposed to sources derived from instrumental and geological data for constructing fault segmentation and earthquake recurrence models and for highlighting linear gaps in the global seismic release. To test the method we applied it systematically to all M > 5.5 earthquakes that occurred in the Central and Southern Apennines in the past four centuries. The results are encouraging and compare well with existing instrumental, direct geological and geodynamic evidence. The method is quite stable for different choices of the algorithm parameters and provides elongation directions which in most cases can be shown to be statistically significant. The resulting pattern of source locations and orientations is homogeneous, showing a consistent Apennines-parallel trend that agrees well with the NE-SW tectonic extension style of the central and southern portions of the Italian peninsula.

  3. The galactic globular cluster M5 (NGC 5904 as a particle physics laboratory

    Directory of Open Access Journals (Sweden)

    Redondo J.


    Full Text Available Globular clusters have been used for a long time to test stellar evolution theories, and in particular to constrain novel forms of energy loss in low-mass stars. This includes constraints on axion properties, neutrino dipole moments, milli-charged particles, Kaluza-Klein gravitons, and many other phenomena. Depending on their interaction strength, these particles can be abundantly produced in stellar interiors, escape without further interaction, and thus drain energy directly from the stellar interior. Hence, they contribute directly to the stellar energy losses, thus modifying stellar evolution. Our goal is to re-examine such constraints in the light of modern data and updated stellar evolution codes, paying particular attention to systematic and statistical errors. As a first example, we consider the case of a neutrino magnetic moment that enhances the energy loss from the plasma process. In terms of the observed color-magnitude diagrams, the tip of the red giant branch (RGB has been identified as a sensitive observable of the effects of the energy losses due to a neutrino magnetic moment. Here we describe the consequences of adding the cooling effect due to a neutrino magnetic moment to the Princeton-Goddard-PUC (PGPUC stellar evolution code, exploring in particular the dependence of the position of the RGB tip on the neutrino magnetic moment. As a first application, we studied the position of the observed RGB tip in the case of the Galactic globular cluster M5 (NGC 5904, using the latest, high-precision, ground-based data from the P. B. Stetson database (2012, priv. comm.. We compare the empirical results with the PGPUC model predictions, and discuss the implied constraints on the value of the neutrino magnetic moment.

  4. M/M/1/m系统算子的本征值特性(m=5,6)%The Characteristics of Eigenvalue of M/M/1/m(m =5,6)

    Institute of Scientific and Technical Information of China (English)

    盖平; 高超; 唐慧; 赵立杰



  5. The autumn 1919 Torremendo (Jacarilla earthquake series (SE Spain

    Directory of Open Access Journals (Sweden)

    Josep Batlló


    Full Text Available On 10th September 1919 several slightly damaging earthquakes struck the towns of Torremendo, Jacarilla (near Alicante, SE-Spain and others nearby. Available magnitude estimations for the largest two events of the series are M = 5 approx. They were earthquakes of moderate size and they occurred in a region where similar magnitude earthquakes, thoroughly studied, occurred recently (1999 Mula; 2002 Bullas; 2005 La Paca; 2011 Lorca. This makes these events of interest for a better definition of the regional seismicity. We study their sources from the analysis of the available contemporary seismograms and related documents. A total of 23 seismograms from 9 seismic stations have been collected and digitized. These seismograms contain records for the two main events and several aftershocks of the earthquake series. Finally 44 files, corresponding to 44 recorded single component records from the different events have been processed. The events have been relocated and their magnitudes recalculated. Also, original macroseismic information for these events was recovered. A macroseismic evaluation of the series has been performed. Intensity data points have been recalculated and macroseismic location and magnitude obtained. We conclude that these are the largest earthquakes occurred in the region since the beginning of instrumental recording, with Mw = 5.5 for the largest shock, and that the available data could be compatible with a thrust mechanism related to blind faults in the Bajo Segura region.

  6. Earthquake number forecasts testing (United States)

    Kagan, Yan Y.


    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  7. Earthquake impact scale (United States)

    Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Bausch, D.


    With the advent of the USGS prompt assessment of global earthquakes for response (PAGER) system, which rapidly assesses earthquake impacts, U.S. and international earthquake responders are reconsidering their automatic alert and activation levels and response procedures. To help facilitate rapid and appropriate earthquake response, an Earthquake Impact Scale (EIS) is proposed on the basis of two complementary criteria. On the basis of the estimated cost of damage, one is most suitable for domestic events; the other, on the basis of estimated ranges of fatalities, is generally more appropriate for global events, particularly in developing countries. Simple thresholds, derived from the systematic analysis of past earthquake impact and associated response levels, are quite effective in communicating predicted impact and response needed after an event through alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1,000, respectively. For damage impact, yellow, orange, and red thresholds are triggered by estimated losses reaching $1M, $100M, and $1B, respectively. The rationale for a dual approach to earthquake alerting stems from the recognition that relatively high fatalities, injuries, and homelessness predominate in countries in which local building practices typically lend themselves to high collapse and casualty rates, and these impacts lend to prioritization for international response. In contrast, financial and overall societal impacts often trigger the level of response in regions or countries in which prevalent earthquake resistant construction practices greatly reduce building collapse and resulting fatalities. Any newly devised alert, whether economic- or casualty-based, should be intuitive and consistent with established lexicons and procedures. Useful alerts should

  8. Earthquake and Geothermal Energy

    CERN Document Server

    Kapoor, Surya Prakash


    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  9. Rupture, waves and earthquakes (United States)

    UENISHI, Koji


    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  10. Earthquake engineering in China

    Institute of Scientific and Technical Information of China (English)



    The development of earthquake engineering in China is described into three stages.The initial stage in 1950's -1960's was marked with the initiation of this branch of science from its creation in the first national 12-year plan of science andtechnology by specifying earthquake engineering as a branch item and IEM was one participant. The first earthquake zonationmap and the first seismic design code were soon completed and used in engineering design. Site effect on structural design andsite selection were seriously studied. The second stage marked with the occurrence of quite a few strong earthquakes in China,from which many lessons were learned and corresponding considerations were specified in our design codes and followed inconstruction practice. The third stage is a stage of disaster management, which is marked by a series of governmentdocumentations, leading by a national law of the People's Republic of China on the protecting against and mitigating earthquakedisasters adopted at the meeting of the Standing Committee of the National People's Congress of the People's Republic of Chinain 1997, and then followed by some provincial and municipal laws to force the actions outlined in the national law. It may beexpected that our society will be much more safer to resist the attack of future strong earthquakes with less losses. Lastly,possible future developments are also discussed.

  11. Rupture, waves and earthquakes. (United States)

    Uenishi, Koji


    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  12. Recurrence Statistics of Great Earthquakes

    CERN Document Server

    Ben-Naim, E; Johnson, P A


    We investigate the sequence of great earthquakes over the past century. To examine whether the earthquake record includes temporal clustering, we identify aftershocks and remove those from the record. We focus on the recurrence time, defined as the time between two consecutive earthquakes. We study the variance in the recurrence time and the maximal recurrence time. Using these quantities, we compare the earthquake record with sequences of random events, generated by numerical simulations, while systematically varying the minimal earthquake magnitude Mmin. Our analysis shows that the earthquake record is consistent with a random process for magnitude thresholds 7.0<=Mmin<=8.3, where the number of events is larger. Interestingly, the earthquake record deviates from a random process at magnitude threshold 8.4<=Mmin<= 8.5, where the number of events is smaller; however, this deviation is not strong enough to conclude that great earthquakes are clustered. Overall, the findings are robust both qualitat...

  13. Earthquake Damage to Transportation Systems (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earthquakes represent one of the most destructive natural hazards known to man. A serious result of large-magnitude earthquakes is the disruption of transportation...

  14. Earthquakes, March-April 1989 (United States)

    Person, W.J.


    The first major earthquake (7.0-7.9) of the year hit Mexico on April 25, killing three people and causing some damage. Earthquake-related deaths were also reported from Malawi, China, and New Britain. 

  15. Early earthquakes of the Americas

    Institute of Scientific and Technical Information of China (English)

    Niu Zhijun


    @@ In recent decades the science of seismology,in particular the study of individual earthquakes, has expanded dramatically. A seismologist can look for evidence of past earthquakes in the material remains that have been excavated by archaeologists.

  16. ElarmS Earthquake Early Warning System Updates and Performance (United States)

    Chung, A. I.; Allen, R. M.; Hellweg, M.; Henson, I. H.; Neuhauser, D. S.


    The ElarmS earthquake early warning algorithm has been detecting earthquakes throughout California since 2007. It is one of the algorithms that contributes to CISN's ShakeAlert, a prototype earthquake early warning system being developed for California. Overall, ElarmS performance has been excellent. Over the past year (July 1, 2014 - July 1, 2015), ElarmS successfully detected all but three of the significant earthquakes (M4+) that occurred within California. Of the 24 events that were detected, the most notable was the M6.0 South Napa earthquake that occurred on August 24, 2014. The first alert for this event was sent in 5.1 seconds with an initial magnitude estimate of M5.7. This alert provided approximately 8 seconds of warning of the impending S-wave arrival to the city of San Francisco. The magnitude estimate increased to the final value of M6.0 within 15 seconds of the initial alert. One of the two events that were not detected by ElarmS occurred within 30 seconds of the M6.0 Napa mainshock. The two other missed events occurred offshore in a region with sparse station coverage in the Eureka area. Since its inception, ElarmS has evolved and adapted to meet new challenges. On May 30, 2015, an extraordinarily deep (678km) M7.8 teleseism in Japan generated 5 false event detections for earthquakes greater than M4 within a minute due to the simultaneous arrival of the P-waves at stations throughout California. In order to improve the speed and accuracy of the ElarmS detections, we are currently exploring new methodologies to quickly evaluate incoming triggers from individual stations. Rapidly determining whether or not a trigger at a given station is due to a local earthquake or some other source (such as a distant teleseism) could dramatically increase the confidence in individual triggers and reduce false alerts.

  17. Australia: historical earthquake studies

    Directory of Open Access Journals (Sweden)

    K. McCue


    Full Text Available Historical studies of earthquakes in Australia using information dating back to 1788 have been comprehensive, if not exhaustive. Newspapers have been the main source of historical earthquake studies. A brief review is given here with an introduction to the pre-European aboriginal dreamtime information. Some of the anecdotal information of the last two centuries has been compiled as isoseismal maps. Relationships between isoseismal radii and magnitude have been established using post-instrumental data allowing magnitudes to be assigned to the pre-instrumental data, which can then be incorporated into the national earthquake database. The studies have contributed to hazard analyses for the building codes and stimulated research into microzonation and paleo-seismology.

  18. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations. (United States)

    Lin, Lei; Wang, Qian; Sadek, Adel W


    The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean

  19. Organizational changes at Earthquakes & Volcanoes (United States)

    Gordon, David W.


    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  20. YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962

    DEFF Research Database (Denmark)

    Purta, Elzbieta; O'Connor, Michelle; Bujnicki, Janusz M


    . coli marginally reduces its growth rate. YccW had previously eluded identification because it displays only limited sequence similarity to the m(5)C methyltransferases RsmB and RsmF and is in fact more similar to known m(5)U (5-methyluridine) RNA methyltransferases. In keeping with the previously...... proposed nomenclature system for bacterial rRNA methyltransferases, yccW is now designated as the rRNA large subunit methyltransferase gene rlmI....

  1. Sensing the earthquake (United States)

    Bichisao, Marta; Stallone, Angela


    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  2. Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts (United States)

    Yeck, William; Hayes, Gavin; McNamara, Daniel E.; Rubinstein, Justin L.; Barnhart, William; Earle, Paul; Benz, Harley M.


    The 3 September 2016, Mw 5.8 Pawnee earthquake was the largest recorded earthquake in the state of Oklahoma. Seismic and geodetic observations of the Pawnee sequence, including precise hypocenter locations and moment tensor modeling, shows that the Pawnee earthquake occurred on a previously unknown left-lateral strike-slip basement fault that intersects the mapped right-lateral Labette fault zone. The Pawnee earthquake is part of an unprecedented increase in the earthquake rate in Oklahoma that is largely considered the result of the deep injection of waste fluids from oil and gas production. If this is, indeed, the case for the M5.8 Pawnee earthquake, then this would be the largest event to have been induced by fluid injection. Since 2015, Oklahoma has undergone wide-scale mitigation efforts primarily aimed at reducing injection volumes. Thus far in 2016, the rate of M3 and greater earthquakes has decreased as compared to 2015, while the cumulative moment—or energy released from earthquakes—has increased. This highlights the difficulty in earthquake hazard mitigation efforts given the poorly understood long-term diffusive effects of wastewater injection and their connection to seismicity.

  3. Estimates of aseismic slip associated with small earthquakes near San Juan Bautista, CA (United States)

    Hawthorne, J. C.; Simons, M.; Ampuero, J.-P.


    Postseismic slip observed after large (M > 6) earthquakes typically has an equivalent moment of a few tens of percent of the coseismic moment. Some observations of the recurrence intervals of repeating earthquakes suggest that postseismic slip following small (M≲4) earthquakes could be much larger—up to 10 or 100 times the coseismic moment. We use borehole strain data from U.S. Geological Survey strainmeter SJT to analyze deformation in the days before and after 1000 1.9 < M < 5 earthquakes near San Juan Bautista, CA. We find that on average, postseismic strain is roughly equal in magnitude to coseismic strain for the magnitude range considered, suggesting that postseismic moment following these small earthquakes is roughly equal to coseismic moment. This postseismic to coseismic moment ratio is larger than typically observed in earthquakes that rupture through the seismogenic zone but is much smaller than was hypothesized from modeling repeating earthquakes. Our results are consistent with a simple, self-similar model of earthquakes.

  4. Shallow earthquake inhibits unrest near Chiles-Cerro Negro volcanoes, Ecuador-Colombian border (United States)

    Ebmeier, Susanna K.; Elliott, John R.; Nocquet, Jean-Mathieu; Biggs, Juliet; Mothes, Patricia; Jarrín, Paúl; Yépez, Marco; Aguaiza, Santiago; Lundgren, Paul; Samsonov, Sergey V.


    Magma movement or reservoir pressurisation can drive swarms of low-magnitude volcano-tectonic earthquakes, as well as occasional larger earthquakes (>M5) on local tectonic faults. Earthquakes >M5 near volcanoes are challenging to interpret in terms of evolving volcanic hazard, but are often associated with eruptions, and in some cases enhance the ascent of magma. We present geodetic observations from the first episode of unrest known to have occurred near Chiles and Cerro Negro de Mayasquer volcanoes on the Ecuador-Colombian border. A swarm of volcano-tectonic seismicity in October 2014 culminated in a Mw 5.6 earthquake south of the volcanoes. Satellite radar data spanning this earthquake detect displacements that are consistent with dextral oblique slip on a reverse fault at depths of 1.4-3.4 km within a SSW-NNE trending fault zone that last ruptured in 1886. GPS station measurements capture ∼20 days of uplift before the earthquake, probably originating from a pressure source ∼10-15 km south of Volcán Chiles, at depths exceeding 13 km. After the Mw 5.6 earthquake, uplift ceased and the rate of seismicity began to decrease. Potential mechanisms for this decline in activity include a decrease in the rate of movement of magma into the shallow crust, possibly caused by the restriction of fluid pathways. Our observations demonstrate that an earthquake triggered during volcanic unrest can inhibit magmatic processes, and have implications for the hazard interpretation of the interactions between earthquakes and volcanoes.

  5. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites (United States)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.


    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  6. The 2001-present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; McGarr, Arthur F.; Benz, Harley M.


    We investigate the ongoing seismicity in the Raton Basin and find that the deep injection of wastewater from the coal‐bed methane field is responsible for inducing the majority of the seismicity since 2001. Many lines of evidence indicate that this earthquake sequence was induced by wastewater injection. First, there was a marked increase in seismicity shortly after major fluid injection began in the Raton Basin in 1999. From 1972 through July 2001, there was one M≥4 earthquake in the Raton Basin, whereas 12 occurred between August 2001 and 2013. The statistical likelihood that such a rate change would occur if earthquakes behaved randomly in time is 3.0%. Moreover, this rate change is limited to the area of industrial activity. Earthquake rates remain low in the surrounding area. Second, the vast majority of the seismicity is within 5 km of active disposal wells and is shallow, ranging between 2 and 8 km depth. The two most carefully studied earthquake sequences in 2001 and 2011 have earthquakes within 2 km of high‐volume, high‐injection‐rate wells. Third, injection wells in the area are commonly very high volume and high rate. Two wells adjacent to the August 2011 M 5.3 earthquake injected about 4.9 million cubic meters of wastewater before the earthquake, more than seven times the amount injected at the Rocky Mountain Arsenal well that caused damaging earthquakes near Denver, Colorado, in the 1960s. The August 2011 M 5.3 event is the second‐largest earthquake to date for which there is clear evidence that the earthquake sequence was induced by fluid injection.

  7. Comparison of Artificial Neural Network And M5 Model Tree Technique In Water Level Forecasting of Solo River (United States)

    Lasminto, Umboro; Hery Mularta, Listya


    Flood events along the Solo River flow at the end of December 2007 has caused lose of properties and lives. Floods occurred in the city of Ngawi, Madiun, Bojonegoro, Babat and surrounding areas. To reduce future losses, one of the important efforts that will occur during a flood is to get information about the magnitude and time will be floods, so that people can make an effort to reduce its impact. Flood forecasting model can provide information of water level in the river some time before the incident. This paper will compare the flood forecasting model at Bojonegoro City was built using the technique of Artificial Neural Network (ANN) and M5 Model Tree (M5MT). The model will forecast the water level of 1, 3 and 6 hours ahead at the point of water level recorders in the City of Bojonegoro using input from the water level at some point water level recorders in the upstream such as Karangnongko, Sekayu, Jurug and Wonogiri. The same data set of hourly water level records are used to build the model of ANN and M5MT technique. The selection of parameters and setup of ANN and M5MT technique is done to obtain the best result. The results of the model are evaluated by calculating the Root Mean Square Error (RMSE) between the predictions and observations. RMSE produced by the water level forecasting model 1, 3 and 6 hours ahead with M5MT technique are 0.2723, 0.6279 and 0.7176 meters. While the ANN technique are 0.1829, 0.3192 and 0517 meters. ANN technique has a better ability in predicting low flow, whereas M5 Model Tree technique has a better ability in predicting high flow. Keywords : Water level forecasting, Solo River, M5 Model Tree, Artificial Neural Network

  8. Indonesian Earthquake Decision Support System

    CERN Document Server

    Warnars, Spits


    Earthquake DSS is an information technology environment which can be used by government to sharpen, make faster and better the earthquake mitigation decision. Earthquake DSS can be delivered as E-government which is not only for government itself but in order to guarantee each citizen's rights for education, training and information about earthquake and how to overcome the earthquake. Knowledge can be managed for future use and would become mining by saving and maintain all the data and information about earthquake and earthquake mitigation in Indonesia. Using Web technology will enhance global access and easy to use. Datawarehouse as unNormalized database for multidimensional analysis will speed the query process and increase reports variation. Link with other Disaster DSS in one national disaster DSS, link with other government information system and international will enhance the knowledge and sharpen the reports.

  9. Episodic tremor triggers small earthquakes (United States)

    Balcerak, Ernie


    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  10. ALMA measures Calama earthquake (United States)

    Brito, R.; Shillue, B.


    On 4 March 2010, the ALMA system response to an extraordinarily large disturbance was measured when a magnitude 6.3 earthquake struck near Calama, Chile, relatively close to the ALMA site. Figures 1 through 4 demonstrate the remarkable performance of the ALMA system to a huge disturbance that was more than 100 times the specification for correction accuracy.

  11. Road Damage Following Earthquake (United States)


    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  12. The HayWired earthquake scenario—Earthquake hazards (United States)

    Detweiler, Shane T.; Wein, Anne M.


    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  13. The performance review of EEWS(Earthquake Early Warning System) about Gyeongju earthquakes with Ml 5.1 and Ml 5.8 in Korea (United States)

    Park, Jung-Ho; Chi, Heon-Cheol; Lim, In-Seub; Seong, Yun-Jeong; Park, Jihwan


    EEW(Earthquake Early Warning) service to the public has been officially operated by KMA (Korea Meteorological Administration) from 2015 in Korea. For the KMA's official EEW service, KIGAM has adopted ElarmS from UC Berkeley BSL and modified local magnitude relation, 1-D travel time curves and association procedures with real time waveform from about 201 seismic stations of KMA, KIGAM, KINS and KEPRI. There were two moderate size earthquakes with magnitude Ml 5.1 and Ml 5.8 close to Gyeongju city located at the southeastern part of Korea on Sep. 12. 2016. We have checked the performance of EEWS(Earthquake Early Warning System) named as TrigDB by KIGAM reviewing of these two Gyeongju earthquakes. The nearest station to epicenters of two earthquakes Ml 5.1(35.7697 N, 129.1904 E) and Ml 5.8(35.7632 N, 129.1898 E) was MKL which detected P phases in about 2.1 and 3.6 seconds after the origin times respectively. The first events were issued in 6.3 and 7.0 seconds from each origin time. Because of the unstable results on the early steps due to very few stations and unexpected automated analysis, KMA has the policy to wait for more 20 seconds for confirming the reliability. For these events KMA published EEW alarms in about 26 seconds after origin times with M 5.3 and M 5.9 respectively.

  14. Aftershocks following the 9 april 2013 bushehr earthquake, iran. (United States)

    Ardalan, Ali; Hajiuni, Alireza; Zare, Mehdi


    On 9 April 2013 at 11:52 UTC (16:22 local time), a Mw 6.2 earthquake occurred at the depth of 20 Km in Dashti district in south-west Iran's Bushehr province. The macroseismic epicenter was located nearby the city of Shonbeh. During one month after the earthquake, a total of 282 aftershocks hit the epicentral region, mostly at the east and north sides. They ranged from 2.5 to 5.7 on the Richter scale. Seventy aftershocks (24.9%) were M4.0-4.9 and eight (2.8%) were M5.0-5.7. Aftershocks are potentially able to do additional damage. In Bushehr earthquake, a M5.4 aftershock on 10 April in Chahgah village caused at least four injuries and destruction of several buildings that had been already damaged by the main shock. Knowledge about the aftershock induced damages provides opportunities for timely risk communication with the affected people and for long term community education. This will hopefully increase the community awareness and minimize the risk of further loss of lives.

  15. Van earthquakes (23 October 2011 and 9 November 2011) and performance of masonry and adobe structures (United States)

    Güney, D.


    Earthquakes, which are unavoidable natural phenomena in Turkey, have often produced economic and social disaster. The latest destructive earthquakes happened in Van city. Van, Turkey, earthquakes with M = 7.2 occurred on 23 October 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanlı village) and M = 5.6 on 9 November 2011 epicentered near the town of Edremit south of Van in eastern Turkey and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 4000 buildings collapsed or were seriously damaged. The majority of the damaged structures were seismically insufficient, unreinforced masonry and adobe buildings in rural areas. In this paper, site surveys of the damaged masonry and adobe buildings are presented and the reasons for the caused damages are discussed in detail.

  16. Synchronization of atmospheric indicators at the last stage of earthquake preparation cycle

    Directory of Open Access Journals (Sweden)

    Sergey A. Pulinets


    Full Text Available We consider the dynamics of different parameters in the boundary layer of atmosphere and low level cloud structure around the time of three recent moderate and strong earthquakes: Virginia M 5.8 earthquake on August 23 2011 in USA, Van M 7.1 earthquake on October 23 2011 in Turkey, and Northwestern Iran M 6.4 earthquake on August 11, 2012, Iran. Using as indicators the water vapor chemical potential correction value, aerosol optical thickness, and linear cloud structures appearance we discovered their coherence in space and time within the time interval 3-5 days before the seismic shock. Obtained results are interpreted as synergetic result of the lithosphere-atmosphere-ionosphere coupling process.

  17. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L. (United States)

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin


    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry.

  18. Listening to Earthquakes with Infrasound (United States)

    Mucek, A. E.; Langston, C. A.


    A tripartite infrasound array was installed to listen to earthquakes occurring along the Guy-Greenbrier fault in Arkansas. The active earthquake swarm is believed to be caused by deep waste water injections and will allow us to explain the mechanisms causing earthquake "booms" that have been heard during an earthquake. The array has an aperture of 50 meters and is installed next to the X301 seismograph station run by the Center for Earthquake Research and Information (CERI). This arrangement allows simultaneous recording of seismic and acoustic changes from the arrival of an earthquake. Other acoustic and seismic sources that have been found include thunder from thunderstorms, gunshots, quarry explosions and hydraulic fracturing activity from the local gas wells. The duration of the experiment is from the last week of June to the last week of September 2011. During the first month and a half, seven local earthquakes were recorded, along with numerous occurrences of the other infrasound sources. Phase arrival times of the recorded waves allow us to estimate wave slowness and azimuth of infrasound events. Using these two properties, we can determine whether earthquake "booms" occur at a site from the arrival of the P-wave or whether the earthquake "booms" occur elsewhere and travel through the atmosphere. Preliminary results show that the infrasound correlates well to the ground motion during an earthquake for frequencies below 15 Hertz.

  19. Dynamic Source Inversion of Intermediate Depth Earthquakes in Mexico (United States)

    Yuto Sho Mirwald, Aron; Cruz-Atienza, Victor Manuel; Krishna Singh-Singh, Shri


    The source mechanisms of earthquakes at intermediate depth (50-300 km) are still under debate. Due to the high confining pressure at depths below 50 km, rocks ought to deform by ductile flow rather than brittle failure, which is the mechanism originating most earthquakes. Several source mechanisms have been proposed, but for neither of them conclusive evidence has been found. One of two viable mechanisms is Dehydration Embrittlement, where liberation of water lowers the effective pressure and enables brittle fracture. The other is Thermal Runaway, a highly localized ductile deformation (Prieto et. al., Tecto., 2012). In the Mexican subduction zone, intermediate depth earthquakes represent a real hazard in central Mexico due to their proximity to highly populated areas and the large accelerations induced on ground motion (Iglesias et. al., BSSA, 2002). To improve our understanding of these rupture processes, we use a recently introduced inversion method (Diaz-Mojica et. al., JGR, 2014) to analyze several intermediate depth earthquakes in Mexico. The method inverts strong motion seismograms to determine the dynamic source parameters based on a genetic algorithm. It has been successfully used for the M6.5 Zumpango earthquake that occurred at a depth of 62 km in the state of Guerrero, Mexico. For this event, high radiated energy, low radiation efficiency and low rupture velocity were determined. This indicates a highly dissipative rupture process, suggesting that Thermal Runaway could probably be the dominant source process. In this work we improved the inversion method by introducing a theoretical consideration for the nucleation process that minimizes the effects of rupture initiation and guarantees self-sustained rupture propagation (Galis et. al., GJInt., 2014). Preliminary results indicate that intermediate depth earthquakes in central Mexico may vary in their rupture process. For instance, for a M5.9 normal-faulting earthquake at 55 km depth that produced very

  20. The Openness/Intellect Model on the M5-50: Supporting the Flexibility of IPIP-Based Instruments


    Vuyk, M. Alexandra; University of Kansas; Ingram IV, Paul B.; University of Kansas; Multon, Karen D.; University of Kansas; Warlick, Craig A.; University of Kansas


    This study examined ways to improve fit and interpretive capacity of the M5-50, an IPIP-based personality instrument, using the Openness/Intellect model (O/I) given a history of poor performance of the M5-50 Openness scale (Author, 2013; Socha, Cooper, & McCord, 2010). With participants from Amazon’s MTurk (n = 305), theoretical models for the five-factor model, Openness as a 10-item single factor, and the O/I model were tested and fitted poorly After removing one problematic item, the O/I m...

  1. Complete genome sequences of Brucella melitensis strains M28 and M5-90, with different virulence backgrounds. (United States)

    Wang, Fangkun; Hu, Sen; Gao, Yuzhe; Qiao, Zujian; Liu, Wenxing; Bu, Zhigao


    Brucella melitensis is a Gram-negative coccobacillus bacteria belonging to the Alphaproteobacteria subclass. It is an important zoonotic pathogen that causes brucellosis, a disease affecting sheep, cattle, and sometimes humans. The B. melitensis strain M5-90, a live attenuated vaccine cultured from the B. melitensis virulent strain M28, has been an effective tool to control brucellosis in goats and sheep in China. Here we report the complete genome sequences of B. melitensis M28 and M5-90, strains with different virulence backgrounds, which will serve as a valuable reference for future studies.

  2. Comparison between earthquake magnitudes determined by China seismograph network and US seismograph networks (Ⅰ): Body wave magnitude

    Institute of Scientific and Technical Information of China (English)

    LIU Rui-feng; CHEN Yun-tai; Peter Bormann; REN Xiao; HOU Jian-min; ZOU Li-ye; YANG Hui


    By using orthogonal regression method, a systematic comparison is made between body wave magnitudes determined by Institute of Geophysics of China Earthquake Administration (IGCEA) and National Earthquake Information Center of US Geological Survey (USGS/NEIC) on the basis of observation data from China and US seismograph networks between 1983 and 2004. The result of orthogonal regression shows no systematic error between body wave magnitude mb determined by IGCEA and mb (NEIC). Provided that mb (NEIC) is taken as the benchmark, body wave magnitude determined by IGCEA is greater by 0.2~0.1 than the magnitude determined by NEIC for M=3.5~4.5 earthquakes; for M=5.0~5.5 earthquakes, there is no difference; and for M≥6.0 earthquakes, it is smaller by no more than 0.2. This is consistent with the result of comparison by IDC (International Data Center).

  3. Comparison between earthquake magnitudes determined by China seismograph network and US seismograph network (Ⅱ):Surface wave magnitude

    Institute of Scientific and Technical Information of China (English)


    By using orthogonal regression method, a systematic comparison is made between surface wave magnitudes determined by Institute of Geophysics of China Earthquake Administration (IGCEA) and National Earthquake Information Center of US Geological Survey (USGS/NEIC) on the basis of observation data collected by the two institutions between 1983 and 2004. A formula is obtained which reveals the relationship between surface wave magnitudes determined by China seismograph network and US seismograph network. The result shows that, as different calculation formulae and observational instruments are used, surface wave magnitude determined by IGCEA is generally greater by 0.2 than that determined by NEIC: for M=3.5~4.5 earthquakes, it is greater by 0.3;for M=5.0~6.5 earthquakes, it is greater by 0.2;and for M≥7.0 earthquakes, it is greater by no more than 0.1.

  4. Potential earthquake faults offshore Southern California, from the eastern Santa Barbara Channel south to Dana Point (United States)

    Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.


    Urban areas in Southern California are at risk from major earthquakes, not only quakes generated by long-recognized onshore faults but also ones that occur along poorly understood offshore faults. We summarize recent research findings concerning these lesser known faults. Research by the U.S. Geological Survey during the past five years indicates that these faults from the eastern Santa Barbara Channel south to Dana Point pose a potential earthquake threat. Historical seismicity in this area indicates that, in general, offshore faults can unleash earthquakes having at least moderate (M 5-6) magnitude. Estimating the earthquake hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas Fault. Additional complication in the analysis of earthquake hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related faults. The eastern Santa Barbara Basin is deformed by large active reverse and thrust faults, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust fault. These faults could produce moderate to strong earthquakes and destructive tsunamis. On the Malibu coast, earthquakes along offshore faults could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust fault, which underlies the oblique faults, could give rise to large (M ??7) earthquakes. Offshore faults near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust earthquakes along northwest-striking faults. In all areas, transverse structures, such as lateral ramps and tear faults, which crosscut the main faults, could

  5. Solar activity and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, J.


    Prolonged astronomical observations have discovered that the Sun, which is the nearest star to the Earth, is not calm and serene. On the solar surface, there are often windstorms, electrical lights, and sometimes large flame eruptions; and there are regularly black spots in patches which are also active. The Sun not only disperses light and heat, but also throws out large quantities of currents of charged particles to be scattered in space and to reach the Earth, sometimes, which are called by some solar winds. These activities in the Sun can induce many physical phenomena on earth, including magnetic storms, polar light, sudden disruption or attenuation of medium- and short-wave radio, and many atmospheric changes. Some scientists believe they are perhaps also related to the occurrence of earthquakes. This paper explains these solar activities and their possible relationship to earthquakes.

  6. Seismomagnetic models for earthquakes in the eastern part of Izu Peninsula, Central Japan

    Directory of Open Access Journals (Sweden)

    Y. Ishikawa


    Full Text Available Seismomagnetic changes accompanied by four damaging earthquakes are explained by the piezomagnetic effect observed in the eastern part of Izu Peninsula, Central Japan. Most of the data were obtained by repeat surveys. Although these data suffered electric railway noise, significant magnetic changes were detected at points close to earthquake faults. Coseismic changes can be well interpreted by piezomagnetic models in the case of the 1978 Near Izu-Oshima (M 7.0 and the 1980 East Off Izu Peninsula (M 6.7 earthquakes. A large total intensity change up to 5 nT was observed at a survey point almost above the epicenter of the 1976 Kawazu (M 5.4 earthquake. This change is not explained by a single fault model; a 2-segment fault is suggested. Remarkable precursory and coseismic changes in the total force intensity were observed at KWZ station along with the 1978 Higashi-Izu (M 4.9 earthquake. KWZ station is located very close to a buried subsidiary fault of the M 7.0 Near Izu-Oshima earthquake, which moved aseismically at the time of the M 7.0 quake. The precursory magnetic change to the M 4.9 quake is ascribed to aseismic faulting of this buried fault, while the coseismic rebound to enlargement of the slipping surface at the time of M 4.9 quake. This implies that we observed the formation process of the earthquake nucleation zone via the magnetic field.

  7. Do Earthquakes Shake Stock Markets? (United States)

    Ferreira, Susana; Karali, Berna


    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  8. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya


    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  9. Pain after earthquake

    Directory of Open Access Journals (Sweden)

    Angeletti Chiara


    Full Text Available Abstract Introduction On 6 April 2009, at 03:32 local time, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L Aquila and its nearby villages. The earthquake caused 308 casualties and over 1,500 injuries, displaced more than 25,000 people and induced significant damage to more than 10,000 buildings in the L'Aquila region. Objectives This observational retrospective study evaluated the prevalence and drug treatment of pain in the five weeks following the L'Aquila earthquake (April 6, 2009. Methods 958 triage documents were analysed for patients pain severity, pain type, and treatment efficacy. Results A third of pain patients reported pain with a prevalence of 34.6%. More than half of pain patients reported severe pain (58.8%. Analgesic agents were limited to available drugs: anti-inflammatory agents, paracetamol, and weak opioids. Reduction in verbal numerical pain scores within the first 24 hours after treatment was achieved with the medications at hand. Pain prevalence and characterization exhibited a biphasic pattern with acute pain syndromes owing to trauma occurring in the first 15 days after the earthquake; traumatic pain then decreased and re-surged at around week five, owing to rebuilding efforts. In the second through fourth week, reports of pain occurred mainly owing to relapses of chronic conditions. Conclusions This study indicates that pain is prevalent during natural disasters, may exhibit a discernible pattern over the weeks following the event, and current drug treatments in this region may be adequate for emergency situations.

  10. Effect of Carburizing and Hardening Temperature on the Endurance of Forming Dies from Steel R6M5 (United States)

    Stepankin, I. N.; Ken'ko, V. M.; Boiko, A. A.


    Results of a study of the effect of carburizing of the forming surfaces of cold upset dies from high-speed steel R6M5 and of the hardening temperature on the structure and properties of the dies are presented. It is shown that the hardness and endurance of the carburized tools can be raised by hardening from lower temperatures.

  11. A Study of confinement for $Q\\bar{Q}$ potentials on D3, M2 & M5 branes

    CERN Document Server

    Quijada, Edward


    We study analytically and numerically the interaction potentials between a pair of quark an anti-quark on D3, M2 and M5 branes. These potentials are obtained using Maldacena's method involving Wilson loops and present confining and non-confining behaviours in different situations that we explore in this work.

  12. Foreshocks of strong earthquakes (United States)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.


    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  13. Earthquake forecasting: Statistics and Information

    CERN Document Server

    Gertsik, V; Krichevets, A


    We present an axiomatic approach to earthquake forecasting in terms of multi-component random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different earthquake forecasts in terms of the increase of Shannon information. 'Forecasting' and 'prediction' of earthquakes are equivalent in this approach.

  14. Earthquake forecasting and its verification

    Directory of Open Access Journals (Sweden)

    J. R. Holliday


    Full Text Available No proven method is currently available for the reliable short time prediction of earthquakes (minutes to months. However, it is possible to make probabilistic hazard assessments for earthquake risk. In this paper we discuss a new approach to earthquake forecasting based on a pattern informatics (PI method which quantifies temporal variations in seismicity. The output, which is based on an association of small earthquakes with future large earthquakes, is a map of areas in a seismogenic region ('hotspots'' where earthquakes are forecast to occur in a future 10-year time span. This approach has been successfully applied to California, to Japan, and on a worldwide basis. Because a sharp decision threshold is used, these forecasts are binary--an earthquake is forecast either to occur or to not occur. The standard approach to the evaluation of a binary forecast is the use of the relative (or receiver operating characteristic (ROC diagram, which is a more restrictive test and less subject to bias than maximum likelihood tests. To test our PI method, we made two types of retrospective forecasts for California. The first is the PI method and the second is a relative intensity (RI forecast based on the hypothesis that future large earthquakes will occur where most smaller earthquakes have occurred in the recent past. While both retrospective forecasts are for the ten year period 1 January 2000 to 31 December 2009, we performed an interim analysis 5 years into the forecast. The PI method out performs the RI method under most circumstances.

  15. Pattern Informatics and Its Application for Optimal Forecasting of Large Earthquakes in Japan

    CERN Document Server

    Nanjo, K Z; Holliday, J R; Turcotte, D L


    Pattern informatics (PI) technique can be used to detect precursory seismic activation or quiescence and make earthquake forecast. Here we apply the PI method for optimal forecasting of large earthquakes in Japan, using the data catalogue maintained by the Japan Meteorological Agency. The PI method is tested to forecast large (magnitude m >= 5) earthquakes for the time period 1995-2004 in the Kobe region. Visual inspection and statistical testing show that the optimized PI method has forecasting skill, relative to the seismic intensity data often used as a standard null hypothesis. Moreover, we find a retrospective forecast that the 1995 Kobe earthquake (m = 7.2) falls in a seismically anomalous area. Another approach to test the forecasting algorithm is to create a future potential map for large (m >= 5) earthquake events. This is illustrated using the Kobe and Tokyo regions for the forecast period 2000-2009. Based on the resulting Kobe map we point out several forecasted areas: the epicentral area of the 19...

  16. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA

    DEFF Research Database (Denmark)

    Desmolaize, Benoit; Fabret, Céline; Brégeon, Damien;


    . However, as previously shown, the m(5)U54 modification in B. subtilis tRNAs is catalysed in a fundamentally different manner by the folate-dependent enzyme TrmFO, which is unrelated to the E. coli TrmA. Here, we show that methylation of U747 and U1939 in B. subtilis rRNA is catalysed by a single enzyme...

  17. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake (United States)

    Shebalin, P.; Baranov, S.


    We study aftershock sequences of six major earthquakes in New Zealand, including the 2016 M7.8 Kaikaoura and 2016 M7.1 North Island earthquakes. For Kaikaoura earthquake, we assess the expected number of long-delayed large aftershocks of M5+ and M5.5+ in two periods, 0.5 and 3 years after the main shocks, using 75 days of available data. We compare results with obtained for other sequences using same 75-days period. We estimate the errors by considering a set of magnitude thresholds and corresponding periods of data completeness and consistency. To avoid overestimation of the expected rates of large aftershocks, we presume a break of slope of the magnitude-frequency relation in the aftershock sequences, and compare two models, with and without the break of slope. Comparing estimations to the actual number of long-delayed large aftershocks, we observe, in general, a significant underestimation of their expected number. We can suppose that the long-delayed aftershocks may reflect larger-scale processes, including interaction of faults, that complement an isolated relaxation process. In the spirit of this hypothesis, we search for symptoms of the capacity of the aftershock zone to generate large events months after the major earthquake. We adapt an algorithm EAST, studying statistics of early aftershocks, to the case of secondary aftershocks within aftershock sequences of major earthquakes. In retrospective application to the considered cases, the algorithm demonstrates an ability to detect in advance long-delayed aftershocks both in time and space domains. Application of the EAST algorithm to the 2016 M7.8 Kaikoura earthquake zone indicates that the most likely area for a delayed aftershock of M5.5+ or M6+ is at the northern end of the zone in Cook Strait.

  18. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen


    The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications gener...... methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification....

  19. Results of Severe Fuel Damage Experiment QUENCH-14 with Advanced Rod Cladding M5®. (KIT Scientific Reports ; 7549)


    STUCKERT J.; Große, M.; Stegmaier, U.; Steinbrück, M.


    The QUENCH experiments are to investigate the hydrogen release resulting from the water injection into an uncovered core of a Light Water Reactor as well as the high-temperature behavior of core materials. The QUENCH-14 experiment investigated the effect of M5® cladding material on bundle oxidation and core reflood, in comparison with the tests QUENCH-06 that used standard Zircaloy-4 and QUENCH-12 that used VVER E110-claddings.

  20. Earthquakes Threaten Many American Schools (United States)

    Bailey, Nancy E.


    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  1. Make an Earthquake: Ground Shaking! (United States)

    Savasci, Funda


    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  2. Make an Earthquake: Ground Shaking! (United States)

    Savasci, Funda


    The main purposes of this activity are to help students explore possible factors affecting the extent of the damage of earthquakes and learn the ways to reduce earthquake damages. In these inquiry-based activities, students have opportunities to develop science process skills and to build an understanding of the relationship among science,…

  3. Anthropogenic triggering of large earthquakes. (United States)

    Mulargia, Francesco; Bizzarri, Andrea


    The physical mechanism of the anthropogenic triggering of large earthquakes on active faults is studied on the basis of experimental phenomenology, i.e., that earthquakes occur on active tectonic faults, that crustal stress values are those measured in situ and, on active faults, comply to the values of the stress drop measured for real earthquakes, that the static friction coefficients are those inferred on faults, and that the effective triggering stresses are those inferred for real earthquakes. Deriving the conditions for earthquake nucleation as a time-dependent solution of the Tresca-Von Mises criterion applied in the framework of poroelasticity yields that active faults can be triggered by fluid overpressures oil and gas production and storage may trigger destructive earthquakes on active faults at a few tens of kilometers. Fluid pressure propagates as slow stress waves along geometric paths operating in a drained condition and can advance the natural occurrence of earthquakes by a substantial amount of time. Furthermore, it is illusory to control earthquake triggering by close monitoring of minor "foreshocks", since the induction may occur with a delay up to several years.

  4. Heavy tails and earthquake probabilities (United States)

    Ellsworth, William L.


    The 21st century has already seen its share of devastating earthquakes, some of which have been labeled as “unexpected,” at least in the eyes of some seismologists and more than a few journalists. A list of seismological surprises could include the 2004 Sumatra-Andaman Islands; 2008 Wenchuan, China; 2009 Haiti; 2011 Christchurch, New Zealand; and 2011 Tohoku, Japan, earthquakes

  5. Earthquakes Threaten Many American Schools (United States)

    Bailey, Nancy E.


    Millions of U.S. children attend schools that are not safe from earthquakes, even though they are in earthquake-prone zones. Several cities and states have worked to identify and repair unsafe buildings, but many others have done little or nothing to fix the problem. The reasons for ignoring the problem include political and financial ones, but…

  6. Can Satellites Aid Earthquake Predictions?

    Institute of Scientific and Technical Information of China (English)

    John Roach; 李晓辉


    @@ Earthquake prediction is an imprecise science, and to illustrate the point,many experts point to the story of Tangshen①, China. On July 28, 1976, a magnitude② 7. 6 earthquake struck the city of Tangshen, China, without warning. None of the signs of the successful prediction from a year and half earlier were present. An estimated 250,000 people died.

  7. Earthquake Loss Estimation Uncertainties (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Aleksander


    The paper addresses the reliability issues of strong earthquakes loss assessment following strong earthquakes with worldwide Systems' application in emergency mode. Timely and correct action just after an event can result in significant benefits in saving lives. In this case the information about possible damage and expected number of casualties is very critical for taking decision about search, rescue operations and offering humanitarian assistance. Such rough information may be provided by, first of all, global systems, in emergency mode. The experience of earthquakes disasters in different earthquake-prone countries shows that the officials who are in charge of emergency response at national and international levels are often lacking prompt and reliable information on the disaster scope. Uncertainties on the parameters used in the estimation process are numerous and large: knowledge about physical phenomena and uncertainties on the parameters used to describe them; global adequacy of modeling techniques to the actual physical phenomena; actual distribution of population at risk at the very time of the shaking (with respect to immediate threat: buildings or the like); knowledge about the source of shaking, etc. Needless to be a sharp specialist to understand, for example, that the way a given building responds to a given shaking obeys mechanical laws which are poorly known (if not out of the reach of engineers for a large portion of the building stock); if a carefully engineered modern building is approximately predictable, this is far not the case for older buildings which make up the bulk of inhabited buildings. The way population, inside the buildings at the time of shaking, is affected by the physical damage caused to the buildings is not precisely known, by far. The paper analyzes the influence of uncertainties in strong event parameters determination by Alert Seismological Surveys, of simulation models used at all stages from, estimating shaking intensity

  8. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.


    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  9. Earthquake forecasting: statistics and information

    Directory of Open Access Journals (Sweden)

    Vladimir Gertsik


    Full Text Available The paper presents a decision rule forming a mathematical basis of earthquake forecasting problem. We develop an axiomatic approach to earthquake forecasting in terms of multicomponent random fields on a lattice. This approach provides a method for constructing point estimates and confidence intervals for conditional probabilities of strong earthquakes under conditions on the levels of precursors. Also, it provides an approach for setting a multilevel alarm system and hypothesis testing for binary alarms. We use a method of comparison for different algorithms of earthquake forecasts in terms of the increase of Shannon information. ‘Forecasting’ (the calculation of the probabilities and ‘prediction’ (the alarm declaring of earthquakes are equivalent in this approach.

  10. Are Earthquakes a Critical Phenomenon? (United States)

    Ramos, O.


    Earthquakes, granular avalanches, superconducting vortices, solar flares, and even stock markets are known to evolve through power-law distributed events. During decades, the formalism of equilibrium phase transition has coined these phenomena as critical, which implies that they are also unpredictable. This work revises these ideas and uses earthquakes as the paradigm to demonstrate that slowly driven systems evolving through uncorrelated and power-law distributed avalanches (UPLA) are not necessarily critical systems, and therefore not necessarily unpredictable. By linking the correlation length to the pdf of the distribution, and comparing it with the one obtained at a critical point, a condition of criticality is introduced. Simulations in the classical Olami-Feder-Christensen (OFC) earthquake model confirm the findings, showing that earthquakes are not a critical phenomenon. However, one single catastrophic earthquake may show critical properties and, paradoxically, the emergence of this temporal critical behaviour may eventually carry precursory signs of catastrophic events.

  11. The Bay Area Earthquake Cycle:A Paleoseismic Perspective (United States)

    Schwartz, D. P.; Seitz, G.; Lienkaemper, J. J.; Dawson, T. E.; Hecker, S.; William, L.; Kelson, K.


    Stress changes produced by the 1906 San Francisco earthquake had a profound effect on Bay Area seismicity, dramatically reducing it in the 20th century. Whether the San Francisco Bay Region (SFBR) is still within, is just emerging from it, or is out of the 1906 stress shadow is an issue of strong debate with important implications for earthquake mechanics and seismic hazards. Historically the SFBR has not experienced one complete earthquake cycle--the interval immediately following, then leading up to and repeating, a 1906-type (multi-segment rupture, M7.9) San Andreas event. The historical record of earthquake occurrence in the SFBR appears to be complete at about M5.5 back to 1850 (Bakun, 1999), which is less than half a cycle. For large events (qualitatively placed at M*7) Toppozada and Borchardt (1998) suggest the record is complete back to 1776, which may represent about half a cycle. During this period only the southern Hayward fault (1868) and the San Andreas fault (1838?, 1906) have produced their expected large events. New paleoseismic data now provide, for the first time, a more complete view of the most recent pre-1906 SFBR earthquake cycle. Focused paleoseismic efforts under the Bay Area Paleoearthquake Experiment (BAPEX) have developed a chronology of the most recent large earthquakes (MRE) on major SFBR faults. The San Andreas (SA), northern Hayward (NH), southern Hayward (SH), Rodgers Creek (RC), and northern Calaveras (NC) faults provide clear paleoseismic evidence for large events post-1600 AD. The San Gregorio (SG) may have also produced a large earthquake after this date. The timing of the MREs, in years AD, follows. The age ranges are 2-sigma radiocarbon intervals; the dates in parentheses are 1-sigma. MRE ages are: a) SA 1600-1670 (1630-1660), NH 1640-1776 (1635-1776); SH 1635-1776 (1685-1676); RC 1670-1776 (1730-1776); NC 1670-1830?; and San Gregorio 1270-1776 but possibly 1640-1776 (1685-1776). Based on present radiocarbon dating, the NH

  12. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model (United States)

    Deo, Ravinesh C.; Kisi, Ozgur; Singh, Vijay P.


    Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that caters for different time-scales at which the drought occurs, and due to its standardization, is well-suited for forecasting drought at different periods in climatically diverse regions. This study advances drought modelling using multivariate adaptive regression splines (MARS), least square support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (r2). Best MARS model required different input combinations, where rainfall, sea surface temperature and periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was not required for Collarenebri. Inclusion of periodicity increased the r2 value by 0.5-8.1% and reduced RMSE by 3.0-178.5%. Comparisons showed that MARS superseded the performance of the other counterparts for three out of five stations with lower MAE by 15.0-73.9% and 7.3-42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower MAE by 13.8-13.4% and 25.7-52.2%, respectively, and for Bathurst, LSSVM yielded more accurate result. For droughts identified by SPI ≤ - 0.5, accurate forecasts were attained by MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where MARS/M5Tree was better than LSSVM. The results highlight the

  13. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell


    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  14. [Comment on "Exaggerated claims about earthquake predictions: Analysis of NASA's method"] Pattern informatics and cellular seismology: A comparison of methods (United States)

    Rundle, John B.; Tiampo, Kristy F.; Klein, William


    The recent article in Eos by Kafka and Ebel [2007] is a criticism of a NASA press release issued on 4 October 2004 describing an earthquake forecast ( based on a pattern informatics (PI) method [Rundle et al., 2002]. This 2002 forecast was a map indicating the probable locations of earthquakes having magnitude m>5.0 that would occur over the period of 1 January 2000 to 31 December 2009. Kafka and Ebel [2007] compare the Rundle et al. [2002] forecast to a retrospective analysis using a cellular seismology (CS) method. Here we analyze the performance of the Rundle et al. [2002] forecast using the first 15 of the m>5.0 earthquakes that occurred in the area covered by the forecasts.

  15. The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey

    Directory of Open Access Journals (Sweden)

    Katsuichiro eGoda


    Full Text Available The 2015 Gorkha Nepal earthquake caused tremendous damage and loss. To gain valuable lessons from this tragic event, an earthquake damage investigation team was dispatched to Nepal from 1 May 2015 to 7 May 2015. A unique aspect of the earthquake damage investigation is that first-hand earthquake damage data were obtained 6 to 11 days after the mainshock. To gain deeper understanding of the observed earthquake damage in Nepal, the paper reviews the seismotectonic setting and regional seismicity in Nepal and analyzes available aftershock data and ground motion data. The earthquake damage observations indicate that the majority of the damaged buildings were stone/brick masonry structures with no seismic detailing, whereas the most of RC buildings were undamaged. This indicates that adequate structural design is the key to reduce the earthquake risk in Nepal. To share the gathered damage data widely, the collected damage data (geo-tagged photos and observation comments are organized using Google Earth and the kmz file is made publicly available.

  16. Source parameters of microearthquakes on an interplate asperity off Kamaishi, NE Japan over two earthquake cycles (United States)

    Uchida, Naoki; Matsuzawa, Toru; Ellsworth, William L.; Imanishi, Kazutoshi; Shimamura, Kouhei; Hasegawa, Akira


    We have estimated the source parameters of interplate earthquakes in an earthquake cluster off Kamaishi, NE Japan over two cycles of M~ 4.9 repeating earthquakes. The M~ 4.9 earthquake sequence is composed of nine events that occurred since 1957 which have a strong periodicity (5.5 ± 0.7 yr) and constant size (M4.9 ± 0.2), probably due to stable sliding around the source area (asperity). Using P- and S-wave traveltime differentials estimated from waveform cross-spectra, three M~ 4.9 main shocks and 50 accompanying microearthquakes (M1.5–3.6) from 1995 to 2008 were precisely relocated. The source sizes, stress drops and slip amounts for earthquakes of M2.4 or larger were also estimated from corner frequencies and seismic moments using simultaneous inversion of stacked spectral ratios. Relocation using the double-difference method shows that the slip area of the 2008 M~ 4.9 main shock is co-located with those of the 1995 and 2001 M~ 4.9 main shocks. Four groups of microearthquake clusters are located in and around the mainshock slip areas. Of these, two clusters are located at the deeper and shallower edge of the slip areas and most of these microearthquakes occurred repeatedly in the interseismic period. Two other clusters located near the centre of the mainshock source areas are not as active as the clusters near the edge. The occurrence of these earthquakes is limited to the latter half of the earthquake cycles of the M~ 4.9 main shock. Similar spatial and temporal features of microearthquake occurrence were seen for two other cycles before the 1995 M5.0 and 1990 M5.0 main shocks based on group identification by waveform similarities. Stress drops of microearthquakes are 3–11 MPa and are relatively constant within each group during the two earthquake cycles. The 2001 and 2008 M~ 4.9 earthquakes have larger stress drops of 41 and 27 MPa, respectively. These results show that the stress drop is probably determined by the fault properties and does not change

  17. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi


    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  18. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)


    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  19. Earthquakes: Risk, Monitoring, Notification, and Research (United States)


    far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks have occurred since the main seismic event. The May 12 earthquake...motion of tectonic plates; ! Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes; ! Earthquake hazards

  20. 2010 Chile Earthquake Aftershock Response (United States)

    Barientos, Sergio


    The Mw=8.8 earthquake off the coast of Chile on 27 February 2010 is the 5th largest megathrust earthquake ever to be recorded and provides an unprecedented opportunity to advance our understanding of megathrust earthquakes and associated phenomena. The 2010 Chile earthquake ruptured the Concepcion-Constitucion segment of the Nazca/South America plate boundary, south of the Central Chile region and triggered a tsunami along the coast. Following the 2010 earthquake, a very energetic aftershock sequence is being observed in an area that is 600 km along strike from Valparaiso to 150 km south of Concepcion. Within the first three weeks there were over 260 aftershocks with magnitude 5.0 or greater and 18 with magnitude 6.0 or greater (NEIC, USGS). The Concepcion-Constitucion segment lies immediately north of the rupture zone associated with the great magnitude 9.5 Chile earthquake, and south of the 1906 and the 1985 Valparaiso earthquakes. The last great subduction earthquake in the region dates back to the February 1835 event described by Darwin (1871). Since 1835, part of the region was affected in the north by the Talca earthquake in December 1928, interpreted as a shallow dipping thrust event, and by the Chillan earthquake (Mw 7.9, January 1939), a slab-pull intermediate depth earthquake. For the last 30 years, geodetic studies in this area were consistent with a fully coupled elastic loading of the subduction interface at depth; this led to identify the area as a mature seismic gap with potential for an earthquake of magnitude of the order 8.5 or several earthquakes of lesser magnitude. What was less expected was the partial rupturing of the 1985 segment toward north. Today, the 2010 earthquake raises some disturbing questions: Why and how the rupture terminated where it did at the northern end? How did the 2010 earthquake load the adjacent segment to the north and did the 1985 earthquake only partially ruptured the plate interface leaving loaded asperities since

  1. The physics of an earthquake (United States)

    McCloskey, John


    The Sumatra-Andaman earthquake of 26 December 2004 (Boxing Day 2004) and its tsunami will endure in our memories as one of the worst natural disasters of our time. For geophysicists, the scale of the devastation and the likelihood of another equally destructive earthquake set out a series of challenges of how we might use science not only to understand the earthquake and its aftermath but also to help in planning for future earthquakes in the region. In this article a brief account of these efforts is presented. Earthquake prediction is probably impossible, but earth scientists are now able to identify particularly dangerous places for future events by developing an understanding of the physics of stress interaction. Having identified such a dangerous area, a series of numerical Monte Carlo simulations is described which allow us to get an idea of what the most likely consequences of a future earthquake are by modelling the tsunami generated by lots of possible, individually unpredictable, future events. As this article was being written, another earthquake occurred in the region, which had many expected characteristics but was enigmatic in other ways. This has spawned a series of further theories which will contribute to our understanding of this extremely complex problem.

  2. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5 (United States)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent


    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  3. Earthquake Source Parameters Inferred from T-Wave Observations (United States)

    Perrot, J.; Dziak, R.; Lau, T. A.; Matsumoto, H.; Goslin, J.


    The seismicity of the North Atlantic Ocean has been recorded by two networks of autonomous hydrophones moored within the SOFAR channel on the flanks of the Mid-Atlantic Ridge (MAR). In February 1999, a consortium of U.S. investigators (NSF and NOAA) deployed a 6-element hydrophone array for long-term monitoring of MAR seismicity between 15o-35oN south of the Azores. In May 2002, an international collaboration of French, Portuguese, and U.S. researchers deployed a 6-element hydrophone array north of the Azores Plateau from 40o-50oN. The northern network (referred to as SIRENA) was recovered in September 2003. The low attenuation properties of the SOFAR channel for earthquake T-wave propagation results in a detection threshold reduction from a magnitude completeness level (Mc) of ˜ 4.7 for MAR events recorded by the land-based seismic networks to Mc=3.0 using hydrophone arrays. Detailed focal depth and mechanism information, however, remain elusive due to the complexities of seismo-acoustic propagation paths. Nonetheless, recent analyses (Dziak, 2001; Park and Odom, 2001) indicate fault parameter information is contained within the T-wave signal packet. We investigate this relationship further by comparing an earthquake's T-wave duration and acoustic energy to seismic magnitude (NEIC) and radiation pattern (for events M>5) from the Harvard moment-tensor catalog. First results show earthquake energy is well represented by the acoustic energy of the T-waves, however T-wave codas are significantly influenced by acoustic propagation effects and do not allow a direct determination of the seismic magnitude of the earthquakes. Second, there appears to be a correlation between T-wave acoustic energy, azimuth from earthquake source to the hydrophone, and the radiation pattern of the earthquake's SH waves. These preliminary results indicate there is a relationship between the T-wave observations and earthquake source parameters, allowing for additional insights into T

  4. Diseño del mecanismo de rotación del espejo M5 de un telescopio reflector


    Fernández Gómez, Jorge


    El objetivo principal de este proyecto fin de carrera consiste en diseñar una solución para el desplazamiento de uno de los espejos, denominado M5 (Mirror 5), que forman el sistema óptico del telescopio E-ELT. Para mover dicho espejo se hace necesario desarrollar un mecanismo que le permita rotar 180º alrededor del eje de azimut desde una posición A, hasta una posición B, según apunte a una estación focal o a otra. El mecanismo debe de ser capaz de realizar la maniobra con rapidez, seguridad,...

  5. Fracking, wastewater disposal, and earthquakes (United States)

    McGarr, Arthur


    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  6. The threat of silent earthquakes (United States)

    Cervelli, Peter


    Not all earthquakes shake the ground. The so-called silent types are forcing scientists to rethink their understanding of the way quake-prone faults behave. In rare instances, silent earthquakes that occur along the flakes of seaside volcanoes may cascade into monstrous landslides that crash into the sea and trigger towering tsunamis. Silent earthquakes that take place within fault zones created by one tectonic plate diving under another may increase the chance of ground-shaking shocks. In other locations, however, silent slip may decrease the likelihood of destructive quakes, because they release stress along faults that might otherwise seem ready to snap.

  7. Earthquakes: Thinking about the unpredictable (United States)

    Geller, Robert J.

    The possibility of predicting earthquakes has been investigated by professionals and amateurs, seismologists and nonseismologists, for over 100 years. More than once, hopes of a workable earthquake prediction scheme have been raised only to be dashed. Such schemes—on some occasions accompanied by claims of an established track record—continue to be proposed, not only by Earth scientists, but also by workers in other fields. The assessment of these claims is not just a scientific or technical question. Public administrators and policy makers must make decisions regarding appropriate action in response to claims that some scheme has a predictive capability, or to specific predictions of imminent earthquakes.

  8. Fractal Models of Earthquake Dynamics

    CERN Document Server

    Bhattacharya, Pathikrit; Kamal,; Samanta, Debashis


    Our understanding of earthquakes is based on the theory of plate tectonics. Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the lithosphere) which produce seismic activity. Over the last about fifty years many models have come up which try to simulate seismic activity by mimicking plate plate interactions. The validity of a given model is subject to the compliance of the synthetic seismic activity it produces to the well known empirical laws which describe the statistical features of observed seismic activity. Here we present a review of two such models of earthquake dynamics with main focus on a relatively new model namely The Two Fractal Overlap Model.


    Directory of Open Access Journals (Sweden)

    Savaş TOPAL


    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  10. Coseismic deformation observed with radar interferometry: Great earthquakes and atmospheric noise (United States)

    Scott, Chelsea Phipps

    geometry and kinematics following the application of atmospheric corrections to an event spanned by real InSAR data, the 1992 M5.6 Little Skull Mountain, Nevada, earthquake. Finally, I discuss how the derived workflow could be applied to other tectonic problems, such as solving for interseismic strain accumulation rates in a subduction zone environment. I also study the evolution of the crustal stress field in the South American plate following two recent great earthquakes along the Nazca- South America subduction zone. I show that the 2010 Mw 8.8 Maule, Chile, earthquake very likely triggered several moderate magnitude earthquakes in the Andean volcanic arc and backarc. This suggests that great earthquakes modulate the crustal stress field outside of the immediate aftershock zone and that far-field faults may pose a heightened hazard following large subduction earthquakes. The 2014 Mw 8.1 Pisagua, Chile, earthquake reopened ancient surface cracks that have been preserved in the hyperarid forearc setting of northern Chile for thousands of earthquake cycles. The orientation of cracks reopened in this event reflects the static and likely dynamic stresses generated by the recent earthquake. Coseismic cracks serve as a reliable marker of permanent earthquake deformation and plate boundary behavior persistent over the million-year timescale. This work on great earthquakes suggests that InSAR observations can play a crucial role in furthering our understanding of the crustal mechanics that drive seismic cycle processes in subduction zones.

  11. Stress drop Scaling and Stress Release in the Darfield-Christchurch, New Zealand Earthquake Sequence (United States)

    Abercrombie, R. E.; Fry, B.; Gerstenberger, M. C.; Doser, D. I.; Bannister, S. C.


    To investigate earthquake rupture dynamics, and which factors (e.g. normal stress, strain rate, fluids, rheology) govern the earthquake source and consequent ground motions, we need to study earthquakes over a wide range of magnitudes, from a diverse range of tectonic environments. The uncertainties and discrepancies between studies of earthquake stress drop are a frustration to all those who are interested in earthquake source and fault dynamics. There is controversy over whether the earthquake rupture process is self-similar and whether it varies with tectonic setting; different studies give different results. It is unclear whether this is due to differences between the earthquakes, or the analysis methods. We are developing a direct wave, spectral ratio analysis approach that includes realistic estimates of uncertainties and has strict objective criteria for assessing the quality of an EGF derived spectral ratio (Abercrombie, 2012, submitted). Comparing this approach to other methods reveals significant random and systematic biases, enabling us to improve our understanding of the real uncertainties. The Canterbury earthquake sequence that began with the M7.1 Darfield earthquake in September 2010, and includes the devastating M6.2 Christchurch earthquake in February 2011 is a very active sequence within a low strain rate tectonic setting. To date there have been 15 earthquakes with M>5.5. High quality recording and accurate relocations make this an ideal sequence to investigate any spatial, temporal, or magnitude dependence to stress drop. The largest earthquakes appear to have relatively high stress drops (and apparent stress), consistent with the high ground accelerations and damage in Christchurch. This observation is also consistent with the hypothesis that faults in low-strain rate regions with long inter-event times rupture in higher stress drop earthquakes. We use recordings from the various GeoNet broadband stations deployed to record the ongoing

  12. Research on the Application of Time Structure Variation Analysis to the Jiashi-Bachu Earthquake Swarm Sequence

    Institute of Scientific and Technical Information of China (English)

    Yang Xin; Long Haiying; Shangguan Wenming; Nie Xiaohong


    In 1997~2003, 27 earthquakes with M≥5.0 occurred in the Jiashi-Bachu area of Xinjiang. It was a rare strong earthquake swarm activity. The earthquake swarm has three time segments of activity with different magnitudes in the years 1997, 1998 and 2003. In different time segments, the seismic activity showed strengthening-quiet changes in various degrees before earthquakes with M≥5.0. In order to delimitate effectively the precursory meaning of the clustering (strengthening) quiet change in sequence and to seek the time criterion for impending prediction, the nonlinear characteristics of seismic activity have been used to analyze the time structure characteristics of the earthquake swarm sequence, and further to forecast the development tendency of earthquake sequences in the future. Using the sequence catalogue recorded by the Kashi Station, and taking the earthquakes with M≥5.0 in the sequence as the starting point and the next earthquake with M=5.0 as the end, statistical analysis has been performed on the time structure relations of the earthquake sequence in different stages. The main results are as follows: (1) Before the major earthquakes with M≥5.0 in the swarm sequence, the time variation coefficient (δ-value) has abnormal demonstrations to different degrees. (2) Within 10 days after δ≈1, occurrence of earthquakes with M≥5.0 in the swarm is very possible. (3) The time variation coefficient has three types of change. (4) The change process before earthquakes with M5.0 is similar to that before earthquakes with M6.0, with little difference in the threshold value. In the earthquake swarm sequence, it is difficult to delimitate accurately the attribute of the current sequences (foreshock or aftershnck sequence) and to judge the magnitude of the follow-up earthquake by δ-value. We can only make the judgment that earthquakes with M5.0 are likely to occur in the sequence. (5) The critical clustering characteristics of the sequence are hierarchical

  13. Twitter earthquake detection: Earthquake monitoring in a social world (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.


    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  14. Discussion on Earthquake Forecasting and Early Warning

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaodong; Jiang Haikun; Li Mingxiao


    Through analysis of natural and social attributes of earthquake forecasting,the relationship between the natural and social attributes of earthquake forecasting (early warning) has been discussed.Regarding the natural attributes of earthquake forecasting,it only attempts to forecast the magnitude,location and occurrence time of future earthquake based on the aualysis of observational data and relevant theories and taking into consideration the present understanding of seismogeny and earthquake generation.It need not consider the consequences an earthquake forecast involves,and its purpose is to check out the level of scientific understanding of earthquakes.In respect of the social aspect of earthquake forecasting,people also focus on the consequence that the forecasting involves,in addition to its natural aspect,such as the uncertainty of earthquake prediction itself,the impact of earthquake prediction,and the earthquake resistant capability of structures (buildings),lifeline works,etc.In a word,it highlights the risk of earthquake forecasting and tries to mitigate the earthquake hazard as much as possible.In this paper,the authors also discuss the scientific and social challenges faced in earthquake prediction and analyze preliminarily the meanings and content of earthquake early warning.

  15. Earthquakes in cities revisited

    CERN Document Server

    Wirgin, Armand


    During the last twenty years, a number of publications of theoretical-numerical nature have appeared which come to the apparently-reassuring conclusion that seismic motion on the ground in cities is smaller than what this motion would be in the absence of the buildings (but for the same underground and seismic load). Other than the fact that this finding tells nothing about the motion within the buildings, it must be confronted with the overwhelming empirical evidence (e.g, earthquakes in Sendai (2011), Kathmandu (2015), Tainan City (2016), etc.) that shaking within buildings of a city is often large enough to damage or even destroy these structures. I show, on several examples, that theory can be reconciled with empirical evidence, and suggest that the crucial subject of seismic response in cities is in need of more thorough research.

  16. Earthquake Breccias (Invited) (United States)

    Rowe, C. D.; Melosh, B. L.; Lamothe, K.; Schnitzer, V.; Bate, C.


    Fault breccias are one of the fundamental classes of fault rocks and are observed in many exhumed faults. Some breccias have long been assumed to form co-seismically, but textural or mechanistic evidence for the association with earthquakes has never been documented. For example, at dilational jogs in brittle faults, it is common to find small bodies of chaotic breccia in lenticular or rhombohedral voids bounded by main slip surfaces and linking segments. Sibson interpreted these 'implosion breccias' as evidence of wall rock fracturing during sudden unloading when the dilational jogs open during earthquake slip (Sibson 1985, PAGEOPH v. 124, n. 1, 159-175). However, the role of dynamic fracturing in forming these breccias has not been tested. Moreover, the criteria for identifying implosion breccia have not been defined - do all breccias in dilational jogs or step-overs represent earthquake slip? We are building a database of breccia and microbreccia textures to develop a strictly observational set of criteria for distinction of breccia texture classes. Here, we present observations from the right-lateral Pofadder Shear Zone, South Africa, and use our textural criteria to identify the relative roles of dynamic and quasi-static fracture patterns, comminution/grinding and attrition, hydrothermal alteration, dissolution, and cementation. Nearly 100% exposure in the hyper-arid region south of the Orange River allowed very detailed mapping of frictional fault traces associated with rupture events, containing one or more right-steps in each rupture trace. Fracture patterns characteristic of on- and off-fault damage associated with propagation of dynamic rupture are observed along straight segments of the faults. The wall rock fractures are regularly spaced, begin at the fault trace and propagate at a high angle to the fault, and locally branch into subsidiary fractures before terminating a few cm away. This pattern of fractures has been previously linked to dynamic

  17. Thermal isocreep curves obtained during multi-axial creep tests on recrystallized Zircaloy-4 and M5™ alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rautenberg, M., E-mail: [AREVA, AREVA NP, 10 rue Juliette Récamier, 69456 Lyon (France); CIRIMAT, CNRS/UPS/INPT, 4 allée Emile Monso, 31030 Toulouse (France); Poquillon, D. [CIRIMAT, CNRS/UPS/INPT, 4 allée Emile Monso, 31030 Toulouse (France); Pilvin, P. [LIMATB, University Bretagne-Sud, rue de Saint-Maudé, 56321 Lorient (France); Grosjean, C. [AREVA, AREVA NP, 10 rue Juliette Récamier, 69456 Lyon (France); CIRIMAT, CNRS/UPS/INPT, 4 allée Emile Monso, 31030 Toulouse (France); Cloué, J.M. [AREVA, AREVA NP, 10 rue Juliette Récamier, 69456 Lyon (France); Feaugas, X. [LEMMA, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle (France)


    Zirconium alloys are widely used in the nuclear industry. Several components, such as cladding or guide tubes, undergo strong mechanical loading during and after their use inside the pressurized water reactors. The current requirements on higher fuel performances lead to the developing on new Zr based alloys exhibiting better mechanical properties. In this framework, creep behaviors of recrystallized Zircaloy-4 and M5™, have been investigated and then compared. In order to give a better understanding of the thermal creep anisotropy of Zr-based alloys, multi-axial creep tests have been carried out at 673 K. Using a specific device, creep conditions have been set using different values of β = σ{sub zz}/σ{sub θθ}, σ{sub zz} and σ{sub θθ} being respectively the axial and hoop creep stresses. Both axial and hoop strains are measured during each test which is carried out until stationary creep is stabilized. The steady-state strain rates are then used to build isocreep curves. Considering the isocreep curves, the M5™ alloy shows a largely improved creep resistance compared to the recrystallized Zircaloy-4, especially for tubes under high hoop loadings (0 < β < 1). The isocreep curves are then compared with simulations performed using two different mechanical models. Model 1 uses a von Mises yield criterion, the model 2 is based on a Hill yield criterion. For both models, a coefficient derived from Norton law is used to assess the stress dependence.

  18. M5-branes on S^2 x M_4: Nahm's Equations and 4d Topological Sigma-models

    CERN Document Server

    Assel, Benjamin; Wong, Jin-Mann


    We study the 6d N=(0,2) superconformal field theory, which describes multiple M5-branes, on the product space S^2 x M_4, and suggest a correspondence between a 2d N=(0,2) half-twisted gauge theory on S^2 and a topological sigma-model on the four-manifold M_4. To set up this correspondence, we determine in this paper the dimensional reduction of the 6d N=(0,2) theory on a two-sphere and derive that the four-dimensional theory is a sigma-model into the moduli space of solutions to Nahm's equations, or equivalently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes. We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills theory on I x M_4, with I an interval, then non-abelianize the 5d theory and finally reduce this to 4d. In the special case, when M_4 is a Hyper-Kahler manifold, we show that the dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic maps. Deriving the theory on a general M_4 requires knowledge of the met...

  19. Sichuan Earthquake in China (United States)


    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  20. Sichuan Earthquake in China (United States)


    The Sichuan earthquake in China occurred on May 12, 2008, along faults within the mountains, but near and almost parallel the mountain front, northwest of the city of Chengdu. This major quake caused immediate and severe damage to many villages and cities in the area. Aftershocks pose a continuing danger, but another continuing hazard is the widespread occurrence of landslides that have formed new natural dams and consequently new lakes. These lakes are submerging roads and flooding previously developed lands. But an even greater concern is the possible rapid release of water as the lakes eventually overflow the new dams. The dams are generally composed of disintegrated rock debris that may easily erode, leading to greater release of water, which may then cause faster erosion and an even greater release of water. This possible 'positive feedback' between increasing erosion and increasing water release could result in catastrophic debris flows and/or flooding. The danger is well known to the Chinese earthquake response teams, which have been building spillways over some of the new natural dams. This ASTER image, acquired on June 1, 2008, shows two of the new large landslide dams and lakes upstream from the town of Chi-Kua-Kan at 32o12'N latitude and 104o50'E longitude. Vegetation is green, water is blue, and soil is grayish brown in this enhanced color view. New landslides appear bright off-white. The northern (top) lake is upstream from the southern lake. Close inspection shows a series of much smaller lakes in an elongated 'S' pattern along the original stream path. Note especially the large landslides that created the dams. Some other landslides in this area, such as the large one in the northeast corner of the image, occur only on the mountain slopes, so do not block streams, and do not form lakes.

  1. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics


    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  2. Heterologous expression and enzymatic properties of pullulanase from Klebsiella oxytoca M5 al%产酸克雷伯氏菌M5al普鲁兰酶的异源表达及酶学性质研究

    Institute of Scientific and Technical Information of China (English)

    温亮亮; 郭佳; 关锋


    Pullulanase(EC3. 2. 1. 41),one of debranching enzymes,can specifically hydrolyze α-1,6-glucosidic bonds in starch and greatly promote starch utilization. Pullulanase is widely used in food,textile,biofuel and detergent industry. In present study,pullulanase gene pulA was amplified by PCR using genomic DNA of Klebsiella oxytoca M5al as template, then cloned into vector pET28a(+)and expressed in Escherichia coli BL21 (DE3)induced by 0. 5 mmol/L IPTG. The expression of recombinant pullulanase was confirmed by SDS-PAGE and western blot. The enzyme was purified by Ni-Agarose resin and its enzymatic properties were determined. The optimum pH and temperature of recombinant enzyme were 5. 5 and 60 ° C respectively. The activity of recombinant enzyme was significantly increased while adding Mn2+,but slightly enhanced by adding Fe3+,Mg2+ and Fe2+. The enzyme activity was greatly inhibited in the presence of Cu2+. The optimal catalytic conditions of pullulanase from Klebsiella oxytoca M5 al met the requirement of saccharification process,showing its application potential in starch industry.%普鲁兰酶(EC是一类淀粉脱支酶,能够特异性水解淀粉中的α-1,6-糖苷键,从而提高淀粉的利用率,在以淀粉为原料的食品、纺织、生物燃料和洗涤剂等行业中具有重要的应用价值。本研究以产酸克雷伯氏菌Klebsiella oxytoca M5 al基因组DNA为模板,将PCR扩增得到的普鲁兰酶基因pulA克隆至表达载体pET28 a (+),构建好的重组质粒转化大肠杆菌Escherichia coli BL21(DE3),在培养基中添加0.5 mmol/L异丙基硫代半乳糖苷(IPTG)的条件下对该酶基因进行诱导表达,经镍柱纯化获得重组普鲁兰酶用于酶学性质研究。SDS-PAGE及Western Blot检测显示普鲁兰酶基因pulA在上述大肠杆菌宿主中成功获得了表达。该重组酶最适反应pH5 .5 ,最适温度60℃。金属离子对酶活性有一定影响。Mn2+

  3. Behavior of Columns During Earthquakes (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The behavior of columns during earthquakes is very important since column failures may lead to additional structural failures and result in total building collapses....

  4. Medical complications associated with earthquakes. (United States)

    Bartels, Susan A; VanRooyen, Michael J


    Major earthquakes are some of the most devastating natural disasters. The epidemiology of earthquake-related injuries and mortality is unique for these disasters. Because earthquakes frequently affect populous urban areas with poor structural standards, they often result in high death rates and mass casualties with many traumatic injuries. These injuries are highly mechanical and often multisystem, requiring intensive curative medical and surgical care at a time when the local and regional medical response capacities have been at least partly disrupted. Many patients surviving blunt and penetrating trauma and crush injuries have subsequent complications that lead to additional morbidity and mortality. Here, we review and summarise earthquake-induced injuries and medical complications affecting major organ systems.

  5. Statistical earthquake focal mechanism forecasts

    CERN Document Server

    Kagan, Yan Y


    Forecasts of the focal mechanisms of future earthquakes are important for seismic hazard estimates and Coulomb stress and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range from -75 to +75 degrees, based on the Global Central Moment Tensor earthquake catalog. In the new forecasts we've improved the spatial resolution to 0.1 degree and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each grid point. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method ...

  6. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Institute of Scientific and Technical Information of China (English)

    高孟潭; 金学申; 安卫平; 吕晓健


    The geography information system of the 1303 Hongtong M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studied. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  7. MyShake: Smartphone-based detection and analysis of Oklahoma earthquakes (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.


    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing ( It uses the accelerometer data from phones to detect earthquake-like motion, and then uploads triggers and waveform data to a server for aggregation of the results. Since the public release in Feb 2016, more than 200,000 android-phone owners have installed the app, and the global network has recorded more than 300 earthquakes. In Oklahoma, there are about 200 active users each day providing enough data for the network to detect earthquakes and for us to perform analysis of the events. MyShake has recorded waveform data for M2.6 to M5.8 earthquakes in the state. For the September 3, 2016, M5.8 earthquake 14 phones detected the event and we can use the waveforms to determine event characteristics. MyShake data provides a location 3.95 km from the ANSS location and a magnitude of 5.7. We can also use MyShake data to estimate a stress drop of 7.4 MPa. MyShake is still a rapidly expanding network that has the ability to grow by thousands of stations/phones in a matter of hours as public interest increases. These initial results suggest that the data will be useful for a variety of scientific studies of induced seismicity phenomena in Oklahoma as well as having the potential to provide earthquake early warning in the future.

  8. Earthquakes - Volcanoes (Causes and Forecast) (United States)

    Tsiapas, E.


    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  9. Two models for earthquake forerunners (United States)

    Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dieterich, J.H.


    Similar precursory phenomena have been observed before earthquakes in the United States, the Soviet Union, Japan, and China. Two quite different physical models are used to explain these phenomena. According to a model developed by US seismologists, the so-called dilatancy diffusion model, the earthquake occurs near maximum stress, following a period of dilatant crack expansion. Diffusion of water in and out of the dilatant volume is required to explain the recovery of seismic velocity before the earthquake. According to a model developed by Soviet scientists growth of cracks is also involved but diffusion of water in and out of the focal region is not required. With this model, the earthquake is assumed to occur during a period of falling stress and recovery of velocity here is due to crack closure as stress relaxes. In general, the dilatancy diffusion model gives a peaked precursor form, whereas the dry model gives a bay form, in which recovery is well under way before the earthquake. A number of field observations should help to distinguish between the two models: study of post-earthquake recovery, time variation of stress and pore pressure in the focal region, the occurrence of pre-existing faults, and any changes in direction of precursory phenomena during the anomalous period. ?? 1975 Birkha??user Verlag.

  10. Earthquake damage to underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.A. Stephenson, D.E.


    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository.

  11. Large earthquakes and creeping faults (United States)

    Harris, Ruth A.


    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  12. Intracontinental basins and strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    邓起东; 高孟潭; 赵新平; 吴建春


    The September 17, 1303 Hongtong M=8 earthquake occurred in Linfen basin of Shanxi down-faulted basin zone. It is the first recorded M=8 earthquake since the Chinese historical seismic records had started and is a great earthquake occurring in the active intracontinental basin. We had held a Meeting of the 700th Anniversary of the 1303 Hongtong M=8 Earthquake in Shanxi and a Symposium on Intracontinental Basins and Strong Earthquakes in Taiyuan City of Shanxi Province on September 17~18, 2003. The articles presented on the symposium discussed the relationships between active intracontinental basins of different properties, developed in different regions, including tensional graben and semi-graben basins in tensile tectonic regions, compression-depression basins and foreland basins in compressive tectonic regions and pull-apart basins in strike-slip tectonic zones, and strong earthquakes in China. In this article we make a brief summary of some problems. The articles published in this special issue are a part of the articles presented on the symposium.

  13. Study of the 11th July, 1915, Portuguese offshore earthquake, in the Atlantic from contemporary seismograms and bulletins (United States)

    Batllo-Ortiz, J.; Custodio, S.; Macia, R.; Teves-Costa, P.


    The seismicity rate in the contact of the Nubian and Euro-Asiatic plates along the Azores-Gibraltar region can be considered moderate. Nevertheless, large earthquakes do occur, as is well known from historical records. The sensibility of seismographic networks to earthquakes with oceanic origin has been extremely low until recent times. Oceanic M5 earthquakes have not been consistently recorded up to the second third of the XX century, precluding a proper knowledge of seismicity rates and other parameters of interest for earthquake hazard. Nevertheless, information for some events does exist, most of which remains to be properly studied. In this paper we analyze historical data for the 11th July, 1915 earthquake, which occurred offshore and was felt over the whole mainland Portugal. This event is one of the largest occurred during the instrumental period in the region of diffuse seismicity around the Gorringe bank. However it has been little studied, probably because it did not cause serious damage. The 11th July, 1915 earthquake is of great interest due to its size, estimated on the order of M6, and to its unique location with respect to the regions of large earthquakes in the Atlantic. In this paper, we present source parameters for this earthquake based on the analysis of the available contemporary seismograms and related documents. After throughout collection and selection, 23 seismograms obtained at 11 different European stations were digitized and processed. The event was relocated and its magnitude recalculated. Its focal mechanism has also been studied through waveform modeling and first motion polarity. We present the results of this analysis, compare the source of the 1915 earthquake with that of present earthquakes in the same region, and interpret the new results in light of the regional seismicity and seismo-tectonics.

  14. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau (United States)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin


    lower than certain value. For locations where large earthquakes occurred during the 110 years, the initial stresses can be inverted if the strength is estimated and the tectonic loading is assumed constant. Therefore, although initial stress state is unknown, we can try to make estimate of a range of it. In this study, we estimated a reasonable range of initial stress, and then based on Coulomb-Mohr criterion to regenerate the earthquake sequence, starting from the Daofu earthquake of 1904. We calculated the stress field evolution of the sequence, considering both the tectonic loading and interaction between the earthquakes. Ultimately we got a sketch of the present stress. Of course, a single model with certain initial stress is just one possible model. Consequently the potential seismic hazards distribution based on a single model is not convincing. We made test on hundreds of possible initial stress state, all of them can produce the historical earthquake sequence occurred, and summarized all kinds of calculated probabilities of the future seismic activity. Although we cannot provide the exact state in the future, but we can narrow the estimate of regions where is in high probability of risk. Our primary results indicate that the Xianshuihe fault and adjacent area is one of such zones with higher risk than other regions in the future. During 2014, there were 6 earthquakes (M > 5.0) happened in this region, which correspond with our result in some degree. We emphasized the importance of the initial stress field for the earthquake sequence, and provided a probabilistic assessment for future seismic hazards. This study may bring some new insights to estimate the initial stress, earthquake triggering, and the stress field evolution .

  15. Ionospheric Anomalies of the 2011 Tohoku Earthquake with Multiple Observations during Magnetic Storm Phase (United States)

    Liu, Yang


    Ionospheric anomalies linked with devastating earthquakes have been widely investigated by scientists. It was confirmed that GNSS TECs suffered from drastically increase or decrease in some diurnal periods prior to the earthquakes. Liu et al (2008) applied a TECs anomaly calculation method to analyze M>=5.9 earthquakes in Indonesia and found TECs decadence within 2-7 days prior to the earthquakes. Nevertheless, strong TECs enhancement was observed before M8.0 Wenchuan earthquake (Zhao et al 2008). Moreover, the ionospheric plasma critical frequency (foF2) has been found diminished before big earthquakes (Pulinets et al 1998; Liu et al 2006). But little has been done regarding ionospheric irregularities and its association with earthquake. Still it is difficult to understand real mechanism between ionospheric anomalies activities and its precursor for the huge earthquakes. The M9.0 Tohoku earthquake, happened on 11 March 2011, at 05:46 UT time, was recognized as one of the most dominant events in related research field (Liu et al 2011). A median geomagnetic disturbance also occurred accompanied with the earthquake, which makes the ionospheric anomalies activities more sophisticated to study. Seismic-ionospheric disturbance was observed due to the drastic activities of earth. To further address the phenomenon, this paper investigates different categories of ionospheric anomalies induced by seismology activity, with multiple data sources. Several GNSS ground data were chosen along epicenter from IGS stations, to discuss the spatial-temporal correlations of ionospheric TECs in regard to the distance of epicenter. We also apply GIM TEC maps due to its global coverage to find diurnal differences of ionospheric anomalies compared with geomagnetic quiet day in the same month. The results in accordance with Liu's conclusions that TECs depletion occurred at days quite near the earthquake day, however the variation of TECs has special regulation contrast to the normal quiet

  16. Triggering of volcanic eruptions by large earthquakes (United States)

    Nishimura, Takeshi


    When a large earthquake occurs near an active volcano, there is often concern that volcanic eruptions may be triggered by the earthquake. In this study, recently accumulated, reliable data were analyzed to quantitatively evaluate the probability of the occurrence of new eruptions of volcanoes located near the epicenters of large earthquakes. For volcanoes located within 200 km of large earthquakes of magnitude 7.5 or greater, the eruption occurrence probability increases by approximately 50% for 5 years after the earthquake origin time. However, no significant increase in the occurrence probability of new eruptions was observed at distant volcanoes or for smaller earthquakes. The present results strongly suggest that new eruptions are likely triggered by static stress changes and/or strong ground motions caused by nearby large earthquakes. This is not similar to the previously presented evidence that volcanic earthquakes at distant volcanoes are remotely triggered by surface waves generated by large earthquakes.

  17. Effective actions and topological strings. Off-shell mirror symmetry and mock modularity of multiple M5-branes

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Michael


    This thesis addresses two different topics within the field of string theory. In the first part it is shown how Hodge-theoretic methods in conjunction with open string mirror symmetry can be used to compute non-perturbative effective superpotential couplings for type II/F-theory compactifications with D-branes and fluxes on compact Calabi-Yau manifolds. This is achieved by studying the at structure of operators which derives from the open/closed {beta}-model geometry. We analyze the variation of mixed Hodge structure of the relative cohomology induced by a family of divisors, which is wrapped by a D7-brane. This leads to a Picard-Fuchs system of differential operators, which can be used to compute the moduli dependence of the superpotential couplings as well as the mirror maps at various points in the open/closed deformation space. These techniques are used to obtain predictions for genuine A-model Ooguri-Vafa invariants of special Lagrangian submanifolds in compact Calabi-Yau geometries and real enumerative invariants of on-shell domain wall tensions. By an open/closed duality the system of differential equations can also be obtained from a gauged linear {sigma}-model, which describes a non-compact Calabi-Yau four-fold compactification without branes. This is used in the examples of multi-parameter models to study the various phases of the combined open/closed deformation space. It is furthermore shown how the brane geometry can be related to a F-theory compactification on a compact Calabi-Yau four-fold, where the Hodge-theoretic techniques can be used to compute the G-flux induced Gukov-Vafa-Witten potential. The dual F-theory picture also allows to conjecture the form of the Kaehler potential on the full open/closed deformation space. In the second part we analyze the background dependence of theories which derive from multiple wrapped M5-branes. Using the Kontsevich-Soibelman wall-crossing formula and the theory of mock modular forms we derive a holomorphic

  18. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden


    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  19. M5-branes on S 2 × M 4: Nahm's equations and 4d topological sigma-models (United States)

    Assel, Benjamin; Schäfer-Nameki, Sakura; Wong, Jin-Mann


    We study the 6d N = (0 , 2) superconformal field theory, which describes multiple M5-branes, on the product space S 2 × M 4, and suggest a correspondence between a 2d N = (0 , 2) half-twisted gauge theory on S 2 and a topological sigma-model on the four-manifold M 4. To set up this correspondence, we determine in this paper the dimensional reduction of the 6d N = (0 , 2) theory on a two-sphere and derive that the four-dimensional theory is a sigma-model into the moduli space of solutions to Nahm's equations, or equivalently the moduli space of k-centered SU(2) monopoles, where k is the number of M5-branes. We proceed in three steps: we reduce the 6d abelian theory to a 5d Super-Yang-Mills theory on I × M 4, with I an interval, then non-abelianize the 5d theory and finally reduce this to 4d. In the special case, when M 4 is a Hyper-Kähler manifold, we show that the dimensional reduction gives rise to a topological sigma-model based on tri-holomorphic maps. Deriving the theory on a general M 4 requires knowledge of the metric of the target space. For k = 2 the target space is the Atiyah-Hitchin manifold and we twist the theory to obtain a topological sigma-model, which has both scalar fields and self-dual two-forms.

  20. Cloning and expression of a toxin gene from Pseudomonas fluorescens GcM5-1A. (United States)

    Kong, Lingying; Guo, Daosen; Zhou, Shiyi; Yu, Xinlei; Hou, Guixue; Li, Ronggui; Zhao, Boguang


    Pseudomonas fluorescens GcM5-1A was isolated from the pine wood nematode (PWN), Bursaphelenchus xylophilus, obtained from wilted Japanese black pine, Pinus thumbergii, in China. In this paper, a genomic library of the GcM5-1A strain was constructed and a toxin-producing clone was isolated by bioassay. Nucleotide sequence analysis revealed an open reading frame of 1,290 bp encoding a protein of 429 amino acids with N-terminal putative signal peptide of 36 amino acids, which shared a similarity of 83, 82 and 80% identity with hypothetical protein PFLU2919 from P. fluorescens SBW25, Dyp-type peroxidase family protein from P. fluorescens Pf-5 and Tat-translocated enzyme from P. fluorescens Pf0-1, respectively. The gene encoding a full-length protein or without the putative signal peptide was cloned and expressed as a soluble protein in E. coli. The recombinant protein was purified to electrophoretic homogeneity by affinity chromatography using a Ni2+ matrix column. Its relative molecular weight was estimated to be 48.5 kDa by SDS-PAGE for full-length protein, and 45.0 kDa for the recombinant protein without putative signal peptide. Bioassay results showed that the recombinant protein with or without the putative signal peptide was toxic to both suspension cells and P. thunbergii seedlings. HPLC analysis demonstrated that components in branch extracts of P. thunbergii were significantly changed after addition of the recombinant full-length protein and hydrogen peroxide, which indicated that it is probably a peroxidase. This study offers information that can be used to determine the mechanism of pine wilt disease caused by the PWN.

  1. Early aftershock decay rate of the M6 Parkfield earthquake (United States)

    Peng, Z.; Vidale, J. E.


    Mainshock rupture is typically followed by its aftershocks that diminish in rate approximately as the reciprocal of the elapse time. However, it is notoriously difficult to observe aftershock activity in the noisy aftermath of larger earthquakes. Many aftershocks were missed in the existing seismicity catalogs in the initial few minutes (Kagan, 2004). Yet this period holds valuable information about the transition from mainshock rupture to sporadic aftershocks, and the friction laws that control earthquakes. The Parkfield section of the San Andreas fault is one of most densely seismometered places in the world. Many near-fault, non-clipped and continuous recordings of the M6 Parkfield earthquake and its aftermath have been recovered, providing an excellent opportunity for us to study the aftershock decay rates in the first few hundred seconds after the mainshock. We have so far analyzed recordings from station PKD and 13 stations in the Parkfield High Resolution Seismic Network. By scrutinizing the high-frequency signal, we are able to distinguish mainshock coda from early aftershocks. We find up to 10 times more aftershocks in the first 1000 s than in the USGS NCSN catalog. More than 30 events are detected in the first 200 s after the mainshock. None of these events are in the USGS NCSN catalog. Preliminary results suggest a strong deficit of aftershocks in the first 100 s after the mainshock relative to a 1/t aftershock rate decay. This pattern is consistent with a lack of seismicity in the first 120 s following the 10/31/2001 M5.1 Anza earthquake (Kilb et al., 2004), and our study of early aftershock rates using data from HiNet array in Japan (Vidale et al., 2004). Our observations will allow us to test the prediction of such an interval in rate-and-state friction models prior to the onset of the 1/t aftershock decay rate (Dieterich, 1994).

  2. The Electronic Encyclopedia of Earthquakes (United States)

    Benthien, M.; Marquis, J.; Jordan, T.


    The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will

  3. Evidence for Ancient Mesoamerican Earthquakes (United States)

    Kovach, R. L.; Garcia, B.


    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  4. Study of the structure changes caused by earthquakes in Chile applying the lineament analysis to the Aster (Terra) satellite data. (United States)

    Arellano-Baeza, A.; Zverev, A.; Malinnikov, V.

    Chile is one of the most seismically and volcanically active regions in the South America due to a constant subdiction of the South American plate, converging with the Nazca plate in the extreme North of Chile. Four events, namely: the Ovalle earthquake of Juny 18, 2003, M=6.3, with epicenter localized at (-30:49:33, -71:18:53), the Calama earthquake of Junly 19, 2001, M=5.2, (-30:29:38,-68:33:18), the Pica earthquake of April 10, 2003, M=5.1, (-21:03:20,-68:47:10) and the La Ligua earthquake of May 6, 2001, M=5.1, (-32:35:31,-71:07:58:) were analysed using the 15 m resolution satellite images, provided by the ASTER/VNIR instrument. The Lineament Extraction and Stripes Statistic Analysis (LESSA) software package was used to examine changes in the lineament features caused by sismic activity. Lack of vegetation facilitates the study of the changes in the topography common to all events and makes it possible to evaluate the sismic risk in this region for the future.

  5. A Prospect of Earthquake Prediction Research

    CERN Document Server

    Ogata, Yosihiko


    Earthquakes occur because of abrupt slips on faults due to accumulated stress in the Earth's crust. Because most of these faults and their mechanisms are not readily apparent, deterministic earthquake prediction is difficult. For effective prediction, complex conditions and uncertain elements must be considered, which necessitates stochastic prediction. In particular, a large amount of uncertainty lies in identifying whether abnormal phenomena are precursors to large earthquakes, as well as in assigning urgency to the earthquake. Any discovery of potentially useful information for earthquake prediction is incomplete unless quantitative modeling of risk is considered. Therefore, this manuscript describes the prospect of earthquake predictability research to realize practical operational forecasting in the near future.

  6. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake. (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi


    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  7. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas (United States)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.


    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  8. Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 parkfield earthquake (United States)

    Johnston, M.J.S.; Sasai, Y.; Egbert, G.D.; Mueller, R.J.


    , and this may have played a role in the final occurrence of the 28 September 2004 M 6.0 Parkfield earthquake. The absence of electric and magnetic field precursors for this, and other earthquakes with M 5-7.3 elsewhere in the San Andreas fault system, indicates useful prediction of damaging earthquakes seems unlikely using these electromagnetic data.

  9. Seismomagnetic Effects from the Long-awaited September 28, 2004, M6 Parkfield Earthquake (United States)

    Johnston, M. J.; Sasai, Y.; Egbert, G. D.; Kappler, K.


    played a role in the final occurrence of the September 28, 2004 M6 Parkfield earthquake. The absence of electric and magnetic field precursors for this, and other earthquakes with M5-7.3 elsewhere on the San Andreas fault, indicates useful prediction of damaging earthquakes seems unlikely using these electromagnetic data.

  10. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda


    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  11. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat


    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  12. Earthquake fault superhighways (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  13. The M7 October 21, 1868 Hayward Earthquake, Northern California-140 Years Later (United States)

    Brocher, T. M.; Boatwright, J.; Lienkaemper, J. J.; Schwartz, D. P.; Garcia, S.


    October 21, 2008 marks the 140th anniversary of the M7 1868 Hayward earthquake. This large earthquake, which occurred slightly before 8 AM, caused extensive damage to San Francisco Bay Area and remains the nation's 12th most lethal earthquake. Property loss was extensive and about 30 people were killed. This earthquake culminated a decade-long series of earthquakes in the Bay Area which started with an M~6 earthquake in the southern Peninsula in 1856, followed by a series of four M5.8 to M6.1 sized earthquakes along the northern Calaveras fault, and ended with a M~6.5 earthquake in the Santa Cruz Mountains in 1865. Despite this flurry of quakes, the shaking from the 1868 earthquake was the strongest that the new towns and growing cities of the Bay Area had ever experienced. The effect on the brick buildings of the time was devastating: walls collapsed in San Francisco, Oakland, and San Jose, and buildings cracked as far away as Napa, Santa Rosa, and Hollister. The area that was strongly shaken (at Modified Mercalli Intensity VII or higher) encompassed about 2,300 km2. Aftershocks continued into November 1868. Surface cracking of the ground along the southern end of the Hayward Fault was traced from Warm Springs in Fremont northward 32 km to San Leandro. As Lawson (1908) reports, "the evidence to the northward of San Leandro is not very satisfactory. The country was then unsettled, and the information consisted of reports of cow- boys riding on the range". Analysis of historical triangulation data suggest that the fault moved as far north as Berkeley, and from these data the average slip along the fault is inferred to be about 1.9 ± 0.4 meters. The paleoseismic record from the southern end of the Hayward Fault provides evidence for 10 earthquakes before 1868. The average interval between these earthquakes is 170 ± 80 years, but the last five earthquakes have had an average interval of only 140 ± 50 years. The 1868 Hayward earthquake and more recent analogs such

  14. Long-term predictability of regions and dates of strong earthquakes (United States)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey


    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  15. The music of earthquakes and Earthquake Quartet #1 (United States)

    Michael, Andrew J.


    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  16. Using earthquake intensities to forecast earthquake occurrence times

    Directory of Open Access Journals (Sweden)

    J. R. Holliday


    Full Text Available It is well known that earthquakes do not occur randomly in space and time. Foreshocks, aftershocks, precursory activation, and quiescence are just some of the patterns recognized by seismologists. Using the Pattern Informatics technique along with relative intensity analysis, we create a scoring method based on time dependent relative operating characteristic diagrams and show that the occurrences of large earthquakes in California correlate with time intervals where fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering. Furthermore, we show that the methods used to obtain these results may be applicable to other parts of the world.

  17. Progress in Understanding the Pre-Earthquake Associated Events by Analyzing IR Satellite Data (United States)

    Ouzounov, Dimitar; Taylor, Patrick; Bryant, Nevin


    We present latest result in understanding the potential relationship between tectonic stress, electro-chemical and thermodynamic processes in the Earths crust and atmosphere with an increase in IR flux as a potential signature of electromagnetic (EM) phenomena that are related to earthquake activity, either pre-, co- or post seismic. Thermal infra-red (TIR) surveys performed by the polar orbiting (NOAA/AVHRR MODIS) and geosynchronous weather satellites (GOES, METEOSAT) gave an indication of the appearance (from days to weeks before the event) of "anomalous" space-time TIR transients that are associated with the location (epicenter and local tectonic structures) and time of a number of major earthquakes with M>5 and focal depths less than 50km. We analyzed broad category of associated pre-earthquake events, which provided evidence for changes in surface temperature, surface latent heat flux, chlorophyll concentrations, soil moisture, brightness temperature, emissivity of surface, water vapour in the atmosphere prior to the earthquakes occurred in Algeria, India, Iran, Italy, Mexico and Japan. The cause of such anomalies has been mainly related to the change of near-surface thermal properties due to complex lithosphere-hydrosphere-atmospheric interactions. As final results we present examples from the most recent (2000-2004) worldwide strong earthquakes and the techniques used to capture the tracks of EM emission mid-IR anomalies and a methodology for practical future use of such phenomena in the early warning systems.

  18. Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data (United States)

    Scott, Chelsea Phipps; Lohman, Rowena Benfer


    Tropospheric phase delays pose a major challenge to InSAR (interferometric synthetic aperture radar)-based studies of tectonic deformation. One approach to the mitigation of effects from tropospheric noise is the application of elevation-dependent corrections based on empirical fits between elevation and interferometric phase. We quantify the effects of corrections with a range of complexity on inferred earthquake source parameters using synthetic interferograms with known atmospheric characteristics. We infer statistical properties of the stratified component of the atmosphere using pressure, temperature, and water vapor data from the North America Regional Reanalysis model over our region of interest in the Basin and Range province of the western United States. The statistics of the simulated atmospheric turbulence are estimated from InSAR and Global Positioning System data. We demonstrate potentially significant improvements in the precision of earthquake magnitude, depth, and dip estimates for several synthetic earthquake focal mechanisms following a correction for spatially variable atmospheric characteristics, relative to cases where the correction is based on a uniform delay versus elevation relationship or where no correction is applied. We apply our approach to the 1992 M5.6 Little Skull Mountain, Nevada, earthquake and demonstrate that the earthquake source parameter error bounds decrease in size after applying the atmospheric corrections. Our approach for evaluating the impact of atmospheric noise on inferred fault parameters is easily adaptable to other regions and source mechanisms.

  19. How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System (United States)

    Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.


    The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from

  20. Retrospection on the Conclusions of Earthquake Tendency Forecast before the Wenchuan Ms8.0 Earthquake

    Institute of Scientific and Technical Information of China (English)

    Liu Jie; Guo Tieshuan; Yang Liming; Su Youjin; Li Gang


    The reason for the failure to forecast the Wenchuan Ms8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kuulun Mountains Pass Ms8.1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kunlun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002 ~2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms≥7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.

  1. Earthquake forecast via neutrino tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; CHEN Ya-Zheng; LI Xue-Qian


    We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. An- tineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomog- raphy of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for ν emitted from a reactor. The case for a ν beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that with the present reactor facilities and detection techniques, it is still a difficult task to make an earthquake forecast using such a scheme, though it seems to be possible from a theoretical point of view while ignoring some uncertainties. However, with the development of the geology, especially the knowledge about the fault zone, and with the improvement of the detection techniques, etc., there is hope that a medium-term earthquake forecast would be feasible.

  2. Extreme value distribution of earthquake magnitude (United States)

    Zi, Jun Gan; Tung, C. C.


    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  3. Earthquakes in Central California, 1980-1984 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — There have been many earthquake occurrences in central California. This set of slides shows earthquake damage from the following events: Livermore, 1980, Coalinga,...

  4. Probing M subdwarf metallicity with an esdK5+esdM5.5 binary

    CERN Document Server

    Pavlenko, Ya V; Gálvez-Ortiz, M C; Kushniruk, I O; Jones, H R A


    We present a spectral analysis of the binary G 224-58 AB that consists of the coolest M extreme subdwarf (esdM5.5) and a brighter primary (esdK5). This binary may serve as a benchmark for metallicity measurement calibrations and as a test-bed for atmospheric and evolutionary models for esdM objects. We determine abundances primarily using high resolution optical spectra of the primary. Other parameters were determined from the fits of synthetic spectra computed with these abundances to the observed spectra from 0.4 to 2.5 microns for both components. We determine \\Tef =4625 $\\pm$ 100 K, \\logg = 4.5 $\\pm$ 0.5 for the A component and \\Tef = 3200 $\\pm$ 100 K, \\logg = 5.0 $\\pm$ 0.5, for the B component. We obtained abundances of [Mg/H]=$-$1.51$\\pm$0.08, [Ca/H]=$-$1.39$\\pm$0.03, [Ti/H]=$-$1.37$\\pm$0.03 for alpha group elements and [CrH]=$-$1.88$\\pm$0.07, [Mn/H]=$-$1.96$\\pm$0.06, [Fe/H]=$-$1.92$\\pm$0.02, [Ni/H]=$-$1.81$\\pm$0.05 and [Ba/H]W=$-$1.87$\\pm$0.11 for iron group elements from fits to the spectral lines obs...

  5. Heavy ion irradiation induced dislocation loops in AREVA's M5 Registered-Sign alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hengstler-Eger, R.M., E-mail: [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Baldo, P. [Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, 60439 Argonne IL (United States); Beck, L. [Maier-Leibnitz-Laboratorium (MLL), Am Coulombwall 6, 85748 Garching (Germany); Dorner, J.; Ertl, K. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Hoffmann, P.B. [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Hugenschmidt, C. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Kirk, M.A. [Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, 60439 Argonne IL (United States); Petry, W.; Pikart, P. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Rempel, A. [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)


    Pressurized water reactor (PWR) Zr-based alloy structural materials show creep and growth under neutron irradiation as a consequence of the irradiation induced microstructural changes in the alloy. A better scientific understanding of these microstructural processes can improve simulation programs for structural component deformation and simplify the development of advanced deformation resistant alloys. As in-pile irradiation leads to high material activation and requires long irradiation times, the objective of this work was to study whether ion irradiation is an applicable method to simulate typical PWR neutron damage in Zr-based alloys, with AREVA's M5 Registered-Sign alloy as reference material. The irradiated specimens were studied by electron backscatter diffraction (EBSD), positron Doppler broadening spectroscopy (DBS) and in situ transmission electron microscopy (TEM) at different dose levels and temperatures. The irradiation induced microstructure consisted of - and -type dislocation loops with their characteristics corresponding to typical neutron damage in Zr-based alloys; it can thus be concluded that heavy ion irradiation under the chosen conditions is an excellent method to simulate PWR neutron damage.

  6. Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons. (United States)

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego


    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.

  7. Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C., E-mail: [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Drouan, D. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Pouzadoux, G. [Université Technologique de Troyes, BP 2060, Troyes 10010 (France)


    High temperature reactivity in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings has been studied by thermogravimetry. Claddings were pre-oxidised at low temperature with the aim of simulating spent fuel. Different pre-oxidation modes, inducing significant variation in the pre-oxides microstructure, were compared. The behaviour in air, investigated in the 850–1000 °C temperature range, was found to be strongly dependant on the type of pre-oxide: the compact pre-oxide formed in autoclave (at temperature, pressure, and water chemistry representative of PWR conditions) significantly slows down the degradation in air compared to the bare alloys; on the contrary, a pre-oxide formed at 500 °C at ambient pressure, either in oxygen or in steam, favours the initiation of post-breakaway type oxidation, which in air is associated with nitride formation. The behaviour in nitrogen has been investigated in the 800–1200 °C temperature range, with Zircaloy-4 pre-oxidised at 500 °C in O{sub 2}. Reactivity is low up to 1000 °C but becomes very significant at the highest temperatures investigated, 1100 and 1200 °C. Finally, cladding segments first reacted in N{sub 2} at 1100 °C, were exposed to air and show fast oxidation even at the lowest temperature investigated (600 °C)

  8. Absolute Magnitudes and Colors of RR Lyrae Stars in DECam Passbands from Photometry of the Globular Cluster M5 (United States)

    Vivas, A. Katherina; Saha, Abhijit; Olsen, Knut; Blum, Robert; Olszewski, Edward W.; Claver, Jennifer; Valdes, Francisco; Axelrod, Tim; Kaleida, Catherine; Kunder, Andrea; Narayan, Gautham; Matheson, Thomas; Walker, Alistair


    We characterize the absolute magnitudes and colors of RR Lyrae stars in the globular cluster M5 in the ugriz filter system of the Dark Energy Camera (DECam). We provide empirical period-luminosity (P-L) relationships in all five bands based on 47 RR Lyrae stars of the type ab and 14 stars of the type c. The P-L relationships were found to be better constrained for the fundamental-mode RR Lyrae stars in the riz passbands, with dispersions of 0.03, 0.02 and 0.02 mag, respectively. The dispersion of the color at minimum light was found to be small, supporting the use of this parameter as a means to obtain accurate interstellar extinctions along the line of sight up to the distance of the RR Lyrae star. We found a trend of color at minimum light with a pulsational period that, if taken into account, brings the dispersion in color at minimum light to ≤slant 0.016 mag for the (r-i), (i-z), and (r-z) colors. These calibrations will be very useful for using RR Lyrae stars from DECam observations as both standard candles for distance determinations and color standards for reddening measurements.

  9. Prediction of long-period ground motions from huge subduction earthquakes in Osaka, Japan (United States)

    Kawabe, H.; Kamae, K.


    There is a high possibility of reoccurrence of the Tonankai and Nankai earthquakes along the Nankai Trough in Japan. It is very important to predict the long-period ground motions from the next Tonankai and Nankai earthquakes with moment magnitudes of 8.1 and 8.4, respectively, to mitigate their disastrous effects. In this study, long-period (>2.5 s) ground motions were predicted using an earthquake scenario proposed by the Headquarters for Earthquake Research Promotion in Japan. The calculations were performed using a fourth-order finite difference method with a variable spacing staggered-grid in the frequency range 0.05 0.4 Hz. The attenuation characteristics ( Q) in the finite difference simulations were assumed to be proportional to frequency ( f) and S-wave velocity ( V s) represented by Q = f · V s / 2. Such optimum attenuation characteristic for the sedimentary layers in the Osaka basin was obtained empirically by comparing the observed motions during the actual M5.5 event with the modeling results. We used the velocity structure model of the Osaka basin consisting of three sedimentary layers on bedrock. The characteristics of the predicted long-period ground motions from the next Tonankai and Nankai earthquakes depend significantly on the complex thickness distribution of the sediments inside the basin. The duration of the predicted long-period ground motions in the city of Osaka is more than 4 min, and the largest peak ground velocities (PGVs) exceed 80 cm/s. The predominant period is 5 to 6 s. These preliminary results indicate the possibility of earthquake damage because of future subduction earthquakes in large-scale constructions such as tall buildings, long-span bridges, and oil storage tanks in the Osaka area.

  10. Nonstationary ETAS models for nonstandard earthquakes


    Kumazawa, Takao; Ogata, Yosihiko


    The conditional intensity function of a point process is a useful tool for generating probability forecasts of earthquakes. The epidemic-type aftershock sequence (ETAS) model is defined by a conditional intensity function, and the corresponding point process is equivalent to a branching process, assuming that an earthquake generates a cluster of offspring earthquakes (triggered earthquakes or so-called aftershocks). Further, the size of the first-generation cluster depends on the magnitude of...

  11. The October 12, 1992, Dahshur, Egypt, Earthquake (United States)

    Thenhaus, P.C.; Celebi, M.; Sharp, R.V.


    Cairo and northeastern Egypt experienced a rare, damaging earthquake on October 12, 1992. The earthquake, which measured 5.9 on the Richter magnitude scale, was centered near the village of Dahshur, about 18 km south of Cairo. The computed hypocentral depth of the earthquake, about 25 km, is consistent with the fact that fault rupture associated with the earthquake did not reach the surface. 


    Directory of Open Access Journals (Sweden)

    Mustafa ULAS


    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  13. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews


    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  14. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction) (United States)

    Tsiapas, Elias


    Earthquakes and volcanoes are caused by: 1)Various liquid elements (e.g. H20, H2S, S02) which emerge from the pyrosphere and are trapped in the space between the solid crust and the pyrosphere (Moho discontinuity). 2)Protrusions of the solid crust at the Moho discontinuity (mountain range roots, sinking of the lithosphere's plates). 3)The differential movement of crust and pyrosphere. The crust misses one full rotation for approximately every 100 pyrosphere rotations, mostly because of the lunar pull. The above mentioned elements can be found in small quantities all over the Moho discontinuity, and they are constantly causing minor earthquakes and small volcanic eruptions. When large quantities of these elements (H20, H2S, SO2, etc) concentrate, they are carried away by the pyrosphere, moving from west to east under the crust. When this movement takes place under flat surfaces of the solid crust, it does not cause earthquakes. But when these elements come along a protrusion (a mountain root) they concentrate on its western side, displacing the pyrosphere until they fill the space created. Due to the differential movement of pyrosphere and solid crust, a vacuum is created on the eastern side of these protrusions and when the aforementioned liquids overfill this space, they explode, escaping to the east. At the point of their escape, these liquids are vaporized and compressed, their flow accelerates, their temperature rises due to fluid friction and they are ionized. On the Earth's surface, a powerful rumbling sound and electrical discharges in the atmosphere, caused by the movement of the gasses, are noticeable. When these elements escape, the space on the west side of the protrusion is violently taken up by the pyrosphere, which collides with the protrusion, causing a major earthquake, attenuation of the protrusions, cracks on the solid crust and damages to structures on the Earth's surface. It is easy to foresee when an earthquake will occur and how big it is

  15. Historical earthquake investigations in Greece

    Directory of Open Access Journals (Sweden)

    K. Makropoulos


    Full Text Available The active tectonics of the area of Greece and its seismic activity have always been present in the country?s history. Many researchers, tempted to work on Greek historical earthquakes, have realized that this is a task not easily fulfilled. The existing catalogues of strong historical earthquakes are useful tools to perform general SHA studies. However, a variety of supporting datasets, non-uniformly distributed in space and time, need to be further investigated. In the present paper, a review of historical earthquake studies in Greece is attempted. The seismic history of the country is divided into four main periods. In each one of them, characteristic examples, studies and approaches are presented.

  16. 13 CFR 120.174 - Earthquake hazards. (United States)


    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  17. Anomalous variation in the wireless signals propagation associated with earthquake preparation processes (United States)

    Ouzounov, Dimitar; Velichkova-Yotsova, Sylvia; Pulinets, Sergey


    propagation correlated with earthquake preparation processes. Our observations revealed a phenomena associated with the artificially enhancement of the intensity 3.5GHz signals by using WiMax technology (no change in the transmitting level) as a result of electric and electrochemical processes in atmosphere over the regions of ongoing earthquake preparation. To illustrate the nature of such variations in the range of 3.5GHz in relation to earthquake processes we present two case studies: 1/ for M5.8 of May 22, 2012 in Bulgaria and 2/ for M6.9 of May 24, 2014 in Aegean Sea. Concerning the M5.8 of May 22, 2012 the abnormal intensity modulation started on 05.17.2012 (five days in advance) and reached 200% increase. Epicenter of the M5.8 of May 25 was on 15 km from the wireless receiver. Concerning and M6.9 of May 24, 2014 in Aegean Sea abnormal signal was observed on May 22 (two days in advance) with 30% intensity increase. Epicenter of M6.9 of May 24 was at 260 km from the wireless receiver. Most likely the observed increase in the intensity is a direct result of the change in the atmospheric properties in the Atmospheric boundary level (ABL) triggered by intensification of radon and other gases release, which lead to change in lowers atmosphere conductivity, already suggested by Lithosphere-Atmosphere-Ionosphere Coupling concept (Pulinets and Ouzounov, 2011). Another possible reason is the forward scattering of WiMax signal (similar to meteor wakes scattering) on aerosol layers formed over the earthquake preparation zone. We are registering an effect of systematic increase (with different rate) at 3.5 GHz associated with the regional seismicity and no significant intensify modulation with an absence of major seismicity in the region.

  18. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net (United States)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko


    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  19. Some Factors Controlling the Seismic Hazard due to Earthquakes Induced by Fluid Injection at Depth (United States)

    McGarr, A.


    toward the southeast and the earthquakes appear to have been induced by three high-volume injection wells adjacent to this newly-discovered structure. During the past 10 years, as the total volume of injected wastewater has increased, so have the maximum moment magnitudes, starting with an event of M4.5 in September 2001, another of M5 in August 2005, and, most recently, the M5.3 earthquake in August 2011. Interestingly, neither injection rate nor well-head injection pressure appears to influence maximum magnitude. Although it is not feasible at this time to determine the seismic outcome in advance of an injection project, it is, nonetheless, encouraging that upper bounds on seismic moment show a reasonably well-defined linear dependence on total volume of injected fluid.

  20. Earthquake Education in Prime Time (United States)

    de Groot, R.; Abbott, P.; Benthien, M.


    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  1. Scaling relation for earthquake networks

    CERN Document Server

    Abe, Sumiyoshi


    The scaling relation derived by Dorogovtsev, Goltsev, Mendes and Samukhin [Phys. Rev. E, 68 (2003) 046109] states that the exponents of the power-law connectivity distribution, gamma, and the power-law eigenvalue distribution of the adjacency matrix, delta, of a locally treelike scale-free network satisfy 2*gamma - delta = 1 in the mean field approximation. Here, it is shown that this relation holds well for the reduced simple earthquake networks (without tadpole-loops and multiple edges) constructed from the seismic data taken from California and Japan. The result is interpreted from the viewpoint of the hierarchical organization of the earthquake networks.

  2. Computational methods in earthquake engineering

    CERN Document Server

    Plevris, Vagelis; Lagaros, Nikos


    This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance. .

  3. Earthquakes triggered by fluid extraction (United States)

    Segall, P.


    Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author

  4. 图K(5m,5)的自同态的自同态谱%On the Andomorphism Spectrum of K(5m,5)

    Institute of Scientific and Technical Information of China (English)



    In this paper, we obtain that Aut(K(5m, 5)) ≈D5m,sEnd(k(5m, 5))=Aut(k(5m, 5) and End(K(5m,5)) =qEnd(K(5m, 5)), where Ds. is the dihedral group of order 5m. Furthermore, we solve some enumerative problems of End(K(5m, 5)), and give the endomorphism spectrum of k(5m, 5).%从循环完全图K(5m,5)的结构出发,得到Aut(K(5m,5))≈D5m,其中D5m是5m阶的二面体群,sEnd(k(5m,5))=Aut(k(5m,5),End(K(5m,5))=qEnd(K(5m,5))。同时也解决了End(K(5m,5))的一些记数问题,给出了此类图的自同态谱。

  5. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs.

    Directory of Open Access Journals (Sweden)

    Sarit Edelheit


    Full Text Available The presence of 5-methylcytidine (m(5C in tRNA and rRNA molecules of a wide variety of organisms was first observed more than 40 years ago. However, detection of this modification was limited to specific, abundant, RNA species, due to the usage of low-throughput methods. To obtain a high resolution, systematic, and comprehensive transcriptome-wide overview of m(5C across the three domains of life, we used bisulfite treatment on total RNA from both gram positive (B. subtilis and gram negative (E. coli bacteria, an archaeon (S. solfataricus and a eukaryote (S. cerevisiae, followed by massively parallel sequencing. We were able to recover most previously documented m(5C sites on rRNA in the four organisms, and identified several novel sites in yeast and archaeal rRNAs. Our analyses also allowed quantification of methylated m(5C positions in 64 tRNAs in yeast and archaea, revealing stoichiometric differences between the methylation patterns of these organisms. Molecules of tRNAs in which m(5C was absent were also discovered. Intriguingly, we detected m(5C sites within archaeal mRNAs, and identified a consensus motif of AUCGANGU that directs methylation in S. solfataricus. Our results, which were validated using m(5C-specific RNA immunoprecipitation, provide the first evidence for mRNA modifications in archaea, suggesting that this mode of post-transcriptional regulation extends beyond the eukaryotic domain.

  6. Communication between earthquake clusters separated by over 30 km supports simple volcano plumbing (United States)

    Jonsdottir, K.; Jonasson, K.; Gudmundsson, M. T.; Hensch, M.; Hooper, A. J.; Holohan, E. P.; Sigmundsson, F.; Halldorsson, S. A.; Hognadottir, T.; Magnússon, E.; Pálsson, F.; Walter, T. R.; Ofeigsson, B.; Parks, M.; Roberts, M. J.; Hjorleifsdottir, V.; Cesca, S.; Guðmundsson, G.; Hreinsdottir, S.; Jarosch, A. H.; Dumont, S.; Fridriksdóttir, H. M.; Barsotti, S.; Einarsson, P.


    The subglacial Bárðarbunga volcano is composed of a large oval caldera (7x11 km) and fissures extending tens of kilometers away from the caldera along the rift zone, which marks the divergent plate boundary across Iceland. On August 16th, 2014 an intense seismic swarm started below the Bárðarbunga caldera and in the two weeks that followed a dyke migrated some 47 km laterally in the uppermost 6-10 km of the crust along the rift. The dyke propagation terminated in lava fields just north of Vatnajökull glacier, where a major (1.5 km3) six months long eruption took place. Intense earthquake activity in the caldera started in the period August 21-24 with over 70 M5 earthquakes accompanying slow caldera collapse, as verified by various geodetic measurements. The subsidence is likely due to magma withdrawal from a reservoir at depth beneath the caldera. During a five months period, October-February, the seismic activity was separated by over 30 km in two clusters; one along the caldera rims (due to piecewise caldera subsidence) and the other at the far end of the dyke (as a result of small shear movements). Here we present statistical analysis comparing the temporal behaviour of seismicity recorded in the two clusters. By comparing the earthquake rate in the dyke in temporal bins before and after caldera subsidence earthquakes to the rate away from these bins (background rate), we show that the number of dyke earthquakes was significantly higher (p earthquake (>M4.6) in the caldera. Increased dyke seismicity was also observed 0-3 hours following a large caldera earthquake. Elevated seismicity in the dyke before a large caldera earthquake may occur when a constriction in the dyke was reduced, followed by pressure drop in the chamber. Assuming that the large caldera earthquakes occurred when chamber pressure was lowest, the subsiding caldera piston may have caused temporary higher pressure in the dyke and thereby increased the likelihood of an earthquake. Our results

  7. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes (United States)

    Egan, Candice J.; Quigley, Mark C.


    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  8. Dancing Earthquake Science Assists Recovery from the Christchurch Earthquakes (United States)

    Egan, Candice J.; Quigley, Mark C.


    The 2010-2012 Christchurch (Canterbury) earthquakes in New Zealand caused loss of life and psychological distress in residents throughout the region. In 2011, student dancers of the Hagley Dance Company and dance professionals choreographed the performance "Move: A Seismic Journey" for the Christchurch Body Festival that explored…

  9. Power spectra analysis for world-wide and North Africa historical earthquakes data in relation to sunspots periodicities

    Energy Technology Data Exchange (ETDEWEB)

    Shaltout, M.A.M.; Mesiha, S.L. [National Research Inst. of Astronomy and Geophysics, Helwan (Egypt); Tadros, M.T.Y. [Mansoura Univ., Physics Dept., Mansoura (Egypt)


    In the last three decades, the influence of solar activity on earth seismicity is one of the most important subjects in the field of long-term prediction of earthquakes. In the present work, the autocorrelation and power spectra analysis were applied for the sequences of sunspots and earthquakes activity. The used data are the worldwide earthquakes of M {>=} 5, and the sunspots number R{sub 2}, for the period 1903-1985. Both are available from the National Oceanic and Atmospheric Administration NOAA, Boulder, Colorado, U.S.A. Also, we restrict our attention to earthquakes in North Africa with two stations, one at Cairo (Egypt), and the other at Alger (Algeria) of M {>=} 4 for the period (1900-1986). The results indicated the presence of the eleven year cycles of the sunspots into the time of the earthquakes of the North Africa. Also, for the worldwide and North Africa earthquakes data a periodicities ranged between 1.01 and 5.5 years are revealed, which may be linked to a solar activity cycle. (Author)

  10. Automatic earthquake confirmation for early warning system (United States)

    Kuyuk, H. S.; Colombelli, S.; Zollo, A.; Allen, R. M.; Erdik, M. O.


    Earthquake early warning studies are shifting real-time seismology in earthquake science. They provide methods to rapidly assess earthquakes to predict damaging ground shaking. Preventing false alarms from these systems is key. Here we developed a simple, robust algorithm, Authorizing GRound shaking for Earthquake Early warning Systems (AGREEs), to reduce falsely issued alarms. This is a network threshold-based algorithm, which differs from existing approaches based on apparent velocity of P and S waves. AGREEs is designed to function as an external module to support existing earthquake early warning systems (EEWSs) and filters out the false events, by evaluating actual shaking near the epicenter. Our retrospective analyses of the 2009 L'Aquila and 2012 Emilia earthquakes show that AGREEs could help an EEWS by confirming the epicentral intensity. Furthermore, AGREEs is able to effectively identify three false events due to a storm, a teleseismic earthquake, and broken sensors in Irpinia Seismic Network, Italy.

  11. Earthquake design for controlled structures

    Directory of Open Access Journals (Sweden)

    Nikos G. Pnevmatikos


    Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.

  12. Using Smartphones to Detect Earthquakes (United States)

    Kong, Q.; Allen, R. M.


    We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.

  13. Seismicity dynamics and earthquake predictability

    Directory of Open Access Journals (Sweden)

    G. A. Sobolev


    Full Text Available Many factors complicate earthquake sequences, including the heterogeneity and self-similarity of the geological medium, the hierarchical structure of faults and stresses, and small-scale variations in the stresses from different sources. A seismic process is a type of nonlinear dissipative system demonstrating opposing trends towards order and chaos. Transitions from equilibrium to unstable equilibrium and local dynamic instability appear when there is an inflow of energy; reverse transitions appear when energy is dissipating. Several metastable areas of a different scale exist in the seismically active region before an earthquake. Some earthquakes are preceded by precursory phenomena of a different scale in space and time. These include long-term activation, seismic quiescence, foreshocks in the broad and narrow sense, hidden periodical vibrations, effects of the synchronization of seismic activity, and others. Such phenomena indicate that the dynamic system of lithosphere is moving to a new state – catastrophe. A number of examples of medium-term and short-term precursors is shown in this paper. However, no precursors identified to date are clear and unambiguous: the percentage of missed targets and false alarms is high. The weak fluctuations from outer and internal sources play a great role on the eve of an earthquake and the occurrence time of the future event depends on the collective behavior of triggers. The main task is to improve the methods of metastable zone detection and probabilistic forecasting.

  14. Earthquake swarms in South America (United States)

    Holtkamp, S. G.; Pritchard, M. E.; Lohman, R. B.


    We searched for earthquake swarms in South America between 1973 and 2009 using the global Preliminary Determination of Epicenters (PDE) catalogue. Seismicity rates vary greatly over the South American continent, so we employ a manual search approach that aims to be insensitive to spatial and temporal scales or to the number of earthquakes in a potential swarm. We identify 29 possible swarms involving 5-180 earthquakes each (with total swarm moment magnitudes between 4.7 and 6.9) within a range of tectonic and volcanic locations. Some of the earthquake swarms on the subduction megathrust occur as foreshocks and delineate the limits of main shock rupture propagation for large earthquakes, including the 2010 Mw 8.8 Maule, Chile and 2007 Mw 8.1 Pisco, Peru earthquakes. Also, subduction megathrust swarms commonly occur at the location of subduction of aseismic ridges, including areas of long-standing seismic gaps in Peru and Ecuador. The magnitude-frequency relationship of swarms we observe appears to agree with previously determined magnitude-frequency scaling for swarms in Japan. We examine geodetic data covering five of the swarms to search for an aseismic component. Only two of these swarms (at Copiapó, Chile, in 2006 and near Ticsani Volcano, Peru, in 2005) have suitable satellite-based Interferometric Synthetic Aperture Radar (InSAR) observations. We invert the InSAR geodetic signal and find that the ground deformation associated with these swarms does not require a significant component of aseismic fault slip or magmatic intrusion. Three swarms in the vicinity of the volcanic arc in southern Peru appear to be triggered by the Mw= 8.5 2001 Peru earthquake, but predicted static Coulomb stress changes due to the main shock were very small at the swarm locations, suggesting that dynamic triggering processes may have had a role in their occurrence. Although we identified few swarms in volcanic regions, we suggest that particularly large volcanic swarms (those that

  15. 布鲁氏菌M5-90△WboA基因缺失株的构建及免疫效果的初步评价%Construction and preliminary evaluation of immune effects of deletion mutant of WboA gene of Brucella melitensis vaccine M5-90

    Institute of Scientific and Technical Information of China (English)

    张艳; 陈创夫; 张辉; 张沾; 李志强; 张俊波; 孟仁; 王震


    Vaccination is a major measure for prevention of brucellosis, but it is unable to be distinguished from the vaccinated to natural infected animals. In this study, the WboA gene was knocked out of the genomic DNA of Brucelh melitensis vaccine M5-90 strain to construct the recombinant M5-90 A WboA by homologous recombination. The test results showed that M5-90 A WboA was less virulent than that of the parent M5-90 strain (p<0.01). Humoral immunity and cellular immunity tests showed that there was no significant difference between M5-90A WboA and M5-90 parent strain (p<0.05). BALB/c mice were immunized with M5-90 A WboA or M5-90 and challenged with virulent strain 16M and the survival rate were 10% and 20%, respectively, indicating that the M5-90 A WboA provided the similar protection of M5-90 strain. Agglutination test and western blot showed that the serum response of M5-90 △ WboA in vaccinated mice were negative. These results indicated that M5-90 A WboA strain might be a promising vaccine against brucellosis, and could be distinguished from the vaccine immunization to natural infection in animals by serum test.%为获得毒力较弱并能区分自然感染和疫苗免疫的布鲁氏菌候选疫苗株,本研究用PCR方法扩增WboA基因的上下游同源臂序列,构建重组质粒pGEM-7zf-△WboA-Sac,电转化布鲁氏菌M5-90感受态细胞,筛选布鲁氏菌疫苗株M5-90的WboA基因缺失株,并对获得的M5-90△WboA遗传稳定性、毒力、免疫保护性、抗体水平等指标进行检测.实验结果表明M5-90△WboA株的毒力比M5-90株明显减弱,差异极显著(p<0.01),体液免疫和细胞免疫结果表明M5-90△WboA株与亲本M5-90株相比差异不显著(p<0.05),M5-90△WboA株和亲本株的保护率分别为10%和20%,表明M5-90△WboA株与M5-90株具有相似的保护性.凝集试验和western blot试验显示M5-90△WboA株免疫小鼠的血清反应结果为阴性.本研究构建的布鲁氏菌基因缺失株M5-90△WboA

  16. Variability of sporadic E-layer semi transparency (foEs-fbEswith magnitude and distance from earthquake epicenters to vertical sounding stations

    Directory of Open Access Journals (Sweden)

    E. V. Liperovskaya


    Full Text Available Variations of the Es-layer semi transparency co-efficient were analyzed for more than 100 earthquakes with magnitudes M > 4 and depths h Es-layer X = (foEs – fbEs/fbEs can characterize, for thin layers, the presence of small scale plasma turbulence. It is shown that the turbulence level decreases by ~ 10% during three days before earthquakes probably due to the heating of the atmosphere. On the contrary, the turbulence level increases by the same value from one to three days after the shocks. For earthquakes with magnitudes M > 5 the effect exists at distances up to 300 km from the epicenters. The effect could also exist for weak (M ~ 4 and shallow (depth < 50 km earthquakes at a distance smaller than 200 km from the epicenters.

  17. Strong motions and engineering structure performances in recent major earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xiaojun Li


    @@ In recent years, a series of major earthquakes occurred, which resulted in considerable engineering damage and collapse, triggered heavy geological hazards, and caused extremely high casualties and huge property and economic loss. The earthquakes include the 1994 Northridge earthquake (M6.8), the 1995 Kobe earthquake (M6.8), the 1999 Izmit earthquake (M7.6), the 1999 Jiji (Chi-Chi) earthquake (M7.6), the 2005 northern Pakistan earthquake (M7.6), the 2008 Wenchuan earthquake (M8.0) and the 2010 Haiti earthquake (M7.0). Some villages, towns and even cities were devastated in the earthquakes, especially in the 2005 northern Pakistan earthquake, the 2008 Wenchuan earthquake and the 2010 Haiti earthquake.

  18. Estimation of Future Earthquake Losses in California (United States)

    Rowshandel, B.; Wills, C. J.; Cao, T.; Reichle, M.; Branum, D.


    Recent developments in earthquake hazards and damage modeling, computing, and data management and processing, have made it possible to develop estimates of the levels of damage from earthquakes that may be expected in the future in California. These developments have been mostly published in the open literature, and provide an opportunity to estimate the levels of earthquake damage Californians can expect to suffer during the next several decades. Within the past 30 years, earthquake losses have increased dramatically, mostly because our exposure to earthquake hazards has increased. All but four of the recent damaging earthquakes have occurred distant from California's major population centers. Two, the Loma Prieta earthquake and the San Fernando earthquake, occurred on the edges of major populated areas. Loma Prieta caused significant damage in the nearby Santa Cruz and in the more distant, heavily populated, San Francisco Bay area. The 1971 San Fernando earthquake had an epicenter in the lightly populated San Gabriel Mountains, but caused slightly over 2 billion dollars in damage in the Los Angeles area. As urban areas continue to expand, the population and infrastructure at risk increases. When earthquakes occur closer to populated areas, damage is more significant. The relatively minor Whittier Narrows earthquake of 1987 caused over 500 million dollars in damage because it occurred in the Los Angeles metropolitan area, not at its fringes. The Northridge earthquake had fault rupture directly beneath the San Fernando Valley, and caused about 46 billion dollars in damage. This vast increase in damage from the San Fernando earthquake reflected both the location of the earthquake directly beneath the populated area and the 23 years of continued development and resulting greater exposure to potential damage. We have calculated losses from potential future earthquake, both as scenarios of potential earthquakes and as annualized losses considering all the potential

  19. Characteristics of Induced and Tectonic Seismicity in Oklahoma Based on High-precision Earthquake Relocations and Focal mechanisms (United States)

    Aziz Zanjani, F.; Lin, G.


    Seismic activity in Oklahoma has greatly increased since 2013, when the number of wastewater disposal wells associated with oil and gas production was significantly increased in the area. An M5.8 earthquake at about 5 km depth struck near Pawnee, Oklahoma on September 3, 2016. This earthquake is postulated to be related with the anthropogenic activity in Oklahoma. In this study, we investigate the seismic characteristics in Oklahoma by using high-precision earthquake relocations and focal mechanisms. We acquire the seismic data between January 2013 and October 2016 recorded by the local and regional (within 200 km distance from the Pawnee mainshock) seismic stations from the Incorporated Research Institutions for Seismology (IRIS). We relocate all the earthquakes by applying the source-specific station term method and a differential time relocation method based on waveform cross-correlation data. The high-precision earthquake relocation catalog is then used to perform full-waveform modeling. We use Muller's reflection method for Green's function construction and the mtinvers program for moment tensor inversion. The sensitivity of the solution to the station and component distribution is evaluated by carrying out the Jackknife resampling. These earthquake relocation and focal mechanism results will help constrain the fault orientation and the earthquake rupture length. In order to examine the static Coulomb stress change due to the 2016 Pawnee earthquake, we utilize the Coulomb 3 software in the vicinity of the mainshock and compare the aftershock pattern with the calculated stress variation. The stress change in the study area can be translated into probability of seismic failure on other parts of the designated fault.

  20. A Multi-parametric Climatological Approach to Study the 2016 Amatrice-Norcia (Central Italy) Earthquake Preparatory Phase (United States)

    Piscini, Alessandro; De Santis, Angelo; Marchetti, Dedalo; Cianchini, Gianfranco


    Based on observations prior to earthquakes, recent theoretical considerations suggest that some geophysical quantities reveal abnormal changes that anticipate moderate and strong earthquakes, within a defined spatial area (the so-called Dobrovolsky area) according to a lithosphere-atmosphere-ionosphere coupling model. One of the possible pre-earthquake effects could be the appearance of some climatological anomalies in the epicentral region, weeks/months before the major earthquakes. In this paper, the period of 2 months preceding the Amatrice-Norcia (Central Italy) earthquake sequence, that started on 24 August 2016 with an M6 earthquake and a few months later produced other two major shocks (i.e. an M5.9 on 26 October and then an M6.5 on 30 October), was analyzed in terms of skin temperature, total column water vapour and total column of ozone, compared with the past 37-year trend. The novelty of the method stands in the way the complete time series is reduced, where also the possible effect of global warming is properly removed. The simultaneous analysis showed the presence of persistent contemporary anomalies in all of the analysed parameters. To validate the technique, a confutation/confirmation analysis was undertaken where these parameters were successfully analyzed in the same months but considering a seismically "calm" year, when significant seismicity was not present. We also extended the analysis to all available years to construct a confusion matrix comparing the occurrence of climatological data anomalies with real seismicity. This work confirms the potentiality of multi parameters in anticipating the occurrence of large earthquakes in Central Italy, thus reinforcing the idea of considering such behaviour an effective tool for an integrated system of future earthquake prediction.

  1. The Characteristics of Earthquake Swarms in and around Jiangsu Province

    Institute of Scientific and Technical Information of China (English)

    Huang Yun; Tian Jianming; Miao Ali


    This paper systematically analyzed 36 earthquake swarms in and around Jiangsu Province, summarized their characteristics and discussed the relationship between earthquske swarms and subsequent strong earthquakes. It also analyzed the judgment criteria for precursory earthquake swarms. Earthquake swarms in Jiangsu Province are concentrated in several areas. Most of them were of magnitude ML2. 0 ~ 3. 9. For most earthquake swarms, the number of earthquakes was less than 30. Time duration for about 55% of earthquake swarms was less than 15 days. The biggest magnitude of one earthquake swarm was not proportional to the number of earthquakes and time duration. There are 78% of earthquake swarms corresponded to the forthcoming earthquakes of M 〉 4. 6 in which there're 57% occured in one year, This shows a medium- and short-term criterion. Distance between earthquake swarm and future earthquake was distributed dispersedly. There were no earthquakes occurring in the same location as earthquake swarms. There was no good correlation between the magnitude and the corresponding rate of future earthquakes and the intensity of earthquake swarms. There was also no good correlation between the number of earthquakes in an earthquake swarm and the corresponding rate. The study also shows that it's better to use U-p or whole-combination to determine the type of earthquake swarm.

  2. Double-difference relocation of earthquakes at Uturuncu volcano, Bolivia, and Interior Alaska (United States)

    Hutchinson, Laura

    In order to reliably interpret seismic patterns, we must have reliable earthquake locations. To improve our catalog locations, I incorporate cross-correlations into double-difference earthquake relocations to generate high precision relative locations. I perform relocations for two regions, one volcanic and one tectonic. At Uturuncu volcano, I incorporate a wealth of previous studies to present a picture of the processes at play. Seismic, gravity, InSAR, and electromagnetic studies all show that there is a magma body underlying the entire region, and chemical studies suggest that this magma body (the Altiplano-Puna Magma Body, or APMB) is the source of the large ignimbrite eruptions that have occurred in the past. The recent uplift has been modeled as a new batch of magma rising off the APMB, beginning the ascent as a diapir. My relocation results indicate that the seismicity aligns with the top of one of the imaged low velocities zones, which I interpret as a diapir beneath Uturuncu. The earthquakes mark the depth at which the crust is cool enough for brittle deformation. I also perform cross-correlations to determine families of similar events. These families are located around the summit of Uturuncu and display a radial pattern. This suggests that they are due to local volcanic stresses, such as inflation of the volcano, rather than regional stresses. In Interior Alaska, I study a region that is very seismically active, yet has no mapped Holocene faults. There are a series of seismic zones in the area, each comprised of NNE-striking seismic lineations. I perform earthquake relocations on 40 years worth of seismicity in order to refine and interpret fault planes. I additionally examine three earthquake sequences in the Minto Flats Seismic Zone (MFSZ). These earthquakes are large enough (≥M5) to produce an aftershock sequence to map out the rupture plane. I find that two of the three earthquakes occurred on WNW-striking planes, roughly perpendicular to the

  3. Jumping over the hurdles to effectively communicate the Operational Earthquake Forecast (United States)

    McBride, S.; Wein, A. M.; Becker, J.; Potter, S.; Tilley, E. N.; Gerstenberger, M.; Orchiston, C.; Johnston, D. M.


    Probabilities, uncertainties, statistics, science, and threats are notoriously difficult topics to communicate with members of the public. The Operational Earthquake Forecast (OEF) is designed to provide an understanding of potential numbers and sizes of earthquakes and the communication of it must address all of those challenges. Furthermore, there are other barriers to effective communication of the OEF. These barriers include the erosion of trust in scientists and experts, oversaturation of messages, fear and threat messages magnified by the sensalisation of the media, fractured media environments and online echo chambers. Given the complexities and challenges of the OEF, how can we overcome barriers to effective communication? Crisis and risk communication research can inform the development of communication strategies to increase the public understanding and use of the OEF, when applied to the opportunities and challenges of practice. We explore ongoing research regarding how the OEF can be more effectively communicated - including the channels, tools and message composition to engage with a variety of publics. We also draw on past experience and a study of OEF communication during the Canterbury Earthquake Sequence (CES). We demonstrate how research and experience has guided OEF communications during subsequent events in New Zealand, including the M5.7 Valentine's Day earthquake in 2016 (CES), M6.0 Wilberforce earthquake in 2015, and the Cook Strait/Lake Grassmere earthquakes in 2013. We identify the successes and lessons learned of the practical communication of the OEF. Finally, we present future projects and directions in the communication of OEF, informed by both practice and research.

  4. Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran (United States)

    Khodaverdian, A.; Zafarani, H.; Rahimian, M.


    NW Iran is a region of active deformation in the Eurasia-Arabia collision zone. This high strain field has caused intensive faulting accompanied by several major (M > 6.5) earthquakes as it is evident from historical records. Whereas seismic data (i.e. instrumental and historical catalogues) are either short, or inaccurate and inhomogeneous, physics-based long-term simulations are beneficial to better assess seismic hazard. In this study, a deterministic seismicity model, which consists of major active faults, is first constructed, and used to generate a synthetic catalogue of large-magnitude (M > 5.5) earthquakes. The frequency-magnitude distribution of the synthetic earthquake catalogue, which is based on the physical characteristic and slip rate of the mapped faults, is consistent with the empirical distribution evaluated using record of instrumental and historical events. The obtained results are also in accordance with palaeoseismic studies and other independent kinematic deformation models of the Iranian Plateau. Using the synthetic catalogue, characteristic magnitude for all 16 active faults in the study area is determined. Magnitude and epicentre of these earthquakes are comparable with the historical records. Large earthquake recurrence times and their variations are evaluated, either for an individual fault or for the region as a whole. Goodness-of-fitness tests revealed that recurrence times can be well described by the Weibull distribution. Time-dependent conditional probabilities for large earthquakes in the study area are also estimated for different time intervals. The resulting synthetic catalogue can be utilized as a useful data set for hazard and risk assessment instead of short, incomplete and inhomogeneous available catalogues.

  5. Relation between the characteristics of strong earthquake activities in Chinese mainland and the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Zhang; Guohua Yang; Xian Lu; Mingxiao Li; Zhigao Yang


    This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the active-quiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.

  6. Update earthquake risk assessment in Cairo, Egypt (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan


    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  7. Update earthquake risk assessment in Cairo, Egypt (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan


    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  8. A smartphone application for earthquakes that matter! (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert


    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  9. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus.

    Directory of Open Access Journals (Sweden)

    Kai Feng

    Full Text Available It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus, but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5 and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.

  10. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus. (United States)

    Feng, Kai; Li, Ronggui; Chen, Yingnan; Zhao, Boguang; Yin, Tongming


    It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.

  11. Earthquake Risk, FEMA Earthquake Hazzard Risk Map, Published in 1994, Delaware Geological Survey. (United States)

    NSGIC GIS Inventory (aka Ramona) — This Earthquake Risk dataset, was produced all or in part from Published Reports/Deeds information as of 1994. It is described as 'FEMA Earthquake Hazzard Risk Map'....

  12. Primary Analysis of Relations between Earthquakes and Short Leveling Anomalies at Jingyang Station%泾阳短水准异常与地震关系浅析

    Institute of Scientific and Technical Information of China (English)

    黄英; 古云鹤; 曹建平


    通过对泾阳地震台短水准观测资料和地震关系分析,认为观测资料对南北地震带西南方向部分地震有一定映震能力。对影响观测的问题进行初步分析。%Short leveling data from Jingyang seismological station comprise some of the most important information that helps to monitor the Kouzhen—Guanshan fault zone.Several strong earthquakes have struck the surrounding ar-ea of Shaanxi Province:the Ninger M 6.4 earthquake on June 3,2007,the Lijiang M 7.0 earthquake on February 3, 1 996 in Yunnan,and the Anxian M 5.0 earthquake on September 3,1 999 in Sichuan.Short leveling data from Jingyang seismological station show varying degrees of anomaly.There was an anomaly decline that lasted for 18 days at a rate of 0.005 mm per day before the Ninger M 6.4 earthquake,for 23 days at a rate of 0.005 mm per day before the Li-jiang M 7.0 earthquake,and for 9 days at a rate of 0.009 mm per day before the Anxian M 5.0 earthquake.This study evaluates the ability of short leveling data at Jingyang to predict earthquakes by analyzing the relationship between magnitude,anomaly decline rate,and duration of anomaly decline along with the relationship between magnitude and the duration of the anomaly in cross-fault deformation measurement.To intuitively portray connections among these data,this study clearly indicates anomalies in the data using charts.The data will be used in the experimental formu-lae of the China Earthquake Administration with other earthquakes,and the results harvested.This study considers that an ability to predict earthquakes will be revealed in the short leveling data of Jingyang seismological station,lo-cated in the southwest area of the north-south seismic zone.At the same time,this study discusses how much damage has been caused to the observation environment by the major quarries near the short leveling area and the effect that the arrival and departure of heavy trucks has had on observation data.After summarizing

  13. A resonance mechanism of earthquakes

    CERN Document Server

    Flambaum, V V


    It had been observed in [1] that there are periodic 4-6 hours pulses of ? 200 ?Hz seismogravita- tional oscillations ( SGO ) before 95 % of powerful earthquakes. We explain this by beating between an oscillation eigenmode of a whole tectonic plate and a local eigenmode of an active zone which tranfers the oscillation energy from the tectonic plate to the active zone causing the eathrquake. Oscillation frequencies of the plate and ones of the active zone are tuned to a resonance by an additional pressure applied to the active zone due to collision of neighboring plates or convection in the upper mantia (plume). Corresponding theory may be used for short-term prediction of the earthquakes and tsunami.

  14. Pre-earthquake Magnetic Pulses

    CERN Document Server

    Scoville, John; Freund, Friedemann


    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are observable because their extremely long wavelength allows them to pass through the Earth's crust. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stress is building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  15. Great East Japan Earthquake Tsunami (United States)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.


    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  16. The physics of rock failure and earthquakes

    CERN Document Server

    Ohnaka, Mitiyasu


    Despite significant advances in the understanding of earthquake generation processes and derivation of underlying physical laws, controversy remains regarding the constitutive law for earthquake ruptures and how it should be formulated. Laboratory experiments are necessary to obtain high-resolution measurements that allow the physical nature of shear rupture processes to be deduced, and to resolve the controversy. This important book provides a deeper understanding of earthquake processes from nucleation to their dynamic propagation. Its key focus is a deductive approach based on laboratory-derived physical laws and formulae, such as a unifying constitutive law, a constitutive scaling law, and a physical model of shear rupture nucleation. Topics covered include: the fundamentals of rock failure physics, earthquake generation processes, physical scale dependence, and large-earthquake generation cycles. Designed for researchers and professionals in earthquake seismology, rock failure physics, geology and earthq...

  17. Is There An Earthquake Migration Global Pattern? (United States)

    dos Santos, A. M.; Franca, G. S.; da Silveira, A. G.; Frigeri, G. V.; Marotta, G. S.


    Earthquake migration patterns before large earthquake were proposed by Mogi (1968) and existence of the correlation between earthquakes over distances that show probable global interdependence and this theme is certainly one of the most intriguing in field of seismology. In this job, we will present the phenomenology of earthquake migration global seismic pattern empirically, in order to ensure statistically the correlation of long range and lead to confrontation these seismic patterns. We used the international catalog available, such as, NEIC-USGS. We find that the pair of events that have a good correlation are confirmed statistically. As Shebalin (1996) has shown the earthquake chain, we show this first stage of the earthquake prediction correlation for large distances.

  18. Earthquake Hazard Mitigation Strategy in Indonesia (United States)

    Karnawati, D.; Anderson, R.; Pramumijoyo, S.


    Because of the active tectonic setting of the region, the risks of geological hazards inevitably increase in Indonesian Archipelagoes and other ASIAN countries. Encouraging community living in the vulnerable area to adapt with the nature of geology will be the most appropriate strategy for earthquake risk reduction. Updating the Earthquake Hazard Maps, enhancement ofthe existing landuse management , establishment of public education strategy and method, strengthening linkages among stake holders of disaster mitigation institutions as well as establishement of continues public consultation are the main strategic programs for community resilience in earthquake vulnerable areas. This paper highlights some important achievements of Earthquake Hazard Mitigation Programs in Indonesia, together with the difficulties in implementing such programs. Case examples of Yogyakarta and Bengkulu Earthquake Mitigation efforts will also be discussed as the lesson learned. The new approach for developing earthquake hazard map which is innitiating by mapping the psychological aspect of the people living in vulnerable area will be addressed as well.

  19. Earthquakes in Virginia and vicinity 1774 - 2004 (United States)

    Tarr, Arthur C.; Wheeler, Russell L.


    This map summarizes two and a third centuries of earthquake activity. The seismic history consists of letters, journals, diaries, and newspaper and scholarly articles that supplement seismograph recordings (seismograms) dating from the early twentieth century to the present. All of the pre-instrumental (historical) earthquakes were large enough to be felt by people or to cause shaking damage to buildings and their contents. Later, widespread use of seismographs meant that tremors too small or distant to be felt could be detected and accurately located. Earthquakes are a legitimate concern in Virginia and parts of adjacent States. Moderate earthquakes cause slight local damage somewhere in the map area about twice a decade on the average. Additionally, many buildings in the map area were constructed before earthquake protection was added to local building codes. The large map shows all historical and instrumentally located earthquakes from 1774 through 2004.

  20. Earthquake forewarning in the Cascadia region (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.


    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to 4 earthquakes on the plate interface north of the Mendocino region 

  1. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases

    DEFF Research Database (Denmark)

    Auxilien, Sylvie; Rasmussen, Anette; Rose, Simon;


    Methyltransferase enzymes that use S-adenosylmethionine as a cofactor to catalyze 5-methyl uridine (m(5)U) formation in tRNAs and rRNAs are widespread in Bacteria and Eukaryota, but are restricted to the Thermococcales and Nanoarchaeota groups amongst the Archaea. The RNA m(5)U methyltransferases...... appear to have arisen in Bacteria and were then dispersed by horizontal transfer of an rlmD-type gene to the Archaea and Eukaryota. The bacterium Escherichia coli has three gene paralogs and these encode the methyltransferases TrmA that targets m(5)U54 in tRNAs, RlmC (formerly RumB) that modifies m(5)U......, however, neither of the two P. abyssi enzymes displays RlmD-like activity in vitro. PAB0719 acts in a TrmA-like manner to catalyze m(5)U54 methylation in P. abyssi tRNAs, and here we show that PAB0760 possesses RlmC-like activity and specifically methylates the nucleotide equivalent to U747 in P. abyssi...

  2. Dim prospects for earthquake prediction (United States)

    Geller, Robert J.

    I was misquoted by C. Lomnitz's [1998] Forum letter (Eos, August 4, 1998, p. 373), which said: [I wonder whether Sasha Gusev [1998] actually believes that branding earthquake prediction a ‘proven nonscience’ [Geller, 1997a] is a paradigm for others to copy.”Readers are invited to verify for themselves that neither “proven nonscience” norv any similar phrase was used by Geller [1997a].

  3. Understand mountain studies from earthquake

    Institute of Scientific and Technical Information of China (English)


    @@ The Sichuan earthquake on 12 May was the most devastating one to hit China over the past 60 years or so. As the affected were mostly mountainous areas, serious damages were caused by various secondary disasters ranging from mountain collapse to the formation of quake lakes. This leaves Prof. DENG Wei, director-general of the Institute of Mountain Hazards and Environment, CAS, much to think about, and he is calling for strengthening studies on mountain science.

  4. Tangshan Women After the Earthquake

    Institute of Scientific and Technical Information of China (English)


    TWENTY years ago, Tangshan, a city in China’s Hebei Province, was struck by an earthquake which killed 240,000 people, injured 160,000, and destroyed 10,200 homes. In 7,200 families there were no survivors. After 20 years of rebuilding, a new Tangshan has risen from the debris. Tangshan women played a very important role in rebuilding their hometown.

  5. Mechanics of Multifault Earthquake Ruptures (United States)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.


    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  6. Bayesian kinematic earthquake source models (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.


    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  7. Storm sudden commencements and earthquakes (United States)

    Lavrov, Ivan; Sobisevich, Aleksey; Guglielmi, Anatol


    We have investigated statistically the problem of possible impact of the geomagnetic storm sudden com-mencement (SSC) on the global seismic activity. SSC are used as reference points for comparative analysis of seismicity by the method of superposed epoch. We selected 405 earthquakes from 1973 to 2010 with M˜5 magnitudes from a representative part of USGS Catalog. The comparative analysis of seismicity was carried out at the intervals of ˜60 min relative to the reference point. With a high degree of reliability, it was found that before the reference point the number of earthquakes is noticeably greater than after it. In other words, the global seismicity is suppressed by SSC. We refer to some studies in which the chemical, thermal and force mechanisms of the electromagnetic field action on rocks are discussed. We emphasize the incompleteness of the study concerning the correlation between SSC and earthquakes because we still do not succeed in understanding and interpreting the relationship in terms of physics and mathematics. The study need to be continued to solve this problem of interest and importance.

  8. Pre-earthquake magnetic pulses

    Directory of Open Access Journals (Sweden)

    J. Scoville


    Full Text Available A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are generated deep in the Earth's crust, in and around the Hypocentral volume, days or even weeks before Earthquakes. They are observable at the surface because their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, the source of these pulses may be triangulated to pinpoint locations where stresses are building deep within the crust. We couple a semiconductor drift-diffusion model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  9. Global review of human-induced earthquakes.


    Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard


    The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsu...

  10. Global Significant Earthquake Database, 2150 BC to present (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Earthquake Database is a global listing of over 5,700 earthquakes from 2150 BC to the present. A significant earthquake is classified as one that...

  11. Evaluation and cataloging of Korean historical earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kew Hwa; Han, Young Woo; Lee, Jun Hui; Park, Ji Eok; Na, Kwang Wooing; Shin, Byung Ju [The Reaearch Institute of Basic Sciences, Seoul Nationl Univ., Seoul (Korea, Republic of)


    In order to systematically collect and analyze the historical earthquake data of the Korean peninsula which are very important in analyzing the seismicity and seismic risk of the peninsula by seismologist and historian, extensive governmental and private historical documents are investigated and relative reliabilities of these documents are examined. This research unearthed about 70 new earthquake records and revealed the change in the cultural, political and social effects of earthquakes with time in Korea. Also, the results of the vibration test of the Korean traditional wooden house are obtained in order to better estimate intensities of the historical earthquakes.

  12. Thermal infrared anomalies of several strong earthquakes. (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying


    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  13. Earthquake risk assessment for Istanbul metropolitan area

    Institute of Scientific and Technical Information of China (English)


    The impact of earthquakes in urban centers prone to disastrous earthquakes necessitates the analysis of associated risk for rational formulation of contingency plans and mitigation strategies. In urban centers, the seismic risk is best quantified and portrayed through the preparation of "Earthquake Damage and Loss Scenarios." The components of such scenarios are the assessment of the hazard, inventories and the vulnerabilities of elements at risk. For the development of the earthquake risk scenario in Istanbul, two independent approaches, one based on intensities and the second on spectral displacements, are utilized. This paper will present the important features of a comprehensive study, highlight the methodology, discuss the results and provide insights to future developments.

  14. Smoking prevalence increases following Canterbury earthquakes. (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz


    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  15. Statistical tests of simple earthquake cycle models (United States)

    DeVries, Phoebe M. R.; Evans, Eileen L.


    A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.

  16. Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications (United States)

    Zheng, Yong; Ni, Sidao; Xie, Zujun; Lv, Jian; Ma, Hongsheng; Sommerville, Paul


    More than 28, 000 aftershocks have occurred since the 05/12/2008 Wenchuan earthquake, with dozens of them stronger than M 5. Since July, 2008, all the M > 5 earthquakes have occurred only in the northern segment of the rupture zone, suggesting obvious seismicity segmentation. We applied the double difference method to relocate all of the M > 3 aftershocks. After relocation, the aftershocks show a compact zone of seismicity, with a length of about 300 km and average width of 30 km, supporting that the hypothesis that the Beichuan-Yingxiu and Chaping-Linjiaan faults are the faults that ruptured in the earthquake. With the Cut and Paste (CAP) waveform inversion algorithm, we determined the source mechanism and focal depth of all the > M 5 aftershocks in the northern segments. The number of thrust events is close to the number of strike-slip events, but almost all of the events with thrust mechanism are distributed over the northern segment, while the aftershocks with strike-slip mechanism only occurred at the north-easternmost end, contrasting with field observations of a substantial strike-slip component of surface rupture over the northern segment. The events with strike-slip mechanism occurred at depths up to 18 km, consistent with the lack of surface rupture in the north-easternmost section. However, since early August, very shallow events (2 km) with thrust mechanism have occurred, probably releasing the strain energy of the unruptured fault in the north-easternmost section. It seems that the seismic hazard potential of the northern segment is still quite high, and more studies are needed to resolve some of the discrepancy suggested by aftershock patterns and other observations.

  17. Decision making biases in the communication of earthquake risk (United States)

    Welsh, M. B.; Steacy, S.; Begg, S. H.; Navarro, D. J.


    L'Aquila, with 6 scientists convicted of manslaughter, shocked the scientific community, leading to urgent re-appraisal of communication methods for low-probability, high-impact events. Before the trial, a commission investigating the earthquake recommended risk assessment be formalised via operational earthquake forecasts and that social scientists be enlisted to assist in developing communication strategies. Psychological research has identified numerous decision biases relevant to this, including hindsight bias, where people (after the fact) overestimate an event's predictability. This affects experts as well as naïve participants as it relates to their ability to construct a plausible causal story rather than the likelihood of the event. Another problem is availability, which causes overestimation of the likelihood of observed rare events due to their greater noteworthiness. This, however, is complicated by the 'description-experience' gap, whereby people underestimate probabilities for events they have not experienced. That is, people who have experienced strong earthquakes judge them more likely while those who have not judge them less likely - relative to actual probabilities. Finally, format changes alter people's decisions. That is people treat '1 in 10,000' as different from 0.01% despite their mathematical equivalence. Such effects fall under the broad term framing, which describes how different framings of the same event alter decisions. In particular, people's attitude to risk depends significantly on how scenarios are described. We examine the effect of biases on the communication of change in risk. South Australian participants gave responses to scenarios describing familiar (bushfire) or unfamiliar (earthquake) risks. While bushfires are rare in specific locations, significant fire events occur each year and are extensively covered. By comparison, our study location (Adelaide) last had a M5 quake in 1954. Preliminary results suggest the description

  18. Historical Earthquakes in the Yellow Sea and Its Adjacent Area

    Institute of Scientific and Technical Information of China (English)

    Wu Ge; Wang Andong; Wu Di


    As a result of sorting out, estimating and cataloging of historical earthquakes, from the year of 2 A.D. to Aug., 1949, we found that there were 2187 earthquakes with M≥3.0 in the area of the Yellow Sea and its adjacent area. Among the earthquakes, the number of earthquakes with M ≥ 5.0 is 209, and at least 43 of the earthquakes caused serious losses, 20 of the earthquakes caused human causalities. It is demonstrated that there were 3 areas of historical earthquake concentration and the earthquake activity was higher in the 16th century and the first half if the 20th century.

  19. Earthquake Engineering Research Center: 25th anniversry edition (United States)


    The Earthquake Engineering Research Center exists to conduct research and develop technical information in all areas pertaining to earthquake engineering, including strong ground motion and ground failure, response of natural and manmade structures to earthquakes, design of structures to resist earthquakes, development of new systems for earthquake protection, and development of architectural and public policy aspects of earthquake engineering. The annual report for 1992-93 presents information on: Current Research Programs; Contracts and Grants; Public Service Program; National Information Service for Earthquake Engineering; Core Administration; Committees of the Earthquake Engineering Research Center; Research Participants - Faculty; and Research Participants - Students.

  20. On the origin of exponential growth in induced earthquakes in Groningen

    CERN Document Server

    van Putten, Maurice H P M; van Putten, Michael J A M


    The Groningen gas field shows exponential growth in earthquakes event counts around a magnitude M1 with a doubling time of 6-9 years since 2001. This behavior is identified with dimensionless curvature in land subsidence, which has been evolving at a constant rate over the last few decades {essentially uncorrelated to gas production.} We demonstrate our mechanism by a tabletop crack formation experiment. The observed skewed distribution of event magnitudes is matched by that of maxima of event clusters with a normal distribution. It predicts about one event $<$\\,M5 per day in 2025, pointing to increasing stress to human living conditions.

  1. Strong earthquakes included «by chance» in Italian catalogues: single cases or a hint of more?

    Directory of Open Access Journals (Sweden)

    V. Castelli


    Full Text Available In principle, a few of the strong earthquakes (I0 >= 8/9, M >= 5.8 that affected Italy in the past may still be missing from parametric catalogues or be listed there as lesser events, their actual strength unrealized. This seems a reasonable enough inference, given that some strong earthquakes were listed by catalogues quite by chance, from information drawn, mainly or even solely, from a single source. Had this source been destroyed before catalogue compilers were able to consider it, or had they for any reason overlooked it, the earthquake it recorded could also have been missed or underestimated. This paper examines the two most peculiar Italian cases of «single- source earthquakes» (1561 «Vallo di Diano?»; 1639 «Amatrice?». Is all relevant information on each event really tied up in a single source? And if so, why? Finally, are these cases unique or do they share any common features that could, by occurring elsewhere, act as markers for situations where forgotten earthquakes could still lurk undetected?

  2. Spatial Evaluation and Verification of Earthquake Simulators (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.


    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  3. Spatial Evaluation and Verification of Earthquake Simulators (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.


    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  4. Intraplate triggered earthquakes: Observations and interpretation (United States)

    Hough, S.E.; Seeber, L.; Armbruster, J.G.


    We present evidence that at least two of the three 1811-1812 New Madrid, central United States, mainshocks and the 1886 Charleston, South Carolina, earthquake triggered earthquakes at regional distances. In addition to previously published evidence for triggered earthquakes in the northern Kentucky/southern Ohio region in 1812, we present evidence suggesting that triggered events might have occurred in the Wabash Valley, to the south of the New Madrid Seismic Zone, and near Charleston, South Carolina. We also discuss evidence that earthquakes might have been triggered in northern Kentucky within seconds of the passage of surface waves from the 23 January 1812 New Madrid mainshock. After the 1886 Charleston earthquake, accounts suggest that triggered events occurred near Moodus, Connecticut, and in southern Indiana. Notwithstanding the uncertainty associated with analysis of historical accounts, there is evidence that at least three out of the four known Mw 7 earthquakes in the central and eastern United States seem to have triggered earthquakes at distances beyond the typically assumed aftershock zone of 1-2 mainshock fault lengths. We explore the possibility that remotely triggered earthquakes might be common in low-strain-rate regions. We suggest that in a low-strain-rate environment, permanent, nonelastic deformation might play a more important role in stress accumulation than it does in interplate crust. Using a simple model incorporating elastic and anelastic strain release, we show that, for realistic parameter values, faults in intraplate crust remain close to their failure stress for a longer part of the earthquake cycle than do faults in high-strain-rate regions. Our results further suggest that remotely triggered earthquakes occur preferentially in regions of recent and/or future seismic activity, which suggests that faults are at a critical stress state in only some areas. Remotely triggered earthquakes may thus serve as beacons that identify regions of

  5. Whether solar flares can trigger earthquakes? (United States)

    Jain, R.


    We present the study of 682 earthquakes of ¡Ý4.0 magnitude observed during January 1991 to January 2007 in the light of solar flares observed by GOES and SOXS missions in order to explore the possibility of any association between solar flares and earthquakes. Our investigation preliminarily shows that each earthquake under study was preceded by a solar flare of GOES importance B to X class by 10-100 hrs. However, each flare was not found followed by earthquake of magnitude ¡Ý4.0. We classified the earthquake events with respect to their magnitude and further attempted to look for their correlation with GOES importance class and delay time. We found that with the increasing importance of flares the delay in the onset of earthquake reduces. The critical X-ray intensity of the flare to be associated with earthquake is found to be ~10-6 Watts/m2. On the other hand no clear evidence could be established that higher importance flares precede high magnitude earthquakes. Our detailed study of 50 earthquakes associated with solar flares observed by SOXS mission and other wavebands revealed many interesting results such as the location of the flare on the Sun and the delay time in the earthquake and its magnitude. We propose a model explaining the charged particles accelerated during the solar flare and released in the space that undergone further acceleration by interplanetary shocks and produce the ring current in the earth's magnetosphere, which may enhance the process of tectonics plates motion abruptly at fault zones. It is further proposed that such sudden enhancement in the process of tectonic motion of plates in fault zones may increase abruptly the heat gradients on spatial (dT/dx) and temporal (dT/dt) scales responsible for earthquakes.

  6. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes (United States)

    Wheeler, Russell L.


    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  7. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki


    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  8. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California. (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F


    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  9. Modeling earthquake indexes derived from the earthquake warning system upon the planet earth (United States)

    Li, Yong


    By studying the correlation between historical earthquake data and the distributional characteristics of parameters of solid earth tides in the earthquake epicenter, we are able to design a forecasting function of earthquake probability. We put forward a design method for the Earthquake Warning System. The model could theoretically simulate and be used to predict the probability of strong earthquakes that could occur anywhere at any time. In addition, the system could also conveniently obtain global or partial Modeling Earthquake Indexes to finally combine the precise pointing prediction and forecast of partial indexes. The literature quotes global data values, provided by NEIC, of 1544 M ⩾ 6.5 earthquakes. It also gives examples of instantaneous earthquake indexes of the whole world and Taiwan Area on 1st January 2010, UT=0:00 and the average earthquake index near the Taiwan Area. According to the 10-year pointing prediction of strong earthquakes in San Francisco, the literature provides the average earthquake index on 24th June 2015 (± 15 days), in its neighborhood.

  10. Modeling earthquake indexes derived from the earthquake warning system upon the planet earth

    Institute of Scientific and Technical Information of China (English)


    By studying the correlation between historical earthquake data and the distributional characteristics of parameters of solid earth tides in the earthquake epicenter, we are able to design a forecasting function of earthquake probability. We put forward a design method for the Earthquake Warning System. The model could theoretically simulate and be used to predict the probability of strong earthquakes that could occur anywhere at any time. In addition, the system could also conveniently obtain global or partial Modeling Earthquake Indexes to finally combine the precise pointing prediction and forecast of partial indexes. The literature quotes global data values, provided by NEIC, of 1544 M ≥ 6.5 earthquakes. It also gives examples of instantaneous earthquake indexes of the whole world and Taiwan Area on 1st January 2010, UT=0:00 and the average earthquake index near the Taiwan Area. According to the 10-year pointing prediction of strong earthquakes in San Francisco, the literature provides the average earthquake index on 24th June 2015 (± 15 days), in its neighborhood.

  11. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States (United States)

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.


    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  12. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States (United States)

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.


    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  13. Research on strong earthquake type division and forecast method for subsequent strong earthquakes

    Institute of Scientific and Technical Information of China (English)


    The relationships between energy, amplitude and frequency of earthquake are correlative with the property of the seismic source. And the grade of the correlativity can be used as an index to distinguish the types of strong earthquakes. Primarily the strong earthquake can be divided into three types of main-after earthquakes, double-main earthquakes and swarm of strong earthquake. There are similarity and a certain repeatability at the quantificational indexes of hypocenter property between the same type of strong earthquakes, which supply basis for the forecast of subsequent strong shocks. The reference indexes of after strong shock forecast which are valuable for the applications of the method of type-divided forecast come from the analysis about more than fifty strong shock wide-band (BPZ wave) recording data of CDSN from 1988 to 1997.

  14. A moment-tensor catalog for intermediate magnitude earthquakes in Mexico (United States)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Martínez-Peláez, Liliana; Franco, Sara; Iglesias Mendoza, Arturo


    Located among five tectonic plates, Mexico is one of the world's most seismically active regions. The earthquake focal mechanisms provide important information on the active tectonics. A widespread technique for estimating the earthquake magnitud and focal mechanism is the inversion for the moment tensor, obtained by minimizing a misfit function that estimates the difference between synthetic and observed seismograms. An important element in the estimation of the moment tensor is an appropriate velocity model, which allows for the calculation of accurate Green's Functions so that the differences between observed and synthetics seismograms are due to the source of the earthquake rather than the velocity model. However, calculating accurate synthetic seismograms gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes (M>5.0) excite waves of longer periods that interact weakly with lateral heterogeneities in the crust. For these events, using 1D velocity models to compute Greens functions works well and they are well characterized by seismic moment tensors reported in global catalogs (eg. USGS fast moment tensor solutions and GCMT). The opposite occurs for small and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle. To accurately model the Green's functions for the smaller events in a large heterogeneous area, requires 3D or regionalized 1D models. To obtain a rapid estimate of earthquake magnitude, the National Seismological Survey in Mexico (Servicio Sismológico Nacional, SSN) automatically calculates seismic moment tensors for events in the Mexican Territory (Franco et al., 2002; Nolasco-Carteño, 2006). However, for intermediate-magnitude and small earthquakes the signal-to-noise ratio could is low for many of the seismic stations, and without careful selection and filtering of the data, obtaining a stable focal mechanism

  15. GEM - The Global Earthquake Model (United States)

    Smolka, A.


    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  16. Forecasting characteristic earthquakes in a minimalist model

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; Pacheco, A.; González, Á.


    Using error diagrams, we quantify the forecasting of characteristic-earthquake occurence in a recently introduced minimalist model. Initially we connect the earthquake alarm at a fixed time after the occurence of a characteristic event. The evaluation of this strategy leads to a one-dimensional n...

  17. Numerical earthquake simulations for seismic hazard assessment (United States)

    Ismail-Zadeh, Alik; Sokolov, Vladimir; Soloviev, Alexander


    A comprehensive seismic hazard assessment can contribute to earthquake preparedness and preventive measures aimed to reduce impacts of earthquakes, especially in the view of growing population and increasing vulnerability and exposure. Realistic earthquake simulations coupled with a seismic hazard analysis can provide better assessments of potential ground shaking due to large earthquakes. We present a model of block-and-fault dynamics, which simulates earthquakes in response to lithosphere movements and allows for studying the influence of fault network properties on seismic patterns. Using case studies (e.g., the Tibet-Himalayan region and the Caucasian region), we analyse the model's performance in terms of reproduction of basic features of the observed seismicity, such as the frequency-magnitude relationship, clustering of earthquakes, occurrences of large events, fault slip rates, and earthquake mechanisms. We examine a new approach to probabilistic seismic hazard assessment, which is based on instrumentally recorded, historical and simulated earthquakes. Based on predicted and observed peak ground acceleration values, we show that the hazard level associated with large events significantly increases if the long record of simulated seismicity is considered in the hazard assessment.

  18. Earthquakes: Risk, Detection, Warning, and Research (United States)


    and central China, and as far away as Bangladesh , Taiwan, Thailand, and Vietnam. Several large aftershocks occurred after the main seismic event...34 The number of stations necessary to generate a data-based ShakeMap depends on the urban area and geology ...Research Congressional Research Service 24 • Earthquake geology and paleoseismology: studies of the history, effects, and mechanics of earthquakes

  19. Wood-framed houses for earthquake zones

    DEFF Research Database (Denmark)

    Hansen, Klavs Feilberg

    Wood-framed houses with a sheathing are suitable for use in earthquake zones. The Direction describes a method of determining the earthquake forces in a house and shows how these forces can be resisted by diaphragm action in the walls, floors, and roof, of the house. An appendix explains how...

  20. Triggering of repeating earthquakes in central California (United States)

    Wu, Chunquan; Gomberg, Joan; Ben-Naim, Eli; Johnson, Paul


    Dynamic stresses carried by transient seismic waves have been found capable of triggering earthquakes instantly in various tectonic settings. Delayed triggering may be even more common, but the mechanisms are not well understood. Catalogs of repeating earthquakes, earthquakes that recur repeatedly at the same location, provide ideal data sets to test the effects of transient dynamic perturbations on the timing of earthquake occurrence. Here we employ a catalog of 165 families containing ~2500 total repeating earthquakes to test whether dynamic perturbations from local, regional, and teleseismic earthquakes change recurrence intervals. The distance to the earthquake generating the perturbing waves is a proxy for the relative potential contributions of static and dynamic deformations, because static deformations decay more rapidly with distance. Clear changes followed the nearby 2004 Mw6 Parkfield earthquake, so we study only repeaters prior to its origin time. We apply a Monte Carlo approach to compare the observed number of shortened recurrence intervals following dynamic perturbations with the distribution of this number estimated for randomized perturbation times. We examine the comparison for a series of dynamic stress peak amplitude and distance thresholds. The results suggest a weak correlation between dynamic perturbations in excess of ~20 kPa and shortened recurrence intervals, for both nearby and remote perturbations.

  1. Napa Earthquake impact on water systems (United States)

    Wang, J.


    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  2. Stress,strain and earthquake activity

    Institute of Scientific and Technical Information of China (English)

    Yaolin Shi


    @@ There are 13 papers in this special issue on stress field,crustal deformation and seismicity.The great Wenchuan earthquake is a grievous disaster,but Chinese scientists are trying to learn more from the event in order to understand better the physics of earthquakes for future hazard mitigation planning.

  3. Acoustic wave-equation-based earthquake location (United States)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry


    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  4. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.


    -earthquake behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...

  5. Structural Earthquake Resistance Design Using Energy Method

    Institute of Scientific and Technical Information of China (English)

    Hu Rongrong


    A summary of status of researches in the field of structural earthquake resistance design on energy concept is presented in three parts: earthquake input, demands on the structure and supplied capacity of the structure. A new approach is proposed for analysis of the seismic response and damage criteria based on the momentary input energy.

  6. The 2010 Qinghai, China earthquake: a moderate supershear earthquake (United States)

    Wang, D.; Mori, J.


    A moderately large (Mw6.9) strike-slip earthquake in eastern Qinghai province, China occurred on April 13, 2010 and caused extensive damage to structures with over 2200 deaths. The severe ground motions and resultant damage in the town of Yushu may be at least partially attributed to the extremely fast speed of the rupture front as it propagated along the fault toward this location. A nearfield seismogram recorded at station Yushu clearly documents that the rupture speed is faster than the S velocity. From analyses using both near-field and teleseismic data, we estimate the very fast speed to be 4.6 to 5.4 km/sec, depending on the length of the super-shear segment. The higher estimate is close to, or possibly greater than the local P velocity. We examined teleseismic records for this earthquake using an empirical Green function deconvolution of the P waves of teleseismic records, we can identify two pulses of high frequency radiation that show the rupture directivity toward the southeast. The two high frequency centroids were generated from fault segments that are 6.5 km and 41.8 km southeast of the epicenter, respectively. We suggest that the sources of high frequency waves are related to the change of rupture velocity to supershear speed.

  7. The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results

    Directory of Open Access Journals (Sweden)

    Andrea Ninfo


    Full Text Available Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5 strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers [Ambraseys 1988, Carter and Seed 1988, Galli 2000, Tuttle 2001, Obermeier et al. 2005], where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological–geomorphological setting is common and widespread for the Po Plain (Italy [Castiglioni et al. 1997]. The Po Plain (ca. 46,000 km2 represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2 and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy [Cavallin et al. 1977, Galli 2000], because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3 and in Argenta 1624 (M 5.5 [Prestininzi and Romeo 2000, Galli 2000]. In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantova (Figure 1. […

  8. Statistical properties of earthquakes clustering

    Directory of Open Access Journals (Sweden)

    A. Vecchio


    Full Text Available Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate the presence of correlations in the system probably related to the stressing perturbation characterizing the seismicity in the area under analysis. As shown by this analysis, the catalogues, at variance with sequences, show common statistical properties.

  9. Earthquake Effects on Employee Transportation


    Bennett, Anna K; Little, David D.


    The Loma Prieta earthquake of October 17, 1989, had a disastrous impact on surface transportation in the Bay Area. The most tragic effect of the failures in the transportation system was the loss of life in the collapse of the Cypress structure on Interstate 880 in Oakland and of the section of the Bay Bridge. Less dramatic, but disrupting the daily routines of thousands of commuters, were the traffic delays and congestion that occurred in the month that the Bay Bridge and Highway 17 (between...

  10. The 2010 Haiti earthquake response. (United States)

    Raviola, Giuseppe; Severe, Jennifer; Therosme, Tatiana; Oswald, Cate; Belkin, Gary; Eustache, Eddy


    This article presents an overview of the mental health response to the 2010 Haiti earthquake. Discussion includes consideration of complexities that relate to emergency response, mental health and psychosocial response in disasters, long-term planning of systems of care, and the development of safe, effective, and culturally sound mental health services in the Haitian context. This information will be of value to mental health professionals and policy specialists interested in mental health in Haiti, and in the delivery of mental health services in particularly resource-limited contexts in the setting of disasters.

  11. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro


    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  12. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li


    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  13. Stochastic Differential Equation of Earthquakes Series (United States)

    Mariani, Maria C.; Tweneboah, Osei K.; Gonzalez-Huizar, Hector; Serpa, Laura


    This work is devoted to modeling earthquake time series. We propose a stochastic differential equation based on the superposition of independent Ornstein-Uhlenbeck processes driven by a Γ (α, β ) process. Superposition of independent Γ (α, β ) Ornstein-Uhlenbeck processes offer analytic flexibility and provides a class of continuous time processes capable of exhibiting long memory behavior. The stochastic differential equation is applied to the study of earthquakes by fitting the superposed Γ (α, β ) Ornstein-Uhlenbeck model to earthquake sequences in South America containing very large events (Mw ≥ 8). We obtained very good fit of the observed magnitudes of the earthquakes with the stochastic differential equations, which supports the use of this methodology for the study of earthquakes sequence.

  14. Earthquake Correlations and Networks- A Comparative Study

    CERN Document Server

    G., T R Krishna Mohan P


    We quantify the correlation between earthquakes and use the same to distinguish between relevant causally connected earthquakes. Our correlation metric is a variation on the one introduced by Baiesi and Paczuski (2004). A network of earthquakes is constructed, which is time ordered and with links between the more correlated ones. Recurrences to earthquakes are identified employing correlation thresholds to demarcate the most meaningful ones in each cluster. Data pertaining to three different seismic regions, viz. California, Japan and Himalayas, are comparatively analyzed using such a network model. The distribution of recurrence lengths and recurrence times are two of the key features analyzed to draw conclusions about the universal aspects of such a network model. We find that the unimodal feature of recurrence length distribution, which helps to associate typical rupture lengths with different magnitude earthquakes, is robust across the different seismic regions. The out-degree of the networks shows a hub ...

  15. Parallelization of the Coupled Earthquake Model (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.


    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  16. The 24th January 2016 Hawassa earthquake: Implications for seismic hazard in the Main Ethiopian Rift (United States)

    Wilks, Matthew; Ayele, Atalay; Kendall, J.-Michael; Wookey, James


    Earthquakes of low to intermediate magnitudes are a commonly observed feature of continental rifting and particularly in regions of Quaternary to Recent volcanism such as in the Main Ethiopian Rift (MER). Although the seismic hazard is estimated to be less in the Hawassa region of the MER than further north and south, a significant earthquake occurred on the 24th January 2016 in the Hawassa caldera basin and close to the Corbetti volcanic complex. The event was felt up to 100 km away and caused structural damage and public anxiety in the city of Hawassa itself. In this paper we first refine the earthquake's location using data from global network and Ethiopian network stations. The resulting location is at 7.0404°N, 38.3478°E and at 4.55 km depth, which suggests that the event occurred on structures associated with the caldera collapse of the Hawassa caldera in the early Pleistocene and not through volcano-tectonic processes at Corbetti. We calculate local and moment magnitudes, which are magnitude scales more appropriate at regional hypocentral distances than (mb) at four stations. This is done using a local scale (attenuation term) previously determined for the MER and spectral analysis for ML and MW respectively and gives magnitude estimates of 4.68 and 4.29. The event indicates predominantly normal slip on a N-S striking fault structure, which suggests that slip continues to occur on Wonji faults that have exploited weaknesses inherited from the preceding caldera collapse. These results and two previous earthquakes in the Hawassa caldera of M > 5 highlight that earthquakes continue to pose a risk to structures within the caldera basin. With this in mind, it is suggested that enhanced monitoring and public outreach should be considered.

  17. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes (United States)

    Güney, D.; Aydin, E.; Öztürk, B.


    On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.

  18. Source Parameters of Large Magnitude Subduction Zone Earthquakes Along Oaxaca, Mexico (United States)

    Fannon, M. L.; Bilek, S. L.


    Subduction zones are host to temporally and spatially varying seismogenic activity including, megathrust earthquakes, slow slip events (SSE), nonvolcanic tremor (NVT), and ultra-slow velocity layers (USL). We explore these variations by determining source parameters for large earthquakes (M > 5.5) along the Oaxaca segment of the Mexico subduction zone, an area encompasses the wide range of activity noted above. We use waveform data for 36 earthquakes that occurred between January 1, 1990 to June 1, 2014, obtained from the IRIS DMC, generate synthetic Green's functions for the available stations, and deconvolve these from the ­­­observed records to determine a source time function for each event. From these source time functions, we measured rupture durations and scaled these by the cube root to calculate the normalized duration for each event. Within our dataset, four events located updip from the SSE, USL, and NVT areas have longer rupture durations than the other events in this analysis. Two of these four events, along with one other event, are located within the SSE and NVT areas. The results in this study show that large earthquakes just updip from SSE and NVT have slower rupture characteristics than other events along the subduction zone not adjacent to SSE, USL, and NVT zones. Based on our results, we suggest a transitional zone for the seismic behavior rather than a distinct change at a particular depth. This study will help aid in understanding seismogenic behavior that occurs along subduction zones and the rupture characteristics of earthquakes near areas of slow slip processes.

  19. Comparing earthquake models for the Corinth rift for Mw>=5.5/6/6.5 (Greece) (United States)

    Boiselet, Aurélien; Scotti, Oona; Lyon-Caen, Hélène; Ford, Mary; Meyer, NIcolas; Bernard, Pascal


    The Corinth rift (Greece) is identified as a site of major importance for earthquake studies in Europe, producing one of the highest seismic activity and strain in the Euro-Mediterranean region. It is characterized by an asymmetrical structure, with the most active normal faults dipping north and a north-south extension rate measured by GPS increasing from 0.6 mm/year in the eastern part of the rift to 15 mm/year in the western part. Frequent seismic swarms and destructive earthquakes are observed in this area. The Corinth rift Laboratory (CRL, european project investigates fault mechanics, its relationship with earthquakes, fluid flow and the related hazards in the western part of the rift, covering an area about 50 km by 40 km, between the city of Patras to the west and the city of Aigion to the east. As part of this project, within the CRL-SISCOR group, we construct earthquake forecast models (EFM) for M>=5.5/6/6.5 events of the Corinth rift area based on the in-depth seismotectonic studies available for this region. We first present the methodology used to construct the earthquake and fault databases and to quantify the associated uncertainties. We then propose EFM following two approaches: one based on the definition of seimotectonic areas with similar geologic or strain characteristics, the second one based on the definition of fault sources mapped at the surface as well as blind ones. In order to compute the probability of occurrence for M>=5.5/6/6.5 for seismotectonic areas, we analyse two earthquake catalogues available for Greece (National Observatory of Athens, Thessaloniki), apply two declustering methods (Reasenberg and Gardner) to construct a Poissonian earthquake catalogue and test the influence of the minimal magnitude (3.5; 4.0). We compare the impact of maximum magnitude and corner magnitude (Kagan 1997, 2002) estimations. We then apply the Weichert method to estimate the probability of occurrence of M>=5.5/6/6.5 based on

  20. Factors invovled in L. paracasei subp. paracasei M5-L inhibition of the Shigella sonnei adhesion%副干酪乳杆菌M5-L抑制宋内志贺氏菌黏附作用影响因素的研究

    Institute of Scientific and Technical Information of China (English)

    张英春; 马微; 易华西; 张兰威


    研究副干酪乳杆菌M5-L抑制宋内志贺氏菌(S.sonnei)对HT-29细胞黏附的作用及其影响抑制黏附作用的表面分子分析。结果表明M5-L能够显著的抑制S.sonnei的黏附作用,在排除、竞争和取代黏附实验中,抑制率分别为55%、33%和30%,差异显著(p〈0.05),高碘酸钠处理后,M5-L的抑制黏附作用没有变化,表明碳水化合物并没有参与到黏附抑制过程中。而经过5mol/LLiCl处理后,M5-L的抑制黏附作用下降,说明S-层蛋白参与了M5-L抑制S.sonnei对HT-29细胞的黏附作用。此外,M5-L的S-层蛋白能够显著抑制S.sonnei的黏附作用。%L.paracasei subp. paracasei M5-L inhibition of Shigella sonnei adhesion to HT-29 cells and the type of molecules in the M5-L cells surface which effecting the inhibition of S.sonnei were investigated. In exclusion, competition and displacement assays, L.paracasei subp. paracasei M5-L exhibited significant inhibitory activity (p〈0.05),preventing 55% ,33% and 30% of the S.sonnei cells from adhering to HT-29 cell respectively. Treatment with metaperiodate on the M5-L did not affect the inhibitory activity,which showed that the carbohydrates did not involved in the inhibition adherence. When the M5-L treated with 5mol/L LiCI,the inhibition activity was decreased significantly,which indicated the S-layer protein was the important molecules in the inhibition activity. In addition,the S-layer proteins exhibited strongly inhibitory effects on the S.sonnei adherence to HT-29 ceils.

  1. Normal fault earthquakes or graviquakes (United States)

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.


    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  2. Comparing methods for Earthquake Location (United States)

    Turkaya, Semih; Bodin, Thomas; Sylvander, Matthieu; Parroucau, Pierre; Manchuel, Kevin


    There are plenty of methods available for locating small magnitude point source earthquakes. However, it is known that these different approaches produce different results. For each approach, results also depend on a number of parameters which can be separated into two main branches: (1) parameters related to observations (number and distribution of for example) and (2) parameters related to the inversion process (velocity model, weighting parameters, initial location etc.). Currently, the results obtained from most of the location methods do not systematically include quantitative uncertainties. The effect of the selected parameters on location uncertainties is also poorly known. Understanding the importance of these different parameters and their effect on uncertainties is clearly required to better constrained knowledge on fault geometry, seismotectonic processes and at the end to improve seismic hazard assessment. In this work, realized in the frame of the SINAPS@ research program (, we analyse the effect of different parameters on earthquakes location (e.g. type of phase, max. hypocentral separation etc.). We compare several codes available (Hypo71, HypoDD, NonLinLoc etc.) and determine their strengths and weaknesses in different cases by means of synthetic tests. The work, performed for the moment on synthetic data, is planned to be applied, in a second step, on data collected by the Midi-Pyrénées Observatory (OMP).

  3. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data (United States)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.


    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  4. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project (United States)

    Boyd, Oliver S.


    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  5. Probabilistic approach to earthquake prediction.

    Directory of Open Access Journals (Sweden)

    G. D'Addezio


    Full Text Available The evaluation of any earthquake forecast hypothesis requires the application of rigorous statistical methods. It implies a univocal definition of the model characterising the concerned anomaly or precursor, so as it can be objectively recognised in any circumstance and by any observer.A valid forecast hypothesis is expected to maximise successes and minimise false alarms. The probability gain associated to a precursor is also a popular way to estimate the quality of the predictions based on such precursor. Some scientists make use of a statistical approach based on the computation of the likelihood of an observed realisation of seismic events, and on the comparison of the likelihood obtained under different hypotheses. This method can be extended to algorithms that allow the computation of the density distribution of the conditional probability of earthquake occurrence in space, time and magnitude. Whatever method is chosen for building up a new hypothesis, the final assessment of its validity should be carried out by a test on a new and independent set of observations. The implementation of this test could, however, be problematic for seismicity characterised by long-term recurrence intervals. Even using the historical record, that may span time windows extremely variable between a few centuries to a few millennia, we have a low probability to catch more than one or two events on the same fault. Extending the record of earthquakes of the past back in time up to several millennia, paleoseismology represents a great opportunity to study how earthquakes recur through time and thus provide innovative contributions to time-dependent seismic hazard assessment. Sets of paleoseimologically dated earthquakes have been established for some faults in the Mediterranean area: the Irpinia fault in Southern Italy, the Fucino fault in Central Italy, the El Asnam fault in Algeria and the Skinos fault in Central Greece. By using the age of the

  6. The flavoprotein Mcap0476 (RlmFO) catalyzes m5U1939 modification in Mycoplasma capricolum 23S rRNA

    DEFF Research Database (Denmark)

    Lartigue, Carole; Lebaudy, Anne; Blanchard, Alain;


    Efficient protein synthesis in all organisms requires the post-transcriptional methylation of specific ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) nucleotides. The methylation reactions are almost invariably catalyzed by enzymes that use S-adenosylmethionine (AdoMet) as the methyl...... group donor. One noteworthy exception is seen in some bacteria, where the conserved tRNA methylation at m5U54 is added by the enzyme TrmFO using flavin adenine dinucleotide together with N5,N10-methylenetetrahydrofolate as the one-carbon donor. The minimalist bacterium Mycoplasma capricolum possesses...... two homologs of trmFO, but surprisingly lacks the m5U54 tRNA modification. We created single and dual deletions of the trmFO homologs using a novel synthetic biology approach. Subsequent analysis of the M. capricolum RNAs by mass spectrometry shows that the TrmFO homolog encoded by Mcap0476...

  7. The Road to Total Earthquake Safety (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  8. A critical history of British earthquakes

    Directory of Open Access Journals (Sweden)

    R. M. W. Musson


    Full Text Available This paper reviews the history of the study of historical British earthquakes. The publication of compendia of British earthquakes goes back as early as the late 16th Century. A boost to the study of earthquakes in Britain was given in the mid 18th Century as a result of two events occurring in London in 1750 (analogous to the general increase in earthquakes in Europe five years later after the 1755 Lisbon earthquake. The 19th Century saw a number of significant studies, culminating in the work of Davison, whose book-length catalogue was published finally in 1924. After that appears a gap, until interest in the subject was renewed in the mid 1970s. The expansion of the U.K. nuclear programme in the 1980s led to a series of large-scale investigations of historical British earthquakes, all based almost completely on primary historical data and conducted to high standards. The catalogue published by BGS in 1994 is a synthesis of these studies, and presents a parametric catalogue in which historical earthquakes are assessed from intensity data points based on primary source material. Since 1994, revisions to parameters have been minor and new events discovered have been restricted to a few small events.

  9. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)


    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  10. Earthquake prediction from China's mobile gravity data

    Directory of Open Access Journals (Sweden)

    Yiqing Zhu


    Full Text Available The relation between plate tectonics and earthquake evolution is analyzed systematically on the basis of 1998–2010 absolute and relative gravity data from the Crustal Movement Observation Network of China. Most earthquakes originated in the plate boundary or within the fault zone. Tectonic deformation was most intense and exhibited discontinuity within the tectonically active fault zone because of the differential movement; the stress accumulation produced an abrupt gravity change, which was further enhanced by the earthquake. The gravity data from mainland China since 2000 obviously reflected five major earthquakes (Ms > 7, all of which were better reflected than before 2000. Regional gravity anomalies and a gravity gradient change were observed in the area around the epicenter about 2 or 3 years before the earthquake occurred, suggesting that gravity change may be a seismic precursor. Furthermore, in this study, the medium-term predictions of the Ms7.3 Yutian, Ms8.0 Wenchuan, and Ms7.0 Lushan earthquakes are analytically presented and evaluated, especially to estimate location of earthquake.

  11. Seismicity prior to the 2016 Kumamoto earthquakes

    CERN Document Server

    Nanjo, K Z; Orihara, Y; Furuse, N; Togo, S; Nitta, H; Okada, T; Tanaka, R; Kamogawa, M; Nagao, T


    The 2016 Kumamoto earthquakes occurred under circumstance that seismicity remains high in all parts of Japan since the 2011 Tohoku-Oki earthquake. Identifying what happened before this incident is one starting point for promote earthquake forecast research to prepare for subsequent large earthquakes in the near future in Japan. Here we report precursory seismic patterns prior to the Kumamoto earthquakes, measured by four different methods based on seismicity changes that can be used for earthquake forecasting: b-value method, two kinds of seismic quiescence evaluation methods, and a method of detailed foreshock evaluation. The spatial extent of precursory patterns differs from one method to the other and ranges from local scales (typically asperity size), to regional scales (e.g., 2{\\deg} x 3{\\deg} around the source zone). The earthquakes are preceded by periods of pronounced anomalies, which lasted decade scales (e.g., 20 years or longer) to yearly scales (e.g., 1~2 years). We demonstrate that combination of...

  12. New geological perspectives on earthquake recurrence models

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, D.P. [Geological Survey, Menlo Park, CA (United States)


    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release.

  13. Scaling of Seismic Memory with Earthquake Size

    CERN Document Server

    Zheng, Zeyu; Tenenbaum, Joel; Podobnik, Boris; Stanley, H Eugene


    It has been observed that the earthquake events possess short-term memory, i.e. that events occurring in a particular location are dependent on the short history of that location. We conduct an analysis to see whether real-time earthquake data also possess long-term memory and, if so, whether such autocorrelations depend on the size of earthquakes within close spatiotemporal proximity. We analyze the seismic waveform database recorded by 64 stations in Japan, including the 2011 "Great East Japan Earthquake", one of the five most powerful earthquakes ever recorded which resulted in a tsunami and devastating nuclear accidents. We explore the question of seismic memory through use of mean conditional intervals and detrended fluctuation analysis (DFA). We find that the waveform sign series show long-range power-law anticorrelations while the interval series show long-range power-law correlations. We find size-dependence in earthquake auto-correlations---as earthquake size increases, both of these correlation beha...

  14. Losses Associated with Secondary Effects in Earthquakes

    Directory of Open Access Journals (Sweden)

    James E. Daniell


    Full Text Available The number of earthquakes with high damage and high losses has been limited to around 100 events since 1900. Looking at historical losses from 1900 onward, we see that around 100 key earthquakes (or around 1% of damaging earthquakes have caused around 93% of fatalities globally. What is indeed interesting about this statistic is that within these events, secondary effects have played a major role, causing around 40% of economic losses and fatalities as compared to shaking effects. Disaggregation of secondary effect economic losses and fatalities demonstrating the relative influence of historical losses from direct earthquake shaking in comparison to tsunami, fire, landslides, liquefaction, fault rupture, and other type losses is important if we are to understand the key causes post-earthquake. The trends and major event impacts of secondary effects are explored in terms of their historic impact as well as looking to improved ways to disaggregate them through two case studies of the Tohoku 2011 event for earthquake, tsunami, liquefaction, fire, and the nuclear impact; as well as the Chilean 1960 earthquake and tsunami event.

  15. Smartphone MEMS accelerometers and earthquake early warning (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.


    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  16. Mapping of earthquakes vulnerability area in Papua (United States)

    Muhammad Fawzy Ismullah, M.; Massinai, Muh. Altin


    Geohazard is a geological occurrence which may lead to a huge loss for human. A mitigation of these natural disasters is one important thing to be done properly in order to reduce the risks. One of the natural disasters that frequently occurs in the Papua Province is the earthquake. This study applies the principle of Geospatial and its application for mapping the earthquake-prone area in the Papua region. It uses earthquake data, which is recorded for 36 years (1973-2009), fault location map, and ground acceleration map of the area. The earthquakes and fault map are rearranged into an earthquake density map, as well as an earthquake depth density map and fault density map. The overlaid data of these three maps onto ground acceleration map are then (compiled) to obtain an earthquake unit map. Some districts area, such as Sarmi, Nabire, and Dogiyai, are identified by a high vulnerability index. In the other hand, Waropen, Puncak, Merauke, Asmat, Mappi, and Bouven Digoel area shows lower index. Finally, the vulnerability index in other places is detected as moderate.

  17. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills. (United States)

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza


    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed.

  18. 新BMW M5和新BMW M6车型即将进入中国市场

    Institute of Scientific and Technical Information of China (English)


    2006年夏天即将在中国上市的新BMW M车型包括新BMW M5和新BMW M6,他们拥有强悍的动力单元,把超级跑车的外观和Grand Touring赛车的性能完美地结合在了一起。

  19. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight Hymenoptera venom allergens Api m 5 and Ves v 3. (United States)

    Blank, Simon; Seismann, Henning; Bockisch, Benjamin; Braren, Ingke; Cifuentes, Liliana; McIntyre, Mareike; Rühl, Dana; Ring, Johannes; Bredehorst, Reinhard; Ollert, Markus W; Grunwald, Thomas; Spillner, Edzard


    Insect stings can cause life-threatening IgE-mediated anaphylactic reactions in venom-allergic patients. Although several compounds have already been described as venom allergens, prominent allergen candidates especially in the higher m.w. range have still remained elusive. Tandem mass spectrometry-based sequencing assigned a candidate gene to the most prominent putative high m.w. allergen Api m 5 (allergen C) in honeybee (Apis mellifera) venom and also allowed identification of its homologue Ves v 3 in yellow jacket (Vespula vulgaris) venom. Both proteins exhibit a pronounced sequence identity to human dipeptidyl peptidase IV or CD26. Reactivity of a human IgE mAb verified the presence of these proteins in the venoms. Both proteins were produced in insect cells and characterized for their enzymatic activity as well as their allergenic potential using sera and basophils from insect venom-allergic patients. Both Api m 5 and Ves v 3 were recognized by specific IgE of the majority of patients even in the absence of cross-reactive carbohydrate determinants. Serologic IgE reactivity closely matched activation of human basophils by Api m 5 or Ves v 3, thus underlining their relevance in functional assays. With Api m 5 and Ves v 3, a new pair of homologous allergens becomes available for future clinical applications in diagnosis and therapy that may also contribute to the understanding of molecular mechanisms of insect venoms. Moreover, the patient IgE reactivity together with the cellular activation demonstrates for the first time the relevance of high m.w. allergens in the context of hymenoptera venom allergy.

  20. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts (United States)

    Kagan, Yan Y.; Jackson, David D.


    We have obtained new results in the statistical analysis of global earthquake catalogues with special attention to the largest earthquakes, and we examined the statistical behaviour of earthquake rate variations. These results can serve as an input for updating our recent earthquake forecast, known as the `Global Earthquake Activity Rate 1' model (GEAR1), which is based on past earthquakes and geodetic strain rates. The GEAR1 forecast is expressed as the rate density of all earthquakes above magnitude 5.8 within 70 km of sea level everywhere on earth at 0.1 × 0.1 degree resolution, and it is currently being tested by the Collaboratory for Study of Earthquake Predictability. The seismic component of the present model is based on a smoothed version of the Global Centroid Moment Tensor (GCMT) catalogue from 1977 through 2013. The tectonic component is based on the Global Strain Rate Map, a `General Earthquake Model' (GEM) product. The forecast was optimized to fit the GCMT data from 2005 through 2012, but it also fit well the earthquake locations from 1918 to 1976 reported in the International Seismological Centre-Global Earthquake Model (ISC-GEM) global catalogue of instrumental and pre-instrumental magnitude determinations. We have improved the recent forecast by optimizing the treatment of larger magnitudes and including a longer duration (1918-2011) ISC-GEM catalogue of large earthquakes to estimate smoothed seismicity. We revised our estimates of upper magnitude limits, described as corner magnitudes, based on the massive earthquakes since 2004 and the seismic moment conservation principle. The new corner magnitude estimates are somewhat larger than but consistent with our previous estimates. For major subduction zones we find the best estimates of corner magnitude to be in the range 8.9 to 9.6 and consistent with a uniform average of 9.35. Statistical estimates tend to grow with time as larger earthquakes occur. However, by using the moment conservation

  1. 布鲁氏菌M5-90疫苗株磷酸葡萄糖变位酶基因(pgm)突变株的构建及免疫评价%Construction and Immune Evaluation on Mutation of phosphoglucomutase gene (pgm) Attenuates of Brucella Melitensis Vaccine M5-90

    Institute of Scientific and Technical Information of China (English)

    李天森; 张辉; 张艳; 孟茹; 张豫; 孙志华; 蒋攀文; 王震; 陈瑞花


    In order to obtain a Brucella vaccine candidate which can distinguish between natural infection and attenuated vaccine, this paper studied the phosphoglucomutase gene (pgm) influence on Brucella M5-90 vaccine strain virulence and immune evaluation. The recombinant plasmid pGEM-7zf-Δpgm was constructed, and which was electroporated into Brucella melitensis M5-90 competent cells, screening for Brucella vaccine strain M5-90 pgm gene deletion mutant strains (Δpgm) and to detect the M5-90 Δpgm strain genetic stability, and immunogenicity. The test results showed that the reverse mutation did not occur within 15 passages; the Δpgm antibody content and the parent strain M5-90 group had no significant difference; Δpgm had the ability to produce the IL-2 was stronger than that of M5-90, the ability to produce INF-γ was lower than the M5-90; the rose bengal plate agglutination test and tube agglutination test of this gene deletion strains was not agglutinated; the results of Western blot confirmed that the Δpgm could not induce the mice to produce anti-pgm protein antibody. The Δpgm constructed in this study, had good genetic stability and immunogenicity, provided basic data for the next step to more in-depth develop Brucella gene-deleted vaccine.%为获得可以区分自然感染和疫苗免疫且毒力较弱的布鲁氏菌候选疫苗株,本实验研究了磷酸葡萄糖变位酶基因(pgm)对布鲁氏菌(Brucella melitensis)M5-90疫苗株毒力的影响,并对其进行了免疫评价.本实验构建了重组质粒pGEM-7zf-△pgm,电转化布鲁氏菌M5-90感受态细胞,筛选获得布鲁氏菌疫苗株M5-90的pgm基因缺失株(△pgm),并对获得的M5-90 △pgm株进行遗传稳定性、免疫原性检测.结果显示,△pgm能稳定传15代;△pgm组的抗体含量较亲本株M5-90组差异不显著;△pgm在诱导机体产生IL-2的能力要强于M5-90,产生INF-γ的能力低于M5-90;该基因缺失株采用虎红平板凝集试验和试管凝集

  2. Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sang-Eun [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea); Zuo, Yi; Zhang, Husen [Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Guiltinan, Mark J. [Department of Horticulture, The Pennsylvania State University, University Park, PA 16802 (United States); Hydrogen Energy (H2E) Center, The Pennsylvania State University, University Park, PA 16802 (United States); Logan, Bruce E.; Regan, John M. [Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Hydrogen Energy (H2E) Center, The Pennsylvania State University, University Park, PA 16802 (United States)


    Biohydrogen production is measured using a variety of techniques, ranging from low cost intermittent gas release methods where yields are usually reduced due to high partial pressures of hydrogen, to expensive respirometers that can eliminate pressure buildup. A new large headspace volume technique was developed that reduces the potential for hydrogen gas inhibition without the need for a respirometer. We tested this method with two strains of clostridia, Clostridium acetobutylicum ATCC 824 and its mutant M5 that lacks a megaplasmid responsible for butanol and acetone production, and a mixed culture (heat-treated sludge). The hydrogen yield using M5 (2.64 mol-H{sub 2}/mol-glucose) was 47% higher than that of the parent strain (1.79 mol-H{sub 2}/mol-glucose), and 118% larger than that obtained in tests with the sludge inoculum (1.21 mol-H{sub 2}/mol-glucose). The increased yield for M5 was primarily due to a decrease in biomass synthesis (38%) compared to the parent strain. Hydrogen yields measured using this new method were on average 14% higher than those obtained using a conventional respirometric method. These findings indicate enhanced biohydrogen production from the megaplasmid-deficient mutant of C. acetobutylicum ATCC 824, and that an intermittent gas-sampling technique can effectively measure high hydrogen gas by using a large headspace volume. (author)

  3. Linear and non-linear optical properties of amorphous Se and M5Se95 (M $=$ Ge, Ga and Zn) films

    Indian Academy of Sciences (India)



    The variations in structure and optical properties of amorphous a-Se and a-M$_5$Se$_{95}$ (M = Ge, Ga and Zn) films have been studied based on FTIR and optical measurements. FTIR transmittance spectra for a-Se and a-M$_5$Se$_{95}$ (M $=$ Ge, Ga and Zn) glasses were measured as a function of wavenumber. The addition of Ge, Ga and Zn increases the vibrational frequency of the a-Se main band. The absorption edge of Ge$_5$Se$_{95}$ shifted towards long side of the wavelength in comparison with that of a-Se film. This shift increases gradually in the case of Ga$_5$Se$_{95}$ and Zn$_5$Se$_95$ films. So, the optical bandgap ofM5Se95 films was decreased, but the index of refraction was increased. The first and third order of electric susceptibility ($\\chi_{(1)}$ and $\\chi_{(3)}$) and non-linear index of refraction ($n_2$) were increased by adding Ge, Ga and Zn into a-Se.

  4. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun


    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  5. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun


    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  6. POST Earthquake Debris Management - AN Overview (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  7. Possible occurrence of a giant interplate earthquake in northeast Japan greater than the 2011 Tohoku earthquake (United States)

    Ohtani, M.; Hirahara, K.; Hori, T.; Hyodo, M.


    We supposed there occur M7-class earthquakes and the co-rupturing M8 earthquakes on the Pacific plate interface subducting beneath northeast Japan. Against our speculation, the 2011 Tohoku earthquake grew up to Mw9.0. We have so far constructed cycle models of this giant earthquake to understand why this grew up to Mw9.0. Next question is; is there any possibility that a much larger earthquake occurs in this region? In this study, we explore this possibility through quasi-dynamic earthquake cycle simulations. The 2011 Tohoku earthquake ruptured a large region of 200km x 500km. The rupture region includes a confined area with huge coseismic slip over 50 m in the shallow Off-Miyagi region close to the Japan Trench, and several M7 asperities in Off-Miyagi and Ibaraki regions which have been ruptured repeatedly at intervals of several ten years. The tsunami deposit surveys suggest this giant earthquake has the recurrence time of several hundred years. The afterslip occurs mainly in the deeper region of the coseismic slip region, except the Off-Miyagi region [Ozawa et al., 2012]. At Off-Kamaishi and Off-Fukushima regions located in the northern and southern sides of the Off-Miyagi region, we can find the local maximum of the afterslip. The Off-Kamaishi region did not produce much coseismic slip, and has not experienced historical large earthquakes. And no large afterslip extended to the northern region beyond Off-Kamaishi. Then, the Off-Kamaishi region is a kind of boundary between the 2011 Tohoku earthquake and its adjacent northern regions. In the northern region, there occurred the 1968 Off-Tokachi Mw8.3 earthquake, which has three M7 asperities with recurrence times of several ten years [Yamanaka & Kikuchi, 2004]. An aftershock of the 2011 Tohoku earthquake, which occurred 22 minutes after the main shock, is located at the southern asperity area. And there is a region close to the Japan Trench, where the 1897 Meiji-sanriku tsunami earthquake occurred. We performed

  8. Earthquakes (United States)

    ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ... Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Power Outages Pandemic Radiological Dispersion Device Severe Weather Snowstorms & Extreme ...

  9. Earthquakes (United States)

    ... Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme Heat PSAs Related Links MMWR Bibliography CDC's Program Floods Flood Readiness Personal Hygiene After a Disaster Cleanup of Flood Water After a Flood Worker Safety Educational Materials Floods ...

  10. A 'new generation' earthquake catalogue

    Directory of Open Access Journals (Sweden)

    E. Boschi


    Full Text Available In 1995, we published the first release of the Catalogo dei Forti Terremoti in Italia, 461 a.C. - 1980, in Italian (Boschi et al., 1995. Two years later this was followed by a second release, again in Italian, that included more earthquakes, more accurate research and a longer time span (461 B.C. to 1990 (Boschi et al., 1997. Aware that the record of Italian historical seismicity is probably the most extensive of the whole world, and hence that our catalogue could be of interest for a wider interna-tional readership, Italian was clearly not the appropriate language to share this experience with colleagues from foreign countries. Three years after publication of the second release therefore, and after much additional research and fine tuning of methodologies and algorithms, I am proud to introduce this third release in English. All the tools and accessories have been translated along with the texts describing the development of the underlying research strategies and current contents. The English title is Catalogue of Strong Italian Earthquakes, 461 B.C. to 1997. This Preface briefly describes the scientific context within which the Catalogue of Strong Italian Earthquakes was conceived and progressively developed. The catalogue is perhaps the most impor-tant outcome of a well-established joint project between the Istituto Nazionale di Geofisica, the leading Italian institute for basic and applied research in seismology and solid earth geophysics, and SGA (Storia Geofisica Ambiente, a private firm specialising in the historical investigation and systematisation of natural phenomena. In her contribution "Method of investigation, typology and taxonomy of the basic data: navigating between seismic effects and historical contexts", Emanuela Guidoboni outlines the general framework of modern historical seismology, its complex relation with instrumental seismology on the one hand and historical research on the other. This presentation also highlights

  11. Systematic Detections of Early Aftershocks and Remotely Triggered Seismicity in China Following the 2015 Mw7.8 Gorkha, Nepal earthquake (United States)

    Wu, J.; Peng, Z.; Yao, D.; LI, L.; Meng, X.; Wang, B.; Wang, W.; Li, C.


    The 2015/04/25 Mw7.8 Gorkha, Nepal earthquake occurred beneath the central portion of the Himalayan Frontal Thrust Fault. The mainshock was followed by numerous aftershocks near its epicentral region, as well as many earthquakes at various distances in China. Small to moderate-size earthquakes in Chongqing (~2500 km) and around Fangshan Pluton near Beijing (~3500 km) coincided with the arrivals of surface wave train, suggesting that they were likely triggered by dynamic stresses from the passing surface waves. 3 hours later, a M5.8 normal-faulting earthquake in Southern Tibet. Because of their close distances (within two fault-rupture lengths), it is not clear whether the M5.8 Tibetan event is triggered by static or dynamic stresses. Here we conduct a systematic detection of microseismicity in Nepal and Southern Tibet around the Nepal mainshock. We use earthquakes listed in the Advance National Seismic Network (ANSS) and China Earthquake Network Center (CENC) catalogs as templates, and scan through continuous waveform data within 700 km of the Nepal mainshock to detect additional smaller events that were not listed in these catalogs. As was done before, we apply a 0.5 to 8 Hz band-pass filter to both the template and continuous waveform data, and detect events with mean cross-correlation (CC) values that are at least 12 times larger than the daily median absolute deviation (MAD) values. Overall we have detected 5 times more aftershocks, as well as more than 80 uncatalogued events in Southern Tibet near the epicentral region of the M5.8 event. We also compute the dynamic and static stress changes on the two nodal planes of the M5.8 event. While we cannot completely rule out the influence of static stress change (because the M5.8 event is in the positive Coulomb stress change region), the amplitude of the dynamic stress change is several times larger than the static stress change, suggesting that this event is possibly triggered by dynamic stress changes (albeit with

  12. Earthquake vulnerability evaluation Faizabad district of Kermanshah

    Directory of Open Access Journals (Sweden)

    Saba Naderi


    Full Text Available This paper as examplehas been studied Faizabad district of Kermanshah and to reach its main purpose, which is reducing the damagecaused by the earthquake on the Faizabad district is been providedand in subsidiary purposes part the research is tried identify factors influence in vulnerability earthquakes,pay to provide the factors required; All these factors havean impact on reducing earthquake vulnerability. This data using geological data, soil texture, getting satelliteimages and layering over Arc Gis software identified and for long term periods donepredict using relation kernel PSHA also. In determining the level ofenvironmental risk is to use software crisis. Finally, by recognizing the riskzone, solutions for Faizabad district offered.

  13. Earthquake hazard assessment after Mexico (1985). (United States)

    Degg, M R


    The 1985 Mexican earthquake ranks foremost amongst the major earthquake disasters of the twentieth century. One of the few positive aspects of the disaster is that it provided massive quantities of data that would otherwise have been unobtainable. Every opportunity should be taken to incorporate the findings from these data in earthquake hazard assessments. The purpose of this paper is to provide a succinct summary of some of the more important lessons from Mexico. It stems from detailed field investigations, and subsequent analyses, conducted by the author on the behalf of reinsurance companies.

  14. Wave-equation Based Earthquake Location (United States)

    Tong, P.; Yang, D.; Yang, X.; Chen, J.; Harris, J.


    Precisely locating earthquakes is fundamentally important for studying earthquake physics, fault orientations and Earth's deformation. In industry, accurately determining hypocenters of microseismic events triggered in the course of a hydraulic fracturing treatment can help improve the production of oil and gas from unconventional reservoirs. We develop a novel earthquake location method based on solving full wave equations to accurately locate earthquakes (including microseismic earthquakes) in complex and heterogeneous structures. Traveltime residuals or differential traveltime measurements with the waveform cross-correlation technique are iteratively inverted to obtain the locations of earthquakes. The inversion process involves the computation of the Fréchet derivative with respect to the source (earthquake) location via the interaction between a forward wavefield emitting from the source to the receiver and an adjoint wavefield reversely propagating from the receiver to the source. When there is a source perturbation, the Fréchet derivative not only measures the influence of source location but also the effects of heterogeneity, anisotropy and attenuation of the subsurface structure on the arrival of seismic wave at the receiver. This is essential for the accuracy of earthquake location in complex media. In addition, to reduce the computational cost, we can first assume that seismic wave only propagates in a vertical plane passing through the source and the receiver. The forward wavefield, adjoint wavefield and Fréchet derivative with respect to the source location are all computed in a 2D vertical plane. By transferring the Fréchet derivative along the horizontal direction of the 2D plane into the ones along Latitude and Longitude coordinates or local 3D Cartesian coordinates, the source location can be updated in a 3D geometry. The earthquake location obtained with this combined 2D-3D approach can then be used as the initial location for a true 3D wave

  15. Earthquake Scenarios and Comparison with Historical Earthquakes, Hatay Region, SE Turkey (United States)

    Uskuplu, S.; Tuysuz, O.


    Hatay Province (Antioch on Orontes) and its surroundings, SE Turkey, have been studied in this research. Tectonically, the East Anatolian Fault Zone (EAFZ), Dead Sea Fault Zone (DAFZ) and Cyprus Arc juxtapose in this region and form a triple junction. Historical records, which extend back to 300 BC, indicate that repeated destructive earthquakes affected this historical region for many times. It is still a matter of debate in this region that which fault produced these earthquakes. It is indisputable for this region that the probability of occurrence of future big and destructive earthquakes are quite high. For that purpose, the damage distributions of the historical earthquakes of this region, which are compiled from various catalogues, have been investigated in this study. The active faults in the region are determined by field studies and the maximum magnitudes of the earthquakes that can be produced by those faults are calculated by using empirical formulas. In the next step we produced synthetic earthquake scenarios by using Geographical Information System (GIS) analysis techniques to estimate the damage distribution of earthquakes that would possibly be produced by different fault segments. In the last step we compared results of damage distribution of synthetic earthquake scenarios with the damage distribution from historical records. Based on these results we tried to estimate which fault segment produced which historical earthquake. Results of our study indicate that the historical earthquakes in the Hatay Province were mainly produced by different segments of the Dead Sea Fault, and the Antakya-Samandag Fault. Keywords; Earthquake scenarios, GIS, historical earthquakes, Hatay, intensity

  16. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part A, Prehistoric earthquakes (United States)

    Wheeler, Russell L.


    Computation of probabilistic earthquake hazard requires an estimate of Mmax, the maximum earthquake magnitude thought to be possible within a specified geographic region. This report is Part A of an Open-File Report that describes the construction of a global catalog of moderate to large earthquakes, from which one can estimate Mmax for most of the Central and Eastern United States and adjacent Canada. The catalog and Mmax estimates derived from it were used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. This Part A discusses prehistoric earthquakes that occurred in eastern North America, northwestern Europe, and Australia, whereas a separate Part B deals with historical events.

  17. Earthquake Risk - EARTHQUAKE_LIQUEFACTION_IN: Earthquake Paleoliquefaction Sites in Indiana (Indiana Geological Survey, 1:24,000, Point Shapefile) (United States)

    NSGIC GIS Inventory (aka Ramona) — EARTHQUAKE_LIQUEFACTION_IN is a point shapefile that shows sites where paleoliquefaction features have been identified in the field by Pat Munson of the Indiana...

  18. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)


    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  19. The ethics of earthquake prediction. (United States)

    Sol, Ayhan; Turan, Halil


    Scientists' responsibility to inform the public about their results may conflict with their responsibility not to cause social disturbance by the communication of these results. A study of the well-known Brady-Spence and Iben Browning earthquake predictions illustrates this conflict in the publication of scientifically unwarranted predictions. Furthermore, a public policy that considers public sensitivity caused by such publications as an opportunity to promote public awareness is ethically problematic from (i) a refined consequentialist point of view that any means cannot be justified by any ends, and (ii) a rights view according to which individuals should never be treated as a mere means to ends. The Parkfield experiment, the so-called paradigm case of cooperation between natural and social scientists and the political authorities in hazard management and risk communication, is also open to similar ethical criticism. For the people in the Parkfield area were not informed that the whole experiment was based on a contested seismological paradigm.

  20. Update of the USGS 2016 One-year Seismic Hazard Forecast for the Central and Eastern United States From Induced and Natural Earthquakes (United States)

    Petersen, M. D.; Mueller, C. S.; Moschetti, M. P.; Hoover, S. M.; Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.; Rubinstein, J. L.; McGarr, A.; Rukstales, K. S.


    The U.S. Geological Survey released a 2016 one-year forecast for seismic hazard in the central and eastern U.S., which included the influence from both induced and natural earthquakes. This forecast was primarily based on 2015 declustered seismicity rates but also included longer-term rates, 10- and 20- km smoothing distances, earthquakes between Mw 4.7 and maximum magnitudes of 6.0 or 7.1, and 9 alternative ground motion models. Results indicate that areas in Oklahoma, Kansas, Colorado, New Mexico, Arkansas, Texas, and the New Madrid Seismic Zone have a significant chance for damaging ground shaking levels in 2016 (greater than 1% chance of exceeding 0.12 PGA and MMI VI). We evaluate this one-year forecast by considering the earthquakes and ground shaking levels that occurred during the first half of 2016 (earthquakes not included in the forecast). During this period the full catalog records hundreds of events with M ≥ 3.0, but the declustered catalog eliminates most of these dependent earthquakes and results in much lower numbers of earthquakes. The declustered catalog based on USGS COMCAT indicates a M 5.1 earthquake occurred in the zone of highest hazard on the map. Two additional earthquakes of M ≥ 4.0 occurred in Oklahoma, and about 82 earthquakes of M ≥ 3.0 occurred with 77 in Oklahoma and Kansas, 4 in Raton Basin Colorado/New Mexico, and 1 near Cogdell Texas. In addition, 72 earthquakes occurred outside the zones of induced seismicity with more than half in New Madrid and eastern Tennessee. The catalog rates in the first half of 2016 and the corresponding seismic hazard were generally lower than in 2015. For example, the zones for Irving, Venus, and Fashing, Texas; Sun City, Kansas; and north-central Arkansas did not experience any earthquakes with M≥ 2.7 during this period. The full catalog rates were lower by about 30% in Raton Basin and the Oklahoma-Kansas zones but the declustered catalog rates did not drop as much. This decrease in earthquake

  1. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience. (United States)

    Kung, Yi-Wen; Chen, Sue-Huei


    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  2. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel


    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  3. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel


    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  4. Earthquake Loading Assessment to Evaluate Liquefaction Potential in Emilia-Romagna Region (United States)

    Daminelli, Rosastella; Marcellini, Alberto; Tento, Alberto


    The May-June 2012 seismic sequence that struck Lombardia and Emilia-Romagna consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8). The widespread soil liquefaction, unexpected because of the moderate magnitude of the events, pushed the local authorities to issue research projects aimed to define the earthquake loading to evaluate the liquefaction safety factor. The reasons explained below led us to adopt a deterministic hazard approach to evaluate the seismic parameters relevant to liquefaction assessment, despite the fact that the Italian Seismic Building Code (NTC08) is based on probabilistic hazard analysis. For urban planning and building design geologists generally adopt the CRR/CSR technique to assess liquefaction potential; therefore we considered PGA and a design magnitude to be representative of the seismic loading. The procedure adopted consists: a) identification of seismic source zones and characterization of each zone by the maximum magnitude; b) evaluation of the source to site distance and c) adoption of a suitable attenuation law to compute the expected PGA at the site, given the site condition and the design magnitude. The design magnitude can be: the maximum magnitude; the magnitude that causes the largest PGA, or both. The PGA values obtained are larger with respect to the 474 years return period PGA prescribed by NTC08 for the seismic design for ordinary buildings. We conducted a CPTU resistance test intended to define the CRR at the village of Cavezzo, situated in the epicentral area of the 2012 earthquake. The CRR/CSR ratio led to an elevated liquefaction risk at the analysed site. On the contrary the adoption of the 474 years return period PGA of the NTCO8 prescribed for Cavezzo site led to a negligible liquefaction risk. Note that very close to the investigated site several liquefaction phenomena were observed.

  5. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick


    ) eahquakes. Results have revealed the presence of related variations of these parameters implying their connection with the earthquake process. The second phase (B) of this validation included 102 major earthquakes (M>5.9) in Taiwan and Japan. We have found anomalous behavior before all of these events with no false negatives. False alarm ratio for false positives is less then 10% and has been calculated for the same month of the earthquake occurrence for the entire period of analysis (2003-2009). The commonalities for detecting atmospheric/ionospheric anomalies are: i.) Regularly appearance over regions of maximum stress (i.e., along plate boundaries); ii.) Anomaly existence over land and sea; and iii) association with M>5.9 earthquakes not deeper than 100km. Due to their long duration over the same region these anomalies are not consistent with a meteorological origin. Our initial results from the ISTF validation of multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area, one to seven (average) days prior to the largest earthquakes, and suggest that it could be explained by a coupling process between the observed physical parameters and the pre-earthquake preparation processes.

  6. The 15 April 1909 Taipei Earthquake

    Directory of Open Access Journals (Sweden)

    Jeen-Hwa Wang


    Full Text Available In the very early morning at 03 h 53.7 m on 15 April 1909 (local time, a large earthquake occurred in northern Taiwan. In all, 9 persons were killed and 51 injured; 122 houses collapsed along with damage to another 1050 houses. This earthquake was one of the largest and most damaging events of the 20th century for the Taipei Metropolitan Area. The epicenter estimated by Hsu (1971 was determined to be 25¢XN, 121.53¢XE and its focal depth and earthquake magnitude evaluated by Gutenberg and Richter (1954 were ~80 km and MGR = 7.3, respectively. The event took place underneath the Taipei Metropolitan Area and might be located at the western edge of the subduction zone of the Philippine Sea plate. In this study, the magnitudes of the earthquakes determined by others will also be described.

  7. The aftershock signature of supershear earthquakes. (United States)

    Bouchon, Michel; Karabulut, Hayrullah


    Recent studies show that earthquake faults may rupture at speeds exceeding the shear wave velocity of rocks. This supershear rupture produces in the ground a seismic shock wave similar to the sonic boom produced by a supersonic airplane. This shock wave may increase the destruction caused by the earthquake. We report that supershear earthquakes are characterized by a specific pattern of aftershocks: The fault plane itself is remarkably quiet whereas aftershocks cluster off the fault, on secondary structures that are activated by the supershear rupture. The post-earthquake quiescence of the fault shows that friction is relatively uniform over supershear segments, whereas the activation of off-fault structures is explained by the shock wave radiation, which produces high stresses over a wide zone surrounding the fault.

  8. DYFI data for Induced Earthquake Studies (United States)

    U.S. Geological Survey, Department of the Interior — The significant rise in seismicity rates in Oklahoma and Kansas (OK–KS) in the last decade has led to an increased interest in studying induced earthquakes. Although...

  9. International Technical Communication after a Large Earthquake. (United States)

    Klein, Fred


    Discusses, in the context of southern California's severe earthquake in January 1994, attitudes to technology and the information superhighway. Argues that technology should not be worshipped as a solution. (SR)

  10. Strong ground motion prediction using virtual earthquakes. (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C


    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  11. Earthquake Damage, Northern Iran, June 21, 1990 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A magnitude 7.7 earthquake occurred in the Gilan Province between the towns of Rudbar and Manjil in northern Iran on Thursday, June 21, 1990. The event, the largest...

  12. El Quindio Colombia Earthquake, January 25, 1999 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The El Quindio earthquake was one of the most destructive natural disasters to have occurred in Colombia in recent years. Long lasting economic and social impacts...

  13. Is It Possible to Predict Strong Earthquakes?

    CERN Document Server

    Polyakov, Yuriy S; Solovyeva, Anna B; Timashev, Serge F


    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on February 28, 2013), recorded at two different sites in the south-eastern part of the Kamchatka peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geoph...

  14. Disturbances in equilibrium function after major earthquake (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi


    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  15. Adaptively Smoothed Seismicity Earthquake Forecasts for Italy

    CERN Document Server

    Werner, M J; Jackson, D D; Kagan, Y Y; Wiemer, S


    We present a model for estimating the probabilities of future earthquakes of magnitudes m > 4.95 in Italy. The model, a slightly modified version of the one proposed for California by Helmstetter et al. (2007) and Werner et al. (2010), approximates seismicity by a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog and a longer instrumental and historical catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and trustworthy, we used small earthquakes m>2.95 to illuminate active fault structur...


    Directory of Open Access Journals (Sweden)

    V.V. Kuznetsov


    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud

  17. NGA Nepal Earthquake Support Data Services (United States)

    National Geospatial Intelligence Agency — In support of the Spring 2015 Nepal earthquake response, NGA is providing to the public and humanitarian disaster response community these Nepal data services. They...

  18. Subduction zone earthquakes and stress in slabs (United States)

    Vassiliou, M. S.; Hager, B. H.


    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  19. Effect of oxalioplatin on human colorectal cancer cell line LoVo and cell subline SW480/M5%奥沙利铂对人结肠癌细胞LoVo和SW480/M5作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    吕会增; 魏波; 陈图峰; 苏雁甜; 叶小勇; 陈新岐; 卫洪波


    目的 探讨体外实验奥沙利铂对人结肠癌LoVo和SW480/M5细胞的抑制作用及其可能机制.方法 MTT法检测不同剂量奥沙利铂对LoVo和SW480/M5细胞增殖的抑制作用.流式细胞仪检测1/2 GI50和GI50浓度奥沙利铂对LoVo和SW480/M5细胞周期和早期凋亡的影响.原子光谱吸收仪检测GI50浓度奥沙利铂作用4、8、24 h后LoVo和SW480/M5细胞DNA含铂量.结果 奥沙利铂对LoVo和SW480/M5细胞增殖的抑制作用呈量效依赖;其GI50浓度:LoVo细胞为6.5 mg/L,SW480/M5细胞为58.0 mg/L.自然对数增殖周期,LoVo细胞中G1期细胞比例高于、G2期细胞比例低于SW480/M5细胞(P<0.05).奥沙利铂浓度GI50时,降低肿瘤细胞G1期比例,升高LoVo细胞S期比例较SW480/M5细胞明显,升高SW480/M5细胞而降低LoVo细胞G2/M期比例.1/2 GI50、GI50奥沙利铂均可诱导两种肿瘤细胞发生早期凋亡,但1/2 GI50 L-OHP促凋亡作用两种肿瘤细胞间无统计学差异,GI50 L-OHP对LoVo细胞的促凋亡作用高于SW480/M5细胞.GI50 L-OHP奥沙利铂使两种肿瘤细胞DNA含铂量显著升高,并呈时效依赖.LoVo细胞DNA交联铂原子能力高于SW480/M5细胞.结论 奥沙利铂主要通过阻滞细胞于S期或(和)G2/M期并诱导细胞凋亡而抑制两种肿瘤细胞增殖.LoVo细胞对奥沙利铂敏感性明显高于SW480/M5细胞.

  20. Mexican Earthquakes and Tsunamis Catalog Reviewed (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.


    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  1. Influence of Japan Earthquake Upon Shipbuilding Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Jianmiao


    On March 11,the strong earthquake of 9.0 magnitude and the tsunami in Japan made its entire social life,production and communication systems into chaos.As the world third largest economy.Japan is also a large trade,shipbuilding and marine equipment manufacturing country.The earthquake has not only greatly affected the Japanese shipbuilding industry,but also the international shipping industry and Chinese shipbuilding industry.

  2. Exploring Earthquakes in Real-Time (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.


    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  3. The Christchurch earthquake stroke incidence study. (United States)

    Wu, Teddy Y; Cheung, Jeanette; Cole, David; Fink, John N


    We examined the impact of major earthquakes on acute stroke admissions by a retrospective review of stroke admissions in the 6 weeks following the 4 September 2010 and 22 February 2011 earthquakes. The control period was the corresponding 6 weeks in the previous year. In the 6 weeks following the September 2010 earthquake there were 97 acute stroke admissions, with 79 (81.4%) ischaemic infarctions. This was similar to the 2009 control period which had 104 acute stroke admissions, of whom 80 (76.9%) had ischaemic infarction. In the 6 weeks following the February 2011 earthquake, there were 71 stroke admissions, and 61 (79.2%) were ischaemic infarction. This was less than the 96 strokes (72 [75%] ischaemic infarction) in the corresponding control period. None of the comparisons were statistically significant. There was also no difference in the rate of cardioembolic infarction from atrial fibrillation between the study periods. Patients admitted during the February 2011 earthquake period were less likely to be discharged directly home when compared to the control period (31.2% versus 46.9%, p=0.036). There was no observable trend in the number of weekly stroke admissions between the 2 weeks leading to and 6 weeks following the earthquakes. Our results suggest that severe psychological stress from earthquakes did not influence the subsequent short term risk of acute stroke, but the severity of the earthquake in February 2011 and associated civil structural damages may have influenced the pattern of discharge for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 10th World Earthquake Engineering Conference (United States)

    Ranguelov, Boyko; Housner, George

    The 10th World Conference on Earthquake Engineering (10WCEE) took place from July 19 to 24 in Madrid, Spain. More than 1500 participants from 51 countries attended the conference. All aspects of earthquake engineering were covered and a worldwide update of modern research and practice, as well as future directions in the field, was provided through reports, papers, posters, two keynote lectures, ten state-ofthe-art reports, and eleven special theme sessions.

  5. Mechanical coupling between earthquakes, volcanos and landslides (United States)

    Feigl, K. L.; Retina Team


    "The eruption began as a large earthquake that triggered a massive landslide that culminated in a violent lateral explosion" [Malone et al., USGS 1981]. The 1980 eruption of Mount St. Helens taught a very powerful lesson -- that one natural hazard can trigger another. For example, earthquakes have triggered landslides in Papua New Guinea. Similarly, eruptions of Vesuvius are mechanically coupled to earthquakes in the Appenines, just as an inflating magma chamber can trigger earthquakes near Hengill volcano in SW Iceland and on the Izu Peninsula in Japan. The Luzon earthquake may have triggered the eruption of Mount Pinatubo. In many of these cases, the second triggered event caused more damage than the initial one. If we can better understand the mechanical coupling underlying the temporal and spatial correlation of such events, we will improve our assessments of the hazards they pose. The RETINA project has been funded by the European Commission's 5th Framework to study couplings between three classes of natural hazards: earthquakes, landslides, and volcanoes. These three phenomena are linked to and by the stress field in the crust. If the stress increases enough, the material will fail catastrophically. For example, magma injection beneath a volcano can trigger an earthquake by increasing stress on a fault. Increasing shear stress on unconsolidated materials on steep slopes can trigger landslides. Such stress change triggers may also be tectonic (from plate driving forces), hydrological (from heavy rain), or volcanic (magmatic injection). Any of these events can perturb the stress field enough to trigger another event. Indeed, stress changes as small as 0.1 bar (0.01 MPa) suffice to trigger an earthquake. If the medium is close to failure, this small change can increase the Coulomb stress beyond the yield threshold, breaking the material. This quantity is the primary means we will use for describing mechanical coupling. In this paper, we will review several case

  6. Evaluation of near-field earthquake effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, H.P.


    Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

  7. Earthquakes trigger the loss of groundwater biodiversity (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; di Cioccio, Alessia; di Lorenzo, Tiziana; Petitta, Marco; di Carlo, Piero


    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and ``ecosystem engineers'', we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  8. Earthquakes trigger the loss of groundwater biodiversity. (United States)

    Galassi, Diana M P; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero


    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and "ecosystem engineers", we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems.

  9. Earthquake detection through computationally efficient similarity search (United States)

    Yoon, Clara E.; O’Reilly, Ossian; Bergen, Karianne J.; Beroza, Gregory C.


    Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes. PMID:26665176

  10. Earthquakes trigger the loss of groundwater biodiversity (United States)

    Galassi, Diana M. P.; Lombardo, Paola; Fiasca, Barbara; Di Cioccio, Alessia; Di Lorenzo, Tiziana; Petitta, Marco; Di Carlo, Piero


    Earthquakes are among the most destructive natural events. The 6 April 2009, 6.3-Mw earthquake in L'Aquila (Italy) markedly altered the karstic Gran Sasso Aquifer (GSA) hydrogeology and geochemistry. The GSA groundwater invertebrate community is mainly comprised of small-bodied, colourless, blind microcrustaceans. We compared abiotic and biotic data from two pre-earthquake and one post-earthquake complete but non-contiguous hydrological years to investigate the effects of the 2009 earthquake on the dominant copepod component of the obligate groundwater fauna. Our results suggest that the massive earthquake-induced aquifer strain biotriggered a flushing of groundwater fauna, with a dramatic decrease in subterranean species abundance. Population turnover rates appeared to have crashed, no longer replenishing the long-standing communities from aquifer fractures, and the aquifer became almost totally deprived of animal life. Groundwater communities are notorious for their low resilience. Therefore, any major disturbance that negatively impacts survival or reproduction may lead to local extinction of species, most of them being the only survivors of phylogenetic lineages extinct at the Earth surface. Given the ecological key role played by the subterranean fauna as decomposers of organic matter and “ecosystem engineers”, we urge more detailed, long-term studies on the effect of major disturbances to groundwater ecosystems. PMID:25182013

  11. Do weak global stresses synchronize earthquakes? (United States)

    Bendick, R.; Bilham, R.


    Insofar as slip in an earthquake is related to the strain accumulated near a fault since a previous earthquake, and this process repeats many times, the earthquake cycle approximates an autonomous oscillator. Its asymmetric slow accumulation of strain and rapid release is quite unlike the harmonic motion of a pendulum and need not be time predictable, but still resembles a class of repeating systems known as integrate-and-fire oscillators, whose behavior has been shown to demonstrate a remarkable ability to synchronize to either external or self-organized forcing. Given sufficient time and even very weak physical coupling, the phases of sets of such oscillators, with similar though not necessarily identical period, approach each other. Topological and time series analyses presented here demonstrate that earthquakes worldwide show evidence of such synchronization. Though numerous studies demonstrate that the composite temporal distribution of major earthquakes in the instrumental record is indistinguishable from random, the additional consideration of event renewal interval serves to identify earthquake groupings suggestive of synchronization that are absent in synthetic catalogs. We envisage the weak forces responsible for clustering originate from lithospheric strain induced by seismicity itself, by finite strains over teleseismic distances, or by other sources of lithospheric loading such as Earth's variable rotation. For example, quasi-periodic maxima in rotational deceleration are accompanied by increased global seismicity at multidecadal intervals.

  12. New earthquake catalog reexamines Hawaii's seismic history (United States)

    Wright, Thomas L.; Klein, Fred W.


    On April 2,1868, an earthquake of magnitude 7.9 occurred beneath the southern part of the island of Hawaii. The quake, which was felt throughout all of the Hawaiian Islands, had a Modified Mercalli (MM) intensity of XII near its source.The destruction caused by a quake that large is nearly complete. A landslide triggered by the quake buried a small village, killing 31 people, and a tsunami that swept over coastal settlements added to the death toll. We know as much as we do about this and other early earthquakes thanks to detailed records kept by Hawaiian missionaries, including the remarkable diary maintained by the Lyman family that documented every earthquake felt at their home in Hilo between 1833 and 1917 [Wyss et al., 1992].Our analysis of these and other historical records indicates that Hawaii was at least as intensely seismic in the 19th century and first half of the 20th century as in its more recent past, with 26 M ≥6.0 earthquakes occurring from 1823 to 1903 and 20 M ≥6.0 earthquakes from 1904 to 1959. Just five M ≥6.0 earthquakes occurred from 1960 to 1999. The potential damage caused by a repeat of some of the larger historic events could be catastrophic today.

  13. Maximum magnitude earthquakes induced by fluid injection (United States)

    McGarr, Arthur F.


    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  14. Maximum magnitude earthquakes induced by fluid injection (United States)

    McGarr, A.


    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  15. Infections caused by Moraxella, Moraxella urethralis, Moraxella-like groups M-5 and M-6, and Kingella kingae in the United States, 1953-1980. (United States)

    Graham, D R; Band, J D; Thornsberry, C; Hollis, D G; Weaver, R E


    From 1953 to 1980 the Centers for Disease Control received 933 isolates of bacteria belonging to species of the genus Moraxella, Moraxella-like Moraxella urethralis, now renamed Oligella urethralis, unnamed groups M-5 and M-6, and Kingella kingae. Ordinarily sterile sites were the source of 233 isolates. Moraxella nonliquefaciens, the most common isolate (356 strains), was recovered from upper respiratory or ocular sites in 208 (58%) of the cases. Moraxella osloensis was next most common (199 strains) but was the most frequent blood isolate (44 cases). K. kingae appeared especially invasive, with 58 of 78 isolates from blood, bone, or joint. Of the K. kingae strains, 75% were recovered from children under 6 years, compared with 23% of the other strains from that age group (P less than .01). Of the 74 isolates of group M-5, 53 were from wounds caused by dog bites; no other organism in this series was recovered from such wounds. Sixteen of the 28 M. urethralis isolates were from urine. Cases occurred as single infections, with no evidence of clusters. Of patients with infection of ordinarily sterile sites, 9.3% died; only bacteremia, meningitis, and empyema caused fatalities. Most referring laboratories (98%) had not identified the organisms to species, and only 30% had identified them to correct genus. Susceptibility testing by broth dilution revealed low MICs of penicillin (mean, 0.3; 64% less than 1 micrograms/mL). Moraxella, M. urethralis, M-5, M-6, and Kingella are important but frequently misidentified pathogens for humans; penicillin appears to be the treatment of choice.

  16. Earthquakes in Arkansas and vicinity 1699-2010 (United States)

    Dart, Richard L.; Ausbrooks, Scott M.


    This map summarizes approximately 300 years of earthquake activity in Arkansas. It is one in a series of similar State earthquake history maps. Work on the Arkansas map was done in collaboration with the Arkansas Geological Survey. The earthquake data plotted on the map are from several sources: the Arkansas Geological Survey, the Center for Earthquake Research and Information, the National Center for Earthquake Engineering Research, and the Mississippi Department of Environmental Quality. In addition to earthquake locations, other materials presented include seismic hazard and isoseismal maps and related text. Earthquakes are a legitimate concern in Arkansas and parts of adjacent states. Arkansas has undergone a number of significant felt earthquakes since 1811. At least two of these events caused property damage: a magnitude 4.7 earthquake in 1931, and a magnitude 4.3 earthquake in 1967. The map shows all historical and instrumentally located earthquakes in Arkansas and vicinity between 1811 and 2010. The largest historic earthquake in the vicinity of the State was an intensity XI event, on December 16, 1811; the first earthquake in the New Madrid sequence. This violent event and the earthquakes that followed caused considerable damage to the then sparsely settled region.

  17. Real-time seismology for the 05/12/2008 Wenchuan earthquake of China: A retrospective view

    Institute of Scientific and Technical Information of China (English)



    The devastating 05/12/2008 Wenchuan earthquake (Mw7.9) in Sichuan Province of China showed very few precursory phenomena and occurred on a fault system once assigned to be of moderate long term seismic risk. Given the existing coverage of seismograph stations in Sichuan Province, real-time seis-mology could have been effective in avoiding some earthquake damage and helping post-earthquake emergency response. In a retrospective view, we demonstrated that the epicenter can be located with 20 km accuracy using just two broadband stations with three-component, which takes only about 10 s after the onset of the earthquake. Initial magnitude is estimated to be M7 with the Tc measurement over first 4 seconds of P waves. Better magnitude estimate can be obtained within 2 min by modeling Pnl waves for stations about 500 km away where the S waveforms are clipped. The rupture area is well revealed by teleseismically-recorded >M5 early aftershocks within two hours after the mainshock. Within a few hours, teleseismic body waves were inverted to derive a more detailed rupture process and the finite fault model can be readily used to calculate ground motions, thus providing vital information for rescue efforts in the case where no real-time strong motion records are available.

  18. Geological and historical evidence of irregular recurrent earthquakes in Japan. (United States)

    Satake, Kenji


    Great (M∼8) earthquakes repeatedly occur along the subduction zones around Japan and cause fault slip of a few to several metres releasing strains accumulated from decades to centuries of plate motions. Assuming a simple 'characteristic earthquake' model that similar earthquakes repeat at regular intervals, probabilities of future earthquake occurrence have been calculated by a government committee. However, recent studies on past earthquakes including geological traces from giant (M∼9) earthquakes indicate a variety of size and recurrence interval of interplate earthquakes. Along the Kuril Trench off Hokkaido, limited historical records indicate that average recurrence interval of great earthquakes is approximately 100 years, but the tsunami deposits show that giant earthquakes occurred at a much longer interval of approximately 400 years. Along the Japan Trench off northern Honshu, recurrence of giant earthquakes similar to the 2011 Tohoku earthquake with an interval of approximately 600 years is inferred from historical records and tsunami deposits. Along the Sagami Trough near Tokyo, two types of Kanto earthquakes with recurrence interval of a few hundred years and a few thousand years had been recognized, but studies show that the recent three Kanto earthquakes had different source extents. Along the Nankai Trough off western Japan, recurrence of great earthquakes with an interval of approximately 100 years has been identified from historical literature, but tsunami deposits indicate that the sizes of the recurrent earthquakes are variable. Such variability makes it difficult to apply a simple 'characteristic earthquake' model for the long-term forecast, and several attempts such as use of geological data for the evaluation of future earthquake probabilities or the estimation of maximum earthquake size in each subduction zone are being conducted by government committees. © 2015 The Author(s).

  19. Seismic hazard assessment and pattern recognition of earthquake prone areas in the Po Plain (Italy) (United States)

    Gorshkov, Alexander; Peresan, Antonella; Soloviev, Alexander; Panza, Giuliano F.


    A systematic and quantitative assessment, capable of providing first-order consistent information about the sites where large earthquakes may occur, is crucial for the knowledgeable seismic hazard evaluation. The methodology for the pattern recognition of areas prone to large earthquakes is based on the morphostructural zoning method (MSZ), which employs topographic data and present-day tectonic structures for the mapping of earthquake-controlling structures (i.e. the nodes formed around lineaments intersections) and does not require the knowledge about past seismicity. The nodes are assumed to be characterized by a uniform set of topographic, geologic, and geophysical parameters; on the basis of such parameters the pattern recognition algorithm defines a classification rule to discriminate seismogenic and non-seismogenic nodes. This methodology has been successfully applied since the early 1970s in a number of regions worldwide, including California, where it permitted the identification of areas that have been subsequently struck by strong events and that previously were not considered prone to strong earthquakes. Recent studies on the Iberian Peninsula and the Rhone Valley, have demonstrated the applicability of MSZ to flat basins, with a relatively flat topography. In this study, the analysis is applied to the Po Plain (Northern Italy), an area characterized by a flat topography, to allow for the systematic identification of the nodes prone to earthquakes with magnitude larger or equal to M=5.0. The MSZ method differs from the standard morphostructural analysis where the term "lineament" is used to define the complex of alignments detectable on topographic maps or on satellite images. According to that definition the lineament is locally defined and the existence of the lineament does not depend on the surrounding areas. In MSZ, the primary element is the block - a relatively homogeneous area - while the lineament is a secondary element of the morphostructure

  20. Database for earthquake strong motion studies in Italy (United States)

    Scasserra, G.; Stewart, J.P.; Kayen, R.E.; Lanzo, G.


    We describe an Italian database of strong ground motion recordings and databanks delineating conditions at the instrument sites and characteristics of the seismic sources. The strong motion database consists of 247 corrected recordings from 89 earthquakes and 101 recording stations. Uncorrected recordings were drawn from public web sites and processed on a record-by-record basis using a procedure utilized in the Next-Generation Attenuation (NGA) project to remove instrument resonances, minimize noise effects through low- and high-pass filtering, and baseline correction. The number of available uncorrected recordings was reduced by 52% (mostly because of s-triggers) to arrive at the 247 recordings in the database. The site databank includes for every recording site the surface geology, a measurement or estimate of average shear wave velocity in the upper 30 m (Vs30), and information on instrument housing. Of the 89 sites, 39 have on-site velocity measurements (17 of which were performed as part of this study using SASW techniques). For remaining sites, we estimate Vs30 based on measurements on similar geologic conditions where available. Where no local velocity measurements are available, correlations with surface geology are used. Source parameters are drawn from databanks maintained (and recently updated) by Istituto Nazionale di Geofisica e Vulcanologia and include hypocenter location and magnitude for small events (M< ??? 5.5) and finite source parameters for larger events. ?? 2009 A.S. Elnashai & N.N. Ambraseys.

  1. Mechanisms of continental intraplate earthquakes (United States)

    Gangopadhyay, Abhijit Kumar

    To better understand the mechanisms of continental intraplate earthquakes, a multistep approach was used. The first step involved analysis and synthesis of multidisciplinary data from 39 intraplate earthquakes spanning 20 continental intraplate regions, to identify their characteristic and diagnostic features. This led to the following testable hypothesis: Intraplate earthquakes occur within pre-existing zones of weakness (most commonly failed rifts), in the vicinity of stress concentrators, such as, intersecting faults, buried plutons, and/or rift pillows in the presence of the ambient stress field. The next step involved testing this hypothesis---first with 2-D mechanical models and then with 3-D models. Since two-thirds of the examined intraplate regions had intersecting faults as a stress concentrator, its role was first evaluated. A Distinct Element Method was used wherein the models comprised of the structural framework of the concerned region represented by a set of rock blocks that are assigned elastic properties conforming to the known geology, and subjected to tectonic loading along the direction of maximum regional compression (S Hmax) at a rate similar to the ambient plate velocity. The 2-D modeling was performed for two major intraplate regions in eastern U.S., viz., New Madrid and Middleton Place Summerville seismic zones, using a commercially available code called UDEC. These models adequately explain the spatial distribution of current seismicity in the regions. However, the absence of the third dimension limited the observation of tectonics in the depth dimension. Thus, 3-D models were developed for these two regions using the 3-D version of UDEC, called 3DEC. The preliminary results of these models adequately demonstrate correlation of locations of current seismicity with fault intersections in 3-D space, and also duplicate vertical movements. Although, the mechanical models demonstrated a causal association of seismicity with intersecting faults

  2. Small Stress Change Triggering a Big Earthquake: a Test of the Critical Point Hypothesis for Earthquakes

    Institute of Scientific and Technical Information of China (English)

    万永革; 吴忠良; 周公威


    Whether or not a small stress change can trigger a big earthquake is one of the most important problems related to the critical point hypothesis for earthquakes. We investigate global earthquakes with different focal mechanisms which have different levels of ambient shear stress. This ambient stress level is the stress level required by the earthquakes for their occurrence. Earthquake pairs are studied to see whether the occurrence of the preceding event encourages the occurrence of the succeeding one in terms of the Coulomb stress triggering. It is observed that the stress triggering effect produced by the change of Coulomb failure stress in the same order of magnitudes,about 10-2 MPa, is distinctly different for different focal mechanisms, and thus for different ambient stress levels.For non-strike-slip earthquakes with a relatively low ambient stress level, the triggering effect is more evident,while for strike-slip earthquakes with a relatively high ambient stress level, there is no evident triggering effect.This water level test provides an observational support to the critical point hypothesis for earthquakes.

  3. Accurate Location of the Yao'an Earthquake Sequence and the Yongsheng Earthquake Sequence

    Institute of Scientific and Technical Information of China (English)

    Wang Xinling; Liu Jie; Zhang Guomin; Zhao Cuiping


    The Yao'an Ms6.5 earthquake occurred on Jan. 15, 2000 and the Yongsheng Ms6.0 earthquake occurred on Oct. 27, 2001 in Yunnan Province, China. They are both located in the middle of the Dian block. Their epicenters are close to each other, the tectonic and strain characters of the earthquakes were similar, and there were many aftershocks after the two main shocks. In order to further study the spatial-temporal distributions and fault rupture characters of the main shocks and aftershocks, the latter are located using the Geiger earthquake location algorithm (Geiger) and the double difference earthquake location algorithm (DD) based on the seismic phase data of the two earthquake sequences. They were recorded by two Near Source Digital Seismic Networks (YNSSN and YSNSSN) deployed by the Yunnan Seismological Bureau (YNSB). Then, two main shock parameters were relocated using DD based on the data of larger magnitude aftershocks and the two main shocks that were recorded by the Kunming Regional Digital Seismic Network (KMSN). Combining the spatialtemporal distributions of the two earthquake sequences, the tectonic and strain characters of earthquakes, the rupture processes of the two aftershock sequences along faults are analyzed and discussed contrastively.

  4. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake (United States)

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul; Samsonov, Sergey


    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  5. On variations of foF2 and F-spread before strong earthquakes in Japan

    Directory of Open Access Journals (Sweden)

    E. V. Liperovskaya


    Full Text Available The statistical analysis of the variations of the dayly-mean frequency of the maximum ionospheric electron density foF2 is performed in connection with the occurrence of (more than 60 earthquakes with magnitudes M>6.0, depths h<80 km and distances from the vertical sounding station R<1000 km. For the study, data of the Tokyo sounding station are used, which were registered every hour in the years 1957–1990. It is shown that, on the average, foF2 decreases before the earthquakes. One day before the shock the decrease amounts to about 5%. The statistical reliability of this phenomenon is obtained to be better than 0.95. Further, the variations of the occurrence probability of the turbulization of the F-layer (F spread are investigated for (more than 260 earthquakes with M>5.5, h<80 km, R<1000 km. For the analysis, data of the Japanese station Akita from 1969–1990 are used, which were obtained every hour. It is found that before the earthquakes the occurrence probability of F spread decreases. In the week before the event, the decrease has values of more than 10%. The statistical reliability of this phenomenon is also larger than 0.95. Examining the seismo-ionospheric effects, here periods of time with weak heliogeomagnetic disturbances are considered. For the foF2 analysis, the Wolf number is less than 100 and the index ΣKp is smaller than 30, and in case of the F-spread study a Wolf number less than 80 and ΣKp smaller than 17 are chosen.

  6. First appraisal to define prospective seismogenic sources from historical earthquake damages in southern Upper Rhine Graben (United States)

    Fracassi, Umberto; Niviére, Bertrand; Winter, Thierry


    The southern portion of the Upper Rhine Graben, a major oblique rift among France, Germany and Switzerland, shows a weak instrumental seismic record despite its remarkable physiographic imprint within the Northern Alpine foreland. Since traces of active deformation can be found in this region and based on experience in other European areas with high seismic hazard and dense population, we searched for past earthquakes recorded in historical catalogues. Based on the fact that tectonic deformation cumulates through geological time and considering that long-term effects tend to leave characteristic signatures on present-day landscape arrangement, our goal was to identify faults that could have caused the damage of recorded historical events. We isolated five main earthquakes, of moderate Richter magnitude, essentially located on the E flank of the graben (as is the case with recent seismic activity). To such events, we were able to associate a specific prospective structure through the use of a procedure thus far successfully employed in Southern European contexts. We concentrated on three events which showed (a) notable sensitivity to the density of the historical felt reports and (b) accordance with on-going subtle deformation pattern. Another, most relevant earthquake (M 5.5) yielded a promising match with the known deformation network in the region. As a template to better constrain earthquake cycle and damage potential, historical seismicity offers an invaluable tool, since it contains a specific record, although not always unambiguous. Cross-checking such data with pertinent geological information allows to devise a realistic fault geometry capable of being responsible for a specific seismic event.

  7. Risk assessment of people trapped in earthquake based on km grid: a case study of the 2014 Ludian earthquake (United States)

    Wei, Ben-Yong; Nie, Gao-Zhong; Su, Gui-Wu; Sun, Lei


    China is one of the most earthquake prone countries in the world. The priority during earthquake emergency response is saving lives and minimizing casualties. Rapid judgment of the trapped location is the important basis for government to reasonable arrange the emergency rescue forces and resources after the earthquake. Through analyzing the key factors resulting in people trapped, we constructed an assessment model of personal trapped (PTED)in collapsed buildings caused by earthquake disaster. Then taking the 2014 Ludian Earthquake as a case, this study evaluated the distribution of trapped personal during this earthquake using the assessment model based on km grid data. Results showed that, there are two prerequisites for people might be trapped by the collapse of buildings in earthquake: earthquake caused buildings collapse and there are people in building when building collapsing; the PTED model could be suitable to assess the trapped people in collapsed buildings caused by earthquake. The distribution of people trapped by the collapse of buildings in the Ludian earthquake assessed by the model is basically the same as that obtained by the actual survey. Assessment of people trapped in earthquake based on km grid can meet the requirements of search-and-rescue zone identification and rescue forces allocation in the early stage of the earthquake emergency. In future, as the basic data become more complete, assessment of people trapped in earthquake based on km grid should provide more accurate and valid suggestions for earthquake emergency search and rescue.

  8. A modified exponential model for reported death toll during earthquakes

    Institute of Scientific and Technical Information of China (English)

    Xinyan Wu; Jianhua Gu


    Reliable earthquake death toll estimate can provide valuable references for disaster relief headquarters and civil administration departments to make arrangement and deployment plan during post-earthquake relief work, thus increasing the efficiency of the relief work to a certain extent. In this study, we acquired the death toll data of Wenchuan earthquake, fitted the data using modified exponential curve and compared the result with that of the exponential function. Experimental verification with Chi-Chi earthquake and Kobe earthquake data shows that the fitted result by modified exponential curve is more satisfactory. The final death toll resulting from future destructive earthquakes can be estimated by the acquired fitting function.

  9. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys (United States)

    Hu, X. B.; Zhu, Y. L.; Sheng, N. C.; Ma, X. L.


    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations.

  10. Distance to Galactic globulars using the near-infrared magnitudes of RR Lyrae stars: IV. The case of M5 (NGC5904)

    CERN Document Server

    Coppola, G; Ripepi, V; Marconi, M; Musella, I; Bono, G; Piersimoni, A M; Stetson, P B; Storm, J


    We present new and accurate near-infrared (NIR) J, K-band time series data for the Galactic globular cluster (GC) M5 = NGC5904. Data were collected with SOFI at the NTT (71 J + 120 K images) and with NICS at the TNG (25 J + 22 K images) and cover two orthogonal strips across the center of the cluster of \\approx 5 \\times 10 arcmin^{2} each. These data allowed us to derive accurate mean K-band magnitudes for 52 fundamental (RR_{ab}) and 24 first overtone (RR_{c}) RR Lyrae stars. Using this sample of RR Lyrae stars, we find that the slope of the K-band Period Luminosity (PLK) relation (-2.33 \\pm 0.08) agrees quite well with similar estimates available in the literature. We also find, using both theoretical and empirical calibrations of the PLK relation, a true distance to M5 of (14.44 \\pm 0.02) mag. This distance modulus agrees very well (1\\sigma) with distances based on main sequence fitting method and on kinematic method (14.44 \\pm 0.41 mag, \\citealt{rees_1996}), while is systematically smaller than the distan...

  11. UBV stellar photometry of bright stars in GC M5. I. UV colour-magnitude and colour-colour diagrams and some peculiarities in the HB stellar distribution

    CERN Document Server

    Markov, H; Baev, P V; Markov, Haralambi; Spassova, Nedka; Baev, Plamen


    We present stellar photometry in the UBV passbands for the globular cluster M5 = NGC5904. The observations, short-exposured photographic plates and CCD frames, were obtained in the RC-focus of the 2m telescope of the Natl. Astron. Obs. 'Rozhen'. All stars in an annulus with radius 1 < r < 5.5 arcmin were measured. We show that the UV CMDs describe different evolutionary stages in a better manner than the 'classical' (V, B-V) diagram. We use HB stars, with known spectroscopic Teff, to check the validity of the colour zero-point. A review of all known UV-bright star candidates in M5 is made and some of their parameters are catalogued. Six new stars of this kind are suspected on the basis of their position on the CMD. New assessment of the cluster reddening and metallicity is done using the (U-B, B-V) diagram. We find [Fe/H]= -1.38, which confirms the Zinn & West (1984) value contrasting with recent spectroscopic estimates. In an effort to clarify the question of the gap in the BHB stellar distribution...

  12. Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon (United States)

    Prokhorova, Irina V.; Osterman, Ilya A.; Burakovsky, Dmitry E.; Serebryakova, Marina V.; Galyamina, Maria A.; Pobeguts, Olga V.; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G.; Govorun, Vadim M.; Bogdanov, Alexey A.; Sergiev, Petr V.; Dontsova, Olga A.


    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show - using proteomic analysis and dual fluorescence reporter in vivo assays - that m2G966 and m5C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m2G966 and m5C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  13. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon. (United States)

    Prokhorova, Irina V; Osterman, Ilya A; Burakovsky, Dmitry E; Serebryakova, Marina V; Galyamina, Maria A; Pobeguts, Olga V; Altukhov, Ilya; Kovalchuk, Sergey; Alexeev, Dmitry G; Govorun, Vadim M; Bogdanov, Alexey A; Sergiev, Petr V; Dontsova, Olga A


    Ribosomes contain a number of modifications in rRNA, the function of which is unclear. Here we show--using proteomic analysis and dual fluorescence reporter in vivo assays--that m(2)G966 and m(5)C967 in 16S rRNA of Escherichia coli ribosomes are necessary for correct attenuation of tryptophan (trp) operon. Expression of trp operon is upregulated in the strain where RsmD and RsmB methyltransferases were deleted, which results in the lack of m(2)G966 and m(5)C967 modifications. The upregulation requires the trpL attenuator, but is independent of the promotor of trp operon, ribosome binding site of the trpE gene, which follows trp attenuator and even Trp codons in the trpL sequence. Suboptimal translation initiation efficiency in the rsmB/rsmD knockout strain is likely to cause a delay in translation relative to transcription which causes misregulation of attenuation control of trp operon.

  14. Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?

    CERN Document Server

    Augusto, C R A; Navia, C E; Felicio, A C S; Freire, F; Pinto, A C S; Pimentel, B; Paulista, M; Vianna, J; Fauth, C; Sinzi, T


    On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at $\\geq 100$ MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, $22^{0}.9 S$, $43^{0}.2 W$, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background $\\sim 20\\%$ in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTo...

  15. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk (United States)

    Celsi, R.; Wolfinbarger, M.; Wald, D.


    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  16. Expression of recombinant M2 and M5 muscarinic receptors in the Sf9-baculovirus system%在Sf9昆虫细胞-杆状病毒系统中表达毒蕈碱型M2及M5受体重组突变体

    Institute of Scientific and Technical Information of China (English)

    牟男; 孙洪良; 郑建全; 王丽韫


    OBJECTIVE To study the expression of human muscarinic receptors ( M2 and M5 recombinant receptors in the baculovirus expression system.METHODS The mutation of human wild type M2 and M5 receptors was constructed by PCR or/and overlap PCR as follows: ① The putative glyeosylation residues Asp 2, 3, 6, and 9 were replaced with Asn to prevent molecular heterogeneity; ② The central part of the protease-susceptible third intracellular loop was deleted; ③ A hexa-histidine tag and a thrombin cleavage site were added at the C terminus for purification.The recombinant receptor gene was confirmed and amplified by PCR, and subcloned to baculovrius pFastBac 1 vector.Then the recombinant vector was co-transfected with the linearized virus DNA into sf9 cells by Lipofectamine.The recombinant M2 and M5 receptor protein was prepared and purified.The expression level of M2 and M5 receptors was evaluated by Western blotting, and pharmacological characteristics were confirmed by radio-legend binding assay.RESULTS The target DNA fragment of M2(1018 bp) and M5 (1041 bp) recombinant receptors was amplified by overlap PCR.The recombinant plasmid pfastbacl/M2 (M5 ) vector was successfully constructed, and transfected to Sf9.Vacuolus pathological changes were observed within cells compared to non-transfection of Sf9.The baculovirus particle protein was prepared and purified from these infected cells.The expression of M2/M5 was further confirmed by Western blotting.The specific binding character of recombinant M2/M5 receptors was detected by radio-legend binding assay.CONCLUSION The expression of M2 and M5 recombinant receptors in the baculovirus expression system will facilitate studies on new drugs from M receptor or genetic engineering.%目的 为乙酰胆碱毒蕈碱(M)受体亚型特异性的变构调节剂及基因工程的研究提供实验平台.方法 用PCR及搭桥PCR法对乙酰胆碱M2及M5受体作以下突变:①将N-糖基化位点Asp突变为Asn;②删除对蛋白酶敏

  17. Physically-based modelling of the competition between surface uplift and erosion caused by earthquakes and earthquake sequences. (United States)

    Hovius, Niels; Marc, Odin; Meunier, Patrick


    Large earthquakes deform Earth's surface and drive topographic growth in the frontal zones of mountain belts. They also induce widespread mass wasting, reducing relief. Preliminary studies have proposed that above a critical magnitude earthquake would induce more erosion than uplift. Other parameters such as fault geometry or earthquake depth were not considered yet. A new seismologically consistent model of earthquake induced landsliding allow us to explore the importance of parameters such as earthquake depth and landscape steepness. We have compared these eroded volume prediction with co-seismic surface uplift computed wit