WorldWideScience

Sample records for m31 dwarf spheroidal

  1. The Dwarf Spheroidal Companions to M31: Variable Stars in Andromeda II

    CERN Document Server

    Pritzl, B J; Jacoby, G H; Costa, G S D; Pritzl, Barton J.; Armandroff, Taft E.; Jacoby, George H.

    2004-01-01

    (abridged) We present the results of a variable star search in Andromeda II, a dwarf spheroidal galaxy companion to M31, using HST/WFPC2 observations. Seventy-three variables were found, one of which is an anomalous Cepheid while the others are RR Lyrae stars. The anomalous Cepheid has properties consistent with those found in other dwarf spheroidal galaxies. For the RR Lyrae stars, the mean periods are 0.571 day and 0.363 day for the fundamental mode and first-overtone mode stars, respectively. With this fundamental mode mean period and the mean metallicity determined from the red giant branch (=-1.49), Andromeda II follows the period-metallicity relation defined by the Galactic globular clusters and other dwarf spheroidal galaxies. We also find that the properties of the RR Lyrae stars themselves indicate a mean abundance that is consistent with that determined from the red giants. There is, however, a significant spread among the RR Lyrae stars in the period-amplitude diagram, which is possibly related to ...

  2. Dwarf spheroidal satellites of M31: I. Variable stars and stellar populations in Andromeda XIX

    CERN Document Server

    Cusano, Felice; Garofalo, Alessia; Cignoni, Michele; Federici, Luciana; Marconi, Marcella; Musella, Ilaria; Ripepi, Vincenzo; Boutsia, Konstantina; Fumana, Marco; Gallozzi, Stefano; Testa, Vincenzo

    2013-01-01

    We present B,V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.2') of Andromeda's dwarf spheroidal companions, that we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23'x 23' area centered on And XIX and present the deepest color magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V~26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which, however, extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and 3 of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ( = 0.62 d, \\sigma= 0.03 d) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermedia...

  3. Dwarf spheroidal satellites of M31. I. Variable stars and stellar populations in Andromeda XIX

    Energy Technology Data Exchange (ETDEWEB)

    Cusano, Felice; Clementini, Gisella; Garofalo, Alessia; Federici, Luciana, E-mail: felice.cusano@oabo.inaf.it, E-mail: gisella.clementini@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: alessia.garofalo@studio.unibo.it [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); and others

    2013-12-10

    We present B, V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.'2) of Andromeda's dwarf spheroidal companions, which we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23' × 23' area centered on And XIX and present the deepest color-magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V ∼ 26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and three of the ACs are located within And XIX's half light radius. The average period of the fundamental mode RR Lyrae stars ((P {sub ab}) = 0.62 days, σ = 0.03 days) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars ((V(RR)) = 25.34 mag, σ = 0.10 mag), we determine a distance modulus of (m – M){sub 0} = 24.52 ± 0.23 mag in a scale where the distance to the Large Magellanic Cloud (LMC) is 18.5 ± 0.1 mag. The ACs follow a well-defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.

  4. The PAndAS View of the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Lewis, Geraint F.; McConnachie, Alan; Babul, Arif; Bate, Nicholas F.; Bernard, Edouard; Chapman, Scott C.; Collins, Michelle M. L.; Conn, Anthony R.; Crnojević, Denija; Fardal, Mark A.; Ferguson, Annette M. N.; Irwin, Michael; Mackey, A. Dougal; McMonigal, Brendan; Navarro, Julio F.; Rich, R. Michael

    2016-12-01

    We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda’s known satellite dwarf galaxies and cover a wide range in luminosity (-11.6≲ {M}V≲ -5.8 or {10}4.2≲ L≲ {10}6.5 {L}⊙ ) and surface brightness (25.1≲ {μ }0≲ 29.3 mag arcsec-2). We confirm most previous measurements, but we find And XIX to be significantly larger than before ({r}h={3065}-935+1065 {pc}, {M}V=-{10.1}-0.4+0.8) and cannot derive parameters for And XXVII as it is likely not a bound stellar system. We also significantly revise downward the luminosities of And XV and And XVI, which are now {M}V˜ -7.5 or L˜ {10}5 {L}⊙ . Finally, we provide the first detailed analysis of Cas II/And XXX, a fairly faint system ({M}V=-{8.0}-0.3+0.4) of typical size ({r}h=270+/- 50 {pc}), located in close proximity to the two bright elliptical dwarf galaxies NGC 147 and NGC 185. Combined with the set of homogeneous distances published in an earlier contribution, our analysis dutifully tracks all relevant sources of uncertainty in the determination of the properties of the dwarf galaxies from the PAndAS photometric catalog. We further publish the posterior probability distribution functions of all the parameters we fit for in the form of MCMC chains available online; these inputs should be used in any analysis that aims to remain truthful to the data and properly account for covariance between parameters.

  5. The PAndAS view of the Andromeda satellite system - II. Detailed properties of 23 M31 dwarf spheroidal galaxies

    CERN Document Server

    Martin, Nicolas F; Lewis, Geraint F; McConnachie, Alan; Babul, Arif; Bate, Nicholas F; Bernard, Edouard; Chapman, Scott C; Collins, Michelle M L; Conn, Anthony R; Crnojević, Denija; Fardal, Mark A; Ferguson, Annette M N; Irwin, Michael; Mackey, A Dougal; McMonigal, Brendan; Navarro, Julio F; Rich, R Michael

    2016-01-01

    We present a comprehensive analysis of the structural properties and luminosities of the 23 dwarf spheroidal galaxies that fall within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS). These dwarf galaxies represent the large majority of Andromeda's known satellite dwarf galaxies and cover a wide range in luminosity ($-11.6

  6. The scatter about the "Universal" dwarf spheroidal mass profile: A kinematic study of the M31 satellites, And V and And VI

    CERN Document Server

    Collins, M L M; Rich, R M; Ibata, R A; Irwin, M J; Peñarrubia, J; Arimoto, N; Brooks, A M; Lewis, G F; McConnachie, A W; Venn, K

    2011-01-01

    While the satellites of the Milky Way (MW) have been shown to be largely consistent in terms of their mass contained within one half--light radius (M_{half}) with a "Universal" mass profile, a number of M31 satellites are found to be inconsistent with such relations, and seem kinematically colder in their central regions than their MW cousins. In this work, we present new kinematic and updated structural properties for two M31 dSphs, And V and And VI using data from the Keck Low Resolution Imaging Spectrograph (LRIS) and the DEep Imaging Multi-Object Spectrograph (DEIMOS) instruments and the Subaru Suprime-Cam imager. We measure systemic velocities of v_r=-393.1+/-4.2km/s and -344.8+/-2.5km/s, and dispersions of sigma_v=11.5{+5.3}{-4.4}km/s and sigma_v=9.4{+3.2}{-2.4}km/s for And V and And VI respectively, meaning these two objects are consistent with the trends in sigma_v and r_{half} set by their MW counterparts. We also investigate the nature of this scatter about the MW dSph mass profiles for the "Classic...

  7. Dwarf Spheroidals in MOND

    CERN Document Server

    Angus, Garry W

    2008-01-01

    We take the line of sight velocity dispersions as functions of radius for 8 Milky Way dwarf spheroidal galaxies and use Jeans analysis to calculate the mass-to-light ratios (M/L) in Modified Newtonian Dynamics (MOND). Using the latest structural parameters, distances and variable velocity anisotropy, we find 6/8 dwarfs have sensible M/L using only the stellar populations. Sextans and Draco, however, have M/L=9.2_{-3.0}^{+5.3} and 43.9_{-19.3}^{+29.0} respectively, which poses a problem. Apart from the need for Sextans' integrated magnitude to be reviewed, we propose tidal effects intrinsic to MOND, testable with numerical simulations, but fully orbit dependant, which are disrupting Draco. The creation of the Magellanic Stream is also re-addressed in MOND, the scenario being the stream is ram pressure stripped from the SMC as it crosses the LMC.

  8. Manganese in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; Francois, P.

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other

  9. PAndAS' progeny: extending the M31 dwarf galaxy cabal

    CERN Document Server

    Richardson, Jenny C; McConnachie, Alan W; Martin, Nicolas F; Dotter, Aaron; Ferguson, Annette M N; Ibata, Rodrigo A; Chapman, Scott; Lewis, Geraint F; Tanvir, Nial R; Rich, R Michael

    2011-01-01

    We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were found in the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS) of the M31/M33 subgroup. This survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of ~150 kpc. The metal-poor stellar density map for this whole region serves, not only as an illustration of the discovery space for satellite galaxies, but also gives a birds-eye view of the ongoing assembly process of an L* disk galaxy. Four of the new dwarfs appear as well-defined spatial over-densities of stars lying on the expected locus of metal-poor red giant branch stars at the distance of M31. The fifth over-density, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. All five satellites have metallicities and luminosities typical of dwarf spheroidal galaxies and continue the trend wh...

  10. PAndAS' Progeny: Extending the M31 Dwarf Galaxy Cabal

    Science.gov (United States)

    Richardson, Jenny C.; Irwin, Mike J.; McConnachie, Alan W.; Martin, Nicolas F.; Dotter, Aaron L.; Ferguson, Annette M. N.; Ibata, Rodrigo A.; Chapman, Scott C.; Lewis, Geraint F.; Tanvir, Nial R.; Rich, R. Michael

    2011-05-01

    We present the discovery of five new dwarf galaxies, Andromeda XXIII-XXVII, located in the outer halo of M31. These galaxies were discovered during the second year of data from the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 subgroup conducted with the MegaPrime/MegaCam wide-field camera on the Canada-France-Hawaii Telescope. The current PAndAS survey now provides an almost complete panoramic view of the M31 halo out to an average projected radius of ~150 kpc. Here we present for the first time the metal-poor stellar density map for this whole region, not only as an illustration of the discovery space for satellite galaxies, but also as a birds-eye view of the ongoing assembly process of an L * disk galaxy. Four of the newly discovered satellites appear as well-defined spatial overdensities of stars lying on the expected locus of metal-poor (-2.5 < [Fe/H] < -1.3) red giant branch stars at the distance of M31. The fifth overdensity, And XXVII, is embedded in an extensive stream of such stars and is possibly the remnant of a strong tidal disruption event. Based on distance estimates from horizontal branch magnitudes, all five have metallicities typical of dwarf spheroidal galaxies ranging from [Fe/H] =-1.7 ± 0.2 to [Fe/H] =-1.9 ± 0.2 and absolute magnitudes ranging from MV = -7.1 ± 0.5 to MV = -10.2 ± 0.5. These five additional satellites bring the number of dwarf spheroidal galaxies in this region to 25 and continue the trend whereby the brighter dwarf spheroidal satellites of M31 generally have much larger half-light radii than their Milky Way counterparts. With an extended sample of M31 satellite galaxies, we also revisit the spatial distribution of this population and in particular we find that, within the current projected limits of the PAndAS survey, the surface density of satellites is essentially constant out to 150 kpc. This corresponds to a radial density distribution of satellites varying as r -1, a result

  11. Parametric Dwarf Spheroidal Tidal Interaction

    CERN Document Server

    Fleck, J J; Fleck, Jean-Julien; Kuhn, Jeff R.

    2003-01-01

    The time dependent tidal interaction of the Local Group Dwarf Spheroidal (dS) Galaxies with the Milky Way (MW) can fundamentally affect their dynamical properties. The model developed here extends earlier numerical descriptions of dS-MW tidal interactions. We explore the dynamical evolution of dS systems in circular or elliptical MW orbits in the framework of a parametric oscillator. An analytic model is developed and compared with more general numerical solutions and N-body simulation experiments.

  12. Manganese in dwarf spheroidal galaxies

    CERN Document Server

    North, P; Jablonka, P; Hill, V; Shetrone, M; Letarte, B; Lemasle, B; Venn, K A; Battaglia, G; Tolstoy, E; Irwin, M J; Primas, F; Francois, P

    2012-01-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and ...

  13. Dwarf spheroidal galaxies keystones of galaxy evolution

    CERN Document Server

    Gallagher, S C; Gallagher, S; Wyse, F G

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  14. Blue straggler stars in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Mapelli, M.; Ripamonti, E.; Tolstoy, E.; Sigurdsson, S.; Irwin, M. J.; Battaglia, G.

    2007-01-01

    Blue straggler star (BSS) candidates have been observed in all old dwarf spheroidal galaxies (dSphs), however whether or not they are authentic BSSs or young stars has been a point of debate. To both address this issue and obtain a better understanding of the formation of BSSs in different environme

  15. Pulsar searches in nearby dwarf spheroidal galaxies

    Science.gov (United States)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  16. ANDROMEDA XXIX: A NEW DWARF SPHEROIDAL GALAXY 200 kpc FROM ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Eric F.; Slater, Colin T. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Martin, Nicolas F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2011-11-20

    We report the discovery of a new dwarf galaxy, Andromeda XXIX (And XXIX), using data from the recently released Sloan Digital Sky Survey Data Release 8, and confirmed by Gemini North telescope Multi-Object Spectrograph imaging data. And XXIX appears to be a dwarf spheroidal galaxy, separated on the sky by a little more than 15 Degree-Sign from M31, with a distance inferred from the tip of the red giant branch of 730 {+-} 75 kpc, corresponding to a three-dimensional separation from M31 of 207{sup +20}{sub -2} kpc (close to M31's virial radius). Its absolute magnitude, as determined by comparison to the red giant branch luminosity function of the Draco dwarf spheroidal, is M{sub V} = -8.3 {+-} 0.4. And XXIX's stellar populations appear very similar to Draco's; consequently, we estimate a metallicity for And XXIX of [Fe/H] {approx}-1.8. The half-light radius of And XXIX is 360 {+-} 60 pc and its ellipticity is 0.35 {+-} 0.06, typical of dwarf satellites of the Milky Way and M31 at this absolute magnitude range.

  17. Metallicity Evolution of the Six Most Luminous M31 Dwarf Satellites

    Science.gov (United States)

    Ho, Nhung; Geha, Marla; Tollerud, Erik J.; Zinn, Robert; Guhathakurta, Puragra; Vargas, Luis C.

    2015-01-01

    We present global metallicity properties, metallicity distribution functions (MDFs), and radial metallicity profiles for the six most luminous M31 dwarf galaxy satellites: M32, NGC 205, NGC 185, NGC 147, Andromeda VII, and Andromeda II. The results presented are the first spectroscopic MDFs for dwarf systems surrounding a host galaxy other than the Milky Way (MW). Our sample consists of individual metallicity measurements for 1243 red giant branch member stars spread across these six systems. We determine metallicities based on the strength of the Ca II triplet lines using the empirical calibration of Carrera et al., which is calibrated over the metallicity range -4 six M31 dwarf satellites are consistent with the leaky box model of chemical evolution, although our metallicity errors allow a wide range of evolution models. We find a significant radial gradient in metallicity in only two of our six systems, NGC 185 and Andromeda II, and flat radial metallicity gradients in the rest of our sample with no observed correlation between rotational support and radial metallicity gradients. Although the average properties and radial trends of the M31 dwarf galaxies agree with their MW counterparts at similar luminosity, the detailed MDFs are different, particularly at the metal-rich end.

  18. The effect of gravitational tides on dwarf spheroidal galaxies

    CERN Document Server

    Nichols, Matthew; Jablonka, Pascale

    2014-01-01

    The effect of the local environment on the evolution of dwarf spheroidal galaxies is poorly understood. We have undertaken a suite of simulations to investigate the tidal impact of the Milky Way on the chemodynamical evolution of dwarf spheroidals that resemble present day classical dwarfs using the SPH code GEAR. After simulating the models through a large parameter space of potential orbits the resulting properties are compared with observations from both a dynamical point of view, but also from the, often neglected, chemical point of view. In general, we find that tidal effects quench the star formation even inside gas-endowed dwarfs. Such quenching, may produce the radial distribution of dwarf spheroidals from the orbits seen within large cosmological simulations. We also find that the metallicity gradient within a dwarf is gradually erased through tidal interactions as stellar orbits move to higher radii. The model dwarfs also shift to higher $\\langle$[Fe/H]$\\rangle$/L ratios, but only when losing $>$$20...

  19. Wave Dark Matter and Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Parry, Alan R.

    We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term'' of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant Upsilon. In the introductory Chapter 1, we present some preliminary background material to define and motivate the study of wave dark matter and describe some of the properties of dwarf spheroidal galaxies. In Chapter 2, we present several different ways of describing a spherically symmetric spacetime and the resulting metrics. We then focus our discussion on an especially useful form of the metric of a spherically symmetric spacetime in polar-areal coordinates and its properties. In particular, we show how the metric component functions chosen are extremely compatible with notions in Newtonian mechanics. We also show the monotonicity of the Hawking mass in these coordinates. Finally, we discuss how these coordinates and the metric can be used to solve the spherically symmetric Einstein-Klein-Gordon equations. In Chapter 3, we explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiotF(r) for some constant o ∈ R and complex-valued function F(r). We show that the corresponding metric is static if and only if F( r) = h(r)eia for some constant alpha ∈ R and real-valued function h(r). We describe the

  20. The origin of prolate rotation in dwarf spheroidal galaxies formed by mergers of disky dwarfs

    CERN Document Server

    Ebrova, Ivana

    2015-01-01

    Motivated by the discovery of prolate rotation of stars in Andromeda II, a dwarf spheroidal companion of M31, we study the origin of this type of streaming motion via mergers of disky dwarf galaxies. We simulate merger events between two identical dwarfs changing the initial inclination of their disks with respect to the orbit and the amount of orbital angular momentum. On radial orbits the amount of prolate rotation in the merger remnants correlates strongly with the inclination of the disks and is well understood as due to the conservation of the angular momentum component of the disks along the merger axis. For non-radial orbits prolate rotation may still be produced if the orbital angular momentum is initially not much larger than the intrinsic angular momentum of the disks. The orbital structure of the remnants with significant rotation is dominated by box orbits in the center and long-axis tubes in the outer parts. We also detect significant figure rotation resulting from the tidal distortion of the dis...

  1. Life and times of dwarf spheroidal galaxies

    CERN Document Server

    Salvadori, S; Schneider, R

    2008-01-01

    We propose a cosmological scenario for the formation and evolution of dwarf spheroidal galaxies (dSphs), satellites of the Milky Way (MW). An improved version of the semi-analytical code GAMETE (GAlaxy Merger Tree & Evolution) is used to follow the dSphs evolution simultaneously with the MW formation, matching the observed properties of both. In this scenario dSph galaxies represent fossil objects virializing at z = 7.2 +/- 0.7 (i.e. in the pre-reionization era z > z_rei = 6) in the MW environment, which at that epoch has already been pre-enriched up to [Fe/H] ~ -3; their dynamical masses are in the narrow range M = (1.6 +/- 0.7) x 10^8 M_sun, although a larger spread might be introduced by a more refined treatment of reionization. Mechanical feedback effects are dramatic in such low-mass objects, causing the complete blow-away of the gas ~100 Myr after the formation epoch: 99% of the present-day stellar mass, M_* = (3 +/- 0.7) x 10^6 M_sun, forms during this evolutionary phase, i.e. their age is >13 Gyr....

  2. Testing modified gravity with dwarf spheroidal galaxies

    CERN Document Server

    Haghi, Hosein

    2016-01-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light ($M_*/L$) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion ($\\sigma_{\\emph{los}}$) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant $M_*/L$ ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters $ \\alpha $ and $ \\mu $ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The HI Nearby Galaxy Survey catalogue of galaxies. We find that the derived $M_*/L$ ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of ...

  3. Testing modified gravity with dwarf spheroidal galaxies

    Science.gov (United States)

    Haghi, Hosein; Amiri, Vahid

    2016-12-01

    The observed velocity dispersion of the classical dwarf spheroidal (dSph) galaxies of the Milky Way (MW) requires the Newtonian stellar mass-to-light (M*/L) ratios in the range of about 10 to more than 100 solar units that are well outside the acceptable limit predicted by stellar population synthesis models. Using Jeans analysis, we calculate the line-of-sight velocity dispersion (σlos) of stars in eight MW dSphs in the context of the modified gravity (MOG) theory of Moffat, assuming a constant M*/L ratio without invoking the exotic cold dark matter. First, we use the weak field approximation of MOG and assume the two parameters α and μ of the theory to be constant as has already been inferred from fitting to the observed rotational data of The H I Nearby Galaxy Survey catalogue of galaxies. We find that the derived M*/L ratios for almost all dSphs are too large to be explained by the stellar population values. In order to fit the line-of-sight velocity dispersions of the dSph with reasonable M*/L values, we must vary α and μ on a case by case basis. A common pair of values cannot be found for all dSphs. Comparing with the values found from rotation curve fitting, it appears that μ correlates strongly with galaxy luminosity, shedding doubt on it as a universal constant.

  4. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    CERN Document Server

    Makarova, L N; Karachentsev, I D; Tully, R B; Rizzi, L

    2016-01-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys revealing the old red giant branch and red clump. With the new observational data we determined the Andromeda XVIII distance to be D = 1.33+-0.08 Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2x10^6 Msun. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star form...

  5. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different a

  6. The mass content of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Andersen, J; BlandHawthorn, J; Nordstrom, B

    2009-01-01

    We present a new determination of the mass content of the Sculptor dwarf spheroidal galaxy, based on a novel approach which takes into account the two distinct stellar populations present in this galaxy. This method helps to partially break the well-known mass-anisotropy degeneracy present in the mo

  7. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter

    CERN Document Server

    Diez-Tejedor, Alberto; Profumo, Stefano

    2014-01-01

    We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of an attractive self-interaction the condensate develops a mass density profile with a characteristic scale radius that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness and dwarf galaxies. We discuss the implications of our findings for the particle dark matter model and argue that a single classical coherent state cannot play, in general, a relevant role for the description of dark matter in galaxies.

  8. A PAndAS view of M31 dwarf elliptical satellites: NGC147 and NGC185

    CERN Document Server

    Crnojević, D; Irwin, M J; McConnachie, A W; Bernard, E J; Fardal, M A; Ibata, R A; Lewis, G F; Martin, N F; Navarro, J F; Noël, N E D; Pasetto, S

    2014-01-01

    We exploit data from the Pan-Andromeda Archaeological Survey (PAndAS) to study the extended structures of M31's dwarf elliptical companions, NGC147 and NGC185. Our wide-field, homogeneous photometry allows to construct deep colour-magnitude diagrams (CMDs) which reach down to $\\sim3$ mag below the red giant branch (RGB) tip. We trace the stellar components of the galaxies to surface brightness of $\\mu_g \\sim 32$ mag arcsec$^{-2}$ and show they have much larger extents ($\\sim5$ kpc radii) than previously recognised. While NGC185 retains a regular shape in its peripheral regions, NGC147 exhibits pronounced isophotal twisting due to the emergence of symmetric tidal tails. We fit single Sersic models to composite surface brightness profiles constructed from diffuse light and star counts and find that NGC147 has an effective radius almost 3 times that of NGC185. In both cases, the effective radii that we calculate are larger by a factor of $\\sim2$ compared to most literature values. We also calculate revised total...

  9. A VIRIAL CORE IN THE SCULPTOR DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Agnello, A.; Evans, N. W., E-mail: aagnello@ast.cam.ac.uk, E-mail: nwe@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2012-08-01

    The projected virial theorem is applied to the case of multiple stellar populations in the nearby dwarf spheroidal galaxies. As each population must reside in the same gravitational potential, this provides strong constraints on the nature of the dark matter halo. We derive necessary conditions for two populations with Plummer or exponential surface brightnesses to reside in a cusped Navarro-Frenk-White (NFW) halo. We apply our methods to the Sculptor dwarf spheroidal, and show that there is no NFW halo compatible with the energetics of the two populations. The dark halo must possess a core radius of {approx}120 pc for the virial solutions for the two populations to be consistent. This conclusion remains true, even if the effects of flattening or self-gravity of the stellar populations are included.

  10. VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Decerprit, G; Dickherber, R; Dumm, J; Errando, M; Falcone, A; Feng, Q; Ferrer, F; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G D; Skole, C; Smith, A W; Staszak, D; Telezhinsky, I; Tesic, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Zitzer, B

    2012-01-01

    The VERITAS array of Cherenkov telescopes has carried out a deep observational program on the nearby dwarf spheroidal galaxy Segue 1. We report on the results of nearly 48 hours of good quality selected data, taken between January 2010 and May 2011. No significant $\\gamma$-ray emission is detected at the nominal position of Segue 1, and upper limits on the integrated flux are derived. According to recent studies, Segue 1 is the most dark matter-dominated dwarf spheroidal galaxy currently known. We derive stringent bounds on various annihilating and decaying dark matter particle models. The upper limits on the velocity-weighted annihilation cross-section are $\\mathrm{^{95% CL} \\lesssim 10^{-23} cm^{3} s^{-1}}$, improving our limits from previous observations of dwarf spheroidal galaxies by at least a factor of two for dark matter particle masses $\\mathrm{m_{\\chi}\\gtrsim 300 GeV}$. The lower limits on the decay lifetime are at the level of $\\mathrm{\\tau^{95% CL} \\gtrsim 10^{24} s}$. Finally, we address the inte...

  11. Discs of Satellites: the new dwarf spheroidals

    CERN Document Server

    Metz, Manuel; Jerjen, Helmut

    2009-01-01

    The spatial distributions of the most recently discovered ultra faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation we pay special attention to the selection bias introduced due to the limited sky coverage of SDSS. We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also notice a deficit of satellite galaxies with Galactocentric distances larger than 100 kpc that are away from the disc-of-satellites of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the discs-of-satellites are optical manifestations of a phase-space correlation of satellite galaxies.

  12. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.; Karachentsev, I. D.; Tully, R. B.; Rizzi, L.

    2016-10-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys revealing the old red giant branch and red clump. With the new observational data we determined the Andromeda XVIII distance to be D = 1.33_{-0.09}^{+0.06} Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2 × 106 M⊙. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star formation processes of dSphs KKR 25, KKs 03, as well as dTr KK 258. Their star formation histories were uniformly measured by us from HST/ACS observations. All the galaxies are situated well beyond the Local Group and the two dSphs KKR 25 and KKs 03 are extremely isolated. Evidently, the evolution of these objects has proceeded without influence of neighbours.

  13. Star formation history of And XVIII: a dwarf spheroidal galaxy in isolation

    Science.gov (United States)

    Makarova, L. N.; Makarov, D. I.; Karachentsev, I. D.; Tully, R. B.; Rizzi, L.

    2017-01-01

    We present a photometric study of the Andromeda XVIII dwarf spheroidal galaxy associated with M31, and situated well outside of the virial radius of the M31 halo. The galaxy was resolved into stars with Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) revealing the old red giant branch and red clump. With the new observational data, we determined the Andromeda XVIII distance to be D = 1.33_{-0.09}^{+0.06} Mpc using the tip of red giant branch method. Thus, the dwarf is situated at the distance of 579 kpc from M31. We model the star formation history of Andromeda XVIII from the stellar photometry and Padova theoretical stellar isochrones. An ancient burst of star formation occurred 12-14 Gyr ago. There is no sign of recent/ongoing star formation in the last 1.5 Gyr. The mass fractions of the ancient and intermediate age stars are 34 and 66 per cent, respectively, and the total stellar mass is 4.2 × 106 M⊙. It is probable that the galaxy has not experienced an interaction with M31 in the past. We also discuss star formation processes of dSphs KKR 25, KKs 03, as well as dTr KK 258. Their star formation histories were uniformly measured by us from HST/ACS observations. All the galaxies are situated well beyond the Local Group, and the two dSphs KKR 25 and KKs 03 are extremely isolated. Evidently, the evolution of these objects has proceeded without influence of neighbours.

  14. Mergers and the outside-in formation of dwarf spheroidals

    CERN Document Server

    Benítez-Llambay, Alejandro; Abadi, Mario G; Gottloeber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Steinmetz, Matthias

    2015-01-01

    We use a cosmological simulation of the formation of the Local Group to explore the origin of age and metallicity gradients in dwarf spheroidal galaxies. We find that a number of simulated dwarfs form "outside-in", with an old, metal-poor population that surrounds a younger, more concentrated metal-rich component, reminiscent of dwarf spheroidals like Sculptor or Sextans. We focus on a few examples where stars form in two populations distinct in age in order to elucidate the origin of these gradients. The spatial distributions of the two components reflect their diverse origin; the old stellar component is assembled through mergers, but the young population forms largely in situ. The older component results from a first episode of star formation that begins early but is quickly shut off by the combined effects of stellar feedback and reionization. The younger component forms when a late accretion event adds gas and reignites star formation. The effect of mergers is to disperse the old stellar population, incr...

  15. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    Men-Quan Liu; Jie Zhang

    2014-09-01

    Based on an improved model, more reasonable nucleosyn-thesis and explosion rate of SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main observation ofMn abundance for tens stars in those dSphs, and give some constraints to the nucleosynthesis and explosion ratio of different types of supernovae and Star Formation Rates (SFR) in those dSphs.

  16. VARIATIONS IN A UNIVERSAL DARK MATTER PROFILE FOR DWARF SPHEROIDALS

    Energy Technology Data Exchange (ETDEWEB)

    Jardel, John R.; Gebhardt, Karl, E-mail: jardel@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States)

    2013-09-20

    Using a newly developed modeling technique, we present orbit-based dynamical models of the Carina, Draco, Fornax, Sculptor, and Sextans dwarf spheroidal (dSph) galaxies. These models calculate the dark matter profiles non-parametrically without requiring any assumptions to be made about their profile shapes. By lifting this restriction, we discover a host of dark matter profiles in the dSphs that are different from the typical profiles suggested by both theorists and observers. However, when we scale these profiles appropriately and plot them on a common axis, they appear to follow an approximate r {sup –1} power law with considerable scatter.

  17. Structural analysis of the Sextans dwarf spheroidal galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Da Costa, G. S.; Mackey, A. D.

    2016-07-01

    We present wide-field g- and i-band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius (rh = 695 pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco telescope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of 82 arcmin (2 kpc) from its centre. We perform a statistical analysis of the overdensities and find three distinct features, as well as an extended halo-like structure, to be significant at the 99.7 per cent confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the overdensities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King model to the radial distribution of Sextans stars yields a tidal radius rt = 83.2 arcmin ± 7.1 arcmin (2.08 ± 0.18 kpc), which implies the majority of detected substructure is gravitationally bound to the galaxy. This finding suggests that Sextans is not undergoing significant tidal disruption from the Milky Way, supporting the scenario in which the orbit of Sextans has a low eccentricity.

  18. The Dearth of Neutral Hydrogen in Galactic Dwarf Spheroidal Galaxies

    CERN Document Server

    Spekkens, K; Mason, B S; Willman, B; Aguirre, J E

    2014-01-01

    We present new upper limits on the neutral hydrogen (HI) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA (ALFALFA) survey and Galactic All-Sky Survey (GASS) data. All of the limits Mlim are more stringent than previously reported values, and those from the GBT improve upon contraints in the literature by a median factor of 23. Normalizing by V-band luminosity Lv and dynamical mass Mdyn, we find Mlim/Lv ~ 10^{-3} Mo/Lo and Mlim/Mdyn ~ 5 x 10^{-5}, irrespective of location in the Galactic halo. Comparing these relative HI contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our HI upper limits therefore provide the clearest picture yet of the environmental dependence of the HI content in Local Volume dwarfs. If ram pressure stripping explains the dearth of HI in these ...

  19. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  20. The influence of binary stars on dwarf spheroidal galaxy kinematics

    CERN Document Server

    Hargreaves, J C; Annan, J D

    1995-01-01

    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape...

  1. The early days of the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Jablonka, P; Mashonkina, L; Hill, V; Revaz, Y; Shetrone, M; Starkenburg, E; Irwin, M; Tolstoy, E; Battaglia, G; Venn, K; Helmi, A; Primas, F; Francois, P

    2015-01-01

    We present the high resolution spectroscopic study of five -3.9<=[Fe/H]<=-2.5 stars in the Local Group dwarf spheroidal, Sculptor, thereby doubling the number of stars with comparable observations in this metallicity range. We carry out a detailed analysis of the chemical abundances of alpha, iron peak, light and heavy elements, and draw comparisons with the Milky Way halo and the ultra faint dwarf stellar populations. We show that the bulk of the Sculptor metal-poor stars follows the same trends in abundance ratios versus metallicity as the Milky Way stars. This suggests similar early conditions of star formation and a high degree of homogeneity of the interstellar medium. We find an outlier to this main regime, which seems to miss the products of the most massive of the TypeII supernovae. In addition to its value to help refining galaxy formation models, this star provides clues to the production of cobalt and zinc. Two of our sample stars have low odd-to-even barium isotope abundance ratios, suggesti...

  2. THE DEARTH OF NEUTRAL HYDROGEN IN GALACTIC DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, Kristine; Urbancic, Natasha [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario K7K 7B4 (Canada); Mason, Brian S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Willman, Beth [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Aguirre, James E., E-mail: kristine.spekkens@rmc.ca [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2014-11-01

    We present new upper limits on the neutral hydrogen (H I) content within the stellar half-light ellipses of 15 Galactic dwarf spheroidal galaxies (dSphs), derived from pointed observations with the Green Bank Telescope (GBT) as well as Arecibo L-band Fast ALFA survey and Galactic All-Sky Survey data. All of the limits M{sub H} {sub I}{sup lim} are more stringent than previously reported values, and those from the GBT improve upon constraints in the literature by a median factor of 23. Normalizing by V-band luminosity L{sub V} and dynamical mass M {sub dyn}, we find M{sub H} {sub I}{sup lim}/L{sub V}∼10{sup −3} M{sub ⊙}/L{sub ⊙} and M{sub H} {sub I}{sup lim}/M{sub dyn}∼5×10{sup −5}, irrespective of location in the Galactic halo. Comparing these relative H I contents to those of the Local Group and nearby neighbor dwarfs compiled by McConnachie, we find that the Galactic dSphs are extremely gas-poor. Our H I upper limits therefore provide the clearest picture yet of the environmental dependence of the H I content in Local Volume dwarfs. If ram pressure stripping explains the dearth of H I in these systems, then orbits in a relatively massive Milky Way are favored for the outer halo dSph Leo I, while Leo II and Canes Venatici I have had a pericentric passage in the past. For Draco and Ursa Minor, the interstellar medium mass that should accumulate through stellar mass loss in between pericentric passages exceeds M{sub H} {sub I}{sup lim} by a factor of ∼30. In Ursa Minor, this implies that either this material is not in the atomic phase, or that another mechanism clears the recycled gas on shorter timescales.

  3. TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES: ENHANCED TRANSFORMATION INTO DWARF SPHEROIDALS

    Energy Technology Data Exchange (ETDEWEB)

    Kazantzidis, Stelios [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Lokas, Ewa L. [Nicolaus Copernicus Astronomical Center, 00-716 Warsaw (Poland); Mayer, Lucio, E-mail: stelios@mps.ohio-state.edu [Institute for Theoretical Physics, University of Zuerich, CH-8057 Zuerich (Switzerland)

    2013-02-20

    According to the tidal stirring model, late type, rotationally supported dwarfs resembling present day dwarf irregular (dIrr) galaxies can transform into dwarf spheroidals (dSphs) via interactions with Milky-Way-sized hosts. We perform collisionless N-body simulations to investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes {gamma} of the dwarf DM density profiles ({rho}{proportional_to}r {sup -{gamma}}). For a given orbit inside the primary galaxy, rotationally supported dwarfs embedded in DM halos with core-like distributions ({gamma} = 0.2) and mild density cusps ({gamma} = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles ({gamma} = 1). Such shallow DM distributions are akin to those of observed dIrrs highlighting tidal stirring as a plausible model for the Local Group (LG) morphology-density relation. When {gamma} < 1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform; these new results allow tidal stirring to explain virtually all known dSphs across a wide range of distances from their hosts. A subset of disky dwarfs initially embedded in DM halos with shallow density profiles are eventually disrupted by the primary; those that survive as dSphs are generally on orbits with lower eccentricities and/or larger pericenters compared to those of typical cold dark matter satellites. The latter could explain the peculiar orbits of several LG dSphs such as Fornax, Leo I, Tucana, and Cetus.

  4. The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Starkenburg, E.; Hill, V.; Tolstoy, E.; François, P.; Irwin, M. J.; Boschman, L.; Venn, K. A.; de Boer, T. J. L.; Lemasle, B.; Jablonka, P.; Battaglia, G.; Groot, P.; Kaper, L.

    2013-01-01

    We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the dwarf abundances and radial velocities team (DART) using the lates

  5. Comptonization of cosmic microwave background photons in dwarf spheroidal galaxies

    Science.gov (United States)

    Culverhouse, Thomas L.; Evans, N. Wyn; Colafrancesco, S.

    2006-05-01

    We present theoretical modelling of the electron distribution produced by annihilating neutralino dark matter in dwarf spheroidal galaxies (dSphs). In particular, we follow up the idea of Colafrancesco and find that such electrons distort the cosmic microwave background (CMB) by the Sunyaev-Zeldovich (SZ) effect. For an assumed neutralino mass of 10 GeV and beam size of 1 arcsec, the SZ temperature decrement is of the order of nano-Kelvin for dSph models with a soft core. By contrast, it is of the order of micro-Kelvin for the strongly cusped dSph models favoured by some cosmological simulations. Although this is out of reach of current instruments, it may well be detectable by future mm telescopes, such as the Atacama Large Millimetre Array. We also show that the upscattered CMB photons have energies within reach of upcoming X-ray observatories, but that the flux of such photons is too small to be detectable now. None the less, we conclude that searching for the dark matter induced SZ effect is a promising way of constraining the dark distribution in dSphs, especially if the particles are light.

  6. Comptonisation of Cosmic Microwave Background Photons in Dwarf Spheroidal Galaxies

    CERN Document Server

    Culverhouse, T L; Colafrancesco, S; Culverhouse, Thomas L.

    2006-01-01

    We present theoretical modelling of the electron distribution produced by annihilating neutralino dark matter in dwarf spheroidal galaxies (dSphs). In particular, we follow up the idea of Colafrancesco (2004) and find that such electrons distort the cosmic microwave background (CMB) by the Sunyaev-Zeldovich effect. For an assumed neutralino mass of 10 GeV and beam size of 1'', the SZ temperature decrement is of the order of nano-Kelvin for dSph models with a soft core. By contrast, it is of the order of micro-Kelvin for the strongly cusped dSph models favoured by some cosmological simulations. Although this is out of reach of current instruments, it may well be detectable by future mm telescopes, such as ALMA. We also show that the upscattered CMB photons have energies within reach of upcoming X-ray observatories, but that the flux of such photons is too small to be detectable soon. Nonetheless, we conclude that searching for the dark matter induced Sunyaev-Zeldovich effect is a promising way of constraining ...

  7. Dwarf spheroidal galaxies as degenerate gas of free fermions

    CERN Document Server

    Domcke, Valerie

    2014-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass $m_f$. We assume that on galactic scales these fermions are capable to form a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting configuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to $m_f$. After reviewing the basic formalism, we test this scenario against experimental data describing the dispersion velocity of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit of the data and realistic predictions for the size of DM halos providing that $m_f \\simeq 200$ eV. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance...

  8. Dwarf spheroidal galaxies as degenerate gas of free fermions

    Energy Technology Data Exchange (ETDEWEB)

    Domcke, Valerie; Urbano, Alfredo, E-mail: valerie.domcke@sissa.it, E-mail: alfredo.urbano@sissa.it [SISSA - International School for Advanced Studies, via Bonomea 256, Trieste, 34136 Italy (Italy)

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  9. The effect of tides on the Fornax dwarf spheroidal galaxy

    CERN Document Server

    Battaglia, Giuseppina; Nipoti, Carlo

    2015-01-01

    Estimates of the mass distribution and dark-matter (DM) content of dwarf spheroidal galaxies (dSphs) are usually derived under the assumption that the effect of the tidal field of the host galaxy is negligible over the radial extent probed by kinematic data-sets. We assess the implications of this assumption in the specific case of the Fornax dSph by means of N-body simulations of a satellite orbiting around the Milky Way. We consider observationally-motivated orbits and we tailor the initial distributions of the satellite's stars and DM to match, at the end of the simulations, the observed structure and kinematics of Fornax. In all our simulations the present-day observable properties of Fornax are not significantly influenced by tidal effects. The DM component is altered by the interaction with the Galactic field (up to 20% of the DM mass within 1.6 kpc is lost), but the structure and kinematics of the stellar component are only mildly affected even in the more eccentric orbit (more than 99% of the stellar ...

  10. The structure of Andromeda II dwarf spheroidal galaxy

    CERN Document Server

    del Pino, Andrés; Hidalgo, Sebastian L; Fouquet, Sylvain

    2016-01-01

    We analyze in detail the spatial distribution and kinematic properties of two different stellar populations in Andromeda II (And II) dwarf spheroidal galaxy. We obtained their detailed surface density maps, together with their radial density profiles. The two populations differ not only in age and metallicity, but also in their spatial distribution and kinematics. Old stars ($\\gtrsim 11$ Gyr) follow a round distribution well fitted by truncated density profiles. These stars rotate around the projected optical major axis of the galaxy with line-of-sight velocities $v_{los}(r_h) = 16 \\pm 3$ km s$^{-1}$ and a velocity gradient of $2.06 \\pm 0.21$ km s$^{-1}$ arcmin$^{-1}$. Intermediate-age stars ($\\lesssim 9$ Gyr) concentrate in the centre of the galaxy and form an elongated structure extending along the projected optical major axis. This structure appears to rotate with a steeper velocity gradient, $2.24 \\pm 0.22$ km s$^{-1}$ arcmin$^{-1}$, and around the optical minor axis. The centres of rotation and kinetic p...

  11. Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies

    CERN Document Server

    Gonzáles-Morales, Alma X; Peñarrubia, Jorge; Ureña-López, Luis

    2016-01-01

    It has been suggested that the internal dynamics of dwarf spheroidal galaxies (dSphs) can be used to test whether or not ultralight axions with $m_a\\sim 10^{-22}\\text{eV}$ are a preferred dark matter candidate. However, comparisons to theoretical predictions tend to be inconclusive for the simple reason that while most cosmological models consider only dark matter, one observes only baryons. Here we use realistic kinematic mock data catalogs of Milky Way dSph's to show that the "mass-anisotropy degeneracy" in the Jeans equations leads to biased bounds on the axion mass in galaxies with unknown dark matter halo profiles. In galaxies with multiple chemodynamical components this bias can be partly removed by modelling the mass enclosed within each subpopulation. However, analysis of the mock data reveals that the least-biased constraints on the axion mass result from fitting the luminosity-averaged velocity dispersion of the individual chemodynamical components directly. Applying our analysis to two dSph's with ...

  12. Kinematic sub-populations in dwarf spheroidal galaxies

    CERN Document Server

    Ural, Ugur; Koch, Andreas; Gilmore, Gerard; Beers, Timothy C; Belokurov, Vasily; Evans, N Wyn; Grebel, Eva K; Vidrih, Simon; Zucker, Daniel B

    2008-01-01

    We present new spectroscopic data for twenty six stars in the recently-discovered Canes Venatici I (CVnI) dwarf spheroidal galaxy. We use these data to investigate the recent claim of the presence of two dynamically inconsistent stellar populations in this system (Ibata et al., 2006). We do not find evidence for kinematically distinct populations in our sample and we are able to obtain a mass estimate for CVnI that is consistent with all available data, including previously published data. We discuss possible differences between our sample and the earlier data set and study the general detectability of sub-populations in small kinematic samples. We conclude that in the absence of supporting observational evidence (for example, metallicity gradients), sub-populations in small kinematic samples (typically fewer than 100 stars) should be treated with extreme caution, as their detection depends on multiple parameters and rarely produces a signal at the 3sigma confidence level. It is therefore essential to determi...

  13. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Yuan, Zhen; Jing, Y P

    2015-01-01

    Fornax is the brightest Milky Way (MW) dwarf spheroidal galaxy and its star formation history (SFH) has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH using a simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe) as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass M_x of the gas to mix with the ejecta from each SN. The choice of M_x depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = t_sat . Our results indicate that due to the global gas outflow at t > t_sat , part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  14. The Dynamical and Chemical Evolution of Dwarf Spheroidal Galaxies

    CERN Document Server

    Revaz, Y; Sawala, T; Hill, V; Letarte, B; Irwin, M; Battaglia, G; Helmi, A; Shetrone, M D; Tolstoy, E; Venn, K A

    2009-01-01

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the s...

  15. Metals Removed by Outflows from Milky Way Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Finlator, Kristian

    2011-01-01

    The stars in the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are significantly more metal-poor than would be expected from a closed box model of chemical evolution. Gas outflows likely carried away most of the metals produced by the dSphs. Based on previous Keck/DEIMOS observations and models, we calculate the mass in Mg, Si, Ca, and Fe expelled from each of eight dSphs. Essentially, these masses are the differences between the observed amount of metals present in the dSphs' stars today and the inferred amount of metals produced by supernovae. We conclude that the dSphs lost 96% to >99% of the metals their stars manufactured. We apply the observed mass function of Milky Way dSphs to the ejected mass function to determine that a single large dSph, like Fornax, lost more metals over 10 Gyr than all smaller dSphs combined. Therefore, small galaxies like dSphs are not significant contributors to the metal content of the intergalactic medium. Finally, we compare our ejected mass function to previo...

  16. On the R-Process Enrichment of Dwarf Spheroidal Galaxies

    CERN Document Server

    Bramante, Joseph

    2016-01-01

    Recent observations of Reticulum II have uncovered an overabundance of r-process elements, compared to similar ultra-faint dwarf spheroidal galaxies (UFDs). Because the metallicity and star formation history of Reticulum II appear consistent with all known UFDs, the high r-process abundance of Reticulum II suggests enrichment through a single, rare event, such as a double neutron star (NS) merger. However, we note that this scenario is extremely unlikely, as binary stellar evolution models require significant supernova natal kicks to produce NS-NS or NS-black hole mergers, and these kicks would efficiently remove compact binary systems from the weak gravitational potentials of UFDs. We examine alternative mechanisms for the production of r-process elements in UFDs, including a novel mechanism wherein NSs in regions of high dark matter density implode after accumulating a black-hole-forming mass of dark matter. We find that r-process proto-material ejection by tidal forces, when a single neutron star implodes ...

  17. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Sonbas, E. [University of Adiyaman, Department of Physics, 02040 Adiyaman (Turkey); Rangelov, B.; Kargaltsev, O.; Dhuga, K. S.; Hare, J.; Volkov, I., E-mail: edasonbas@yahoo.com [Department of Physics, The George Washington University, Washington, DC 20052 (United States)

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole and neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.

  18. Jeans Analysis for Dwarf Spheroidal Galaxies in Wave Dark Matter

    CERN Document Server

    Chen, Shu-Rong; Chiueh, Tzihong

    2016-01-01

    Observations suggest that dwarf spheroidal (dSph) galaxies exhibit large constant-density cores in the centers, which can hardly be explained by dissipationless cold dark matter simulations. Wave dark matter (${\\psi {\\rm DM}}$), characterized by a single parameter, the dark matter particle mass $m_{\\psi}$, predicts a central soliton core in every galaxy arising from quantum pressure against gravity. Here we apply Jeans analysis to the kinematic data of eight classical dSphs so as to constrain $m_{\\psi}$, and obtain $m_{\\psi}=1.18_{-0.24}^{+0.28}\\times10^{-22}{\\,\\rm eV}$ and $m_{\\psi}=1.79_{-0.33}^{+0.35}\\times10^{-22}{\\,\\rm eV}~(2\\sigma)$ using the observational data sets of Walker et al. (2007) and Walker et al. (2009b), respectively. We show that the estimate of $m_{\\psi}$ is sensitive to the dSphs kinematic data sets and is robust to various models of stellar density profile. We also consider multiple stellar subpopulations in dSphs and find consistent results. This mass range of $m_{\\psi}$ is in good agre...

  19. Multiple stellar population in the Sextans dwarf spheroidal galaxy?

    CERN Document Server

    Bellazzini, M; Pancino, E

    2001-01-01

    We present wide field (33 X 34 arcmin^2) multiband (BVI) CCD photometry (down to I <= 20.5) of the very low surface brightness dwarf Spheroidal (dSph) galaxy Sextans. In the derived Color Magnitude Diagrams we have found evidences suggesting the presence of multiple stellar populations in this dSph. In particular we discovered: {\\it (i)} a Blue Horizontal Branch (HB) tail that appears to lie on a brighter sequence with respect to the prominent Red HB and the RR Lyrae stars, very similar to what found by Majewski et al. (1999) for the Sculptor dSph; {\\it (ii)} hints of a bimodal distribution in color of the RGB stars; {\\it (iii)} a double RGB-bump. All these features suggest that (at least) two components are present in the old stellar population of this galaxy: a main one with [Fe/H]~ -1.8 and a minor component around [Fe/H]<~ -2.3. The similarity with the Sculptor case may indicate that multiple star formation episodes are common also in the most nearby dSphs that ceased their star formation activity a...

  20. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  1. Extended stellar substructure surrounding the Boötes I dwarf spheroidal galaxy

    Science.gov (United States)

    Roderick, T. A.; Mackey, A. D.; Jerjen, H.; Da Costa, G. S.

    2016-10-01

    We present deep stellar photometry of the Boötes I dwarf spheroidal galaxy in g- and i-band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct overdensity encroaching on its tidal radius. A radial profile of the Boötes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Boötes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Boötes I dwarf spheroidal galaxy.

  2. Extended stellar substructure surrounding the Bo\\"otes I dwarf spheroidal galaxy

    CERN Document Server

    Roderick, T A; Jerjen, H; Da Costa, G S

    2016-01-01

    We present deep stellar photometry of the Bo\\"otes I dwarf spheroidal galaxy in g and i band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct over-density encroaching on its tidal radius. A radial profile of the Bo\\"otes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Bo\\"otes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Bo\\"otes I dwarf spheroidal galaxy.

  3. Local Group Dwarf Spheroidals: Correlated Deviations from the Baryonic Tully-Fisher Relation

    CERN Document Server

    McGaugh, Stacy S

    2010-01-01

    Local Group dwarf spheroidal satellite galaxies are the faintest extragalactic stellar systems known. We examine recent data for these objects in the plane of the Baryonic Tully-Fisher Relation (BTFR). While some dwarf spheroidals adhere to the BTFR, others deviate substantially. We examine the residuals from the BTFR and find that they are not random. The residuals correlate with luminosity, size, metallicity, ellipticity, and susceptibility of the dwarfs to tidal disruption. Fainter, more elliptical, and tidally more susceptible dwarfs deviate further from the BTFR. We consider a variety of mechanisms that might lead to this behavior. Reionization does not, by itself, suffice to explain all aspects of the data. Further mechanisms such as supernova feedback or ram pressure stripping may remove gas that would otherwise be present to satisfy the baryonic mass budget. The correlation with ellipticity and tidal susceptibility implies that the usual assumption of spherical systems in stable equilibria may not hol...

  4. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. I. Nucleosynthesis and abundance ratios

    NARCIS (Netherlands)

    Shetrone, M; Venn, KA; Tolstoy, E; Primas, F; Hill, [No Value; Kaufer, A

    2003-01-01

    We have used the Ultraviolet Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giants in the Sculptor, Fornax, Carina, and Leo I dwarf spheroidal galaxies (dSph's). We measure the abundances of alpha-, iron peak, first s-process, second s-pr

  5. Flames High Resolution Spectroscopy of RGB Stars in the Carina Dwarf Spheroidal Galaxy

    NARCIS (Netherlands)

    Lemasle, B.; Hill, V.; Tolstoy, E.; Venn, K.

    2011-01-01

    Carina is a small and faint classical dwarf spheroidal galaxy in the halo of the Milky Way with a highly episodic star formation history (e.g., Hurley-Keller et al. 1998). Using VLT/FLAMES in high resolution mode, we significantly increase the sample of stars with abundance determinations in Carina,

  6. The first carbon-enhanced metal-poor star found in the Sculptor dwarf spheroidal

    NARCIS (Netherlands)

    Skúladóttir, Á.; Tolstoy, E.; Salvadori, S.; Hill, V.; Pettini, M.; Shetrone, M. D.; Starkenburg, E.

    The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connection with the chemical elements produced by the first stellar generation is still highly debated. In contrast to the Galactic halo, not many CEMP stars have been found in the dwarf spheroidal galaxies around the Milky

  7. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    2003-01-01

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  8. Dark Matter Searches with the Fermi-LAT in the Direction of Dwarf Spheroidals

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Matthew; Anderson, Brandon; Drlica-Wagner, Alex; Cohen-Tanugi, Johann; Conrad, Jan

    2015-07-13

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of Milky Way dwarf spheroidal satellite galaxies based on 6 years of Fermi Large Area Telescope data processed with the new Pass 8 reconstruction and event-level analysis. None of the dwarf galaxies are significantly detected in gamma rays, and we present upper limits on the dark matter annihilation cross section from a combined analysis of the 15 most promising dwarf galaxies. The constraints derived are among the strongest to date using gamma rays, and lie below the canonical thermal relic cross section for WIMPs of mass ≲ 100GeV annihilating via the bb-bar and τ⁺τ⁻ channels.

  9. A Critical Review of the Evidence for M32 being a Compact Dwarf Satellite of M31 rather than a More Distant Normal Galaxy

    Institute of Scientific and Technical Information of China (English)

    C. Ke-shih Young; Malcolm J. Currie; Robert J. Dickens; A-Li Luo; Tong-Jie Zhang

    2008-01-01

    Since Baade's photographic study of M32 in the mid 1940s, it has been accepted as an established fact that M32 is a compact dwarf satellite of M31. The purpose of this paper is to report on the findings of our investigation into the nature of the existing evidence. We find that the case for M32 being a satellite of M31 rests upon Hubble Space Telescope (HST) based stellar population studies which have resolved red-giant branch (RGB) and red clump stars in M32 as well as other nearby galaxies. Taken in isolation, this recent evidence could be considered to be conclusive in favour of the existing view. However, the conventional scenario does not explain M32's anomalously high central velocity dispersion for a dwarf galaxy (several times that of either NGC 147, NGC 185 or NGC 205) or existing planetary nebula observations (which suggest that M32 is more than twice as distant as M31) and also requires an elaborate physical explanation for M32's inferred compactness. Conversely, we find that the case for M32 being a normal galaxy, of the order of three times as distant as M31, is supported by: (1) a central velocity dispersion typical of intermediate galaxies, (2) the published planetary nebula observations, and (3) known scaling relationships for normal early-type galaxies. However, this novel scenario cannot account for the high apparent luminosities of the RGB stars resolved in the M32 direction by HST observations. We are therefore left with two apparently irreconcilable scenarios, only one of which can be correct, but both of which suffer from potentially fatal evidence to the contrary. This suggests that current understanding of some relevant fields is still very far from adequate.

  10. Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches

    CERN Document Server

    Klop, Niki; Hayashi, Kohei; Ando, Shin'ichiro

    2016-01-01

    Dwarf spheroidals are low-luminosity satellite galaxies of the Milky Way highly dominated by dark matter. Therefore, they are prime targets to search for signals from dark matter annihilation using gamma-ray observations. We analyse about 7 years of PASS8 Fermi data for seven classical dwarf galaxies, including Draco, adopting both the widely used Navarro-Frenk-White (NFW) profile and observationally motivated axisymmetric density profiles. For four of the selected dwarfs (Sextans, Carina, Sculptor and Fornax) axisymmetric mass models suggest a cored density profile rather than the commonly adopted cusped profile. We found that upper limits on the annihilation cross section for some of these dwarfs are significantly higher than the ones achieved using an NFW profile. Therefore, upper limits in the literature obtained using cusped profiles like the NFW might have been overestimated. Our results eventually show that it is extremely important to use observationally motivated density profiles going beyond the usu...

  11. Weak Galactic halo--dwarf spheroidal connection from RR Lyrae stars

    CERN Document Server

    Fiorentino, Giuliana; Monelli, Matteo; Stetson, Peter B; Tolstoy, Eline; Gallart, Carme; Salaris, Maurizio; Martinez, Clara; Bernard, Edouard J

    2014-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in six dwarf spheroidals and eleven ultra faint dwarf galaxies (1,300) show a Gaussian period distribution well peaked around a mean period of =0.610+-0.001 days (sigma=0.03). The Halo RRL (15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dwarf spheroidals apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P 0.75mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered eighteen globulars covering a broad range in metallicity (-2.3< [Fe/H]< -1.1) and hosting more than 35 R...

  12. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    CERN Document Server

    Lemasle, B; Hill, V; Tolstoy, E; Irwin, M; Jablonka, P; Venn, K; Battaglia, G; Starkenburg, E; Shetrone, M; Letarte, B; Francois, P; Helmi, A; Primas, F; Kaufer, A; Szeifert, T

    2014-01-01

    Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H]>-1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several alpha, iron-peak and neutron-capture elements in a sample of 47 individual Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Similar to other dwarf spheroid...

  13. Abundance ratios of red giants in low mass ultra faint dwarf spheroidal galaxies

    CERN Document Server

    François, P; Bonifacio, P; Bidin, C Moni; Geisler, D; Sbordone, L

    2015-01-01

    Low mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. We report on the analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT. Medium resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Considering all the stars as representative of the same population of low mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the metallicity of the star increases in a way similar to what is found for the population of stars belonging to dwarf spheroidal galaxies. The main difference is that the solar [alpha/Fe] is reached at a much lower metallicity for the UfDSph than the ...

  14. Stellar Substructures Around the Hercules Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Roderick, T. A.; Jerjen, H.; Mackey, A. D.; Da Costa, G. S.

    2015-05-01

    We present deep g and i band Dark Energy Camera stellar photometry of the Hercules Milky Way satellite galaxy, and its surrounding field, out to a radial distance of 5.4 times the tidal radius. We have identified nine extended stellar substructures associated with the dwarf; preferentially distributed along the major axis of the galaxy. Two significant over-densities lie outside the 95% confidence band for the likely orbital path of the galaxy and appear to be free-floating tidal debris. We estimate the luminosity of the new stellar substructures, and find that approximately the same amount of stellar flux is lying in these extended structures as inside the main body of Hercules. We also analyze the distribution of candidate blue-horizontal-branch stars and find agreement with the alignment of the substructures at a confidence level greater than 98%. Our analysis provides a quantitative demonstration that Hercules is a strongly tidally disrupted system, with noticeable stellar features at least 1.9 kpc away from the galaxy.

  15. Improving the sensitivity of gamma-ray telescopes to dark matter annihilation in dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Eric [Univ. of California, Santa Cruz, CA (United States). Dept. of Physics; Hooper, Dan [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Center for Particle Astrophysics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Linden, Tim [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics

    2015-03-01

    The Fermi-LAT Collaboration has studied the gamma-ray emission from a stacked population of dwarf spheroidal galaxies and used this information to set constraints on the dark matter annihilation cross section. Interestingly, their analysis uncovered an excess with a test statistic (TS) of 8.7. If interpreted naively, this constitutes a 2.95σ local excess (p-value=0.003), relative to the expectations of their background model. In order to further test this interpretation, the Fermi-LAT team studied a large number of blank sky locations and found TS>8.7 excesses to be more common than predicted by their background model, decreasing the significance of their dwarf excess to 2.2σ(p-value=0.027). We argue that these TS>8.7 blank sky locations are largely the result of unresolved blazars, radio galaxies, and star-forming galaxies, and show that multiwavelength information can be used to reduce the degree to which such sources contaminate the otherwise blank sky. In particular, we show that masking regions of the sky that lie within 1° of sources contained in the BZCAT or CRATES catalogs reduce the fraction of blank sky locations with TS>8.7 by more than a factor of 2. Taking such multiwavelength information into account can enable experiments such as Fermi to better characterize their backgrounds and increase their sensitivity to dark matter in dwarf galaxies, the most important of which remain largely uncontaminated by unresolved point sources. We also note that for the range of dark matter masses and annihilation cross sections currently being tested by studies of dwarf spheroidal galaxies, simulations predict that Fermi should be able to detect a significant number of dark matter subhalos. These subhalos constitute a population of subthreshold gamma-ray point sources and represent an irreducible background for searches for dark matter annihilation in dwarf galaxies.

  16. Dynamical models for the Sculptor dwarf spheroidal in a Lambda CDM universe

    OpenAIRE

    2014-01-01

    The Sculptor dwarf spheroidal galaxy contains two distinct stellar populations: one metal-rich and the other metal-poor. Several authors have argued that in order for these two populations to reside in the same gravitational potential, the dark matter halo must have a core similar to that observed in the stellar count profile. This would rule out the cuspy Navarro-Frenk-White (NFW) density profiles predicted for halos and subhalos by dark matter only simulations of the Lambda Cold Dark Matter...

  17. Radial Velocities of Dwarf Spheroidal Galaxies in the M81 Group

    OpenAIRE

    Sharina, M. E.; Karachentsev, I. D.; Burenkov, A. N.

    2001-01-01

    Long-slit observations of 4 dwarf spheroidal galaxies in the M81 group are presented. We have obtained a heliocentric velocity of globular cluster candidate located near the center of DDO78 to be +55 +- 10 km/s by cross-correlation with template stars. We estimated a heliocentric radial velocity of -116 +- 21 km/s for an HII region seen in the K 61. A red diffuse object near the K64 center is found to be a remote galaxy with a heliocentric velocity of +46530 km/s.

  18. The puzzling assembly of the Milky Way halo – contributions from dwarf Spheroidals and globular clusters

    Directory of Open Access Journals (Sweden)

    Lépine S.

    2012-02-01

    Full Text Available While recent sky surveys have uncovered large numbers of ever fainter Milky Way satellites, their classification as star clusters, low-luminosity galaxies, or tidal overdensities remains often unclear. Likewise, their contributions to the build-up of the halo is yet debated. In this contribution we will discuss the current knowledge of the stellar populations and chemo-dynamics in these puzzling satellites, with a particular focus on dwarf spheroidal galaxies and the globular clusters in the outer Galactic halo. Also the question of whether some of the outermost halo objects are dynamically associated with the (Milky Way halo at all is addressed in terms of proper measurements in the remote Leo I and II dwarf galaxies.

  19. The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem

    CERN Document Server

    Fattahi, Azadeh; Sawala, Till; Frenk, Carlos S; Sales, Laura V; Oman, Kyle; Schaller, Matthieu; Wang, Jie

    2016-01-01

    We examine the dark matter content of satellite galaxies in Lambda-CDM cosmological hydrodynamical simulations of the Local Group from the APOSTLE project. We find excellent agreement between simulation results and estimates for the 9 brightest Galactic dwarf spheroidals (dSphs) derived from their stellar velocity dispersions and half-light radii. Tidal stripping plays an important role by gradually removing dark matter from the outside in, affecting in particular fainter satellites and systems of larger-than-average size for their luminosity. Our models suggest that tides have significantly reduced the dark matter content of Can Ven I, Sextans, Carina, and Fornax, a prediction that may be tested by comparing them with field galaxies of matching luminosity and size. Uncertainties in observational estimates of the dark matter content of individual dwarfs have been underestimated in the past, at times substantially. We use our improved estimates to revisit the `too-big-to-fail' problem highlighted in earlier N-...

  20. Tidal debris of dwarf spheroidals as a probe of structure formation models

    CERN Document Server

    Mayer, L; Quinn, T; Governato, F; Stadel, J; Mayer, Lucio; Moore, Ben; Quinn, Thomas; Governato, Fabio; Stadel, Joachim

    2002-01-01

    Recent observations suggest that Carina and other nearby dwarf spheroidal galaxies are surrounded by unbound stars tidally stripped by the Milky Way. We run high-resolution N-Body simulations of dwarf galaxies orbiting within the Milky Way halo to determine if such observations can be explained with dark matter potentials as those implied by current structure formation models. We show that tidal forces acting on dwarfs with constant density cores or with cuspy profiles having a low concentration parameter ($c < 5$) lead to flat outer stellar density profiles like that of Carina for a variety of orbital configurations. On the contrary, it is more difficult to remove stars from cuspy dark matter halos with concentrations as high as predicted by CDM models at the mass scale of dwarf galaxies ($c \\simgt 10$) and the data can only be reproduced assuming nearly radial orbits. Our simulations show that Carina is losing mass at a fractional rate $< 0.1$ Gyr$^{-1}$ and its mass-to-light ratio could be inflated b...

  1. The first carbon-enhanced metal-poor star found in the Sculptor dwarf spheroidal

    CERN Document Server

    Skuladottir, Asa; Salvadori, Stefania; Hill, Vanessa; Pettini, Max; Shetrone, Matthew D; Starkenburg, Else

    2014-01-01

    The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connection with the chemical elements produced by the first stellar generation is still highly debated. In contrast to the Galactic halo, not many CEMP stars have been found in the dwarf spheroidal galaxies around the Milky Way. Here we present detailed abundances from ESO VLT/UVES high-resolution spectroscopy for ET0097, the first CEMP star found in the Sculptor dwarf spheroidal. This star has $\\text{[Fe/H]}=-2.03\\pm0.10$, $\\text{[C/Fe]}=0.51\\pm0.10$ and $\\text{[N/Fe]}=1.18\\pm0.20$. The traditional definition of CEMP stars is $\\text{[C/Fe]}\\geq0.70$, but taking into account that this luminous red giant branch star has undergone mixing, it was intrinsically less nitrogen enhanced and more carbon-rich when it was formed, and so it falls under the definition of CEMP stars, as proposed by Aoki et al. (2007) to account for this effect. By making corrections for this mixing, we conclude that the star had $\\text{[C/Fe]}\\approx0.8$ during its e...

  2. Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Lardo, C; Pancino, E; Romano, D; de Boer, T J L; Starkenburg, E; Tolstoy, E; Irwin, M J; Jablonka, P; Tosi, M

    2015-01-01

    We present [C/Fe] and [N/Fe] abundance ratios and CH({\\lambda}4300) and S({\\lambda}3883) index measurements for 94 red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy from VLT/VIMOS MOS observations at a resolving power R= 1150 at 4020 {\\AA}. This is the first time that [N/Fe] abundances are derived for a large number of stars in a dwarf spheroidal. We found a trend for the [C/Fe] abundance to decrease with increasing luminosity on the RGB across the whole metallicity range, a phenomenon observed in both field and globular cluster giants, which can be interpreted in the framework of evolutionary mixing of partially processed CNO material. Both our measurements of [C/Fe] and [N/Fe] are in good agreement with the theoretical predictions for stars at similar luminosity and metallicity. We detected a dispersion in the carbon abundance at a given [Fe/H], which cannot be ascribed to measurement uncertainties alone. We interpret this observational evidence as the result of the contribution of differ...

  3. Inside the whale: the structure and dynamics of the isolated Cetus dwarf spheroidal

    CERN Document Server

    Lewis, G F; Chapman, S C; McConnachie, A; Irwin, M J; Tolstoy, E; Tanvir, N R

    2006-01-01

    This paper presents a study of the Cetus dwarf, an isolated dwarf galaxy within the Local Group. A matched-filter analysis of the INT/WFC imaging of this system reveals no evidence for significant tidal debris that could have been torn from the galaxy, bolstering the hypothesis that Cetus has never significantly interacted with either the Milky Way or M31. Additionally, Keck/Deimos spectroscopic observations identify this galaxy as a distinct kinematic population possessing a systematic velocity of $-87\\pm2{\\rm km\\ s^{-1}}$ and with a velocity dispersion of $17\\pm2{\\rm km s^{-1}}$; while tentative, these data also suggest that Cetus possesses a moderate rotational velocity of $\\sim8{\\rm km s^{-1}}$. The population is confirmed to be relatively metal-poor, consistent with ${\\rm [Fe/H]\\sim-1.9}$, and, assuming virial equilibrium, implies that the Cetus dwarf galaxy possesses a $M/L\\sim70$. It appears, therefore, that Cetus may represent a primordial dwarf galaxy, retaining the kinematic and structural propertie...

  4. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentino, Giuliana [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Bono, Giuseppe [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Stetson, Peter B. [National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Tolstoy, Eline [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Salaris, Maurizio [Astrophysics Research Institute, Liverpool John Moores University IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L35RF (United Kingdom); Bernard, Edouard J., E-mail: giuliana.fiorentino@oabo.inaf.it [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  5. The ACS LCID project : RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy tucana

    NARCIS (Netherlands)

    Bernard, Edouard J.; Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D.; Stetson, Peter B.; Cole, Andrew A.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous, longe

  6. Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Saha, A.; Olsen, K.; Irwin, M. J.; Battaglia, G.; Hill, V.; Shetrone, M. D.; Fiorentino, G.; Cole, A.

    2011-01-01

    We present wide-field photometry of resolved stars in the nearby Sculptor dwarf spheroidal galaxy using CTIO/MOSAIC, going down to the oldest main sequence turn-off. The accurately flux calibrated wide field colour-magnitude diagrams can be used to constrain the ages of different stellar populations

  7. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Martins, F.; Bournaud, F.; Monier, R.; Reylé, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and

  8. Not too big, not too small: the dark haloes of the dwarf spheroidals in the Milky Way

    NARCIS (Netherlands)

    Vera-Ciro, Carlos A.; Helmi, Amina; Starkenburg, Else; Breddels, Maarten A.

    2013-01-01

    We present a new analysis of the Aquarius simulations done in combination with a semi-analytic galaxy formation model. Our goal is to establish whether the subhaloes present in Lambda cold dark matter simulations of Milky Way (MW) like systems could host the dwarf spheroidal (dSph) satellites of our

  9. Stellar Kinematics and Metallicities in the Draco and Ursa Minor Dwarf Spheroidal Galaxies from WHT/AF2-WYFFOS

    NARCIS (Netherlands)

    Jin, S.; Irwin, M.; Tolstoy, E.; Lewis, J.; Hartke, J.; Skillen, I.; Barcells, M.; Trager, S.

    2016-01-01

    We present preliminary results from our chemo-dynamical survey of two Milky Way dwarf spheroidal (dSph) galaxies, Draco and Ursa Minor. The two galaxies have similar radial velocities and reside in close proximity in the outskirts of the Milky Way halo, yet exhibit noteworthy differences in their mo

  10. A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Tolstoy, E.; Jablonka, P.; Shetrone, M.; Venn, K. A.; Spite, M.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Primas, F.; François, P.; Kaufer, A.; Szeifert, T.; Arimoto, N.; Sadakane, K.

    2010-01-01

    For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R ~ 20 000, λ = 5340-5620; 6120-6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected, r

  11. A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Letarte, B.; Hill, V.; Tolstoy, E.; Jablonka, P.; Shetrone, M.; Venn, K. A.; Spite, M.; Irwin, M. J.; Battaglia, G.; Helmi, A.; Primas, F.; François, P.; Kaufer, A.; Szeifert, T.; Arimoto, N.; Sadakane, K.

    2010-01-01

    For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R similar to 20 000, lambda = 5340-5620; 6120-6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrical

  12. THE ACS LCID PROJECT. I. SHORT-PERIOD VARIABLES IN THE ISOLATED DWARF SPHEROIDAL GALAXIES CETUS AND TUCANA

    NARCIS (Netherlands)

    Bernard, Edouard J.; Monelli, Matteo; Gallart, Carme; Drozdovsky, Igor; Stetson, Peter B.; Aparicio, Antonio; Cassisi, Santi; Mayer, Lucio; Cole, Andrew A.; Hidalgo, Sebastian L.; Skillman, Evan D.; Tolstoy, Eline

    2009-01-01

    We present the first study of the variable star populations in the isolated dwarf spheroidal galaxies (dSphs) Cetus and Tucana. Based on Hubble Space Telescope images obtained with the Advanced Camera for Surveys in the F475W and F814W bands, we identified 180 and 371 variables in Cetus and Tucana,

  13. The ACS LCID project : RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy tucana

    NARCIS (Netherlands)

    Bernard, Edouard J.; Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D.; Stetson, Peter B.; Cole, Andrew A.; Drozdovsky, Igor; Hidalgo, Sebastian L.; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous,

  14. The vast thin plane of M31 co-rotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

    CERN Document Server

    Hammer, François; Fouquet, Sylvain; Pawlowski, Marcel S; Kroupa, Pavel; Puech, Mathieu; Flores, Hector; Wang, Jianling

    2013-01-01

    The recent discovery by Ibata et al. (2013) of a vast thin disk of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disk. We find that the VTDS plane is coinciding with several stellar, tidally-induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the Giant Stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disk, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. W...

  15. The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Giuseppina; Tolstoy, E.; Helmi, A.; /Kapteyn Astron. Inst., Groningen; Irwin, M.J.; /Cambridge U., Inst. of Astron.; Letarte, B.; /Kapteyn Astron. Inst.,; Jablonka, P.; /LASTRO Observ.; Hill, V.; /Meudon Observ.; Venn, K.A.; /Victoria U.; Shetrone, M.D.; /Texas U., McDonald Observ.; Arimoto, N.; /Tokyo, Astron. Observ.; Primas,; /European Southern Observ.; Kaufer, A.; /European Southern Obs., Chile; Francois, P.; /Meudon Observ.; Szeifert, T.; /European Southern Obs., Chile; Abel, T.; /KIPAC, Menlo Park; Sadakane, K.; /Osaka Kyoiku U.

    2006-08-28

    As part of the DART project we have used the ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES* GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. Fornax dSph has had a complicated evolution and contains significant numbers of young, intermediate age and old stars. We investigate the relation between these different components by studying their photometric, kinematic and abundance distributions. We re-derived the structural parameters of the Fornax dwarf spheroidal using our wide field imaging covering the galaxy out to its tidal radius, and analyzed the spatial distribution of the Fornax stars of different ages as selected from Colour-Magnitude Diagram analysis. We have obtained accurate velocities and metallicities from spectra in the Ca II triplet wavelength region for 562 Red Giant Branch stars which have velocities consistent with membership in Fornax dwarf spheroidal. We have found evidence for the presence of at least three distinct stellar components: a young population (few 100 Myr old) concentrated in the center of the galaxy, visible as a Main Sequence in the Colour-Magnitude Diagram; an intermediate age population (2-8 Gyr old); and an ancient population (> 10Gyr), which are distinguishable from each other kinematically, from the metallicity distribution and in the spatial distribution of stars found in the Colour-Magnitude Diagram. From our spectroscopic analysis we find that the ''metal rich'' stars ([Fe/H] > -1.3) show a less extended and more concentrated spatial distribution, and display a colder kinematics than the ''metal poor'' stars ([Fe/H] < -1.3). There is tentative evidence that the ancient stellar population in the center of Fornax does not exhibit equilibrium kinematics. This could be a sign of a relatively recent accretion of external material, such as the merger of another

  16. Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy

    CERN Document Server

    Bonnivard, V; Maurin, D; Geringer-Sameth, A; Koushiappas, S M; Walker, M G; Mateo, M; Olszewski, E; Bailey, J I

    2015-01-01

    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum~II. This is done using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS). We find Reticulum~II to have one of the highest J-factor when compared to the other Milky Way dSphs. We have also checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum~II may provide a unique window on dark matter particle properties.

  17. Dark Matter Annihilation and Decay Profiles for the Reticulum II Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Bonnivard, Vincent; Combet, Céline; Maurin, David; Geringer-Sameth, Alex; Koushiappas, Savvas M.; Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Bailey, John I., III

    2015-08-01

    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter (DM). In this work, we reconstruct the DM annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System, we find Reticulum II’s J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on DM particle properties.

  18. Observations of MilkyWay Dwarf Spheroidal galaxies with the Fermi-LAT detector and

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Buson, S.; Caliandro, G.A.; /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /UC, Santa Cruz /INFN, Pisa /DAPNIA, Saclay /INFN, Trieste /Trieste U. /INFN, Padua /Padua U. /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /IASF, Milan /George Mason U. /NASA, Goddard

    2010-05-26

    We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope, which is conducting an all-sky {gamma}-ray survey in the 20 MeV to >300 GeV energy range, provides a new opportunity to test particle dark matter models through the expected {gamma}-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant {gamma}-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the {gamma}-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10{sup -9} photons cm{sup -2}s{sup -1}. Using recent stellar kinematic data, the {gamma}-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section ofWIMPs in several widely studied extensions of the standard model, including its supersymmetric extension and other models that received recent attention. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The {gamma}-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e{sup +}e{sup -} data, including low-mass wino-like neutralinos and models with TeV masses pair

  19. The interstellar medium in Andromeda's dwarf spheroidal galaxies - I. Content and origin of the interstellar dust

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-07-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterized by very different interstellar medium properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail in an earlier work, we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  20. Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

    CERN Document Server

    Klimentowski, J; Kazantzidis, S; Prada, F; Mayer, L; Mamon, G A; Klimentowski, Jaroslaw; Lokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.

    2006-01-01

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonst...

  1. VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies

    CERN Document Server

    Acciari, V A; Aune, T; Beilicke, M; Benbow, W; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Finley, J P; Finnegan, G; Furniss, A; Galante, N; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Senturk, G Demet; Smith, A W; Steele, D; Swordy, S P; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Zitzer, B

    2010-01-01

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by VERITAS. These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hours. The 95% confidence upper limits on the integral gamma...

  2. Investigation of the Puzzling Abundance Pattern in the Stars of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Li, Hongjie; Zhang, Bo

    2013-01-01

    Many works have found unusual characteristics of elemental abundances in nearby dwarf galaxies. This implies that there is a key factor of galactic evolution that is different from that of the Milky Way (MW). The chemical abundances of the stars in the Fornax dwarf spheroidal galaxy (Fornax dSph) provide excellent information for setting constraints on the models of the galactic chemical evolution. In this work, adopting the five-component approach, we fit the abundances of the Fornax dSph stars, including $\\alpha$ elements, iron group elements and neutron-capture elements. For most sample stars, the relative contributions from the various processes to the elemental abundances are not usually in the MW proportions. We find that the contributions from massive stars to the primary $\\alpha$ elements and iron group elements increase monotonously with increasing [Fe/H]. This means that the effect of the galactic wind is not strong enough to halt star formation and the contributions from massive stars to $\\alpha$ e...

  3. OGLE Study of the Sagittarius Dwarf Spheroidal Galaxy and its M54 Globular Cluster

    CERN Document Server

    Hamanowicz, A; Udalski, A; Mroz, P; Soszynski, I; Szymanski, M K; Skowron, J; Poleski, R; Wyrzykowski, L; Kozlowski, S; Pawlak, M; Ulaczyk, K

    2016-01-01

    We use the fundamental-mode RR Lyr-type variable stars (RRab) from OGLE-IV to draw a 3D picture of the central part of the tidally disrupted Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy. We estimate the line-of-sight thickness of the Sgr dSph stream to be 6sigma~6.2 kpc. Based on OGLE-IV observations collected in seasons 2011-2014 we conduct a comprehensive study of stellar variability in the field of the globular cluster M54 (NGC 6715) residing in the core of this dwarf galaxy. Among the total number of 270 detected variables we report the identification of 173 RR Lyr stars, 4 Type II Cepheids, 51 semi-regular variable red giants, 3 SX Phe-type stars, 18 eclipsing binary systems. Seventy-three variables are new discoveries. The distance to the cluster determined from RRab stars is d_M54=26.2+/-0.2_stat+/-1.3_sys kpc. From the location of RRab stars in the period-amplitude (Bailey) diagram we confirm the presence of two old populations, both in the cluster and the Sgr dSph stream.

  4. The Composition of the Sagittarius Dwarf Spheroidal Galaxy and Implications for Nucleosynthesis and Chemical Evolution

    CERN Document Server

    McWilliam, A; William, Andrew Mc; Smecker-Hane, Tammy A.

    2004-01-01

    We outline the results of a study of the chemical composition of 14 stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph). For the Sgr dSph stars with [Fe/H]>-1 the abundances are highly unusual, showing a striking enhancement in heavy s-process elements, increasing with [Fe/H], deficiencies of the alpha- elements (O, Si, Ca, and Ti), deficiencies of Al and Na, and deficiencies of the iron-peak elements Mn and Cu. Our abundances suggest that the composition of the metal-rich Sgr dSph stars is dominated by the ejecta of an old, metal-poor population, including products of AGB stars and type Ia supernovae (SN). We suggest two scenarios to explain the observations: Prolonged chemical evolution in a galaxy experiencing significant mass-loss, and chemical enrichment with episodic bursts of star formation. The Galactic globular cluster Omega Cen, and the Fornax dwarf galaxy show similar abundance patterns, which suggests that those systems evolved similar to the Sgr dSph.

  5. Study of the Sextans dwarf spheroidal galaxy from the DART CaII triplet survey

    CERN Document Server

    Battaglia, G; Helmi, A; Irwin, M; Parisi, P; Hill, V; Jablonka, P

    2010-01-01

    We use VLT/FLAMES intermediate resolution (R~6500) spectra of individual red giant branch stars in the near-infrared CaII triplet (CaT) region to investigate the wide-area metallicity properties and internal kinematics of the Sextans dwarf spheroidal galaxy (dSph). Our final sample consists of 174 probable members of Sextans with accurate line-of-sight velocities (+- 2 km/s) and CaT [Fe/H] measurements (+- 0.2 dex). We use the MgI line at 8806.8 \\AA\\, as an empirical discriminator for distinguishing between probable members of the dSph (giant stars) and probable Galactic contaminants (dwarf stars). Sextans shows a similar chemo-dynamical behaviour to other Milky Way dSphs, with its central regions being more metal rich than the outer parts and with the more metal-rich stars displaying colder kinematics than the more metal-poor stars. Hints of a velocity gradient are found along the projected major axis and along an axis at P.A.=191 deg, however a larger and more spatially extended sample may be necessary to p...

  6. The extremely low-metallicity tail of the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Starkenburg, Else; Tolstoy, Eline; Francois, Patrick; Irwin, Mike J; Boschman, Leon; Venn, Kim A; de Boer, Thomas J L; Lemasle, Bertrand; Jablonka, Pascale; Battaglia, Giuseppina; Groot, Paul; Kaper, Lex

    2012-01-01

    We present abundances for seven stars in the (extremely) low-metallicity tail of the Sculptor dwarf spheroidal galaxy, from spectra taken with X-shooter on the ESO VLT. Targets were selected from the Ca II triplet (CaT) survey of the Dwarf Abundances and Radial Velocities Team (DART) using the latest calibration. Of the seven extremely metal-poor candidates, five stars are confirmed to be extremely metal-poor (i.e., [Fe/H]<-3 dex), with [Fe/H]=-3.47 +/- 0.07 for our most metal-poor star. All are around or below [Fe/H]=-2.5 dex from the measurement of individual Fe lines. These values are in agreement with the CaT predictions to within error bars. None of the seven stars is found to be carbon-rich. We estimate a 2-13% possibility of this being a pure chance effect, which could indicate a lower fraction of carbon-rich extremely metal-poor stars in Sculptor compared to the Milky Way halo. The [alpha/Fe] ratios show a range from +0.5 to -0.5, a larger variation than seen in Galactic samples although typically ...

  7. The absence of diffuse gas around the dwarf spheroidal galaxy Leo I

    CERN Document Server

    Bowen, D V; Ferrara, A; Blades, J C; Brinks, E; Bowen, David V.; Tolstoy, Eline; Ferrara, Andrea; Brinks, Elias

    1996-01-01

    We have obtained spectra of three QSO/AGNs with the GHRS aboard the {\\it Hubble Space Telescope} to search for absorption from low column density gas in the halo of the dwarf spheroidal (dSph) galaxy Leo I. The probe sightlines pass 2.1, 3.7, and 8.1 kpc from the center of the galaxy, but no C IV, Si II, or Si IV absorption is found at the velocity of Leo I. We suggest that the column density of hydrogen which exists within 2 - 4 kpc of the galaxy is $N_H $< 10^{3}$ and $< 10^{4} M_{ødot}$ around Leo I, for simple models in which gas is distributed as a spherical halo, or as a shell, respectively. Although we cannot rule out the possibility that a significant fraction of hot gas exists along the lines of sight, in an ionization state higher than C IV or Si IV absorption lines would reveal, the results leave us with the impression that Leo I is a dSph galaxy which is isolated and inactive at the present epoch, a conclusion at odds with many theories of dwarf galaxy formation and evolution.

  8. Search for dark matter annihilation signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies

    CERN Document Server

    :,; Aharonian, F; Benkhali, F Ait; Akhperjanian, A G; Angüner, E; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Dalton, M; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ata\\"ı, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goudelis, A; Grondin, M -H; Grudzińska, M; Hadsch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemiére, A; Lemoine-Goumard, M; Lenain, J -P; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Serpico, P; Sol, H; Spanier, F; Spengler, G; Spieß, F; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J -P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2014-01-01

    Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore they are amongst the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the re-analysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross-section applicable to Weakly Interacting Massive Particles (...

  9. VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Dickherber, R.; Duke, C.; Finley, J. P.; Finnegan, G.; Furniss, A.; Galante, N.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Senturk, G. Demet; Smith, A. W.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vincent, S.; Wagner, R. G.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wissel, S.; Zitzer, B.; VERITAS Collaboration

    2010-09-01

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Boötes 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ~20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4-2.2) × 10-12photonscm-2 s-1. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (langσvrang ~ 300 GeV c -2). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.

  10. VERITAS search for vhe gamma-ray emission from dwarf spheroidal galaxies.

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V. A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Byrum, K.; Smith, A. W.; Wagner, R. G. (High Energy Physics); (Fred Lawrence Whipple Observatory); (Univ. of California at Los Angeles); (Univ. of California at Santa Cruz); (Washington Univ.)

    2010-09-10

    Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bootes 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of {approx}20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4-2.2) x 10{sup -12} photons cm{sup -2} s{sup -1}. We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (<{sigma}{nu}> {approx}< 10{sup -23} cm{sup 3} s{sup -1} for m{sub x} {approx}> 300 GeV c{sup -2}). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.

  11. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    Science.gov (United States)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  12. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Kormendy, John [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Mail Stop C1400, Austin, TX 78712-1205 (United States); Freeman, K. C., E-mail: kormendy@astro.as.utexas.edu, E-mail: kenneth.freeman@anu.edu.au [Research School of Astronomy and Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.

  13. VLT/FLAMES spectroscopy of Red Giant Branch stars in the Carina dwarf spheroidal galaxy

    CERN Document Server

    Lemasle, B; Tolstoy, E; Venn, K A; Shetrone, M D; Irwin, M J; de Boer, T J L; Starkenburg, E; Salvadori, S

    2011-01-01

    The ages of individual Red Giant Branch stars (RGB) can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the 1st dredge-up). This means that they trace the ISM in the galaxy at the time the star formed, and hence the chemical enrichment history of the galaxy. CMD analysis has shown the Carina dwarf spheroidal (dSph) to have had an unusually episodic star formation history (SFH) which is expected to be reflected in the abundances of different chemical elements. We use the VLT-FLAMES spectrograph in HR mode (R~20000) to measure the abundances of several chemical elements in a sample of 35 RGB stars in Carina. We also combine these abundances with photometry to derive age estimates for these stars. This allows us to determine which of two distinct star formation (SF) episodes the stars in our sample belong to, and thus to define the relationship between SF and chemical...

  14. Searching for decaying dark matter in deep XMM-Newton observation of the Draco dwarf spheroidal

    CERN Document Server

    Ruchayskiy, Oleg; Iakubovskyi, Dmytro; Bulbul, Esra; Eckert, Dominique; Franse, Jeroen; Malyshev, Denys; Markevitch, Maxim; Neronov, Andrii

    2015-01-01

    We present results of a search for the 3.5 keV emission line in our recent very long (~1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau > (7-9) x 10^27 s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3 sigma significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1 sigm...

  15. Enrichment of r-process elements in dwarf spheroidal galaxies in chemo-dynamical evolution model

    CERN Document Server

    Hirai, Yutaka; Saitoh, Takayuki R; Fujii, Michiko S; Hidaka, Jun; Kajino, Toshitaka

    2015-01-01

    The rapid neutron-capture process (r-process) is a major process to synthesize elements heavier than iron, but the astrophysical site(s) of r-process is not identified yet. Neutron star mergers (NSMs) are suggested to be a major r-process site from nucleosynthesis studies. Previous chemical evolution studies however require unlikely short merger time of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements relative to iron, [Eu/Fe], of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs) which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate that enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] by NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. Thi...

  16. Dynamical models for the Sculptor dwarf spheroidal in a Lambda CDM universe

    CERN Document Server

    Strigari, Louis E; White, Simon D M

    2014-01-01

    The Sculptor dwarf spheroidal galaxy contains two distinct stellar populations: one metal-rich and the other metal-poor. Several authors have argued that in order for these two populations to reside in the same gravitational potential, the dark matter halo must have a core similar to that observed in the stellar count profile. This would rule out the cuspy Navarro-Frenk-White (NFW) density profiles predicted for halos and subhalos by dark matter only simulations of the Lambda Cold Dark Matter (Lambda-CDM) cosmological model. We present a new theoretical framework to analyse stellar count and velocity observations in a self-consistent manner based on separable models, f(E,J)=g(J)h(E), for the distribution function of an equilibrium spherical system. We use this machinery to analyse available photometric and kinematic data for the two stellar populations in Sculptor. We find, contrary to some previous claims, that the data are consistent with populations in equilibrium within an NFW dark matter potential with s...

  17. Mass assembly history and infall time of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Wang, Mei-Yu; Lovell, Mark R; Frenk, Carlos S; Zentner, Andrew R

    2015-01-01

    We use cosmological simulations to identify dark matter subhalo host candidates of the Fornax dwarf spheroidal galaxy using the stellar kinematic properties of Fornax. We consider cold dark matter (CDM), warm dark matter (WDM), and decaying dark matter (DDM) simulations for our models of structure formation. The subhalo candidates in CDM typically have smaller mass and higher concentrations at z = 0 than the corresponding candidates in WDM and DDM. We examine the formation histories of the ~ 100 Fornax candidate subhalos identified in CDM simulations and, using approximate luminosity-mass relationships for subhalos, we find two of these subhalos that are consistent with both the Fornax luminosity and kinematics. These two subhalos have a peak mass over ten times larger than their z = 0 mass. We suggest that in CDM the dark matter halo hosting Fornax must have been severely stripped of mass and that it had an infall time into the Milky Way of ~ 9 Gyr ago. In WDM, we find that candidate subhalos consistent with...

  18. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca

    2015-01-01

    We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...

  19. VLT\\/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies I. Nucleosynthesis and Abundance Ratios

    CERN Document Server

    Shetrone, M; Tolstoy, E; Primas, F; Hill, V; Kaufer, A

    2003-01-01

    We have used UVES on VLT-UT2 to take spectra of 15 red giants in the Sculptor, Fornax, Carina and Leo I dwarf spheroidal galaxies. We measure the abundances of alpha, iron peak, s and r-process elements. No dSph giants in our sample show the deep mixing abundance pattern seen in nearly all globular clusters. At a given metallicity, the dSph giants exhibit lower [el/Fe] abundance ratios for the alpha elements than stars in the Galactic halo. This can be caused by a slow star formation rate and contribution from Type Ia SN, and/or a small star formation event (low total mass) and mass dependent Type II SN yields. Differences in the even-Z [el/Fe] ratios between these galaxies, as well as differences in the evolution of the s&r-process elements are interpreted in terms of their star formation histories. Comparison of the dSph abundances with those of the Galactic halo reveals some consistencies. In particular, we find stars that mimic the abundance pattern found by Nissen & Shuster (1997) for metal-rich,...

  20. Neutron-capture element deficiency of the Hercules dwarf spheroidal galaxy

    CERN Document Server

    Koch, Andreas; Aden, Daniel; Matteucci, Francesca

    2013-01-01

    We present an assessment of the barium abundance ratios for red giant member stars in the faint Hercules dwarf spheroidal (dSph) galaxy. Our results are drawn from intermediate-resolution FLAMES/GIRAFFE spectra around the Ba II 6141.71 AA absorption line at low signal-to-noise ratios. For three brighter stars we were able to gain estimates from direct equivalent-width measurements, while for the remaining eight stars only upper limits could be obtained. These results are investigated in a statistical manner and indicate very low Ba abundances of log epsilon (Ba) < 0.7 dex (3 sigma). We discuss various possible systematic biasses, first and foremost, a blend with the Fe I 6141.73 AA-line, but most of those would only lead to even lower abundances. A better match with metal-poor halo and dSph stars can only be reached by including a large uncertainty in the continuum placement. This contrasts with the high dispersions in iron and calcium (in excess of 1 dex) in this galaxy. While the latter spreads are typic...

  1. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    Science.gov (United States)

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  2. The metal-poor Knee in the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Hendricks, Benjamin; Lanfranchi, Gustavo A; Boeche, Corrado; Walker, Matthew; Johnson, Christian I; Penarrubia, Jorge; Gilmore, Gerard

    2014-01-01

    We present alpha-element abundances of Mg, Si, and Ti for a large sample of field stars in two outer fields of the Fornax dwarf spheroidal galaxy (dSph), obtained with VLT/GIRAFFE (R~16,000). Due to the large fraction of metal-poor stars in our sample, we are able to follow the alpha-element evolution from [Fe/H]=-2.5 continuously to [Fe/H]=-0.7 dex. For the first time we are able to resolve the turnover from the Type II supernovae (SNe) dominated, alpha-enhanced plateau down to subsolar [alpha/Fe] values due to the onset of SNe Ia, and thus to trace the chemical enrichment efficiency of the galaxy. Our data support the general concept of an alpha-enhanced plateau at early epochs, followed by a well-defined "knee", caused by the onset of SNe Ia, and finally a second plateau with sub-solar [alpha/Fe] values. We find the position of this knee to be at [Fe/H]=-1.9 and therefore significantly more metal-poor than expected from comparison with other dSphs and standard evolutionary models. Surprisingly, this value ...

  3. Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R.C.; /SLAC; Drlica-Wagner, A.; Murgia, S.; /SLAC /KIPAC, Menlo Park; Bloom, E.D.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2012-03-15

    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of {approx}71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (mLSP < 50 GeV) annihilating into {tau}-pairs and heavier LSPs annihilating into b{bar b}. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.

  4. Structural properties of non-spherical dark halos in Milky Way and Andromeda dwarf spheroidal galaxies

    CERN Document Server

    Hayashi, Kohei

    2015-01-01

    We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies, based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the twelve bright dSphs, we find that these galaxies associate, in general, elongated dark halos even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of dark halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available da...

  5. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies

    CERN Document Server

    Qian, Yong-Zhong

    2012-01-01

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that for infall rates far below the net rate of gas loss to star formation and outflows...

  6. A unique isolated dwarf spheroidal galaxy at D=1.9 Mpc

    CERN Document Server

    Makarov, Dmitry; Sharina, Margarita; Uklein, Roman; Tikhonov, Anton; Guhathakurta, Puragra; Kirby, Evan; Terekhova, Natalya

    2012-01-01

    We present a photometric and spectroscopic study of the unique isolated nearby dSph galaxy KKR25. The galaxy was resolved into stars with HST/WFPC2 including old red giant branch and red clump. We have constructed a model of the resolved stellar populations and measured the star formation rate and metallicity as function of time. The main star formation activity period occurred about 12.6 to 13.7 Gyr ago. These stars are mostly metal-poor, with a mean metallicity [Fe/H]\\sim -1 to -1.6 dex. About 60 per cent of the total stellar mass was formed during this event. There are indications of intermediate age star formation in KKR25 between 1 and 4 Gyr with no significant signs of metal enrichment for these stars. Long-slit spectroscopy was carried out using the Russian 6-m telescope of the integrated starlight and bright individual objects in the galaxy. We have discovered a planetary nebula (PN) in KKR25. This is the first known PN in a dwarf spheroidal galaxy outside the Local Group. We have measured its oxygen ...

  7. Estimating the GeV Emission of Millisecond Pulsars in Dwarf Spheroidal Galaxies

    CERN Document Server

    Winter, Miles; Bechtol, Keith; Vandenbroucke, Justin

    2016-01-01

    We estimate the conventional astrophysical emission intrinsic to dwarf spheroidal satellite galaxies (dSphs) of the Milky Way, focusing on millisecond pulsars (MSPs), and evaluate the potential for confusion with dark matter (DM) annihilation signatures at GeV energies. In low-density stellar environments, such as dSphs, the abundance of MSPs is expected to be proportional to stellar mass. Accordingly, we construct the $\\gamma$-ray luminosity function of MSPs in the Milky Way disk, where $>90$ individual MSPs have been detected with the $\\textit{Fermi}$ Large Area Telescope (LAT), and scale this luminosity function to the stellar masses of 30 dSphs to estimate the cumulative emission from their MSP populations. We predict that MSPs in the highest stellar mass dSphs, Fornax and Sculptor, produce a $\\gamma$-ray flux $>500$ MeV of $\\sim10^{-11}$~ph~cm$^{-2}$~s$^{-1}$, which is a factor $\\sim10$ below the current LAT sensitivity at high Galactic latitudes. The MSP emission in ultra-faint dSphs, including targets ...

  8. Chemical Feature of Eu abundance in the Draco dwarf spheroidal galaxy

    CERN Document Server

    Tsujimoto, Takuji; Shigeyama, Toshikazu; Aoki, Wako

    2015-01-01

    Chemical abundance of r-process elements in nearby dwarf spheroidal (dSph) galaxies is a powerful tool to probe the site of r-process since their small-mass scale can sort out individual events producing r-process elements. A merger of binary neutron stars is a promising candidate of this site. In faint, or less massive dSph galaxies such as the Draco, a few binary neutron star mergers are expected to have occurred at most over the whole past. We have measured chemical abundances including Eu and Ba of three red giants in the Draco dSph by Subaru/HDS observation. The Eu detection for one star with [Fe/H]=-1.45 confirms a broadly constant [Eu/H] of ~-1.3 for stars with [Fe/H]>-2. This feature is shared by other dSphs with similar masses, i.e., the Sculptor and the Carina, and suggests that neutron star merger is the origin of r-process elements in terms of its rarity. In addition, two very metal-poor stars with [Fe/H]=-2.12 and -2.51 are found to exhibit very low Eu abundances such as [Eu/H]<-2 with an impl...

  9. Foreground effect on the $J$-factor estimation of classical dwarf spheroidal galaxies

    CERN Document Server

    Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2016-01-01

    The gamma-ray observation of the dwarf spheroidal galaxies (dSphs) is a promising approach to search for the dark matter annihilation (or decay) signal. The dSphs are the nearby satellite galaxies with a clean environment and dense dark matter halo so that they give stringent constraints on the ${\\cal O}(1)$ TeV dark matter. However, recent studies have revealed that current estimation of astrophysical factors relevant for the dark matter searches are not conservative, where the various non-negligible systematic uncertainties are not taken into account. Among them, the effect of foreground stars on the astrophysical factors has not been paid much attention, which becomes more important for deeper and wider stellar surveys in the future. In this article, we assess the effects of the foreground contamination by generating the mock samples of stars and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and find that the cuts on the velocity and surface gra...

  10. Discovery of true, likely and possible symbiotic stars in the dwarf spheroidal NGC 205

    CERN Document Server

    Gonçalves, Denise R; de la Rosa, Ignacio G; Akras, Stavros

    2014-01-01

    In this paper we discuss the photometric and spectroscopic observations of newly discovered (symbiotic) systems in the dwarf spheroidal galaxy NGC 205. The Gemini Multi-Object Spectrograph on-off band [O III] 5007 A emission imaging highlighted several [O III] line emitters, for which optical spectra were then obtained (Gon\\c{c}alves et al. 2014). The detailed study of the spectra of three objects allow us to identify them as true, likely and possible symbiotic systems (SySts), the first ones discovered in this galaxy. SySt-1 is unambiguously classified as a symbiotic star, because of the presence of unique emission lines which belong only to symbiotic spectra, the well known O VI Raman scattered lines. SySt-2 is only possibly a SySt because the Ne VII Raman scattered line at 4881 A, recently identified in a well studied Galactic symbiotic as another very conspicuous property of symbiotic, could as well be identified as N III or [Fe III]. Finally, SySt-3 is likely a symbiotic binary because in the red part of...

  11. Foreground effect on the J-factor estimation of classical dwarf spheroidal galaxies

    Science.gov (United States)

    Ichikawa, Koji; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei; Horigome, Shun-ichi

    2017-07-01

    The gamma-ray observation of the dwarf spheroidal galaxies (dSphs) is a promising approach to search for the dark matter annihilation (or decay) signal. The dSphs are the nearby satellite galaxies with a clean environment and dense dark matter halo so that they give stringent constraints on the O(1) TeV dark matter. However, recent studies have revealed that current estimation of astrophysical factors relevant for the dark matter searches are not conservative, where the various non-negligible systematic uncertainties are not taken into account. Among them, the effect of foreground stars on the astrophysical factors has not been paid much attention, which becomes more important for deeper and wider stellar surveys in the future. In this article, we assess the effects of the foreground contamination by generating the mock samples of stars and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and find that the cuts on the velocity and surface gravity can efficiently eliminate the contamination. We also propose a new likelihood function that includes the foreground distribution function. We apply this likelihood function to the fit of the three types of the mock data (Ursa Minor, Draco with large dark matter halo and Draco with small halo) and three cases of the observation. The likelihood successfully reproduces the input J-factor value while the fit without considering the foreground distribution gives a large deviation from the input value by a factor of 3.

  12. DISCOVERY OF MIRA VARIABLE STARS IN THE METAL-POOR SEXTANS DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Tsuyoshi [Japan Spaceguard Association, 1716-3 Ookura, Bisei, Ibara, Okayama 714-1411 (Japan); Matsunaga, Noriyuki; Nakada, Yoshikazu [Kiso Observatory, Institute of Astronomy, School of Science, University of Tokyo, 10762-30 Mitake, Kiso-machi, Kiso-gun, Nagano 397-0101 (Japan); Hasegawa, Takashi, E-mail: sakamoto@spaceguard.or.jp [Gunma Astronomical Observatory, 6860-86 Nakayama, Takayama, Agatsuma, Gunma 377-0702 (Japan)

    2012-12-10

    We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal galaxy (dSph). We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the I{sub c} band show large-amplitude (3.7 and 0.9 mag) and long-period (326 {+-} 15 and 122 {+-} 5 days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras (75.3{sup +12.8}{sub -10.9} and 79.8{sup +11.5}{sub -9.9} kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph (90.0 {+-} 10.0 kpc). These are the first Miras found in a stellar system with a metallicity as low as [Fe/H] {approx} -1.9 than any other known system with Miras.

  13. An Empirical Model for Halo Evolution and Global Gas Dynamics of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Yuan, Zhen; Jing, Y P

    2015-01-01

    We present an empirical model for the halo evolution and global gas dynamics of Fornax, the brightest Milky Way (MW) dwarf spheroidal galaxy (dSph). Assuming a global star formation rate psi(t)=lambda_*[M_g(t)/M_sun]^alpha consistent with observations of star formation in nearby galaxies and using the data on Fornax's psi(t), we derive the evolution of the total mass M_g(t) for cold gas in Fornax's star-forming disk and the rate Delta F(t) of net gas flow to or from the disk. We identify the onset of the transition in Delta F(t) from a net inflow to a net outflow as the time t_sat at which the Fornax halo became an MW satellite and estimate the evolution of its total mass M_h(t) at t

  14. MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Jardel, John R.; Gebhardt, Karl [Department of Astronomy, The University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Fabricius, Maximilian H.; Williams, Michael J. [Max-Planck Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85741 Garching bei Muenchen (Germany); Drory, Niv, E-mail: jardel@astro.as.utexas.edu [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510 Mexico D.F. (Mexico)

    2013-02-15

    We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 {<=} r {<=} 700 pc. The profile for r {>=} 20 pc is well fit by a power law with slope {alpha} = -1.0 {+-} 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.

  15. A Suprime-Cam study of the stellar population of Ursa Major I dwarf spheroidal galaxy

    CERN Document Server

    Okamoto, Sakurako; Yamada, Yoshihiko; Onodera, Masato

    2008-01-01

    We present deep and wide V, I CCD photometry of Ursa Major I (UMa I) dwarf spheroidal galaxy (dSph) in Local Group. The images of the galaxy were taken by Subaru/Suprime-Cam wide field camera, covering a field of 34\\arcmin $\\times$ 27\\arcmin located at the centre of the galaxy. Colour-magnitude diagram (CMD) of the UMa I dSph shows a steep and narrow red giant branch (RGB), blue and red horizontal branch (HB), and main sequence (MS) stars. A well-defined main sequence turn-off (MSTO) is found to be located at V$_{0,MSTO}\\sim$23.5 mag. The distance modulus is derived as $(m-M)_0=19.93\\pm0.1$ (corresponding to a distance D$=96.8\\pm4$ kpc) from the V-band magnitude of the horizontal branch (V$_{0,HB}=20.45\\pm0.02$). The mean metallicity of the RGB stars is estimated by the V$-$I colour to [Fe/H]$\\sim-2.0$. The turn-off age estimated by overlaying the theoretical isochrones reveals that most of stars in the UMa I dSph are formed at very early epoch ($\\sim12$Gyrs ago). The isopleth map of stellar number density of...

  16. r-Process enrichment by magnetorotational core-collapse supernovae in the early dwarf spheroidal galaxies

    CERN Document Server

    Tsujimoto, Takuji

    2015-01-01

    One of the hottest open issues in chemical evolution of $r$-process elements is fast enrichment in the early Universe. Clear evidence for it is seen in stellar abundances of extremely metal-poor stars in the Galactic halo. On the other hand, small-mass galaxies are the ideal testbed to follow the evolutionary features of r-process enrichment, given the potential rarity of production events yielding heavy r-process elements. Their occurrences become countable and thus an enrichment path due to each event can be found in the stellar abundances. We examine the chemical feature of Eu abundance at an early stage of [Fe/H] $\\lesssim -2$ in the Draco and Sculptor dwarf spheroidal (dSph) galaxies. Accordingly we constrain the properties of the Eu production in the early dSphs. We find that the Draco dSph experienced a few Eu production events while Eu enrichment took place more continuously in the Sculptor dSph due to its larger stellar mass. The event rate of Eu production is estimated to be about one per $100-200$ ...

  17. The metal abundance distribution of the oldest stellar component in the Sculptor dwarf spheroidal galaxy

    CERN Document Server

    Clementini, G; Bragaglia, A; Fiorenzano, A F M; Held, E V; Gratton, R G

    2005-01-01

    (abridged) Low resolution spectroscopy obtained with FORS2 at the Very Large Telescope (VLT) has been used to measure individual metal abundances ([Fe/H]) for 107 RR Lyrae stars, and trace the metal distribution of the oldest stellar component in the Sculptor dwarf spheroidal galaxy. Their metallicities have an average value of [Fe/H]=-1.83 +/- 0.03 (r.m.s. 0.26 dex) and cover the metallicity range -2.40-1, only 5 stars with -1.4 -1.7). The star-to-star scatter is small (0.19-0.23 dex) but larger than typical errors on individual metallicities (+/- 0.15-0.16 dex), indicating a real spread in metal abundances. The radial velocities have a dispersion of 12.9 km/s, consistent with the dispersion derived for blue horizontal branch stars in Sculptor by Tolstoy et al. (2004), suggesting, along with the metallicity distribution, that most of the RR Lyr's arise from the same burst of stellar formation that produced the metal-poor component giving origin to the galaxy blue horizontal branch, and only a few (if any) co...

  18. The Chemical Enrichment History of the Fornax Dwarf Spheroidal Galaxy from the Infrared Calcium Triplet

    CERN Document Server

    Pont, F; Gallart, C; Hardy, E; Winnick, R A; Pont, Frederic; Zinn, Robert; Gallart, Carme; Hardy, Eduardo; Winnick, Rebeccah

    2004-01-01

    Near infrared spectra were obtained for 117 red giants in the Fornax dwarf spheroidal galaxy with the FORS1 spectrograph on the VLT, in order to study the metallicity distribution of the stars and to lift the age-metallicity degeneracy of the red giant branch (RGB) in the color-magnitude diagram (CMD). Metallicities are derived from the equivalent widths of the infrared Calcium triplet lines at 8498, 8542, and 8662 A, calibrated with data from globular clusters, the open cluster M67 and the LMC. For a substantial portion of the sample, the strength of the Calcium triplet is unexpectedly high, clearly indicating that the main stellar population of Fornax is significantly more metal-rich than could be inferred from the position of its RGB in the CMD. We show that the relative narrowness of the RGB in Fornax is caused by the superposition of stars of very different ages and metallicities. The metallicity distribution in Fornax is centered at [Fe/H]= -0.9, with a metal-poor tail extending to [Fe/H] ~= -2. While t...

  19. Chemical abundances in the nucleus of the Sagittarius dwarf spheroidal galaxy

    Science.gov (United States)

    Mucciarelli, A.; Bellazzini, M.; Ibata, R.; Romano, D.; Chapman, S. C.; Monaco, L.

    2017-09-01

    We present iron, magnesium, calcium, and titanium abundances for 235 stars in the central region of the Sagittarius dwarf spheroidal galaxy (within 9.0' ≃ 70 pc from the centre) from medium-resolution Keck/Deep Imaging Multi-Object Spectrograph spectra. All the considered stars belong to the massive globular cluster M 54 or to the central nucleus of the galaxy (Sgr, N). In particular we provide abundances for 109 stars with [Fe/H] ≥-1.0, more than doubling the available sample of spectroscopic metallicity and α-elements abundance estimates for Sgr dSph stars in this metallicity regime. We find for the first time a metallicity gradient in the Sgr, N population, whose peak iron abundance goes from [Fe/H] =-0.38 for R ≤ 2.5' to [Fe/H] =-0.57 for 5.0 http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A46

  20. Metal-rich carbon stars in the Sagittarius Dwarf Spheroidal galaxy

    CERN Document Server

    Lagadec, Eric; Sloan, G C; Wood, Peter R; Matsuura, Mikako; Bernard-Salas, Jeronimo; Blommaert, J A D L; Cioni, M -R L; Feast, M W; Groenewegen, M A T; Hony, Sacha; Menzies, J W; van Loon, J Th; Whitelock, P A

    2009-01-01

    We present spectroscopic observations from the {\\it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$\\times 10^{-8} $M$_{\\odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars ...

  1. VLT\\/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies II. Implications for Understanding Galaxy Evolution

    CERN Document Server

    Tolstoy, E; Shetrone, M; Primas, F; Hill, V; Szeifert, A K T; Tolstoy, Eline

    2003-01-01

    We have used UVES on VLT-UT2 to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies: Sculptor, Fornax, Carina and Leo I. We measure the abundance variations of numerous elements in these low mass stars with a range of ages (1-15Gyr old). This means that we can effectively measure the chemical evolution of these galaxies WITH TIME. Our results show a significant spread in metallicity with age, but an overall trend consistent with what might be expected from a closed (or perhaps leaky) box chemical evolution scenario over the last 10-15Gyr. We notice that each of these galaxies show broadly similar abundance patterns for all elements measured. This suggests a fairly uniform progression of chemical evolution with time, despite quite a large range of star formation histories. It seems likely that these galaxies had similar initial conditions, and evolve in a similar manner with star formation occurring at a uniformly low rate, even if at different times. With our ...

  2. How to make an ultra-faint dwarf spheroidal galaxy: tidal stirring of disky dwarfs with shallow dark matter density profiles

    CERN Document Server

    Lokas, Ewa L; Mayer, Lucio

    2012-01-01

    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) in the vicinity of the Milky Way (MW) whose origin is still a puzzle. Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10^9 M_sun dark matter (DM) halos. We explore a wide variety of inner density slopes \\rho \\propto r^{-\\alpha} for the dwarf DM halos, ranging from core-like (\\alpha = 0.2) to cuspy (\\alpha = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via the tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z~1, and with intermediate values for the halo inner density slopes (\\rho ...

  3. Variations in a Universal Density Profile for the Milky Way's Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Jardel, John; Gebhardt, K.

    2014-01-01

    On the largest scales, the Cold Dark Matter (CDM) paradigm for structure formation has enjoyed remarkable success in describing the universe we live in. The current frontier in our knowledge of galaxy formation is at the low-mass level. Here we find disagreement between theory and observations in a number of interesting cases. One such problem that has received considerable attention is the debate over the shape of the dark matter density profiles in the Milky Way's dwarf spheroidal (dSph) galaxies, known as the core/cusp problem. CDM simulations predict every halo should have a cuspy profile with an inner logarithmic slope of -1, but some observers have found that profiles with constant density inner cores are preferred. However, a major weakness of this previous work is that the dynamical models constructed to measure the mass distribution have had to assume a parameterization for the dark matter profile--exactly the thing one wishes to measure. For my thesis I introduced a new modeling technique, based on Schwarzschild's method, that instead calculates the dark matter profile non-parametrically. Applying these models to five of the Milky Way's dSphs I found a variety of profile shapes including cores, cusps, and other completely unexpected shapes. When scaled to a common normalization, however, I found the combined profile appears to follow an approximate power law with slope -1. The results of this averaging suggest that the individual formation histories of each galaxy produce differing dark matter profiles, but with a net result that is similar to CDM predictions. To better understand the role baryons play in this process, I compare my results to recent hydrodynamical simulations of the formation of dwarf galaxies. Together, my results and the simulations suggest a trend of flatter profiles in galaxies where more stars have formed. This implies that star formation and dark matter halos are linked through the effects of supernova-induced outflows which are

  4. ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Yutaka; Kajino, Toshitaka [Department of Astronomy, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ishimaru, Yuhri [Department of Material Science,International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Saitoh, Takayuki R. [Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Fujii, Michiko S.; Hidaka, Jun, E-mail: yutaka.hirai@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-8588 (Japan)

    2015-11-20

    The rapid neutron-capture process (r-process) is a major process for the synthesis of elements heavier than iron-peak elements, but the astrophysical site(s) of the r-process has not yet been identified. Neutron star mergers (NSMs) are suggested to be a major r-process site according to nucleosynthesis studies. Previous chemical evolution studies, however, required unlikely short merger times of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements to iron: the [Eu/Fe] of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs), which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate the enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] due to NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time ∼300 Myr from the start of the simulation due to the low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be ≲300 Myr and ∼10{sup −4} year{sup −1}, respectively, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports the argument that NSMs are the major astrophysical site of the r-process.

  5. The interstellar medium in Andromeda's dwarf spheroidal galaxies - II. Multiphase gas content and ISM conditions

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Cormier, Diane; Kaneko, Hiroyuki; Kuno, Nario; Young, Lisa; Bendo, George J.; Boquien, Médéric; Fritz, Jacopo; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Wilson, Christine D.

    2017-03-01

    We make an inventory of the interstellar medium material in three low-metallicity dwarf spheroidal galaxies of the Local Group (NGC 147, NGC 185 and NGC 205). Ancillary H I, CO, Spitzer Infrared Spectrograph spectra, Hα and X-ray observations are combined to trace the atomic, cold and warm molecular, ionized and hot gas phases. We present new Nobeyama CO(1-0) observations and Herschel SPIRE FTS [C I] observations of NGC 205 to revise its molecular gas content. We derive total gas masses of Mg = 1.9-5.5 × 105 M⊙ for NGC 185 and Mg = 8.6-25.0 × 105 M⊙ for NGC 205. Non-detections combine to an upper limit on the gas mass of Mg ≤ 0.3-2.2 × 105 M⊙ for NGC 147. The observed gas reservoirs are significantly lower compared to the expected gas masses based on a simple closed-box model that accounts for the gas mass returned by planetary nebulae and supernovae. The gas-to-dust mass ratios GDR ∼ 37-107 and 48-139 are also considerably lower compared to the expected GDR ∼ 370 and 520 for the low metal abundances in NGC 185 (0.36 Z⊙) and NGC 205 (0.25 Z⊙), respectively. To simultaneously account for the gas deficiency and low gas-to-dust ratios, we require an efficient removal of a large gas fraction and a longer dust survival time (∼1.6 Gyr). We believe that efficient galactic winds (combined with heating of gas to sufficiently high temperatures in order for it to escape from the galaxy) and/or environmental interactions with neighbouring galaxies are responsible for the gas removal from NGC 147, NGC 185 and NGC 205.

  6. Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way

    Science.gov (United States)

    Klimentowski, Jarosław; Łokas, Ewa L.; Kazantzidis, Stelios; Prada, Francisco; Mayer, Lucio; Mamon, Gary A.

    2007-06-01

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal (dSph) galaxies. For this purpose we have run a high-resolution N-body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disc and it has a NFW-like dark matter (DM) halo. After 10 Gyr of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions. We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails. We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated DM haloes. We model the cleaned-up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio (M/L) and velocity anisotropy parameter. We show that even for such a strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and M/L of the dwarf with accuracy typically better than 25 per cent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy. We show that after careful removal of interlopers the velocity dispersion profile of Fornax can be reproduced by a model in which mass traces light with a M/L of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of

  7. Mass Modelling of Dwarf Spheroidal Galaxies: the Effect of Unbound Stars From Tidal Tails And the Milky Way

    Energy Technology Data Exchange (ETDEWEB)

    Klimentowski, Jaroslaw; Lokas, Ewa L.; /Warsaw, Copernicus Astron. Ctr.; Kazantzidis, Stelios; /KIPAC, Menlo Park; Prada, Francisco; /IAA, Granada; Mayer, Lucio; /Zurich,; Mamon, Gary A.; /Paris, Inst. Astrophys. /Meudon Observ.

    2006-11-14

    We study the origin and properties of the population of unbound stars in the kinematic samples of dwarf spheroidal galaxies. For this purpose we have run a high resolution N- body simulation of a two-component dwarf galaxy orbiting in a Milky Way potential. In agreement with the tidal stirring scenario of Mayer et al., the dwarf is placed on a highly eccentric orbit, its initial stellar component is in the form of an exponential disk and it has a NFW-like dark matter halo. After 10 Gyrs of evolution the dwarf produces a spheroidal stellar component and is strongly tidally stripped so that mass follows light and the stars are on almost isotropic orbits. From this final state, we create mock kinematic data sets for 200 stars by observing the dwarf in different directions.We find that when the dwarf is observed along the tidal tails the kinematic samples are strongly contaminated by unbound stars from the tails.We also study another source of possible contamination by adding stars from the Milky Way. We demonstrate that most of the unbound stars can be removed by the method of interloper rejection proposed by den Hartog & Katgert and recently tested on simulated dark matter haloes. We model the cleaned up kinematic samples using solutions of the Jeans equation with constant mass-to-light ratio and velocity anisotropy parameter. We show that even for such strongly stripped dwarf the Jeans analysis, when applied to cleaned samples, allows us to reproduce the mass and mass-to-light ratio of the dwarf with accuracy typically better than 25 percent and almost exactly in the case when the line of sight is perpendicular to the tidal tails. The analysis was applied to the new data for the Fornax dSph galaxy for which we find a mass-to-light ratio of 11 solar units and isotropic orbits. We demonstrate that most of the contamination in the kinematic sample of Fornax probably originates from the Milky Way.

  8. The ACS LCID Project: RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy Tucana

    CERN Document Server

    Bernard, Edouard J; Monelli, Matteo; Aparicio, Antonio; Cassisi, Santi; Skillman, Evan D; Stetson, Peter B; Cole, Andrew A; Drozdovsky, Igor; Hidalgo, Sebastian L; Mateo, Mario; Tolstoy, Eline

    2008-01-01

    We present a study of the radial distribution of RR Lyrae variables, which present a range of photometric and pulsational properties, in the dwarf spheroidal galaxy Tucana. We find that the fainter RR Lyrae stars, having a shorter period, are more centrally concentrated than the more luminous, longer period RR Lyrae variables. Through comparison with the predictions of theoretical models of stellar evolution and stellar pulsation, we interpret the fainter RR Lyrae stars as a more metal-rich subsample. In addition, we show that they must be older than about 10 Gyr. Therefore, the metallicity gradient must have appeared very early on in the history of this galaxy.

  9. RR Lyrae variable stars in M31-M33 super-halo

    Science.gov (United States)

    Tanakul, Nahathai; Sarajedini, Ata

    2017-01-01

    RR Lyrae variable stars can serve as powerful probes of their host stellar populations. Information such as distance, metallicity, reddening, and age can be gleaned from their pulsation properties. Therefore, studying them in the nearest spiral galaxies M31 and M33 will yield important information about the early history of these galaxies. The main goals of this study are: 1) To investigate the Oosterhoff type of RR Lyrae stars in M31 and M33 and compare them with the Milky Way to better understand the formation of these galaxies. 2) To investigate the early formation history of these two galaxies through knowledge of their RR Lyrae stars. In order to achieve these goals, we have analyzed 10 fields in M31 and M33 (6 fields in M31 and 4 fields in M33) using archival imaging from the Hubble Space Telescope. Published data for M31, M33, and several M31 dwarf spheroidal galaxies are also used to study the global properties of RR Lyrae in these systems. The results are then compared with those in the Milky Way galaxy.

  10. A new method of estimating the mass-to-light ratio of the Ursa Minor dwarf spheroidal galaxy

    CERN Document Server

    Gómez-Flechoso, M A

    2003-01-01

    Dwarf satellite galaxies undergo strong tidal forces produced by the main galaxy potential. These forces disturb the satellite, producing asymmetries in its stellar distribution, tidal tail formation, and modifications of the velocity dispersions profiles. Most of these features are observed in the Ursa Minor (UMi) dwarf spheroidal galaxy, which is one of the closest satellites of the Milky Way. These features show that UMi is been tidally disrupted and probably not in virial equilibrium. The high velocity dispersion of UMi could also be a reflection of this tidal disruption and not the signature of the large dark matter content that would be deduced if virial equilibrium is assumed. In order to avoid the uncertainty produced when virial equilibrium is assumed in systems in strong tidal fields, we present a new method of calculating the mass-to-luminosity ratio of disrupted dwarf galaxies. This method is based on numerical simulations and only takes into account the shape of the dwarf density profile and the ...

  11. CARBON ABUNDANCES FOR RED GIANTS IN THE DRACO DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Shetrone, Matthew D.; Stanford, Laura M. [McDonald Observatory, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Smith, Graeme H. [University of California ObservatoriesLick Observatory, Department of Astronomy and Astrophysics, UC Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States); Siegel, Michael H. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, State College, PA 16801 (United States); Bond, Howard E., E-mail: shetrone@astro.as.utexas.edu, E-mail: graeme@ucolick.org, E-mail: siegel@astro.psu.edu, E-mail: bond@stsci.edu [9615 Labrador Ln., Cockeysville, MD 21030 (United States)

    2013-05-15

    Measurements of [C/Fe], [Ca/H], and [Fe/H] have been derived from Keck I LRISb spectra of 35 giants in the Draco dwarf spheroidal galaxy. The iron abundances are derived by a spectrum synthesis modeling of the wavelength region from 4850 to 5375 A, while calcium and carbon abundances are obtained by fitting the Ca II H and K lines and the CH G band, respectively. A range in metallicity of -2.9 {<=} [Fe/H] {<=} -1.6 is found within the giants sampled, with a good correlation between [Fe/H] and [Ca/H]. The great majority of stars in the sample would be classified as having weak absorption in the {lambda}3883 CN band, with only a small scatter in band strengths at a given luminosity on the red giant branch. In this sense the behavior of CN among the Draco giants is consistent with the predominantly weak CN bands found among red giants in globular clusters of metallicity [Fe/H] < -1.8. Over half of the giants in the Draco sample have [Fe/H] > -2.25, and among these there is a trend for the [C/Fe] abundance to decrease with increasing luminosity on the red giant branch. This is a phenomenon that is also seen among both field and globular cluster giants of the Galactic halo, where it has been interpreted as a consequence of deep mixing of material between the base of the convective envelope and the outer limits of the hydrogen-burning shell. However, among the six Draco giants observed that turn out to have metallicities -2.65 < [Fe/H] < -2.25 there is no such trend seen in the carbon abundance. This may be due to small sample statistics or primordial inhomogeneities in carbon abundance among the most metal-poor Draco stars. We identify a potential carbon-rich extremely metal-poor star in our sample. This candidate will require follow-up observations for confirmation.

  12. 'Sculptor'-ing the Galaxy? The Chemical Compositions of Red Giants in the Sculptor Dwarf Spheroidal Galaxy

    CERN Document Server

    Geisler, D; Wallerstein, G; González, G; Charbonnel, C; Geisler, Doug; Smith, Verne V.; Wallerstein, George; Gonzalez, Guillermo; Charbonnel, Corinne

    2004-01-01

    We have used high-resolution, high signal-to-noise spectra obtained with the VLT and UVES to determine abundances of 17 elements in 4 red giants in the Sculptor dwarf spheroidal galaxy. Our [Fe/H] values range from --2.10 to --0.97, confirming previous findings of a large metallicity spread. We have combined our data with similar data for five Sculptor giants studied recently to form one of the largest samples of high resolution abundances yet obtained for a dwarf spheroidal galaxy, covering essentially the full known metallicity range. These properties allow us to establish trends of [X/Fe] with [Fe/H] for many elements, X. The trends are significantly different from the trends seen in galactic halo and globular cluster stars. We compare our Sculptor sample to their most similar Galactic counterparts and find substantial differences remain even with these stars. The many discrepancies in the relationships between [X/Fe] as seen in Sculptor compared with Galactic field stars indicates that our halo cannot be ...

  13. THE CHEMICAL SIGNATURE OF A RELIC STAR CLUSTER IN THE SEXTANS DWARF SPHEROIDAL GALAXY-IMPLICATIONS FOR NEAR-FIELD COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Torgny [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Freeman, Ken C. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611 (Australia); Silk, Joe, E-mail: torgny.karlsson@physics.uu.se [Physics Department, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2012-11-10

    We present tentative evidence for the existence of a dissolved star cluster at [Fe/H] = -2.7 in the Sextans dwarf spheroidal galaxy. We use the technique of chemical tagging to identify stars that are highly clustered in a multi-dimensional chemical abundance space (C-space). In a sample of six stars, three, possibly four, stars are identified as potential cluster stars. The initial stellar mass of the parent cluster is estimated from two independent observations to be M{sub *,init}=1.9{sup +1.5}{sub -0.9}(1.6{sup +1.2}{sub -0.8}) Multiplication-Sign 10{sup 5} M{sub sun}, assuming a Salpeter (Kroupa) initial mass function. If corroborated by follow-up spectroscopy, this star cluster is the most metal-poor system identified to date. Chemical signatures of remnant clusters in dwarf galaxies like Sextans provide us with a very powerful probe to the high-redshift universe. From available observational data, we argue that the average star cluster mass in the majority of the newly discovered ultra-faint dwarf galaxies was notably lower than it is in the Galaxy today and possibly lower than in the more luminous, classical dwarf spheroidal galaxies. Furthermore, the mean cumulative metallicity function of the dwarf spheroidals falls below that of the ultra-faints, which increases with increasing metallicity as predicted from our stochastic chemical evolution model. These two findings, together with a possible difference in the ([Mg/Fe]) ratio suggest that the ultra-faint dwarf galaxy population, or a significant fraction thereof, and the dwarf spheroidal population were formed in different environments and would thus be distinct in origin.

  14. The evolutionary history of low-luminosity local group dwarf galaxies

    Science.gov (United States)

    van den Bergh, Sidney

    1994-06-01

    The stellar content of Local Group dwarfs fainter than MV = -14.0 is found to correlate with distance from the Galaxy (or M31). Dwarf spheroidals located close to the Galaxy, such as Ursa Minor and Draco, only experienced star formation early in their lifetimes. Dwarf spheroidals at intermediate distances, like Leo I, Fornax, and Carina, underwent significant star formation more recently. Finally, star formation is presently still going on in distant dwarfs such as DDO 210 and Phoenix. Leo II and Tucana are, however, dwarfs that do not conform to this pattern. It is tentatively suggested that ram pressure stripping, strong supernova-driven winds, or a high UV flux form the protoGalaxy (or proto-M31) might have removed gas from dwarf galaxies at small galactocentric distances.

  15. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data.

    Science.gov (United States)

    Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S

    2015-12-04

    The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100  GeV annihilating via quark and τ-lepton channels.

  16. Clean Kinematic Samples in Dwarf Spheroidals: An Algorithm for Evaluating Membership and Estimating Distribution Parameters When Contamination is Present

    CERN Document Server

    Walker, Matthew G; Olszewski, Edward W; Sen, Bodhisattva; Woodroofe, Michael

    2008-01-01

    (abridged) We develop an algorithm for estimating parameters of a distribution sampled with contamination, employing a statistical technique known as ``expectation maximization'' (EM). Given models for both member and contaminant populations, the EM algorithm iteratively evaluates the membership probability of each discrete data point, then uses those probabilities to update parameter estimates for member and contaminant distributions. The EM approach has wide applicability to the analysis of astronomical data. Here we tailor an EM algorithm to operate on spectroscopic samples obtained with the Michigan-MIKE Fiber System (MMFS) as part of our Magellan survey of stellar radial velocities in nearby dwarf spheroidal (dSph) galaxies. These samples are presented in a companion paper and contain discrete measurements of line-of-sight velocity, projected position, and Mg index for ~1000 - 2500 stars per dSph, including some fraction of contamination by foreground Milky Way stars. The EM algorithm quantifies both dSp...

  17. MOND Calculations of Bulk Dispersions and Radial Dispersion Profiles of Milky Way and Andromeda Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Alexander, S. G.; Walentosky, M. J.; Messinger, Justin; Staron, Alexander; Blankartz, Benjamin; Clark, Tristan

    2017-02-01

    We present a new computational method for calculating the motion of stars in a dwarf spheroidal galaxy (dSph) that can use either Newtonian gravity or Modified Newtonian Dynamics (MOND). In our model, we explicitly calculate the motion of several thousand stars in a spherically symmetric gravitational potential, and we statistically obtain both the line-of-sight bulk velocity dispersion and dispersion profile. Our results for MOND calculated bulk dispersions for Local Group dSph’s agree well with previous calculations and observations. Our MOND calculated dispersion profiles are compared with the observations of Walker et al. for Milky Way dSph’s, and we present calculated dispersion profiles for a selection of Andromeda dSph’s.

  18. Lack of nuclear clusters in dwarf spheroidal galaxies: implications for massive black holes formation and the cusp/core problem

    Science.gov (United States)

    Arca-Sedda, Manuel; Capuzzo-Dolcetta, Roberto

    2017-01-01

    One of the leading scenarios for the formation of nuclear star clusters in galaxies is related to the orbital decay of globular clusters (GCs) and their subsequent merging, though alternative theories are currently debated. The availability of high-quality data for structural and orbital parameters of GCs allows us to test different nuclear star cluster formation scenarios. The Fornax dwarf spheroidal (dSph) galaxy is the heaviest satellite of the Milky Way and it is the only known dSph hosting five GCs, whereas there are no clear signatures for the presence of a central massive black hole. For this reason, it represents a suited place to study the orbital decay process in dwarf galaxies. In this paper, we model the future evolution of the Fornax GCs simulating them and the host galaxy by means of direct N-body simulations. Our simulations also take into account the gravitational field generated by the Milky Way. We found that if the Fornax galaxy is embedded in a standard cold dark matter halo, the nuclear cluster formation would be significantly hampered by the high central galactic mass density. In this context, we discuss the possibility that infalling GCs drive the flattening of the galactic density profile, giving a possible alternative explanation to the so-called cusp/core problem. Moreover, we briefly discuss the link between GC infall process and the absence of massive black holes in the centre of dSphs.

  19. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    OpenAIRE

    Vivas, A. Katherina; Mateo, Mario

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (

  20. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    CERN Document Server

    Vivas, A Katherina

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxy's tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a dist...

  1. Environmental Mechanisms Shaping the Nature of Dwarf Spheroidal Galaxies: The View of Computer Simulations

    Directory of Open Access Journals (Sweden)

    Lucio Mayer

    2010-01-01

    cosmic ultraviolet ionizing flux was much higher than today, and was thus able to keep the gas in the dwarfs warm and diffuse, were rapidly stripped of their baryons via ram pressure and tidal forces, producing very dark-matter-dominated objects with truncated star-formation histories, such as the Draco dSph. The low star-formation efficiency expected in such low-metallicity objects prior to their infall was crucial for keeping their disks gas dominated until stripping took over. Therefore gas stripping along with inefficient star-formation provides a new feedback mechanism, alternative to photoevaporation or supernovae feedback, playing a crucial role in dwarf galaxy formation and evolution. We also discuss how the ultra-faint dSphs belong to a different population of lower-mass dwarf satellites that were mostly shaped by reionization rather than by environmental mechanisms (“reionization fossils”. Finally, we scrutinize the various caveats in the current understanding of environmental effects as well as other recent ideas on the origin of Local Group dSphs.

  2. Dwarf spheroidal satellites of the Milky Way from dark matter free tidal dwarf galaxy progenitors: maps of orbits

    CERN Document Server

    Casas, R A; Ramírez, K Pena; Kroupa, P

    2012-01-01

    The long term time evolution of tidal dwarf satellite galaxies with two different initial densities orbiting a host galaxy that resembles the Milky Way has been studied using a large set of Newtonian N-Body simulations. From the simulations two maps of the orbital conditions that lead to quasi-equilibrium objects were constructed. It has been found that several orbits of the satellites allow for the existence, for about 1 Gyr or more, of out-of-equilibrium bodies with high apparent mass-to-light ratios. Within this framework the satellites in the quasi-stable phase reproduce the observed satellite properties for about 16% of the orbit for high density progenitors, and for about 66% for progenitors with lower densities An additional simulation for a single satellite with initial mass of 10^7 Msun and Plummer radius of 0.15 kpc leads to remnants in the quasi- equilibrium phase that simultaneously reproduce remarkably well the observational quantities of the UFDGs of the Milky Way. This satellite in the quasi-st...

  3. Hunting a wandering supermassive black hole in the M31 halo hermitage

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Yohei; Mori, Masao [Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Kawaguchi, Toshihiro [Department of Physics and Information Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi 753-8512 (Japan); Saito, Yuriko, E-mail: ymiki@ccs.tsukuba.ac.jp [Department of Astronomical Science, The Graduate University for Advanced Studies (SOKENDAI), Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-03-10

    In the hierarchical structure formation scenario, galaxies enlarge through multiple merging events with less massive galaxies. In addition, the Magorrian relation indicates that almost all galaxies are occupied by a central supermassive black hole (SMBH) of mass 10{sup –3} times the mass of its spheroidal component. Consequently, SMBHs are expected to wander in the halos of their host galaxies following a galaxy collision, although evidence of this activity is currently lacking. We investigate a current plausible location of an SMBH wandering in the halo of the Andromeda galaxy (M31). According to theoretical studies of N-body simulations, some of the many substructures in the M31 halo are remnants of a minor merger occurring about 1 Gyr ago. First, to evaluate the possible parameter space of the infalling orbit of the progenitor, we perform numerous parameter studies using a graphics processing unit cluster. To reduce uncertainties in the predicted position of the expected SMBH, we then calculate the time evolution of the SMBH in the progenitor dwarf galaxy from N-body simulations using the plausible parameter sets. Our results show that the SMBH lies within the halo (∼20-50 kpc from the M31 center), closer to the Milky Way than the M31 disk. Furthermore, the predicted current positions of the SMBH were restricted to an observational field of 0.°6 × 0.°7 in the northeast region of the M31 halo. We also discuss the origin of the infalling orbit of the satellite galaxy and its relationships with the recently discovered vast thin disk plane of satellite galaxies around M31.

  4. Dwarf spheroidal J-factors without priors: A likelihood-based analysis for indirect dark matter searches

    CERN Document Server

    Chiappo, A; Conrad, J; Strigari, L E; Anderson, B; Sanchez-Conde, M A

    2016-01-01

    Line-of-sight integrals of the squared density, commonly called the J-factor, are essential for inferring dark matter annihilation signals. The J-factors of dark matter-dominated dwarf spheroidal satellite galaxies (dSphs) have typically been derived using Bayesian techniques, which for small data samples implies that a choice of priors constitutes a non-negligible systematic uncertainty. Here we report the development of a new fully frequentist approach to construct the profile likelihood of the J-factor. Using stellar kinematic data from several classical and ultra-faint dSphs, we derive the maximum likelihood value for the J-factor and its confidence intervals. We validate this method, in particular its bias and coverage, using simulated data from the Gaia Challenge. We find that the method possesses good statistical properties. The J-factors and their uncertainties are generally in good agreement with the Bayesian-derived values, with the largest deviations restricted to the systems with the smallest kine...

  5. Chemical Abundances in the PN Wray16-423 in the Sagittarius Dwarf Spheroidal Galaxy: Constraining the Dust Composition

    CERN Document Server

    Otsuka, Masaaki

    2015-01-01

    We performed a detailed analysis of elemental abundances, dust features, and polycyclic aromatic hydrocarbons (PAHs) in the C-rich planetary nebula (PN) Wray16-423 in the Sagittarius dwarf spheroidal galaxy, based on a unique dataset taken from the Subaru/HDS, MPG/ESO FEROS, HST/WFPC2, and Spitzer/IRS. We performed the first measurements of Kr, Fe, and recombination O abundance in this PN. The extremely small [Fe/H] implies that most Fe atoms are in the solid phase, considering into account the abundance of [Ar/H]. The Spitzer/IRS spectrum displays broad 16-24 um and 30 um features, as well as PAH bands at 6-9 um and 10-14 um. The unidentified broad 16-24 um feature may not be related to iron sulfide (FeS), amorphous silicate, or PAHs. Using the spectral energy distribution model, we derived the luminosity and effective temperature of the central star, and the gas and dust masses. The observed elemental abundances and derived gas mass are in good agreement with asymptotic giant branch nucleosynthesis models f...

  6. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, A.; et al.

    2015-08-04

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses $\\lesssim 20\\,\\mathrm{GeV}$ annihilating via the $b\\bar{b}$ or τ(+)τ(-) channels.

  7. Insights from the Outskirts: Chemical and Dynamical Properties in the outer Parts of the Fornax Dwarf Spheroidal Galaxy

    CERN Document Server

    Hendricks, Benjamin; Walker, Matthew; Johnson, Christian I; Penarrubia, Jorge; Gilmore, Gerard

    2014-01-01

    We present radial velocities and [Fe/H] abundances for 340 stars in the Fornax dwarf spheroidal from R~16,000 spectra. The targets have been obtained in the outer parts of the galaxy, a region which has been poorly studied before. Our sample shows a wide range in [Fe/H], between -0.5 and -3.0 dex, in which we detect three subgroups. Removal of stars belonging to the most metal-rich population produces a truncated metallicity distribution function that is identical to Sculptor, indicating that these systems have shared a similar early evolution, only that Fornax experienced a late, intense period of star formation (SF). The derived age-metallicity relation shows a fast increase in [Fe/H] at early ages, after which the enrichment flattens significantly for stars younger than ~8 Gyr. Additionally, the data indicate a strong population of stars around 4 Gyr, followed by a second rapid enrichment in [Fe/H]. A leaky-box chemical enrichment model generally matches the observed relation but does not predict a signifi...

  8. Bayesian analysis of resolved stellar spectra: application to MMT/Hectochelle Observations of the Draco dwarf spheroidal

    CERN Document Server

    Walker, Matthew G; Mateo, Mario

    2015-01-01

    We introduce a Bayesian method for fitting faint, resolved stellar spectra in order to obtain simultaneous estimates of redshift and stellar-atmospheric parameters. We apply the method to thousands of spectra---covering 5160-5280 Angs. at resolution R~20,000---that we have acquired with the MMT/Hectochelle fibre spectrograph for red-giant and horizontal branch candidates along the line of sight to the Milky Way's dwarf spheroidal satellite in Draco. The observed stars subtend an area of ~4 deg^2, extending ~3 times beyond Draco's nominal `tidal' radius. For each spectrum we tabulate the first four moments---central value, variance, skewness and kurtosis---of posterior probability distribution functions representing estimates of the following physical parameters: line-of-sight velocity v_los, effective temperature (T_eff), surface gravity (logg) and metallicity ([Fe/H]). After rejecting low-quality measurements, we retain a new sample consisting of 2813 independent observations of 1565 unique stars, including ...

  9. Chemical analysis of carbon stars in the Local Group: I. The Small Magellanic Cloud and the Sagittarius dwarf spheroidal galaxy

    CERN Document Server

    De Laverny, P; Dominguez, I; Plez, B; Straniero, O; Wahlin, R; Eriksson, K; Jørgensen, U G

    2005-01-01

    We present the first results of our ongoing chemical study of carbon stars in the Local Group of galaxies. We used spectra obtained with UVES at the 8.2 m Kueyen-VLT telescope and a new grid of spherical model atmospheres for cool carbon-rich stars which include polyatomic opacities, to perform a full chemical analysis of one carbon star, BMB-B~30, in the Small Magellanic Cloud (SMC) and two, IGI95-C1 and IGI95-C3, in the Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy. Our main goal is to test the dependence on the stellar metallicity of the s-process nucleosynthesis and mixing mechanism occurring in AGB stars. For these three stars, we find important s-element enhancements with respect to the mean metallicity ([M/H]), namely [s/M]$\\approx$+1.0, similar to the figure found in galactic AGB stars of similar metallicity. The abundance ratios derived between elements belonging to the first and second s-process abundance peaks, corresponding to nuclei with a magic number of neutrons N=50 (88Sr, 89Y, 90Zr) and N=82...

  10. Nuclei of dwarf spheroidal galaxies KKs 3 and ESO 269-66 and their counterparts in our Galaxy

    Science.gov (United States)

    Sharina, M. E.; Shimansky, V. V.; Kniazev, A. Y.

    2017-10-01

    We present the analysis of medium-resolution spectra obtained at the Southern African Large Telescope for nuclear globular clusters (GCs) in two dwarf spheroidal galaxies (dSphs). The galaxies have similar star formation histories, but they are situated in completely different environments. ESO 269-66 is a close neighbour of the giant S0 NGC 5128. KKs 3 is one of the few truly isolated dSphs within 10 Mpc. We estimate the helium abundance Y = 0.3, age = 12.6 ± 1 Gyr, [Fe/H] = -1.5, -1.55 ± 0.2 dex, and abundances of C, N, Mg, Ca, Ti, and Cr for the nuclei of ESO 269-66 and KKs 3. Our surface photometry results using Hubble Space Telescope images yield the half-light radius of the cluster in KKs 3, rh = 4.8 ± 0.2 pc. We demonstrate the similarities of medium-resolution spectra, ages, chemical compositions, and structure for GCs in ESO 269-66 and KKs 3 and for several massive Galactic GCs with [Fe/H] ∼ -1.6 dex. All Galactic GCs posses Extended Blue Horizontal Branches and multiple stellar populations. Five of the selected Galactic objects are iron-complex GCs. Our results indicate that the sample GCs observed now in different environments had similar conditions of their formation ∼1 Gyr after the Big Bang.

  11. Dwarf spheroidal J-factors without priors: A likelihood-based analysis for indirect dark matter searches

    Science.gov (United States)

    Chiappo, A.; Cohen-Tanugi, J.; Conrad, J.; Strigari, L. E.; Anderson, B.; Sánchez-Conde, M. A.

    2017-04-01

    Line-of-sight integrals of the squared density, commonly called the J-factor, are essential for inferring dark matter (DM) annihilation signals. The J-factors of DM-dominated dwarf spheroidal satellite galaxies (dSphs) have typically been derived using Bayesian techniques, which for small data samples implies that a choice of priors constitutes a non-negligible systematic uncertainty. Here we report the development of a new fully frequentist approach to construct the profile likelihood of the J-factor. Using stellar kinematic data from several classical and ultra-faint dSphs, we derive the maximum likelihood value for the J-factor and its confidence intervals. We validate this method, in particular its bias and coverage, using simulated data from the Gaia Challenge. We find that the method possesses good statistical properties. The J-factors and their uncertainties are generally in good agreement with the Bayesian-derived values, with the largest deviations restricted to the systems with the smallest kinematic data sets. We discuss improvements, extensions, and future applications of this technique.

  12. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    CERN Document Server

    :,; Albert, A; Bechtol, K; Wood, M; Strigari, L; Sanchez-Conde, M; Baldini, L; Essig, R; Cohen-Tanugi, J; Anderson, B; Bellazzini, R; Bloom, E D; Caputo, R; Cecchi, C; Charles, E; Chiang, J; Conrad, J; de Angelis, A; Funk, S; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Guiriec, S; Gustafsson, M; Kuss, M; Loparco, F; Lubrano, P; Mirabal, N; Mizuno, T; Morselli, A; Ohsugi, T; Orlando, E; Persic, M; Raino, S; Spada, F; Suson, D J; Zaharijas, G; Zimmer, S; Abbott, T; Allam, S; Balbinot, E; Bauer, A H; Benoit-Levy, A; Bernstein, R A; Bernstein, G M; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Rosell, A Carnero; Castander, F J; Covarrubias, R; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Cunha, C E; Eifler, T F; Estrada, J; Evrard, A E; Neto, A Fausti; Fernandez, E; Finley, D A; Flaugher, B; Frieman, J; Gaztanaga, E; Gerdes, D; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; Jain, B; James, D; Jeltema, T; Kent, S; Kron, R; Kuropatkin, N; Lahav, O; Li, T S; Luque, E; Maia, M A G; Makler, M; March, M; Marshall, J; Martini, P; Merritt, K W; Miller, C; Miquel, R; Mohr, J; Neilsen, E; Nord, B; Ogando, R; Peoples, J; Petravick, D; Pieres, A; Plazas, A A; Queiroz, A; Romer, A K; Roodman, A; Rykoff, E S; Sako, M; Sanchez, E; Santiago, B; Scarpine, V; Schubnell, M; Sevilla, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Tucker, D; Walker, A; Wechsler, R H; Wester, W; Williams, P; Yanny, B; Zuntz, J

    2015-01-01

    Due to their proximity, high dark matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of dark matter. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with dark matter halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged dark matter annihilation cross section for these new targets. If confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for dark matter particles with masses < 20 GeV annihilating via the b-bbar or tau+tau- channels.

  13. A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    CERN Document Server

    Zhu, Ling; Watkins, Laura L; Posti, Lorenzo

    2016-01-01

    We present a new discrete chemo-dynamical axisymmetric modeling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of $\\gamma = 0.5 \\pm 0.3$. The metal-rich population is nearly isotropic (with $\\beta_r^{red} = 0.0\\pm0.1$) while the metal-poor population is tangentially anisotropic (with $\\beta_r^{blue} = -0.2\\pm0.1$) around the half light radius of $0.26$ kpc. A weak internal rotation of the m...

  14. The Low-Mass Stellar IMF at High Redshift Faint Stars in the Ursa Minor Dwarf Spheroidal Galaxy

    CERN Document Server

    Wyse, R F G; Feltzing, S; Houdashelt, M L; Wyse, Rosemary F.G.; Gilmore, Gerard; Feltzing, Sofia; Houdashelt, Mark

    1999-01-01

    Low-mass stars, those with main-sequence lifetimes that are of order the age of the Universe, provide unique constraints on the Initial Mass Function (IMF) when they formed. Star counts in systems with simple star-formation histories are particularly straightforward to interpret, and those in old systems allow one to determine the low-mass stellar IMF at large look-back times and thus at high redshift. We present the faint stellar luminosity function (based on optical HST data) in an external galaxy, the Ursa Minor dwarf Spheroidal (dSph). This relatively-nearby (distance 70kpc) companion galaxy to the Milky Way has a stellar population with narrow distributions of age and of metallicity, remarkably similar to that of a classical halo globular cluster such as M92 or M15, i.e. old and metal-poor. Contrasting with globular clusters, the internal velocity dispersion of the Ursa Minor dSph indicates the presence of significant amounts of dark matter. We find that the main sequence stellar luminosity function of t...

  15. The interstellar medium in Andromeda's dwarf spheroidal galaxies: II. Multi-phase gas content and ISM conditions

    CERN Document Server

    De Looze, Ilse; Cormier, Diane; Kaneko, Hiroyuki; Kuno, Nario; Young, Lisa; Bendo, George J; Boquien, Mederic; Fritz, Jacopo; Gentile, Gianfranco; Kennicutt, Robert C; Madden, Suzanne C; Smith, Matthew W L; Wilson, Christine D

    2016-01-01

    We make an inventory of the interstellar medium material in three low-metallicity dwarf spheroidal galaxies of the Local Group (NGC147, NGC185 and NGC205). Ancillary HI, CO, Spitzer IRS spectra, H{\\alpha} and X-ray observations are combined to trace the atomic, cold and warm molecular, ionised and hot gas phases. We present new Nobeyama CO(1-0) observations and Herschel SPIRE FTS [CI] observations of NGC205 to revise its molecular gas content. We derive total gas masses of M_gas = 1.9-5.5x10^5 Msun for NGC185 and M_gas = 8.6-25.0x10^5 Msun for NGC205. Non-detections combine to an upper limit on the gas mass of M_gas =< 0.3-2.2x10^5 Msun for NGC147. The observed gas reservoirs are significantly lower compared to the expected gas masses based on a simple closed-box model that accounts for the gas mass returned by planetary nebulae and supernovae. The gas-to-dust mass ratios GDR~37-107 and GDR~48-139 are also considerably lower compared to the expected GDR~370 and GDR~520 for the low metal abundances in NGC 1...

  16. Identifying Type Ia Supernova Mechanisms in Dwarf Spheroidal Galaxies through Analysis of Iron-peak Elemental Abundances

    Science.gov (United States)

    Guo, Rachel; Xie, Justin Long; Kirby, Evan N.

    2017-01-01

    Through the fusion of nucleons to produce elements heavier than hydrogen and helium, stellar nucleosynthesis produces most of the elements in the universe. Such is the case in a supernova explosion, which creates most of the elements on the periodic table—including iron-peak elements, atomic numbers 21 through 30—through nucleosynthesis and ejects them into the interstellar medium. In this study, we determine the best theoretical supernova model appropriate for the stars in the dwarf spheroidal galaxies Sculptor, Fornax, Ursa Minor, and Leo II by calculating the abundances of iron-peak elements in these stars. To determine iron-peak elemental abundances, we compare synthesized spectra with observed spectra from medium-resolution spectroscopy and determine the best-fitting spectrum by way of a chi-squared minimization. Through inspecting the relationship between the iron-peak element abundances and the abundance of iron itself and by comparing them to previously hypothesized supernova model theories, we discover that the near-Chandrasekhar mass “n1” model, as predicted by Seitenzahl et al., most accurately represents the trends and patterns within our data, presenting new insight into Type Ia supernovae mechanisms within the Milky Way and beyond.

  17. Scl-1013644: a CEMP-s star in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    Salgado, C.; Da Costa, G. S.; Yong, D.; Norris, J. E.

    2016-11-01

    Recent studies of the Milky Way and its satellites have paid special attention to the importance of carbon-enhanced metal-poor (CEMP) stars due to their involvement in Galactic formation history and their possible connection with the chemical elements originating in the first stellar generation. In an ongoing study of red giants in the Sculptor dwarf galaxy, we have discovered a star with extremely strong CN and CH molecular bands. This star, Scl-1013644, has previously been identified by Geisler et al. as a star with an enrichment in the heavy elements. Spectrum synthesis has been used to derive the carbon, nitrogen and barium abundances for Scl-1013644. Our findings are [C/Fe] = +0.8, [N/Fe] = -0.3 and [Ba/Fe] = +2.1 with the latter result consistent with the value found by Geisler et al. These results reveal Scl-1013644 as a CEMP-s star, the third such star discovered in this dwarf galaxy.

  18. The intrinsic ellipticity of dwarf spheroidal galaxies: constraints from the Andromeda system

    CERN Document Server

    Salomon, Jean-Baptiste; Martin, Nicolas; Famaey, Benoit

    2015-01-01

    We present a study of the intrinsic deprojected ellipticity distribution of the satellite dwarf galaxies of the Andromeda galaxy, assuming that their visible components have a prolate shape, which is a natural outcome of simulations. Different possibilities for the orientation of the major axis of the prolate dwarf galaxies are tested, pointing either as close as possible to the radial direction towards the centre of Andromeda, or tangential to the radial direction, or with a random angle in the plane that contains the major axis and the observer. We find that the mean intrinsic axis ratio is ~ 1/2, with small differences depending on the assumed orientation of the population. Our deprojections also suggest that a significant fraction of the satellites, ~ 10%, are tidally disrupted remnants. We find that there is no evidence of any obvious difference in the morphology and major axis orientation between satellites that belong to the vast thin plane of co-rotating galaxies around Andromeda and those that do not...

  19. An Internal Second Parameter Problem in the Sculptor Dwarf Spheroidal Galaxy

    CERN Document Server

    Majewski, S R; Patterson, R J; Rood, R T; Patterson, Richard J.

    1999-01-01

    We present BV photometry of the Sculptor dwarf galaxy to V=22. These data give evidence for a bimodality in Sculptor's metallicity distribution based on a discontinuity in the luminosities of horizontal branch (HB) stars and by the presence of two distinct red giant branch (RGB) bumps. A consistent picture of the evolved stars in Sculptor is given by the presence of (1) a metal-poor population of [Fe/H] ~ -2.3 with an exclusively blue HB and that corresponds to the blueward side of the Sculptor RGB and the more luminous RGB bump, and (2) a less metal-poor population of [Fe/H] ~ -1.5 required to explain the less luminous red HB, the red side of the RGB, and a second, less luminous RGB bump. Best fits to the HB populations are obtained with enhanced oxygen abundances, [O/Fe] ~ +0.5. Variations in the global HB and RGB morphology of Sculptor can be explained by differences in the radial distribution of these two populations. The presence of these two populations shows that the Sculptor dwarf galaxy has an intern...

  20. Scl-1013644: a CEMP-s star in the Sculptor Dwarf Spheroidal Galaxy

    CERN Document Server

    Salgado, C; Yong, D; Norris, J E

    2016-01-01

    Recent studies of the Milky Way and its satellites have paid special attention to the importance of carbon-enhanced metal-poor (CEMP) stars due to their involvement in Galactic formation history and their possible connection with the chemical elements originating in the first stellar generation. In an ongoing study of red giants in the Sculptor dwarf galaxy we have discovered a star with extremely strong CN and CH molecular bands. This star, Scl-1013644, has previously been identified by Geisler et al. (2005) as a star with an enrichment in the heavy elements. Spectrum synthesis has been used to derive the carbon, nitrogen and barium abundances for Scl-1013644. Our findings are [C/Fe] = +0.8, [N/Fe] = -0.3 and [Ba/Fe] = +2.1 with the latter result consistent with the value found by Geisler et al. (2005). These results reveal Scl-1013644 as a CEMP-s star, the third such star discovered in this dwarf galaxy.

  1. Extremely metal-poor stars in classical dwarf spheroidal galaxies: Fornax, Sculptor and Sextans

    CERN Document Server

    Tafelmeyer, M; Hill, V; Shetrone, M; Tolstoy, E; Irwin, M J; Battaglia, G; Helmi, A; Starkenburg, E; Venn, K A; Abel, T; Francois, P; Kaufer, A; North, P; Primas, F; Szeifert, T

    2010-01-01

    We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to have [Fe/H] <= -3 and three stars are below [Fe/H]~-3.5. This constitutes the first evidence that the classical dSphs Fornax and Sextans join Sculptor in containing extremely metal-poor stars and suggests that all of the classical dSphs contain extremely metal-poor stars. One giant in Sculptor at [Fe/H]=-3.96 +- 0.10 is the most metal-poor star ever observed in an external galaxy. We carried out a detailed analysis of the chemical abundances of the alpha, iron peak, and the heavy elements, and we performed a comparison with the Milky Way halo and the ultra faint dwarf stellar populations. Carbon, barium and strontium show distinct features characterized by the early stages of galaxy formation and can constrain the o...

  2. Subaru/HDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy

    CERN Document Server

    Sadakane, K; Ikuta, C; Aoki, W; Jablonka, P; Tajitsu, A

    2004-01-01

    With the HDS (High Dispersion Spectrograph) on the Subaru telescope, we obtained high resolution optical region spectra of three red giant stars (cos 4, cos 82, and cos 347) in the Ursa Minor dwarf spheriodal galaxy. Chemical abundances in these stars have been analysed for 26 elements including alpha-, iron-peak, and neutron capture elements. All three stars show low abundances of alpha-elements (Mg, Si, and Ca) and two stars (cos 82 and cos 347) show high abundance of Mn compared to Galactic halo stars of similar metallicity. One star (cos 4) has been confirmed to be very metal deficient ([Fe/H]=-2.7) and found to show anomalously low abundances of Mn, Cu, and Ba. In another star cos 82 ([Fe/H]=-1.5), we have found large excess of heavy neutron-capture elements with the general abundance pattern similar to the scaled solar system r-process abundance curve. These observational results are rather puzzling: low abundances of alpha-elements and high abundance of Mn seem to sugggest a significant contribution of...

  3. Clearing the Gas from Globular Clusters & Dwarf Spheroidals with Classical Novae

    CERN Document Server

    Moore, Kevin

    2010-01-01

    Observations of the intra-cluster medium (ICM) in galactic globular clusters (GCs) show a systematic deficiency in ICM mass as compared to that expected from accumulation of stellar winds in the time available between galactic plane crossings. In this paper, we reexamine the original hypothesis of Scott and Durisen that hydrogen-rich explosions on accreting white dwarfs, classical novae (CNe), will sweep out the ICM from the cluster more frequently than galactic plane crossings. From the CNe rate and stellar mass-loss rate, this clearing mechanism predicts that ~ 0.03 M_sun should be present in 5x10^5 M_sun) GCs. We find that nova shells are effective at clearing the ICM in low-mass GCs (<= 10^5 M_sun), whereas higher-mass clusters may experience a quiescent time between novae long enough to prevent the next nova shell from escaping. The nova clearing mechanism will also operate in ultra-faint Milky Way satellites, where many upper limits on gas masses are available.

  4. Discovery of Super-Li Rich Red Giants in Dwarf Spheroidal Galaxies

    CERN Document Server

    Kirby, Evan; Guhathakurta, Puragra; Deng, Licai

    2012-01-01

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of K, hot enough for the 7Li(p,alpha)4He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants--14 of which are new discoveries--among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] <~ -0.7) Li-rich red giants, and it includes the most-metal poor Li-enhanced star known ([Fe/H] = -2.82, A(Li)_NLTE = 3.15). Because most of these stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider ...

  5. Variable stars in the ultra-faint dwarf spheroidal galaxy Ursa Major I

    CERN Document Server

    Garofalo, Alessia; Clementini, Gisella; Ripepi, Vincenzo; Dall'Ora, Massimo; Moretti, Maria Ida; Coppola, Giuseppina; Musella, Ilaria; Marconi, Marcella

    2013-01-01

    We have performed the first study of the variable star population of Ursa Major I (UMa I), an ultra-faint dwarf satellite recently discovered around the Milky Way by the Sloan Digital Sky Survey. Combining time series observations in the B and V bands from four different telescopes, we have identified seven RR Lyrae stars in UMa I, of which five are fundamental-mode (RRab) and two are first-overtone pulsators (RRc). Our V, B-V color-magnitude diagram of UMa I reaches V~23 mag (at a signal-to-noise ratio of ~ 6) and shows features typical of a single old stellar population. The mean pulsation period of the RRab stars = 0.628, {\\sigma} = 0.071 days (or = 0.599, {\\sigma} = 0.032 days, if V4, the longest period and brightest variable, is discarded) and the position on the period-amplitude diagram suggest an Oosterhoff-intermediate classification for the galaxy. The RR Lyrae stars trace the galaxy horizontal branch at an average apparent magnitude of = 20.43 +/- 0.02 mag (average on 6 stars and discarding V4), ...

  6. Searching for dwarf spheroidal galaxies and other galactic dark matter substructures with the Fermi large area telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Stanford Univ., CA (United States). Dept. of Physics

    2013-08-01

    Over the past century, it has become clear that about a quarter of the known universe is composed of an invisible, massive component termed ''dark matter''. Some of the most popular theories of physics beyond the Standard Model suggest that dark matter may be a new fundamental particle that could self-annihilate to produce γ rays. Nearby over-densities in the dark matter halo of our Milky Way present some of the most promising targets for detecting the annihilation of dark matter. We used the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope to search for γ rays produced by dark matter annihilation in Galactic dark matter substructures. We searched for γ-ray emission coincident with Milky Way dwarf spheroidal satellite galaxies, which trace the most massive Galactic dark matter substructures. We also sought to identify nearby dark matter substructures that lack all astrophysical tracers and would be detectable only through γ-ray emission from dark matter annihilation. We found no conclusive evidence for γ-ray emission from dark matter annihilation, and we set stringent and robust constraints on the dark matter annihilation cross section. While γ-ray searches for dark matter substructure are currently the most sensitive and robust probes of dark matter annihilation, they are just beginning to intersect the theoretically preferred region of dark matter parameter space. Thus, we consider future prospects for increasing the sensitivity of γ-ray searches through improvements to the LAT instrument performance and through upcoming wide- field optical surveys.

  7. A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    Science.gov (United States)

    Zhu, Ling; van de Ven, Glenn; Watkins, Laura L.; Posti, Lorenzo

    2016-11-01

    We present a new discrete chemo-dynamical axisymmetric modelling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ = 0.5 ± 0.3. The metal-rich population is nearly isotropic (with β _r^{red} = 0.0± 0.1), while the metal-poor population is tangentially anisotropic (with β _r^{blue} = -0.2± 0.1) around the half-light radius of 0.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0 = 0.15 ± 0.15. We run tests using mock data to show that a discrete data set with ˜6000 stars is required to distinguish between a core (γ = 0) and cusp (γ = 1), and to constrain the possible internal rotation to better than 1σ confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.

  8. A Washington Photometric Survey of the Ursa Minor Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Palma, C.; Majewski, S. R.; Siegel, M. H.; Patterson, R. J.

    2000-12-01

    We have conducted a >10 degrees2 survey centered on the Ursa Minor dSph using Washington M and T2 filters and the stellar gravity-sensitive DDO51 filter. Using the Majewski et al. (2000) technique, we map the radial distribution of candidate UMin RGB stars that: (1) lie in the expected giant region in the M - T2, M - DDO51 plane, and (2) lie within a narrow RGB region defined in the CMD using a proper motion-selected sample. We also utilize the very obvious blue HB population to explore the extended spatial distribution of UMin stars. We have constructed radial profiles for UMin using both BHB stars and RGB stars. Both give virtually identical results, which indicates that our RGB selection process is as efficient in eliminating contaminating field dwarf and giant stars as is the BHB selection process even though there are far fewer potential contaminants in the BHB color-magnitude range than there are in the RGB color-magnitude range. A King profile of 60' tidal radius fits the Umin core, but beyond ~60' the density appears to follow a shallow power law decay. Our King tidal radius is consistent with the 51' value of Irwin & Hatzidimitriou (1995), but differs with the 34' value of Kleyna et al. (1998); however, the latter survey only extended to a radius of ~35'. We identify a significant population of candidate Umin RGB stars ( ~20% of 800 identified) and candidate UMin BHB stars ( ~15% of 450 identified) that lie outside the tidal radius of UMin and to the 2.5 degree radial limit of our survey. The distribution of candidate extratidal stars (which includes a number of the best-detected UMin RGB candidates) appears azimuthally isotropic. Our data suggest that either UMin presently has a prodigious mass loss rate, or it has an extensive halo population. We acknowledge support for this research from NSF CAREER Award grant AST 97-02521, the David and Lucile Packard Foundation, and the Research Corporation.

  9. A DEEP SEARCH FOR EXTENDED RADIO CONTINUUM EMISSION FROM DWARF SPHEROIDAL GALAXIES: IMPLICATIONS FOR PARTICLE DARK MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, Kristine [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, Ontario K7K 7B4 (Canada); Mason, Brian S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Nhan, Bang, E-mail: kristine.spekkens@rmc.ca [Department of Astrophysical and Planetary Sciences, University of Colorado, 391 UCB, Boulder, CO 80309 (United States)

    2013-08-10

    We present deep radio observations of four nearby dwarf spheroidal (dSph) galaxies, designed to detect extended synchrotron emission resulting from weakly interacting massive particle (WIMP) dark matter annihilations in their halos. Models by Colafrancesco et al. (CPU07) predict the existence of angularly large, smoothly distributed radio halos in such systems, which stem from electron and positron annihilation products spiraling in a turbulent magnetic field. We map a total of 40.5 deg{sup 2} around the Draco, Ursa Major II, Coma Berenices, and Willman 1 dSphs with the Green Bank Telescope (GBT) at 1.4 GHz to detect this annihilation signature, greatly reducing discrete-source confusion using the NVSS catalog. We achieve a sensitivity of {sigma}{sub sub} {approx}< 7 mJy beam{sup -1} in our discrete source-subtracted maps, implying that the NVSS is highly effective at removing background sources from GBT maps. For Draco we obtained approximately concurrent Very Large Array observations to quantify the variability of the discrete source background, and find it to have a negligible effect on our results. We construct radial surface brightness profiles from each of the subtracted maps, and jackknife the data to quantify the significance of the features therein. At the {approx}10' resolution of our observations, foregrounds contribute a standard deviation of 1.8 mJy beam{sup -1} {<=} {sigma}{sub ast} {<=} 5.7 mJy beam{sup -1} to our high-latitude maps, with the emission in Draco and Coma dominated by foregrounds. On the other hand, we find no significant emission in the Ursa Major II and Willman 1 fields, and explore the implications of non-detections in these fields for particle dark matter using the fiducial models of CPU07. For a WIMP mass M{sub {chi}} = 100 GeV annihilating into b b-bar final states and B = 1 {mu}G, upper limits on the annihilation cross-section for Ursa Major II and Willman I are log (({sigma}v){sub {chi}}, cm{sup 3} s{sup -1}) {approx}< -25

  10. Infrared emission from M31

    Science.gov (United States)

    Habing, H. J.; Miley, G.; Young, E.; Baud, B.; Boggess, N.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.; De Jong, T.; Raimond, E.

    1984-01-01

    Maps of M31 have been obtained at wavelengths of 12, 25, 60, and 100 microns. Emission is detected from the center and from a ring of 50 arcmin radius. The ring is that also seen in H I, in H II, and in radio continuum radiation. The spectrum of the central emission suggests a hotter dust temperature than in the ring. M31 is a weak infrared source, the radiation measured longward of 12 microns being only 3 percent of its total luminosity. The two closest companion galaxies, M32 and NGC 205, have also been detected.

  11. Searching for Dark Matter signatures in dwarf spheroidal galaxies with the ASTRI mini-array in the framework of Cherenkov Telescope Array

    Science.gov (United States)

    Giammaria, P.; Lombardi, S.; Antonelli, L. A.; Brocato, E.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.; ASTRI Collaboration; CTA Consortium, the

    2016-07-01

    The nature of Dark Matter (DM) is an open issue of modern physics. Cosmological considerations and observational evidences indicate a behaviour beyond the Standard Model for feasible DM particle candidates. Non-baryonic DM is compatible with cold and weakly interacting massive particles (WIMPs) expected to have a mass in the range between ∼10 GeV and ∼100 TeV. Indirect DM searches with imaging atmospheric Cherenkov telescopes may play a crucial role in constraining the nature of the DM particle(s) through the study of their annihilation in very high energy (VHE) gamma rays from promising targets, such as the dwarf spheroidal satellite galaxies (dSphs) of the Milky Way. Here, we focus on indirect DM searches in dSphs, presenting the preliminary prospects of this research beyond the TeV mass region achievable with the ASTRI mini-array, proposed to be installed at the Cherenkov Telescope Array southern site.

  12. The dynamics of Andromeda's dwarf galaxies and stellar streams

    CERN Document Server

    Collins, Michelle L M; Ibata, Rodrigo A; Martin, Nicolas F; Preston, Janet

    2016-01-01

    As part of the Z-PAndAS Keck II DEIMOS survey of resolved stars in our neighboring galaxy, Andromeda (M31), we have built up a unique data set of measured velocities and chemistries for thousands of stars in the Andromeda stellar halo, particularly probing its rich and complex substructure. In this contribution, we will discuss the structural, dynamical and chemical properties of Andromeda's dwarf spheroidal galaxies, and how there is no observational evidence for a difference in the evolutionary histories of those found on and off M31's vast plane of satellites. We will also discuss a possible extension to the most significant merger event in M31 - the Giant Southern Stream - and how we can use this feature to refine our understanding of M31's mass profile, and its complex evolution.

  13. Formation of Andromeda II via a gas-rich major merger and an interaction with M31

    CERN Document Server

    Fouquet, Sylvain; del Pino, Andres; Ebrova, Ivana

    2016-01-01

    Andromeda II (And II) has been known for a few decades but only recently observations have unveiled new properties of this dwarf spheroidal galaxy. The presence of two stellar populations, the bimodal star formation history (SFH) and an unusual rotation velocity of And II put strong constrains on its formation and evolution. Following Lokas et al. (2014), we propose a detailed model to explain the main properties of And II involving (1) a gas-rich major merger between two dwarf galaxies at high redshift in the field and (2) a close interaction with M31 about 5 Gyr ago. The model is based on N-body/hydrodynamical simulations including gas dynamics, star formation and feedback. One simulation is designed to reproduce the gas-rich major merger explaining the origin of stellar populations and the SFH. Other simulations are used to study the effects of tidal forces and the ram pressure stripping during the interaction between And II and M31. The model successfully reproduces the SFH of And II including the propert...

  14. Formation of Andromeda II via a gas-rich major merger and an interaction with M31

    Science.gov (United States)

    Fouquet, Sylvain; Łokas, Ewa L.; del Pino, Andrés; Ebrová, Ivana

    2016-10-01

    Andromeda II (And II) has been known for a few decades but only recently observations have unveiled new properties of this dwarf spheroidal galaxy. The presence of two stellar populations, the bimodal star formation history (SFH) and an unusual rotation velocity of And II put strong constrains on its formation and evolution. Following Lokas et al. (2014), we propose a detailed model to explain the main properties of And II involving (1) a gas-rich major merger between two dwarf galaxies at high redshift in the field and (2) a close interaction with M31 about 5 Gyr ago. The model is based on N-body/hydrodynamical simulations including gas dynamics, star formation and feedback. One simulation is designed to reproduce the gas-rich major merger explaining the origin of stellar populations and the SFH. Other simulations are used to study the effects of tidal forces and the ram pressure stripping during the interaction between And II and M31. The model successfully reproduces the SFH of And II including the properties of stellar populations, its morphology, kinematics and the lack of gas. Further improvements to the model are possible via joint modelling of all processes and better treatment of baryonic physics.

  15. Chemical Evolution of M31

    CERN Document Server

    Matteucci, F

    2014-01-01

    We review chemical evolution models developed for M31 as well as the abundance determinations available for this galaxy. Then we present a recent chemical evolution model for M31 including radial gas flows and galactic fountains along the disk, as well as a model for the bulge. Our models are predicting the evolution of the abundances of several chemical species such as H, He, C, N, O, Ne, Mg, Si, S, Ca and Fe. From comparison between model predictions and observations we can derive some constraints on the evolution of the disk and the bulge of M31. We reach the conclusions that Andromeda must have evolved faster than the Milky Way and inside-out, and that its bulge formed much faster than the disk on a timescale $\\leq$ 0.5 Gyr. Finally, we present a study where we apply the model developed for the disk of M31 in order to study the probability of finding galactic habitable zones in this galaxy.

  16. H-alpha survey of low-mass satellites of the neighbouring galaxies M31 and M81

    CERN Document Server

    Kaisin, S S

    2013-01-01

    Images have been obtained at the 6-m telescope at the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences in the H-alpha line and in the continuum for 20 dwarf spheroidal satellites of M31: And XI-And XXX, plus the distant Globular cluster Bol 520. Their star formation rates (FR) are estimated using the H-alpha flux and the ultraviolet FUV flux measured with the GALEX space telescope. Most of the dSph satellites of M31 have extremely low star formation rates with a characteristic upper limit of SFR~5x10^{-7}. We have made similar estimates of SFR from the H-alpha and FUV fluxes for 13 galaxies with low surface brightness recently discovered in the neighborhood of M81. Eleven of them are physical satellites of M81 with typical SFR< 5x10^{-5}. The median stellar masses of these satellites of M31 and M81 are 0.9 and 1.9 million solar masses, respectively. Our H-alpha observations place a 2-3 times stricter limit on the value of SFR than the data from the GALEX satellite, with a substant...

  17. A New View of the Dwarf Spheroidal Satellites of the Milky Way From VLT/FLAMES: Where are the Very Metal Poor Stars?

    Energy Technology Data Exchange (ETDEWEB)

    Helmi, Amina; Irwin, M.J.; Tolstoy, E.; Battaglia, G.; Hill, V.; Jablonka, P.; Venn, K.; Shetrone, M.; Letarte, B.; Arimoto, N.; Abel, T.; Francois, P.; Kaufer, A.; Primas, F.; Sadakane, K.; Szeifert, T.; /Kapteyn Astron. Inst., Groningen /Cambridge U., Inst. of Astron. /Meudon Observ. /LASTRO Observ. /Victoria U. /Texas U., McDonald Observ.

    2006-11-20

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems had been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.

  18. Microlensing search towards M31

    CERN Document Server

    Calchi Novati, S.; Marino, A.A.; Auriere, M.; Baillon, P.; Bouquet, A.; Bozza, V.; Capaccioli, M.; Capozziello, S.; Cardone, V.; Covone, G.; De Paolis, F.; de Ritis, R.; Giraud-Heraud, Y.; Gould, A.; Ingrosso, G.; Jetzer, Ph.; Kaplan, J.; Lambiase, G.; Le Du, Y.; Mancini, L.; Piedipalumbo, E.; Re, V.; Roncadelli, M.; Rubano, C.; Scarpetta, G.; Scudellaro, P.; Sereno, M.; Strafella, F.; Jetzer, Ph.

    2002-01-01

    We present the first results of the analysis of data collected during the 1998-99 observational campaign at the 1.3 meter McGraw-Hill Telescope, towards the Andromeda galaxy (M31), aimed to the detection of gravitational microlensing effects as a probe of the presence of dark matter in our and in M31 halo. The analysis is performed using the pixel lensing technique, which consists in the study of flux variations of unresolved sources and has been proposed and implemented by the AGAPE collaboration. We carry out a shape analysis by demanding that the detected flux variations be achromatic and compatible with a Paczynski light curve. We apply the Durbin-Watson hypothesis test to the residuals. Furthermore, we consider the background of variables sources. Finally five candidate microlensing events emerge from our selection. Comparing with the predictions of a Monte Carlo simulation, assuming a standard spherical model for the M31 and Galactic haloes, and typical values for the MACHO mass, we find that our events...

  19. RECURRENT NOVAE IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Shafter, A. W. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Henze, M. [European Space Astronomy Centre, P.O. Box 78, E-28692 Villanueva de la Cañada, Madrid (Spain); Rector, T. A. [Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508 (United States); Schweizer, F. [Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Hornoch, K. [Astronomical Institute, Academy of Sciences, CZ-251 65 Ondřejov (Czech Republic); Orio, M. [Astronomical Observatory of Padova (INAF), I-35122 Padova (Italy); Pietsch, W. [Max Planck Institute for Extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., D-85741, Garching (Germany); Darnley, M. J.; Williams, S. C.; Bode, M. F. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Bryan, J., E-mail: aws@nova.sdsu.edu [McDonald Observatory, Austin, TX 78712 (United States)

    2015-02-01

    The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova (RN) candidates. To pass the initial screen and qualify as a RN candidate, two or more eruptions were required to be coincident within 0.′1, although this criterion was relaxed to 0.′15 for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential RN systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent, the original plates and published images of the relevant eruptions have been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as RNe, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be RNe, with an additional 4 systems (8 eruptions) being possibly recurrent. It is estimated that ∼4% of the nova eruptions seen in M31 over the past century are associated with RNe. A Monte Carlo analysis shows that the discovery efficiency for RNe may be as low as 10% that for novae in general, suggesting that as many as one in three nova eruptions observed in M31 arise from progenitor systems having recurrence times ≲100 yr. For plausible system parameters, it appears unlikely that RNe can provide a significant channel for the production of Type Ia supernovae.

  20. M31N 2008-12a - The Remarkable Recurrent Nova in M31

    CERN Document Server

    Darnley, M J

    2016-01-01

    M31N 2008-12a is a remarkable recurrent nova within the Andromeda Galaxy. With eleven eruptions now identified, including eight in the past eight years, the system exhibits a recurrence period of one year, and possibly just six months. This short inter eruption period is driven by the combination of a high mass white dwarf ($1.38\\,\\mathrm{M}_\\odot$) and high mass accretion rate ($\\sim1.6\\times10^{-7}\\,\\mathrm{M}_\\odot\\,\\mathrm{yr}^{-1}$). Such a high accretion rate appears to be provided by the stellar wind of a red giant companion. Deep H$\\alpha$ observations have revealed the presence of a vastly extended nebula around the system, which could be the `super-remnant' of many thousands of past eruptions. With a prediction of the white dwarf reaching the Chandrasekhar mass in less than a mega-year, M31N 2008-12a has become the leading pre-explosion type Ia supernova candidate. The 2016 eruption - to be the twelfth detected eruption - is expected imminently, and a vast array of follow-up observations are already...

  1. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Lemasle, B.; de Boer, T.J.L.; Hill, V.; Tolstoy, E.; Irwin, M.J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.; Ballet, J.; Bournaud, F.; Martins, F.; Monier, R.; Reyle, C.

    2014-01-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf speroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between -2.0 and -

  2. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    Science.gov (United States)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  3. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf Spheroidal galaxy?

    CERN Document Server

    Sbordone, L; Bidin, C Moni; Bonifacio, P; Villanova, S; Bellazzini, M; Ibata, R; Chiba, M; Geisler, D; Caffau, E; Duffau, S

    2015-01-01

    The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of "unassociated" MW halo globulars, and of the metal poor Sgr dSph main body population...

  4. Search for Gamma-ray emission from the eight newly-released DES dwarf spheroidal galaxy candidates with Fermi-LAT data

    CERN Document Server

    Li, Shang; Duan, Kai-Kai; Shen, Zhao-Qiang; Huang, Xiaoyuan; Li, Xiang; Fan, Yi-Zhong; Liao, Neng-Hui; Feng, Lei; Chang, Jin

    2015-01-01

    Very recently the Dark Energy Survey (DES) Collaboration has released their second group of Dwarf spheroidal (dSph) galaxy candidates. With the publicly-available Pass 8 data of Fermi-LAT we search for $\\gamma-$ray emissions from the directions of these eight newly discovered dSph galaxy candidates. No statistically significant $\\gamma-$ray signal has been found in the combined analysis of these sources. With the empirically estimated J-factors of these sources, the constraint on the annihilation channel of $\\chi\\chi \\rightarrow \\tau^{+}\\tau^{-}$ is comparable to the bound set by the joint analysis of fifteen previously known dSphs with kinematically constrained J-factors for the dark matter mass $m_\\chi>250$ GeV. In the direction of Tuc III, one of the nearest dSph galaxy candidates that is $\\sim 25$ kpc away, there is a weak $\\gamma-$ray signal and its peak test statistic (TS) value for the dark matter annihilation channel $\\chi\\chi\\rightarrow \\tau^{+}\\tau^{-1}$ is $\\approx 6.7$. The significance of the pos...

  5. Spectroscopic confirmation of the dwarf spheroidal galaxy d0944+71 as a member of the M81 group of galaxies

    CERN Document Server

    Toloba, Elisa; Guhathakurta, Puragra; Chiboucas, Kristin; Crnojevic, Denija; Simon, Joshua

    2016-01-01

    We use Keck/DEIMOS spectroscopy to measure the first velocity and metallicity of a dwarf spheroidal (dSph) galaxy beyond the Local Group using resolved stars. Our target, d0944+71, is a faint dSph found in the halo of the massive spiral galaxy M81 by Chiboucas et al. We coadd the spectra of 27 individual stars and measure a heliocentric radial velocity of $-38\\pm10$~km/s. This velocity is consistent with d0944+71 being gravitationally bound to M81. We coadd the spectra of the 23 stars that are consistent with being red giant branch stars and measure an overall metallicity of ${\\rm [Fe/H]}=-1.3 \\pm 0.3$ based on the calcium triplet lines. This metallicity is consistent with d0944+71 following the metallicity$-$luminosity relation for Local Group dSphs. We investigate several potential sources of observational bias but find that our sample of targeted stars is representative of the metallicity distribution function of d0944+71 and any stellar contamination due to seeing effects is negligible. The low ellipticit...

  6. A MegaCam Survey of Outer Halo Satellites. VI: The Spatially Resolved Star Formation History of the Carina Dwarf Spheroidal Galaxy

    CERN Document Server

    Santana, Felipe A; de Boer, T J L; Simon, Joshua D; Geha, Marla; Côté, Patrick; Guzmán, Andrés E; Stetson, Peter; Djorgovski, S G

    2016-01-01

    We present the spatially resolved star formation history (SFH) of the Carina dwarf spheroidal galaxy, obtained from deep, wide-field g,r imaging and a metallicity distribution from the literature. Our photometry covers $\\sim2$ deg$^2$, reaching up to $\\sim10$ times the half-light radius of Carina with a completeness higher than $50\\%$ at $g\\sim24.5$, more than one magnitude fainter than the oldest turnoff. This is the first time a combination of depth and coverage of this quality has been used to derive the SFH of Carina, enabling us to trace its different populations with unprecedented accuracy. We find that Carina's SFH consists of two episodes well separated by a star formation temporal gap. These episodes occurred at old ($>10$ Gyr) and intermediate ($2$-$8$ Gyr) ages. Our measurements show that the old episode comprises the majority of the population, accounting for $54\\pm5\\%$ of the stellar mass within $1.3$ times the King tidal radius, while the total stellar mass derived for Carina is $1.60\\pm0.09\\tim...

  7. Recurrent Novae in M31

    CERN Document Server

    Shafter, A W; Rector, T A; Schweizer, F; Hornoch, K; Orio, M; Pietsch, W; Darnley, M J; Williams, S C; Bode, M F; Bryan, J

    2014-01-01

    The reported positions of 964 suspected nova eruptions in M31 recorded through the end of calendar year 2013 have been compared in order to identify recurrent nova candidates. To pass the initial screen and qualify as a recurrent nova candidate two or more eruptions were required to be coincident within 0.1', although this criterion was relaxed to 0.15' for novae discovered on early photographic patrols. A total of 118 eruptions from 51 potential recurrent nova systems satisfied the screening criterion. To determine what fraction of these novae are indeed recurrent the original plates and published images of the relevant eruptions have been carefully compared. This procedure has resulted in the elimination of 27 of the 51 progenitor candidates (61 eruptions) from further consideration as recurrent novae, with another 8 systems (17 eruptions) deemed unlikely to be recurrent. Of the remaining 16 systems, 12 candidates (32 eruptions) were judged to be recurrent novae, with an additional 4 systems (8 eruptions) b...

  8. The Sagittarius Dwarf spheroidal Galaxy Survey (SDGS); 2, The stellar content and constraints on the star formation history

    CERN Document Server

    Bellazzini, M; Buonanno, R; Bellazzini, Michele; Ferraro, Francesco R.; Buonanno, Roberto

    1999-01-01

    A detailed study of the Star Formation History of the Sgr dSph galaxy is performed through the analysis of the data from the Sagittarius Dwarf Galaxy Survey (SDGS; Bellazzini, Ferraro & Buonanno 1999). Accurate statistical decontamination of the SDGS Color - Magnitude diagrams allow us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different region of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~ -2.0 to [Fe/H]~ -0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the Star Formation History of the Sgr is derived. According to this scheme, star formation began at very early time from a low metal content Inter Stellar Medium and lasted for several Gyr, coupled with progressive chemical enrichment. The Star Formation Rate (SFR) had a peak from 8 to 10 gyr ago when the mean metallicity ...

  9. The [Fe/H], [C/Fe], and [α/Fe] Distributions of the Boötes I Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Lai, David K.; Lee, Young Sun; Bolte, Michael; Lucatello, Sara; Beers, Timothy C.; Johnson, Jennifer A.; Sivarani, Thirupathi; Rockosi, Constance M.

    2011-09-01

    We present the results of a low-resolution spectral abundance study of 25 stars in the Boötes I dwarf spheroidal (dSph) galaxy. The data were obtained with the low resolution imaging spectrometer instrument at Keck Observatory and allow us to measure [Fe/H], [C/Fe], and [α/Fe] for each star. We find both a large spread in metallicity (2.1 dex in [Fe/H]) as well as a low average metallicity in this system, lang[Fe/H]rang = -2.59, matching previous estimates. This sample includes a newly discovered extremely metal-poor star, with [Fe/H] = -3.8, that is one of the most metal-poor stars yet found in a dSph. We compare the metallicity distribution function of Boötes I to analytic chemical evolution models. While the metallicity distribution function of Boötes I is best fit by an Extra Gas chemical evolution model, leaky-box models also provide reasonable fits. We also find that the [α/Fe] distribution and the carbon-enhanced metal-poor fraction of our sample (12%) are reasonable matches to Galactic halo star samples in the same metallicity range, indicating that at these low metallicities, systems like the Boötes I ultra-faint dSph could have been contributors to the Galactic halo. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Binary populations in Milky Way satellite galaxies: Constraints from multi-epoch data in the Carina, Fornax, Sculptor, and Sextans dwarf spheroidal galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Quinn E. [Department of Science, Borough of Manhattan Community College, City University of New York, New York, NY 10007 (United States); Department of Astrophysics, American Museum of Natural History, New York, NY 10024 (United States)

    2013-12-20

    We introduce a likelihood analysis of multi-epoch stellar line-of-sight velocities to constrain the binary fractions and binary period distributions of dwarf spheroidal galaxies. This method is applied to multi-epoch data from the Magellan/MMFS survey of the Carina, Fornax, Sculptor, and Sextans dSph galaxies, after applying a model for the measurement errors that accounts for binary orbital motion. We find that the Fornax, Sculptor, and Sextans dSphs are consistent with having binary populations similar to that of Milky Way field binaries to within 68% confidence limits, whereas the Carina dSph is remarkably deficient in binaries with periods less than ∼10 yr. If Carina is assumed to have a period distribution identical to that of the Milky Way field, its best-fit binary fraction is 0.14{sub −0.05}{sup +0.28}, and is constrained to be less than 0.5 at the 90% confidence level; thus it is unlikely to host a binary population identical to that of the Milky Way field. By contrast, the best-fit binary fraction of the combined sample of all four galaxies is 0.46{sub −0.09}{sup +0.13}, consistent with that of Milky Way field binaries. More generally, we infer probability distributions in binary fraction, mean orbital period, and dispersion of periods for each galaxy in the sample. Looking ahead to future surveys, we show that the allowed parameter space of binary fraction and period distribution parameters in dSphs will be narrowed significantly by a large multi-epoch survey. However, there is a degeneracy between the parameters that is unlikely to be broken unless the measurement error is of order ∼0.1 km s{sup –1} or smaller, presently attainable only by a high-resolution spectrograph.

  11. The Globular cluster system of M31.

    Science.gov (United States)

    Galleti, S.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    I present here some results of the extensive revision work of M31 confirmed and candidate globular clusters. The Revised Bologna Catalog, RBC, www.bo.astro.it/M31 is currently the largest and most complete database available online. Two spectroscopic surveys are in progress to confirm RBC cluster candidates as well as newly identified candidates at large distances from the center of M31. I have also studied a subsample of bright and young (age < 2 Gyr) clusters in M31 that doesn't appear to have any counterpart in the Milky Way.

  12. The distribution of alpha elements in Andromeda dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Luis C.; Geha, Marla C.; Tollerud, Erik J., E-mail: luis.vargas@yale.edu [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States)

    2014-07-20

    We present alpha to iron abundance ratios for 226 individual red giant branch stars in nine dwarf galaxies of the Andromeda (M31) satellite system. The abundances are measured from the combined signal of Mg, Si, Ca, and Ti lines in Keck/DEIMOS medium-resolution spectra. This constitutes the first large sample of alpha abundance ratios measured in the M31 satellite system. The dwarf galaxies in our sample exhibit a variety of alpha abundance ratios, with the average values in each galaxy ranging from approximately solar ([α/Fe] ∼ + 0.0) to alpha-enhanced ([α/Fe] ∼ + 0.5). These variations do not show a correlation with internal kinematics, environment, or stellar density. We confirm radial gradients in the iron abundance of two galaxies out of the five with sufficient data (NGC 185 and And II). There is only tentative evidence for an alpha abundance radial gradient in NGC 185. We homogeneously compare our results to the Milky Way classical dwarf spheroidals, finding evidence for wider variation in average alpha abundance. In the absence of chemical abundances for the M31 stellar halo, we compare to the Milky Way stellar halo. A stellar halo comprised of disrupted M31 satellites is too metal-rich and inconsistent with the Milky Way halo alpha abundance distribution even if considering only satellites with predominantly old stellar populations. The M31 satellite population provides a second system in which to study chemical abundances of dwarf galaxies and reveals a wider variety of abundance patterns than the Milky Way.

  13. Evidence of halo microlensing in M31

    NARCIS (Netherlands)

    Uglesich, RR; Crotts, APS; Baltz, EA; de Jong, J; Boyle, RP; Corbally, CJ

    2004-01-01

    We have completed an intensive monitoring program of two fields on either side of the center of M31 and report here on the results concerning microlensing of stars in M31. These results stem from a 3 yr study ( the Vatican Advanced Technology Telescope [VATT]/Columbia survey) of microlensing and var

  14. Predicting the Velocity Dispersions of the Dwarf Satellite Galaxies of Andromeda

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-05-01

    Dwarf Spheroidal galaxies in the Local Group are the faintest and most diffuse stellar systems known. They exhibit large mass discrepancies, making them popular laboratories for studying the missing mass problem. The PANDAS survey of M31 revealed dozens of new examples of such dwarfs. As these systems were discovered, it was possible to use the observed photometric properties to predict their stellar velocity dispersions with the modified gravity theory MOND. These predictions, made in advance of the observations, have since been largely confirmed. A unique feature of MOND is that a structurally identical dwarf will behave differently when it is or is not subject to the external field of a massive host like Andromeda. The role of this "external field effect" is critical in correctly predicting the velocity dispersions of dwarfs that deviate from empirical scaling relations. With continued improvement in the observational data, these systems could provide a test of the strong equivalence principle.

  15. A MegaCam Survey of Outer Halo Satellites. VI. The Spatially Resolved Star-formation History of the Carina Dwarf Spheroidal Galaxy

    Science.gov (United States)

    Santana, Felipe A.; Muñoz, Ricardo R.; de Boer, T. J. L.; Simon, Joshua D.; Geha, Marla; Côté, Patrick; Guzmán, Andrés E.; Stetson, Peter; Djorgovski, S. G.

    2016-10-01

    We present the spatially resolved star-formation history (SFH) of the Carina dwarf spheroidal galaxy, obtained from deep, wide-field g and r imaging and a metallicity distribution from the literature. Our photometry covers ˜2 deg2, reaching up to ˜10 times the half-light radius of Carina with a completeness higher than 50% at g ˜ 24.5, more than one magnitude fainter than the oldest turnoff. This is the first time a combination of depth and coverage of this quality has been used to derive the SFH of Carina, enabling us to trace its different populations with unprecedented accuracy. We find that Carina’s SFH consists of two episodes well separated by a star-formation temporal gap. These episodes occurred at old (\\gt 10 Gyr) and intermediate (2-8 Gyr) ages. Our measurements show that the old episode comprises the majority of the population, accounting for 54 ± 5% of the stellar mass within 1.3 times the King tidal radius, while the total stellar mass derived for Carina is 1.60+/- 0.09× {10}6 {M}⊙ , and the stellar mass-to-light ratio is 1.8 ± 0.2. The SFH derived is consistent with no recent star formation, which hints that the observed blue plume is due to blue stragglers. We conclude that the SFH of Carina evolved independently of the tidal field of the Milky Way, since the frequency and duration of its star-formation events do not correlate with its orbital parameters. This result is supported by the age-metallicity relation observed in Carina and the gradients calculated indicating that outer regions are older and more metal-poor. Based on observations obtained with the MegaCam imager on the Magellan II-Clay telescope at Las Campanas Observatory in the Atacama Region, Chile. This telescope is operated by a consortium consisting of the Carnegie Institution of Washington, Harvard University, MIT, the University of Michigan, and the University of Arizona.

  16. THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?

    Energy Technology Data Exchange (ETDEWEB)

    Gallart, Carme; Monelli, Matteo; Aparicio, Antonio; Battaglia, Giuseppina; Drozdovsky, Igor; Hidalgo, Sebastian L. [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Mayer, Lucio [Institut für Theoretische Physik, University of Zurich, Zürich (Switzerland); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, TAS 7005 (Australia); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada); Salvadori, Stefania [Kapteyn Astronomical Institute, Landleven 12, NL-9747 AD Groningen (Netherlands); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN (United States); Stetson, Peter B. [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Weisz, Daniel R., E-mail: monelli@iac.es [Astronomy Department, University of Washington, Box 351580, Seattle, WA (United States)

    2015-10-01

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that started their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.

  17. Asymmetric Warfare: M31 and its Satellites

    CERN Document Server

    Fardal, Mark A

    2009-01-01

    Photometric surveys of M31's halo vividly illustrate the wreckage caused by hierarchical galaxy formation. Several of M31's satellites are being disrupted by M31's tidal field, among them M33 and And I, while other tidal structures are the corpses of satellites already destroyed. The extent to which M31's satellites have left battle scars upon it is unknown; to answer this we need accurate orbits and masses of the perturbers. I focus here on M31's 150-kpc-long Giant Southern Stream (GSS) as an example of how these can be determined even in the absence of a visible progenitor. Comparing N-body models to photometric and spectroscopic data, I find this stream resulted from the disruption of a large satellite galaxy by a close passage about 750 Myr ago. The GSS is connected to several other debris structures in M31's halo. Bayesian sampling of the simulations estimates the progenitor's initial mass as log(Mstar/Msun) = 9.5 +- 0.2, showing it was one of the most massive Local Group galaxies until quite recently. T...

  18. Evidence of Halo Microlensing in M31

    CERN Document Server

    Uglesich, R R; Baltz, E A; De Jong, J T A; Boyle, R P; Corbally, C J; Uglesich, Robert R.; Crotts, Arlin P.S.; Baltz, Edward A.; Jong, Jelte T.A. de; Boyle, Richard P.; Corbally, Christopher J.

    2004-01-01

    We report results from intensive monitoring of two fields on either side of M31,emphasizing microlensing involving stars and masses in M31. These results stem from the three-year VATT/Columbia survey of variability on 3d to 2m timescales. Observations were conducted intensively from 1997-1999, with baselines 1995-now,at the Vatican Advanced Technology Telescope, MDM 1.3-meter, and Isaac Newton telescopes, totaling about 200 epochs. The two fields cover 560 square arcmin total, along the minor axis on either side of M31. Candidate microlensing events are subject to tests to distinguish microlenses from variable stars. Fourprobable microlensing events total, compared to carefully computed event rate and efficiency models, indicate a marginally significant microlensing activity above expectations for the stellar lenses alone in M31 (and the Galaxy) acting as lenses. Maximum likelihood analyses of the event distribution in timescale and across the face of M31 indicates a microlensing dark matter halo fraction con...

  19. On the building blocks of the M31 and Milky Way halos

    Science.gov (United States)

    Monelli, Matteo

    2017-09-01

    We discuss the formation of the halo of M31 and the Milky Way as traced by the population of RR Lyrae stars, in comparison with the population of such stars preent in satellite dwarf galaxies. We find that both halos and the massive dwarf host a population of high amplitude short period RRab stars, absent in low-mass dwarfs. These stars are explained as the metal-rich tail of the RR Lyrae distribution ([Fe/H] ˜ - 1.5), and thus their existence imply fast chemical enrichment in the host system. Their presence in both halos implies that massive building blocks had an important role in their formation.

  20. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndIX, AndXI, AndXII and AndXIII†

    Science.gov (United States)

    Collins, M. L. M.; Chapman, S. C.; Irwin, M. J.; Martin, N. F.; Ibata, R. A.; Zucker, D. B.; Blain, A.; Ferguson, A. M. N.; Lewis, G. F.; McConnachie, A. W.; Peñarrubia, J.

    2010-10-01

    We present the first spectroscopic analysis of the faint M31 satellite galaxies, AndXI and AndXIII, as well as a re-analysis of existing spectroscopic data for two further faint companions, AndIX (correcting for an error in earlier geometric modelling that caused a misclassification of member stars in previous work) and AndXII. By combining data obtained using the Deep Imaging Multi-Object Spectrograph (DEIMOS) mounted on the Keck II telescope with deep photometry from the Suprime-Cam instrument on Subaru, we have identified the most probable members for each of the satellites based on their radial velocities (precise to several down to i ~ 22), distance from the centre of the dwarf spheroidal galaxies (dSphs) and their photometric [Fe/H]. Using both the photometric and spectroscopic data, we have also calculated global properties for the dwarfs, such as systemic velocities, metallicities and half-light radii. We find each dwarf to be very metal poor ([Fe/H] ~ -2 both photometrically and spectroscopically, from their stacked spectrum), and as such, they continue to follow the luminosity-metallicity relationship established with brighter dwarfs. We are unable to resolve dispersion for AndXI due to small sample size and low signal-to-noise ratio, but we set a 1σ upper limit of σv financial support of the W.M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. ‡ E-mail: mlmc2@ast.cam.ac.uk

  1. SIGNATURES OF THE M31-M32 GALACTIC COLLISION

    Energy Technology Data Exchange (ETDEWEB)

    Dierickx, M.; Loeb, A. [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Blecha, L., E-mail: mdierickx@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: lblecha@astro.umd.edu [Department of Astronomy, University of Maryland, CSS 1204, College Park, MD 20742 (United States)

    2014-06-20

    The unusual morphologies of the Andromeda spiral galaxy (M31) and its dwarf companion M32 have been characterized observationally in great detail. The two galaxies' apparent proximity suggests that Andromeda's prominent star-forming ring as well as M32's compact elliptical (cE) structure may result from a recent collision. Here we present the first self-consistent model of the M31-M32 interaction that simultaneously reproduces observed positions, velocities, and morphologies for both galaxies. Andromeda's spiral structure is resolved in unprecedented detail, showing that a rare head-on orbit is not necessary to match Andromeda's ring-like morphology. The passage of M32 through Andromeda's disk perturbs the disk velocity structure. We find tidal stripping of M32's stars to be inefficient during the interaction, suggesting that some cEs are intrinsically compact. Additionally, the orbital solution implies that M32 is currently closer to the Milky Way than models have typically assumed, a prediction that may be testable with upcoming observations.

  2. M31N 2008-12a - The Remarkable Recurrent Nova in M31: Panchromatic Observations of the 2015 Eruption.

    Science.gov (United States)

    Darnley, M. J.; Henze, M.; Bode, M. F.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Ness, J.-U.; Osborne, J. P.; Page, K. L.; Ribeiro, V. A. R. M.; Rodríguez-Gil, P.; Shafter, A. W.; Shara, M. M.; Steele, I. A.; Williams, S. C.; Arai, A.; Arcavi, I.; Barsukova, E. A.; Boumis, P.; Chen, T.; Fabrika, S.; Figueira, J.; Gao, X.; Gehrels, N.; Godon, P.; Goranskij, V. P.; Harman, D. J.; Hartmann, D. H.; Hosseinzadeh, G.; Horst, J. Chuck; Itagaki, K.; José, J.; Kabashima, F.; Kaur, A.; Kawai, N.; Kennea, J. A.; Kiyota, S.; Kučáková, H.; Lau, K. M.; Maehara, H.; Naito, H.; Nakajima, K.; Nishiyama, K.; O'Brien, T. J.; Quimby, R.; Sala, G.; Sano, Y.; Sion, E. M.; Valeev, A. F.; Watanabe, F.; Watanabe, M.; Williams, B. F.; Xu, Z.

    2016-12-01

    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of {P}{rec}=351+/- 13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground- and space-based follow-up programs. In this paper we present the 2015 detection, visible to near-infrared photometry and visible spectroscopy, and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2 m (Hawaii) discovered the 2015 eruption, estimated to have commenced at August 28.28 ± 0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities ˜13,000 km s-1, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early supersoft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is {P}{rec}=174+/- 10 days, and we expect the next eruption of M31N 2008-12a to occur around 2016 mid-September.

  3. Kinematic and Chemical constraints on the formation of M31's inner and outer halo

    CERN Document Server

    Koch, A; Reitzel, D; Martin, N F; Ibata, R A; Chapman, S C; Majewski, S R; Mori, M; Loh, Y -S; Ostheimer, J C

    2007-01-01

    The halo of M31 shows a wealth of substructures that are consistent with satellite accretion. Here we report on kinematic and abundance results from Keck/DEIMOS spectroscopy in the calcium triplet region of over 3500 red giant star candidates along the minor axis and in off-axis spheroid fields of M31. Our data reach out to large radial distances of 160 kpc. The derived velocity distributions show a kinematically cold substructure at 17 kpc that has been reported before. We devise an improved method to measure accurate metallicities from the calcium triplet in low signal-to-noise spectra using a coaddition of the individual lines. The resulting distribution leads us to note an even stronger gradient in the abundance distribution along M31's minor axis than previously detected. The mean metallicity in the outer halo reaches below -2 dex, with individual values as low as -2.6 dex. In the inner spheroid, at 17-19 kpc, we find a sharp decline of ~0.5 dex in metallicity, which roughly coincides with the edge of an...

  4. The Red Supergiant Content of M31

    CERN Document Server

    Massey, Philip

    2016-01-01

    We investigate the red supergiant (RSG) population of M31, obtaining radial velocities of 255 stars. These data substantiate membership of our photometrically-selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be distinguished on the basis of B-V, V-R two-color diagrams. In addition, we use these spectra to measure effective temperatures and assign spectral types, deriving physical properties for 192 RSGs. Comparison with the solar-metallicity Geneva evolutionary tracks indicates astonishingly good agreement. The most luminous RSGs in M31 are likely evolved from 25-30 Mo stars, while the vast majority evolved from stars with initial masses of 20 Mo or less. There is an interesting bifurcation in the distribution of RSGs with effective temperatures that increases with higher luminosities, with one sequence consisting of early K-type supergiants, and with the other consisting of M-type supergiants that become later (cooler) with increasing luminosities. This separation is o...

  5. Hunting A Wandering Supermassive Black Hole in M31 Halo -- Hermitage of Black Hole

    CERN Document Server

    Miki, Yohei; Kawaguchi, Toshihiro; Saito, Yuriko

    2014-01-01

    In the hierarchical structure formation scenario, galaxies enlarge through multiple merging events with less massive galaxies. In addition, the Magorrian relation indicates that almost all galaxies are occupied by a central supermassive black hole (SMBH) of mass $10^{-3}$ of its spheroidal component. Consequently, SMBHs are expected to wander in the halos of their host galaxies following a galaxy collision, although evidence of this activity is currently lacking. We investigate a current plausible location of an SMBH wandering in the halo of the Andromeda galaxy (M31). According to theoretical studies of $N$-body simulations, some of the many substructures in the M31 halo are remnants of a minor merger occurring about 1 Gyr ago. First, to evaluate the possible parameter space of the infalling orbit of the progenitor, we perform numerous parameter studies using a Graphics Processing Unit (GPU) cluster. To reduce uncertainties in the predicted position of the expected SMBH, we then calculate the time evolution ...

  6. The remnants of galaxy formation from a panoramic survey of the region around M31.

    Science.gov (United States)

    McConnachie, Alan W; Irwin, Michael J; Ibata, Rodrigo A; Dubinski, John; Widrow, Lawrence M; Martin, Nicolas F; Côté, Patrick; Dotter, Aaron L; Navarro, Julio F; Ferguson, Annette M N; Puzia, Thomas H; Lewis, Geraint F; Babul, Arif; Barmby, Pauline; Bienaymé, Olivier; Chapman, Scott C; Cockcroft, Robert; Collins, Michelle L M; Fardal, Mark A; Harris, William E; Huxor, Avon; Mackey, A Dougal; Peñarrubia, Jorge; Rich, R Michael; Richer, Harvey B; Siebert, Arnaud; Tanvir, Nial; Valls-Gabaud, David; Venn, Kimberly A

    2009-09-03

    In hierarchical cosmological models, galaxies grow in mass through the continual accretion of smaller ones. The tidal disruption of these systems is expected to result in loosely bound stars surrounding the galaxy, at distances that reach 10-100 times the radius of the central disk. The number, luminosity and morphology of the relics of this process provide significant clues to galaxy formation history, but obtaining a comprehensive survey of these components is difficult because of their intrinsic faintness and vast extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We detect stars and coherent structures that are almost certainly remnants of dwarf galaxies destroyed by the tidal field of M31. An improved census of their surviving counterparts implies that three-quarters of M31's satellites brighter than M(v) = -6 await discovery. The brightest companion, Triangulum (M33), is surrounded by a stellar structure that provides persuasive evidence for a recent encounter with M31. This panorama of galaxy structure directly confirms the basic tenets of the hierarchical galaxy formation model and reveals the shared history of M31 and M33 in the unceasing build-up of galaxies.

  7. Supernova Remnant Progenitor Masses in M31

    CERN Document Server

    Jennings, Zachary G; Murphy, Jeremiah W; Dalcanton, Julianne J; Gilbert, Karoline M; Dolphin, Andrew E; Fouesneau, Morgan; Weisz, Daniel R

    2012-01-01

    Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped ...

  8. On the building blocks of the M31 and Milky Way halos

    Directory of Open Access Journals (Sweden)

    Monelli Matteo

    2017-01-01

    Full Text Available We discuss the formation of the halo of M31 and the Milky Way as traced by the population of RR Lyrae stars, in comparison with the population of such stars preent in satellite dwarf galaxies. We find that both halos and the massive dwarf host a population of high amplitude short period RRab stars, absent in low-mass dwarfs. These stars are explained as the metal-rich tail of the RR Lyrae distribution ([Fe/H] ∼ - 1.5, and thus their existence imply fast chemical enrichment in the host system. Their presence in both halos implies that massive building blocks had an important role in their formation.

  9. Properties of Two New M31 dSph Companions from Keck Imaging

    CERN Document Server

    Grebel, E K; Grebel, Eva K.; Guhathakurta, Puragra

    1999-01-01

    We have obtained Keck Low Resolution Imaging Spectrograph images in V and I of the newly discovered Local Group dwarf galaxies Pegasus dSph and Cassiopeia dSph and their surrounding field. The first stellar luminosity functions and color-magnitude diagrams are presented for stars with V , of -1.3 +/- 0.3 for Peg dSph and -1.4 +/- 0.3 for Cas dSph. Their central surface brightness--absolute magnitude relationship follows that of other Local Group dSphs, dwarf ellipticals, and dwarf irregulars. In contrast to four out of nine Milky Way dSphs (the four that lie beyond D_MW =100 kpc), none of the six known M31 dSphs appears to have a dominant intermediate-age population.

  10. Investigating Dwarf Spiral Galaxies

    Science.gov (United States)

    Weerasooriya, Sachithra; Dunn, Jacqueline M.

    2017-01-01

    Several studies have proposed that dwarf elliptical / spheroidal galaxies form through the transformation of dwarf irregular galaxies. Early and late type dwarfs resemble each other in terms of their observed colors and light distributions (each can often be represented by exponential disks), providing reason to propose an evolutionary link between the two types. The existence of dwarf spirals has been largely debated. However, more and more recent studies are using the designation of dwarf spiral to describe their targets of interest. This project seeks to explore where dwarf spirals fit into the above mentioned evolutionary sequence, if at all. Optical colors will be compared between a sample of dwarf irregular, dwarf elliptical, and dwarf spiral galaxies. The dwarf irregular and dwarf elliptical samples have previously been found to overlap in both optical color and surface brightness profile shape when limiting the samples to their fainter members. A preliminary comparison including the dwarf spiral sample will be presented here, along with a comparison of available ultraviolet and near-infrared data. Initial results indicate a potential evolutionary link that merits further investigation.

  11. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R. [Department of Astronomy, University of Washington Seattle, Box 351580, WA 98195 (United States); Murphy, Jeremiah W. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Dolphin, Andrew E., E-mail: zachjenn@uw.edu, E-mail: adolphin@raytheon.com [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States)

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  12. A DETECTION OF GAS ASSOCIATED WITH THE M31 STELLAR STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Andreas [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Danforth, Charles W.; Keeney, Brian A. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Rich, R. Michael [Physics and Astronomy Building, 430 Portola Plaza, Box 951547, Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Ibata, Rodrigo [Observatoire de Strasbourg, 11, rue de l’Université, F-67000, Strasbourg (France)

    2015-07-10

    Detailed studies of stellar populations in the halos of the Milky Way and the Andromeda (M31) galaxies have shown increasing numbers of tidal streams and dwarf galaxies, attesting to a complicated and on-going process of hierarchical structure formation. The most prominent feature in the halo of M31 is the Giant Stellar Stream, a structure ∼4.°5 in extent along the sky, which is close to, but not coincident with the galaxy's minor axis. The stars that make up this stream are kinematically and chemically distinct from the other stars in the halo. Here, we present Hubble Space Telescope/Cosmic Origins Spectrograph high-resolution ultraviolet absorption spectra of three active galactic nuclei sight lines which probe the M31 halo, including one that samples gas in the main southwestern portion of the Giant Stream. We see two clear absorption components in many metal species at velocities typical of the M31 halo and a third, blueshifted component which arises in the stream. Photoionization modeling of the column density ratios in the different components shows gas in an ionization state typical of that seen in other galaxy halo environments and suggests solar to slightly super-solar metallicity, consistent with previous findings from stellar spectroscopy.

  13. A Detection of Gas Associated with the M 31 Stellar Stream

    CERN Document Server

    Koch, Andreas; Rich, R Michael; Ibata, Rodrigo; Keeney, Brian A

    2015-01-01

    Detailed studies of stellar populations in the halos of the Milky Way and the Andromeda (M 31) galaxies have shown increasing numbers of tidal streams and dwarf galaxies, attesting to a complicated and on-going process of hierarchical structure formation. The most prominent feature in the halo of M 31 is the Giant Stellar Stream, a structure ~4.5 degrees in extent along the sky, which is close to, but not coincident with the galaxy's minor axis. The stars that make up this stream are kinematically and chemically distinct from the other stars in the halo. Here, we present HST/COS high-resolution ultraviolet absorption spectra of three Active Galactic Nuclei sight lines which probe the M 31 halo, including one that samples gas in the main southwestern portion of the Giant Stream. We see two clear absorption components in many metal species at velocities typical of the M 31 halo and a third, blue-shifted component which arises in the stream. Photoionization modeling of the column density ratios in the different ...

  14. Hubble Space Telescope spectroscopy of OB stars in M31

    Science.gov (United States)

    Hutchings, J. B.; Bianchi, L.; Lamers, H. J. G. L. M.; Massey, P.; Morris, S. C.

    1992-01-01

    We have obtained UV spectra of two luminous hot stars in M31 with the Hubble Space Telescope. The stars are of late O and WN spectral type and lie on opposite sides of M31. We derive UV extinction curves for M31 which differ from both the Galaxy and the LMC. We find differences between the IS absorbers in both lines of sight in M31 and in the Galactic halo. The stellar wind-driven mass loss of the stars is found to be 10 times lower than in similar Galactic stars. One star appears to be an eclipsing W-R binary.

  15. Could M31 be the result of a major merger?

    Directory of Open Access Journals (Sweden)

    Puech M.

    2012-02-01

    Full Text Available We investigated a scenario in which M31 could be the remnant of a gas-rich major merger. Galaxy merger simulations, highly constrained by observations, were run using GADGET 2 in order to reproduce M31. We succeeded in reproducing the global shape of M31, the thin disk and the bulge, and in addition some of the main M31 large-scale features, such as the thick disk, the 10 kpc ring and the Giant Stream. This lead to a new explanation of the Giant Stream which could be caused by tidal tail stars that have been captured by the galaxy potential.

  16. COMPARING THE OBSERVABLE PROPERTIES OF DWARF GALAXIES ON AND OFF THE ANDROMEDA PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Michelle L. M.; Martin, Nicolas F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Ibata, Rodrigo A. [Observatoire de Strasbourg, 11, Rue de l' Université, F-67000 Strasbourg (France); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, Coburg Road, Halifax B3H1A6 (Canada); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, British Columbia, Victoria V9E 2E7 (Canada); Ferguson, Annette M. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Irwin, Michael J. [Institute of Astronomy, Madingley Rise, Cambridge CB3 0HA (United Kingdom); Lewis, Geraint F., E-mail: michelle.collins@yale.edu [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia)

    2015-01-20

    The thin, extended planes of satellite galaxies detected around both the Milky Way and Andromeda are not a natural prediction of the Λ-cold dark matter paradigm. Galaxies in these distinct planes may have formed and evolved in a different way (e.g., tidally) from their off-plane neighbors. If this were the case, one would expect the on- and off-plane dwarf galaxies in Andromeda to have experienced different evolutionary histories, which should be reflected by the chemistries, dynamics, and star formation histories of the two populations. In this work, we present new, robust kinematic observations for two on-plane M31 dwarf spheroidal galaxies (And XVI and XVII) and compile and compare all available observational metrics for the on- and off-plane dwarfs to search for a signal that would corroborate such a hypothesis. We find that, barring their spatial alignment, the on- and off-plane Andromeda dwarf galaxies are indistinguishable from one another, arguing against vastly different formative and evolutionary histories for these two populations.

  17. Multiwavelength search for counterparts of supersoft X-ray sources in M31

    CERN Document Server

    Chiosi, E; Bernardini, F; Henze, M; Jamialiahmadi, N

    2014-01-01

    We searched optical/UV/IR counterparts of seven supersoft X-ray sources (SSS) in M31 in the Hubble Space Telescope (HST) "Panchromatic Hubble Andromeda Treasury" (PHAT) archival images and photometric catalog. Three of the SSS were transient, the other four are persistent sources. The PHAT offers the opportunity to identify SSS hosting very massive white dwarfs that may explode as type Ia supernovae in single degenerate binaries, with magnitudes and color indexes typical of symbiotic stars, high mass close binaries, or systems with optically luminous accretion disks. We find evidence that the transient SSS were classical or recurrent novae; two likely counterparts we identified are probably symbiotic binaries undergoing mass transfer at a very high rate. There is a candidate accreting white dwarf binary in the error circle of one of the persistent sources, r3-8. In the spatial error circle of the best studied SSS in M31, r2-12, no red giants or AGB stars are sufficiently luminous in the optical and UV bands t...

  18. A giant stream of metal-rich stars in the halo of the galaxy M31

    CERN Document Server

    Ibata, R; Lewis, G; Ferguson, A; Tanvir, N R; Ibata, Rodrigo; Irwin, Michael; Lewis, Geraint; Ferguson, Annette; Tanvir, Nial

    2001-01-01

    The Milky Way is a cannibal. Recent observations have revealed the detritus of its digestion of the Sagittarius Dwarf and Magellanic Clouds, apparent as streams of gaseous and stellar debris littering the Galactic Halo. The analysis of this material has shown that the dark matter distribution within our own Galaxy is nearly spherical, and that much of the Galactic Halo is made up of cannibalized satellite galaxies. Yet it remains unclear whether such halo substructures really are as ubiquitous and as numerous as predicted by galaxy formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the Andromeda galaxy (M31), the Milky Way's nearest large neighbour. The source of this stream could be the dwarf galaxies M32 and NGC 205, close companions of M31, which have possibly lost a substantial amount of stars due to their tidal interactions with their large neighbour. These observations clearly demonstrate that the epoch of galaxy building still continues, albeit at a ...

  19. Clustering of local group distances: Publication bias or correlated measurements? II. M31 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Bono, Giuseppe [Dipartimento di Fisica, Università di Roma Tor Vergata, via Della Ricerca Scientifica 1, I-00133, Roma (Italy)

    2014-07-01

    The accuracy of extragalactic distance measurements ultimately depends on robust, high-precision determinations of the distances to the galaxies in the local volume. Following our detailed study addressing possible publication bias in the published distance determinations to the Large Magellanic Cloud (LMC), here we extend our distance range of interest to include published distance moduli to M31 and M33, as well as to a number of their well-known dwarf galaxy companions. We aim at reaching consensus on the best, most homogeneous, and internally most consistent set of Local Group distance moduli to adopt for future, more general use based on the largest set of distance determinations to individual Local Group galaxies available to date. Based on a careful, statistically weighted combination of the main stellar population tracers (Cepheids, RR Lyrae variables, and the magnitude of the tip of the red-giant branch), we derive a recommended distance modulus to M31 of (m−M){sub 0}{sup M31}=24.46±0.10 mag—adopting as our calibration an LMC distance modulus of (m−M){sub 0}{sup LMC}=18.50 mag—and a fully internally consistent set of benchmark distances to key galaxies in the local volume, enabling us to establish a robust and unbiased, near-field extragalactic distance ladder.

  20. Clustering of Local Group distances: publication bias or correlated measurements? II. M31 and beyond

    CERN Document Server

    de Grijs, Richard

    2014-01-01

    The accuracy of extragalactic distance measurements ultimately depends on robust, high-precision determinations of the distances to the galaxies in the local volume. Following our detailed study addressing possible publication bias in the published distance determinations to the Large Magellanic Cloud (LMC), here we extend our distance range of interest to include published distance moduli to M31 and M33, as well as to a number of their well-known dwarf galaxy companions. We aim at reaching consensus on the best, most homogeneous, and internally most consistent set of Local Group distance moduli to adopt for future, more general use based on the largest set of distance determinations to individual Local Group galaxies available to date. Based on a careful, statistically weighted combination of the main stellar population tracers (Cepheids, RR Lyrae variables, and the magnitude of the tip of the red-giant branch), we derive a recommended distance modulus to M31 of $(m-M)_0^{\\rm M31} = 24.46 \\pm 0.10$ mag---ado...

  1. R CORONAE BOREALIS STARS IN M31 FROM THE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Tang Sumin; Bildsten, Lars [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Cao Yi; Bellm, Eric; Kulkarni, Shrinivas R.; Levitan, David; Prince, Thomas A.; Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Masci, Frank [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O. [Benoziyo Center for Astrophysics and the Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2013-04-20

    We report the discovery of R Coronae Borealis (RCB) stars in the Andromeda galaxy (M31) using the Palomar Transient Factory (PTF). RCB stars are rare hydrogen-deficient, carbon-rich supergiant variables, most likely the merger products of two white dwarfs. These new RCBs, including two confirmed ones and two candidates, are the first to be found beyond the Milky Way and the Magellanic Clouds. All of M31 RCBs showed >1.5 mag irregular declines over timescales of weeks to months. Due to the limiting magnitude of our data (R Almost-Equal-To 21-22 mag), these RCB stars have R Almost-Equal-To 19.5-20.5 mag at maximum light, corresponding to M{sub R} = -4 to -5, making them some of the most luminous RCBs known. Spectra of two objects show that they are warm RCBs, similar to the Milky Way RCBs RY Sgr and V854 Cen. We consider these results, derived from a pilot study of M31 variables, as an important proof-of-concept for the study of rare bright variables in nearby galaxies with the PTF or other synoptic surveys.

  2. R Coronae Borealis Stars in M31 from the Palomar Transient Factory

    CERN Document Server

    Tang, Sumin; Bildsten, Lars; Nugent, Peter; Bellm, Eric; Kulkarni, Shrinivas R; Laher, Russ; Levitan, David; Masci, Frank; Ofek, Eran O; Prince, Thomas A; Sesar, Branimir; Surace, Jason

    2013-01-01

    We report the discovery of R Coronae Borealis (RCB) stars in the Andromeda galaxy (M31) using the Palomar Transient Factory (PTF). RCB stars are rare hydrogen-deficient, carbon-rich supergiant variables, most likely the merger products of two white dwarfs. These new RCBs, including two confirmed ones and two candidates, are the first to be found beyond the Milky Way and the Magellanic Clouds. All of M31 RCBs showed >1.5 mag irregular declines over timescales of weeks to months. Due to the limiting magnitude of our data (R~21-22 mag), these RCB stars have R~19.5 to 20.5 mag at maximum light, corresponding to M_R= -4 to -5, making them some of the most luminous RCBs known. Spectra of two objects show that they are warm RCBs, similar to the Milky Way RCBs RY Sgr and V854 Cen. We consider these results, derived from a pilot study of M31 variables, as an important proof-of-concept for the study of rare bright variables in nearby galaxies with the PTF or other synoptic surveys.

  3. M31N 2008-12a - the remarkable recurrent nova in M31: Pan-Chromatic observations of the 2015 eruption

    CERN Document Server

    Darnley, M J; Bode, M F; Hachisu, I; Hernanz, M; Hornoch, K; Hounsell, R; Kato, M; Ness, J -U; Osborne, J P; Page, K L; Ribeiro, V A R M; Rodriguez-Gil, P; Shafter, A W; Shara, M M; Steele, I A; Williams, S C; Arai, A; Arcavi, I; Barsukova, E A; Boumis, P; Chen, T; Fabrika, S; Figueira, J; Gehrels, N; Godon, P; Goranskij, V P; Harman, D J; Hartmann, D H; Hosseinzadeh, G; Horst, J Chuck; Itagaki, K; Jose, J; Kabashima, F; Kaur, A; Kawai, N; Kennea, J A; Kiyota, S; Kucakova, H; Lau, K M; Maehara, H; Naito, H; Nakajima, K; Nishiyama, K; O'Brien, T J; Quimby, R; Sala, G; Sano, Y; Sion, E M; Valeev, A F; Watanabe, F; Watanabe, M; Williams, B F; Xu, Z

    2016-01-01

    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of $P_\\mathrm{rec}=351\\pm13$ days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground and space-based follow-up programs. In this paper we present the 2015 detection; visible to near-infrared photometry and visible spectroscopy; and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2m (Hawaii) discovered the 2015 eruption, estimated to have commenced at Aug. $28.28\\pm0.12$ UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal sh...

  4. M31N 2008-12a-The Remarkable Recurrent Nova in M31-Panchromatic Observations of the 2015 Eruption

    Science.gov (United States)

    Darnley, M. J.; Henze, M.; Bode, M. F.; Hachisu, I.; Hernanz, M.; Hornoch, K.; Hounsell, R.; Kato, M.; Ness, J.- U.; Osborne, J. P.; hide

    2016-01-01

    The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption 10 times, including yearly eruptions from 2008 to 2014. With a measured recurrence period of Prec = 351+/-13 days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground- and space-based follow-up programs. In this paper we present the 2015 detection, visible to near-infrared photometry and visible spectroscopy, and ultraviolet and X-ray observations from the Swift observatory. The LCOGT 2 m (Hawaii) discovered the 2015 eruption, estimated to have commenced at August 28.28 +/- 0.12 UT. The 2013-2015 eruptions are remarkably similar at all wavelengths. New early spectroscopic observations reveal short-lived emission from material with velocities approx. 13,000 km/s, possibly collimated outflows. Photometric and spectroscopic observations of the eruption provide strong evidence supporting a red giant donor. An apparently stochastic variability during the early supersoft X-ray phase was comparable in amplitude and duration to past eruptions, but the 2013 and 2015 eruptions show evidence of a brief flux dip during this phase. The multi-eruption Swift/XRT spectra show tentative evidence of high-ionization emission lines above a high-temperature continuum. Following Henze et al. (2015a), the updated recurrence period based on all known eruptions is Prec 174 +/- 10 days, and we expect the next eruption of M31N 2008-12a to occur around 2016 mid-September.

  5. The stellar population of the decoupled nucleus in M 31

    CERN Document Server

    Silchenko, O K; Vlasyuk, V V

    1998-01-01

    The results of a spectroscopic and photometric investigation of the central region of M 31 are presented. An analysis of absorption-index radial profiles involving magnesium, calcium, and iron lines has shown that the unresolved nucleus of M 31 is distinct by its increased metallicity; unexpectedly, among two nuclei of M 31, it is the faintest one located exactly in the dynamical center of the galaxy (and dynamically decoupled) which is chemically distinct. The Balmer absorption line H-beta has been included into the analysis to disentangle metallicity and age effects; an age difference by a factor 3 is detected between stellar populations of the nucleus and of the bulge, the nucleus being younger. The morphological analysis of CCD images has revealed the presence of a nuclear stellar-gaseous disk with a radius of some 100 pc, the gas component of which looks non-stationary, well inside the bulge of M 31.

  6. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    CERN Document Server

    Sakari, Charli M

    2016-01-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)---this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ($[\\rm{Fe/H}] < -1.5$), $\\alpha$-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variatio...

  7. A Spectroscopic and Photometric Survey of Novae in M31

    CERN Document Server

    Shafter, A W; Hornoch, K; Filippenko, A V; Bode, M F; Ciardullo, R; Misselt, K A; Hounsell, R A; Chornock, R; Matheson, T

    2011-01-01

    We report the results of a multi-year spectroscopic and photometric survey of novae in M31 that resulted in a total of 53 spectra of 48 individual nova candidates. Two of these, M31N 1995-11e and M31N 2007-11g, were revealed to be long-period Mira variables, not novae. These data double the number of spectra extant for novae in M31 through the end of 2009 and bring to 91 the number of M31 novae with known spectroscopic classifications. We find that 75 novae (82%) are confirmed or likely members of the Fe II spectroscopic class, with the remaining 16 novae (18%) belonging to the He/N (and related) classes. These numbers are consistent with those found for Galactic novae. We find no compelling evidence that spectroscopic class depends sensitively on spatial position or population within M31 (i.e., bulge vs. disk), although the distribution for He/N systems appears slightly more extended than that for the Fe II class. We confirm the existence of a correlation between speed class and ejection velocity (based on l...

  8. Massive Young Clusters in the Disk of M31

    Science.gov (United States)

    Fusi Pecci, F.; Bellazzini, M.; Buzzoni, A.; De Simone, E.; Federici, L.; Galleti, S.

    2005-08-01

    We have studied the properties of a sample of 67 very blue and likely young massive clusters in M31 extracted from the Bologna Revised Catalog of globular clusters, selected according to their color [(B-V)0=3.5 Å). Their existence in M31 has been noted by several authors in the past; we show here that these blue luminous compact clusters (BLCCs) are a significant fraction (>~15%) of the whole globular cluster system of M31. Compared to the global properties of the M31 globular cluster system, they appear to be intrinsically fainter and morphologically less concentrated, with a shallower Balmer jump and enhanced Hβ absorption in their spectra. Empirical comparison with integrated properties of clusters with known ages, as well as with theoretical simple stellar population models, consistently indicates that their typical age is less than ~2 Gyr, so they are probably not as metal-poor as would be deduced if they were older. When selecting BLCCs by either their (B-V)0 colors or the strength of their Hβ index, the cluster sample turns out to be distributed on the outskirts of the M31 disk, sharing the kinematic properties of the thin, rapidly rotating disk component. If confirmed to be young and not metal-poor, these clusters indicate the occurrence of significant recent star formation in the thin disk of M31, although they do not set constraints on the epoch of its early formation.

  9. Microlensing by stars in the disk of M31

    CERN Document Server

    Gould, A

    1994-01-01

    The optical depth to microlensing toward M31 due to known stars in the disk of M31 itself is \\tau\\sim 2\\times 10^{-7}e^{-r/d} where d is the disk scale length and r is the distance along the major axis. Thus, there can be significant lensing toward the M31 disk even if M31 contains no dark compact objects. The optical depth has a strong dependence on azimuthal angle: at fixed radius \\tau\\propto[1+ (h/d)\\tan i\\cos\\phi]^{-2} where h is the scale height of the disk, i=75^\\circ is the inclination of M31, and \\phi is the azimuthal angle relative to the near minor axis. By measuring the optical depth as a function of radial and azimuthal position, it is possible to estimate h and d for the mass of the M31 disk, and so determine whether the disk light traces disk mass. Ground-based observations in 0.\\hskip-2pt''5 seeing of 0.8 \\rm deg^2 once per week could yield \\sim 3 events per year. With an ambitious space-based project, it would be possible to to observe \\sim 80 events per year. If lensing events were dominated ...

  10. Spheroidal wave functions

    CERN Document Server

    Flammer, Carson

    2005-01-01

    Intended to facilitate the use and calculation of spheroidal wave functions, this applications-oriented text features a detailed and unified account of the properties of these functions. Addressed to applied mathematicians, mathematical physicists, and mathematical engineers, it presents tables that provide a convenient means for handling wave problems in spheroidal coordinates.Topics include separation of the scalar wave equation in spheroidal coordinates, angle and radial functions, integral representations and relations, and expansions in spherical Bessel function products. Additional subje

  11. A DEEP STUDY OF THE DWARF SATELLITES ANDROMEDA XXVIII AND ANDROMEDA XXIX

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Tollerud, Erik J.; Ho, Nhung [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06510 (United States)

    2015-06-20

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity–metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

  12. A Deep Study of the Dwarf Satellites Andromeda XXVIII and Andromeda XXIX

    Science.gov (United States)

    Slater, Colin T.; Bell, Eric F.; Martin, Nicolas F.; Tollerud, Erik J.; Ho, Nhung

    2015-06-01

    We present the results of a deep study of the isolated dwarf galaxies Andromeda XXVIII and Andromeda XXIX with Gemini/GMOS and Keck/DEIMOS. Both galaxies are shown to host old, metal-poor stellar populations with no detectable recent star formation, conclusively identifying both of them as dwarf spheroidal galaxies (dSphs). And XXVIII exhibits a complex horizontal branch morphology, which is suggestive of metallicity enrichment and thus an extended period of star formation in the past. Decomposing the horizontal branch into blue (metal-poor, assumed to be older) and red (relatively more metal-rich, assumed to be younger) populations shows that the metal-rich are also more spatially concentrated in the center of the galaxy. We use spectroscopic measurements of the calcium triplet, combined with the improved precision of the Gemini photometry, to measure the metallicity of the galaxies, confirming the metallicity spread and showing that they both lie on the luminosity-metallicity relation for dwarf satellites. Taken together, the galaxies exhibit largely typical properties for dSphs despite their significant distances from M31. These dwarfs thus place particularly significant constraints on models of dSph formation involving environmental processes such as tidal or ram pressure stripping. Such models must be able to completely transform the two galaxies into dSphs in no more than two pericentric passages around M31, while maintaining a significant stellar population gradient. Reproducing these features is a prime requirement for models of dSph formation to demonstrate not just the plausibility of environmental transformation but the capability of accurately recreating real dSphs.

  13. Detection of diffuse interstellar bands in M31

    CERN Document Server

    Cordiner, M A; Trundle, C; Evans, C J; Hunter, I; Przybilla, N; Bresolin, F; Salama, F

    2008-01-01

    We investigate the diffuse interstellar band (DIB) spectrum in the interstellar medium of M31. The DEIMOS spectrograph of the W. M. Keck observatory was used to make optical spectroscopic observations of two supergiant stars, MAG 63885 and MAG 70817, in the vicinity of the OB78 association in M31 where the metallicity is approximately equal to solar. The 5780, 5797, 6203, 6283 and 6613 DIBs are detected in both sightlines at velocities matching the M31 interstellar Na I absorption. The spectra are classified and interstellar reddenings are derived for both stars. Diffuse interstellar band (DIB) equivalent widths and radial velocities are presented. The spectrum of DIBs observed in M31 towards MAG 63885 is found to be similar to that observed in the Milky Way. Towards MAG 70817 the DIB equivalent widths per unit reddening are about three times the Galactic average. Compared to observations elsewhere in the Universe, relative to reddening the M31 ISM in the vicinity of OB78 is apparently a highly favourable env...

  14. A Candidate M31/M32 Intergalactic Microlensing Event

    CERN Document Server

    Paulin-Henriksson, S; Bouquet, A; Carr, B J; Creze, M; Evans, N W; Giraud-Héraud, Yannick; Gould, A; Hewett, P C; Kaplan, J; Kerins, E; Le Du, Y; Melchior, A L; Smartt, S J; Valls-Gabaud, D

    2002-01-01

    We report the discovery of a microlensing candidate projected 2'54" from the center of M32, on the side closest to M31. The blue color (R-I= 0.00 +/- 0.14) of the source argues strongly that it lies in the disk of M31, while the proximity of the line of sight to M32 implies that this galaxy is the most likely host of the lens. If this interpretation is correct, it would confirm previous arguments that M32 lies in front of M31. We estimate that of order one such event or less should be present in the POINT-AGAPE data base. If more events are discovered in this direction in a dedicated experiment, they could be used to measure the mass function of M32 up to an unknown scale factor. By combining microlensing observations of a binary-lens event with a measurement of the M31-M32 relative proper motion using the astrometric satellites SIM or GAIA, it will be possible to measure the physical separation of M31 and M32, the last of the six phase-space coordinates needed to assign M32 an orbit.

  15. The Detailed Chemical Abundance Patterns of M31 Globular Clusters

    CERN Document Server

    Colucci, J E; Cohen, J

    2012-01-01

    We present detailed chemical abundances for $>$20 elements in $\\sim$30 globular clusters in M31. These results have been obtained using high resolution ($\\lambda/\\Delta\\lambda\\sim$24,000) spectra of their integrated light and analyzed using our original method. The globular clusters have galactocentric radii between 2.5 kpc and 117 kpc, and therefore provide abundance patterns for different phases of galaxy formation recorded in the inner and outer halo of M31. We find that the clusters in our survey have a range in metallicity of $-2.2$20 kpc have a small range in abundance of [Fe/H]$=-1.6 \\pm 0.10$. We also measure abundances of alpha, r- and s-process elements. These results constitute the first abundance pattern constraints for old populations in M31 that are comparable to those known for the Milky Way halo.

  16. Abundances of PNe in the Outer Disk of M31

    CERN Document Server

    Kwitter, Karen B; Balick, Bruce; Henry, R B C

    2012-01-01

    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] 4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way Galaxy. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the peak of the Planetary Nebula Luminosity Function, originated from stars near 2 M_sun. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.

  17. M31N 2005-09c: a fast FeII nova in the disk of M31

    CERN Document Server

    Hatzidimitriou, D; Manousakis, A; Pietsch, W; Burwitz, V; Papamastorakis, I

    2007-01-01

    Classical novae are quite frequent in M~31. However, very few spectra of M31 novae have been studied to date, especially during the early decline phase. Our aim is to study the photometric and spectral evolution of a M31 nova event close to outburst. We present photometric and spectroscopic observations of M31N 2005-09c, a classical nova in the disk of M31, using the 1.3m telescope of the Skinakas Observatory in Crete (Greece), starting on the 28th September, i.e. about 5 days after outburst, and ending on the 5th October 2005, i.e. about 12 days after outburst. We also have supplementary photometric observations from the La Sagra Observatory in Northern Andalucia, Spain, on September 29 and 30, October 3, 6 and 9 and November 1, 2005. The wavelength range covered by the spectra is from 3565 A to 8365 A. The spectra are of high S/N allowing the study of the evolution of the equivalent widths of the Balmer lines, as well as the identification of non-Balmer lines. The nova displays a typical early decline spect...

  18. First microlensing candidates from the MEGA survey of M 31

    NARCIS (Netherlands)

    de Jong, JTA; Kuijken, K; Crotts, APS; Sackett, PD; Sutherland, WJ; Uglesich, RR; Baltz, EA; Cseresnjes, P; Gyuk, G; Widrow, LM

    2004-01-01

    We present the first M 31 candidate microlensing events from the Microlensing Exploration of the Galaxy and Andromeda (MEGA) survey. MEGA uses several telescopes to detect microlensing towards the nearby Andromeda galaxy, M 3 1, in order to establish whether massive compact objects are a significant

  19. First microlensing candidate towards M31 from Nainital Microlensing Survey

    CERN Document Server

    Joshi, Y C; Narasimha, D; Sagar, R

    2004-01-01

    We report our first microlensing candidate NMS-E1 towards M31 from the data accumulated during four years long Nainital Microlensing Survey. Cousin R and I band observations of ~13'x13' field in the direction of M31 were carried out since 1998 and data is analysed using pixel technique proposed by the AGAPE collaboration. The NMS-E1 lies in the disk of M31 at \\alpha = 0:43:33.3 and \\delta = +41:06:44, about 15.5 arcmin away in the South-East direction from the center of M31. The degenerate Paczy\\'{n}ski fit gives a half intensity duration of ~ 59 days. The photometric analysis of candidate shows that it reached up to R ~ 20.1 mag at the time of maximum brightness and colour of the source star estimated to be (R-I)_0 ~ 1.1 mag. It is seen that the microlensing candidate is blended by red variable stars consequently light curves do not strictly follow the characteristic Paczy\\'{n}ski shape and achromatic nature however its long period monitoring and similar behaviour in R and I bands lend support of its microle...

  20. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evo

  1. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evo

  2. A remarkable recurrent nova in M31 - The optical observations

    CERN Document Server

    Darnley, M J; Bode, M F; Henze, M; Ness, J -U; Shafter, A W; Hornoch, K; Votruba, V

    2014-01-01

    Context. In late November 2013 a fourth outburst in five years of the M31 recurrent nova M31N 2008-12a was announced. Aims. In this Letter we address the optical lightcurve and progenitor system of M31N 2008-12a. Methods. Optical imaging data of the 2013 outburst from the Liverpool Telescope, La Palma, and Danish 1.54m Telescope, La Silla, and archival Hubble Space Telescope near-IR, optical and near-UV data are astrometrically and photometrically analysed. Results. Photometry of the 2013 outburst, combined with the previous three, enabled construction of a template lightcurve of a very fast nova (t2 (V) ~4 days). The archival data allowed recovery of the progenitor system in optical and near-UV data, indicating a red-giant secondary with bright accretion disk, or alternatively a system with a sub-giant secondary but dominated by a disk. Conclusions. The outbursts of M31N 2008-12a, plus a number of historic X-ray detections, indicate a unique system with a recurrence timescale of ~1 year. This implies the pre...

  3. Chemical Evolution and the Galactic Habitable Zone of M31

    NARCIS (Netherlands)

    Carigi, Leticia; Garcia-Rojas, Jorge; Meneses-Goytia, Sofia

    2013-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical

  4. KINEMATICS OF OUTER HALO GLOBULAR CLUSTERS IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Veljanoski, J.; Ferguson, A. M. N.; Bernard, E. J.; Penarrubia, J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Mackey, A. D. [Research School of Astronomy and Astrophysics, Australian National University, Mt Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Huxor, A. P. [Astronomisches Rechen-Institut, Zentrum fur Astronomie der Universitat Heidelberg, Monchhofstr. 12-14, D-69120 Heidelberg (Germany); Irwin, M. J.; Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Cote, P. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7 (Canada); Tanvir, N. R.; McConnachie, A. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Ibata, R. A.; Martin, N. F. [Observatoire de Strasbourg, 11 rue de l' Universite, F-67000 Strasbourg (France); Fardal, M. [University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 N. Pleasant Street, Amherst, MA 01003-9305 (United States); Lewis, G. F. [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)

    2013-05-10

    We present the first kinematic analysis of the far outer halo globular cluster (GC) population in the Local Group galaxy M31. Our sample contains 53 objects with projected radii of {approx}20-130 kpc, 44 of which have no previous spectroscopic information. GCs with projected radii {approx}> 30 kpc are found to exhibit net rotation around the minor axis of M31, in the same sense as the inner GCs, albeit with a smaller amplitude of 79 {+-} 19 km s{sup -1}. The rotation-corrected velocity dispersion of the full halo GC sample is 106 {+-} 12 km s{sup -1}, which we observe to decrease with increasing projected radius. We find compelling evidence for kinematic coherence among GCs that project on top of halo substructure, including a clear signature of infall for GCs lying along the northwest stream. Using the tracer mass estimator, we estimate the dynamical mass of M31 within 200 kpc to be M{sub M31} = (1.2-1.5) {+-} 0.2 Multiplication-Sign 10{sup 12} M{sub Sun }. This value is highly dependent on the chosen model and assumptions within.

  5. Massive young clusters in the disc of M31

    CERN Document Server

    Pecci, F F; Buzzoni, A; De Simone, E; Federici, L; Galleti, S

    2005-01-01

    We have studied the properties of a sample of 67 very blue and likely young massive clusters in M31 extracted from the Bologna Revised Catalog of globular clusters, selected according to their color [(B-V) 3.5 A). Their existence in M31 has been noted by several authors in the past; we show here that these Blue Luminous Compact Clusters (BLCCs) are a significant fraction (>~ 15%) of the whole globular cluster system of M31. Compared to the global properties of the M31 globular cluster system, they appear to be intrinsically fainter, morphologically less concentrated, and with a shallower Balmer jump and enhanced $H\\beta$ absorption in their spectra. Empirical comparison with integrated properties of clusters with known age as well as with theoretical SSP models consistently indicate that their typical age is less than ~2 Gyr, while they probably are not so metal-poor as deduced if considered to be old. Either selecting BLCCs by their (B-V) colors or by the strength of their Hbeta index the cluster sample tur...

  6. M31's Heavy Element Distribution and Outer Disk

    CERN Document Server

    Worthey, G; MacArthur, L A; Courteau, S; Worthey, Guy; Espana, Aubrey; Arthur, Lauren A. Mac; Courteau, Stephane

    2004-01-01

    Hubble Space Telescope imaging of 11 fields in M31 were reduced to color-magnitude diagrams. The fields were chosen to sample all galactocentric radii to 50 kpc. Assuming that the bulk of the sampled stellar populations are older than a few Gyr, the colors of the red giants map to an abundance distribution with errors of order 0.1 dex in abundance. The radially sampled abundance distributions are all about the same width, but show a mild abundance gradient that flattens outside ~20 kpc. The various distributions were weighted and summed with the aid of new surface brightness profile fits to obtain an abundance distribution representative of the entirety of M31. M31 is a system near chemical maturity. This ``observed closed box'' is compared to analytical closed box models. M31 suffers from a lack of metal-poor stars and metal-rich stars relative to the simplest closed-box model in the same way as the solar neighborhood.Comparing to several simple chemical evolution models, neither complete mixing of gas at al...

  7. Test for Radial Mixing of Stars in M31

    CERN Document Server

    Gould, Andrew

    2015-01-01

    Effective radial migration and mixing of orbits throughout the stellar disk has been definitively established in the Milky Way, but not in any other galaxy. We show how such radial mixing can be measured (or strongly constrained) in M31 using a combination of existing data and readily available facilities.

  8. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, A. D.; Dotter, A. [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, via Cotter Road, Weston, ACT 2611 (Australia); Huxor, A. P. [Astronomisches Rechen-Institut, Universitaet Heidelberg, Moenchhofstrasse 12-14, D-69120 Heidelberg (Germany); Martin, N. F.; Ibata, R. A. [Observatoire astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, 11 rue de l' Universite, F-67000 Strasbourg (France); Ferguson, A. M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); McConnachie, A. W. [NRC Herzberg Institute for Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Irwin, M. J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lewis, G. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW 2006 (Australia); Sakari, C. M.; Venn, K. A. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Tanvir, N. R., E-mail: dougal@mso.anu.edu.au [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.

  9. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    CERN Document Server

    Kirby, Evan N; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S; Gallazzi, Anna

    2013-01-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* ~ M_*^(0.30 +/- 0.02). The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M_* = 10^12 M_sun. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the s...

  10. A peculiar faint satellite in the remote outer halo of M31

    CERN Document Server

    Mackey, Dougal; Martin, Nicolas; Ferguson, Annette; Dotter, Aaron; McConnachie, Alan; Ibata, Rodrigo; Irwin, Mike; Lewis, Geraint; Sakari, Charli; Tanvir, Nial; Venn, Kim

    2013-01-01

    We present Hubble Space Telescope imaging of a newly-discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age > 10 Gyr and [Fe/H] < -2.3. Our inferred distance modulus of 24.57 +/- 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a 3D galactocentric radius of 149 (+19 -8) kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius rh = 26 (+4 -3) pc, integrated luminosity Mv = -4.8 +/- 0.5, and ellipticity = 0.30 (+0.08 -0.15). On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies, and the recently-discovered faint dwarf satellites of the Milky Way; however, its characteristics do not...

  11. Carbon Stars in the Satellites and Halo of M31

    CERN Document Server

    Hamren, Katherine; GuhaThakurta, Puragra; Gilbert, Karoline M; Tollerud, Erik J; Boyer, Martha L; Rockosi, Constance M; Smith, Graeme H; Majewski, Steven R; Howley, Kirsten

    2016-01-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color-color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample's eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while t...

  12. Spectroscopic Study of the Globular Clusters in M31

    Directory of Open Access Journals (Sweden)

    S. C. Kim

    2007-01-01

    Full Text Available Hemos realizado un nuevo reconocimiento sistem tico de c mulos globulares (CG en un area de 3 3 centrada en M31. Usando datos fotom tricos obtenidos con las observaciones del telescopio 0.9-m de KPNO con los filtros CMT1 Washington, y datos espectrosc picos obtenidos de las observaciones del telescopio 3.5-m de KPNO/WIYN con el espetr grafo de multifibras Hydra, hemos confirmado 544 CGs previamente conocidos y encontrado m s de 600 CGs nuevos y candidatos. M s de cien candidatos se creen que son CGs genuinos. Presentamos la distribuci n de metalicidad de los conocidos previamente y de los CGs nuevos en M31, lo cual muestra un mejor ajuste a tres componentes comparados con los ajustes a dos componentes

  13. Dark halos of M 31 and the Milky Way

    Science.gov (United States)

    Sofue, Yoshiaki

    2015-08-01

    Grand rotation curves (GRC) within ˜ 400 kpc of M 31 and the Milky Way were constructed by combining disk rotation velocities and radial velocities of satellite galaxies and globular clusters. The GRC for the Milky Way was revised using the most recent solar rotation velocity. The derived GRCs were deconvolved into a de Vaucouleurs bulge, exponential disk, and a dark halo with a Navarro-Frenk-White (NFW) density profile by least-χ2 fitting. Comparison of the best-fitting parameters revealed similarities between the disks and bulges of the two galaxies, whereas the dark-halo mass of M 31 was found to be twice that of the Galaxy. We show that the NFW model may be a realistic approximation of the observed dark halos in these two giant spirals.

  14. Dark Halos of M31 and the Milky Way

    CERN Document Server

    Sofue, Yoshiaki

    2015-01-01

    Grand rotation curves (GRC) within ~400 kpc of M31 and the Milky Way were constructed by combining disk rotation velocities and radial velocities of satellite galaxies and globular clusters. The GRC for the Milky Way was revised using the most recent Solar rotation velocity. The derived GRCs were deconvolved into a de Vaucouleurs bulge, exponential disk, and a dark halo with the Navarro-Frenk-White (NFW) density profile by the least chi-squares fitting. Comparison of the best-fit parameters revealed similarity of the disks and bulges of the two galaxies, whereas the dark halo mass of M31 was found to be twice the Galaxy's. We show that the NFW model may be a realistic approximation to the observed dark halos in these two giant spirals.

  15. Three new optical nova candidates in M 31

    Science.gov (United States)

    Pietsch, W.; Henze, M.; Burwitz, V.; Kaur, A.; Hartmann, D. H.; Williams, G.; Milne, P.

    2011-06-01

    We report the discovery of three nova candidates in M 31 on 7x60s stacked R filter CCD images obtained with the robotic 60cm telescope with an E2V CCD (2kx2k, 13.5 micron sq. pixels) of the Livermore Optical Transient Imaging System (Super-LOTIS, located at Steward Observatory, Kitt Peak, Arizona, USA) on 2011 June 7.418 UT. The objects are visible on all individual images.

  16. The Wolf-Rayet Content of M31

    CERN Document Server

    Neugent, Kathryn F; Georgy, Cyril

    2012-01-01

    Wolf-Rayet stars are evolved massive stars, and the relative number of WC-type and WN-type WRs should vary with the metallicity of the host galaxy, providing a sensitive test of stellar evolutionary theory. However, past studies of the WR content of M31 have been biased towards detecting WC stars, as their emission line signatures are much stronger than those of WNs. Here we present the results of a survey covering all of M31's optical disk (2.2 deg^2), with sufficient sensitivity to detect the weaker-lined WN-types. We identify 107 newly found WR stars, mostly of WN-type. This brings the total number of spectroscopically confirmed WRs in M31 to 154, a number we argue is complete to ~95%, except in regions of unusually high reddening. This number is consistent with what we expect from the integrated Halpha luminosity compared to that of M33. The majority of these WRs formed in OB associations around the Population I ring, although 5% are truly isolated. Both the relative number of WC to WN-type stars as well ...

  17. Star formation efficiency and flatten gradients in M31

    CERN Document Server

    Robles-Valdez, F; Peimbert, M

    2013-01-01

    We present and discuss results from a chemical evolution model for M31 based on a pronounced inside-out scenario for the galactic formation. The model has been built to reproduce three observational constraints of the M31 disk: the radial distributions of the total baryonic mass, the gas mass, and the O/H abundance. The model shows excellent agreement, throughout the galactic disk, with the observed radial distributions of the SFR and with gradients for fifteen chemical elements. From observations, we find that the gas mass profile of M31 presents a peak between 9 and 11 kpc and that the SFR diminishes for r>12 kpc. To obtain a consistent set of O/H values from H II regions, we correct those gaseous abundances due to the effect of temperature variations and O trapped in dust grains. From reproducing the radial distributions of the gas mass, we find that the star formation efficiency is variable in space, for the whole disk, and is constant in time for most of the evolution (t12 kpc . This reduction is support...

  18. CXO J004318.8+412016, a steady supersoft X-ray source in M 31

    Science.gov (United States)

    Orio, Marina; Luna, G. J. M.; Kotulla, R.; Gallager, J. S.; Zampieri, L.; Mikolajewska, J.; Harbeck, D.; Bianchini, A.; Chiosi, E.; Della Valle, M.; de Martino, D.; Kaur, A.; Mapelli, M.; Munari, U.; Odendaal, A.; Trinchieri, G.; Wade, J.; Zemko, P.

    2017-09-01

    We obtained an optical spectrum of a star we identify as the optical counterpart of the M31 Chandra source CXO J004318.8+412016, because of prominent emission lines of the Balmer series, of neutral helium, and a He II line at 4686 Å. The continuum energy distribution and the spectral characteristics demonstrate the presence of a red giant of K or earlier spectral type, so we concluded that the binary is likely to be a symbiotic system. CXO J004318.8+412016 has been observed in X-rays as a luminous supersoft source (SSS) since 1979, with effective temperature exceeding 40 eV and variable X-ray luminosity, oscillating between a few times 1035 erg s-1 and a few times 1037 erg s-1 in the space of a few weeks. The optical, infrared and ultraviolet colours of the optical object are consistent with an an accretion disc around a compact object companion, which may be either a white dwarf or a black hole, depending on the system parameters. If the origin of the luminous supersoft X-rays is the atmosphere of a white dwarf that is burning hydrogen in shell, it is as hot and luminous as post-thermonuclear flash novae, yet no major optical outburst has ever been observed, suggesting that the white dwarf is very massive (m ≥ 1.2 M⊙) and it is accreting and burning at the high rate \\dot{m} > 10^{-8} M⊙ yr-1 expected for Type Ia supernovae progenitors. In this case, the X-ray variability may be due to a very short recurrence time of only mildly degenerate thermonuclear flashes.

  19. Probing the High Redshift Universe with the faintest dwarfs

    NARCIS (Netherlands)

    Salvadori, Stefania

    2010-01-01

    Ultra faint dwarf spheroidal galaxies (UFs) are the least luminous and the least metal-rich stellar systems ever known (L <10(3-5) Ls un, [F e/H] <-2). The Fe-Luminosity relation derived for UFs constitutes a natural extension towards lower metallicity of that of "classical" (L > 105Ls un) dwarf

  20. NEW ULTRAVIOLET EXTINCTION CURVES FOR INTERSTELLAR DUST IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gordon, Karl D.; Bohlin, R. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Massa, Derck L.; Wolff, Michael J. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Fitzpatrick, Edward L., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: bohlin@stsci.edu, E-mail: kgordon@stsci.edu, E-mail: bianchi@jhu.edu, E-mail: mjwolff@spacescience.org, E-mail: edward.fitzpatrick@villanova.edu [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States)

    2015-12-10

    New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with the Hubble Space Telescope/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher signal-to-noise ratio than previous studies. Direct measurements of N(H i) were made using the Lyα absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5–14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from solar to 1.5 solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program, finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-solar.

  1. CHEMICAL EVOLUTION AND THE GALACTIC HABITABLE ZONE OF M31

    Directory of Open Access Journals (Sweden)

    Leticia Carigi

    2013-01-01

    Full Text Available We have computed the Galactic Habitable Zones (GHZs of the Andromeda galaxy (M31 based on the probability of terrestrial planet formation, which depends on the metallicity (Z of the interstellar medium, and the number of stars formed per unit surface area. The GHZ was obtained from a chemical evolution model built to reproduce a metallicity gradient in the galactic disk, [O/H](r=−0.015 dex kpc−1 × r(kpc + 0.44 dex. If we assume that Earth-like planets form with a probability law that follows the Z distribution shown by stars with detected planets, the most probable GHZ per pc2 is located between 3 and 7 kpc for planets with ages between 6 and 7 Gyr. However, the highest number of stars with habitable planets is located in a ring between 12 and 14 kpc with a mean age of 7 Gyr. 11% and 6.5% of the all formed stars in M31 may have planets capable of hosting basic and complex life, respectively.

  2. New Ultraviolet Extinction Curves for Interstellar Dust in M31

    CERN Document Server

    Clayton, Geoffrey C; Bianchi, Luciana C; Massa, Derck L; Fitzpatrick, Edward L; Bohlin, R C; Wolff, Michael J

    2015-01-01

    New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with HST/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher S/N than previous studies. Direct measurements of N(H I) were made using the Ly$\\alpha$ absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5 to 14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from Solar to 1.5 Solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program finding that the extinction curves can be produc...

  3. Morphological transformations of Dwarf Galaxies in the Local Group

    CERN Document Server

    Carraro, Giovanni

    2014-01-01

    In the Local Group there are three main types of dwarf galaxies: Dwarf Irregulars, Dwarf Spheroidals, and Dwarf Ellipticals. Intermediate/transitional types are present as well. This contribution reviews the idea that the present day variety of dwarf galaxy morphologies in the Local Group might reveal the existence of a transformation chain of events, of which any particular dwarf galaxy represents a manifestation of a particular stage. In other words, all dwarf galaxies that now are part of the Local Group would have formed identically in the early universe, but then evolved differently because of morphological transformations induced by dynamical processes like galaxy harassment, ram pressure stripping, photo-evaporation, and so forth. We start describing the population of dwarf galaxies and their spatial distribution in the LG. Then, we describe those phenomena that can alter the morphology of a dwarf galaxies, essentially by removing, partially or completely, their gas content. Lastly, we discuss morpholo...

  4. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    Science.gov (United States)

    Sakari, Charli M.

    2017-03-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)-this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ([Fe/H] stars at the 1 sigma level), and show signs of star-to-star Na and Mg variations. The other three GCs (H10, H23, and PA17) are more metal-rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way GCs, and other M31 clusters, H10 and PA17 have moderately-low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud (LMC). None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW Cloud, and PA53 and PA56 may be associated with the Eastern Cloud.

  5. Compact Star Clusters in the M31 Disk

    CERN Document Server

    Vansevicius, V; Narbutis, D; Stonkute, R; Bridzius, A; Deveikis, V; Semionov, D

    2009-01-01

    We have carried out a survey of compact star clusters (apparent size 0.15 arcsec (>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from ~5 Myr (young objects associated with 24 um and/or Ha emission) to ~10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 < log(m/M_sol) < 4.3 peaking at m ~ 4000 M_sol. Typical age of these intermediate-mass clusters is in the range of 30 Myr < t < 3 Gyr, with a prominent peak at ~70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.

  6. The stellar population and luminosity function in M31 bulge and Inner Disk Fields

    Science.gov (United States)

    Rich, R. Michael; Mould, J. R.; Graham, James R.

    1993-01-01

    /mag. We advance the possibility that the bulge of M31 may be younger than the oldest Galactic globular clusters. We note that M33 has recently been found to have an r(exp 1/4)-law spheroid consisting of intermediate-age stars; bulges can form later than the old halo population.

  7. Life at the Periphery of the Local Group: the kinematics of the Tucana Dwarf Galaxy

    CERN Document Server

    Fraternali, F; Irwin, M; Cole, A

    2009-01-01

    Dwarf spheroidal galaxies in the Local Group are usually located close to the Milky Way or M31. Currently, there are two clear exceptions to this rule, and the Tucana dwarf galaxy is the most distant at almost 1 Mpc from the Milky Way. Using the VLT/FORS2 spectrograph in multi-object mode we were able to measure the velocities of 23 individual Red Giant Branch stars in and around Tucana using the Ca triplet absorption lines. From this sample 17 reliable members have been identified. We measured the systemic velocity and dispersion of Tucana to be v_hel = +194.0+-4.3 km/s and sigma_l.o.s. = 15.8+4.1-3.1 km/s respectively. These measures are derived after removing the signature of rotation using a linear gradient of 6.5 x R/R_core+-2.9 km/s, which corresponds to a rotation of 16 km/s at the reliable limit of our data. Our systemic velocity corresponds to a receding velocity from the barycentre of the Local Group of v_LG = +73.3 km/s. We also determined the mean metallicity of Tucana to be [Fe/H] = -1.95+-0.15 w...

  8. Star Clusters in M 31. IV. A Comparative Analysis of Absorption Line Indices in Old M 31 and Milky Way Clusters

    CERN Document Server

    Schiavon, Ricardo P; Morrison, Heather; Harding, Paul; Courteau, Stephane; MacArthur, Lauren A; Graves, Genevieve J

    2011-01-01

    We present absorption line indices measured in the integrated spectra of globular clusters both from the Galaxy and from M 31. Our samples include 41 Galactic globular clusters, and more than 300 clusters in M 31. The conversion of instrumental equivalent widths into the Lick system is described, and zero-point uncertainties are provided. Comparison of line indices of old M 31 clusters and Galactic globular clusters suggests an absence of important differences in chemical composition between the two cluster systems. In particular, CN indices in the spectra of M 31 and Galactic clusters are essentially consistent with each other, in disagreement with several previous works. We reanalyze some of the previous data, and conclude that reported CN differences between M 31 and Galactic clusters were mostly due to data calibration uncertainties. Our data support the conclusion that the chemical compositions of Milky Way and M 31 globular clusters are not substantially different, and that there is no need to resort to...

  9. Prolate spheroidal quantum cloak

    Energy Technology Data Exchange (ETDEWEB)

    Syue, Cheng-De; Lin, De-Hone, E-mail: dhlin@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2015-04-15

    To understand the propagation behavior of an oblique incident matter wave in a three-dimensional non-spherical quantum cloak, we perform the transformation design for the prolate spheroidal coordinate system and obtain a quantum cloak with an ellipsoidal shape. The mass parameters and effective potential for the creation of a perfect prolate spheroidal invisibility region are given. The analytic representations of the cloaked matter wave and probability current in the cloaking shell are presented. Special attention is paid to the discussions of the probability current in the cloaking shell for only that current can manifestly exhibit how the wave vector of the matter wave is curved, rotated, and guided in the cloaking shell to flow around the non-spherically invisible region. With the current analysis, one shows that the presented cloak can perfectly guide the matter wave in the situation of any oblique incidence. The proposed prolate spheroidal cloak for matter waves provides the first non-spherically three-dimensional setup for quantum cloaking.

  10. X-Ray Emission from the Halo of M31

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  11. The tangential velocity of M31: CLUES from constrained simulations

    CERN Document Server

    Carlesi, Edoardo; Sorce, Jenny G; Gottloeber, Stefan; Yepes, Gustavo; Courtois, Helene; Tully, R Brent

    2016-01-01

    Determining the precise value of the tangential component of the velocity of M31 is a non trivial astrophysical issue, that relies on complicated modeling. This has recently lead to con- flicting estimates, obtained by several groups that used different methodologies and assump- tions. This letter addresses the issue by computing a Bayesian posterior distribution function of this quantity, in order to measure the compatibility of those estimates with LambdaCDM. This is achieved using an ensemble of local group (LG) look-alikes collected from a set of Con- strained Simulations (CSs) of the local Universe, and a standard unconstrained LambdaCDM. The latter allows us to build a control sample of LG-like pairs and to single out the influence of the environment in our results. We find that neither estimate is at odds with LambdaCDM; how- ever, whereas CSs favour higher values of vtan , the reverse is true for estimates based on LG samples gathered from unconstrained simulations, overlooking the environmental eleme...

  12. A Survey for Planetary Nebulae in M31 Globular Clusters

    CERN Document Server

    Jacoby, George H; De Marco, Orsola; Lee, Myung Gyoon; Herrmann, Kimberly A; Hwang, Ho Seong; Kaplan, Evan; Davies, James E

    2013-01-01

    We report the results of an [O III] 5007 spectroscopic survey for planetary nebulae (PNe) located within the star clusters of M31. By examining R ~ 5000 spectra taken with the WIYN+Hydra spectrograph, we identify 3 PN candidates in a sample of 274 likely globular clusters, 2 candidates in objects which may be globular clusters, and 5 candidates in a set of 85 younger systems. The possible PNe are all faint, between ~2.5 and ~6.8 mag down the PN luminosity function, and, partly as a consequence of our selection criteria, have high excitation, with [O III] 5007 to H-beta ratios ranging from 2 to ~12. We discuss the individual candidates, their likelihood of cluster membership, and the possibility that they were formed via binary interactions within the clusters. Our data are consistent with the suggestion that PN formation within globular clusters correlates with binary encounter frequency, though, due to the small numbers and large uncertainties in the candidate list, this study does not provide sufficient evi...

  13. The Double Nucleus and Central Black Hole of M31

    Science.gov (United States)

    Kormendy, John; Bender, Ralf

    1999-09-01

    New spectroscopy of M31 supports Tremaine's model in which both nuclei are parts of a single eccentric disk of stars orbiting the black hole (BH). The kinematics and Hubble Space Telescope photometry are used to measure the offset of the BH from the center of mass. This confirms that the BH mass is ~3×107 Msolar by a technique that is nearly independent of stellar-dynamical models. We present spectroscopy of the nucleus of M31 obtained with the Canada-France-Hawaii Telescope and Subarcsecond Imaging Spectrograph. Spectra at the Ca infrared triplet lines (seeing σ*=0.27") are used to measure the stellar kinematics, and spectra at the Mg I b lines (σ*=0.31") are used to measure metallicities. We also measure nonparametric line-of-sight velocity distributions (LOSVDs). All spectra confirm the steep rotation and velocity dispersion gradients that imply that M31 contains a 3.3×107 Msolar central dark object. At σ*=0.27", the maximum bulge-subtracted rotation velocity of the nucleus is 233+/-4 km s-1 on the P2 side, and the maximum velocity dispersion is 287+/-9 km s-1. The dispersion peak is displaced by 0.20"+/-0.03" from the velocity center in the direction opposite to P1, confirming a result by Bacon and coworkers. The higher surface brightness nucleus, P1, is colder than the bulge, with σ~=100 km s-1 at r~=1''. Cold light from P1 contributes at the velocity center; this explains part of the σ(r) asymmetry. The nucleus is cold at r>~1'' on both sides of the center. Our results are used to test Tremaine's model in which the double nucleus is a single eccentric disk of stars orbiting the BH. (1) The model predicts that the velocity center of the nucleus is displaced by 0.2" from P2 toward P1. Our observations show a displacement of 0.08"+/-0.01" before bulge subtraction and 0.10"+/-0.01" after bulge subtraction. (2) The model predicts a minimum σ~=135 km s-1 at P1. We observe σ=123+/-2 km s-1. Observations (1) and (2) may be reconciled with the model if its

  14. Abundances of Disk Planetary Nebulae in M31 and the Radial Oxygen Gradient

    CERN Document Server

    Kwitter, K B; Balick, B; Henry, R B C

    2011-01-01

    We have obtained spectra of 16 planetary nebulae in the disk of M31 and determined the abundances of He, N, O, Ne, S and Ar. Here we present the median abundances and compare them with previous M31 PN disk measurements and with PNe in the Milky Way. We also derive the radial oxygen gradient in M31, which is shallower than that in the Milky Way, even accounting for M31's larger disk scale length.

  15. Galaxy And Mass Assembly (GAMA): the Stellar Mass Budget of Galaxy Spheroids and Disks

    CERN Document Server

    Moffett, Amanda J; Driver, Simon P; Robotham, Aaron S G; Kelvin, Lee S; Alpaslan, Mehmet; Andrews, Stephen K; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle E; Colless, Matthew; Davies, Luke J M; Holwerda, Benne W; Hopkins, Andrew M; Kafle, Prajwal R; Liske, Jochen; Meyer, Martin

    2016-01-01

    We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disk component populations down to a lower mass limit of log(M_*/M_sun)= 8. We find that the spheroid/disk mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (rho_spheroid = 1.24+/-0.49 * 10^8 M_sun Mpc^-3 h_0.7) and disks (rho_disk = 1.20+/-0.45 * 10^8 M_sun Mpc^-3 h_0.7), which translates to approximately 50% of the local stellar mass density in spheroids and 48% in disks. The remaining stellar mass is found in the dwarf "little blue spheroid" class, which is not obviously similar in structure to either classical spheroid or disk populations. We also examine the variation of component mass ratios across galaxy mass and group halo mass regimes, finding the transition from spheroid to disk mass dominance ...

  16. Morphological Mutations of Dwarf Galaxies

    CERN Document Server

    Hensler, Gerhard

    2012-01-01

    Dwarf galaxies (DGs) are extremely challenging objects in extragalactic astrophysics. They are expected to originate as the first units in Cold Dark-Matter cosmology. They are the galaxy type most sensitive to environmental influences and their division into multiple types with various properties have invoked the picture of their variant morphological transformations. Detailed observations reveal characteristics which allow to deduce the evolutionary paths and to witness how the environment has affected the evolution. Here we review peculiarities of general morphological DG types and refer to processes which can deplete gas-rich irregular DGs leading to dwarf ellipticals, while gas replenishment implies an evolutionary cycling. Finally, as the less understood DG types the Milky Way satellite dwarf spheroidal galaxies are discussed in the context of transformation.

  17. Spheroidal Wave Functions in Electromagnetic Theory

    Science.gov (United States)

    Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng

    2001-11-01

    The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.

  18. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    Science.gov (United States)

    Slater, Colin T.; Bell, Eric F.

    2014-09-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M sstarf 5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  19. MACHOs in M 31? Absence of evidence but not evidence of absence

    NARCIS (Netherlands)

    de Jong, JTA; Widrow, LM; Cseresnjes, P; Kuijken, K; Crotts, APS; Bergier, A; Baltz, EA; Gyuk, G; Sackett, PD; Uglesich, RR; Sutherland, WJ

    2006-01-01

    We present results of a microlensing survey toward the Andromeda Galaxy (M31) carried out during four observing seasons at the Isaac Newton Telescope (INT). This survey is part of the larger microlensing survey toward M31 performed by the Microlensing Exploration of the Galaxy and Andromeda ( MEGA)

  20. Candidate microlensing events from M31 observations with the Loiano telescope

    CERN Document Server

    Novati, S Calchi; De Paolis, F; Dominik, M; Ingrosso, G; Jetzer, Ph; Mancini, L; Nucita, A; Scarpetta, G; Sereno, M; Strafella, F; Gould, A

    2009-01-01

    Microlensing observations towards M31 are a powerful tool for the study of the dark matter population in the form of MACHOs both in the Galaxy and the M31 halos, a still unresolved issue, as well as for the analysis of the characteristics of the M31 luminous populations. In this work we present the second year results of our pixel lensing campaign carried out towards M31 using the 152 cm Cassini telescope in Loiano. We have established an automatic pipeline for the detection and the characterisation of microlensing variations. We have carried out a complete simulation of the experiment and evaluated the expected signal, including an analysis of the efficiency of our pipeline. As a result, we select 1-2 candidate microlensing events (according to different selection criteria). This output is in agreement with the expected rate of M31 self-lensing events. However, the statistics are still too low to draw definitive conclusions on MACHO lensing.

  1. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    CERN Document Server

    Deason, Alis; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased towards larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger ...

  2. Evolved Massive Stars in the Local Group. I. Identification of Red Supergiants in NGC 6822, M31, and M33

    Science.gov (United States)

    Massey, Philip

    1998-07-01

    Knowledge of the red supergiant (RSG) population of nearby galaxies allows us to probe massive star evolution as a function of metallicity; however, contamination by foreground Galactic dwarfs dominates surveys for red stars in Local Group galaxies beyond the Magellanic Clouds. Model atmospheres predict that low-gravity supergiants will have B-V values that are redder by several tenths of a magnitude than foreground dwarfs at a given V-R color, a result that is largely independent of reddening. We conduct a BVR survey of several fields in the Local Group galaxies NGC 6822, M33, and M31 as well as neighboring control fields and identify RSG candidates from CCD photometry. The survey is complete to V = 20.5, corresponding to MV = -4.5 or an Mbol of -6.3 for the reddest stars. Follow-up spectroscopy at the Ca II triplet of 130 stars is used to demonstrate that our photometric criterion for identifying RSGs is highly successful (96% for stars brighter than V = 19.5; 82% for V = 19.5-20.5). Classification spectra are also obtained for a number of stars in order to calibrate color with spectral type empirically. We find that there is a marked progression in the average (B-V)0 and (V-R)0 colors of RSGs in these three galaxies, with the higher metallicity systems having a later average spectral type, which is consistent with previous findings by Elias, Frogel, & Humphreys for the Milky Way and Magellanic Clouds. More significantly, we find that there is a clear progression with metallicity in the relative number of the highest luminosity RSGs, a trend that is apparent both in absolute visual magnitude and in bolometric luminosity. Thus any use of RSGs as distance indicators requires correction for the metallicity of the parent galaxy. Our findings are in accord with the predictions of the ``Conti scenario'' in which higher metallicities result in higher mass-loss rates, resulting in a star of a given luminosity spending an increasing fraction of its He-burning lifetime as

  3. Discovery of an Ultra-Faint Dwarf Galaxy in the Intracluster Field of the Virgo Center : A fossil of the First Galaxies?

    CERN Document Server

    Jang, In Sung

    2014-01-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of an UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 +/- 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H]= -2.4 +/- 0.4. Its absolute V-band magnitude and effective radius are derived to be M_V = -6.5 +/- 0.2 and r_eff = 81 +/- 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is es...

  4. The Horizontal Branch of the Sculptor Dwarf galaxy

    NARCIS (Netherlands)

    Salaris, Maurizio; Boer, Thomas de; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi

    2013-01-01

    We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch

  5. Ultra faint dwarfs : probing early cosmic star formation

    NARCIS (Netherlands)

    Salvadori, Stefania; Ferrara, Andrea

    2009-01-01

    We investigate the nature of the newly discovered Ultra Faint dwarf spheroidal galaxies (UF dSphs) in a general cosmological context simultaneously accounting for various 'classical' dSphs and Milky Way properties including their metallicity distribution function (MDF). To this aim, we extend the

  6. The Faint Globular Cluster in the Dwarf Galaxy Andromeda I

    Science.gov (United States)

    Caldwell, Nelson; Strader, Jay; Sand, David J.; Willman, Beth; Seth, Anil C.

    2017-09-01

    Observations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (M V -3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters.

  7. Indirect dark matter detection for flattened dwarf galaxies

    Science.gov (United States)

    Sanders, Jason L.; Evans, N. Wyn; Geringer-Sameth, Alex; Dehnen, Walter

    2016-09-01

    Gamma-ray experiments seeking to detect evidence of dark matter annihilation in dwarf spheroidal galaxies require knowledge of the distribution of dark matter within these systems. We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulas and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulas are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are all prolate or all oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered (typical correction factors for an ellipticity of 0.4 are 0.75 for the oblate case and 1.6 for the prolate case). We demonstrate that spherical estimates of the D-factors are very insensitive to the flattening and introduce uncertainties significantly less than the uncertainties in the D-factors from the other observables for all the dwarf spheroidals (for example, +10 per cent/-3 per cent for a typical ellipticity of 0.4). We conclude by investigating the spread in correction factors produced by triaxial figures and provide uncertainties in the J-factors for the dwarf spheroidals using different physically motivated assumptions for their intrinsic shape and axis alignments. We find that the uncertainty in the J-factors due to triaxiality increases with the observed ellipticity and, in general, introduces

  8. The Outer Halo of M31: A New Method for Isolating Red Giant Stars and a Measurement of the Brightness Profile and Metallicity Distribution

    CERN Document Server

    Gilbert, K M; Singh-Kalirai, J; Rich, R M; Majewski, S R; Ostheimer, J C; Reitzel, David B; Cenarro, A J; Cooper, M C; Luine, C; Patterson, R J; Gilbert, Karoline M.; Guhathakurta, Puragra; Kalirai, Jasonjot S.; Majewski, Steven R.; Ostheimer, James C.; Reitzel, David B.; Cooper, Michael C.; Luine, Carynn; Patterson, Richard J.

    2006-01-01

    We present a method for isolating a clean sample of red giant branch stars in the outer regions of the Andromeda spiral galaxy (M31) from an ongoing spectroscopic survey using the DEIMOS instrument on the Keck~II 10-m telescope. The survey aims to study the kinematics, global structure, substructure, and metallicity of M31's halo. Although most of our spectroscopic targets were photometrically screened to reject foreground Milky Way dwarf star contaminants, the latter class of objects still constitutes a substantial fraction of the observed spectra in the sparse outer halo. Our likelihood-based method for isolating M31 red giants uses multiple criteria: (1) radial velocity, (2) intermediate-width band photometry through the DDO51 filter centered on the surface-gravity sensitive MgH/Mg b absorption features, (3) strength of the Na I 8190 Angstrom absorption line doublet, (4) location within an (I, V-I) color-magnitude diagram, and (5) comparison of photometric versus spectroscopic metallicity estimates. Traini...

  9. A Global Star Forming Episode in M31 2-4 Gyr Ago

    CERN Document Server

    Williams, Benjamin F; Dolphin, Andrew E; Weisz, Daniel R; Lewis, Alexia R; Lang, Dustin; Bell, Eric F; Boyer, Martha; Fouesneau, Morgan; Gilbert, Karoline M; Monachesi, Antonela; Skillman, Evan

    2015-01-01

    We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2-4 Gyr ago, producing $\\sim$60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color-magnitude diagrams of low extinction regions in the main disk of M31 (3$<$R$<$20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33 and/or a merger.

  10. A GLOBAL STAR-FORMING EPISODE IN M31 2–4 GYR AGO

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Weisz, Daniel R.; Lewis, Alexia R., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: dweisz@astro.washington.edu [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); and others

    2015-06-10

    We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2–4 Gyr ago, producing ∼60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color–magnitude diagrams of low extinction regions in the main disk of M31 (3 < R < 20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33, and/or a merger.

  11. Planetary Nebula Velocities in the Disk and Bulge of M31

    CERN Document Server

    Halliday, C; Carter, D; Douglas, N G; Evans, N W; Irwin, M J; Jackson, Z C; Kuijken, K; Merrett, H R; Merrifield, M R; Quinn, D P; Romanowsky, A J; Wilkinson, M I

    2006-01-01

    We present radial velocities for a sample of 723 planetary nebulae (PNe) in the disk and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel telescope. Velocities are determined using the [OIII] 5007 Angstrom emission line. Rotation and velocity dispersion are measured to a radius of 50 arcminutes (11.5 kpc), the first stellar rotation curve and velocity dispersion profile for M31 to such a radius. Our kinematics are consistent with rotational support at radii well beyond the bulge effective radius of 1.4kpc, although our data beyond a radius of 5kpc are limited. We present tentative evidence for kinematic substructure in the bulge of M31 to be studied fully in a later work. This paper is part of an ongoing project to constrain the total mass, mass distribution and velocity anisotropy of the disk, bulge and halo of M31.

  12. Variable Stars in Local Group Galaxies. III. And VII, NGC 147, and NGC 185: Insight into the Building Blocks of the M31 Halo

    Science.gov (United States)

    Monelli, M.; Fiorentino, G.; Bernard, E. J.; Martínez-Vázquez, C. E.; Bono, G.; Gallart, C.; Dall'Ora, M.; Stetson, P. B.

    2017-06-01

    We present the discovery of 1568 RR Lyrae stars in three of the most luminous M31 satellites: And VII (573), NGC 147 (177), and NGC 185 (818). We use their properties to study the formation history of Local Group spiral haloes, and in particular, to infer about the nature of their possible building blocks by comparison with available data for RR Lyrae stars in the halo and in a sample of satellites of M31 and the Milky Way. We find that the brightest satellites and the halos of both galaxies host a number of High Amplitude Short Period (HASP) RR Lyrae variable stars, which are missing in the faintest satellites. HASP variable stars have been shown by Fiorentino et al. to be tracers of a population of stars as metal-rich as [Fe/H] ≃ -1.5 and older than ≃ 10 {Gyr}. This suggests that the metal-rich M31 and MW halo component, which manifests through the HASP phenomenon, comes from massive dwarf galaxy building blocks, as the low-mass dwarfs did not chemically enrich fast enough to produce them. All detected variable stars are new discoveries; in particular, this work presents the first detections of RR Lyrae stars in And VII. Moreover, a number of candidate Anomalous Cepheids, and binary and long-period variable stars have been detected. We provide pulsation properties (period, amplitude, mean magnitude), light curves, and time series photometry for all of the variable stars in the three galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #10430 and #11724.

  13. The Variable Stars of the DRACO DWARF Spheroidal Glaxay: Revisited

    Science.gov (United States)

    2008-11-01

    The exceptions are V19 in NGC 5466 (Zinn & Dahn 1976) and two candidates in ω Cen ( Wallerstein & Cox 1984). XZ Ceti is a well-known field AC. The...2006, ApJ, 652, 643 Walker, A. R. 1994, AJ, 108, 555 Walker, A. R., & Nemec, J. M. 1996, AJ, 112, 2026 Wallerstein , G., & Cox, A. N. 1984, PASP, 96

  14. Metallicities and kinematics for dwarf spheroidals in the local group

    NARCIS (Netherlands)

    Battaglia, G.; Tolstoy, E.; Helmi, A.; Irwin, M.; Randich, S; Pasquini, L

    2006-01-01

    We present the first results of Call triplet observations from VLT/FLAMES for Sculptor, Fornax and Sextans dSphs. For each galaxy, we obtained accurate velocity and metallicity measurements for hundreds of stars out to and beyond the tidal radius. In each case, we find clear evidence for the presenc

  15. No WIMP mini-spikes in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Wanders, M.; Bertone, G.; Volonteri, M.; Weniger, C.

    2015-01-01

    The formation of black holes inevitably affects the distribution of dark and baryonic matter in their vicinity, leading to an enhancement of the dark matter density, called spike, and if dark matter is made of WIMPs, to a strong enhancement of the dark matter annihilation rate. Spikes at the center

  16. UVES abundances of stars in nearby dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Tolstoy, E; Venn, K; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    2002-01-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of contr

  17. Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

    Science.gov (United States)

    Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi

    2012-11-01

    We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  18. VizieR Online Data Catalog: Radial velocities of 76 M31 candidate clusters (Galleti+, 2006)

    Science.gov (United States)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-06-01

    We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M31 galaxy. The survey is aimed at the classification of known candidate M31 clusters and at the study of their kinematic properties. We obtained low-resolution spectroscopy for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~+/-20Km/s. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 HII regions belonging to M31 and 3 unclassified (possibly M31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Our results suggest that a significant number of genuine clusters (~>100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M31 galaxy is still far from complete even in terms of simple membership. (1 data file).

  19. Thin disk of co-rotating dwarfs: a fingerprint of dissipative (mirror) dark matter?

    CERN Document Server

    Foot, R

    2013-01-01

    Recent observations indicate that about half of the dwarf satellite galaxies around M31 orbit in a thin plane approximately aligned with the Milky Way. It has been argued that this observation along with several other features can be explained if these dwarf satellite galaxies originated as tidal dwarf galaxies formed during an ancient merger event. However if dark matter is collisionless then tidal dwarf galaxies should be free of dark matter - a condition that is difficult to reconcile with observations indicating that dwarf satellite galaxies are dark matter dominated. We argue that dissipative dark matter candidates, such as mirror dark matter, offer a simple solution to this puzzle.

  20. SIZE AND SHAPE FACTOR EXTREMES OF SPHEROIDS

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the paper we consider random prolate (oblate spheroids and their random profiles. The limiting distribution of the extremal characteristics of the spheroids is related to the limiting distribution of the corresponding extremal characteristics of the profiles. The difference between the analysis of the prolate and oblate spheroids is discussed. We propose the possible application of the theoretical results.

  1. GALEX Ultraviolet Photometry of Globular Clusters in M31: Three Year Results and a Catalog

    CERN Document Server

    Rey, S C; Sohn, S T; Yoon, S J; Chung, C; Yi, S K; Lee, Y W; Rhee, J; Bianchi, L; Madore, B F; Lee, K; Barlow, T A; Forster, K; Friedman, P G; Martin, D C; Morrissey, P; Neff, S G; Schiminovich, D; Seibert, M; Small, T; Wyder, T K; Donas, J; Heckman, T M; Milliard, B; Szalay, A S; Welsh, B Y; Rey, Soo-Chang; Sohn, Sangmo T.; Yoon, Suk-Jin; Chung, Chul; Yi, Sukyoung K.; Lee, Young-Wook; Rhee, Jaehyon; Bianchi, Luciana; Madore, Barry F.; Lee, Kyungsook; Barlow, Tom A.; Forster, Karl; Friedman, Peter G.; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Seibert, Mark; Small, Todd; Wyder, Ted K.; Donas, Jose; Heckman, Timothy M.; Milliard, Bruno; Szalay, Alex S.; Welsh, Barry Y.

    2006-01-01

    We present ultraviolet (UV) photometry of M31 globular clusters (GCs) found in 23 Galaxy Evolution Explorer (GALEX) images covering the entirety of M31. We detect 485 and 273 GCs (and GC candidates) in the near-ultraviolet (NUV; 2267 A) and far-ultraviolet (FUV; 1516 A), respectively. Comparing M31 data with those of Galactic GCs in the UV with the aid of population models, we find that the age ranges of old GCs in M31 and the Galactic halo are similar. Three metal-rich ([Fe/H]>-1) GCs in M31 produce significant FUV flux making their FUV-V colors unusually blue for their metallicities. These are thought to be analogs of the two peculiar Galactic GCs NGC 6388 and NGC 6441 with extended blue HB stars. Based on the models incorporating helium enriched subpopulations in addition to the majority of the population that have a normal helium abundance, we suggest that even small fraction of super-helium-rich subpopulations in GCs can reproduce the observed UV bright metal-rich GCs. Young clusters in M31 show distinct...

  2. X-ray and Radio Variability of M31*, The Andromeda Galaxy Nuclear Supermassive Black Hole

    CERN Document Server

    Garcia, Michael R; Baganoff, Frederick K; Galache, Jose; Melia, Fulvio; Murray, Stephen S; Primini, Frank A; Sjouwerman, Lorant O; Williams, Ben

    2009-01-01

    We confirm our earlier tentative detection of M31* in X-rays and measure its light-curve and spectrum. Observations in 2004-2005 find M31* rather quiescent in the X-ray and radio. However, X-ray observations in 2006-2007 and radio observations in 2002 show M31* to be highly variable at times. A separate variable X-ray source is found near P1, the brighter of the two optical nuclei. The apparent angular Bondi radius of M31* is the largest of any black hole, and large enough to be well resolved with Chandra. The diffuse emission within this Bondi radius is found to have an X-ray temperature ~0.3 keV and density 0.1 cm-3, indistinguishable from the hot gas in the surrounding regions of the bulge given the statistics allowed by the current observations. The X-ray source at the location of M31* is consistent with a point source and a power law spectrum with energy slope 0.9+/-0.2. Our identification of this X-ray source with M31* is based solely on positional coincidence.

  3. The Fundamental Manifold of Spheroids

    CERN Document Server

    Zaritsky, D; Zabludoff, A I; Zaritsky, Dennis; Gonzalez, Anthony H.; Zabludoff, Ann I.

    2006-01-01

    We present a unifying empirical description of the structural and kinematic properties of all spheroids embedded in dark matter halos. We find that the stellar spheroidal components of galaxy clusters, which we call cluster spheroids (CSphs) and which are typically one hundred times the size of normal elliptical galaxies, lie on a "fundamental plane" as tight as that defined by ellipticals (rms in effective radius of ~0.07), but that has a different slope. The slope, as measured by the coefficient of the log(sigma) term, declines significantly and systematically between the fundamental planes of ellipticals, brightest cluster galaxies (BCGs), and CSphs.We attribute this decline primarily to a continuous change in M_e/L_e, the mass-to-light ratio within the effective radius r_e, with spheroid scale. The magnitude of the slope change requires that it arises principally from differences in the relative distributions of luminous and dark matter, rather than from stellar population differences such as in age and m...

  4. A giant stream of metal-rich stars in the halo of the galaxy M31

    NARCIS (Netherlands)

    Ibata, R; Irwin, M; Lewis, G; Ferguson, AMN; Tanvir, N

    2001-01-01

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way(1-3) that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the

  5. A remarkable recurrent nova in M31 - The X-ray observations

    CERN Document Server

    Henze, M; Darnley, M J; Bode, M F; Williams, S C; Shafter, A W; Kato, M; Hachisu, I

    2014-01-01

    Another outburst of the recurrent M31 nova M31N 2008-12a was announced in late November 2013. Optical data suggest an unprecedentedly short recurrence time of approximately one year. In this Letter we address the X-ray properties of M31N 2008-12a. We requested Swift monitoring observations shortly after the optical discovery. We estimated source count rates and extracted X-ray spectra from the resulting data. The corresponding ultraviolet (UV) data was also analysed. M31N 2008-12a was clearly detected as a bright supersoft X-ray source (SSS) only six days after the well-constrained optical discovery. It displayed a short SSS phase of two weeks duration and an exceptionally hot X-ray spectrum with an effective blackbody temperature of ~97 eV. During the SSS phase the X-ray light curve displayed significant variability that might have been accompanied by spectral variations. The very early X-ray variability was found to be anti-correlated with simultaneous variations in the UV flux. The X-ray properties of M31N...

  6. Supernova remnants and candidates detected in the XMM-Newton M31 large survey

    CERN Document Server

    Sasaki, Manami; Haberl, Frank; Hatzidimitriou, Despina; Stiele, Holger; Williams, Benjamin; Kong, Albert; Kolb, Ulrich

    2012-01-01

    We present the analysis of supernova remnants (SNRs) and candidates in M31 identified in the XMM-Newton large programme survey of M31. SNRs are among the bright X-ray sources in a galaxy. They are good indicators of recent star formation activities of a galaxy and of the interstellar environment in which they evolve. By combining the X-ray data of sources in M31 with optical data as well as with optical and radio catalogues, we aim to compile a complete, revised list of SNRs emitting X-rays in M31 detected with XMM-Newton, study their luminosity and spatial distribution, and understand the X-ray spectrum of the brightest SNRs. We analysed the X-ray spectra of the twelve brightest SNRs and candidates using XMM-Newton data. The four brightest sources allowed us to perform a more detailed spectral analysis and the comparison of different models to describe their spectrum. For all M31 large programme sources we searched for optical counterparts on the Ha, [Sii], and [Oiii] images of the Local Group Galaxy Survey....

  7. The first transition Wolf-Rayet WN/C star in M31

    CERN Document Server

    Shara, Michael M; Caldwell, Nelson; Ilkiewicz, Krystian; Drozd, Katarzyna; Zurek, David

    2015-01-01

    Three decades of searches have revealed 154 Wolf-Rayet (WR) stars in M31, with 62 of WC type, 92 of WN type and zero of transition type WN/C or WC/N. In apparent contrast, about two percent of the WR stars in the Galaxy, the LMC and M33 simultaneously display strong lines of carbon and nitrogen, i.e. they are transition type WN/C or WC/N stars. We report here the serendipitous discovery of M31 WR 84-1, the first transition star in M31, located at RA = 00:43:43.61 DEC = +41:45:27.95 (J2000). We present its spectrum, classify it as WN5/WC6, and compare it with other known transition stars. The star is unresolved in Hubble Space Telescope narrowband and broadband images, while its spectrum displays strong, narrow emission lines of hydrogen, [NII], [SII] and [OIII]; this indicates a nebula surrounding the star. The radial velocity of the nebular lines is consistent with that of gas at the same position in the disc of M31. The metallicity at the 11.8 kpc galactocentric distance of M31 84-1 is approximately solar, ...

  8. The Detailed Chemical Properties of M31 Star Clusters I. Fe, Alpha and Light Elements

    CERN Document Server

    Colucci, J E; Cohen, J

    2014-01-01

    We present ages, [Fe/H] and abundances of the alpha elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters in M31, which were obtained from high resolution, high signal-to-noise ratio (SNR$>60$) echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high resolution integrated light abundance analysis of globular clusters. This sample provides a never before seen picture of the chemical history of M31. The globular clusters are dispersed throughout the inner and outer halo, from 2.5 kpc $<$ R$_{\\rm M31}$ $<$ 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H]$\\sim-1.6$ for the outer halo clusters. We find evidence for at least one massive globular cluster in M31 with an age between 1 and 5 Gyr. The alpha-element ratios are generally similar to Milky Way globular cluster and field star ratios. We also find chemical evidence for a late-time accretion origin for at l...

  9. Attenuation Modified by DIG and Dust as Seen in M31

    Science.gov (United States)

    Tomičić, Neven; Kreckel, Kathryn; Groves, Brent; Schinnerer, Eva; Sandstrom, Karin; Kapala, Maria; Blanc, Guillermo A.; Leroy, Adam

    2017-08-01

    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five approximately kiloparsec fields of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data, we find that spatial resolution is not the cause for this difference. Based on the emission-line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centers of galaxies.

  10. A Luminous Red Nova in M31 and its Progenitor System

    CERN Document Server

    Williams, S C; Bode, M F; Steele, I A

    2015-01-01

    We present observations of M31LRN 2015 (MASTER OT J004207.99+405501.1), discovered in M31 in January 2015, and identified as a rare and enigmatic luminous red nova (LRN). Spectroscopic and photometric observations obtained by the Liverpool Telescope showed the LRN becoming extremely red as it faded from its M(V) = -9.4 +/- 0.2 peak. Early spectra showed strong Halpha emission that weakened over time as a number of absorption features appeared, including Na I D and Ba II. At later times strong TiO absorption bands were also seen. A search of archival Hubble Space Telescope data revealed a luminous red source to be the likely progenitor system, with pre-outburst Halpha emission also detected in ground-based data. The outburst of M31LRN 2015 shows many similarities, both spectroscopically and photometrically, with that of V838 Mon, the best studied LRN. We finally discuss the possible progenitor scenarios.

  11. MACHOs in M31? Absence of evidence but not evidence of absence

    CERN Document Server

    De Jong, J T A; Cseresnjes, P; Kuijken, K; Crotts, A P S; Bergier, A; Baltz, E A; Gyuk, G; Sackett, P D; Uglesich, R R; Sutherland, W J; Jong, Jelte T. A. de; Widrow, Lawrence M.; Cseresnjes, Patrick; Kuijken, Konrad; Crotts, Arlin P. S.; Bergier, Alexander; Baltz, Edward A.; Gyuk, Geza; Sackett, Penny D.; Uglesich, Robert R.; Sutherland, Will J.

    2006-01-01

    We present results of a microlensing survey toward the Andromeda Galaxy (M31) carried out during four observing seasons at the Isaac Newton Telescope (INT). This survey is part of the larger microlensing survey toward M31 performed by the Microlensing Exploration of the Galaxy and Andromeda (MEGA) collaboration. Using a fully automated search algorithm, we indentify 14 candidate microlensing events, three of which are reported here for the first time. Observations obtained at the Mayall telescope are combined with the INT data to produce composite lightcurves for these candidates. The results from the survey are compared with theoretical predictions for the number and distribution of events. These predictions are based on a Monte Carlo calculation of the detection efficiency and disk-bulge-halo models for M31. The models provide the full phase-space distribution functions for the lens and source populations and are motivated by dynamical and observational considerations. They include differential extinction a...

  12. [$\\alpha$/Fe] Abundances of Four Outer M 31 Halo Stars

    CERN Document Server

    Vargas, Luis C; Geha, Marla C; Tollerud, Erik J; Kirby, Evan N; Guhathakurta, Puragra

    2014-01-01

    We present alpha element to iron abundance ratios, [$\\alpha$/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M 31). The stars were identified as high-likelihood field halo stars by Gilbert et al. (2012) and lie at projected distances between 70 and 140 kpc from M 31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H]= -2.2 and [Fe/H]= -1.4. The sample's average [$\\alpha$/Fe] ratio is +0.20+/-0.20. The best-fit average value is elevated above solar which is consistent with rapid chemical enrichment from Type II supernovae. The mean [$\\alpha$/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  13. ABUNDANCES OF PLANETARY NEBULAE IN THE OUTER DISK OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Kwitter, Karen B.; Lehman, Emma M. M. [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States); Balick, Bruce [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Henry, R. B. C., E-mail: kkwitter@williams.edu, E-mail: emmalehman@gmail.com, E-mail: balick@astro.washington.edu, E-mail: rhenry@ou.edu [H.L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2012-07-01

    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] {lambda}4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the bright-end cutoff of the planetary nebula luminosity function, originated from stars near 2 M{sub Sun }. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.

  14. Variable stars towards the bulge of M31: the AGAPE catalogue

    CERN Document Server

    Ansari, R.; Baillon, P.; Bouquet, A.; Coupinot, G.; Coutures, Ch.; Ghesquiere, C.; Giraud-Heraud, Y.; Gillieron, D.; Gondolo, P.; Hecquet, J.; Kaplan, J.; Kim, A.; Le Du, Y.; Melchior, A.L.; Moniez, M.; Picat, J.P.; Soucail, G.

    2004-01-01

    We present the AGAPE astrometric and photometric catalogue of 1579 variable stars in a 14'x10' field centred on M31. This work is the first survey devoted to variable stars in the bulge of M31. The R magnitudes of the objects and the B-R colours suggest that our sample is dominated by red long-period variable stars (LPV), with a possible overlap with Cepheid-like type II stars. Twelve nova candidates are identified. Correlations with other catalogues suggest that 2 novae could be recurrent novae and provide possible optical counterparts for 2 supersoft X-ray sources candidates observed with Chandra.

  15. H-alpha Confirmation, Astrometry and Photometry of Two Novae in M31

    Science.gov (United States)

    Hornoch, K.; Vaduvescu, O.; Gonzalez, A.

    2013-06-01

    We obtained five 120-s narrow-band H-alpha and three 90-s R-band CCD frames of the central region of M31 on 2013 June 27.189 and 27.193 UT, respectively, with the 2.5-m Isaac Newton Telescope + WFC at La Palma under ~2.0" seeing. The single frames were co-added and the co-added images were used for photometry and astrometry of the two recently discovered and spectroscopically unconfirmed M31 nova candidates, namely the PNV J00424894+4115163 (ATel #5133) and PNV J00425987+4120379 (ATel #5157).

  16. VizieR Online Data Catalog: Metallicity estimates of M31 globular clusters (Galleti+, 2009)

    Science.gov (United States)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2010-04-01

    New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2<=[Fe/H]<=+0.5. Lick indices for M31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. (2000AJ....119.1645T) system, yielding new metallicity estimates for 245 globular clusters of M31. (3 data files).

  17. Tracing the Star Stream Through M31 Using Planetary Nebula Kinematics

    CERN Document Server

    Merrett, H R; Merrifield, M R; Romanowsky, A J; Douglas, N G; Napolitano, N R; Arnaboldi, M; Capaccioli, M; Freeman, K C; Gerhard, O E; Evans, N W; Wilkinson, M I; Halliday, C; Bridges, T J; Carter, D

    2003-01-01

    We present a possible orbit for the Southern Stream of stars in M31, which connects it to the Northern Spur. Support for this model comes from the dynamics of planetary nebulae (PNe) in the disk of M31: analysis of a new sample of 2611 PNe obtained using the Planetary Nebula Spectrograph reveals ~20 objects whose kinematics are inconsistent with the normal components of the galaxy, but which lie at the right positions and velocities to connect the two photometric features via this orbit. The satellite galaxy M32 is coincident with the stream both in position and velocity, adding weight to the hypothesis that the stream comprises its tidal debris.

  18. Spheroidal Degeneration of the Cornea

    Directory of Open Access Journals (Sweden)

    Erdem Dinç

    2011-08-01

    Full Text Available A thirty-one-year-old male patient presented with bilateral epiphora and stinging sensation in the cornea. Detailed history revealed that a bilateral corneal scraping had been made regarding the initial diagnosis of fungal keratitis. His bestcorrected visual acuities were 20/20 and 20/30 in right and left eyes, respectively. Biomicroscopy showed bilateral amber colored spherules in the anterior stroma of the central cornea. The diagnosis of spheroidal corneal degeneration was established and symptomatic therapy with artificial tear drops was prescribed. Ultraviolet light is widely accepted to be the main etiological factor in the pathogenesis of spheroidal degeneration. Because of difficulties in the early stages of the diagnostic process of the disease, incorrect diagnoses can be made with inappropriate interventions. (Turk J Ophthalmol 2011; 41: 264-6

  19. Strangelet dwarfs

    CERN Document Server

    Alford, Mark G; Reddy, Sanjay

    2011-01-01

    If the surface tension of quark matter is low enough, quark matter is not self bound. At sufficiently low pressure and temperature, it will take the form of a crystal of positively charged strangelets in a neutralizing background of electrons. In this case there will exist, in addition to the usual family of strange stars, a family of low-mass large-radius objects analogous to white dwarfs, which we call "strangelet dwarfs". Using a generic parametrization of the equation of state of quark matter, we calculate the mass-radius relationship of these objects.

  20. The initial mass functions of M31 and M32 through far red stellar absorption features

    CERN Document Server

    Zieleniewski, Simon; Thatte, Niranjan; Davies, Roger L

    2015-01-01

    Using the Oxford Short Wavelength Integral Field specTrograph (SWIFT), we investigate radial variations of several initial mass function (IMF) dependent absorption features in M31 and M32. We obtain high signal-to-noise spectra at six pointings along the major axis of M31 out to ~ 700'' (2.7 kpc) and a single pointing of the central 10 pc for M32. In M31 the sodium NaI {\\lambda}8190 index shows a flat equivalent width profile at ~ 0.4 {\\AA} through the majority of the bulge, with a strong gradient up to 0.8 {\\AA} in the central 10'' (38 pc); the Wing-Ford FeH {\\lambda}9916 index is measured to be constant at 0.4 {\\AA} for all radii; and calcium triplet CaT {\\lambda}8498, 8542, 8662 shows a gradual increase through the bulge towards the centre. M32 displays flat profiles for all three indices, with FeH at ~ 0.5 {\\AA}, very high CaT at ~ 0.8 {\\AA} and low NaI at ~ 0.1 {\\AA}. We analyse these data using stellar population models. We find that M31 is well described on all scales by a Chabrier IMF, with a gradient...

  1. RR Lyrae Variables in M32 and the Disk of M31

    NARCIS (Netherlands)

    Fiorentino, Giuliana; Monachesi, Antonela; Trager, Scott C.; Lauer, Tod R.; Saha, Abhijit; Mighell, Kenneth J.; Freedman, Wendy; Dressler, Alan; Grillmair, Carl; Tolstoy, Eline

    2010-01-01

    We observed two fields near M32 with the Advanced Camera for Surveys/High Resolution Channel (ACS/HRC) on board the Hubble Space Telescope. The main field, F1, is 1'.8 from the center of M32; the second field, F2, constrains the M31 background, and is 5'.4 distant. Each field was observed for 16

  2. The Chemical Properties of Milky Way and M31 Globular Clusters: II. Stellar Population Model Predictions

    CERN Document Server

    Beasley, M A; Strader, J; Forbes, D A; Proctor, R N; Barmby, P; Huchra, J P; Beasley, Michael A.; Brodie, Jean P.; Strader, Jay; Forbes, Duncan A.; Proctor, Robert N.; Barmby, Pauline; Huchra, John P.

    2004-01-01

    We derive ages, metallicities and [alpha/Fe] ratios from the integrated spectra of 23 globular clusters in M31, by employing multivariate fits to two stellar population models. In parallel we analyze spectra of 21 Galactic globular clusters in order to facilitate a differential analysis. We find that the M31 globular clusters separate into three distinct components in age and metallicity. We identify an old, metal-poor group (7 clusters), an old, metal-rich group (10 clusters) and an intermediate age (3-6 Gyr), intermediate-metallicity ([Z/H]~-1) group (6 clusters). This third group is not identified in the Galactic globular cluster sample. The majority of globular clusters in both samples appear to be enhanced in alpha-elements, the degree of enhancement being model-dependent. The intermediate age GCs appear to be the most enhanced, with [alpha/Fe]~0.4. These clusters are clearly depressed in CN with respect to the models and the bulk of the M31 and Milky Way sample. Compared to the bulge of M31, M32 and NGC...

  3. Bright X-Ray Transients in M31: 2004 July XMM-Newton Observations

    Science.gov (United States)

    Trudolyubov, Sergey; Priedhorsky, William; Cordova, France

    2006-07-01

    We present the results of X-ray observations of four bright transients sources detected in the 2004 July XMM-Newton observations of the central bulge of M31. Two X-ray sources, XMMU J004315.5+412440 and XMMU J004144.7+411110, were discovered for the first time. Two other sources, CXOM31 J004309.9+412332 and CXOM31 J004241.8+411635, were previously detected by Chandra. The properties of the sources suggest their identification with accreting binary systems in M31. The X-ray spectra and variability of two sources, XMMU J004144.7+411110 and CXOM31 J004241.8+411635, are similar to that of the Galactic black hole transients. The X-ray source XMMU J004315.5+412440 demonstrates a dramatic decline of the X-ray flux on a timescale of three days and a remarkable flaring behavior on a timescale of tens of minutes. The X-ray data on XMMU J004315.5+412440 and CXOM31 J004309.9+412332 suggest that they can be either black hole or neutron star systems. Combining the results of 2000-2004 XMM-Newton observations of M31, we estimate the total rate of the bright transient outbursts in the central region of M31 to be 6-12 yr-1, in agreement with previous studies.

  4. Line Emission from Cooling Accretion Flows in the Nucleus of M31

    CERN Document Server

    Liu, S; Melia, F; Liu, Siming; Fromerth, Michael J.; Melia, Fulvio

    2002-01-01

    The recent Chandra X-ray observations of the nucleus of M31, combined with earlier VLA radio and HST UV spectral measurements, provide the strictest constraints on the nature of accretion onto the supermassive black hole (called M31* hereafter) in this region. One of the two newly-detected sources within roughly an arcsec of M31* may be its X-ray counterpart. If not, the X-ray flux from the nucleus must be even lower than inferred previously. Some uncertainty remains regarding the origin of the UV excess from the compact component known as P2. In our earlier analysis, we developed a unified picture for the broadband spectrum of this source. Contrary to the `standard' picture in which the infalling plasma attains temperatures in excess of 10^{10} K near the event horizon, the best fit model for M31*, under the assumption that the UV radiation is in fact produced by this source, appears to correspond to a cool branch solution, arising from strong line cooling inside the capture radius. Starting its infall with ...

  5. The Cluster of Blue Stars Surrounding the M31 Nuclear Black Hole

    CERN Document Server

    Lauer, Tod R; Kormendy, John; Rosenfield, Philip; Green, Richard F

    2011-01-01

    We obtained U_330 and B band images of the M31 nucleus using the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The spatial resolution in the U_330-band, 0.03" FWHM, or 0.1 pc at M31, is sufficient to resolve the outskirts of the compact cluster (P3) of UV-bright stars surrounding the M31 black hole. The center of the cluster is marked by an extended source that is both brighter and redder than the other point sources within P3; it is likely to be a blend of several bright stars. We hypothesize that it marks the location of the M31 black hole. Both stellar photometry and a surface brightness fluctuation analysis, show that the P3 stellar population is consistent with early-type main sequence stars formed in a ~100 - ~200 Myr old starburst population. Evolutionary tracks of post early asymptotic giant-branch stars, associated with late-stage evolution of an old population, also traverse the U and U-B domain occupied by the P3 stars; but we argue that only a...

  6. Deep studies of the resolved stellar populations in the outskirts of M31

    NARCIS (Netherlands)

    Ferguson, AMN; Chavez, M; Bressan, A; Buzzoni, A; Mayya, D

    2002-01-01

    We discuss the first results from ongoing studies of the resolved stellar populations in the outskirts of our nearest large neighbor, M31. Deep HST/WFPC2 archival observations are used to construct color-magnitude-diagrams which reach well below the horizontal branch at selected locations in the out

  7. The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M 31 nova catalogue

    Science.gov (United States)

    Lee, C.-H.; Riffeser, A.; Seitz, S.; Bender, R.; Fliri, J.; Hopp, U.; Ries, C.; Bärnbantner, O.; Gössl, C.

    2012-01-01

    We present light curves from the novae detected in the long-term, M 31-monitoring WeCAPP project. The goal of WeCAPP is to constrain the compact dark matter fraction of the M 31 halo with microlensing observations. As a by product we detected 91 novae benefiting from the high cadence and highly sensitive difference imaging technique required for pixel-lensing. We thus can now present the largest sample of optical/CCD nova lightcurves towards M 31 to date. We also obtained thorough coverage of the light curve before and after the eruption thanks to the long-term monitoring. We apply a nova taxonomy to our nova candidates and found 29 S-class novae, 10 C-class novae, 2 O-class novae, and 1 J-class nova. We investigated a universal decline law on the S-class novae. In addition, we correlated our catalogue with the literature and found 4 potential recurrent novae. Part of our catalogue has been used to search for optical counterparts of the super soft X-ray sources detected in M 31. Optical surveys like WeCAPP, when coordinated with multi-wavelength observation, will continue to shed light on the underlying physical mechanism of novae in the future.

  8. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  9. THE CLUSTER OF BLUE STARS SURROUNDING THE M31 NUCLEAR BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Tod R. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Bender, Ralf; Kormendy, John [Universitaets-Sternwarte Muenchen, Ludwig-Maximilians-Universitaet, Scheinerstrasse 1, Muenchen D-81679 (Germany); Rosenfield, Philip [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Green, Richard F. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2012-02-01

    We obtained U{sub 330}- and B-band images of the M31 nucleus using the High Resolution Camera of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The spatial resolution in the U{sub 330} band, 0.''03 FWHM, or 0.1 pc at M31, is sufficient to resolve the outskirts of the compact cluster (P3) of UV-bright stars surrounding the M31 black hole. The center of the cluster is marked by an extended source that is both brighter and redder than the other point sources within P3; it is likely to be a blend of several bright stars. We hypothesize that it marks the location of the M31 black hole. Both stellar photometry and a surface brightness fluctuation analysis show that the P3 stellar population is consistent with early-type main-sequence stars formed in a {approx}100-200 Myr old starburst population. Evolutionary tracks of post early asymptotic giant branch (PEAGB) stars, associated with late-stage evolution of an old population, also traverse the U and U - B domain occupied by the P3 stars; but we argue that only a few stars could be accounted for that way. PEAGB evolution is very rapid, and there is no progenitor population of red giants associated with P3. The result that P3 comprises young stars is consistent with inferences from earlier HST observations of the integrated light of the cluster. Like the Milky Way, M31 harbors a black hole closely surrounded by apparently young stars.

  10. Tidal Dwarf Galaxies and Missing Baryons

    Directory of Open Access Journals (Sweden)

    Frederic Bournaud

    2010-01-01

    Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.

  11. No Neon, but Jets in the Remarkable Recurrent Nova M31N 2008-12a?—Hubble Space Telescope Spectroscopy of the 2015 Eruption

    Science.gov (United States)

    Darnley, M. J.; Hounsell, R.; Godon, P.; Perley, D. A.; Henze, M.; Kuin, N. P. M.; Williams, B. F.; Williams, S. C.; Bode, M. F.; Harman, D. J.; Hornoch, K.; Link, M.; Ness, J.-U.; Ribeiro, V. A. R. M.; Sion, E. M.; Shafter, A. W.; Shara, M. M.

    2017-09-01

    The 2008 discovery of an eruption of M31N 2008-12a began a journey on which the true nature of this remarkable recurrent nova continues to be revealed. M31N 2008-12a contains a white dwarf (WD) close to the Chandrasekhar limit, accreting at a high rate from its companion, and undergoes thermonuclear eruptions that are observed yearly and may even be twice as frequent. In this paper, we report on Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectroscopy taken within days of the predicted 2015 eruption, coupled with Keck spectroscopy of the 2013 eruption. Together, this spectroscopy permits the reddening to be constrained to E(B-V)=0.10+/- 0.03. The UV spectroscopy reveals evidence for highly ionized, structured, and high-velocity ejecta at early times. No evidence for neon is seen in these spectra, however, but it may be that little insight can be gained regarding the composition of the WD (CO versus ONe).

  12. Multi-wavelength Light Curve Model of the One-year Recurrence Period Nova M31N 2008-12a

    CERN Document Server

    Kato, Mariko; Hachisu, Izumi

    2015-01-01

    We present a theoretical light curve model of the recurrent nova M31N 2008-12a, the current record holder for the shortest recurrence period (1 yr). We combined interior structures calculated using a Henyey-type evolution code with optically thick wind solutions of hydrogen-rich envelopes, which give the proper mass-loss rates, photospheric temperatures, and luminosities. The light curve model is calculated for a 1.38 M_sun white dwarf (WD) with an accretion rate of 1.6 \\times 10^{-7} M_sun yr^{-1}. This model shows a very high effective temperature (log T_ph (K) \\geq 4.97) and a very small wind mass-loss rate (\\dot M_wind \\leq 9.3 \\times 10^{-6} M_sun yr^{-1}) even at the maximum expansion of the photosphere. These properties are consistent with the faint optical peak of M31N 2008-12a because the brightness of the free-free emission is proportional to the square of the mass-loss rate. The model well reproduces the short supersoft X-ray turn-on time of 6 days and turnoff time of 18 days after the outburst. Th...

  13. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution

    Science.gov (United States)

    Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J.

    2016-07-01

    Recent supernova (SN) and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-SN mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant (RSG) candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions (SEDs). Since the position of intermediate- and late-type supergiants on the color-magnitude diagram can be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar (CS) dust in their SEDs, we find that 30%-40% of the yellow supergiants are likely in a post-RSG state. Comparison with evolutionary tracks shows that these mass-losing, post-RSGs have initial masses between 20 and 40 M ⊙. More than half of the observed RSGs in M31 and M33 are producing dusty CS ejecta. We also identify two new warm hypergiants in M31, J004621.05+421308.06 and J004051.59+403303.00, both of which are likely in a post-RSG state. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  14. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  15. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nicolas F.; Laevens, Benjamin P. M. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Schlafly, Edward F.; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bernard, Edouard J.; Ferguson, Annette M. N. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Draper, Peter W.; Metcalfe, Nigel [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, Paul A., E-mail: nicolas.martin@astro.unistra.fr [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); and others

    2013-12-10

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3π survey. Located 27.°9 away from M31, Perseus I has a heliocentric distance of 785 ± 65 kpc, compatible with it being a satellite of M31 at 374{sub −10}{sup +14} kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M{sub V} = –10.3 ± 0.7), with an exponential half-light radius of r{sub h} = 1.7 ± 0.4 arcmin or r{sub h}=400{sub −85}{sup +105} pc at this distance, and a moderate ellipticity (ϵ=0.43{sub −0.17}{sup +0.15}). The late discovery of Perseus I is due to its fairly low surface brightness (μ{sub 0}=25.7{sub −0.9}{sup +1.0} mag arcsec{sup –2}), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  16. Perseus I: A distant satellite dwarf galaxy of Andromeda

    CERN Document Server

    Martin, Nicolas F; Slater, Colin T; Bernard, Edouard J; Rix, Hans-Walter; Bell, Eric F; Ferguson, Annette M N; Finkbeiner, Douglas P; Laevens, Benjamin P M; Burgett, William S; Chambers, Kenneth C; Draper, Peter W; Hodapp, Klaus W; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A; Metcalfe, Nigel; Morgan, Jeffrey S; Price, Paul A; Tonry, John L; Wainscoat, Richard J; Waters, Christopher

    2013-01-01

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3{\\pi} survey. Located 27.9{\\deg} away from M31, Perseus I has a heliocentric distance of 785 +/- 65 kpc, compatible with it being a satellite of M31 at 374 +14/-10 kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M_V = -10.3 +/- 0.7), with an exponential half-light radius of r_h = 1.7 +/- 0.4 arcminutes or r_h = 400 +105/-85 pc at this distance, and a moderate ellipticity (\\epsilon = 0.43 +0.15/-0.17). The late discovery of Perseus I is due to its fairly low surface brightness (\\mu_0=25.7 +1.0/-0.9 mag/arcsec^2), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  17. Star formation in proto dwarf galaxies

    Science.gov (United States)

    Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.

    1990-01-01

    The effects of the onset of star formation on the residual gas in primordial low-mass Local-Group dwarf spheroidal galaxies is studied by a series of hydrodynamical simulations. The models have concentrated on the effect of photoionization. The results indicate that photoionization in the presence of a moderate gas density gradient can eject most of the residual gas on a time scale of a few 10 to the 7th power years. High central gas density combined with inefficient star formation, however, may prevent mass ejection. The effect of supernova explosions is discussed briefly.

  18. The mass of the Milky Way and M31 using the method of least action

    CERN Document Server

    Phelps, Steven; Desjacques, Vincent

    2013-01-01

    We constrain the most likely range of masses for the Milky Way and M31 using an application of the Numerical Action Method (NAM) that optimizes the fit to observed parameters over a large ensemble of NAM-generated solutions. Our 95% confidence level mass ranges, 2.5-5.0 x 10^12 m_sun for MW and 1.0-5.0 x 10^12 m_sun for M31, are consistent with the upper range of estimates from other methods and suggests that a larger proportion of the total mass becomes detectable when the peculiar motions of many nearby satellites are taken into account in the dynamical analysis. We test the method against simulated Local Group catalogs extracted from the Millennium Run to confirm that mass predictions are consistent with actual galaxy halo masses.

  19. The Transverse velocity of the Andromeda system, derived from the M31 satellite population

    CERN Document Server

    Salomon, J -B; Famaey, B; Martin, N F; Lewis, G F

    2015-01-01

    We present a dynamical measurement of the tangential motion of the Andromeda system, the ensemble consisting of the Andromeda Galaxy (M31) and its satellites. The system is modelled as a structure with cosmologically-motivated velocity dispersion and density profiles, and we show that our method works well when tested using the most massive substructures in high-resolution {\\Lambda} Cold Dark Matter ({\\Lambda}CDM) simulations. Applied to the sample of 40 currently-known galaxies of this system, we find a value for the transverse velocity of 164.4 +/- 61.8 km/s (v_{East} = -111.5 +/- 70.2 km/s and v{North} = 99.4 +/- 60.0 km/s), significantly higher than previous estimates of the proper motion of M31 itself. This result has significant implications on estimates of the mass of the Local Group, as well as on its past and future history.

  20. Stellar populations in the outskirts of M31: the mid-infrared view

    CERN Document Server

    Barmby, P

    2016-01-01

    The mid-infrared provides a unique view of galaxy stellar populations, sensitive to both the integrated light of old, low-mass stars and to individual dusty mass-losing stars. We present results from an extended Spitzer/IRAC survey of M31 with total lengths of 6.6 and 4.4 degrees along the major and minor axes, respectively. The integrated surface brightness profile proves to be surprisingly diffcult to trace in the outskirts of the galaxy, but we can also investigate the disk/halo transition via a star count profile, with careful correction for foreground and background contamination. Our point-source catalog allows us to report on mid-infrared properties of individual objects in the outskirts of M31, via cross-correlation with PAndAS, WISE, and other catalogs.

  1. An updated survey of globular clusters in M31. II Newly discovered bright and remote clusters

    CERN Document Server

    Galleti, S; Federici, L; Buzzoni, A; Pecci, F Fusi

    2007-01-01

    We present the first results of a large spectroscopic survey of candidate globular clusters located in the extreme outskirts of the nearby M31 galaxy. We obtained low resolution spectra of 48 targets selected from the XSC of 2MASS, as in Galleti et al. (2005). The observed candidates have been robustly classified according to their radial velocity and by verifying their extended/point-source nature from ground-based optical images. Among the 48 observed candidates clusters we found 5 genuine remote globular clusters. One of them has been already identified independently by Mackey et al. (2007), their GC1; the other four are completely new discoveries: B516, B517, B518, B519. The newly discovered clusters lie at projected distance 40 kpc 40 kpc. At odds with the Milky Way, M31 appears to have a significant population of very bright globular clusters in its extreme outskirts.

  2. Synthetic and observed photometric indices for globular clusters in the galaxy and M31

    CERN Document Server

    Covino, S; Malagnini, M L; Buzzoni, A

    1994-01-01

    Buzzoni's (1989) grid of synthetic spectral energy distributions, representative of old stellar populations, was used to derive colours in different photometric systems, and to compare the theoretical predictions with the observational data referring to about 120 globular clusters in the Galaxy and to 159 objects of the globular cluster system of M31. Synthetic and observed indices display an overall agreement in the composite planes of two-colour diagrams, thus in agreement with the standard evolutionary scenario leading, for globular clusters, to old stellar populations consistent with an age of 15 Gyr and a Salpeter initial mass function (IMF). The two main parameters modulating the cluster colour distributions are, as known, metallicity and horizontal branch morphology, while IMF slope and mass loss rate from stars in the red-giant branch and asymptotic-giant branch evolutionary stages produce only minor, although not negligible, effects on the integrated colours. The M31 and Galactic cluster populations ...

  3. High velocity HI in the inner 5 KPC of M31

    Science.gov (United States)

    Brinks, E.

    New radio frequency position-velocity maps of HI whithin 5 kpc of the M31 galactic center are reported. The maps were generated from 21 cm line studies performed with the Westerbork Synthesis Radio Telescope directed at regions +6 arcmin, 0 arcmin, and -6 arcmin distance from the nucleus. High velocity neutral hydrogen displayed the same signature at high velocities previously observed in the visible range (Rubin and Ford, 1970), but no HI was detected within the inner 500 pc. The data indicate that rotation produces the high velocities rather than an infall to or an ejection from the nucleus. The region around the M31 nucleus is suggested to be similar to that of the Galaxy.

  4. Multi-epoch BVRI Photometry of Luminous Stars in M31 and M33

    Science.gov (United States)

    Martin, John C.; Humphreys, Roberta M.; pre="(">Minnesota Luminous Stars In Nearby Galaxies,

    2017-09-01

    We present the first four years of BVRI photometry from an on-going survey to annually monitor the photometric behavior of evolved luminous stars in M31 and M33. Photometry was measured for 199 stars at multiple epochs, including 9 classic Luminous Blue Variables (LBVs), 22 LBV candidates, 10 post-RGB A/F type hypergiants, and 18 B[e] supergiants. At all epochs, the brightness is measured in the V-band and at least one other band to a precision of 0.04-0.10 mag down to a limiting magnitude of 19.0-19.5. Thirty three stars in our survey exhibit significant variability, including at least two classic LBVs caught in S Doradus-type outbursts. A hyperlinked version of the photometry catalog is at http://go.uis.edu/m31m33photcat.

  5. Spitzer Photometry of Approximately 1 Million Stars in M31 and 15 Other Galaxies

    Science.gov (United States)

    Khan, Rubab

    2017-01-01

    We present Spitzer IRAC 3.6-8 micrometer and Multiband Imaging Photometer 24 micrometer point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances approximately 3.5-14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain approximately 1 million sources including approximately 859,000 in M31 and approximately 116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of pointspread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6-24 micrometer) point-source populations in crowded extragalactic stellar fields and to plan observations with the James Webb Space Telescope.

  6. HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). III. THE STAR FORMATION LAW IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Ford, George P.; Gear, Walter K.; Smith, Matthew W. L.; Eales, Steve A.; Gomez, Haley L.; Kirk, Jason [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, Maarten; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Gordon, Karl D.; Verstappen, Joris [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bendo, George J. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Boquien, Mederic; Boselli, Alessandro [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Cooray, Asantha R. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Lebouteiller, Vianney [Service d' Astrophysique, l' Orme des Merisiers, CEA, Saclay, F-91191 Gif-sur-Yvette (France); O' Halloran, Brian [Astrophysics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Spinoglio, Luigi [INAF, Istituto di Fisica dello Spazio Interplanetario, Via Fosso del Cavaliere 100, Tor Vergata, I-00133 Roma (Italy); Wilson, Christine D. [Department of Physics and Astronomy, ABB-241, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)

    2013-05-20

    We present a detailed study of how the star formation rate (SFR) relates to the interstellar medium (ISM) of M31 at {approx}140 pc scales. The SFR is calculated using the far-ultraviolet and 24 {mu}m emission, corrected for the old stellar population in M31. We find a global value for the SFR of 0.25{sup +0.06}{sub -0.04} M{sub sun} yr{sup -1} and compare this with the SFR found using the total far-infrared luminosity. There is general agreement in regions where young stars dominate the dust heating. Atomic hydrogen (H I) and molecular gas (traced by carbon monoxide, CO) or the dust mass is used to trace the total gas in the ISM. We show that the global surface densities of SFR and gas mass place M31 among a set of low-SFR galaxies in the plot of Kennicutt. The relationship between SFR and gas surface density is tested in six radial annuli across M31, assuming a power law relationship with index, N. The star formation (SF) law using total gas traced by H I and CO gives a global index of N = 2.03 {+-} 0.04, with a significant variation with radius; the highest values are observed in the 10 kpc ring. We suggest that this slope is due to H I turning molecular at {Sigma}{sub Gas} {approx} 10 M{sub Sun} pc{sup -2}. When looking at H{sub 2} regions, we measure a higher mean SFR suggesting a better spatial correlation between H{sub 2} and SF. We find N {approx} 0.6 with consistent results throughout the disk-this is at the low end of values found in previous work and argues against a superlinear SF law on small scales.

  7. DISCOVERY OF AN H{alpha} EMITTING DISK AROUND THE SUPERMASSIVE BLACK HOLE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

    2013-01-10

    Due to its proximity, the mass of the supermassive black hole in the nucleus of the Andromeda galaxy (M31), the most massive black hole in the Local Group of galaxies, has been measured by several methods involving the kinematics of a stellar disk which surrounds it. We report here the discovery of an eccentric H{alpha} emitting disk around the black hole at the center of M31 and show how modeling this disk can provide an independent determination of the mass of the black hole. Our model implies a mass of 5.0{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 7} M{sub Sun} for the central black hole, consistent with the average of determinations by methods involving stellar dynamics, and compatible (at 1{sigma} level) with measurements obtained from the most detailed models of the stellar disk around the central black hole. This value is also consistent with the M-{sigma} relation. In order to make a comparison, we applied our simulation on the stellar kinematics in the nucleus of M31 and concluded that the parameters obtained for the stellar disk are not formally compatible with the parameters obtained for the H{alpha} emitting disk. This result suggests that the stellar and the H{alpha} emitting disks are intrinsically different from each other. A plausible explanation is that the H{alpha} emission is associated with a gaseous disk. This hypothesis is supported by the detection of traces of weaker nebular lines in the nuclear region of M31. However, we cannot exclude the possibility that the H{alpha} emission is, at least partially, generated by stars.

  8. VizieR Online Data Catalog: M31 planetary nebulae velocities (Halliday+, 2006)

    Science.gov (United States)

    Halliday, C.; Carter, D.; Bridges, T. J.; Jackson, Z. C.; Wilkinson, M. I.; Quinn, D. P.; Evans, N. W.; Douglas, N. G.; Merrett, H. R.; Merrifield, M. R.; Romanowsky, A. J.; Kuijken, K.; Irwin, M. J.

    2006-10-01

    Our spectroscopic data were acquired during two observing runs at the William Herschel Telescope, in 1999 August/September and 2001 October. Between our spectroscopic runs we completed an [OIII] plus Stroemgren y imaging survey using the Isaac Newton Telescope (INT) to detect additional PNe targets out to a projected radius of 12kpc. Here and throughout this paper we assume a distance of 770kpc for M31. (2 data files).

  9. The Detailed Chemical Properties of M31 Star Clusters. I. Fe, Alpha and Light Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cohen, Judith G.

    2014-12-01

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ~ - 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Probing the Extended Gaseous Regions of M31 with Quasar Absorption Lines

    CERN Document Server

    Rao, Sandhya; Turnshek, David; Thilker, David; Walterbos, Rene; Berk, Daniel Vanden; York, Donald

    2013-01-01

    We present HST-COS spectra of ten quasars located behind M31, selected to investigate the properties of gas associated with its extended disk and high velocity clouds (HVCs). The sightlines have impact parameters ranging between b= 13 kpc and 112 kpc. No absorption is detected in the four sightlines beyond b=57 kpc. Of the six remaining sightlines, all of which lie at b<32 kpc and within the N(HI)= 2E18 cm^{-2} boundary of the HI disk of M31, we detect low-ionization absorption at M31 velocities along four of them (three of which include MgII absorption). We also detect MgII absorption from an HVC. We find that along sightlines where both are detected, the velocity location of the low-ion gas tracks the peak in 21 cm emission. High-ionization absorption is detected along the three inner sightlines, but not along the three outer sightlines, for which CIV data exist. As inferred from 21 cm emission line maps, only one sightline may have a damped Ly-alpha system. This sightline has b= 17.5 kpc, and we detect ...

  11. Hubble Space Telescope Images And Spectra Of The Remnant Of SN 1885 In M31

    CERN Document Server

    Fesen, R A; McLin, K M; Hamilton, A J S; Fesen, Robert A.; Gerardy, Christopher L.; Lin, Kevin M. Mc; Hamilton, Andrew J. S.

    1999-01-01

    Near UV HST images of the remnant of SN 1885 (S And) in M31 show a 0"70 +- 0"05 diameter absorption disk silhouetted against M31's central bulge, at SN 1885's historically reported position. The disk's size corresponds to a linear diameter of 2.5 +- 0.4 pc at a distance of 725 +- 70 kpc, implying an average expansion velocity of 11000 +- 2000 km/s over 110 years. Low-dispersion FOS spectra over 3200-4800 A; reveal that the absorption arises principally from Ca II H & K (equivalent width ~215 A;) with weaker absorption features of Ca I 4227 A; and Fe I 3720 A;. The flux at Ca II line center indicates a foreground starlight fraction of 0.21, which places SNR 1885 some 64 pc to the near side of the midpoint of the M31 bulge, comparable to its projected 55 pc distance from the nucleus. The absorption line profiles suggest an approximately spherically symmetric, bell-shaped density distribution of supernova ejecta freely expanding at up to 13100 +- 1500 km/s. We estimate Ca I, Ca II, and Fe I masses of 2.9(+2....

  12. PHAT XIII: The Cepheid Period-Luminosity Relation in M31 Based on the PHAT Survey

    CERN Document Server

    Wagner-Kaiser, R; Dalcanton, J J; Williams, B F; Dolphin, A

    2015-01-01

    Using Hubble Space Telescope Advanced Camera for Surveys (HST/ACS) and Wide Field Camera 3 (WFC3) observations from the Panchromatic Hubble Andromeda Treasury (PHAT), we present new period-luminosity relations for Cepheid variables in M31. Cepheid from several ground-based studies are identified in the PHAT pho- tometry to derive new Period-Luminosity and Wesenheit Period-Luminosity relations in the NIR and visual filters. We derive a distance modulus to M31 of 24.51+/-0.08 in the IR bands and 24.32+/-0.09 in the visual bands, including the first PL relations in the F475W and F814W filters for M31. Our derived visual and IR distance moduli dis- agree at slightly more than a 1-{\\sigma} level. Differences in the Period-Luminosity relations between ground-based and HST observations are investigated for a subset of Cepheids. We find a significant discrepancy between ground-based and HST Period-Luminosity relations with the same Cepheids, suggesting adverse effects from photometric contam- ination in ground-based ...

  13. Classical novae from the POINT-AGAPE microlensing survey of M31 -- I. The nova catalogue

    CERN Document Server

    Darnley, Matt J.; Kerins, E.; Newsam, A.M.; An, J.; Baillon, P.; Calchi Novati, S.; Carr, Bernard J.; Creze, M.; Evans, N.W.; Giraud-Heraud, Y.; Gould, A.; Hewett, Paul C.; Jetzer, Ph.; Kaplan, J.; Paulin-Henriksson, S.; Smartt, S.J.; Stalin, C.S.; Tsapras, Y.

    2004-01-01

    The POINT-AGAPE survey is an optical search for gravitational microlensing events towards the Andromeda Galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. Here we describe the automated detection and selection pipeline used to identify M31 classical novae (CNe) and we present the resulting catalogue of 20 CN candidates observed over three seasons. CNe are observed both in the bulge region as well as over a wide area of the M31 disk. Nine of the CNe are caught during the final rise phase and all are well sampled in at least two colours. The excellent light-curve coverage has allowed us to detect and classify CNe over a wide range of speed class, from very fast to very slow. Among the light-curves is a moderately fast CN exhibiting entry into a deep transition minimum, followed by its final decline. We have also observed in detail a very slow CN which faded by only 0.01 mag day$^{-1}$ over a 150 day period. We detect other interesting varia...

  14. Three-dimensional Keplerian orbit-superposition models of the nucleus of M31

    CERN Document Server

    Brown, Calum K; 10.1093/mnras/stt104

    2013-01-01

    We present three-dimensional eccentric disc models of the nucleus of M31, modelling the disc as a linear combination of thick rings of massless stars orbiting in the potential of a central black hole. Our models are nonparametric generalisations of the parametric models of Peiris & Tremaine. The models reproduce well the observed WFPC2 photometry, the detailed line-of-sight velocity distributions from STIS observations along P1 and P2, together with the qualitative features of the OASIS kinematic maps. We confirm Peiris & Tremaine's finding that nuclear discs aligned with the larger disc of M31 are strongly ruled out. Our optimal model is inclined at 57 degrees with respect to the line of sight of M31 and has a position angle of 55 degrees. It has a central black hole of mass 10^8 solar masses, and, when viewed in three dimensions, shows a clear enhancement in the density of stars around the black hole. The distribution of orbit eccentricities in our models is similar to Peiris & Tremaine's model,...

  15. The old and heavy bulge of M31 I. Kinematics and stellar populations

    CERN Document Server

    Saglia, R P; Bender, R; Montalto, M; Lee, C -H; Riffeser, A; Seitz, S; Morganti, L; Gerhard, O; Hopp, U

    2009-01-01

    We present new optical long-slit data along 6 position angles of the bulge region of M31. We derive accurate stellar and gas kinematics reaching 5 arcmin from the center, where the disk light contribution is always less than 30%, and out to 8 arcmin along the major axis, where the disk makes 55% of the total light. We show that the velocity dispersions of McElroy (1983) are severely underestimated (by up to 50 km/s) and previous dynamical models have underestimated the stellar mass of M31's bulge by a factor 2. Moreover, the light-weighted velocity dispersion of the galaxy grows to 166 km/s, thus reducing the discrepancy between the predicted and measured mass of the black hole at the center of M31. The kinematic position angle varies with distance, pointing to triaxiality. We detect gas counterrotation near the bulge minor axis. We measure eight emission-corrected Lick indices. They are approximately constant on circles. We derive the age, metallicity and alpha-element overabundance profiles. Except for the ...

  16. The POINT-AGAPE Survey I: The Variable Stars in M31

    CERN Document Server

    An Jun Hong; Hewett, P C; Baillon, Paul; Calchi-Novati, S; Carr, B J; Creze, M; Giraud-Héraud, Yannick; Gould, A; Jetzer, P; Kaplan, J; Kerins, E; Paulin-Henriksson, S; Smartt, S J; Stalin, C S; Tsapras, Y; An, Jin H.; Jetzer, Ph.

    2004-01-01

    The POINT-AGAPE collaboration has been monitoring M31 for three seasons with the Wide Field Camera on the Isaac Newton Telescope. In each season, data are taken for one hour per night for roughly sixty nights during the six months that M31 is visible. The two fields of view straddle the central bulge, northwards and southwards. We have calculated the locations, periods and amplitudes of 35414 variable stars in M31 as a by-product of our microlensing search. The variables are classified according to their period and amplitude of variation. They are classified into population I and II Cepheids, Miras and semi-regular long-period variables. The population I Cepheids are associated with the spiral arms, while the central concentration of the Miras and long-period variables varies noticeably, the stars with brighter (and shorter) variations being much more centrally concentrated. A crucial role in the microlensing experiment is played by the asymmetry signal. It was initially assumed that the variable stars would ...

  17. VizieR Online Data Catalog: Water masers in M31. I. Recombination lines (Darling+, 2016)

    Science.gov (United States)

    Darling, J.; Gerard, B.; Amiri, N.; Lawrence, K.

    2016-09-01

    We constructed a catalog of 506 unresolved 24um sources from the Spitzer 24um map of M31 (Gordon et al. 2006ApJ...638L..87G); see Figure 1. Darling (2011ApJ...732L...2D) observed 206 24um sources in M31 using the Green Bank Telescope (GBT) in 2010 October through December. The 616-523 22.23508GHz ortho-water maser line observations were reported in Darling (2011ApJ...732L...2D), but simultaneous observations of the para-ammonia (NH3) rotational ground-state inversion transitions in the metastable states (J,K)=(1,1) and (2,2) at 23.6945 and 23.72263GHz, respectively, and the hydrogen recombination line H66α at 22.36417GHz were not. We subsequently observed all four of these lines toward an additional 300 24um sources in 2011 October through 2012 January. The resolution of the 24um Spitzer image is 6" (Gordon et al. 2006ApJ...638L..87G), so the unresolved IR sources remained within the 33" GBT beam even during the largest pointing drifts. The 33" beam (FWHM) at 22GHz spans 125pc in M31. (1 data file).

  18. Tracing the Metal-Poor M31 Stellar Halo with Blue Horizontal Branch Stars

    CERN Document Server

    Williams, Benjamin F; Gilbert, Eric F BellKaroline M; Guhathakurta, Puragra; Dorman, Claire; Lauer, Tod R; Seth, Anil C; Kalirai, Jason S; Rosenfield, Philip; Girardi, Leo

    2015-01-01

    We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31's inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $\\alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component ...

  19. V838 Mon and M31-RV: The Stellar Populations Angle

    CERN Document Server

    Siegel, M H; Siegel, Michael H.; Bond, Howard E.

    2006-01-01

    Insight into the origin of unusual events like the eruption of V838 Mon can be obtained from studies of the stellar populations from which they arise. V838 Mon lies in an intriguing region of the Galaxy, toward the warped outer edge of the disk, with significant contributions from the Galactic thick disk and the recently discovered Monoceros tidal stream. The initial distance measures placed V838 Mon in a jumbled region of the Galaxy but the recent shorter distances make it highly likely that V838 Mon was a thin disk star -- likely in a spiral arm -- consistent with the recent detection of a young cluster in the vicinity. We compare V838 Mon to M31-RV, a red variable that erupted in the bulge of M31 in 1988 and had a peak luminosity and spectral evolution very similar to V838 Mon. Archival HST images show no nebulosity or unusual stars at M31-RV's projected location. Moreover, the only stellar population in the field is a canonic old bulge population. This indicates that whatever the origin of the red novae, ...

  20. The January 2015 outburst of a red nova in M31

    CERN Document Server

    Kurtenkov, Alexander; Tomov, Toma; Barsukova, Elena A; Fabrika, Sergei; Vida, Krisztián; Hornoch, Kamil; Ovcharov, Evgeni P; Goranskij, Vitaly P; Valeev, Azamat F; Molnár, László; Sárneczky, Krisztián; Kostov, Andon; Nedialkov, Petko; Valenti, Stefano; Geier, Stefan; Wiersema, Klaas; Henze, Martin; Shafter, Allen W; Dimitrova, Rosa Victoria Muñoz; Popov, Vasil N; Stritzinger, Maximilian

    2015-01-01

    M31N 2015-01a (or M31LRN 2015) is a red nova that erupted in January 2015 -- the first event of this kind observed in M31 since 1988. Very few similar events have been confirmed as of 2015. Most of them are considered to be products of stellar mergers. Results of an extensive optical monitoring of the transient in the period January-March 2015 are presented. Eight optical telescopes were used for imaging. Spectra were obtained on BTA, GTC and the Rozhen 2m telescope. We present a highly accurate 70 d lightcurve and astrometry with a 0.05" uncertainty. The color indices reached a minimum 2-3 d before peak brightness and rapidly increased afterwards. The spectral type changed from F5I to F0I in 6 d before the maximum and then to K3I in the next 30 d. The luminosity of the transient was estimated to $8.7^{+3.3}_{-2.2}\\times10^{5}L_{\\odot}$ during the optical maximum. Both the photometric and the spectroscopic results confirm that the object is a red nova, similar to V838 Monocerotis.

  1. M31 globular cluster structures and the presence of X-ray binaries

    CERN Document Server

    Agar, J R R

    2013-01-01

    [Abridged] M31 has several times more globular clusters (GCs) than the Milky Way. It contains a correspondingly larger number of low mass X-ray binaries (LMXBs) associated with GCs, and can be used to investigate the GC properties which lead to X-ray binary formation. The best tracer of the spatial structure of M31 GCs is high-resolution imaging from the Hubble Space Telescope, and we have used HST data to derive structural parameters for 29 LMXB-hosting M31 GCs. These measurements are combined with structural parameters from the literature for a total of 41 (of 50 known) LMXB GCs and a comparison sample of 65 non-LMXB GCs. Structural parameters measured in blue bandpasses are found to show smaller core radii and higher concentrations than those measured in red bandpasses; this difference is enhanced in LMXB clusters and could be related to stellar population differences. Clusters with LMXBs show higher collision rates for their mass compared to those without LMXBs and collision rates estimated at the core ra...

  2. The Wendelstein Calar Alto Pixellensing Project (WeCAPP): the M31 Nova catalogue

    CERN Document Server

    Lee, C -H; Seitz, S; Bender, R; Fliri, J; Hopp, U; Ries, C; Baernbantner, O; Goessl, C

    2011-01-01

    We present light curves from the novae detected in the long-term, M31 monitoring WeCAPP project. The goal of WeCAPP is to constrain the compact dark matter fraction of the M31 halo with microlensing observations. As a by product we have detected 91 novae benefiting from the high cadence and highly sensitive difference imaging technique required for pixellensing. We thus can now present the largest CCD and optical filters based nova light curve sample up-to-date towards M31. We also obtained thorough coverage of the light curve before and after the eruption thanks to the long-term monitoring. We apply the nova taxonomy proposed by Strope et al. (2010) to our nova candidates and found 29 S-class novae, 10 C-class novae, 2 O-class novae and 1 J-class nova. We have investigated the universal decline law advocated by Hachichu and Kato (2006) on the S-class novae. In addition, we correlated our catalogue with the literature and found 4 potential recurrent novae. Part of our catalogue has been used to search for opt...

  3. The magnetic field structure of the central region in M31

    CERN Document Server

    Gießübel, René

    2014-01-01

    The Andromeda Galaxy (M31) is the nearest grand-design spiral galaxy. Thus far most studies in the radio regime concentrated on the 10 kpc ring. The central region of M31 has significantly different properties than the outer parts: The star formation rate is low, and inclination and position angle are largely different from the outer disk. The existing model of the magnetic field in the radial range 6<=r<=14 kpc is extended to the innermost part r<=0.5 kpc to ultimately achieve a picture of the entire magnetic field in M31. We combined observations taken with the VLA at 3.6 cm and 6.2 cm with data from the Effelsberg 100-m telescope to fill the missing spacings of the synthesis data. The resulting polarization maps were averaged in sectors to analyse the azimuthal behaviour of the polarized intensity (PI), rotation measure (RM), and apparent pitch angle (\\phi_obs). We developed a simplified 3-D model for the magnetic field in the central region to explain the azimuthal behaviour of the three observab...

  4. The Flattened Dark Matter Halo of M31 as Deduced from the Observed HI Scale Heights

    CERN Document Server

    Banerjee, Arunima

    2008-01-01

    In this paper, we use the outer-galactic HI scale height data as well as the observed rotation curve as constraints to determine the halo density distribution of the Andromeda galaxy (M31). We model the galaxy as a gravitationally-coupled system of stars and gas, responding to the external force-field of a known Hernquist bulge and the dark matter halo, the density profile of the latter being characterized by four free parameters. The parameter space of the halo is optimized so as to match the observed HI thickness distribution as well as the rotation curve on an equal footing, unlike the previous studies of M31 which were based on rotation curves alone. We show that an oblate halo, with an isothermal density profile, provides the best fit to the observed data. This gives a central density of 0.011 M_sun /pc^3, a core radius of 21 kpc, and an axis ratio of 0.4. The main result from this work is the flattened dark matter halo for M31, which is required to match the outer galactic HI scale height data. Interest...

  5. Properties of M31. IV: Candidate Luminous Blue Variables from PAndromeda

    CERN Document Server

    Lee, C -H; Kodric, M; Riffeser, A; Koppenhoefer, J; Bender, R; Snigula, J; Hopp, U; Goessl, C; Bianchi, L; Price, P A; Fraser, M; Burgett, W; Chambers, K C; Draper, P W; Flewelling, H; Kaiser, N; Kudritzki, R -P; Magnier, E A

    2014-01-01

    We perform a study on the optical and infrared photometric properties of known luminous blue variables (LBVs) in M31 using the sample of LBV candidates from the Local Group Galaxy Survey (Massey et al. 2007). We find that M31 LBV candidates show photometric variability ranging from 0.375 to 1.576 magnitudes in rP1 during a three year time-span observed by the Pan-STARRS 1 Andromeda survey (PAndromeda). Their near-infrared colors also follow the distribution of Galactic LBVs as shown by Oksala et al. (2013). We use these features as selection criteria to search for unknown LBV candidates in M31. We thus devise a method to search for candidate LBVs using both optical color from the Local Group Galaxy Survey and infrared color from Two Micron All Sky Survey, as well as photometric variations observed by PAndromeda. We find four sources exhibiting common properties of known LBVs. These sources also exhibit UV emission as seen from GALEX, which is one of the previously adopted method to search for LBV candidates. ...

  6. An Ultraviolet Study of Star-Forming Regions in M31

    CERN Document Server

    Kang, Yongbeom; Rey, Soo-Chang

    2009-01-01

    We present a comprehensive study of star-forming (SF) regions in the nearest large spiral galaxy M31. We use GALEX far-UV (1344-1786 \\AA, FUV) and near-UV (1771-2831 \\AA, NUV) imaging to detect young massive stars and trace the recent star formation across the galaxy. The FUV and NUV flux measurements of the SF regions, combined with ground-based data for estimating the reddening by interstellar dust from the massive stars they contain, are used to derive their ages and masses. The GALEX imaging, combining deep sensitivity and entire coverage of the galaxy, provides a complete picture of the recent star formation in M31 and its variation with environment throughout the galaxy. The FUV and NUV measurements are sensitive to detect stellar populations younger than a few hundred Myrs. We detected 894 SF regions, with size > 1600 pc^{2} above an average FUV flux limit of ~ 26 ABmag arcsecond^{-2}, over the whole 26 kpc galaxy disk. We derive the star-formation history of M31 within this time span. The star formati...

  7. HST/ACS colour-magnitude diagrams of M31 globular clusters

    CERN Document Server

    Perina, Sibilla; Bellazzini, Michele; Cacciari, Carla; Pecci, Flavio Fusi; Galleti, Silvia

    2009-01-01

    With the aim of increasing the sample of M31 clusters for which a colour magnitude diagram is available, we searched the HST archive for ACS images containing objects included in the Revised Bologna Catalogue of M31 globular clusters. Sixty-three such objects were found. We used the ACS images to confirm or revise their classification and we obtained useful CMDs for 11 old globular clusters and 6 luminous young clusters. We obtained simultaneous estimates of the distance, reddening, and metallicity of old clusters by comparing their observed field-decontaminated CMDs with a grid of template clusters of the Milky Way. We estimated the age of the young clusters by fitting with theoretical isochrones. For the old clusters, we found metallicities in the range -0.410 Gyr. All six candidate young clusters are found to have ages <1Gyr. With the present work the total number of M31 GCs with reliable optical CMD increases from 35 to 44 for the old clusters, and from 7 to 11 for the young ones. The old clusters show...

  8. The horizontal branch luminosity vs metallicity in M31 globular clusters

    CERN Document Server

    Federici, Luciana; Bellazzini, Michele; Pecci, Flavio Fusi; Galleti, Silvia; Perina, Sibilla

    2012-01-01

    Thanks to the outstanding capabilites of the HST, our current knowledge about the M31 globular clusters (GCs) is similar to our knowledge of the Milky Way GCs in the 1960s-1970s, which set the basis for studying the halo and galaxy formation using these objects as tracers, and established their importance in defining the cosmic distance scale. We intend to derive a new calibration of the M_V(HB)-[Fe/H] relation by exploiting the large photometric database of old GCs in M31 in the HST archive. We collected the BVI data for 48 old GCs in M31 and analysed them by applying the same methods and procedures to all objects. We obtained a set of homogeneous colour-magnitude diagrams (CMDs) that were best-fitted with the fiducial CMD ridge lines of selected Milky Way template GCs. Reddening, metallicity, Horizontal Branch (HB) luminosity and distance were determined self-consistently for each cluster. There are three main results of this study: i) the relation M_V(HB)=(0.25+/-0.02)[Fe/H]+(0.89+/-0.03), which is obtaine...

  9. X-Rays Beware: The Deepest Chandra Catalogue of Point Sources in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2016-01-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ~1 Ms, we detected 795 X-ray sources in the bulge, northeast, and southwest fields of M31, covering an area of approximately 0.6 deg$^{2}$, to a limiting unabsorbed 0.5-8.0 keV luminosity of $10^{34}$ erg/s. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's $D_{25}$ isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49%) of our Chandra sources (352 or 44% unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to ...

  10. Dark Matter Cores in the Fornax and Sculptor Dwarf Galaxies

    DEFF Research Database (Denmark)

    C. Amorisco, Nicola; Zavala Franco, Jesus; J. L. de Boer, Thomas

    2014-01-01

    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the mass assembly history of their dark matter halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial dark matter core. Assuming...... the efficiency of energy injection of the SNeII into dark matter particles is \\epsilon=0.05, we find that a single early episode, z...

  11. How chameleons core dwarfs with cusps

    CERN Document Server

    Lombriser, Lucas

    2014-01-01

    The presence of a scalar field that couples nonminimally and universally to matter can enhance gravitational forces on cosmological scales while restoring general relativity in the Solar neighborhood. In the intermediate regime, kinematically inferred masses experience an additional radial dependence with respect to the underlying distribution of matter, which is caused by the increment of gravitational forces with increasing distance from the Milky Way center. The same effect can influence the internal kinematics of subhalos and cause cuspy matter distributions to appear core-like. Specializing to the chameleon model as a worked example, we demonstrate this effect by tracing the scalar field from the outskirts of the Milky Way halo to its interior, simultaneously fitting observed velocity dispersions of chemo-dynamically discriminated red giant populations in the Fornax and Sculptor dwarf spheroidals. Whereas in standard gravity these observations suggest that the matter distribution of the dwarfs is cored, ...

  12. Indirect Dark Matter Detection for Flattened Dwarf Galaxies

    CERN Document Server

    Sanders, Jason L; Geringer-Sameth, Alex; Dehnen, Walter

    2016-01-01

    We analyze the effects of flattening on the annihilation (J) and decay (D) factors of dwarf spheroidal galaxies with both analytic and numerical methods. Flattening has two consequences: first, there is a geometric effect as the squeezing (or stretching) of the dark matter distribution enhances (or diminishes) the J-factor; second, the line of sight velocity dispersion of stars must hold up the flattened baryonic component in the flattened dark matter halo. We provide analytic formulae and a simple numerical approach to estimate the correction to the J- and D-factors required over simple spherical modeling. The formulae are validated with a series of equilibrium models of flattened stellar distributions embedded in flattened dark-matter distributions. We compute corrections to the J- and D-factors for the Milky Way dwarf spheroidal galaxies under the assumption that they are prolate or oblate and find that the hierarchy of J-factors for the dwarf spheroidals is slightly altered. We demonstrate that spherical ...

  13. Nucleosynthesis and the Inhomogeneous Chemical Evolution of the Carina Dwarf Galaxy

    NARCIS (Netherlands)

    Venn, Kim A.; Shetrone, Matthew D.; Irwin, Mike J.; Hill, Vanessa; Jablonka, Pascale; Tolstoy, Eline; Lemasle, Bertrand; Divell, Mike; Starkenburg, Else; Letarte, Bruno; Baldner, Charles; Battaglia, Giuseppina; Helmi, Amina; Kaufer, Andreas; Primas, Francesca

    2012-01-01

    The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using stand

  14. Constrained spheroids for prolonged hepatocyte culture.

    Science.gov (United States)

    Tong, Wen Hao; Fang, Yu; Yan, Jie; Hong, Xin; Hari Singh, Nisha; Wang, Shu Rui; Nugraha, Bramasta; Xia, Lei; Fong, Eliza Li Shan; Iliescu, Ciprian; Yu, Hanry

    2016-02-01

    Liver-specific functions in primary hepatocytes can be maintained over extended duration in vitro using spheroid culture. However, the undesired loss of cells over time is still a major unaddressed problem, which consequently generates large variations in downstream assays such as drug screening. In static culture, the turbulence generated by medium change can cause spheroids to detach from the culture substrate. Under perfusion, the momentum generated by Stokes force similarly results in spheroid detachment. To overcome this problem, we developed a Constrained Spheroids (CS) culture system that immobilizes spheroids between a glass coverslip and an ultra-thin porous Parylene C membrane, both surface-modified with poly(ethylene glycol) and galactose ligands for optimum spheroid formation and maintenance. In this configuration, cell loss was minimized even when perfusion was introduced. When compared to the standard collagen sandwich model, hepatocytes cultured as CS under perfusion exhibited significantly enhanced hepatocyte functions such as urea secretion, and CYP1A1 and CYP3A2 metabolic activity. We propose the use of the CS culture as an improved culture platform to current hepatocyte spheroid-based culture systems.

  15. Magnetic-directed patterning of cell spheroids.

    Science.gov (United States)

    Whatley, Benjamin R; Li, Xiaowei; Zhang, Ning; Wen, Xuejun

    2014-05-01

    We have described an approach to fabricate three-dimensional (3D) cell-based structures using functionalized super paramagnetic iron oxide nanoparticles (SPIONs) as patterning agents to guide the assembly of endothelial cell spheroids into 3D patterns using the magnetic forces generated by a prefabricated magnetic template. SPIONs were first uptaken by endothelial cells before they were assembled into uniform-sized spheroids through a home-made robotic spheroid maker. To guide the magnetic spheroids, a unique magnetic template was fabricated using computer-aided design and cut from a magnetic sheet. The spheroids were then guided to the prefabricated magnetic template through the attractive magnetic forces between the SPIONs inside the endothelial cells and the magnetic template. Fusion of endothelial cell spheroids over time while adhered to the magnetic template allowed for the formation of 3D cell-based structures. Subsequent removal of the prefabricated magnetic template left 3-D endothelial cell sheets, which may be stacked to fabricate complicated 3D multicellular tissue structures. To enhance the cytocompatibility, SPIONs were silica-coated before use. At low concentrations, the SPIONs did not adversely affect cell viability, proliferation, and phenotype stability. Light and confocal microscopy showed that endothelial cell spheroids could be reproducibly created with high uniformity. The endothelial cells were able to remain viable and maintain the 3D structure in vitro. We have proved the concept to use SPIONs as a patterning agent to direct the attachment and self assembly of SPION-loaded endothelial cell spheroids on a prefabricated magnetic template for the formation of 3D cell based structures. A magnetic-directed technique allows quick patterning of cell spheroids in accordance with desirable magnetic patterns, therefore, holding promise for scalable fabrication of complicated 3D multicellular tissue structures. By varying the cell types and the

  16. Bistable flows in precessing spheroids

    CERN Document Server

    Cébron, D

    2015-01-01

    Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse in 1968. So far however, no analytical result on the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in details since their discovery by Noir et al. (2003). In this work, we aim at deriving analytical results on the solutions, aiming in particular at, first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir \\& C{\\'e}bron (2013), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, ...

  17. An updated survey of globular clusters in M 31. II. Newly discovered bright and remote clusters

    Science.gov (United States)

    Galleti, S.; Bellazzini, M.; Federici, L.; Buzzoni, A.; Fusi Pecci, F.

    2007-08-01

    Aims:We present the first results of a large spectroscopic survey of candidate globular clusters located in the extreme outskirts of the nearby M 31 galaxy. The survey is aimed at ascertaining the nature of the selected candidates to increase the sample of confirmed M 31 clusters lying more that 2° away from the center of the galaxy. Methods: We obtained low resolution spectra (λ/Δλ ≃ 800-1300) of 48 targets selected from the Extended Source Catalogue of 2MASS, as in Galleti et al. (2005, A&A, 436, 535). The observed candidates have been robustly classified according to their radial velocity and by verifying their extended/point-source nature from ground-based optical images. We have also obtained a spectrum and a radial velocity estimate for the remote M 31 globular discovered by Martin et al. (2006b, MNRAS, 371, 1983). Results: Among the 48 observed candidates clusters we found: 35 background galaxies, 8 foreground Galactic stars, and 5 genuine remote globular clusters. One of them has been already identified independently by Mackey et al. (2007, ApJ, 655, L85), their GC1; the other four are completely new discoveries: B516, B517, B518, B519. The newly discovered clusters lie at projected distance 40 kpc ≲ R_p≲ 100 kpc from the center of M 31, and have absolute integrated magnitude -9.5 ≲ MV ≲ -7.5. For all the observed clusters we have measured the strongest Lick indices and we have obtained spectroscopic metallicity estimates. Mackey-GC1, Martin-GC1, B517 and B518 have spectra typical of old and metal poor globular clusters ([Fe/H] ≲ -1.3); B519 appears old but quite metal-rich ([Fe/H]~≃ -0.5); B516 presents very strong Balmer absorption lines: if this is indeed a cluster it should have a relatively young age (likely < 2 Gyr). Conclusions: The present analysis nearly doubles the number of M 31 globulars at R_p≥ 40 kpc. At odds with the Milky Way, M 31 appears to have a significant population of very bright globular clusters in its extreme

  18. On the formation of dwarf galaxies and stellar haloes

    Science.gov (United States)

    Read, J. I.; Pontzen, A. P.; Viel, M.

    2006-09-01

    Using analytic arguments and a suite of very high resolution (~103Msolar per particle) cosmological hydrodynamical simulations, we argue that high-redshift, z ~ 10, M ~ 108Msolar haloes, form the smallest `baryonic building block' (BBB) for galaxy formation. These haloes are just massive enough to efficiently form stars through atomic line cooling and to hold on to their gas in the presence of supernova (SN) winds and reionization. These combined effects, in particular that of the SN feedback, create a sharp transition: over the mass range 3-10 × 107Msolar, the BBBs drop two orders of magnitude in stellar mass. Below ~2 × 107Msolar, galaxies will be dark with almost no stars and no gas. Above this scale is the smallest unit of galaxy formation: the BBB. We show that the BBBs have stellar distributions which are spheroidal, of low rotational velocity, old and metal poor: they resemble the dwarf spheroidal galaxies (dSphs) of the Local Group (LG). Unlike the LG dSphs, however, they contain significant gas fractions. We connect these high-redshift BBBs to the smallest dwarf galaxies observed at z = 0 using linear theory. A small fraction (~100) of these gas-rich BBBs at high redshift fall in to a galaxy the size of the Milky Way (MW). We suggest that 10 per cent of these survive to become the observed LG dwarf galaxies at the present epoch. This is consistent with recent numerical estimates. Those infalling haloes on benign orbits which keep them far away from the MW or Andromeda manage to retain their gas and slowly form stars - these become the smallest dwarf irregular galaxies; those on more severe orbits lose their gas faster than they can form stars and become the dwarf spheroidals. The remaining 90 per cent of the BBBs will be accreted. We show that this gives a metallicity and total stellar mass consistent with the MW old stellar halo.

  19. Equilibrium figures of dwarf planets

    Science.gov (United States)

    Rambaux, Nicolas; Chambat, Frederic; Castillo-Rogez, Julie; Baguet, Daniel

    2016-10-01

    Dwarf planets including transneptunian objects (TNO) and Ceres are >500 km large and display a spheroidal shape. These protoplanets are left over from the formation of the solar System about 4.6 billion years ago and their study could improve our knowledge of the early solar system. They could be formed in-situ or migrated to their current positions as a consequence of large-scale solar system dynamical evolution. Quantifying their internal composition would bring constraints on their accretion environment and migration history. That information may be inferred from studying their global shapes from stellar occultations or thermal infrared imaging. Here we model the equilibrium shapes of isolated dwarf planets under the assumption of hydrostatic equilibrium that forms the basis for interpreting shape data in terms of interior structure. Deviations from hydrostaticity can shed light on the thermal and geophysical history of the bodies. The dwarf planets are generally fast rotators spinning in few hours, so their shape modeling requires numerically integration with Clairaut's equations of rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter, to reach an accuracy better than a few kilometers depending on the spin velocity and mean density. We also show that the difference between a 500-km radius homogeneous model described by a MacLaurin ellipsoid and a stratified model assuming silicate and ice layers can reach several kilometers in the long and short axes, which could be measurable. This type of modeling will be instrumental in assessing hydrostaticity and thus detecting large non-hydrostatic contributions in the observed shapes.

  20. The M31 pixel lensing plan campaign: MACHO lensing and self-lensing signals

    Energy Technology Data Exchange (ETDEWEB)

    Calchi Novati, S.; Scarpetta, G. [Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Via Pellegrino 19, I-84019 Vietri Sul Mare (Italy); Bozza, V. [Dipartimento di Fisica E. R. Caianiello, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Italy); Bruni, I.; Gualandi, R. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Dall' Ora, M. [INAF, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); De Paolis, F.; Ingrosso, G.; Nucita, A.; Strafella, F. [Dipartimento di Matematica e Fisica E. De Giorgi, Università del Salento, CP 193, I-73100 Lecce (Italy); Dominik, M. [SUPA, University of St Andrews, School of Physics and Astronomy, North Haugh, St Andrews, KY16 9SS (United Kingdom); Jetzer, Ph. [Institute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Mancini, L. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Safonova, M.; Subramaniam, A. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Sereno, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Collaboration: PLAN Collaboration

    2014-03-10

    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' × 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both 'self lensing' and 'MACHO lensing' lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10{sup –2}) M {sub ☉} MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M {sub ☉} MACHOs.

  1. Machos in M31? Absence of Evidence but not Evidence of Absence

    Energy Technology Data Exchange (ETDEWEB)

    de Jong, Jelte T.A.; Widrow, Lawrence M.; Cseresnjes, Patrick; Kuijken, Konrad; Crotts, Arlin P.S.; Bergier, Alexander; Baltz, Edward A.; Gyuk, Geza; Sackett, Penny D.; Uglesich, Robert R.; Sutherland, Will J.; /Kapteyn Astron. Inst., Groningen /Queen' s U., Kingston /Columbia U., Astron. Astrophys. /Leiden Observ. /KIPAC, Menlo Park /Chicago U.,

    2005-07-14

    We present results of a microlensing survey toward the Andromeda Galaxy (M31) carried out during four observing seasons at the Isaac Newton Telescope (INT). This survey is part of the larger microlensing survey toward M31 performed by the Microlensing Exploration of the Galaxy and Andromeda (MEGA) collaboration. Using a fully automated search algorithm, we indentify 14 candidate microlensing events, three of which are reported here for the first time. Observations obtained at the Mayall telescope are combined with the INT data to produce composite light curves for these candidates. The results from the survey are compared with theoretical predictions for the number and distribution of events. These predictions are based on a Monte Carlo calculation of the detection efficiency and disk-bulge-halo models for M31. The models provide the full phase-space distribution functions (DFs) for the lens and source populations and are motivated by dynamical and observational considerations. They include differential extinction and span a wide range of parameter space characterized primarily by the mass-to-light ratios for the disk and bulge. For most models, the observed event rate is consistent with the rate predicted for self-lensing--a MACHO halo fraction of 30% or higher can be ruled at the 95% confidence level. The event distribution does show a large near-far asymmetry hinting at a halo contribution to the microlensing signal. Two candidate events are located at particularly large projected radii on the far side of the disk. These events are difficult to explain by self lensing and only somewhat easier to explain by MACHO lensing. A possibility is that one of these is due to a lens in a giant stellar stream.

  2. X-rays beware: the deepest Chandra catalogue of point sources in M31

    Science.gov (United States)

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2016-10-01

    This study represents the most sensitive Chandra X-ray point source catalogue of M31. Using 133 publicly available Chandra ACIS-I/S observations totalling ˜1 Ms, we detected 795 X-ray sources in the bulge, north-east, and south-west fields of M31, covering an area of ≈0.6 deg2, to a limiting unabsorbed 0.5-8.0 keV luminosity of ˜1034 erg s-1. In the inner bulge, where exposure is approximately constant, X-ray fluxes represent average values because they were determined from many observations over a long period of time. Similarly, our catalogue is more complete in the bulge fields since monitoring allowed more transient sources to be detected. The catalogue was cross-correlated with a previous XMM-Newton catalogue of M31's D25 isophote consisting of 1948 X-ray sources, with only 979 within the field of view of our survey. We found 387 (49 per cent) of our Chandra sources (352 or 44 per cent unique sources) matched to within 5 arcsec of 352 XMM-Newton sources. Combining this result with matching done to previous Chandra X-ray sources we detected 259. new sources in our catalogue. We created X-ray luminosity functions (XLFs) in the soft (0.5-2.0 keV) and hard (2.0-8.0 keV) bands that are the most sensitive for any large galaxy based on our detection limits. Completeness-corrected XLFs show a break around ≈1.3 × 1037 erg s-1, consistent with previous work. As in past surveys, we find that the bulge XLFs are flatter than the disc, indicating a lack of bright high-mass X-ray binaries in the disc and an aging population of low-mass X-ray binaries in the bulge.

  3. Search for gamma-rays from M31 and other extragalactic objects

    Science.gov (United States)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weeles, T. C.

    1985-01-01

    Although the existence of fluxes of gamma-rays of energies 10 to the 12th power eV is now established for galactic sources, the detection of such gamma-rays from extragalactic sources has yet to be independently confirmed in any case. The detection and confirmation of such energetic photons is of great astrophysical importance in the study of production mechanisms for cosmic rays, and other high energy processes in extragalactic objects. Observations of m31 are discussed. It is reported as a 10 to the 12th power eV gamma-ray source. Flux limits on a number of other extragalactic objects chosen for study are given.

  4. VizieR Online Data Catalog: GALEX UV photometry of M31 Globular Clusters (Rey+, 2007)

    Science.gov (United States)

    Rey, S.-C.; Rich, R. M.; Sohn, S. T.; Yoon, S.-J.; Chung, C.; Yi, S. K.; Lee, Y.-W.; Rhee, J.; Bianchi, L.; Madore, B. F.; Lee, K.; Barlow, T. A.; Forster, K.; Friedman, P. G.; Martin, D. C.; Morrissey, P.; Neff, S. G.; Schiminovich, D.; Seibert, M.; Small, T.; Wyder, T. K.; Donas, J.; Heckman, T. M.; Milliard, B.; Szalay, A. S.; Welsh, B. Y.

    2009-05-01

    The M31 images were obtained as part of the Nearby Galaxy Survey (NGS) carried out by GALEX in two UV bands: FUV (135-175nm) and NUV (175-275nm). Details on the early observations of 14 fields released under the GALEX Release 1 (GR1) can be found in Thilker et al. (2005ApJ...619L..67T) and Paper I (Rey et al., 2005ApJ...619L.119R). We have observed an additional nine GALEX fields in 2004 September-November, which are included in the GALEX Release 2 (GR2). (1 data file).

  5. New optical nova candidate in the outer disk of M 31

    Science.gov (United States)

    Pietsch, W.; Henze, M.; Burwitz, V.; Kaur, A.; Hartmann, D. H.; Milne, P.; Williams, G.

    2011-02-01

    We report the discovery of a possible nova in the outer disk of M 31 on two 15x60s and 7x60s stacked R filter CCD images obtained with the robotic 60cm telescope with an E2V CCD (2kx2k, 13.5 micron sq. pixels) of the Livermore Optical Transient Imaging System (Super-LOTIS, located at Steward Observatory, Kitt Peak, Arizona, USA) on 2011 February 15.127 and 18.121 UT with magnitude of 18.7 and 18.0, respectively.

  6. A New Method to Determine the Thickness of Spiral Galaxies: Apply to M31

    Institute of Scientific and Technical Information of China (English)

    LI Meng; LUO Xin-Lian; PENG Qiu-He; ZOU Zhi-Gang

    2000-01-01

    A new method is presented to determine the thickness of spiral galaxies. Based on the rigorous solution of the Poisson equation for logarithmic density disturbance in three-dimensional spiral galaxies, we have derived an accurate dispersion relation for the stellar and gaseous disk with a finite thickness. From this relation, a new method is put forward here for determining the thickness of galaxies. We apply this way to M31 and get the thickness of about 0.7kpc, which is in good agreement with the previous results.

  7. Abundances as Tracers of the Formation and Evolution of (Dwarf) Galaxies

    CERN Document Server

    Tolstoy, E

    2004-01-01

    This aims to be an overview of what detailed observations of individual stars in nearby dwarf galaxies may teach us about galaxy evolution. This includes some early results from the DART (Dwarf Abundances and Radial velocity Team) Large Programme at ESO. This project has used 2.2m/WFI and VLT/FLAMES to obtain spectra of large samples of individual stars in nearby dwarf spheroidal galaxies and determine accurate abundances and kinematics. These results can be used to trace the formation and evolution of nearby galaxies from the earliest times to the present.

  8. Formation of Isolated Dwarf Galaxies with Feedback

    CERN Document Server

    Sawala, Till; White, Simon D M

    2009-01-01

    We present results of high resolution hydrodynamical simulations of the formation and evolution of dwarf spheroidal galaxies. Our simulations start from cosmological initial conditions at high redshift. They include metal-dependent cooling, star formation, feedback from type II and type Ia supernovae and UV background radiation, with sub-grid recipes identical to those applied in a previous study of Milky Way type galaxies. We find that a combination of feedback and the cosmic UV background is necessary to explain the properties of dwarf spheroidal galaxies in isolation, and that their effect is strongly moderated by the depth of the gravitational potential. Taking this into account, our models naturally reproduce the observed luminosities and metallicities. The final objects have halo masses between 2.3*10^8 and 1.1*10^9 solar masses, mean velocity dispersions between 6.5 and 9.7 kms^-1, stellar masses ranging from 5*10^5 to 1.2*10^7 solar masses, median metallicities between [Fe/H] = -1.8 and -1.1, and half...

  9. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  10. The extended structure of the remote cluster B514 in M 31. Detection of extra-tidal stars

    Science.gov (United States)

    Federici, L.; Bellazzini, M.; Galleti, S.; Fusi Pecci, F.; Buzzoni, A.; Parmeggiani, G.

    2007-10-01

    Aims:We present a study of the density profile of the remote M 31 globular cluster B514, obtained from HST/ACS observations. Methods: By coupling analysis of the distribution of the integrated light with star counts, we are able to reliably follow the profile of the cluster out to r ~ 35 arcsec, corresponding to ≃130 pc. The profile is well-fitted out to ~15 core radii by a King Model having C = 1.65. With an estimated core radius rc = 0.38 arcsec, this corresponds to a tidal radius of r_t~ 17 arcsec (~65 pc). The analysis of the light profile also allows an estimate of the ellipticity and position angle of the isophotes within r ≤ 20 arcsec. Results: We find that both the light and the star-count profiles show a departure from the best-fit King model for r ⪆ 8 arcsec - as a surface brightness excess at large radii, and the star-count profile shows a clear break in the correspondence of the estimated tidal radius. Both features are interpreted as the signature of the presence of extra tidal stars around the cluster. It is also shown that B514 has a significantly larger half-light radius than ordinary globular clusters of the same luminosity. In the MV vs. log rh plane, B514 lies in a region inhabited by peculiar clusters, like ω Cen, G1, NGC 2419 and others, as well as by the nuclei of dwarf elliptical galaxies. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute (STScI), which is operated by AURA, Inc., under NASA contract NAS 5-26555. Table 5 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/473/429 Tables [see full text] and [see full text] are only available in electronic form at http://www.aanda.org

  11. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    Energy Technology Data Exchange (ETDEWEB)

    Jang, In Sung; Lee, Myung Gyoon, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  12. Discovery of an Ultra-faint Dwarf Galaxy in the Intracluster Field of the Virgo Center: A Fossil of the First Galaxies?

    Science.gov (United States)

    Jang, In Sung; Lee, Myung Gyoon

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =-2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be MV = -6.5 ± 0.2 and r eff = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ V, 0 = 26.37 ± 0.05 mag arcsec-2. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  13. Conjunctival spheroid degeneration. Recurrence after excision.

    Science.gov (United States)

    Norn, M S

    1982-06-01

    After excision of part of the conjunctiva in 15 eyes (14 subjects) due to spheroid degeneration, the author noticed only fairly small, varying numbers of autofluorescent and colourless spheroids-after an observation period of 18 months, only 6% of autofluorescent and 13% of colourless bodies were observed compared to the number before biopsy. Around the biopsy site only a few spheroids were seen, with a non-significant tendency to increase in number of the colourless bodies. In the cornea the band-shaped keratopathy had aggravated, with the formation of a small number of large, autofluorescent spheroids. A pinguecula recurred in a mild degree only in 3 out of 13 cases within 18 months.

  14. Brown Dwarf Companions to White Dwarfs

    CERN Document Server

    Burleigh, M R; Dobbie, P D; Farihi, J; Napiwotzki, R; Maxted, P F L; Barstow, M A; Jameson, R F; Casewell, S L; Gänsicke, B T; Marsh, T R

    2011-01-01

    Brown dwarf companions to white dwarfs are rare, but recent infra-red surveys are slowly reveal- ing examples. We present new observations of the post-common envelope binary WD0137-349, which reveals the effects of irradiation on the ~ 0.05M* secondary, and new observations of GD 1400 which show that it too is a close, post-comon envelope system. We also present the lat- est results in a near-infrared photometric search for unresolved ultracool companions and to white dwarfs with UKIDSS. Twenty five DA white dwarfs were identified as having photometric excesses indicative of a low mass companion, with 8-10 of these having a predicted mass in the range asso- ciated with brown dwarfs. The results of this survey show that the unresolved (< 2") brown dwarf companion fraction to DA white dwarfs is 0.3 \\leq fWD+BD \\leq 1.3%.

  15. AGB stars in the disk, satellites, and halo of M31

    Science.gov (United States)

    Hamren, Katherine M.

    2016-08-01

    Asymptotic giant branch (AGB) stars are simultaneously one of the most important and least well understood phases of stellar evolution. Luminous, red, AGB stars are excellent tracers of kinematical and morphological structure, and track the presence of intermediate age populations. In addition, they contribute significantly to the near-infrared flux and gas/dust budgets of galaxies. As a result, they are essential for studying galaxies in both the local and distance universe. However, their observable properties depend on complicated physical processes, including dredge-up, dust production, and stellar pulsations. As a result, they are difficult to model on both the individual and population-level scales. Homogenous samples of AGB stars are necessary to calibrate ever improving models. In this thesis I use data from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey to identify and characterize clean, homogenous samples of carbon- and oxygen-rich AGB stars (carbon stars and M-stars, respectively) in the disk, satellites and halo of the Andromeda galaxy (M31). Using these stars, I constrain the ratio (C/M) of carbon- to oxygen-rich in fields throughout the M31 system, compare the AGB stars to their observationally similar contaminants (extrinsic carbon stars and oxygen-rich red giant branch stars), and discuss major physical properties (color, temperature, metallicity, dust production, and variability).

  16. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, Dylan; Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Williams, Benjamin F.; Dalcanton, Julianne J.; Johnson, L. C.; Lewis, Alexia R. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Lang, Dustin [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Girardi, Leó [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatori 5, I-35122 Padova (Italy); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bell, Eric [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Fouesneau, Morgan [MPIA, Koenigstuhl 17, D-69117 Heidelberg (Germany); Guhathakurta, Puragra; Hamren, Katherine M. [UCO/Lick Observatory, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kalirai, Jason [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Monachesi, Antonela [MPA, Garching (Germany); Olsen, Knut, E-mail: dylan.gregersen@utah.edu, E-mail: aseth@astro.utah.edu [NOAO, Tucson, AZ 85719 (United States)

    2015-12-15

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and is quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.

  17. Panchromatic Hubble Andromeda Treasury XII. Mapping Stellar Metallicity Distributions in M31

    CERN Document Server

    Gregersen, Dylan; Williams, Benjamin F; Lang, Dustin; Dalcanton, Julianne J; Girardi, Léo; Skillman, Evan D; Bell, Eric; Dolphin, Andrew E; Fouesneau, Morgan; Guhathakurta, Puragra; Hamren, Katherine M; Johnson, L C; Kalirai, Jason; Lewis, Alexia R; Monachesi, Antonela; Olsen, Knut

    2015-01-01

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda's galactic disk. We see a clear metallicity gradient of $-0.020\\pm0.004$ dex/kpc from $\\sim4-20$ kpc assuming a constant RGB age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction and is quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1$\\sigma$ error on our metallicity gradient measurement. In addition to...

  18. Chemical evolution and the galactic habitable zone of M31 (the Andromeda Galaxy)

    CERN Document Server

    Carigi, L; Garcia-Rojas, J

    2012-01-01

    We have computed the Galactic Habitable Zones (GHZs) of the Andromeda galaxy (M31) based mainly, but not exclusively, on the probability of terrestrial planet formation, which depends on the metallicity (Z) of the interstellar medium. The GHZ was therefore obtained from a chemical evolution model built to reproduce a precise metallicity gradient in the galactic disk, [O/H](r) $ = -0.015 \\pm 0.003 dex kpc^{-1} x r(kpc) + 0.44 \\pm 0.04 dex $. This gradient is the most probable when intrinsic scatter is present in the observational data. The chemical evolution model predicted a higher star formation history in both the halo and disk components of M31 and a less efficient inside-out galactic formation, compared to those of the Milky Way. If we assumed that Earth-like planets form with a probability law that follows the Z distribution shown by stars with detected planets, the most probable GHZ with basic life is located between 6 and 17 kpc on planets with ages between 4.5 and 1 Gy, and the most probable GHZ with ...

  19. Bright X-ray Transients in M31: 2004 July XMM-Newton Observations

    CERN Document Server

    Trudolyubov, S; Cordova, F; Trudolyubov, Sergey; Priedhorsky, William; Cordova, France

    2005-01-01

    We present the results of X-ray observations of four bright transients sources detected in the July 2004 XMM-Newton observations of the central bulge of M31. Two X-ray sources, XMMU J004315.5+412440 and XMMU J004144.7+411110, were discovered for the first time. Two other sources, CXOM31 J004309.9+412332 and CXOM31 J004241.8+411635, were previously detected by Chandra. The properties of the sources suggest their identification with accreting binary systems in M31. The X-ray spectra and variability of two sources, XMMU J004144.7+411110 and CXOM31 J004241.8+411635, are similar to that of the Galactic black hole transients, making them a good black hole candidates. The X-ray source XMMU J004315.5+412440 demonstrates a dramatic decline of the X-ray flux on a time scale of three days, and a remarkable flaring behavior on a short time scales. The X-ray data on XMMU J004315.5+412440 and CXOM31 J004309.9+412332 suggest that they can be either black hole or neutron star systems. Combining the results of 2000-2004 XMM o...

  20. On the Neutral Hydrogen Filament Between M31 and M33

    Science.gov (United States)

    Lockman, Felix J.; Free, N.; Shields, J. C.

    2012-01-01

    In 2004, Braun & Thilker (B&T) reported the detection of extremely faint 21cm HI emission at the level log10(NH)=17.0 that formed a partial bridge about 200 kpc in extent between M31 and M33. This has been interpreted as the neutral component of a WHIM filament, or the remnant of a past encounter between the two galaxies. B&T used data from the Westerbork Synthesis Radio Telescope, operated as an array of single dishes, to obtain the necessary sensitivity, but at the expense of angular resolution ( 45'). Subsequently, Putman et al (2009) have questioned the existence of this filament, noting its absence from the immediate vicinity of M33 at the level log10(NH) 18 in data from Arecibo. We have reobserved much of the region between M31 and M33 using the Green Bank Telescope (GBT) at 9' resolution, with a 5-sigma sensitivity limit of log10(NHI) 18.0 and a few much deeper pointings. We detect HI lines consistent with the B&T results. In two locations the emission appears at log(NHI)>18.3, suggesting clumping in the otherwise diffuse gas. We estimate the mass of HI in the bridge, and show examples of the GBT's freedom from instrumental effects down to detection levels of log(NHI) 17.0. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  1. The outer halo globular cluster system of M31 - I. The final PAndAS catalogue

    CERN Document Server

    Huxor, A P; Ferguson, A M N; Irwin, M J; Martin, N F; Tanvir, N R; Veljanoski, J; McConnachie, A; Fishlock, C K; Ibata, R; Lewis, G F

    2014-01-01

    We report the discovery of 59 globular clusters (GCs) and two candidate GCs in a search of the halo of M31, primarily via visual inspection of CHFT/MegaCam imagery from the Pan-Andromeda Archaeological Survey (PAndAS). The superior quality of these data also allow us to check the classification of remote objects in the Revised Bologna Catalogue (RBC), plus a subset of GC candidates drawn from SDSS imaging. We identify three additional new GCs from the RBC, and confirm the GC nature of 11 SDSS objects (8 of which appear independently in our remote halo catalogue); the remaining 188 candidates across both lists are either foreground stars or background galaxies. Our new catalogue represents the first uniform census of GCs across the M31 halo - we find clusters to the limit of the PAndAS survey area at projected radii of up to R_proj ~ 150 kpc. Tests using artificial clusters reveal that detection incompleteness cuts in at luminosities below M_V = -6.0; our 50% completeness limit is M_V ~ -4.1. We construct a un...

  2. Major Substructure in the M31 Outer Halo: the East Cloud

    CERN Document Server

    McMonigal, B; Conn, A R; Mackey, A D; Lewis, G F; Irwin, M J; Martin, N F; McConnachie, A W; Ferguson, A M N; Ibata, R A; Huxor, A P

    2015-01-01

    We present the first detailed analysis of the East Cloud, a highly disrupted diffuse stellar substructure in the outer halo of M31. The core of the substructure lies at a projected distance of $\\sim100$ kpc from the centre of M31 in the outer halo, with possible extensions reaching right into the inner halo. Using Pan-Andromeda Archaeological Survey photometry of red giant branch stars, we measure the distance, metallicity and brightness of the cloud. Using Hubble Space Telescope data, we independently measure the distance and metallicity to the two globular clusters coincident with the East Cloud core, PA-57 and PA-58, and find their distances to be consistent with the cloud. Four further globular clusters coincident with the substructure extensions are identified as potentially associated. Combining the analyses, we determine a distance to the cloud of $814^{+20}_{-9}$ kpc, a metallicity of $[Fe/H] = -1.2\\pm0.1$, and a brightness of $M_V = -10.7\\pm0.4$ mag. Even allowing for the inclusion of the potential e...

  3. Emission-line stars in M31 from the SPLASH and PHAT surveys

    CERN Document Server

    Prichard, Laura J; Hamren, Katherine M; Dalcanton, Julianne J; Dorman, Claire E; Seth, Anil C; Williams, Benjamin F; Damon, Gabriel A; Ilango, Anita; Ilango, Megha

    2016-01-01

    We present a sample of 224 stars that emit H$\\alpha$ (H$\\alpha$ stars) in the Andromeda galaxy (M31). The stars were selected from $\\sim$ 5000 spectra, collected as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey using Keck II/DEIMOS. We used six-filter Hubble Space Telescope photometry from the Panchromatic Hubble Andromeda Treasury survey to classify and investigate the properties of the H$\\alpha$ stars. We identified five distinct categories of H$\\alpha$ star: B-type main sequence (MS) stars, `transitioning'-MS (T-MS) stars, red core He burning (RHeB) stars, non-C-rich asymptotic giant branch (AGB) stars, and C-rich AGB stars. We found $\\sim$ 12 per cent of B-type stars exhibit H$\\alpha$ emission (Be stars). The frequency of Be to all B stars is known to vary with the metallicity of their environment. Comparing this proportion of Be stars with other environments around the Local Group, the result could indicate that M31 is more metal rich than the Milky Way. We predic...

  4. Chemical Abundances of Planetary Nebulae in the Substructures of M31

    CERN Document Server

    Fang, Xuan; Guerrero, Martin A; Liu, Xiaowei; Yuan, Haibo; Zhang, Yong; Zhang, Bing

    2015-01-01

    We present deep spectroscopy of planetary nebulae (PNe) that are associated with the substructures of the Andromeda Galaxy (M31). The spectra were obtained with the OSIRIS spectrograph on the 10.4 m GTC. Seven targets were selected for the observations, three in the Northern Spur and four associated with the Giant Stream. The most distant target in our sample, with a rectified galactocentric distance >100 kpc, was the first PN discovered in the outer streams of M31. The [O III] 4363 auroral line was well detected in the spectra of all targets, enabling electron temperature determination. Ionic abundances are derived based on the [O III] temperatures, and elemental abundances of helium, nitrogen, oxygen, neon, sulfur, and argon are estimated. The relatively low N/O and He/H ratios as well as abundance ratios of alpha-elements indicate that our target PNe might belong to populations as old as ~2 Gyr. Our PN sample, including the current seven and the previous three observed by Fang et al., have rather homogeneo...

  5. ACS Photometry of the Remote M31 Globular Cluster B514

    Science.gov (United States)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Pecci, F. Fusi

    2006-10-01

    We present deep F606W, F814W ACS photometry of the recently discovered globular cluster B514, the outermost known globular in the M31 galaxy. The cluster appears quite extended, and member stars are unequivocally identified out to ~200 pc from the center. The color-magnitude diagram reveals a steep red giant branch (RGB), and a horizontal branch extending blueward of the instability strip, indicating that B514 is a classical old metal-poor globular cluster. The RGB locus and the position of the RGB bump are both consistent with a metallicity [Fe/H]~-1.8, in excellent agreement with spectroscopic estimates. A preliminary estimate of the integrated absolute V magnitude (MV<~-9.1) suggests that B514 is among the brightest globulars of M31. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  6. XMM-Newton reveals ~100 new LMXBs in M31 from variability studies

    CERN Document Server

    Barnard, R; Tonkin, C; Kolb, U; Osborne, J P

    2005-01-01

    We have conducted a survey of X-ray sources in XMM-Newton observations of M31, examining their power density spectra (PDS) and spectral energy distributions (SEDs). Our automated source detection yielded 535 good X-ray sources; to date, we have studied 225 of them. In particular, we examined the PDS because low mass X-ray binaries (LMXBs) exhibit two distinctive types of PDS. At low accretion rates, the PDS is characterised by a broken power law, with the spectral index changing from ~0 to ~1 at some frequency in the range \\~0.01--1 Hz; we refer to such PDS as Type A. At higher accretion rates, the PDS is described by a simple power law; we call these PDS Type B. Of the 225 sources studied to date, 75 exhibit Type A variability, and are almost certainly LMXBs, while 6 show Type B but not Type A, and are likely LMXBs. Of these 81 candidate LMXBs, 71 are newly identified in this survey; furthermore, they are mostly found near the centre of M31. Furthermore, most of the X-ray population in the disc are associate...

  7. Spectral Energy Distributions and Masses of 304 M31 Old Star Clusters

    CERN Document Server

    Ma, Jun; Wu, Zhenyu; Zhang, Tianmeng; Zou, Hu; Nie, Jundan; Zhou, Zhiming; Zhou, Xu; Wu, Jianghua; Du, Cuihua; Yuan, Qirong

    2014-01-01

    This paper presents CCD multicolor photometry for 304 old star clusters in the nearby spiral galaxy M31. Of which photometry of 55 star clusters is first obtained. The observations were carried out as a part of the Beijing--Arizona--Taiwan--Connecticut (BATC) Multicolor Sky Survey from 1995 February to 2008 March, using 15 intermediate-band filters covering 3000--10000 \\AA. Detailed comparisons show that our photometry is in agreement with previous measurements. Based on the ages and metallicities from Caldwell et al. and the photometric measurements here, we estimated the clusters' masses by comparing their multicolor photometry with stellar population synthesis models. The results show that the sample clusters have masses between $\\sim 3\\times10^4 M_\\odot$ and $\\sim 10^7 M_\\odot$ with the peak of $\\sim 4\\times10^5 M_\\odot$. The masses here are in good agreement with those in previous studies. Combined with the masses of young star clusters of M31 from Wang et al., we find that the peak of mass of old cluste...

  8. HST Observations of Globular Clusters in M31.I Surface Photometry of 13 Objects

    CERN Document Server

    Pecci, F F; Bendinelli, O; B`onoli, F; Cacciari, C; Djorgovski, S G; Federici, L; Ferraro, F R; Parmeggiani, G; Weir, N; Zavatti, F

    1994-01-01

    We present the initial results of a study of globular clusters in M31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three inde- pendent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photome- try of M31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values derived from ground-based observations indi- cates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the G...

  9. Relating dust, gas and the rate of star formation in M31

    CERN Document Server

    Tabatabaei, F S

    2010-01-01

    We derive distributions of dust temperature and dust opacity across M31 at 45" resolution using the Spitzer data. With the opacity map and a standard dust model we de-redden the Ha emission yielding the first de-reddened Ha map of M31. We compare the emissions from dust, Ha, HI and H2 by means of radial distributions, pixel-to-pixel correlations and wavelet cross-correlations. The dust temperature steeply decreases from 30K near the center to 15K at large radii. The mean dust optical depth at the Ha wavelength along the line of sight is about 0.7. The radial decrease of the dust-to-gas ratio is similar to that of the oxygen abundance. On scales<2kpc, cold dust emission is best correlated with that of neutral gas and warm dust emission with that of ionized gas. Ha emission is slightly better correlated with emission at 70um than at 24um. In the area 6kpc

  10. A New Optical Survey of Supernova Remnant Candidates in M31

    CERN Document Server

    Lee, Jong Hwan

    2014-01-01

    We present a survey of optically emitting supernova remnants (SNRs) in M31 based on H$\\alpha$ and [SII] images in the Local Group Survey. Using these images, we select objects that have [SII]:H$\\alpha$ $>$ 0.4 and circular shapes. We find 76 new SNR candidates. We also inspect 234 SNR candidates presented in previous studies, finding that only 80 of them are SNR candidates according to our criteria. Combining them with the new candidates, we produce a master catalog of 156 SNR candidates in M31. We classify these SNR candidates according to two criteria: the SNR progenitor type [Type Ia and core-collapse (CC) SNRs] and the morphological type. Type Ia and CC SNR candidates make up 23% and 77%, respectively, of the total sample. Most of the CC SNR candidates are concentrated in the spiral arms, while the Type Ia SNR candidates are rather distributed over the entire galaxy, including the inner region. The CC SNR candidates are brighter in H$\\alpha$ and [SII] than the Type Ia SNR candidates. We derive a cumulativ...

  11. High-Resolution Mapping of Dust via Extinction in the M31 Bulge

    CERN Document Server

    Dong, Hui; Wang, Q D; Lauer, Tod R; Olsen, Knut A G; Saha, Abhijit; Dalcanton, Julianne J; Groves, Brent A

    2016-01-01

    We map the dust distribution in the central 180" (~680 pc) region of the M31 bulge, based on HST/WFC3 and ACS observations in ten bands from near-ultraviolet (2700 A) to near-infrared (1.5 micron). This large wavelength coverage gives us great leverage to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (~0.5" , i.e., ~2 pc) and sensitivity (the extinction uncertainty, \\delta A_V~0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disk and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel . The dust masses in these two maps are co...

  12. Evidence for metallicity spreads in three massive M31 globular clusters

    CERN Document Server

    Fuentes-Carrera, Isaura; Sarajedini, Ata; Bridges, Terry; Djorgovski, George; Meylan, Georges

    2008-01-01

    We quantify the intrinsic width of the red giant branches of three massive globular clusters in M31 in a search for metallicity spreads within these objects. We present HST/ACS observations of three massive clusters in M31, G78, G213, and G280. A thorough description of the photometry extraction and calibration is presented. After derivation of the color-magnitude diagrams, we quantify the intrinsic width of the red giant branch of each cluster. This width translates into a metallicity dispersion that indicates a complex star formation history for this type of system. For G78, sigma_[Fe/H]}=0.86 \\pm 0.37; for G213, 0.89 \\pm 0.20; and for G280, 1.03 \\pm 0.26. We find that the metallicity dispersion of the clusters does not scale with mean metallicity. We also find no trend with the cluster mass. We discuss some possible formation scenarios that would explain our results.

  13. HST/WFPC2 Color-Magnitude Diagrams for Globular Clusters in M31

    CERN Document Server

    Rich, R M; Cacciari, C; Federici, L; Pecci, F F; Djorgovski, S G

    2005-01-01

    We report new HST/WFPC2 photometry for 10 globular clusters (GC) in M31 observed in F5555W(V) and F814W(I). Additionally we have reanalyzed HST archival data of comparable quality for 2 more GCs. Extraordinary care is taken to account for the effects of blended stellar images and required field subtraction. We thus reach 1 mag fainter than the horizontal branch (HB) even in unfavorable cases. We present the color-magnitude diagrams (CMDs) and discuss their main features also in comparison with the properties of the Galactic GCs. This analysis is augmented with CMDs previously obtained and discussed by Fusi Pecci et al. (1996) on 8 other M31 clusters. We report the following significant results: 1. The locus of the red giant branches give reliable metallicity determinations which compare generally very well with ground-based integrated spectroscopic and photometric measures, as well as giving good reddening estimates. 2. The HB morphologies show the same behavior with metallicity as the Galactic GCs, with indi...

  14. A Spectroscopic Survey of Massive Stars in M31 and M33

    Science.gov (United States)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M.

    2016-09-01

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf-Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vast majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20-40 M ⊙ range. The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. MMT telescope time was granted by NOAO, through the Telescope System Instrumentation Program (TSIP). TSIP is funded by the National Science Foundation. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  15. The Origin of the Young Stars in the Nucleus of M31

    CERN Document Server

    Chang, P; Chiang, E; Quataert, E

    2007-01-01

    The triple nucleus of M31 consists of a population of old red stars in an eccentric disk (P1 and P2) and another population of younger A stars in a circular disk (P3) around M31's central supermassive black hole (SMBH). We argue that P1 and P2 determine the maximal radial extent of the younger A star population and provide the gas that fueled the starburst that generated P3. The eccentric stellar disk creates an $m=1$ non-axisymmetric perturbation to the potential. This perturbed potential drives gas into the inner parsec around the SMBH, if the pattern speed of the eccentric stellar disk is $\\Omega_p \\lesssim 3-10 {\\rm km s^{-1} pc^{-1}}$. We show that stellar mass loss from P1 and P2 is sufficient to create a gravitationally unstable gaseous disk of $\\sim 10^5\\Msun$ every $0.1-1$ Gyrs, consistent with the 200 Myr age of P3. Similar processes may act in other systems to produce very compact nuclear starbursts.

  16. Faint X-ray Binaries and Their Optical Counterparts in M31

    CERN Document Server

    Vulic, N; Barmby, P

    2014-01-01

    X-ray binaries (XRBs) are probes of both star formation and stellar mass, but more importantly remain one of the only direct tracers of the compact object population. To investigate the XRB population in M31, we utilized all 121 publicly available observations of M31 totalling over 1 Ms from $\\it{Chandra's}$ ACIS instrument. We studied 83 star clusters in the bulge using the year 1 star cluster catalogue from the Panchromatic Hubble Andromeda Treasury Survey. We found 15 unique star clusters that matched to 17 X-ray point sources within 1'' (3.8 pc). This population is composed predominantly of globular cluster low-mass XRBs, with one previously unidentified star cluster X-ray source. Star clusters that were brighter and more compact preferentially hosted an X-ray source. Specifically, logistic regression showed that the F475W magnitude was the most important predictor followed by the effective radius, while color (F475W$-$F814W) was not statistically significant. We also completed a matching analysis of 1566...

  17. A Survey of Compact Star Clusters in the South-West Field of the M31 Disk. Structural Parameters

    CERN Document Server

    Sableviciute, I; Kodaira, K; Narbutis, D; Stonkute, R; Bridzius, A

    2006-01-01

    We present structural parameters for 51 compact star clusters from the survey of star clusters conducted in the South-West field of the M31 disk by Kodaira et al. (2004). Structural parameters of the clusters were derived by fitting the 2-D King and EFF (Elson, Fall and Freeman 1987) models to the V-band cluster images. Structural parameters derived for two M31 clusters, which are in common with the study based on the HST data (Barmby et al. 2002), are consistent with earlier determination. The M31 star cluster structural parameters in general are compatible with the corresponding Milky Way galaxy and Magellanic Clouds cluster parameters.

  18. Atmospheres of Brown Dwarfs

    CERN Document Server

    Helling, Christiane

    2014-01-01

    Brown Dwarfs are the coolest class of stellar objects known to date. Our present perception is that Brown Dwarfs follow the principles of star formation, and that Brown Dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes Brown Dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown Dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of < 2800K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying Xray-activity indicators across the fully convective boundary.

  19. Photometry of Star Clusters in the M31 Galaxy. Aperture Size Effects

    CERN Document Server

    Narbutis, D; Kodaira, K; Bridzius, A; Stonkute, R

    2007-01-01

    A study of aperture size effects on star cluster photometry in crowded fields is presented. Tests were performed on a sample of 285 star cluster candidates in the South-West field of the M31 galaxy disk, measured in the Local Group Galaxy Survey mosaic images (Massey et al. 2006). In the majority of cases the derived UBVRI photometry errors represent the accuracy of cluster colors well, however, for faint objects, residing in crowded environments, uncertainties of colors could be underestimated. Therefore, prior to deriving cluster parameters via a comparison of measured colors with SSP models, biases of colors, arising due to background crowding, must be taken into account. A comparison of our photometry data with Hubble Space Telescope observations of the clusters by Krienke and Hodge (2007) is provided.

  20. Infrared High-Resolution Integrated Light Spectral Analyses of M31 Globular Clusters from APOGEE

    CERN Document Server

    Sakari, Charli M; Schiavon, Ricardo P; Bizyaev, Dmitry; Prieto, Carlos Allende; Beers, Timothy C; Caldwell, Nelson; Garcia-Hernandez, Domingo Anibal; Lucatello, Sara; Majewski, Steven; O'Connell, Robert W; Pan, Kaike; Strader, Jay

    2016-01-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22, 500) H-band integrated light spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared spectra offer lines from new elements, of different strengths, and at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of infrared integrated light analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances, but are systematically offset from optical, Lick index abundances. With a few exceptions, the other abundances agree between the optical and the infrared within the 1{\\sigma} uncertainties. The first integrated K abundances are also presented, and demo...

  1. An HST/ACS view of the inhomogeneous outer halo of M31

    Science.gov (United States)

    Richardson, J. C.; Ferguson, A. M. N.; Mackey, A. D.; Irwin, M. J.; Chapman, S. C.; Huxor, A.; Ibata, R. A.; Lewis, G. F.; Tanvir, N. R.

    2009-07-01

    We present a high precision photometric view of the stellar populations in the outer halo of M31, using data taken with the Hubble Space Telescope/Advanced Camera for Surveys. We analyse the field populations adjacent to 11 luminous globular clusters which sample the galactocentric radial range 18 ~ -0.6 to -1.0dex and considerable metallicity dispersions of 0.2 to 0.3dex (assuming a 10 Gyr population and scaled-solar abundances). The average metallicity over the range 30-60kpc is [Fe/H] = -0.80 +/- 0.14dex, with no evidence for a significant radial gradient. Metal-poor stars ([Fe/H] jcr@roe.ac.uk

  2. High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair

    CERN Document Server

    Ocvirk, P; Chardin, J; Knebe, A; Libeskind, N; Gottlöber, S; Yepes, G; Hoffman, Y

    2013-01-01

    We present the results of a set of numerical simulations aimed at studying reionization at galactic scale. We use a high resolution simulation of the formation of the Milky Way-M31 system to simulate the reionization of the local group. The reionization calculation was performed with the post-processing radiative transfer code ATON and the underlying cosmological simulation was performed as part of the CLUES project. We vary the source models to bracket the range of source properties used in the literature. We investigate the structure and propagation of the galatic ionization fronts by a visual examination of our reionization maps. Within the progenitors we find that reionization is patchy, and proceeds locally inside out. The process becomes patchier with decreasing source photon output. It is generally dominated by one major HII region and 1-4 additional isolated smaller bubbles, which eventually overlap. Higher emissivity results in faster and earlier local reionization. In all models, the reionization of...

  3. The Mass Dependence of Dwarf Satellite Galaxy Quenching

    CERN Document Server

    Slater, Colin T

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic clouds. While almost all of the low mass ($M_\\star \\lesssim 10^7$ $M_\\odot$) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40-50%. This change in the quenched fraction is large, and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell in to their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to acco...

  4. Satellite Dwarf Galaxies in a Hierarchical Universe: Infall Histories, Group Preprocessing, and Reionization

    CERN Document Server

    Wetzel, Andrew R; Garrison-Kimmel, Shea

    2015-01-01

    In the Local Group, almost all satellite dwarf galaxies that are within the virial radius of the Milky Way (MW) and M31 exhibit strong environmental influence. The orbital histories of these satellites provide the key to understanding the role of the MW/M31 halo, lower-mass groups, and cosmic reionization on the evolution of dwarf galaxies. We examine the virial-infall histories of satellites with M_star = 10 ^ {3 - 9} M_sun using the ELVIS suite of cosmological zoom-in dissipationless simulations of 48 MW/M31-like halos. Satellites at z = 0 fell into the MW/M31 halos typically 5 - 8 Gyr ago at z = 0.5 - 1. However, they first fell into any host halo typically 7 - 10 Gyr ago at z = 0.7 - 1.5. This difference arises because many satellites experienced "group preprocessing" in another host halo, typically of M_vir ~ 10 ^ {10 - 12} M_sun, before falling into the MW/M31 halos. Satellites with lower-mass and/or those closer to the MW/M31 fell in earlier and are more likely to have experienced group preprocessing; ...

  5. A Survey of Compact Star Clusters in the South-West Field of the M31 Disk. UBVRI Photometry

    CERN Document Server

    Narbutis, D; Kodaira, K; Sableviciute, I; Stonkute, R; Bridzius, A

    2006-01-01

    We present the results of UBVRI broad-band aperture CCD photometry of 51 compact star clusters located in the South-West part of the M31 disk. The mean rms errors of all measured star cluster colors are less than 0.02 mag. In color vs. color diagrams the star clusters show significantly tighter sequences when compared with the photometric data from the compiled catalog of the M31 star clusters published by Galleti et al. (2004).

  6. An updated survey of globular clusters in M 31. I. Classification and radial velocity for 76 candidate clusters

    Science.gov (United States)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Fusi Pecci, F.

    2006-09-01

    Aims.We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M 31 galaxy. The survey is aimed at the classification of known candidate M 31 clusters and at the study of their kinematic properties. Methods: .We obtained low-resolution spectroscopy (λ/Δλ ≃ 800-1300) for 133 targets, including 76 yet-to-be-confirmed candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M 31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~± 20 km s-1. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. Results: .In our set of 76 candidate clusters we found: 42 newly-confirmed bona-fide M 31 clusters, 12 background galaxies, 17 foreground Galactic stars, 2 Hii regions belonging to M 31 and 3 unclassified (possibly M 31 clusters or foreground stars) objects. The classification of a few other candidates not included in our survey has been also reassessed on various observational bases. All the sources of radial velocity estimates for M 31 known globular clusters available in the literature have been compared and checked, and a homogeneous general list has been obtained for 349 confirmed clusters with radial velocity. Conclusions: .Our results suggest that a significant number of genuine clusters (≳100) is still hidden among the plethora of known candidates proposed by various authors. Hence our knowledge of the globular cluster system of the M 31 galaxy is still far from complete even in terms of simple membership.

  7. Photometric properties of Local Volume dwarf galaxies

    CERN Document Server

    Sharina, M E; Dolphin, A E; Karachentseva, V E; Tully, R Brent; Karataeva, G M; Makarov, D I; Makarova, L N; Sakai, S; Shaya, E J; Nikolaev, E Yu; Kuznetsov, A N

    2007-01-01

    We present surface photometry and metallicity measurements for 104 nearby dwarf galaxies imaged with the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. In addition, we carried out photometry for 26 galaxies of the sample and for Sextans~B on images of the Sloan Digital Sky Survey. Our sample comprises dwarf spheroidal, irregular and transition type galaxies located within ~10 Mpc in the field and in nearby groups: M81, Centaurus A, Sculptor, and Canes Venatici I cloud. It is found that the early-type galaxies have on average higher metallicity at a given luminosity in comparison to the late-type objects. Dwarf galaxies with M_B > -12 -- -13 mag deviate toward larger scale lengths from the scale length -- luminosity relation common for spiral galaxies, h \\propto L^{0.5}_B. The following correlations between fundamental parameters of the galaxies are consistent with expectations if there is pronounced gas-loss through galactic winds: 1) between the luminosit...

  8. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-Red Supergiant Evolution

    CERN Document Server

    Gordon, Michael S; Jones, Terry J

    2016-01-01

    Recent supernova and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-supernova mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions. Since the position of intermediate and late-type supergiants on the color-magnitude diagram can be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar dust in their SEDs, we find that $30-40\\%$ of the yellow supergiants are likely in a post-red supergiant state...

  9. The Integrated Calcium II Triplet as a Metallicity Indicator: Comparisons with High Resolution [Fe/H] in M31 Globular Clusters

    CERN Document Server

    Sakari, Charli M

    2015-01-01

    Medium resolution (R=4,000 to 9,000) spectra of the near infrared Ca II lines (at 8498, 8542, and 8662 A) in M31 globular cluster integrated light spectra are presented. In individual stars the Ca II triplet (CaT) traces stellar metallicity; this paper compares integrated CaT strengths to well determined, high precision [Fe/H] values from high resolution integrated light spectra. The target globular clusters cover a wide range in metallicity (from [Fe/H] = -2.1 to -0.2). While most are older than 10 Gyr, some may be of intermediate age (2-6 Gyr). A handful (3-6) have detailed abundances (e.g. low [Ca/Fe]) that indicate they may have been accreted from dwarf galaxies. Using various measurements and definitions of CaT strength, it is confirmed that for GCs with [Fe/H] < -0.4 and older than 2 Gyr the integrated CaT traces cluster [Fe/H] to within about 0.2 dex, independent of age. CaT lines in metal rich GCs are very sensitive to nearby atomic lines (and TiO molecular lines in the most metal rich GCs), largel...

  10. X-Ray Flashes in Recurrent Novae: M31N 2008-12a and the Implications of the Swift Non-detection

    CERN Document Server

    Kato, Mariko; Henze, Martin; Ness, Jan-Uwe; Osborne, Julian P; Page, Kim L; Darnley, Matthew J; Bode, Michael F; Shafter, Allen W; Hernanz, Margarita; Gehrels, Neil; Kennea, Jamie; Hachisu, Izumi

    2016-01-01

    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 M_sun and for two recurrence periods of 0.5 and 1 years. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hours (0.6 days) among the four cases is obtained for the 1.385 M_sun WD with one year recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 year recur...

  11. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.

    Science.gov (United States)

    Torisawa, Yu-suke; Takagi, Airi; Nashimoto, Yuji; Yasukawa, Tomoyuki; Shiku, Hitoshi; Matsue, Tomokazu

    2007-01-01

    We describe a novel multicellular spheroid culture system that facilitates the easy preparation and culture of a spheroid microarray for the long-term monitoring of cellular activity. A spheroid culture device with an array of pyramid-like microholes was constructed in a silicon chip that was equipped with elastomeric microchannels. A cell suspension was introduced via the microfluidic channel into the microstructure that comprised silicon microholes and elastomeric microwells. A single spheroid can be formed and localized precisely within each microstructure. Since the culture medium could be replaced via the microchannels, a long-term culture (of approximately 2 weeks) is available on the chip. Measurement of albumin production in the hepatoma cell line (HepG2) showed that the liver-specific functions were maintained for 2 weeks. Based on the cellular respiratory activity, the cellular viability of the spheroid array on the chip was evaluated using scanning electrochemical microscopy. Responses to four different chemical stimulations were simultaneously detected on the same chip, thus demonstrating that each channel could be evaluated independently under various stimulation conditions. Our spheroid culture system facilitated the understanding of spheroid formation, culture, and viability assay on a single chip, thus functioning as a useful drug-screening device for cancer and liver cells.

  12. Inclusion of horizontal branch stars in the derivation of star formation histories of dwarf galaxies: The Carina dSph

    NARCIS (Netherlands)

    Savino, Alessandro; Salaris, Maurizio; Tolstoy, Eline

    2015-01-01

    We present a detailed analysis of the horizontal branch of the Carina dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from main sequence and red giant branch spectroscopic

  13. Bars and spheroids in gravimetry problem

    CERN Document Server

    Sizikov, Valery

    2016-01-01

    The direct gravimetry problem is solved by dividing each deposit body into a set of vertical adjoining bars, whereas in the inverse problem, each deposit body is modelled by a homogeneous ellipsoid of revolution (spheroid). Well-known formulae for the z-component of gravitational intensity for a spheroid are transformed to a convenient form. Parameters of a spheroid are determined by minimizing the Tikhonov smoothing functional with constraints on the parameters, which makes the ill-posed inverse problem by unique and stable. The Bulakh algorithm for initial estimating the depth and mass of a deposit is modified. The proposed technique is illustrated by numerical model examples of deposits in the form of two and five bodies. The inverse gravimetry problem is interpreted as a gravitational tomography problem or, in other words, as "introscopy" of Earth's crust and mantle.

  14. Use of spheroidal models in gravitational tomography

    CERN Document Server

    Sizikov, Valery

    2015-01-01

    The direct gravimetry problem is solved using the subdivision of each body of a deposit into a set of vertical adjoining bars, and in the inverse problem each body of a deposit is modeled by a uniform ellipsoid of revolution (spheroid). Well-known formulas for z-component of gravitational intensity of a spheroid are transformed to a convenient form. Parameters of a spheroid are determined by minimizing the Tikhonov smoothing functional using constraints on the parameters. This makes the ill-posed inverse problem by unique and stable. The Bulakh algorithm for initial estimating the depth and mass of a deposit is modified. The technique is illustrated by numerical model examples of deposits in the form of two and five bodies. The inverse gravimetry problem is interpreted as a gravitational tomography problem or the intravision of the Earth's crust and mantle.

  15. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    G P Singh; S Kotambkar

    2005-07-01

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  16. Sulphur isotope ratios in the Canyon Diablo metallic spheroids

    Science.gov (United States)

    McEwing, C. E.; Rees, C. E.; Thode, H. G.

    1983-09-01

    Nininger (1956) has discovered metallic spheroids in the soil surrounding Meteor Crater in Arizona. Nininger suggested that the spheroids condensed from the center of a homogeneous explosion-produced metallic vapor cloud. The present investigation is concerned with measurements of sulfur contents and delta S-34 values of metallic spheroids from the vicinity of Meteor Crater. It is found that the small metallic spheroids have lower sulfur contents and higher delta S-34 values than do the large spheroids. It is concluded that the observed isotopic patterns are unlikely to have arisen during desulfurization of the metallic liquid from which the spheroids were formed or during high temperature oxidation or the spheroids. The most likely process for the production of the observed delta S-34 values and sulfur contents is low temperature oxidation reactions experienced by the spheroids during their surface exposure following formation.

  17. Stress Clamp Experiments on Multicellular Tumor Spheroids

    CERN Document Server

    Montel, Fabien; Elgeti, Jens; Malaquin, Laurent; Basan, Markus; Risler, Thomas; Cabane, Bernard; Vignjevic, Danijela; Prost, Jacques; Cappello, Giovanni; Joanny, Jean-François; 10.1103/PhysRevLett.107.188102

    2011-01-01

    The precise role of the microenvironment on tumor growth is poorly understood. Whereas the tumor is in constant competition with the surrounding tissue, little is known about the mechanics of this interaction. Using a novel experimental procedure, we study quantitatively the effect of an applied mechanical stress on the long-term growth of a spheroid cell aggregate. We observe that a stress of 10 kPa is sufficient to drastically reduce growth by inhibition of cell proliferation mainly in the core of the spheroid. We compare the results to a simple numerical model developed to describe the role of mechanics in cancer progression.

  18. Theoretical lower limits on sizes of ultrafaint dwarf galaxies from dynamical friction

    Science.gov (United States)

    Hernandez, X.

    2016-11-01

    Dwarf spheroidal galaxies (dSphs) are the smallest known stellar systems where under Newtonian interpretations, a significant amount of dark matter is required to explain observed kinematics. In fact, they are, in this sense, the most heavily dark matter-dominated objects known. That, plus the increasingly small sizes of the newly discovered ultrafaint dwarfs, puts these systems in the regime where dynamical friction on individual stars starts to become relevant. We calculate the dynamical friction time-scales for pressure-supported isotropic spherical dark matter-dominated stellar systems, yielding τDF = 0.93(rh/10 pc)2(σ/km s-1) Gyr, where rh is the half-light radius. For a stellar velocity dispersion value of 3 km s-1, as typical for the smallest of the recently detected ultrafaint dwarf spheroidals, dynamical friction time-scales become smaller than the 10 Gyr typical of the stellar ages for these systems, for rh present a comparison with structural parameters of the smallest ultrafaint dwarf spheroidals known, showing that these are already close to the stability limit derived, any future detection of yet smaller such systems would be inconsistent with a particle dark matter hypothesis.

  19. The Panchromatic Hubble Andromeda Treasury I: Bright UV Stars in the Bulge of M31

    CERN Document Server

    Rosenfield, Philip; Girardi, Léo; Dalcanton, Julianne J; Bressan, Alessandro; Lang, Dustin; Williams, Benjamin F; Guhathakurta, Puragra; Howley, Kirsten M; Lauer, Tod R; Bell, Eric F; Bianchi, Luciana; Caldwell, Nelson; Dolphin, Andrew; Dorman, Claire E; Gilbert, Karoline M; Kalirai, Jason; Larsen, Søren S; Olsen, Knut A G; Rix, Hans-Walter; Seth, Anil C; Skillman, Evan D; Weisz, Daniel R

    2012-01-01

    As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12' \\times 6.5' area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of \\sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manqu\\'e stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manqu\\'e (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {\\alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch st...

  20. Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

    Science.gov (United States)

    Fesen, Robert; Hoeflich, Peter; Hamilton, Andrew

    2016-06-01

    The remnant of Supernova 1885 (S And), a probable Type Ia supernova, can be seen in absorption against the bulge of the Andromeda galaxy, M31. Here we present Hubble Space Telescope optical and ultraviolet STIS spectra of S And taken in order to investigate the remnant's three dimensional structure. Optical spectra covering 2900 - 5700 ˚A, taken using six 0.2” wide slit positions in two orientations, show broad Ca II H&K absorption extending out to at least 11,500 km s-1 consistent with previous HST narrow passband Ca II images of S And. We find enhancement of Ca II absorption between expansion velocities of 2,000 and 5,000 km s-1 suggestive of a lumpy Ca-rich shell. These spectra, together with previous HST images, indicate a remnant with less than a 10 percent departure from purely spherical expansion, a layered abundance structure indicative of a detonation phase, and a clumpy and plume-like Fe distribution suggestive of Rayleigh-Taylor instabilities although significantly less than expected from hydrodynamic simulations.

  1. The High-Mass Stellar Initial Mass Function in M31 Clusters

    CERN Document Server

    Weisz, Daniel R; Foreman-Mackey, Daniel; Dolphin, Andrew E; Beerman, Lori C; Williams, Benjamin F; Dalcanton, Julianne J; Rix, Hans-Walter; Hogg, David W; Fouesneau, Morgan; Johnson, Benjamin D; Bell, Eric F; Boyer, Martha L; Gouliermis, Dimitrios; Guhathakurta, Puragra; Kalirai, Jason S; Lewis, Alexia R; Seth, Anil C; Skillman, Evan D

    2015-01-01

    We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr 2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $\\Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($\\Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $\\Gamma_{\\rm MW} \\sim+1.15\\pm0.1$ and $\\Gamma_{\\rm LMC} \\sim+1.3\\pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be unive...

  2. Deriving physical parameters of unresolved star clusters III. Application to M31 PHAT clusters

    CERN Document Server

    de Meulenaer, Philippe; Mineikis, Tadas; Vansevičius, Vladas

    2015-01-01

    This study is the third of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations situated in external galaxies when using broad-band photometry. This work tests the derivation of parameters of artificial star clusters using models with fixed and free metallicity for the WFC3+ACS photometric system. Then the method is applied to derive parameters of a sample of 203 star clusters in the Andromeda galaxy observed with the HST. Following Papers I \\& II, the star cluster parameters are derived using a large grid of stochastic models that are compared to the observed cluster broad-band integrated WFC3+ACS magnitudes. We derive the age, mass, and extinction of the sample of M31 star clusters with one fixed metallicity in agreement with previous studies. Using artificial tests we demonstrate the ability of the WFC3+ACS photometric system to ...

  3. Infrared High-resolution Integrated Light Spectral Analyses of M31 Globular Clusters from APOGEE

    Science.gov (United States)

    Sakari, Charli M.; Shetrone, Matthew D.; Schiavon, Ricardo P.; Bizyaev, Dmitry; Allende Prieto, Carlos; Beers, Timothy C.; Caldwell, Nelson; Aníbal García-Hernández, Domingo; Lucatello, Sara; Majewski, Steven; O'Connell, Robert W.; Pan, Kaike; Strader, Jay

    2016-10-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22,500) H-band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extragalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  4. Bright radio emission from an ultraluminous stellar-mass microquasar in M31

    CERN Document Server

    Middleton, Matthew J; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2012-01-01

    A subset of ultraluminous X-ray sources (those with luminosities < 10^40 erg/s) are thought to be powered by the accretion of gas onto black holes with masses of ~5-20 M_solar, probably via an accretion disc. The X-ray and radio emission are coupled in such Galactic sources, with the radio emission originating in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium precludes determining the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source whose peak luminosity can exceed 10^39 erg/s in the nearby galaxy, M31. The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highl...

  5. The POINT-AGAPE survey II: An Unrestricted Search for Microlensing Events towards M31

    CERN Document Server

    Belokurov, V; Evans, N W; Hewett, P C; Baillon, Paul; Novati, S C; Carr, B J; Creze, M; Giraud-Héraud, Yannick; Gould, A; Jetzer, P; Kaplan, J; Kerins, E; Paulin-Henriksson, S; Smartt, S J; Stalin, C S; Tsapras, Y; Weston, M J; Jetzer, Ph.

    2005-01-01

    An automated search is carried out for microlensing events using a catalogue of 44554 variable superpixel lightcurves derived from our three-year monitoring program of M31. Each step of our candidate selection is objective and reproducible by a computer. Our search is unrestricted, in the sense that it has no explicit timescale cut. So, it must overcome the awkward problem of distinguishing long-timescale microlensing events from long-period stellar variables. The basis of the selection algorithm is the fitting of the superpixel lightcurves to two different theoretical models, using variable star and blended microlensing templates. Only if microlensing is preferred is an event retained as a possible candidate. Further cuts are made with regard to (i) sampling, (ii) goodness of fit of the peak to a Paczynski curve, (iii) consistency of the microlensing hypothesis with the absence of a resolved source, (iv) achromaticity, (v) position in the colour-magnitude diagram and (vi) signal-to-noise ratio. Our results a...

  6. A VLA Search for Radio Signals from M31 and M33

    Science.gov (United States)

    Gray, Robert H.; Mooley, Kunal

    2017-03-01

    Observing nearby galaxies would facilitate the search for artificial radio signals by sampling several billions of stars simultaneously, but few efforts have been made to exploit this opportunity. An added attraction is that the Milky Way is the second largest member of the Local Group, so our galaxy might be a probable target for hypothetical broadcasters in nearby galaxies. We present the first relatively high spectral resolution (radio signals of complete galaxies in the Local Group with the Jansky VLA, observing the galaxies M31 (Andromeda) and M33 (Triangulum)—the first and third largest members of the group, respectively—sampling more stars than any prior search of this kind. We used 122 Hz channels over a 1 MHz spectral window in the target galaxy velocity frame of reference, and 15 Hz channels over a 125 kHz window in our local standard of rest. No narrowband signals were detected above a signal-to-noise ratio of 7, suggesting the absence of continuous narrowband flux greater than approximately 0.24 and 1.33 Jy in the respective spectral windows illuminating our part of the Milky Way during our observations in 2014 December and 2015 January. This is also the first study in which the upgraded VLA has been used for SETI.

  7. The mid-life crisis of the Milky Way and M31

    CERN Document Server

    Mutch, Simon J; Poole, Gregory B

    2011-01-01

    Upcoming next generation galactic surveys, such as GAIA and HERMES, will deliver unprecedented detail about the structure and make-up of our Galaxy, the Milky Way, and promise to radically improve our understanding of it. However, to benefit our broader knowledge of galaxy formation and evolution we first need to quantify how typical the Galaxy is with respect to other galaxies of its type. Through modeling and comparison with a large sample of galaxies drawn from the Sloan Digital Sky Survey and Galaxy Zoo, we provide tentative yet tantalizing evidence to show that both the Milky Way and nearby M31 are undergoing a critical transformation of their global properties. Both appear to possess attributes that are consistent with galaxies midway between the distinct blue and red bimodal color populations. In extragalactic surveys, such `green valley' galaxies are transition objects whose star formation typically will have all but extinguished in less than ~5 Gyrs. This finding reveals the possible future of our ow...

  8. A stellar-mass BH in a transient, low luminosity ULX in M31?

    CERN Document Server

    Pintore, Fabio; Motta, Sara; Zampieri, Luca

    2013-01-01

    We present a multi-wavelenght study of the recently discovered Ultraluminous X-ray transient XMMUJ004243.6+412519 (ULX2 hereafter) in M31, based on Swift data and the 1.8-m Copernico Telescope in Asiago (Italy). Undetected until January 2012, the source suddenly showed a powerful X-ray emission with a luminosity of 1e38 erg/s (assuming a distance of 780 kpc). In the following weeks, its luminosity overcame 1e39 erg/s, remaining fairly constant for at least 40 days and fading below 1e38 erg/s in the next 200 days. The spectrum can be well described by a single multi-color disk blackbody model which progressively softened during the decay (from kT=0.9 keV to 0.4 keV). No emission from ULX2 was detected down to 22 mag in the optical band and to 23-24 mag in the near ultraviolet. We compare its properties with those of other known ULXs and Galactic black hole transients, finding more similarities with the latter.

  9. A Synoptic X-ray Study of M31 with the Chandra-HRC

    CERN Document Server

    Williams, B F; Kong, A K H; Primini, F A; King, A R; Murray, S S; Williams, Benjamin F.; Garcia, Michael R.; Kong, Albert K. H.; Primini, Frank A.; Murray, Stephen S.

    2003-01-01

    We have obtained 17 epochs of Chandra High Resolution Camera (HRC) snapshot images, each covering most of the M31 disk. The data cover a baseline of ~2.5 years and contain a mean effective exposure of 17 ks. We have measured the mean fluxes and long-term lightcurves for 173 objects detected in these data. The cumulative luminosity function of the disk sources is a power-law, while that of the bulge is more complex. Bright disk sources tend to lie in the southwestern half of the disk. At least 25% of the sources show significant variability. We cross-correlate all of our sources with published X-ray, optical and radio catalogs, as well as new optical data, finding counterpart candidates for 53 sources. In addition, 17 sources are likely X-ray transients. We analyze follow-up HST WFPC2 data of two X-ray transients, finding U band counterparts. In both cases, the counterparts are variable. In one case, the optical counterpart is transient with U = 22.3+/-0.1. The X-ray and optical properties of this object are c...

  10. Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

    CERN Document Server

    Fesen, Robert A; Hoeflich, Peter A; Hamilton, Andrew J

    2016-01-01

    We present optical and ultraviolet spectra of SN 1885 (S And), visible in absorption against the bulge of the Andromeda galaxy (M31), using the Hubble Space Telescope's STIS spectrograph to probe the three dimensional arrangement of the supernova debris. Spectra covering 2900-5700 A taken using six 0.2"slit positions in two orientations show broad Ca II absorption with blue and red radial velocities out to at least 11,500 km/s, consistent with HST Ca II images of S And. Enhanced Ca II absorption is seen between 2000-5000 km/s suggestive of a Ca II-rich shell. The spectra also show strong, asymmetric Ca I 4227 A absorption extending out to +12,400 km/s, along with weak Fe I 3720 A absorption in a shell with velocities between 2000 and 9000 km/s. Ultraviolet spectra obtained revealed weak broad absorption shortward of 3000 A consistent with model predictions. The STIS spectra, together with previous HST images, show a layered structure with a well defined Ca-rich outer edge indicative of a delayed detonation ph...

  11. A Photometric Catalog of 77 Newly-recognized Star Clusters in M31

    CERN Document Server

    Hodge, Paul; Bianchi, Luciana; Olsen, Philip Massey And Knut

    2010-01-01

    This paper describes the results of an HST WFPC2 search for star clusters in active star-formation regions of M31. Nine of the clusters were previously cataloged and 77 are new. Our 23 fields cover key areas of the galaxy's recent star formation activity. We provide a catalog of positions and integrated magnitudes in four colors, taken with the 336W, 439W, 555W and 814W filters with the Hubble Space Telescope. A future paper will discuss the results of stellar photometry in some of the clusters in six colors, including two additional uv colors (Bianchi et al. 2010). The integrated magnitudes and colors of the clusters show a range of characteristics, but the mean color is bluer than for previous surveys, reflecting the concentration of our sample on active star forming regions. Absolute magnitudes range from M555 = -10.3 to - 3.5. The observed luminosity function shows a nearly Gaussian distribution with a peak value at M555 = -5.4 and a shoulder of unusually-bright clusters. We look in detail at two of these...

  12. The LAMOST spectroscopic survey of star clusters in M31. II. Metallicities, ages and masses

    CERN Document Server

    Bingqiu, Chen; Maosheng, Xiang; Haibo, Yuan; Yang, Huang; Jianrong, Shi; Zhou, Fan; Zhiying, Huo; Chun, Wang; Juanjuan, Ren; Zhijia, Tian; Huawei, Zhang; Gaochao, Liu; Zihuang, Cao; Yong, Zhang; Yonghui, Hou; Yuefei, Wang

    2016-01-01

    We select from Paper I a sample of 306 massive star clusters observed with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) in the vicinity fields of M31 and M33 and determine their metallicities, ages and masses. Metallicities and ages are estimated by fitting the observed integrated spectra with stellar synthesis population (SSP) models with a pixel-to-pixel spectral fitting technique. Ages for most young clusters are also derived by fitting the multi-band photometric measurements with model spectral energy distributions (SEDs). The estimated cluster ages span a wide range, from several million years to the age of the universe. The numbers of clusters younger and older than 1 Gyr are respectively 46 and 260. With ages and metallicities determined, cluster masses are then estimated by comparing the multi-band photometric measurements with SSP model SEDs. The derived masses range from $\\sim 10^{3}$ to $\\sim 10^7$ $M_{\\odot}$, peaking at $\\sim 10^{4.3}$ and $\\sim 10^{5.7}$ $M_{\\odot}$ for...

  13. POINT-AGAPE Pixel Lensing Survey of M31 Evidence for a MACHO contribution to Galactic Halos

    CERN Document Server

    Novati, S C; An, J; Baillon, Paul; Belokurov, V; Carr, B J; Creze, M; Evans, N W; Giraud-Héraud, Yannick; Gould, A; Jetzer, P; Kaplan, J; Kerins, E; Hewett, P C; Smartt, S J; Stalin, C S; Tsapras, Y; Weston, M J; Jetzer, Ph.

    2005-01-01

    The POINT-AGAPE collaboration is carrying out a search for gravitational microlensing toward M31 to reveal galactic dark matter in the form of MACHOs (Massive Astrophysical Compact Halo Objects) in the halos of the Milky Way and M31. A high-threshold analysis of 3 years of data yields 6 bright, short--duration microlensing events, which are confronted to a simulation of the observations and the analysis. The observed signal is much larger than expected from self lensing alone and we conclude, at the 95% confidence level, that at least 20% of the halo mass in the direction of M31 must be in the form of MACHOs if their average mass lies in the range 0.5-1 M$_\\odot$. This lower bound drops to 8% for MACHOs with masses $\\sim 0.01$ M$_\\odot$. In addition, we discuss a likely binary microlensing candidate with caustic crossing. Its location, some 32' away from the centre of M31, supports our conclusion that we are detecting a MACHO signal in the direction of M31.

  14. THE PRIMEVAL POPULATIONS OF THE ULTRA-FAINT DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C., E-mail: tbrown@stsci.edu, E-mail: tumlinson@stsci.edu, E-mail: jkalirai@stsci.edu, E-mail: avila@stsci.edu, E-mail: ferguson@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-01

    We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter-dominated, and least chemically evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within {approx}1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.

  15. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Teresa L.; Holtzman, Jon [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Saha, Abhijit [NOAO, 950 Cherry Avenue, Tucson, AZ 85726-6732 (United States); Anthony-Twarog, Barbara J., E-mail: rosst@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: bjat@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-7582 (United States)

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  16. Panchromatic Hubble Andromeda Treasury. XIV. The Period-Age Relationship of Cepheid Variables in M31 Star Clusters

    Science.gov (United States)

    Senchyna, Peter; Johnson, L. Clifton; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Dolphin, Andrew; Williams, Benjamin F.; Rosenfield, Philip; Larsen, Søren S.

    2015-11-01

    We present a sample of 11 M31 Cepheids in stellar clusters, derived from the overlap of the Panchromatic Hubble Andromeda Treasury cluster catalog and the Pan-STARRS1 (PS1) disk Cepheid catalog. After identifying the PS1 Cepheids in the Hubble Space Telescope (HST) catalog, we calibrate the PS1 mean magnitudes using the higher resolution HST photometry, revealing up to 1 mag offsets due to crowding effects in the ground-based catalog. We measure ages of the clusters by performing single-age stellar population fits to their color-magnitude diagrams excluding their Cepheids. From these cluster age measurements, we derive an empirical period-age relation which agrees well with the existing literature values. By confirming this relation for M31 Cepheids, we justify its application in high-precision pointwise age estimation across M31.

  17. Panchromatic Hubble Andromeda Treasury. XIV. The Period-Age Relationship of Cepheid Variables in M31 Star Clusters

    CERN Document Server

    Senchyna, Peter; Dalcanton, Julianne J; Beerman, Lori C; Fouesneau, Morgan; Dolphin, Andrew; Williams, Benjamin F; Rosenfield, Philip; Larsen, Søren S

    2015-01-01

    We present a sample of 11 M31 Cepheids in stellar clusters, derived from the overlap of the Panchromatic Hubble Andromeda Treasury (PHAT) cluster catalog and the Pan-STARRS1 (PS1) disk Cepheid catalog. After identifying the PS1 Cepheids in the HST catalog, we calibrate the PS1 mean magnitudes using the higher resolution HST photometry, revealing up to 1 magnitude offsets due to crowding effects in the ground-based catalog. We measure ages of the clusters by performing single stellar population fits to their color-magnitude diagrams (CMDs) excluding their Cepheids. From these cluster age measurements, we derive an empirical period-age relation which agrees well with the existing literature values. By confirming this relation for M31 Cepheids, we justify its application in high-precision pointwise age estimation across M31.

  18. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  19. Fractal Model of the Spheroidal Graphite

    Institute of Scientific and Technical Information of China (English)

    Z.Y.HE; K.Z.HWANG

    1996-01-01

    In this paper,a fractal model about the microstructure of spheroidal-graphite is presented through the research on the surface form and the analysis to microregion.The fractal dimension is calculated and the forming mechanism is also discussed.

  20. Zero-point energy in spheroidal geometries

    OpenAIRE

    Kitson, A. R.; Signal, A. I.

    2005-01-01

    We study the zero-point energy of a massless scalar field subject to spheroidal boundary conditions. Using the zeta-function method, the zero-point energy is evaluated for small ellipticity. Axially symmetric vector fields are also considered. The results are interpreted within the context of QCD flux tubes and the MIT bag model.

  1. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  2. Chemical Abundances and Kinematics in Globular Clusters and Local Group Dwarf Galaxies and Their Implications for Formation Theories of the Galactic Halo

    CERN Document Server

    Geisler, Doug; Smith, Verne V; Casetti-Dinescu, Dana I

    2007-01-01

    We review Galactic halo formation theories and supporting evidence, in particular kinematics and detailed chemical abundances of stars in some relevant globular clusters as well as Local Group dwarf galaxies. Outer halo red HB clusters tend to have large eccentricities and inhabit the area populated by dwarf spheroidal stars, favoring an extraGalactic origin. Old globulars show the full range of eccentricities, while younger ones seem to have preferentially high eccentricities, again hinting at their extraGalactic origin. We compare detailed abundances of a variety of elements between the halo and all dwarf galaxies studied to date, including both dwarf spheroidals and irregulars. The salient feature is that halo abundances are essentially unique. In particular, the general alpha vs. [Fe/H] pattern of 12 of the 13 galaxies studied are similar to each other and very different from the Milky Way. Sagittarius appears to be the only possible exception. It appears very unlikely that a significant fraction of the m...

  3. Construction and compression of Dwarf

    Institute of Scientific and Technical Information of China (English)

    XIANG Long-gang; FENG Yu-cai; GUI Hao

    2005-01-01

    There exists an inherent difficulty in the original algorithm for the construction of Dwarf, which prevents it from constructing true Dwarfs. We explained when and why it introduces suffix redundancies into the Dwarf structure. To solve this problem, we proposed a completely new algorithm called PID. It bottom-up computes partitions of a fact table, and inserts them into the Dwarf structure. Ifa partition is an MSV partition, coalesce its sub-Dwarf; otherwise create necessary nodes and cells. Our performance study showed that PID is efficient. For further condensing of Dwarf, we proposed Condensed Dwarf, a more compressed structure, combining the strength of Dwarf and Condensed Cube. By eliminating unnecessary stores of "ALL" cells from the Dwarf structure, Condensed Dwarf could effectively reduce the size of Dwarf, especially for Dwarfs of the real world, which was illustrated by our experiments. Its query processing is still simple and, only two minor modifications to PID are required for the construction of Condensed Dwarf.

  4. At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores

    CERN Document Server

    Governato, Fabio; Mayer, Lucio; Brooks, Alyson; Rhee, George; Wadsley, James; Jonsson, Patrik; Willman, Beth; Stinson, Greg; Quinn, Thomas; Madau, Piero

    2009-01-01

    For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resultin...

  5. Andromeda XXVIII: A Dwarf Galaxy More Than 350 kpc from Andromeda

    CERN Document Server

    Slater, Colin T; Martin, Nicolas F

    2011-01-01

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently-released SDSS DR8. The galaxy is a likely satellite of Andromeda, and, at a separation of $365^{+17}_{-1}$ kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is $650^{+150}_{-80}$ kpc, and analysis of its structure and luminosity show that it has an absolute magnitude of $M_V = -8.5^{+0.4}_{-1.0}$ and half-light radius of $r_h = 210^{+60}_{-50}$ pc, similar to many other faint Local Group dwarfs. With presently-available imaging we are unable to determine if there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or dwarf irregular.

  6. ANDROMEDA XXVIII: A DWARF GALAXY MORE THAN 350 kpc FROM ANDROMEDA

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin T.; Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Martin, Nicolas F. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2011-11-20

    We report the discovery of a new dwarf galaxy, Andromeda XXVIII, using data from the recently released Sloan Digital Sky Survey Data Release 8. The galaxy is a likely satellite of Andromeda, and, at a separation of 365{sup +17}{sub -1} kpc, would be one of the most distant of Andromeda's satellites. Its heliocentric distance is 650{sup +150}{sub -80} kpc, and analysis of its structure and luminosity shows that it has an absolute magnitude of M{sub V} = -8.5{sup +0.4}{sub -1.0} and half-light radius of r{sub h} = 210{sup +60}{sub -50} pc, similar to many other faint Local Group dwarfs. With presently available imaging we are unable to determine whether there is ongoing or recent star formation, which prevents us from classifying it as a dwarf spheroidal or a dwarf irregular.

  7. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. I. BRIGHT UV STARS IN THE BULGE OF M31

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, Philip; Johnson, L. Clifton; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Girardi, Leo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, Via Bonomea 265, 34136 Trieste (Italy); Lang, Dustin [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Guhathakurta, Puragra; Dorman, Claire E. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Howley, Kirsten M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lauer, Tod R.; Olsen, Knut A. G. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Bianchi, Luciana [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Kalirai, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Larsen, Soren S. [Astronomical Institute, University of Utrecht, Princetonplein 5, 3584 CC Utrecht (Netherlands); Rix, Hans-Walter [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); and others

    2012-08-20

    As part of the Panchromatic Hubble Andromeda Treasury multi-cycle program, we observed a 12' Multiplication-Sign 6.'5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of {approx}4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars, and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the red giant branch is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch (EHB) stars and their progeny. We construct the first radial profiles of these stellar populations and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UV excess. We calculate that only a few percent of main-sequence stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.

  8. The Central Regions of M31 in the 3-5 μm Wavelength Region

    Science.gov (United States)

    Davidge, T. J.; Jensen, Joseph B.; Olsen, K. A. G.

    2006-08-01

    Images obtained with NIRI on the Gemini North telescope are used to investigate the photometric properties of the central regions of M31 in the 3-5 μm wavelength range. The light distribution in the central arcsecond differs from what is seen in the near-infrared in the sense that the difference in peak brightness between P1 and P2 is larger in M' than in K' no obvious signature of P3 is detected in M'. These results can be explained if there is a source of emission that contributes ~20% of the peak M' light of P1, has an effective temperature of no more than a few hundred K, and is located between P1 and P2. Based on the red K-M' color of this source, it is suggested that the emission originates in a circumstellar dust shell surrounding a single bright asymptotic giant branch (AGB) star. Tests of this hypothesis are described. A bright source that is ~8" from the center of the galaxy is also detected in M'. This object has red colors and an absolute brightness in M' that is similar to the most highly evolved AGB stars in the solar neighborhood; hence, it is likely to be a very evolved AGB star embedded in a circumstellar envelope. The K-band brightness of this star is close to the peak expected for AGB evolution, and an age of only a few hundred million years is estimated, which is comparable to that of the P3 star cluster. Finally, using high angular resolution near-infrared adaptive optics images as a guide, a sample of unblended AGB stars outside of the central few arcseconds is defined in L'. The (L', K-L') color-magnitude diagram of these sources shows a dominant AGB population with a peak L' brightness and a range of K-L' colors that are similar to those of the most luminous M giants in the Galactic bulge. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership

  9. Using the Palomar Transient Factory to Search for Ultra-Long-Period Cepheid Candidates in M31

    CERN Document Server

    Lee, Chien-Hsiu; Yang, Michael Ting-Chang; Ip, Wing-Huen; Kong, Albert Kwok-Hing; Laher, Russ R; Surace, Jason

    2013-01-01

    Ultra-long-period Cepheids (ULPCs) are important in distance-scale studies due to their potential for determining distance beyond ~100 Mpc. We performed a comprehensive search for ULPCs in M31, a local benchmark to calibrate the distance ladders. We use data from the Palomar Transient Factory (PTF), which has imaged M31 using a 1.2-m telescope equipped with a ~7.26 deg2 field-of-view (FOV) camera, usually with daily sampling, since the beginning of 2010. The large FOV, together with the regular monitoring, enables us to probe ULPCs in the bulge, disk, and even out to the halo of M31. Using a difference imaging analysis technique, we found and characterized 3 promising ULPC candidates based on their luminosities, amplitudes and Fourier parameters. The mean absolute magnitude for these 3 ULPC candidates, calibrated with latest M31 distance, is M_R=-6.47mag. Two out of the 3 ULPC candidates have been reported in literature, however their published periods from Magnier et al. are about half of the periods we foun...

  10. The Supernova Progenitor Mass Distributions of M31 and M33: Further Evidence for an Upper Mass Limit

    CERN Document Server

    Jennings, Zachary G; Murphy, Jeremiah W; Dalcanton, Julianne J; Gilbert, Karoline M; Dolphin, Andrew E; Weisz, Daniel R; Fouesneau, Morgan

    2014-01-01

    Using Hubble Space Telescope (HST) photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form $dN/dM \\propto M^{-\\alpha}$. Our new, larger sample of M31 progenitors follows a distribution with $\\alpha = 4.4\\pm 0.4$, and the M33 sample follows a distribution with $\\alpha = 3.8^{+0.4}_{-0.5}$. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives $\\alpha = 4.2\\pm 0.3$. Both the individual and full distributions display a paucity of massive stars when compared to a Sal...

  11. Wide-Field Survey of Globular Clusters in M31. II. Kinematics of the Globular Cluster System

    CERN Document Server

    Lee, Myung Gyoon; Kim, Sang Chul; Park, Hong Soo; Geisler, Doug; Sarajedini, Ata; Harris, William E

    2007-01-01

    We present a kinematic analysis of the globular cluster(GC) system in M31. Using the photometric and spectroscopic database of 504 GCs, we have investigated the kinematics of the M31 GC system. We find that the all GC system shows strong rotation, with rotation amplitude of v_rot~190km/s, and that a weak rotation persists even for the outermost samples at |Y|>5kpc. The rotation-corrected velocity dispersion for the GC system is estimated to be sigma_{p,r}~130km/s, and it increases from sigma_{p,r}~120km/s at |Y|5kpc. These results are very similar to those for the metal-poor GCs. This shows that there is a dynamically hot halo in M31 that is rotating but primarily pressure-supported. We have identified 50 "friendless" GCs, and they appear to rotate around the major axis of M31. For the subsamples of metal-poor and metal-rich GCs, we have found that the metal-rich GCs are more centrally concentrated than the metal-poor GCs, and both subsamples show strong rotation. For the subsamples of bright and faint GCs, i...

  12. An updated survey of globular clusters in M 31. I. Classification and radial velocity for 76 candidate clusters

    CERN Document Server

    Galleti, S; Bellazzini, M; Buzzoni, A; Pecci, F F

    2006-01-01

    Aims - We present the first results of a large spectroscopic survey of globular clusters and candidate globular clusters in the nearby M~31 galaxy. The survey is aimed at the classification of known candidate M~31 clusters and at the study of their kinematic properties. Methods - We obtained low-resolution spectroscopy (lambda/Dlambda~800-1300) for 133 targets, including 76 yet-to-confirm candidate clusters (i.e. with no previous spectroscopic information), 55 already-confirmed genuine M31 clusters, and 2 uncertain candidates. Our observations allowed a reliable estimate of the target radial velocity, within a typical accuracy of ~+-20km/s. The observed candidates have been robustly classified according to their radial velocity and shape parameters that allowed us to confidently discriminate between point sources and extended objects even from low-spatial-resolution imagery. Results - In our set of 76 candidates clusters we found: 42 newly-confirmed bona-fide M~31 clusters, 12 background galaxies, 17 foregrou...

  13. On the Continuing Formation of the Andromeda Galaxy: Detection of HI Clouds in the M31 Halo

    CERN Document Server

    Thilker, D A; Walterbos, R A M; Corbelli, E; Lockman, F J; Murphy, E; Maddalena, R; Thilker, David A.; Braun, Robert; Walterbos, Rene A. M.; Corbelli, Edvige; Lockman, Felix J.; Murphy, Edward; Maddalena, Ronald

    2004-01-01

    Green Bank Telescope (GBT) 21cm observations have revealed a faint, yet extensive HI cloud population surrounding the Andromeda Galaxy (M31). The newfound objects are likely analogs to the high-velocity HI clouds (HVCs) seen around the Milky Way. At least 20 discrete features are detected within 50 kpc of the M31 disk, with radial velocities that are comparable to those of outer disk rotation. In addition, a filamentary ``halo'' component of at least 30 kpc extent is concentrated at the M31 systemic velocity. Some of the discrete features are organized into elongated systems with velocity continuity, suggestive of tidal streams. The discrete population can be characterized by a steep power-law distribution of number versus HI mass in the range between 10^5 and 10^7 M_sun. The velocity line-width of discrete clouds is correlated with the cloud HI mass: such that if the clouds are gravitationally bound this implies a dark- to HI mass ratio of ~ 100:1. Possible origins for the discrete and ``halo'' M31 features ...

  14. Constraints on mass loss of globular clusters in dwarf galaxies

    CERN Document Server

    Larsen, S S; Brodie, J P

    2013-01-01

    The Fornax dwarf spheroidal galaxy is well known for its very high globular cluster specific frequency, SN=26. Furthermore, while the field star metallicity distribution peaks at [Fe/H]=-1, four of the five GCs have [Fe/H]<-2. Only about 5 percent of the field stars have such low metallicities. Hence, a very large fraction of about 1/5-1/4 of the most metal-poor stars belong to the four most metal-poor GCs. This implies that these clusters could, at most, have been a factor of 4-5 more massive initially. A second, even more extreme case may be the IKN dwarf galaxy where SN=124. Although metallicities are not accurately known, the GCs account for about 13 percent of the total V-band luminosity of IKN.

  15. Making electromagnetic wavelets: II. Spheroidal shell antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Gerald [Center for Signals and Waves, 3803 Tonkawa Trail 2, Austin, TX (United States)

    2005-01-14

    In the companion paper, a charge-current distribution was obtained for radiating electromagnetic wavelets. However, it cannot be realized because of two drawbacks: (a) it requires the existence of magnetic charges, and (b) the charge-current distribution, which is concentrated on a spheroidal surface S{sub {alpha}}, is too singular for practical implementation. Both of these difficulties are resolved here. The first is resolved by using Hertz vectors to generate a charge-current distribution on S{sub {alpha}} due solely to bound electric charges. The second is resolved by replacing S{sub {alpha}} with a spheroidal shell of finite thickness. This generalizes the usual boundary conditions on an interface between electromagnetic media by allowing the transition to be gradual.

  16. X-ray Flashes in Recurrent Novae: M31N 2008-12a and the Implications of the Swift Nondetection

    Science.gov (United States)

    Kato, Mariko; Saio, Hideyuki; Henze, Martin; Ness, Jan-Uwe; Osborne, Julian P.; Page, Kim L.; Darnley, Matthew J.; Bode, Michael F.; Shafter, Allen W.; Hernanz, Margarita; Gehrels, Neil; Kennea, Jamie; Hachisu, Izumi

    2016-10-01

    Models of nova outbursts suggest that an X-ray flash should occur just after hydrogen ignition. However, this X-ray flash has never been observationally confirmed. We present four theoretical light curves of the X-ray flash for two very massive white dwarfs (WDs) of 1.380 and 1.385 {M}⊙ and for two recurrence periods of 0.5 and 1 yr. The duration of the X-ray flash is shorter for a more massive WD and for a longer recurrence period. The shortest duration of 14 hr (0.6 days) among the four cases is obtained for the 1.385 {M}⊙ WD with a 1 yr recurrence period. In general, a nova explosion is relatively weak for a very short recurrence period, which results in a rather slow evolution toward the optical peak. This slow timescale and the predictability of very short recurrence period novae give us a chance to observe X-ray flashes of recurrent novae. In this context, we report the first attempt, using the Swift observatory, to detect an X-ray flash of the recurrent nova M31N 2008-12a (0.5 or 1 yr recurrence period), which resulted in the nondetection of X-ray emission during the period of 8 days before the optical detection. We discuss the impact of these observations on nova outburst theory. The X-ray flash is one of the last frontiers of nova studies, and its detection is essential for understanding the pre-optical-maximum phase. We encourage further observations.

  17. Interstellar Extinction by Spheroidal Dust Grains

    OpenAIRE

    Gupta, Ranjan; Mukai, Tadashi; Vaidya, D. B.; Sen, Asoke K.; Okada, Yasuhiko

    2005-01-01

    Observations of interstellar extinction and polarization indicate that the interstellar medium consists of aligned non-spherical dust grains which show variation in the interstellar extinction curve for wavelengths ranging from NIR to UV. To model the extinction and polarization, one cannot use the Mie theory which assumes the grains as solid spheres. We have used a T-matrix based method for computing the extinction efficiencies of spheroidal silicate and graphite grains of different shapes (...

  18. New Classes of Charged Spheroidal Models

    Directory of Open Access Journals (Sweden)

    S. Thirukkanesh

    2013-01-01

    Full Text Available New classes of exact solutions to the Einstein-Maxwell system is found in closed form by assuming that the hypersurface is spheroidal. This is achieved by choosing a particular form for the electric field intensity. A class of solution is found for all positive spheroidal parameter for a specific form of electric field intensity. In general, the condition of pressure isotropy reduces to a difference equation with variable, rational coefficients that can be solved. Consequently, an explicit solution in series form is found. By placing restrictions on the parameters, it is shown that the series terminates and there exist two classes of solutions in terms of elementary functions. These solutions contain the models found previously in the limit of vanishing charge. Solutions found are directly relating the spheroidal parameter and electric field intensity. Masses obtained are consistent with the previously reported experimental and theoretical studies describing strange stars. A physical analysis indicates that these models may be used to describe a charged sphere.

  19. The observed properties of dwarf galaxies in and around the Local Group

    CERN Document Server

    McConnachie, Alan W

    2012-01-01

    Positional, structural and dynamical parameters for all dwarf galaxies in and around the Local Group are presented, and various aspects of our observational understanding of this volume-limited sample are discussed. Over 100 nearby galaxies that have distance estimates placing them within 3Mpc of the Sun are identified. This distance threshold samples dwarfs in a large range of environments, from the satellite systems of the MW and M31, to the dwarfs in the outer regions of the Local Group, to the numerous isolated galaxies found in its surroundings. It extends to, but does not include, the galaxies associated with the next nearest groups. Our basic knowledge of this important galactic subset and their resolved stellar populations will continue to improve dramatically over the coming years with existing and future observational capabilities, and they will continue to provide the most detailed information available on numerous aspects of dwarf galaxy formation and evolution. Basic observational parameters, suc...

  20. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Science.gov (United States)

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.