WorldWideScience

Sample records for lysine residues modified

  1. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Nadeem A. Ansari

    2011-01-01

    Full Text Available Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs. This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related diseases. Antigenic characteristics of glycated lysine residues in proteins together with the presence of serum autoantibodies to the glycated lysine products and lysine-rich proteins in diabetes and arthritis patients indicates that these modified lysine residues may be a novel biomarker for protein glycation in aging and age-related diseases.

  2. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  3. (R)-β-lysine-modified elongation factor P functions in translation elongation

    DEFF Research Database (Denmark)

    Bullwinkle, Tammy J; Zou, S Betty; Rajkovic, Andrei

    2013-01-01

    Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has......-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate...

  4. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  5. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; He, Jiuya; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2014-08-29

    In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-ß-lysine

    DEFF Research Database (Denmark)

    Roy, Hervé; Zou, S Betty; Bullwinkle, Tammy J

    2011-01-01

    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF......-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded a-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases....

  7. Critical lysine residues of Klf4 required for protein stabilization and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun, E-mail: baek@cha.ac.kr

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  8. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation.

    Science.gov (United States)

    Morshedi, Dina; Ebrahim-Habibi, Azadeh; Moosavi-Movahedi, Ali Akbar; Nemat-Gorgani, Mohsen

    2010-04-01

    Studies on the aggregation of mutant proteins have provided new insights into the genetics of amyloid diseases and the role of the net charge of the protein on the rate, extent, and type of aggregate formation. In the present work, hen egg white lysozyme (HEWL) was employed as the model protein. Acetylation and (separately) citraconylation were employed to neutralize the charge on lysine residues. Acetylation of the lysine residues promoted amyloid formation, resulting in more pronounced fibrils and a dramatic decline in the nucleation time. In contrast, citraconylation produced the opposite effect. In both cases, native secondary and tertiary structures appeared to be retained. Studies on the effect of pH on aggregation suggested greater possibilities for amorphous aggregate formation rather than fibrillation at pH values closer to neutrality, in which the protein is known to take up a conformation more similar to its native form. This is in accord with reports in the literature suggesting that formation of amorphous aggregates is more favored under relatively more native conditions. pH 5 provided a critical environment in which a mixture of amorphous and fibrillar structures were observed. Use of Tango and Aggrescan software which describe aggregation tendencies of different parts of a protein structure suggested critical importance of some of the lysine residues in the aggregation process. Results are discussed in terms of the importance of the net charge in control of protein-protein interactions leading to aggregate formation and possible specific roles of lysine residues 96 and 97. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Use of acetimidation in the NMR identification of neurophysin lysine protons

    International Nuclear Information System (INIS)

    Sardana, V.; Breslow, E.

    1986-01-01

    Acetimidation of the two lysine residues of neurophysin (NP) results in localized changes in the proton magnetic resonance spectrum, allowing identification of lysine side-chain resonances. Neither peptide-binding nor protein self-association appeared to be significantly altered by acetimidation. Additionally, no significant effect of either peptide-binding or self-association on lysine epsilon-CH 2 protons was seen. However, dimerization-induced NMR changes in the 1.6-1.8 ppm region, associated with lysine β,γ,σ protons, were altered in the acetimidated protein. In particular, while the spectrum of the acetimidated NP monomer was almost identical to that of the native protein, a shoulder at 1.72 ppm in the native protein dimer was shifted upfield in the modified dimer. Additionally the direction of NMR shifts in the 1.6-1.8 ppm region normally associated with peptide binding to the NP dimer appeared to be reversed in the acetimidated protein. Binding-induced and dimerization-induced changes in all other regions of the spectrum were identical in the native and modified proteins. These results suggest that one or both NP lysine residues may be near the dimer subunit interface and indicate an effect of peptide-binding on lysine side-chain environment

  10. Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues

    Directory of Open Access Journals (Sweden)

    Hana eUhlíková

    2016-02-01

    Full Text Available Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium spp. classified as oomycete PAMPs. Although alfa- and beta-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, beta-elicitins (possessing 6-7 lysine residues are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the alfa-isoforms (with only 1-3 lysine residues.To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of beta-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein’s charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins’ movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.

  11. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    , the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines....... Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter...... the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the -2, -1, +1 and +2...

  12. Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine

    Directory of Open Access Journals (Sweden)

    Sadowski Martin

    2010-08-01

    Full Text Available Abstract Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3 and the ubiquitin-conjugating enzyme (E2, where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.

  13. Effects of lysine residues on structural characteristics and stability of tau proteins

    International Nuclear Information System (INIS)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo

    2015-01-01

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  14. Effects of lysine residues on structural characteristics and stability of tau proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeongsang; Baek, Inchul; Choi, Hyunsung; Kim, Jae In; Na, Sungsoo, E-mail: nass@korea.ac.kr

    2015-10-23

    Pathological amyloid proteins have been implicated in neuro-degenerative diseases, specifically Alzheimer's, Parkinson's, Lewy-body diseases and prion related diseases. In prion related diseases, functional tau proteins can be transformed into pathological agents by environmental factors, including oxidative stress, inflammation, Aβ-mediated toxicity and covalent modification. These pathological agents are stable under physiological conditions and are not easily degraded. This un-degradable characteristic of tau proteins enables their utilization as functional materials to capturing the carbon dioxides. For the proper utilization of amyloid proteins as functional materials efficiently, a basic study regarding their structural characteristic is necessary. Here, we investigated the basic tau protein structure of wild-type (WT) and tau proteins with lysine residues mutation at glutamic residue (Q2K) on tau protein at atomistic scale. We also reported the size effect of both the WT and Q2K structures, which allowed us to identify the stability of those amyloid structures. - Highlights: • Lysine mutation effect alters the structure conformation and characteristic of tau. • Over the 15 layers both WT and Q2K models, both tau proteins undergo fractions. • Lysine mutation causes the increment of non-bonded energy and solvent accessible surface area. • Structural instability of Q2K model was proved by the number of hydrogen bonds analysis.

  15. Non-enzymatic N -acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S -acetylated Thiol Intermediate Sensitive to Glyoxalase II

    OpenAIRE

    James, Andrew M.; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R.; Ding, Shujing; Fearnley, Ian M.; Murphy, Michael P.

    2017-01-01

    Summary: Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysin...

  16. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

    Directory of Open Access Journals (Sweden)

    Andrew M. James

    2017-02-01

    Full Text Available Summary: Acetyl coenzyme A (AcCoA, a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3 reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2 can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. : James et al. show that the non-enzymatic N-acetylation of lysine residues in mitochondrial proteins frequently occurs via a proximal S-acetylated thiol intermediate. Glutathione equilibrates with this intermediate, allowing the thioesterase glyoxalase II to limit protein lysine N-acetylation. These findings expand our understanding of how protein acetylation arises. Keywords: AcetylCoA, lysine acetylation, glyoxalase

  17. Lysine as helix C-capping residue in a synthetic peptide.

    Science.gov (United States)

    Esposito, G; Dhanapal, B; Dumy, P; Varma, V; Mutter, M; Bodenhausen, G

    1997-01-01

    The structure of the synthetic peptide CH3CO(Leu-Ser-Leu-Leu-Leu-Ser-Leu)3Lys-NH2 in trifluoroethanol/water 60/40 (volume ratio) was characterized by two-dimensional nmr spectroscopy. The peptide, closely related to the amphiphilic helix models designed by W. F. De-Grado and co-workers to mimic protein ion channels [(1988) Science, Vol. 240, p. 1177-1181], folds into a regular helix spanning residues 1-20. Evidence for a helix C-terminal capping conformation, involving the terminal lysine residue, was observed from Overhauser effects and checked for consistency by restrained molecular dynamics simulations. The side-chain amino group of Lys22 forms a hydrogen bond with the carbonyl of Leu18, and the distorted helical geometry of the terminal dipeptide allows the inclusion of a water bridge between the backbone NH of the Lys22 residue and the carbonyls of Leu19 and Ser20.

  18. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    Science.gov (United States)

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-06-15

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. In contrast to the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles and local structure conformations were incorporated. We used the k-nearest neighbors cleaning treatment for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred to as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cloning and sequencing of V genes from anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: Location of lysine residues and implications for radiolabeling

    International Nuclear Information System (INIS)

    Olafsen, Tove; Bruland, Oeyvind S.; Zalutsky, Michael R.; Sandlie, Inger

    1995-01-01

    Monoclonal antibodies TP-1 and TP-3 are of potential utility for the radioimmunodiagnosis of osteosarcoma in both human and canine patients. The V genes of these antibodies were cloned and sequenced and to facilitate radiolabeling of these proteins, the location of the lysine residues within these sequences have been determined. The V-domains of TP-1 contain a total of 12 lysines, 10 in the framework region and 2 in the CDR region, while the V-domains of TP-3 contain a total of 14 lysines, 11 in the framework region and 3 in the CDR regions. Using space-filling models, the availability of each lysine residue for radiolabeling, and potential interference with antigen binding was predicted

  20. Cloning and sequencing of V genes from anti-osteosarcoma monoclonal antibodies TP-1 and TP-3: Location of lysine residues and implications for radiolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Olafsen, Tove; Bruland, Oeyvind S.; Zalutsky, Michael R.; Sandlie, Inger

    1995-08-01

    Monoclonal antibodies TP-1 and TP-3 are of potential utility for the radioimmunodiagnosis of osteosarcoma in both human and canine patients. The V genes of these antibodies were cloned and sequenced and to facilitate radiolabeling of these proteins, the location of the lysine residues within these sequences have been determined. The V-domains of TP-1 contain a total of 12 lysines, 10 in the framework region and 2 in the CDR region, while the V-domains of TP-3 contain a total of 14 lysines, 11 in the framework region and 3 in the CDR regions. Using space-filling models, the availability of each lysine residue for radiolabeling, and potential interference with antigen binding was predicted.

  1. Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II.

    Science.gov (United States)

    James, Andrew M; Hoogewijs, Kurt; Logan, Angela; Hall, Andrew R; Ding, Shujing; Fearnley, Ian M; Murphy, Michael P

    2017-02-28

    Acetyl coenzyme A (AcCoA), a key intermediate in mitochondrial metabolism, N-acetylates lysine residues, disrupting and, in some cases, regulating protein function. The mitochondrial lysine deacetylase Sirtuin 3 (Sirt3) reverses this modification with benefits reported in diabetes, obesity, and aging. We show that non-enzymatic lysine N-acetylation by AcCoA is greatly enhanced by initial acetylation of a cysteine residue, followed by SN-transfer of the acetyl moiety to a nearby lysine on mitochondrial proteins and synthetic peptides. The frequent occurrence of an S-acetyl intermediate before lysine N-acetylation suggests that proximity to a thioester is a key determinant of lysine susceptibility to acetylation. The thioesterase glyoxalase II (Glo2) can limit protein S-acetylation, thereby preventing subsequent lysine N-acetylation. This suggests that the hitherto obscure role of Glo2 in mitochondria is to act upstream of Sirt3 in minimizing protein N-acetylation, thus limiting protein dysfunction when AcCoA accumulates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Lysine residue 185 of Rad1 is a topological but not a functional counterpart of lysine residue 164 of PCNA.

    Directory of Open Access Journals (Sweden)

    Niek Wit

    Full Text Available Monoubiquitylation of the homotrimeric DNA sliding clamp PCNA at lysine residue 164 (PCNA(K164 is a highly conserved, DNA damage-inducible process that is mediated by the E2/E3 complex Rad6/Rad18. This ubiquitylation event recruits translesion synthesis (TLS polymerases capable of replicating across damaged DNA templates. Besides PCNA, the Rad6/Rad18 complex was recently shown in yeast to ubiquitylate also 9-1-1, a heterotrimeric DNA sliding clamp composed of Rad9, Rad1, and Hus1 in a DNA damage-inducible manner. Based on the highly similar crystal structures of PCNA and 9-1-1, K185 of Rad1 (Rad1(K185 was identified as the only topological equivalent of PCNA(K164. To investigate a potential role of posttranslational modifications of Rad1(K185 in DNA damage management, we here generated a mouse model with a conditional deletable Rad1(K185R allele. The Rad1(K185 residue was found to be dispensable for Chk1 activation, DNA damage survival, and class switch recombination of immunoglobulin genes as well as recruitment of TLS polymerases during somatic hypermutation of immunoglobulin genes. Our data indicate that Rad1(K185 is not a functional counterpart of PCNA(K164.

  3. A study regarding friction behaviour of lysine and isoleucine modified epoxy matrix

    Science.gov (United States)

    Bălan, I.; Bosoancă, R.; Căpăţină, A.; Graur, I.; Bria, V.; Ungureanu, C.

    2017-02-01

    The aim of this study is to point out the effect of L-lysine and L-isoleucine used as modifying agents for epoxy resins. The amino acids are largely used to turn the usual polymers in bio-compatible materials but they effect also other significant proprieties of formed materials. The general study developed in Polymer Composite Laboratory is focused on analysis of 14 amino acids used as modifying agents but the two above mentioned showed a special behaviour namely they re-crystalized during the polymerization of the matrix. The coefficient of friction was obtained through the calculation of friction torque measured with a loaded cell sensor. As far as we know, there is no report on the friction proprieties of amino acids modified epoxy resins.

  4. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    Science.gov (United States)

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  5. Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium Vibrio parahemolyticus.

    Science.gov (United States)

    Pan, Jianyi; Chen, Ran; Li, Chuchu; Li, Weiyan; Ye, Zhicang

    2015-10-02

    Protein lysine acylation, including acetylation and succinylation, has been found to be a major post-translational modification (PTM) and is associated with the regulation of cellular processes that are widespread in bacteria. Vibrio parahemolyticus is a model marine bacterium that causes seafood-borne illness in humans worldwide. The lysine acetylation of V. parahemolyticus has been extensively characterized in our previous work, and here, we report the first global analysis of lysine succinylation and the overlap between the two types of acylation in this bacterium. Using high-accuracy nano liquid chromatography-tandem mass spectrometry combined with affinity purification, we identified 1931 lysine succinylated peptides matched on 642 proteins, with the quantity of the succinyl-proteins accounting for 13.3% of the total proteins in cells. Bioinformatics analysis results showed that these succinylated proteins are involved in almost every cellular process, particularly in protein biosynthesis and metabolism, and are distributed in diverse subcellular compartments. Moreover, several sequence motifs were identified, including succinyl-lysine flanked by a lysine or arginine residue at the -8, -7, or +7 position and without these residues at the -1 or +2 position, and these motifs differ from those found in other bacteria and eukaryotic cells. Furthermore, a total of 517 succinyl-lysine sites (26.7%) on 288 proteins (44.9%) were also found to be acetylated, suggesting extensive overlap between succinylation and acetylation in this bacterium. This systematic analysis provides a promising starting point for further investigations of the physiologic and pathogenic roles of lysine succinylation and acetylation in V. parahemolyticus.

  6. Global profiling of lysine reactivity and ligandability in the human proteome

    Science.gov (United States)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  7. Global profiling of lysine reactivity and ligandability in the human proteome.

    Science.gov (United States)

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  8. Structural basis for the site-specific incorporation of lysine derivatives into proteins.

    Directory of Open Access Journals (Sweden)

    Veronika Flügel

    Full Text Available Posttranslational modifications (PTMs of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the 'histone code'. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS:tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.

  9. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  10. Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties

    International Nuclear Information System (INIS)

    Hsieh, W.T.; Matthews, K.S.

    1985-01-01

    Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties

  11. ß-Lysine discrimination by lysyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J

    2011-01-01

    guided by the PoxA structure. A233S LysRS behaved as wild type with a-lysine, while the G469A and A233S/G469A variants decreased stable a-lysyl-adenylate formation. A233S LysRS recognized ß-lysine better than wildtype, suggesting a role for this residue in discriminating a- and ß-amino acids. Both...

  12. An Update on Lysine Deacylases Targeting the Expanding “Acylome”

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2013-01-01

    Lysine e-amino acetylation has long been recognized as an epigenetically relevant post-translational modification of multiple residues in histone proteins. However, it has become clear that lysine acetylation is not restricted to histones, and therefore, it may be involved in the regulation of a ...

  13. Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity.

    Directory of Open Access Journals (Sweden)

    Minghao He

    Full Text Available The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.

  14. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    Science.gov (United States)

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H 2 O 2 /Cl - system of leukocytes. At low molar ratio of oxidant to target protein N ε -lysine moiety, 2-AAA is formed via an initial N ε -monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N ε -lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N ε -dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  15. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    Science.gov (United States)

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea.

    Science.gov (United States)

    You, Di; Yao, Li-Li; Huang, Dan; Escalante-Semerena, Jorge C; Ye, Bang-Ce

    2014-09-01

    Reversible lysine acetylation (RLA) is used by cells of all domains of life to modulate protein function. To date, bacterial acetylation/deacetylation systems have been studied in a few bacteria (e.g., Salmonella enterica, Bacillus subtilis, Escherichia coli, Erwinia amylovora, Mycobacterium tuberculosis, and Geobacillus kaustophilus), but little is known about RLA in antibiotic-producing actinomycetes. Here, we identify the Gcn5-like protein acetyltransferase AcuA of Saccharopolyspora erythraea (SacAcuA, SACE_5148) as the enzyme responsible for the acetylation of the AMP-forming acetyl coenzyme A synthetase (SacAcsA, SACE_2375). Acetylated SacAcsA was deacetylated by a sirtuin-type NAD(+)-dependent consuming deacetylase (SacSrtN, SACE_3798). In vitro acetylation/deacetylation of SacAcsA enzyme was studied by Western blotting, and acetylation of lysine residues Lys(237), Lys(380), Lys(611), and Lys(628) was confirmed by mass spectrometry. In a strain devoid of SacAcuA, none of the above-mentioned Lys residues of SacAcsA was acetylated. To our knowledge, the ability of SacAcuA to acetylate multiple Lys residues is unique among AcuA-type acetyltransferases. Results from site-specific mutagenesis experiments showed that the activity of SacAcsA was controlled by lysine acetylation. Lastly, immunoprecipitation data showed that in vivo acetylation of SacAcsA was influenced by glucose and acetate availability. These results suggested that reversible acetylation may also be a conserved regulatory posttranslational modification strategy in antibiotic-producing actinomycetes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  19. Lysine analoga; bereiding en enzymatische hydrolyse van peptide derivaten van lysine en lysine analoga

    NARCIS (Netherlands)

    Tesser, Godefridus Ignatius

    1961-01-01

    De synthese van enkele structuuranaloga van lysine wordt beschreven. Aangetoond wordt dat zij lysine in substraten voor trypsine, cathepsine B en papaine kan vervangen. Daar de structuur van de analoga O-(Beta-aminoaethyl)serine en S-(Beta-aminoaethyl) cysteine die van lysine dicht nadert, wordt

  20. Systematic replacement of lysine with glutamine and alanine in Escherichia coli malate synthase G: effect on crystallization

    International Nuclear Information System (INIS)

    Anstrom, David M.; Colip, Leslie; Moshofsky, Brian; Hatcher, Eric; Remington, S. James

    2005-01-01

    Alanine and glutamine mutations were made to the same 15 lysine positions on the surface of E. coli malate synthase G and the impact on crystallization observed. The results support lysine replacement for improvement of crystallization and provide insight into site selection and type of amino-acid replacement. Two proposals recommend substitution of surface lysine residues as a means to improve the quality of protein crystals. In proposal I, substitution of lysine by alanine has been suggested to improve crystallization by reducing the entropic cost of ordering flexible side chains at crystal contacts. In proposal II, substitution of lysine by residues more commonly found in crystal contacts, such as glutamine, has been proposed to improve crystallization. 15 lysine residues on the surface of Escherichia coli malate synthase G, distributed over a variety of secondary structures, were individually mutated to both alanine and glutamine. For 28 variants, detailed studies of the effect on enzymatic activity and crystallization were conducted. This has permitted direct comparison of the relative effects of the two types of mutations. While none of the variants produced crystals suitable for X-ray structural determination, small crystals were obtained in a wide variety of conditions, in support of the general approach. Glutamine substitutions were found to be more effective than alanine in producing crystals, in support of proposal II. Secondary structure at the site of mutation does not appear to play a major role in determining the rate of success

  1. Effects of fortified lysine on the amino acid profile and sensory qualities of deep-fried and dried noodles.

    Science.gov (United States)

    Polpuech, C; Chavasit, V; Srichakwal, P; Paniangvait, P

    2011-08-01

    Lysine fortification of wheat flour has been used toward reducing protein energy malnutrition in developing countries. The feasibility of fortifying instant noodles with lysine was evaluated based on sensory qualities and the residual lysine content. Fifty grams of deep-fried and dried instant noodles were fortified with 0.23 and 0.21 g lysine, respectively. The production temperatures used for deep-frying were 165-175 degrees C and for drying, 80-105 degrees C; these are the temperatures used in the industrial production of both kinds of noodles. Lysine fortification was then performed at the local factories using the commercial production lines and packaging for both types of instant noodles. Both fortified and unfortified deep-fried and dried instant noodles were stored at 50 degrees C under fluorescent light for 2 and 4 months, respectively. The fortified products were tested for residual lysine content and sensory qualities as compared with unfortified noodles. The results show fortified products from the tested processing temperatures were all accepted. After storage, significant losses of lysine were not found in both types of noodles analysed. The lysine-fortified noodles had amino acid scores of 102% and 122%, respectively. After 2 months, the sensory quality of fortified deep-fried noodles was still acceptable; however, the dried noodles turned to an unacceptable dark colour. This study shows that it is feasible to fortify deep-fried instant noodles with lysine, though lysine fortification exhibited an undesirable colour in the dried instant noodles after storage.

  2. P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain.

    Science.gov (United States)

    Iioka, Takashi; Furukawa, Keizo; Yamaguchi, Akira; Shindo, Hiroyuki; Yamashita, Shunichi; Tsukazaki, Tomoo

    2003-08-01

    The paired-like homeoprotein, Cart1, is involved in skeletal development. We describe here that the general coactivator p300/CBP controls the transcription activity of Cart1 through acetylation of a lysine residue that is highly conserved in other homeoproteins. Acetylation of this residue increases the interaction between p300/CBP and Cart1 and enhances its transcriptional activation. Cart1 encodes a paired-like homeoprotein expressed selectively in chondrocyte lineage during embryonic development. Although its target gene remains unknown, gene disruption studies have revealed that Cart1 plays an important role for craniofacial bone formation as well as limb development by cooperating with another homeoprotein, Alx4. In this report, we study the functional involvement of p300/CBP, coactivators with intrinsic histone acetyltransferase (HAT) activity, in the transcriptional control of Cart1. To study the transcription activity of Cart1, a reporter construct containing a putative Cart1 binding site was transiently transfected with the expression vectors of each protein. The interaction between p300/CBP and Cart1 was investigated by glutathione S-transferase (GST) pull-down, yeast two-hybrid, and immunoprecipitation assays. In vitro acetylation assay was performed with the recombinant p300-HAT domain and Cart1 in the presence of acetyl-CoA. p300 and CBP stimulate Cart1-dependent transcription activity, and this transactivation is inhibited by E1A and Tax, oncoproteins that suppress the activity of p300/CBP. Cart1 binds to p300 in vivo and in vitro, and this requires the homeodomain of Cart 1 and N-terminal 139 amino acids of p300. Confocal microscopy analysis shows that Cart1 recruits overexpressed and endogenous p300 to a Cart1-specific subnuclear compartment. Cart1 is acetylated in vivo and sodium butyrate and trichostatin A, histone deacetylase inhibitors, markedly enhance the transcription activity of Cart1. Deletion and mutagenesis analysis identifies the 131st

  3. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  4. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  5. PLMD: An updated data resource of protein lysine modifications.

    Science.gov (United States)

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  6. Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases

    OpenAIRE

    Ansari, Nadeem A.; Moinuddin,; Ali, Rashid

    2011-01-01

    Nonenzymatic glycosylation or glycation of macromolecules, especially proteins leading to their oxidation, play an important role in diseases. Glycation of proteins primarily results in the formation of an early stage and stable Amadori-lysine product which undergo further irreversible chemical reactions to form advanced glycation endproducts (AGEs). This review focuses these products in lysine rich proteins such as collagen and human serum albumin for their role in aging and age-related dise...

  7. Small molecule inhibitors of bromodomain-acetyl-lysine interactions.

    Science.gov (United States)

    Brand, Michael; Measures, Angelina R; Measures, Angelina M; Wilson, Brian G; Cortopassi, Wilian A; Alexander, Rikki; Höss, Matthias; Hewings, David S; Rooney, Timothy P C; Paton, Robert S; Conway, Stuart J

    2015-01-16

    Bromodomains are protein modules that bind to acetylated lysine residues. Their interaction with histone proteins suggests that they function as "readers" of histone lysine acetylation, a component of the proposed "histone code". Bromodomain-containing proteins are often found as components of larger protein complexes with roles in fundamental cellular process including transcription. The publication of two potent ligands for the BET bromodomains in 2010 demonstrated that small molecules can inhibit the bromodomain-acetyl-lysine protein-protein interaction. These molecules display strong phenotypic effects in a number of cell lines and affect a range of cancers in vivo. This work stimulated intense interest in developing further ligands for the BET bromodomains and the design of ligands for non-BET bromodomains. Here we review the recent progress in the field with particular attention paid to ligand design, the assays employed in early ligand discovery, and the use of computational approaches to inform ligand design.

  8. Widespread occurrence of lysine methylation in Plasmodium falciparum proteins at asexual blood stages.

    Science.gov (United States)

    Kaur, Inderjeet; Zeeshan, Mohammad; Saini, Ekta; Kaushik, Abhinav; Mohmmed, Asif; Gupta, Dinesh; Malhotra, Pawan

    2016-10-20

    Post-transcriptional and post-translational modifications play a major role in Plasmodium life cycle regulation. Lysine methylation of histone proteins is well documented in several organisms, however in recent years lysine methylation of proteins outside histone code is emerging out as an important post-translational modification (PTM). In the present study we have performed global analysis of lysine methylation of proteins in asexual blood stages of Plasmodium falciparum development. We immunoprecipitated stage specific Plasmodium lysates using anti-methyl lysine specific antibodies that immunostained the asexual blood stage parasites. Using liquid chromatography and tandem mass spectrometry analysis, 570 lysine methylated proteins at three different blood stages were identified. Analysis of the peptide sequences identified 605 methylated sites within 422 proteins. Functional classification of the methylated proteins revealed that the proteins are mainly involved in nucleotide metabolic processes, chromatin organization, transport, homeostatic processes and protein folding. The motif analysis of the methylated lysine peptides reveals novel motifs. Many of the identified lysine methylated proteins are also interacting partners/substrates of PfSET domain proteins as revealed by STRING database analysis. Our findings suggest that the protein methylation at lysine residues is widespread in Plasmodium and plays an important regulatory role in diverse set of the parasite pathways.

  9. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.

    Science.gov (United States)

    Cheng, Jie; Chen, Peng; Song, Andong; Wang, Dan; Wang, Qinhong

    2018-04-13

    L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.

  10. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  11. Purification and properties of fructosyl lysine oxidase from Fusarium oxysporum S-1F4.

    Science.gov (United States)

    Sakai, Y; Yoshida, N; Isogai, A; Tani, Y; Kato, N

    1995-03-01

    Fructosyl lysine oxidase (FLOD) was examined for its use in the enzymatic measurement of the level of glycated albumin in blood serum. To isolate microorganisms having such an enzyme activity, we used N epsilon-fructosyl N alpha-Z-lysine (epsilon-FL) as a sole nitrogen source in the enrichment culture medium. The isolated fungus, strain S-1F4, showed a high FLOD activity in the cell-free extract and was identified as Fusarium oxysporum. FLOD was purified to an apparent homogeneity on SDS-PAGE. The molecular mass of the subunit was 50 kDa on SDS-PAGE and seemed to exist in a monomeric form. The enzyme had an absorption spectrum characteristic of a flavoprotein and the flavin was found to be covalently bound to the enzyme. The enzyme acted against N epsilon-fructosyl N alpha-Z-lysine and N alpha-fructosyl N epsilon-Z-lysine and showed specificity for fructosyl lysine residues.

  12. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  13. DNA Damage-Induced Acetylation of Lysine 3016 of ATM Activates ATM Kinase Activity▿ †

    OpenAIRE

    Sun, Yingli; Xu, Ye; Roy, Kanaklata; Price, Brendan D.

    2007-01-01

    The ATM protein kinase is essential for cells to repair and survive genotoxic events. The activation of ATM's kinase activity involves acetylation of ATM by the Tip60 histone acetyltransferase. In this study, systematic mutagenesis of lysine residues was used to identify regulatory ATM acetylation sites. The results identify a single acetylation site at lysine 3016, which is located in the highly conserved C-terminal FATC domain adjacent to the kinase domain. Antibodies specific for acetyl-ly...

  14. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  15. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  16. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.

    Science.gov (United States)

    Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-09-26

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  17. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  18. Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

    Directory of Open Access Journals (Sweden)

    Yoda Satoshi

    2008-11-01

    Full Text Available Abstract Background Alterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis. Results We observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1 that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest. Conclusion Our results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.

  19. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins.

    OpenAIRE

    Ahmed, M U; Brinkmann Frye, E; Degenhardt, T P; Thorpe, S R; Baynes, J W

    1997-01-01

    Advanced glycation end-products and glycoxidation products, such as Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nepsilon-(carboxyethyl)lysine (CEL), which is formed during the reaction of methylglyoxal with lysine residues in model compo...

  20. Lysine-Rich Proteins in High-Lysine Hordeum Vulgare Grain

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    The salt-soluble proteins in barley grain selected for high-lysine content (Hiproly, CI 7115 and the mutants 29 and 86) and of a control (Carlsberg II) with normal lysine content, contain identical major proteins as determined by MW and electrophoretic mobility. The concentration of a protein gro...

  1. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  2. Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E. coli

    DEFF Research Database (Denmark)

    Weinert, Brian T; Iesmantavicius, Vytautas; Wagner, Sebastian A

    2013-01-01

    Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells...... acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low...

  3. Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH)

    Science.gov (United States)

    Meyer, Jesse G.; D'Souza, Alexandria K.; Sorensen, Dylan J.; Rardin, Matthew J.; Wolfe, Alan J.; Gibson, Bradford W.; Schilling, Birgit

    2016-11-01

    Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy.

  4. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko

    2011-01-01

    Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines....... With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites...... between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines...

  5. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  6. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Lai JY

    2014-11-01

    Full Text Available Jui-Yang Lai,1–3 Pei-Ran Wang,1 Li-Jyuan Luo,1 Si-Tan Chen1 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, Republic of ChinaAbstract: To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine -pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM L-lysine can

  7. Lysine conjugation properties in human IgGs studied by integrating high-resolution native mass spectrometry and bottom-up proteomics

    NARCIS (Netherlands)

    Gautier, Violette|info:eu-repo/dai/nl/372660851; Boumeester, Anja J.; Lössl, Philip|info:eu-repo/dai/nl/371559693; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    2015-01-01

    Antibody-drug conjugates (ADCs) are a novel class of biopharmaceuticals several of which are now being investigated in clinical studies. In ADCs, potent cytotoxic drugs are coupled via a linker to reactive residues in IgG monoclonal antibodies. Linkage to lysine residues in the IgGs, using

  8. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    Science.gov (United States)

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-07

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.

  9. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    Science.gov (United States)

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    Science.gov (United States)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  11. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yanqi; Zhang, Xing; Horton, John R.; Upadhyay, Anup K.; Spannhoff, Astrid; Liu, Jin; Synder, James P.; Bedford, Mark T.; Cheng, Xiaodong; (Emory-MED); (Emory); (Texas)

    2009-03-26

    Histone lysine methylation is an important epigenetic mark that regulates gene expression and chromatin organization. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by methylating histone H3 Lys9. BIX-01294 was originally identified as a G9a inhibitor during a chemical library screen of small molecules and has previously been used in the generation of induced pluripotent stem cells. Here we present the crystal structure of the catalytic SET domain of GLP in complex with BIX-01294 and S-adenosyl-L-homocysteine. The inhibitor is bound in the substrate peptide groove at the location where the histone H3 residues N-terminal to the target lysine lie in the previously solved structure of the complex with histone peptide. The inhibitor resembles the bound conformation of histone H3 Lys4 to Arg8, and is positioned in place by residues specific for G9a and GLP through specific interactions.

  12. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    Science.gov (United States)

    Lim, Jung Hwa; Shin, Hee Won; Chung, Kyung-Sook; Kim, Nam-Soon; Kim, Ju Hee; Jung, Hong-Ryul; Im, Dong-Soo; Jung, Cho-Rok

    Here, we show that E2-EPF ubiquitin carrier protein (UCP) elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL) and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196). A UCP mutant in which Cys118 was changed to alanine (UCPC118A) did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  13. E2-EPF UCP Possesses E3 Ubiquitin Ligase Activity via Its Cysteine 118 Residue.

    Directory of Open Access Journals (Sweden)

    Jung Hwa Lim

    Full Text Available Here, we show that E2-EPF ubiquitin carrier protein (UCP elongated E3-independent polyubiquitin chains on the lysine residues of von Hippel-Lindau protein (pVHL and its own lysine residues both in vitro and in vivo. The initiation of the ubiquitin reaction depended on not only Lys11 linkage but also the Lys6, Lys48 and Lys63 residues of ubiquitin, which were involved in polyubiquitin chain formation on UCP itself. UCP self-association occurred through the UBC domain, which also contributed to the interaction with pVHL. The polyubiquitin chains appeared on the N-terminus of UCP in vivo, which indicated that the N-terminus of UCP contains target lysines for polyubiquitination. The Lys76 residue of UCP was the most critical site for auto-ubiquitination, whereas the polyubiquitin chain formation on pVHL occurred on all three of its lysines (Lys159, Lys171 and Lys196. A UCP mutant in which Cys118 was changed to alanine (UCPC118A did not form a polyubiquitin chain but did strongly accumulate mono- and di-ubiquitin via auto-ubiquitination. Polyubiquitin chain formation required the coordination of Cys95 and Cys118 between two interacting molecules. The mechanism of the polyubiquitin chain reaction of UCP may involve the transfer of ubiquitin from Cys95 to Cys118 by trans-thiolation, with polyubiquitin chains forming at Cys118 by reversible thioester bonding. The polyubiquitin chains are then moved to the lysine residues of the substrate by irreversible isopeptide bonding. During the elongation of the ubiquitin chain, an active Cys118 residue is required in both parts of UCP, namely, the catalytic enzyme and the substrate. In conclusion, UCP possesses not only E2 ubiquitin conjugating enzyme activity but also E3 ubiquitin ligase activity, and Cys118 is critical for polyubiquitin chain formation.

  14. Interaction of L-lysine and soluble elastin with the semicarbazide-sensitive amine oxidase in the context of its vascular-adhesion and tissue maturation functions.

    LENUS (Irish Health Repository)

    Olivieri, Aldo

    2010-04-01

    The copper-containing quinoenzyme semicarbazide-sensitive amine oxidase (EC 1.4.3.21; SSAO) is a multifunctional protein. In some tissues, such as the endothelium, it also acts as vascular-adhesion protein 1 (VAP-1), which is involved in inflammatory responses and in the chemotaxis of leukocytes. Earlier work had suggested that lysine might function as a recognition molecule for SSAO\\/VAP-1. The present work reports the kinetics of the interaction of L-lysine and some of its derivatives with SSAO. Binding was shown to be saturable, time-dependent but reversible and to cause uncompetitive inhibition with respect to the amine substrate. It was also specific, since D-lysine, L-lysine ethyl ester and epsilon-acetyl-L-lysine, for example, did not bind to the enzyme. The lysine-rich protein soluble elastin bound to the enzyme relatively tightly, which may have relevance to the reported roles of SSAO in maintaining the extracellular matrix (ECM) and in the maturation of elastin. Our data show that lysyl residues are not oxidized by SSAO, but they bind tightly to the enzyme in the presence of hydrogen peroxide. This suggests that binding in vivo of SSAO to lysyl residues in physiological targets might be regulated in the presence of H(2)O(2), formed during the oxidation of a physiological SSAO substrate, yet to be identified.

  15. Lysine purification with cation exchange resin

    International Nuclear Information System (INIS)

    Khayati, GH.; Mottaghi Talab, M.; Hamooni Hagheeghat, M.; Fatemi, M.

    2003-01-01

    L-lysine is an essential amino acid for the growth most of animal species and the number one limiting amino acid for poultry. After production and biomass removal by filtration and centrifugation, the essential next step is the lysine purification and recovery. There are different methods for lysine purification. The ion exchange process is one of the most commonly used purification methods. Lysine recovery was done from broth by ion exchange resin in three different ways: repeated passing, resin soaking and the usual method. Impurities were isolated from the column by repeated wash with distilled water. Recovery and purification was done with NH 4 OH and different alcohol volumes respectively. The results showed that repeated passing is the best method for lysine absorption (maximum range 86.21 %). Washing with alkali solution revealed that most of lysine is obtained in the first step of washing. The highest degree of lysine purification was achieved with the use of 4 volumes of alcohol

  16. Catabolism of lysine by mixed rumen bacteria

    International Nuclear Information System (INIS)

    Onodera, Ryoji; Kandatsu, Makoto.

    1975-01-01

    Metabolites arising from the catabolism of lysine by the mixed rumen bacteria were chromatographically examined by using radioactive lysine. After 6 hr incubation, 241 nmole/ml of lysine was decomposed to give ether-soluble substances and CO 2 by the bacteria and 90 nmole/ml of lysine was incorporated unchanged into the bacteria. delta-Aminovalerate, cadaverine or pipecolate did not seem to be produced from lysine even after incubation of the bacteria with addition of those three amino compounds to trap besides lysine and radioactive lysine. Most of the ether-soluble substances produced from radioactive lysine was volatile fatty acids (VFAs). Fractionation of VFAs revealed that the peaks of butyric and acetic acids coincided with the strong radioactive peaks. Small amounts of radioactivities were detected in propionic acid peak and a peak assumed to be caproic acid. The rumen bacteria appeared to decompose much larger amounts of lysine than the rumen ciliate protozoa did. (auth.)

  17. Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production.

    Science.gov (United States)

    Xu, Jian-Zhong; Yang, Han-Kun; Liu, Li-Ming; Wang, Ying-Yu; Zhang, Wei-Guo

    2018-03-25

    l-lysine is an important amino acid in animals and humans and NADPH is a vital cofactor for maximizing the efficiency of l-lysine fermentation. Dihydrodipicolinate reductase (DHDPR), an NAD(P)H-dependent enzyme, shows a variance in nucleotide-cofactor affinity in bacteria. In this study, we rationally engineered Corynebacterium glutamicum DHDPR (CgDHDPR) to switch its nucleotide-cofactor specificity resulting in an increase in final titer (from 82.6 to 117.3 g L -1 ), carbon yield (from 0.35 to 0.44 g [g glucose] -1 ) and productivity (from 2.07 to 2.93 g L -1  hr -1 ) of l-lysine in JL-6 ΔdapB::Ec-dapB C115G,G116C in fed-batch fermentation. To do this, we comparatively analyzed the characteristics of CgDHDPR and Escherichia coli DHDPR (EcDHDPR), indicating that hetero-expression of NADH-dependent EcDHDPR increased l-lysine production. Subsequently, we rationally modified the conserved structure of cofactor-binding motif, and results indicated that introducing the mutation K11A or R13A in CgDHDPR and introducing the mutation R16A or R39A in EcDHDPR modifies the nucleotide-cofactor affinity of DHDPR. Lastly, the effects of these mutated DHDPRs on l-lysine production were investigated. The highest increase (26.2%) in l-lysine production was observed for JL-6 ΔdapB::Ec-dapB C115G,G116C , followed by JL-6 Cg-dapB C37G,G38C (21.4%) and JL-6 ΔdapB::Ec-dapB C46G,G47C (15.2%). This is the first report of a rational modification of DHDPR that enhances the l-lysine production and yield through the modulation of nucleotide-cofactor specificity. © 2018 Wiley Periodicals, Inc.

  18. Irradiation and modified atmosphere packaging effects on residual nitrite, ascorbic acid, nitrosomyoglobin, and color in sausage.

    Science.gov (United States)

    Ahn, Hyun-Joo; Jo, Cheorun; Lee, Ju-Woon; Kim, Jae-Hyun; Kim, Kee-Hyuk; Byun, Myung-Woo

    2003-02-26

    The present study was undertaken to evaluate the irradiation and modified atmosphere packaging effects on emulsion-type cooked pork sausage during storage for 4 weeks. CO(2) (100%), N(2) (100%), or 25% CO(2)/75% N(2) packaged sausage were irradiated at 0, 5, and 10 kGy, and residual nitrite, residual ascorbic acid, nitrosomyoglobin (NO-Mb), color values, and their correlation were observed. Irradiation significantly reduced the residual nitrite content and caused partial reduction of NO-Mb during storage. No difference was observed in ascorbic acid content by irradiation. Irradiation decreased the Hunter color a value of sausage. CO(2) or CO(2)/N(2) packaging were more effective for reducing residual nitrite and inhibiting the loss of the red color of sausage compared to N(2) packaging. Results indicated that the proper combination of irradiation and modified atmosphere packaging could reduce the residual nitrite in sausage with minimization of color change.

  19. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    International Nuclear Information System (INIS)

    Whiteheart, S.W.; Shenbagamurthi, P.; Chen, L.; Cotter, R.J.; Hart, G.W.

    1989-01-01

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [ 3 H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [ 3 H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [ 3 H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  20. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V.

    2015-01-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML),

  1. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.

    2011-01-01

    (D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  2. Application of the MIDAS approach for analysis of lysine acetylation sites.

    Science.gov (United States)

    Evans, Caroline A; Griffiths, John R; Unwin, Richard D; Whetton, Anthony D; Corfe, Bernard M

    2013-01-01

    Multiple Reaction Monitoring Initiated Detection and Sequencing (MIDAS™) is a mass spectrometry-based technique for the detection and characterization of specific post-translational modifications (Unwin et al. 4:1134-1144, 2005), for example acetylated lysine residues (Griffiths et al. 18:1423-1428, 2007). The MIDAS™ technique has application for discovery and analysis of acetylation sites. It is a hypothesis-driven approach that requires a priori knowledge of the primary sequence of the target protein and a proteolytic digest of this protein. MIDAS essentially performs a targeted search for the presence of modified, for example acetylated, peptides. The detection is based on the combination of the predicted molecular weight (measured as mass-charge ratio) of the acetylated proteolytic peptide and a diagnostic fragment (product ion of m/z 126.1), which is generated by specific fragmentation of acetylated peptides during collision induced dissociation performed in tandem mass spectrometry (MS) analysis. Sequence information is subsequently obtained which enables acetylation site assignment. The technique of MIDAS was later trademarked by ABSciex for targeted protein analysis where an MRM scan is combined with full MS/MS product ion scan to enable sequence confirmation.

  3. Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue

    Directory of Open Access Journals (Sweden)

    Lijie Huang

    2018-02-01

    Full Text Available Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.

  4. Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue

    Science.gov (United States)

    Huang, Lijie; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Shi, Yinghan; Huang, Chongxing; Wang, Shuangfei; An, Shuxiang; Li, Chunying

    2018-02-01

    Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA) film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA) films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.

  5. Characterization of Chloroplastic Fructose 1,6-Bisphosphate Aldolases as Lysine-methylated Proteins in Plants*

    Science.gov (United States)

    Mininno, Morgane; Brugière, Sabine; Pautre, Virginie; Gilgen, Annabelle; Ma, Sheng; Ferro, Myriam; Tardif, Marianne; Alban, Claude; Ravanel, Stéphane

    2012-01-01

    In pea (Pisum sativum), the protein-lysine methyltransferase (PsLSMT) catalyzes the trimethylation of Lys-14 in the large subunit (LS) of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the CO2 fixation step during photosynthesis. Homologs of PsLSMT, herein referred to as LSMT-like enzymes, are found in all plant genomes, but methylation of LS Rubisco is not universal in the plant kingdom, suggesting a species-specific protein substrate specificity of the methyltransferase. In this study, we report the biochemical characterization of the LSMT-like enzyme from Arabidopsis thaliana (AtLSMT-L), with a focus on its substrate specificity. We show that, in Arabidopsis, LS Rubisco is not naturally methylated and that the physiological substrates of AtLSMT-L are chloroplastic fructose 1,6-bisphosphate aldolase isoforms. These enzymes, which are involved in the assimilation of CO2 through the Calvin cycle and in chloroplastic glycolysis, are trimethylated at a conserved lysyl residue located close to the C terminus. Both AtLSMT-L and PsLSMT are able to methylate aldolases with similar kinetic parameters and product specificity. Thus, the divergent substrate specificity of LSMT-like enzymes from pea and Arabidopsis concerns only Rubisco. AtLSMT-L is able to interact with unmethylated Rubisco, but the complex is catalytically unproductive. Trimethylation does not modify the kinetic properties and tetrameric organization of aldolases in vitro. The identification of aldolases as methyl proteins in Arabidopsis and other species like pea suggests a role of protein lysine methylation in carbon metabolism in chloroplasts. PMID:22547063

  6. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex.

    Science.gov (United States)

    Ruane, Karen M; Lloyd, Adrian J; Fülöp, Vilmos; Dowson, Christopher G; Barreteau, Hélène; Boniface, Audrey; Dementin, Sébastien; Blanot, Didier; Mengin-Lecreulx, Dominique; Gobec, Stanislav; Dessen, Andréa; Roper, David I

    2013-11-15

    Formation of the peptidoglycan stem pentapeptide requires the insertion of both L and D amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-L-Ala-γ-D-Glu-L-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between L-lysine and D,L-diaminopimelic acid, the predominant amino acid that replaces L-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of L-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for L-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic L-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.

  7. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    Science.gov (United States)

    Kaur, Randeep; Chitanda, Jackson M; Michel, Deborah; Maley, Jason; Borondics, Ferenc; Yang, Peng; Verrall, Ronald E; Badea, Ildiko

    2012-01-01

    Purpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4–5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes. Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane) to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements. Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g−1 of ND. These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized “diamoplexes”. Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials. PMID:22904623

  8. Acetanilide and bromoacetyl-lysine derivatives as activators for human histone deacetylase 8.

    Science.gov (United States)

    Mukhtar, Yusif M; Huang, Yajun; Liu, Jiajia; Chen, Di; Zheng, Weiping

    2017-06-01

    In the current study, seven compounds (i.e. 1-7) were found to be novel activators for the N ε -acetyl-lysine deacetylation reaction catalyzed by human histone deacetylase 8 (HDAC8). When assessed with the commercially available HDAC8 peptide substrate Fluor-de-Lys®-HDAC8 that harbors the unnatural 7-amino-4-methylcoumarin (AMC) residue immediately C-terminal to the N ε -acetyl-lysine residue to be deacetylated, our compounds exhibited comparable activation potency to that of TM-2-51, the strongest HDAC8 activator reported in the current literature. However, when assessed with an AMC-less peptide substrate derived from the native HDAC8 non-histone substrate protein Zinc finger protein ZNF318, while our compounds were all found to be able to activate HDAC8 deacetylation reaction, TM-2-51 was found not to be able to. Our compounds also seemed to be largely selective for HDAC8 over other classical HDACs. Moreover, treatment with the strongest activator among our compounds (i.e. 7) was found to decrease the K M of the above AMC-less HDAC8 substrate, while nearly maintaining the k cat of the HDAC8-catalyzed deacetylation on this substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Novel α-Oxoamide Advanced-Glycation Endproducts within the N6-Carboxymethyl Lysine and N6-Carboxyethyl Lysine Reaction Cascades.

    Science.gov (United States)

    Baldensperger, Tim; Jost, Tobias; Zipprich, Alexander; Glomb, Marcus A

    2018-02-28

    The highly reactive α-dicarbonyl compounds glyoxal and methylglyoxal are major precursors of posttranslational protein modifications in vivo. Model incubations of N 2 -t-Boc-lysine and either glyoxal or methylglyoxal were used to further elucidate the underlying mechanisms of the N 6 -carboxymethyl lysine and N 6 -carboxyethyl lysine reaction cascades. After independent synthesis of the authentic reference standards, we were able to detect N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine for the first time by HPLC-MS 2 analyses. These two novel amide advanced-glycation endproducts were exclusively formed under aerated conditions, suggesting that they were potent markers for oxidative stress. Analogous to the well-known Strecker degradation pathway, leading from amino acids to Strecker acids, the oxidation of an enaminol intermediate is suggested to be the key mechanistic step. A highly sensitive workup for the determination of AGEs in tissues was developed. In support of our hypothesis, the levels of N 6 -glyoxylyl lysine and N 6 -pyruvoyl lysine in rat livers indeed correlated with liver cirrhosis and aging.

  10. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine

  11. Biodistribution and catabolism of 18F-labelled isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine.

    Science.gov (United States)

    Hultsch, C; Bergmann, R; Pawelke, B; Pietzsch, J; Wuest, F; Johannsen, B; Henle, T

    2005-12-01

    Isopeptide bonds between the epsilon-amino group of lysine and the gamma-carboxamide group of glutamine are formed during strong heating of pure proteins or, more important, by enzymatic reaction mediated by transglutaminases. Despite the wide use of a microbial transglutaminase in food biotechnology, up to now little is known about the metabolic fate of the isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine. In the present study, N-succinimidyl-4-[(18)F]fluorobenzoate was used to modify N(epsilon)-(gamma-glutamyl)-L-lysine at each of its two alpha-amino groups, resulting in the 4-[(18)F]fluorobenzoylated derivatives, for which biodistribution, catabolism, and elimination were investigated in male Wistar rats. A significant different biochemical behavior of the two labelled isopeptides was observed in terms of in vitro stability, in vivo metabolism as well as biodistribution. The results suggest that the metabolic fate of isopeptides is likely to be dependent on how they are reabsorbed - free or peptide bound.

  12. Digestible lysine levels in diets supplemented with ractopamine

    Directory of Open Access Journals (Sweden)

    Evelar de Oliveira Souza

    2011-10-01

    Full Text Available In order evaluate digestible lysine levels in diets supplemented with 20 ppm of ractopamine on the performance and carcass traits, 64 barrows with high genetic potential at finishing phase were allotted in a completely randomized block design with four digestible lysine levels (0.80, 0.90, 1.00, and 1.10%, eight replicates and two pigs per experimental unit. Initial body weight and pigs' kinship were used as criteria in the blocks formation. Diets were mainly composed of corn and soybean meal supplemented with minerals, vitamins and amino acids to meet pigs' nutritional requirements at the finishing phase, except for digestible lysine. No effect of digestible lysine levels was observed in animal performance. The digestible lysine intake increased linearly by increasing the levels of digestible lysine in the diets. Carcass traits were not influenced by the dietary levels of digestible lysine. The level of 0.80% of digestible lysine in diets supplemented with 20 ppm ractopamine meets the nutritional requirements of castrated male pigs during the finishing phase.

  13. An autoantibody against Nε-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages

    International Nuclear Information System (INIS)

    Mera, Katsumi; Nagai, Ryoji; Takeo, Kazuhiro; Izumi, Miyoko; Maruyama, Toru; Otagiri, Masaki

    2011-01-01

    Highlights: → A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. → The purified human anti-CEL autoantibody specifically reacted with CEL. → Anti-CEL antibody accelerated the uptake of 125 I-CEL-HSA by macrophage in vitro. → Endocytic uptake of 125 I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N ε -(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when 125 I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of 125 I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.

  14. [Effect of the lysine guanidination on proteomic analysis].

    Science.gov (United States)

    Zheng, Hao; Mao, Jiawei; Pan, Yanbo; Liu, Zhongshan; Liu, Zheyi; Ye, Mingliang; Zou, Hanfa

    2014-04-01

    The guanidination of lysine side chain was paid great attention in recent years. It plays an important role in qualitative and quantitative proteomics. In this study, based on the results of separated peptides extracted from HeLa cells before and after the guanidination by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the effect of the guanidination of three different kinds of peptides was systematically analyzed. It was found that the selectivity of the guanidination of the lysine side chain was as high as 96.8%. The ratio of identified peptides with lysine at C-term to all peptides increased from 51.7% to 57.3% and more new peptides were identified, while the ratio of peptides with lysine in the middle or without lysine changed little. Further study on the ratio of b and y ions indicated that there were more y ions of peptides with lysine at C-term after the guanidination. The results proved that the selective conversion of lysine to homoarginine by the guanidination could increase the sensitivity and selectivity of mass spectrum. The increased basicity and ability to sequester proton of lysine produced more y ions fragmentation information, which contributed to more identified peptides. It concluded that the lysine guanidination can improve the coverage of proteomic analysis.

  15. Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1991-01-01

    The locations have been determined, with respect to the plasma membrane, of lysine α380 and lysine γ486 in the α subunit and the γ subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the α subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the γ subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [ 3 H]-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine α380 and lysine γ486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine α380 is on the inside surface of a vesicle and lysine γ486 is on the outside surface. Because a majority (85%) of the total binding sites for α-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine α380 and lysine γ486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor

  16. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

    Science.gov (United States)

    Kinzel, J J; Winston, M K; Bhattacharjee, J K

    1983-01-01

    Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065

  17. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    Science.gov (United States)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  18. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Li, Zhanshuang; Jing, Xiaoyan [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Wang, Jun, E-mail: zhqw1888@sohu.com [Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001 (China); Institute of Advanced Marine Materials, Harbin Engineering University, 150001 (China)

    2017-05-01

    Highlights: • Novel lysine modified fibrous adsorbents were prepared using a facile and green method. • PAN-Lys exhibited high adsorption activity and fast adsorption rate. • PAN-Lys significantly remove U(VI) from simulated seawater. - Abstract: Polyacrylonitrile fibers (PANF) covalently modified with lysine (PAN-Lys) was facilely synthesized and carefully characterized. The critical factors affecting U(VI) adsorption from aqueous solution were exploited, such as initial pH, contact time, concentration and temperature. The adsorption process is strongly dependent on solution pH. With excellent adsorption capacity and high affinity toward U(VI), the process for U(VI) is extremely rapid and the equilibrium can be reached within 20 min. The thermodynamics and kinetics were strictly evaluated. In addition, the hypothetical adsorption mechanisms were proposed. Moreover, the adsorption behavior at low concentrations (3–30 μg L{sup −1}) in simulated seawater was also investigated. Therefore, PAN-Lys can be potentially utilized for the efficient removal of U(VI) from seawater.

  19. Chemical modification as a probe of the topography and reactivity of horse-spleen apoferritin

    International Nuclear Information System (INIS)

    Wetz, K.; Crichton, R.R.; Louvain Univ.

    1976-01-01

    In apoferritin, but not in ferritin, 1.0 +- 0.1 cysteine residue per subunit can be modified. In ferritin 3.3 +- 0.3 lysine residues and 7.1 +- 0.7 carboxyl groups per subunit can be modified, whilst the corresponding values for apoferritin are 4.4 +- 0.4 lysine residues and 11.0 +- 0.4 carboxyl groups per subunit. Modification of lysine residues with maleic anhydride and of carboxyl groups with glycineamide in apoferritin which has been dissociated and denatured in guanidine hydrochloride leads to the introduction of 9.1 +- 0.5 maleyl groups per subunit and 22.0 +- 0.9 glycineamide residues per subunit. Whereas unmodified apoferritin subunit can be reassociated from guanidine hydrochloride to apoferritin monomer, the ability of maleylated apoferritin to reassociate is impaired. Apoferritin in which all the carboxyl group have been blocked with glycineamide cannot be reassociated to apoferritin and exists in solution as stable subunits. The modification of one cysteine residue per subunit, of 3 or 4 lysine per subunit or of 7 carboxyl groups per subunit has no effect on the catalytic activity of apoferritin. In contrast, the modification of 11 carboxyl groups per subunit completely abolishes the catalytic properties of the protein. We conclude that one or more carboxyl groups are essential for the catalytic activity of horse spleen apoferritin. (orig.) [de

  20. Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies

    Directory of Open Access Journals (Sweden)

    Christiana Kontaxi

    2017-08-01

    Full Text Available Tau is a microtubule-associated protein responsible mainly for stabilizing the neuronal microtubule network in the brain. Under normal conditions, tau is highly soluble and adopts an “unfolded” conformation. However, it undergoes conformational changes resulting in a less soluble form with weakened microtubule stabilizing properties. Altered tau forms characteristic pathogenic inclusions in Alzheimer's disease and related tauopathies. Although, tau hyperphosphorylation is widely considered to be the major trigger of tau malfunction, tau undergoes several post-translational modifications at lysine residues including acetylation, methylation, ubiquitylation, SUMOylation, and glycation. We are only beginning to define the site-specific impact of each type of lysine modification on tau biology as well as the possible interplay between them, but, like phosphorylation, these modifications are likely to play critical roles in tau's normal and pathobiology. This review summarizes the latest findings focusing on lysine post-translational modifications that occur at both endogenous tau protein and pathological tau forms in AD and other tauopathies. In addition, it highlights the significance of a site-dependent approach of studying tau post-translational modifications under normal and pathological conditions.

  1. Ascidian Sperm Lysin System

    OpenAIRE

    Hitoshi, Sawada; Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University

    2002-01-01

    Fertilization is a precisely controlled process involving many gamete molecules in sperm binding to and penetration through the extracellular matrix of the egg. After sperm bind to the extracellular matrix (vitelline coat), they undergo the acrosome reaction which exposes and partially releases a lytic agent called "lysin" to digest the vitelline coat for the sperm penetration. The vitelline coat sperm lysin is generally a protease in deuterostomes. The molecular mechanism of the actual degra...

  2. Lysine: Participation in life, production and biosynthesis

    International Nuclear Information System (INIS)

    Shah, A.H.; Hameed, A.

    2002-01-01

    Lysine plays a vital role in life. Its demands increase worldwide. It is in the interest of students to advertise the supreme importance of its productions. In this report, the mechanism and the biosynthetic pathway of lysine in corynebacterium glutamicum is illustrated, in a simple and ready understandable way. These will pave the way of lysine production. (author)

  3. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation.

    Directory of Open Access Journals (Sweden)

    Marina Uhart

    Full Text Available The 14-3-3 protein family interacts with more than 700 different proteins in mammals, in part as a result of its specific phospho-serine/phospho-threonine binding activity. Upon binding to 14-3-3, the stability, subcellular localization and/or catalytic activity of the ligands are modified. Seven paralogs are strictly conserved in mammalian species. Although initially thought as redundant, the number of studies showing specialization is growing. We created a protein-protein interaction network for 14-3-3, kinases and their substrates signaling in human cells. We included information of phosphorylation, acetylation and other PTM sites, obtaining a complete representation of the 14-3-3 binding partners and their modifications. Using a computational system approach we found that networks of each 14-3-3 isoform are statistically different. It was remarkable to find that Tyr was the most phosphorylatable amino acid in domains of 14-3-3 epsilon partners. This, together with the over-representation of SH3 and Tyr_Kinase domains, suggest that epsilon could be involved in growth factors receptors signaling pathways particularly. We also found that within zeta's network, the number of acetylated partners (and the number of modify lysines is significantly higher compared with each of the other isoforms. Our results imply previously unreported hidden differences of the 14-3-3 isoforms interaction networks. The phosphoproteome and lysine acetylome within each network revealed post-transcriptional regulation intertwining phosphorylation and lysine acetylation. A global understanding of these networks will contribute to predict what could occur when regulatory circuits become dysfunctional or are modified in response to external stimuli.

  4. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Schölz, Christian; Wagner, Sebastian A

    2013-01-01

    Recent studies have shown that lysines can be posttranslationally modified by various types of acylations. However, except for acetylation, very little is known about their scope and cellular distribution. We mapped thousands of succinylation sites in bacteria (E. coli), yeast (S. cerevisiae), hu...

  5. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    ,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH......Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1...... the project intends to eliminate. PGI catalyzes the conversion of alpha-D-glucose-6-phosphate to fructose-6-phosphate just downstream of the branch in the glycolysis, but it also catalyzes the reverse reaction. It is unknown whether up- or down-regulation of the pgi is required to increase the flux through...

  6. Investigation of light-induced conformation changes in spiropyran-modified succinylated poly(L-lysine).

    Science.gov (United States)

    Cooper, T M; Stone, M O; Natarajan, L V; Crane, R L

    1995-08-01

    To determine the maximum range of coupling between side-chain photochromism and polypeptide conformation change, we modified the carboxylate side chains of succinylated poly(L-lysine) with a spiropyran to form polypeptide I. The extent of modification was determined to be 35.5%. The spacer group length between the polypeptide alpha-carbon and the dye was 12 atoms, providing minimum polypeptide-dye interaction. Conformation changes were monitored by circular dichroism as a function of light adaptation and solvent composition (hexafluoroisopropanol [HFIP] vs trifluoroethanol [TFE]). Under all solvent compositions, the dark-adapted dye was in the merocyanine form. Light adaptation by visible light converted the dye to the spiropyran form. When dissolved in TFE, I adopted a helical conformation insensitive to light adaptation. With increasing percentage HFIP, a solvent-induced helix-to-coil transition was observed around 80% (vol/vol) HFIP. At 100% HFIP, both light- and dark-adapted forms of I were in the coil state. Near the midpoint of the solvent-induced helix-to-coil transition, light adaptation caused conformation changes. Applying helix-to-coil transition theory, we measured a statistically significant difference in coil segment-HFIP binding constant for light- vs dark-adapted solutions (6.38 +/- 0.03 M-1 vs 6.56 +/- 0.03 M-1), but not for the nucleation parameter sigma (1.2 +/- 0.4 10(-3) vs 1.3 +/- 0.3 x 10(-3). The small binding constant difference translated to a light-induced binding energy difference of 17 cal/mol/monomer. Near the midpoint of the helix-to-coil transition, collective interactions between monomer units made possible the translation of a small energy difference (less than RT) into large macromolecular conformation changes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayaka Akieda-Asai

    Full Text Available BACKGROUND: SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5Kgamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268 in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5P(2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE: Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.

  8. Surface biomimetic modification with laminin-loaded heparin/poly-L-lysine nanoparticles for improving the biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao, E-mail: 11140021@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an (China); Hu, Youdong [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an (China); Tan, Jianying [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Liu, Shihui [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an (China); Chen, Junying [Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu (China); Guo, Xin; Pan, Changjiang [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an (China); Li, Xia, E-mail: xial_li@qq.com [Department of Geriatrics, The Affiliated Huai' an Hospital of Xuzhou Medical College, Huai' an (China)

    2017-02-01

    Late thrombus and restenosis caused by delayed endothelialization and insufficient biocompatibility of polymer coating continue to be the greatest limitations of drug-eluting stents. In this study, based on the specific structure of vascular basement membrane, a novel biomimetic nano-coating was constructed by incorporating laminin into electrostatic-assembled heparin/poly-L-lysine nanoparticles. Alteration of heparin and poly-L-lysine concentration ratio in a certain range has no significantly influence nanoparticle size, uniformity and stability, but may affect the chemical property and subsequently the binding efficiency to dopamine-coated titanium surface. By use of this feature, four different nanoparticles were synthesized and immobilized on titanium surface for creating gradient nanoparticle binding density. According to in vitro biocompatibility evaluation, the nanoparticle modified surfaces were found to effectively block coagulation pathway and reduce thrombosis formation. Moreover, NP10L and NP15L modified surface with relatively low heparin exposing density (4.9 to 7.1 μg/cm2) showed beneficial effect in selective promoting EPCs and ECs proliferation, as well as stimulating cell migration and NO synthesis. - Highlights: • A novel laminin-loaded anticoagulant nanoparticle was prepared and used for titanium surface modification. • The nanoparticle binding density was adjustable by alteration the concentration ratio of heparin and poly-L-lysine. • In a certain range of NPs density, the surface was found to selectively direct platelet and vascular cells behavior.

  9. Surface biomimetic modification with laminin-loaded heparin/poly-L-lysine nanoparticles for improving the biocompatibility

    International Nuclear Information System (INIS)

    Liu, Tao; Hu, Youdong; Tan, Jianying; Liu, Shihui; Chen, Junying; Guo, Xin; Pan, Changjiang; Li, Xia

    2017-01-01

    Late thrombus and restenosis caused by delayed endothelialization and insufficient biocompatibility of polymer coating continue to be the greatest limitations of drug-eluting stents. In this study, based on the specific structure of vascular basement membrane, a novel biomimetic nano-coating was constructed by incorporating laminin into electrostatic-assembled heparin/poly-L-lysine nanoparticles. Alteration of heparin and poly-L-lysine concentration ratio in a certain range has no significantly influence nanoparticle size, uniformity and stability, but may affect the chemical property and subsequently the binding efficiency to dopamine-coated titanium surface. By use of this feature, four different nanoparticles were synthesized and immobilized on titanium surface for creating gradient nanoparticle binding density. According to in vitro biocompatibility evaluation, the nanoparticle modified surfaces were found to effectively block coagulation pathway and reduce thrombosis formation. Moreover, NP10L and NP15L modified surface with relatively low heparin exposing density (4.9 to 7.1 μg/cm2) showed beneficial effect in selective promoting EPCs and ECs proliferation, as well as stimulating cell migration and NO synthesis. - Highlights: • A novel laminin-loaded anticoagulant nanoparticle was prepared and used for titanium surface modification. • The nanoparticle binding density was adjustable by alteration the concentration ratio of heparin and poly-L-lysine. • In a certain range of NPs density, the surface was found to selectively direct platelet and vascular cells behavior.

  10. Homoallylglycine residues are superior precursors to orthogonally modified thioether containing polypeptides.

    Science.gov (United States)

    Perlin, Pesach; Gharakhanian, Eric G; Deming, Timothy J

    2018-06-12

    Homoallylglycine N-carboxyanhydride, Hag NCA, monomers were synthesized and used to prepare polypeptides containing Hag segments with controllable lengths of up to 245 repeats. Poly(l-homoallylglycine), GHA, was found to adopt an α-helical conformation, which provided good solubility in organic solvents and allowed high yield functionalization of its alkene side-chains via radical promoted addition of thiols. The conformations of these derivatives were shown to be switchable between α-helical and disordered states in aqueous media using thioether alkylation or oxidation reactions. Incorporation of GHA segments into block copolymers with poly(l-methionine), M, segments provided a means to orthogonally modify thioether side-chains different ways in separate copolypeptide domains. This approach allows preparation of functional polypeptides containing discrete domains of oxidized and alkylated thioether containing residues, where chain conformation and functionality of each domain can be independently modified.

  11. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Silje V Veiseth

    2011-03-01

    Full Text Available Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3 is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.

  12. Modified Longo's stapled hemorrhoidopexy with additional traction sutures for the treatment of residual prolapsed piles.

    Science.gov (United States)

    Chen, Chuang-Wei; Kang, Jung-Cheng; Wu, Chang-Chieh; Hsiao, Cheng-Wen; Jao, Shu-Wen

    2008-03-01

    Residual prolapsed piles is a problem after the stapled hemorrhoidopexy, especially in large third- or fourth-degree hemorrhoids. We have developed a method using additional traction sutures along with modified Longo's procedure to manage this problem. From January 2005 to October 2005, 30 consecutive patients with symptomatic third- or fourth-degree hemorrhoids who underwent the modified Longo's stapled hemorrhoidopexy with additional traction sutures in a single institution were collected. The demographics, postoperative pain score, surgical features, outcomes, and early and late complications were recorded. All patients were followed for a mean duration of 8.8 (range, 4-15) months. Thirty patients (17 males) with a mean age of 45 (range, 27-63) years were identified. The mean postoperative pain score on the morning of the first postoperative day was 2.8 (range, 1-4). The mean duration of operation was 30.7 (range, 25-37) min. The mean duration of hospital stay was 2 (range, 1-3) days. The mean days for patients to resume normal work was 6.7 (range, 4-9) days. No other procedure-related complications occurred in all patients. There was no early complication except for fecal urgency found in one patient during the first postoperative days. Regarding the late complications, no residual prolapsed piles, persistent anal pain, incontinence, anal stenosis, or recurrent symptoms were found. Our preliminary experiences indicated that this modified procedures truly contributed to reduce the residual internal hemorrhoids and maintained the benefits of stapled hemorrhoidopexy. Randomized trial and long-term follow-up warrant to determine possible surgical and functional outcome.

  13. Chemical-modification studies of a unique sialic acid-binding lectin from the snail Achatina fulica. Involvement of tryptophan and histidine residues in biological activity.

    Science.gov (United States)

    Basu, S; Mandal, C; Allen, A K

    1988-01-01

    A unique sialic acid-binding lectin, achatininH (ATNH) was purified in single step from the haemolymph of the snail Achatina fulica by affinity chromatography on sheep submaxillary-gland mucin coupled to Sepharose 4B. The homogeneity was checked by alkaline gel electrophoresis, immunodiffusion and immunoelectrophoresis. Amino acid analysis showed that the lectin has a fairly high content of acidic amino acid residues (22% of the total). About 1.3% of the residues are half-cystine. The glycoprotein contains 21% carbohydrate. The unusually high content of xylose (6%) and fucose (2.7%) in this snail lectin is quite interesting. The protein was subjected to various chemical modifications in order to detect the amino acid residues and carbohydrate residues present in its binding sites. Modification of tyrosine and arginine residues did not affect the binding activity of ATNH; however, modification of tryptophan and histidine residues led to a complete loss of its biological activity. A marked decrease in the fluorescence emission was found as the tryptophan residues of ATNH were modified. The c.d. data showed the presence of an identical type of conformation in the native and modified agglutinin. The modification of lysine and carboxy residues partially diminished the biological activity. The activity was completely lost after a beta-elimination reaction, indicating that the sugars are O-glycosidically linked to the glycoprotein's protein moiety. This result confirms that the carbohydrate moiety also plays an important role in the agglutination property of this lectin. Images Fig. 3. PMID:3140796

  14. Bromopyruvate, an active site-directed inactivator of E. coli 2-keto-4-hydroxyglutarate(KHG) aldolase, modifies glutamic acid residue-45

    International Nuclear Information System (INIS)

    Vlahos, C.J.; Dekker, E.E.

    1987-01-01

    E. coli KHG-aldolase (2-keto-4-hydroxyglutarate ↔ pyruvate + glyoxylate), a novel trimeric Class I aldolase, requires one active-site lysine residue (Lys 133)/subunit for Schiff-base formation as well as one arginine residue (Arg 49)/subunit for catalytic activity. The substrate analog, 3-bromopyruvate (BRPY), causes a time- and concentration-dependent loss of KHG-aldolase activity. This inactivation is regarded as active site-directed since: (a) BRPY modification results in complete loss of enzymatic activity; (b) saturation kinetics are exhibited, suggesting that a reversible complex is formed between the aldolase and BRPY prior to the rate-limiting inactivation step; (c) over 90% of the initial aldolase activity is protected by either substrate, pyruvate or KHG; (d) 1.1 mol of 14 C-BRPY is bound/enzyme subunit. Peptide isolation and sequencing show that the incorporated radioactivity is associated with residue Glu-45. Denaturation of the enzyme with guanidine x HCl following treatment with excess 14 C-BRPY allows for the incorporation of carbon-14 at Cys-159 and Cys-180 as well. The presence of pyruvate protects Glu-45 from being esterified but does not prevent the alkylation of the two cysteine residues. These results suggest that Glu-45 is essential for the catalytic activity of E. coli KHG-aldolase, most likely functioning as the active-site amphoteric proton donor/acceptor moiety that is involved in the overall mechanism of the reaction catalyzed by this enzyme

  15. PENILAIAN PENGARUH PENAMBAHAN LYSINE PADA NASI

    Directory of Open Access Journals (Sweden)

    Ignatius Tarwotjo

    2012-11-01

    Full Text Available Pengaruh penambahan lysine pada mutu protein nasi dilakukan pada tikus putih dengan mengukur Protein Efficiency Ratio. Nasi dan Nasi dengan sayur beserta laukpauk, seperti dikonsumsi oleh kebanyakan keluarga di Indonesia, yang berasnya lebih dulu ditambahi butiran premix berisi lysine, thiamine dan riboflavin ternaya menghasilkan Protein Efficiency Ratio lebih tinggi dari pada yang tidak ditambahi.

  16. The strong anti-glioblastoma capacity of the plasma-stimulated lysine-rich medium

    International Nuclear Information System (INIS)

    Yan, Dayun; Keidar, Michael; Nourmohammadi, Niki; Talbot, Annie; Sherman, Jonathan H

    2016-01-01

    Plasma-stimulated medium (PSM) shows a remarkable anti-cancer capacity as strong as the direct cold atmospheric plasma (CAP) treatment of cancer cells. PSM is able to effectively resist the growth of several cancer cell lines. To date, the sole approach to strengthen the anti-cancer capacity of PSM is extending the plasma treatment time. In this study, we demonstrated that the anti-glioblastoma capacity of PSM could be significantly increased by adding 20 mM lysine in Dulbecco’s modified Eagle’s medium (DMEM). This study provides clear evidence that the anti-glioblastoma capacity of PSM could be noticeably enhanced by modifying the composition of medium without increasing the CAP treatment time. (paper)

  17. Duplicate Abalone Egg Coat Proteins Bind Sperm Lysin Similarly, but Evolve Oppositely, Consistent with Molecular Mimicry at Fertilization

    Science.gov (United States)

    Aagaard, Jan E.; Springer, Stevan A.; Soelberg, Scott D.; Swanson, Willie J.

    2013-01-01

    Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp.), a model system of reproductive protein evolution. We test the evolutionary rates (d N/d S) of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14), and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL. PMID:23408913

  18. Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis, some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp., a model system of reproductive protein evolution. We test the evolutionary rates (d(N/d(S of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14, and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL.

  19. Desensitization to inhaled aztreonam lysine in an allergic patient with cystic fibrosis using a novel approach.

    Science.gov (United States)

    Guglani, Lokesh; Abdulhamid, Ibrahim; Ditouras, Joanna; Montejo, Jenny

    2012-10-01

    To report the successful desensitization of a highly allergic patient with cystic fibrosis (CF) to inhaled aztreonam lysine using the novel approach of intravenous desensitization followed by full-dose inhaled therapy without any adverse reactions. A 19-year-old woman with CF had persistent Pseudomonas aeruginosa-positive cultures and a history of type I hypersensitivity reactions to multiple medications, including aztreonam and tobramycin (intravenous and inhaled). To start therapy with an inhaled antipseudomonal antibiotic on a chronic basis, she underwent rapid desensitization to intravenous aztreonam followed by initiation of inhaled aztreonam lysine. Following intravenous desensitization with aztreonam, there was no adverse reaction or decline in lung function noted with inhaled aztreonam lysine and the chronic therapy was continued at home, with a modified regimen to maintain desensitization. Aztreonam lysine has been used for treatment of patients with CF with chronic P. aeruginosa colonization. Previous allergic reaction to intravenous aztreonam is considered a contraindication for use of aztreonam lysine. Our patient had a history of hives and facial swelling following administration of intravenous aztreonam (type I hypersensitivity reaction) as well as hypersensitivity to tobramycin. Rapid desensitization can be done for drugs that mediate a type I hypersensitivity reaction, with mast cells and basophils being the cellular targets. There are a few case reports of desensitization to inhaled antibiotics such as tobramycin and colistin, but desensitization to aztreonam lysine has not previously been reported. Desensitization of a patient with CF who is allergic to intravenous aztreonam was successfully accomplished with the novel approach of rapid intravenous desensitization followed by inhaled therapy. As inhaled antibiotics are being increasingly used for patients with CF, this novel strategy can be used for desensitizing allergic patients with CF to

  20. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    Directory of Open Access Journals (Sweden)

    Kaur R

    2012-07-01

    . These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized "diamoplexes".Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials.Keywords: disaggregation, spectroscopy, dispersion, electrophoresis, size, zeta potential

  1. OGT (O-GlcNAc Transferase) Selectively Modifies Multiple Residues Unique to Lamin A.

    Science.gov (United States)

    Simon, Dan N; Wriston, Amanda; Fan, Qiong; Shabanowitz, Jeffrey; Florwick, Alyssa; Dharmaraj, Tejas; Peterson, Sherket B; Gruenbaum, Yosef; Carlson, Cathrine R; Grønning-Wang, Line M; Hunt, Donald F; Wilson, Katherine L

    2018-05-17

    The LMNA gene encodes lamins A and C with key roles in nuclear structure, signaling, gene regulation, and genome integrity. Mutations in LMNA cause over 12 diseases ('laminopathies'). Lamins A and C are identical for their first 566 residues. However, they form separate filaments in vivo, with apparently distinct roles. We report that lamin A is β- O -linked N -acetylglucosamine- (O -GlcNAc)-modified in human hepatoma (Huh7) cells and in mouse liver. In vitro assays with purified O -GlcNAc transferase (OGT) enzyme showed robust O -GlcNAcylation of recombinant mature lamin A tails (residues 385⁻646), with no detectable modification of lamin B1, lamin C, or 'progerin' (Δ50) tails. Using mass spectrometry, we identified 11 O -GlcNAc sites in a 'sweet spot' unique to lamin A, with up to seven sugars per peptide. Most sites were unpredicted by current algorithms. Double-mutant (S612A/T643A) lamin A tails were still robustly O -GlcNAc-modified at seven sites. By contrast, O -GlcNAcylation was undetectable on tails bearing deletion Δ50, which causes Hutchinson⁻Gilford progeria syndrome, and greatly reduced by deletion Δ35. We conclude that residues deleted in progeria are required for substrate recognition and/or modification by OGT in vitro. Interestingly, deletion Δ35, which does not remove the majority of identified O -GlcNAc sites, does remove potential OGT-association motifs (lamin A residues 622⁻625 and 639⁻645) homologous to that in mouse Tet1. These biochemical results are significant because they identify a novel molecular pathway that may profoundly influence lamin A function. The hypothesis that lamin A is selectively regulated by OGT warrants future testing in vivo, along with two predictions: genetic variants may contribute to disease by perturbing OGT-dependent regulation, and nutrient or other stresses might cause OGT to misregulate wildtype lamin A.

  2. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain.

    Science.gov (United States)

    Zhang, Yuxun; Bharathi, Sivakama S; Rardin, Matthew J; Lu, Jie; Maringer, Katherine V; Sims-Lucas, Sunder; Prochownik, Edward V; Gibson, Bradford W; Goetzman, Eric S

    2017-06-16

    SIRT5 is a lysine desuccinylase known to regulate mitochondrial fatty acid oxidation and the urea cycle. Here, SIRT5 was observed to bind to cardiolipin via an amphipathic helix on its N terminus. In vitro , succinyl-CoA was used to succinylate liver mitochondrial membrane proteins. SIRT5 largely reversed the succinyl-CoA-driven lysine succinylation. Quantitative mass spectrometry of SIRT5-treated membrane proteins pointed to the electron transport chain, particularly Complex I, as being highly targeted for desuccinylation by SIRT5. Correspondingly, SIRT5 -/- HEK293 cells showed defects in both Complex I- and Complex II-driven respiration. In mouse liver, SIRT5 expression was observed to localize strictly to the periportal hepatocytes. However, homogenates prepared from whole SIRT5 -/- liver did show reduced Complex II-driven respiration. The enzymatic activities of Complex II and ATP synthase were also significantly reduced. Three-dimensional modeling of Complex II suggested that several SIRT5-targeted lysine residues lie at the protein-lipid interface of succinate dehydrogenase subunit B. We postulate that succinylation at these sites may disrupt Complex II subunit-subunit interactions and electron transfer. Lastly, SIRT5 -/- mice, like humans with Complex II deficiency, were found to have mild lactic acidosis. Our findings suggest that SIRT5 is targeted to protein complexes on the inner mitochondrial membrane via affinity for cardiolipin to promote respiratory chain function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effect of vitamins and bivalent metals on lysine yield in Bacillus ...

    African Journals Online (AJOL)

    The effects of vitamins and bivalent metals on lysine accumulation in Bacillus strains were investigated. Biotin enhanced lysine production in all the Bacillus strains, while folic acid and riboflavin stimulated lysine yields in Bacillus megaterium SP 86 only. All bivalent metals stimulated lysine accumulation in B. megaterium ...

  4. An autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Katsumi [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Nagai, Ryoji, E-mail: nagai-883@umin.ac.jp [Department of Food and Nutrition, Laboratory of Nutritional Science and Biochemistry, Japan Women' s University, Tokyo (Japan); Takeo, Kazuhiro; Izumi, Miyoko [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Maruyama, Toru [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Center for Clinical Pharmaceutical Science, Kumamoto University, Kumamoto (Japan); Otagiri, Masaki [Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto (Japan); Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto (Japan)

    2011-04-08

    Highlights: {yields} A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. {yields} The purified human anti-CEL autoantibody specifically reacted with CEL. {yields} Anti-CEL antibody accelerated the uptake of {sup 125}I-CEL-HSA by macrophage in vitro. {yields} Endocytic uptake of {sup 125}I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when {sup 125}I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of {sup 125}I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.

  5. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  6. Acrolein Modification Impairs Key Functional Features of Rat Apolipoprotein E: Identification of Modified Sites by Mass Spectrometry

    Science.gov (United States)

    Tran, Tuyen N.; Kosaraju, Malathi G.; Tamamizu-Kato, Shiori; Akintunde, Olayemi; Zheng, Ying; Bielicki, John K.; Pinkerton, Kent; Uchida, Koji; Lee, Yuan Yu; Narayanaswami, Vasanthy

    2014-01-01

    Apolipoprotein E (apoE), an anti-atherogenic apolipoprotein, plays a significant role in the metabolism of lipoproteins. It lowers plasma lipid levels by acting as a ligand for low-density lipoprotein receptor (LDLr) family of proteins, in addition to playing a role in promoting macrophage cholesterol efflux in atherosclerotic lesions. The objective of this study is to examine the effect of acrolein modification on the structure and function of rat apoE and to determine sites and nature of modification by mass spectrometry. Acrolein is a highly reactive aldehyde, which is generated endogenously as one of the products of lipid peroxidation and is present in the environment in pollutants such as tobacco smoke and heated oils. In initial studies, acrolein-modified apoE was identified by immunoprecipitation using an acrolein-lysine specific antibody, in the plasma of ten-week old male rats that were exposed to filtered air (FA) or low doses of environmental tobacco smoke (ETS). While both groups displayed acrolein-modified apoE in the lipoprotein fraction, the ETS group had higher levels in lipid-free fraction compared to the FA group. This observation provided the rationale to further investigate the effect of acrolein modification on rat apoE at a molecular level. Treatment of recombinant rat apoE with a 10-fold molar excess of acrolein resulted in: (i) a significant decrease in lipid-binding and cholesterol efflux abilities, (ii) impairment in the LDLr- and heparin-binding capabilities, and (iii) significant alterations in the overall stability of the protein. The disruption in the functional abilities is attributed directly or indirectly to acrolein modification yielding: an aldimine adduct at K149 and K155 (+38); a propanal adduct at K135 and K138 (+56); an Nε-(3-methylpyridinium)lysine (MP-lysine) at K64, K67 and K254 (+76), and Nε-(3-formyl-3,4-dehydropiperidino)lysine (FDP-lysine) derivative at position K68 (+94), as determined by Matrix-Assisted Laser

  7. How modification of accessible lysines to phenylalanine modulates the structural and functional properties of horseradish peroxidase: a simulation study.

    Directory of Open Access Journals (Sweden)

    Leila Navapour

    Full Text Available Horseradish Peroxidase (HRP is one of the most studied peroxidases and a great number of chemical modifications and genetic manipulations have been carried out on its surface accessible residues to improve its stability and catalytic efficiency necessary for biotechnological applications. Most of the stabilized derivatives of HRP reported to date have involved chemical or genetic modifications of three surface-exposed lysines (K174, K232 and K241. In this computational study, we altered these lysines to phenylalanine residues to model those chemical modifications or genetic manipulations in which these positively charged lysines are converted to aromatic hydrophobic residues. Simulation results implied that upon these substitutions, the protein structure becomes less flexible. Stability gains are likely to be achieved due to the increased number of stable hydrogen bonds, improved heme-protein interactions and more integrated proximal Ca2+ binding pocket. We also found a new persistent hydrogen bond between the protein moiety (F174 and the heme prosthetic group as well as two stitching hydrogen bonds between the connecting loops GH and F'F″ in mutated HRP. However, detailed analysis of functionally related structural properties and dynamical features suggests reduced reactivity of the enzyme toward its substrates. Molecular dynamics simulations showed that substitutions narrow the bottle neck entry of peroxide substrate access channel and reduce the surface accessibility of the distal histidine (H42 and heme prosthetic group to the peroxide and aromatic substrates, respectively. Results also demonstrated that the area and volume of the aromatic-substrate binding pocket are significantly decreased upon modifications. Moreover, the hydrophobic patch functioning as a binding site or trap for reducing aromatic substrates is shrunk in mutated enzyme. Together, the results of this simulation study could provide possible structural clues to explain

  8. Methodical investigations on the determination of metabolic lysine requirements in broiler chickens. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Nguyen Thi Nhan; Wilke, A.

    1987-01-01

    For the estimation of lysine requirement 128 male broiler chickens were used at an age of 7 to 21 days posthatching. They received a lysine-deficient diet composed of wheat and wheat gluten. To this basal diet L-lysine-HCL was supplemented successively resulting in 8 lysine levels ranging from 5.8 to 23.3 g lysine per kg dry matter (DM) (2.2 to 8.7 g lysine per 16 g N). At the end of the two-week feeding period of the experimental diets 14 C-lysine was injected intravenously 1.5 and 5.5 hours after feed withdrawal. During the following 4 hours the exretion of CO 2 and 14 CO 2 was measured. The highest daily gain of 21.5 g was observed in animals fed 13.3 g lysine-kg DM. Lysine concentrations exceeding 18.3 g/kg DM depressed body weight gain. The CO 2 excretion was not influenced by lysine intake. 14 CO 2 excretion was low with diets low in lysine content and increased 3 to 4 times with diets meeting the lysine requirement. Based on measurements 1.5 to 5.5 hours after feed withdrawal the saturation value for lysine was reached at 13.3 g/kg DM. This value was lowered (10.8 g/kg DM), however, if the estimation was carried out 5.5 to 9.5 hours after feed withdrawal. These results suggest a higher metabolic lysine requirement during the earlier period after feed intake. Both, reduced weight gain and non linearity in 14 CO 2 excretion in diets exceeding a lysine content of 18.3 g/kg DM indicate a limited capacity of the organism to degrade excessive lysine. According to the results a lysine requirement betwen 10.8 and 13.3 g/kg DM (27% CP and 660 EFU/sub hen//kg DM) was estimated for broiler chickens 3 weeks posthatching. (author)

  9. Maintenance requirement and deposition efficiency of lysine in pigs

    Directory of Open Access Journals (Sweden)

    Marcos Speroni Ceron

    2013-09-01

    Full Text Available The objective of this work was to determine the maintenance requirement and the deposition efficiency of lysine in growing pigs. It was used the incomplete changeover experimental design, with replicates over time. Twelve castrated pigs with average body weight (BW of 52±2 kg were kept in metabolism crates with a controlled temperature of 22ºC. The diets were formulated to supply 30, 50, 60, and 70% of the expected requirements of standardized lysine, and provided at 2.6 times the energy requirements for maintenance. The trial lasted 24 days and was divided into two periods of 12 days: seven days for animal adaptation to the diet and five days for sample collection. The increasing content of lysine in the diet did not affect dry matter intake of the pigs. The amount of nitrogen excreted was 47% of the nitrogen intake, of which 35% was excreted through feces and 65% through urine. The estimated endogenous losses of lysine were 36.4 mg kg-1 BW0.75. The maintenance requirement of lysine for pigs weighing around 50 kg is 40.4 mg kg-1 BW0.75, and the deposition efficiency of lysine is 90%.

  10. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  11. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus.

    Science.gov (United States)

    Pan, Jianyi; Ye, Zhicang; Cheng, Zhongyi; Peng, Xiaojun; Wen, Liangyou; Zhao, Fukun

    2014-07-03

    Lysine acetylation of proteins is a major post-translational modification that plays an important regulatory role in almost every aspect of cells, both eukaryotes and prokaryotes. Vibrio parahemolyticus, a model marine bacterium, is a worldwide cause of bacterial seafood-borne illness. Here, we conducted the first lysine acetylome in this bacterium through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. Overall, we identified 1413 lysine acetylation sites in 656 proteins, which account for 13.6% of the total proteins in the cells; this is the highest ratio of acetyl proteins that has so far been identified in bacteria. The bioinformatics analysis of the acetylome showed that the acetylated proteins are involved in a wide range of cellular functions and exhibit diverse subcellular localizations. More specifically, proteins related to protein biosynthesis and carbon metabolism are the preferential targets of lysine acetylation. Moreover, two types of acetylation motifs, a lysine or arginine at the +4/+5 positions and a tyrosine, histidine, or phenylalanine at the +1/+2 positions, were revealed from the analysis of the acetylome. Additionally, protein interaction network analysis demonstrates that a wide range of interactions are modulated by protein acetylation. This study provides a significant beginning for the in-depth exploration of the physiological role of lysine acetylation in V. parahemolyticus.

  12. Impact of Variety and Agronomic Factors on Crude Protein and Total Lysine in Chicory; N(ε)-Carboxymethyl-lysine-Forming Potential during Drying and Roasting.

    Science.gov (United States)

    Loaëc, Grégory; Niquet-Léridon, Céline; Henry, Nicolas; Jacolot, Philippe; Jouquand, Céline; Janssens, Myriam; Hance, Philippe; Cadalen, Thierry; Hilbert, Jean-Louis; Desprez, Bruno; Tessier, Frédéric J

    2015-12-02

    During the heat treatment of coffee and its substitutes some compounds potentially deleterious to health are synthesized by the Maillard reaction. Among these, N(ε)-carboxymethyl-lysine (CML) was detected at high levels in coffee substitutes. The objective of this study was to evaluate the impact of changes in agricultural practice on the lysine content present in chicory roots and try to limit CML formation during roasting. Of the 24 varieties analyzed, small variations in lysine content were observed, 213 ± 8 mg/100 g dry matter (DM). The formation of lysine tested in five commercial varieties was affected by the nitrogen treatment with mean levels of 176 ± 2 mg/100 g DM when no fertilizer was added and 217 ± 7 mg/100 g DM with a nitrogen supply of 120 kg/ha. The lysine content of fresh roots was significantly correlated to the concentration of CML formed in roasted roots (r = 0.51; p < 0.0001; n = 76).

  13. Adsorption of Nickel (II) from Aqueous Solution by Bicarbonate Modified Coconut Oilcake Residue Carbon.

    Science.gov (United States)

    Vijayakumari, N; Srinivasan, K

    2014-07-01

    The adsorption of Ni (II) on modified coconut oilcake residue carbon (bicarbonate treated coconut oilcake residue carbon-BCORC) was employed for the removal of Ni (II) from water and wastewater. The influence of various factors such as agitation time, pH and carbon dosage on the adsorption capacity has been studied. Adsorption isothermal data could be interpreted by Langmuir and Freundlich equations. In order to understand the reaction mechanism, kinetic data has been studied using reversible first order rate equation. Similar studies were carried out using commercially available activated carbon--CAC, for comparison purposes. Column studies were conducted to obtain breakthrough capacities of BCORC and CAC. Common anions and cations affecting the removal of Ni (II) on both the carbons were also studied. Experiments were also done with wastewater containing Ni (II), to assess the potential of these carbons.

  14. CPLA 1.0: an integrated database of protein lysine acetylation.

    Science.gov (United States)

    Liu, Zexian; Cao, Jun; Gao, Xinjiao; Zhou, Yanhong; Wen, Longping; Yang, Xiangjiao; Yao, Xuebiao; Ren, Jian; Xue, Yu

    2011-01-01

    As a reversible post-translational modification (PTM) discovered decades ago, protein lysine acetylation was known for its regulation of transcription through the modification of histones. Recent studies discovered that lysine acetylation targets broad substrates and especially plays an essential role in cellular metabolic regulation. Although acetylation is comparable with other major PTMs such as phosphorylation, an integrated resource still remains to be developed. In this work, we presented the compendium of protein lysine acetylation (CPLA) database for lysine acetylated substrates with their sites. From the scientific literature, we manually collected 7151 experimentally identified acetylation sites in 3311 targets. We statistically studied the regulatory roles of lysine acetylation by analyzing the Gene Ontology (GO) and InterPro annotations. Combined with protein-protein interaction information, we systematically discovered a potential human lysine acetylation network (HLAN) among histone acetyltransferases (HATs), substrates and histone deacetylases (HDACs). In particular, there are 1862 triplet relationships of HAT-substrate-HDAC retrieved from the HLAN, at least 13 of which were previously experimentally verified. The online services of CPLA database was implemented in PHP + MySQL + JavaScript, while the local packages were developed in JAVA 1.5 (J2SE 5.0). The CPLA database is freely available for all users at: http://cpla.biocuckoo.org.

  15. Threonine and lysine requirements for maintenance in chickens ...

    African Journals Online (AJOL)

    The maintenance requirement for threonine and lysine were estimated in two different experiments by measuring the nitrogen balance of adult male cockerels. Measured amounts of a diet first-limiting in threonine or lysine were fed by intubation each day for 4 d to give a range of intakes (unbalanced series) of from 0 to 239 ...

  16. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    International Nuclear Information System (INIS)

    Carnevale, V.; Raugei, S.

    2009-01-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  17. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  18. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or

  19. Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle.

    Science.gov (United States)

    Wijenayake, Sanoji; Hawkins, Liam J; Storey, Kenneth B

    2018-04-05

    The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  1. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins

    Directory of Open Access Journals (Sweden)

    Michael N. Davies

    2016-01-01

    Full Text Available Lysine acetylation (AcK, a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT, an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.

  2. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    Science.gov (United States)

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  3. Identification of aspartate-184 as an essential residue in the catalytic subunit of cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Buechler, J.A.; Taylor, S.S.

    1988-01-01

    The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [ 14 C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified

  4. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-01-01

    Full Text Available Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.

  5. Antibiotic and surfactant effects on lysine accumulation by Bacillus ...

    African Journals Online (AJOL)

    The effects of antibiotics and surfactants on lysine accumulation in the culture broth of three strains of Bacillus megaterium (B. megaterium SP 86, B. megaterium SP 76 and B. megaterium SP 14) were investigated. Lincomycin, neomycin and tetracycline stimulated lysine increase in B. megaterium SP 76 and B. megaterium ...

  6. Radiolabelling of isopeptide Nε-(γ-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate

    International Nuclear Information System (INIS)

    Wuest, F.; Hultsch, C.; Bergmann, R.; Johannsen, B.; Henle, T.

    2003-01-01

    The isopeptide N ε -(γ-glutamyl)-L-lysine 4 was labelled with 18 F via N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]SFB). A modified approach for the convenient synthesis of [ 18 F]SFB was used, and [ 18 F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n=20) and radiochemical purity >95% within 40 min after EOB. For labelling N ε -(γ-glutamyl)-L-lysine with [ 18 F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3 GBq of [ 18 F]SFB could be converted into 447 MBq (46%, decay-corrected) of [ 18 F]fluorobenzoylated isopeptide within 45 min, including HPLC purification

  7. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Nakajima

    Full Text Available Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS and a neoculin basic subunit (NBS. Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.

  8. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.

    Science.gov (United States)

    Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li

    2018-05-15

    Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Characterization of the residues modified when F1 - ATPases are inactivated by 7-chloro-4-nitrobenzofurazan and 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine

    International Nuclear Information System (INIS)

    Verburg, J.G.

    1989-01-01

    Inactivation of the F 1 -ATPases isolated from spinach chloroplasts (CF 1 ) and from the plasma membrane of the thermophilic bacterium, PS3 (TF 1 ) with 7-chloro-4-nitrobenzofurazan (Nbf-Cl) results in modification of Tyr-β-328 and Tyr-β-307, respectively. These residues are homologous to Tyr-β-311 of the F 1 -ATPase isolated from beef heart mitochondria, previously identified as the residue derivatized during inactivation of that enzyme with Nbf-Cl. Interestingly, an intramolecular migration of the Nbf- moiety from the tyrosine residue to a nearby lysine residue, observed when MF 1 and TF 1 which had been inactivated with Nbf-Cl are incubated at alkaline pH, was not observed when CF 1 was treated in the same manner. CF 1 differs from other ATPases in that it contains ADP, tightly bound at a single catalytic site. It is possible that this tightly bound ADP prevents migration of the Nbf moiety. The characteristics of inactivation of MF 1 with the fluorosulfonyl benzoyl derivatives of adenosine (FSBA) and inosine (FSBI) have been described in the literature. Inactivation of MF 1 with FSBA results in the mutually exclusive modification of Tyr-368 or His-427 in all three copies of the β subunit. These residues comprise part of the noncatalytic nucleotide binding site. Inactivation of MF 1 with FSBI results in modification of Tyr-β-345 in a single catalytic site. The fluorosulfonyl benzoyl derivative of 1,N 6 -ethenoadenosine (FSBεA) has been prepared, and the characteristics and selectivity of modification of MF 1 with this reagent are presented. FSBεA binds reversibly to MF 1 with an apparent dissociation constant of 250 μM before covalent modification. The residue in MF 1 that reacts with FSBεA exhibits an apparent pK a of 8.9

  10. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  11. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  12. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation.

    Directory of Open Access Journals (Sweden)

    Jiachen Wang

    2014-01-01

    Full Text Available Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs. While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G. Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd fused to the protein. Induced accumulation of the ddHAGCN5b(E703G protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip. Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a "core complex" that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1 subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required

  13. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  14. The emerging role of histone lysine demethylases in prostate cancer

    Directory of Open Access Journals (Sweden)

    Crea Francesco

    2012-08-01

    Full Text Available Abstract Early prostate cancer (PCa is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC. Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3. Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a

  15. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  16. Radiolabelling of isopeptide N epsilon-(gamma-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[18F]fluorobenzoate.

    Science.gov (United States)

    Wüst, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N(epsilon)-(gamma-glutamyl)-L-lysine 4 was labelled with 18F via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). A modified approach for the convenient synthesis of [18F]SFB was used, and [18F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n = 20) and radiochemical purity >95% within 40 min after EOB. For labelling N(epsilon)-(gamma-glutamyl)-L-lysine with [18F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3GBq of [18F]SFB could be converted into 447MBq (46%, decay-corrected) of [18F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  17. Modulation of benzodiazepine by lysine and pipecolic acid on pentylenetetrazol-induced seizures

    International Nuclear Information System (INIS)

    Chang, Y.F.; Hargest, V.; Chen, J.S.

    1988-01-01

    L-lysine and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine of L-Pa i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-Pa enhanced the anticonvulsant effect of diazepam (DZ). L-Pa i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration. L-Lysine showed an enhancement of specific 3 H-flunitrazepam(FZ) binding to mouse brain membranes both in vitro an din vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of 3 H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor

  18. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    Science.gov (United States)

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Modified Mitchell osteotomy alone does not have higher rate of residual metatarsalgia than combined first and lesser metatarsal osteotomy

    Directory of Open Access Journals (Sweden)

    Shu-Jung Chen

    2015-04-01

    Full Text Available Transfer metatarsalgia (TM is a common forefoot disorder secondary to hallux valgus (HV. Some authors suggest that a combined lesser metatarsal osteotomy while undergoing HV surgery improves metatarsalgia, whereas others concluded that isolated HV corrective osteotomy can improve symptomatic metatarsalgia. The main purpose of this retrospective study was to compare clinical outcomes in patients with and without combined lesser metatarsal osteotomy while receiving HV correction surgery. We retrospectively reviewed the patients who underwent osteotomy for HV correction between January 2000 and December 2010. All patients underwent HV correction with modified Mitchell osteotomy. Clinical evaluations including the American Orthopaedic Foot and Ankle Society score and residual metatarsalgia were assessed, and radiographic measurements were carried out. Sixty-five patients (83 feet meeting the selection criteria were enrolled. Thirty feet receiving a combined lesser metatarsal osteotomy were classified as the combined surgery (CS group, and the others were classified as the control (CN group (53 feet. The overall rate of persistent symptomatic metatarsalgia was 19.28% after operative treatment. There were six feet with residual metatarsalgia in the CS group, and 10 feet in the CN group. There was no significant difference in the rate of persistent symptoms between the two groups (p = 0.9. According to this result, modified Mitchell osteotomy alone did not have a higher rate of residual metatarsalgia than CS. We also found that the average recovery rate of TM was about 80.7% and those patients whose preoperative HV angle was > 30° had the higher risk of residual metatarsalgia after surgery.

  20. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen.

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M; Marini, Joan C; Yamauchi, Mitsuo

    2016-04-29

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    Science.gov (United States)

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  2. Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-l-lysine for cartilage tissue engineering.

    Science.gov (United States)

    Kuo, Yung-Chih; Ku, Hao-Fu; Rajesh, Rajendiran

    2017-09-01

    Cartilage has limited ability to self-repair due to the absence of blood vessels and nerves. The application of biomaterial scaffolds using biomimetic extracellular matrix (ECM)-related polymers has become an effective approach to production of engineered cartilage. Chitosan/γ-poly(glutamic acid) (γ-PGA) scaffolds with different mass ratios were prepared using genipin as a cross-linker and a freeze-drying method, and their surfaces were modified with elastin, human serum albumin (HSA) and poly-l-lysine (PLL). The scaffolds were formed through a complex between NH 3 + of chitosan and COO - of γ-PGA, confirmed by Fourier transform infrared spectroscopy, and exhibited an interconnected porous morphology in field emission scanning electron microscopy analysis. The prepared chitosan/γ-PGA scaffolds, at a 3:1 ratio, obtained the required porosity (90%), pore size (≥100μm), mechanical strength (compressive strength>4MPa, Young's modulus>4MPa) and biodegradation (30-60%) for articular cartilage tissue engineering applications. Surface modification of the scaffolds showed positive indications with improved activity toward cell proliferation (deoxyribonucleic acid), cell adhesion and ECM (glycoaminoglycans and type II collagen) secretion of bovine knee chondrocytes compared with unmodified scaffolds. In caspase-3 detection, elastin had a higher inhibitory effect on chondrocyte apoptosis in vitro, followed by HSA, and then PLL. We concluded that utilizing chitosan/γ-PGA scaffolds with surface active biomolecules, including elastin, HSA and PLL, can effectively promote the growth of chondrocytes, secrete ECM and improve the regenerative ability of cartilaginous tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Bommareddy, Rajesh Reddy; Chen, Zhen; Rappert, Sugima; Zeng, An-Ping

    2014-09-01

    Engineering the cofactor availability is a common strategy of metabolic engineering to improve the production of many industrially important compounds. In this work, a de novo NADPH generation pathway is proposed by altering the coenzyme specificity of a native NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to NADP, which consequently has the potential to produce additional NADPH in the glycolytic pathway. Specifically, the coenzyme specificity of GAPDH of Corynebacterium glutamicum is systematically manipulated by rational protein design and the effect of the manipulation for cellular metabolism and lysine production is evaluated. By a combinatorial modification of four key residues within the coenzyme binding sites, different GAPDH mutants with varied coenzyme specificity were constructed. While increasing the catalytic efficiency of GAPDH towards NADP enhanced lysine production in all of the tested mutants, the most significant improvement of lysine production (~60%) was achieved with the mutant showing similar preference towards both NAD and NADP. Metabolic flux analysis with (13)C isotope studies confirmed that there was no significant change of flux towards the pentose phosphate pathway and the increased lysine yield was mainly attributed to the NADPH generated by the mutated GAPDH. The present study highlights the importance of protein engineering as a key strategy in de novo pathway design and overproduction of desired products. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  5. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  6. Utilization in rats of 14C-L-lysine-labeled casein browned by amino-carbonyl reaction

    International Nuclear Information System (INIS)

    Mori, Bunpei; Nakatsuji, Hirotaka.

    1977-01-01

    The investigation was carried out in order to elucidate the reason for the reduction in nutritive value of browned protein, by using labeled casein as a model protein. Goat casein preparation in which lysine residues had been labeled with 14 C was browned by amino-carbonyl reaction with glucose at 37 0 C. Browned or non-browned casein was ingested by growing rats by spaced feeding. When the rats ingested the browned casein the experimental group, higher radioactivity was found in TCA-soluble fraction in the small intestine as compared with that in the control group, while radioactivity was scarecely found in feces for 22 hr. Along with absorption delay, considerably high radioactivity was found in urine. The recovery of radioactivity in expired air of rats fed the labeled casein (browned and non-browned) was measured. In the experimental group, expired 14 CO 2 came out slower than the control group. From these results, it is suggested that the main reason for the reduction in nutritive value by browning reaction may be the formation of a lysine derivative in a protein, which remains in the small intestinal lumen as an absorption-delayed material and is finally excreted in urine. (auth.)

  7. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation.

    Science.gov (United States)

    Xia, Yisui; Niu, Yanling; Cui, Jiamin; Fu, Yang; Chen, Xiaojiang S; Lou, Huiqiang; Cao, Qinhong

    2015-01-01

    Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.

  8. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    Science.gov (United States)

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  9. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  10. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  11. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  12. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  13. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  14. Evaluation of creep residual life for modified 9Cr-1Mo steel based on Omega method

    International Nuclear Information System (INIS)

    Nonaka, Isamu; Torihata, Shoji; Kihara, Shigemitu; Umaki, Hideo; Maruyama, Kouichi.

    1997-01-01

    In order to study the accuracy of creep residual life prediction by the Omega method which is based on creep deformation, a series of creep tests on modified 9Cr-1Mo steel were conducted at 500degC, 550degC and 600degC, and the Omega method was applied to the residual life estimation. The main results obtained are as follows: (1) There was a obvious linear portion, which corresponded to the tertiary creep, in the relationship between logarithm of strain and strain. So it was easy to define the Omega value as a gradient of linear portion. (2) It was proved that the Omega value depended on stress and temperature in such a way as it was the larger, the lower the stress and the lower the temperature. (3) By using the Omega value and strain rate which were determined experimentally, the residual life could be predicted within a factor of 1.5 at the stage of 50% and 80% of actual life. It was confirmed that the accuracy of this method was higher than that of the former method based on rupture time. (4) To apply this method to the residual life evaluation of operating plant materials, the Omega value has to be determined in the lower stress condition. So it is important to develop the extrapolation method of the Omega value based on the laboratory acceleration test to the longer service life. (author)

  15. Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors

    International Nuclear Information System (INIS)

    Kakatkar, Aniket; Craighead, H G; Abhilash, T S; Alba, R De; Parpia, J M

    2015-01-01

    A graphene channel field-effect biosensor is demonstrated for detecting the binding of double-stranded DNA and poly-l-lysine. Sensors consist of chemical vapor deposition graphene transferred using a clean, etchant-free transfer method. The presence of DNA and poly-l-lysine are detected by the conductance change of the graphene transistor. A readily measured shift in the Dirac voltage (the voltage at which the graphene’s resistance peaks) is observed after the graphene channel is exposed to solutions containing DNA or poly-l-lysine. The ‘Dirac voltage shift’ is attributed to the binding/unbinding of charged molecules on the graphene surface. The polarity of the response changes to positive direction with poly-l-lysine and negative direction with DNA. This response results in detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The biosensors are easy to fabricate, reusable and are promising as sensors of a wide variety of charged biomolecules. (paper)

  16. The effect of gamma irradiation on the lysine content of plants

    International Nuclear Information System (INIS)

    Benedekne-Lazar, M.

    1979-01-01

    It has been proved by studies on the physiological effect of ionizing irradiation that in plant metabolism important changes take place. From the endosperm of seven-day-old seedlings 14 C-L-Lysine is transported faster to organs, especially to shoots and its incorporation into protein is also more intensive. The animation of the growth of roots and shoots can be observed on 14-day-old plants grown in water culture. In sand culture a surplus in dry weight can be experienced after 56 days for maize, under the influence of 100 rad. Two soybean varieties (Merit, Clay) responded different to irradiation. The dry weight of the Merit variety was increased significantly by 500 and 1000 rad, whereas that of the Clay variety decreased or did not change significantly. The lysine content of plants changes in the function of growth. In the case of the two maize varieties (Szegedi sarga, KSC 360) treatments with 1000 and 5000 rad resulted in an essential surplus of the total lysine content (46.25 and 31.21%, respectively). The total lysine content of the Merit variety has been increased by about 23.9% and 20.92%, respectively. 5000 rad treatment resulted in a negative correlation (-0.77) in the shoots. The total lysine content of the Clay plants was lower than that of the control. Under the influence of 500 and 1000 rad treatments the total lysine content of the shoots of the Merit variety grown in fields increased to a lesser extent (16.82 and 3.19 respectively) than that of plants grown in a climate room. (author)

  17. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome*

    Science.gov (United States)

    Tatham, Michael H.; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J.; Stark, Lesley A.; Hay, Ronald T.

    2017-01-01

    Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations. PMID:27913581

  18. Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach.

    Science.gov (United States)

    Upadhyay, Anup K; Judge, Russell A; Li, Leiming; Pithawalla, Ron; Simanis, Justin; Bodelle, Pierre M; Marin, Violeta L; Henry, Rodger F; Petros, Andrew M; Sun, Chaohong

    2018-06-01

    The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of lysine clonixinate on the pharmacokinetics and anticoagulant activity of phenprocoumon.

    Science.gov (United States)

    Russmann, S; Dilger, K; Trenk, D; Nagyivanyi, P; Jähnchen, E

    2001-11-01

    The effect of the non-steroidal anti-inflammatory drug lysine clonixinate ([2-(3-chloro-o-toluidino)nicotinic acid]-L-lysinate, CAS 55837-30-4) on the pharmacokinetics and anticoagulant activity of phenprocoumon (4-hydroxy-3-(1-phenylpropyl)-coumarin, CAS 435-97-2) was investigated in an open, randomised, two-fold, cross-over study in 12 healthy male volunteers. These subjects received a single dose of 18 mg phenprocoumon without or with concomitant treatment with lysine clonixinate (125 mg five times a day for 3 days before and 13 days after ingestion of a single dose of phenprocoumon). Pharmacokinetic parameters of phenprocoumon following oral administration were: CL/f: 0.779 +/- 0.157 ml/min, half-life of elimination: 147.2 +/- 19.9 h; free fraction in serum: 0.51 +/- 0.20%. These parameters were not significantly altered by concomitant treatment with lysine clonixinate. Prothrombin time increased from 13.3 +/- 1.3 s (at time 0) to 17.7 +/- 2.7 s following phenprocoumon and from 13.3 +/- 1.2 s to 18.0 +/- 2.2 s following combined administration. Prothrombin time returned to the pretreatment values 240 h after administration of phenprocoumon. The integrated effect (AUEC0-288 h) was identical following both treatments (4.303 +/- 461 and 4.303 +/- 312 s x h for phenprocoumon alone and phenprocoumon with lysine clonixinate, respectively). Thus, lysine clonixinate administered in therapeutic doses does not affect the pharmacokinetics and anticoagulant activity of phenproxoumon.

  20. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  1. Estimation of Digestible Lysine Requirements of Japanese Quail during the Starter Period

    Directory of Open Access Journals (Sweden)

    M Ashoori

    2013-11-01

    Full Text Available The aim of this study was the estimation of digestible lysine requirements of Japanese quail during the 7-21d period. Graduation level of L-lysine.HCL were added to the basal diet at the expense of corn starch to create different levels of digestible lysine ranged from 0.75 to 1.35% of diet. Growth performance and carcass composition were evaluated during the experiment. The results showed that incremental levels of digestible lysine significantly affected the body weight gain (BWG, feed conversion ratio (FCR, feed intake (FI, breast meat yield (BMY and thigh meat yield (TMY. Either linear broken- line or quadratic broken line model were used to get break points of digestible lysine as a requirement. Based on linear broken line analysis, the break points for FCR and BMY were 0.99 and 1.04 % of diet, respectively. Using the quadratic broken-line model, the estimated Lys requirements for BWG, FCR, and BMY were 1.11, 1.04, and 1.15% of diet, respectively. The results showed that the Lys needs for optimum BMY was higher than BWG and FCR.

  2. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation

    Directory of Open Access Journals (Sweden)

    Cody Caba

    2018-02-01

    Full Text Available Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI, the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin. A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  3. Conserved Residues Lys57 and Lys401 of Protein Disulfide Isomerase Maintain an Active Site Conformation for Optimal Activity: Implications for Post-Translational Regulation.

    Science.gov (United States)

    Caba, Cody; Ali Khan, Hyder; Auld, Janeen; Ushioda, Ryo; Araki, Kazutaka; Nagata, Kazuhiro; Mutus, Bulent

    2018-01-01

    Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys 57 and Lys 401 of human PDI in vitro . Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys 57 and Lys 401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys 57 and acLys 401 . The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

  4. Design and Application of Synthetic Receptors for Recognition of Methylated Lysine and Supramolecular Affinity Labeling

    Science.gov (United States)

    Gober, Isaiah Nathaniel

    possible ways for detecting PTMs and may find use in the development of new assays for enzymes that lack robust methods for measuring their activity. The third section explores the development of new small molecule receptors capable of selectively binding hydrophilic guests in water, such as the lower methylation states of lysine. We identified a receptor, A2I, that has improved binding affinity and selectivity for dimethyllysine (Kme2). The receptor was discovered and synthesized by using dynamic combinatorial chemistry (DCC) to redesign a small molecule receptor (A2B ) that preferentially binds trimethyllysine (Kme3). Incorporating a biphenyl monomer with ortho-di-substituted carboxylates into the receptor lead to the formation of a salt bridge interaction with Kme2. These favorable electrostatic and hydrogen bonding interactions produced a receptor with 32-fold tighter binding to Kme2, which is the highest affinity synthetic receptor for Kme2 in the context of a peptide that has been reported. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine. In the final section, a small molecule receptor for Kme3 (A 2B) was redesigned using DCC to incorporate either aromatic or acidic amino acids into the receptor. We proposed that the incorporation of amino acids could introduce additional non-covalent interactions (such as cation-pi, electrostatic, and hydrogen bonding) with a guest bound inside the pocket of the receptor. However, selective non-covalent interactions between the amino acid side chain on the modified receptor and the bound methylated lysine guest could not be achieved. This is most likely due to the conformational flexibility of the amino acid-functionalized receptors. Furthermore, attaching amino acids to the receptor seemed to increase non-specific electrostatic interactions, resulting in

  5. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide-b- Poly(L-Lysine Hydrochloride and Poly(N-Isopropylacrylamide- co-Acrylamide-b-Poly(L-Lysine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Milica Spasojević

    2014-07-01

    Full Text Available The synthesis of poly(N-isopropylacrylamide-b-poly(L-lysine and poly(N- isopropylacrylamide-co-acrylamide-b-poly(L-lysine copolymers was accomplished by combining atom transfer radical polymerization (ATRP and ring opening polymerization (ROP. For this purpose, a di-functional initiator with protected amino group was successfully synthetized. The ATRP of N-isopropylacrylamide yielded narrowly dispersed polymers with consistent high yields (~80%. Lower yields (~50% were observed when narrowly dispersed random copolymers of N-isopropylacrylamide and acrylamide where synthesized. Amino-terminated poly(N-isopropylacrylamide and poly(N-isopropylacrylamide- co-acrylamide were successfully used as macroinitiators for ROP of N6-carbobenzoxy-L- lysine N-carboxyanhydride. The thermal behavior of the homopolymers and copolymers in aqueous solutions was studied by turbidimetry, dynamic light scattering (DLS and proton nuclear magnetic resonance spectroscopy (1H-NMR.

  6. Effect of sulfur analogue of lysine on bacterial protein biosynthesis

    International Nuclear Information System (INIS)

    Tanaka, Hidehiko; Soda, Kenji.

    1976-01-01

    S-(beta-Aminoethyl)-L-cysteine, a sulfur analogue of lysine inhibited strongly growth of Escherichia coli A-19, and weakly that of Corynebacterium sp. isolated from soil, but did not inhibit growth of Aerobacter aerogenes. In Corynebacterium sp. the inhibitory effect was markedly enhanced in the presence of L-threonine. The inhibition of growth by S-(beta-aminoethyl)-L-cysteine was rapidly reversed by the addition of L-lysine. S-(beta-Aminoethyl)-L-cysteine inhibited protein synthesis and the activity of lysyl-tRNA synthetase from E. coli and A. aerogenes. All the other lysine analogues tested inhibited the activity of enzyme, but S-(beta-aminoethyl)-L-cysteine derivatives, S-(beta-N-acetyl-aminoethyl)-L-cysteine and S-(beta-aminoethyl)-alpha-N-acetyl-L-cysteine were not effective. (auth.)

  7. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  8. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation.

    Science.gov (United States)

    Jiao, Ye; He, Jialiang; Li, Fengli; Tao, Guanjun; Zhang, Shuang; Zhang, Shikang; Qin, Fang; Zeng, Maomao; Chen, Jie

    2017-10-01

    The levels of N ε -(carboxymethyl)lysine (CML) and N ε -(carboxyethyl)lysine (CEL) in 99 tea samples from 14 geographic regions, including 44 green, 7 oolong, 41 black, and 7 dark teas were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CML and CEL contents varied from 11.0 to 1701μg/g tea and 4.6 to 133μg/g tea, respectively. Dark tea presented the highest levels of CML and CEL, whereas green and oolong teas presented the lowest levels. Five kinds of catechins in the tea were also analyzed, and spearman's correlation coefficients showed that all the catechins negatively correlated with CML and CEL. The results suggested that withering, fermentation and pile fermentation may facilitate the formation of CML and CEL. Catechins might inhibit the formation of CML and CEL, but their inhibitory effects may be affected by tea processing. The results of this study are useful for the production of healthier tea. Copyright © 2017. Published by Elsevier Ltd.

  10. Flux through the tetrahydrodipicolinate succinylase pathway is dispensable for L-lysine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Shaw-Reid, C A; McCormick, M M; Sinskey, A J; Stephanopoulos, G

    1999-03-01

    The N-succinyl-LL-diaminopimelate desuccinylase gene (dapE) in the four-step succinylase branch of the L-lysine biosynthetic pathway of Corynebacterium glutamicum was disrupted via marker-exchange mutagenesis to create a mutant strain that uses only the one-step meso-diaminopimelate dehydrogenase branch to overproduce lysine. This mutant strain grew and utilized glucose from minimal medium at the same rate as the parental strain. In addition, the dapE- strain produced lysine at the same rate as its parent strain. Transformation of the parental and dapE- strains with the amplified meso-diaminopimelate dehydrogenase gene (ddh) on a plasmid did not affect lysine production in either strain, despite an eightfold amplification of the activity of the enzyme. These results indicate that the four-step succinylase pathway is dispensable for lysine overproduction in shake-flask culture. In addition, the one-step meso-diaminopimelate dehydrogenase pathway does not limit lysine flux in Corynebacterium under these conditions.

  11. Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS

    Directory of Open Access Journals (Sweden)

    Valovka Taras

    2008-07-01

    Full Text Available Abstract Background The enzymes responsible for the synthesis of poly-ADP-ribose are named poly-ADP-ribose polymerases (PARP. PARP-2 is a nuclear protein, which regulates a variety of cellular functions that are mainly controlled by protein-protein interactions. A previously described non-conventional bipartite nuclear localization sequence (NLS lies in the amino-terminal DNA binding domain of PARP-2 between amino acids 1–69; however, this targeting sequence has not been experimentally examined or validated. Results Using a site-directed mutagenesis approach, we found that lysines 19 and 20, located within a previously described bipartite NLS, are not required for nuclear localization of PARP-2. In contrast, lysine 36, which is located within a predicted classical monopartite NLS, was required for PARP-2 nuclear localization. While wild type PARP-2 interacted with importin α3 and to a very weak extent with importin α1 and importin α5, the mutant PARP-2 (K36R did not interact with importin α3, providing a molecular explanation why PARP-2 (K36R is not targeted to the nucleus. Conclusion Our results provide strong evidence that lysine 36 of PARP-2 is a critical residue for proper nuclear targeting of PARP-2 and consequently for the execution of its biological functions.

  12. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2016-03-01

    Full Text Available Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.

  13. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  14. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    Science.gov (United States)

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-degradation of tissue adhesive based on oxidized dextran and poly-L-lysine.

    Science.gov (United States)

    Matsumura, Kazuaki; Nakajima, Naoki; Sugai, Hajime; Hyon, Suong-Hyu

    2014-11-26

    We have developed a low-toxicity bioadhesive based on oxidized dextran and poly-L-lysine. Here, we report that the mechanical properties and degradation of this novel hydrogel bioadhesive can be controlled by changing the extent of oxidation of the dextran and the type or concentration of the anhydride species in the acylated poly-L-lysine. The dynamic moduli of the hydrogels can be controlled from 120 Pa to 20 kPa, suggesting that they would have mechanical compatibility with various tissues, and could have applications as tissue adhesives. Development of the hydrogel color from clear to brown indicates that the reaction between the dextran aldehyde groups and the poly-L-lysine amino groups may be induced by a Maillard reaction via Schiff base formation. Degradation of the aldehyde dextran may begin by reaction of the amino groups in the poly-L-lysine. The gel degradation can be ascribed to degradation of the aldehyde dextran in the hydrogel, although the aldehyde dextran itself is relatively stable in water. The oxidized dextran and poly-L-lysine, and the degraded hydrogel showed low cytotoxicities. These findings indicate that a hydrogel consisting of oxidized dextran and poly-L-lysine has low toxicity and a well-controlled degradation rate, and has potential clinical applications as a bioadhesive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome.

    Science.gov (United States)

    Tatham, Michael H; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J; Stark, Lesley A; Hay, Ronald T

    2017-02-01

    Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d 3 , in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The Preventive Effect of L-Lysine on Lysozyme Glycation in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hossein Mirmiranpour

    2016-01-01

    Full Text Available Lysozyme is a bactericidal enzyme whose structure and functions change in diabetes. Chemical chaperones are small molecules including polyamines (e.g. spermine, amino acids (e.g. L-lysine and polyols (e.g. glycerol. They can improve protein conformation in several stressful conditions such as glycation. In this study, the authors aimed to observe the effect of L-lysine as a chemical chaperone on structure and function of glycated lysozyme. In this study, in vitro and in vivo effects of L-lysine on lysozyme glycation were investigated. Lysozyme was incubated with glucose and/or L-lysine, followed by an investigation of its structure by electrophoresis, fluorescence spectroscopy, and circular dichroism spectroscopy and also assessment of its bactericidal activity against M. lysodeikticus. In the clinical trial, patients with type 2 diabetes mellitus (T2DM were randomly divided into two groups of 25 (test and control. All patients received metformin and glibenclamide for a three months period. The test group was supplemented with 3 g/day of L-lysine. The quantity and activity of lysozyme and other parameters were then measured. Among the test group, L-lysine was found to reduce the advanced glycation end products (AGEs in the sera of patients with T2DM and in vitro condition. This chemical chaperone reversed the alteration in lysozyme structure and function due to glycation and resulted in increased lysozyme activity. Structure and function of glycated lysozyme are significantly improved by l-lysine; therefore it can be considered an effective therapeutic supplementation in T2DM, decreasing the risk of infection in these patients.

  18. Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine.

    Science.gov (United States)

    Macián, M; Seguer, J; Infante, M R; Selve, C; Vinardell, M P

    1996-01-08

    The toxic effects of new synthetic monodisperse non-ionic long-chain N alpha, N epsilon-diacyl lysine polyoxyethylene glycol amide compounds with a structural resemblance to natural lecithin phospholipids were studied by the haemolytic method and the test of the chorioallantoic membrane of the hen's egg (HET-CAM). The following compounds were tested: symmetrical N alpha,N epsilon-diacyl lysine homologues (N alpha,N epsilon-dihexanoyl, N alpha,N epsilon-dioctanoyl and N alpha,N epsilon-didecanoyl lysine) with one methyl ether polyoxyethylene glycol chain of different oxyethylene units (dioxyethylene glycol, tetraoxyethylene glycol and hexaoxyethylene glycol) as headgroup; symmetrical N alpha,N epsilon-diacyl lysine homologues with two methyl ether dioxyethylene glycol chains and the asymmetrical N alpha-butanoyl, N epsilon-dodecyl lysine with two hydrophilic methyl ether dioxyethylene glycol chains as headgroup. A commercial (polydisperse) oleoyl polyoxyethylene glycol diethanolamide with an average of eight units of ethylene oxide was used as control. All the synthesized tested compounds appeared to be less haemolytic and less irritant than the control. The synthesized products were studied with regard to their hydrophobic and hydrophilic chains in order to evaluate the influence of their structure on their haemolytic and irritative action. The results of this study show that the acyl chain distribution of these compounds greatly influence toxic effects: the asymmetrical compound N alpha-butanoyl,N epsilon-dodecyl lysine-bis[methyl ether diethylene glycol]amide was found to be the most haemolytic and irritating compound. Among the symmetrical homologues, the shortest-chain compounds N alpha,N epsilon-dihexanoyl lysine methyl ether polyoxyethylene glycol amides present the least haemolytic and irritating activity, independently of the number and length of the hydrophilic methyl ether polyoxyethylene glycol chains. Taking into account their surface activity

  19. Radiolabelling of isopeptide N{sup {epsilon}}-({gamma}-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[{sup 18}F]fluorobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, F; Hultsch, C; Bergmann, R; Johannsen, B; Henle, T

    2003-07-01

    The isopeptide N{sup {epsilon}}-({gamma}-glutamyl)-L-lysine 4 was labelled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate ([{sup 18}F]SFB). A modified approach for the convenient synthesis of [{sup 18}F]SFB was used, and [{sup 18}F]SFB could be obtained in decay-corrected radiochemical yields of 44-53% (n=20) and radiochemical purity >95% within 40 min after EOB. For labelling N{sup {epsilon}}-({gamma}-glutamyl)-L-lysine with [{sup 18}F]SFB the effects of isopeptide concentration, temperature, and pH were studied to determine the optimum reaction conditions. The coupling reaction was shown to be temperature and pH independent while being strongly affected by the isopeptide concentration. Using the optimized labelling conditions, in a typical experiment 1.3 GBq of [{sup 18}F]SFB could be converted into 447 MBq (46%, decay-corrected) of [{sup 18}F]fluorobenzoylated isopeptide within 45 min, including HPLC purification.

  20. Fibronectin binding to gangliosides and rat liver plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, G R; Evers, D C; Radinsky, R; Morre, D J

    1986-02-01

    Binding of fibronectins to gangliosides was tested directly using several different in vitro models. Using an enzyme-linked immunoabsorbent assay (ELISA), gangliosides were immobilized on polystyrene tubes and relative binding of fibronectin was estimated by alkaline phosphatase activity of conjugated second antibody. Above a critical ganglioside concentration, the gangliosides bound the fibronectin (G/sub T1b/ approx. = G/sub D1b/ approx. = G/sub D1a/ > G/sub M1/ >> G/sub M2/ approx. = G/sub D3/ approx. = G/sub M3/) in approximately the same order of efficiency as they competed for the cellular sites of fibronectin binding in cell attachment assays. Alternatively, these same gangliosides bound to immobilized fibronectin. Rat erythrocytes coated with gangliosides G/sub M1/, G/sub D1a/ or G/sub T1b/ bound more fibronectin than erythrocytes not supplemented with gangliosides. Using fibronectin in which lysine residues were radioiodinated, an apparent K/sub d/ for binding to mixed rat liver gangliosides of 7.8 x 10/sup -9/ M was determined. This value compared favorably with the apparent K/sub d/ for attachment of fibronectin to isolated plasma membranes from rat liver of 3.7 x 10/sup -9/ M for fibronectin modified on the tyrosine residue, or 6.4 x 10/sup -9/ M for fibronectin modified on lysine residues. As shown previously by Grinnell and Minter, fibronectin modified on tyrosine residues did not promote spreading and attachment of CHO cells. It did, however, bind to cells. In contrast, lysine-modified fibronectin both bound to cells and promoted cell attachment. Plasma membranes isolated from hepatic tumors in which the higher gangliosides that bind fibronectin were depleted bound 43-75% less (/sup 125/I)fibronectin than did plasma membranes from control livers. The findings were consistent with binding of fibronectins to gangliosides, including the same gangliosides depleted from cell surfaces during tumorigenesis in the rat.

  1. Aflatoxin B1-lysine adduct in dried blood spot samples of animals and humans.

    Science.gov (United States)

    Xue, Kathy S; Cai, Wenjie; Tang, Lili; Wang, Jia-Sheng

    2016-12-01

    Dried blood spots (DBS) were proposed as potentially viable method for exposure assessment of environmental toxicants in infant and young children. For this study, we validated an experimental protocol to quantify AFB 1 -lysine adduct in DBS samples of AFB 1 -treated F344 rats, as well as samples from human field study. Significant dose-response relationships in AFB 1 -lysine adduct formation were found in DBS samples of rats treated with single- and repeated-dose AFB 1 . AFB 1 -lysine levels in DBS samples were highly correlated with corresponding serum sample levels. The Person coefficients were 0.997 for the single-dose exposure, and 0.996 for the repeated-dose exposure. Levels of AFB 1 -lysine adduct had also good agreement between DBS and serum samples as shown by Bland-Altman plot analysis. For human field study samples (n = 36), a Pearson correlation coefficient of 0.784 was found between AFB 1 -lysine adduct levels of DBS and corresponding serum samples. Bland-Altman plots showed the distribution of the log differences between DBS and serum AFB 1 -lysine levels are within 95% confidence intervals. These results showed AFB 1 -lysine adduct levels in DBS cards and serum samples from animals and human samples are comparable, and the DBS technique and analytical protocol is a good means to assess AFB 1 exposure in infant and children populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    Science.gov (United States)

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.

  3. Annatto seed residue (Bixa orellana L.: nutritional quality

    Directory of Open Access Journals (Sweden)

    Melissa Alessandra Valério

    2015-06-01

    Full Text Available Considering that annatto seeds are rich in protein, the present work aimed to evaluate the biological quality of this nutrient in the meal residue originating from annatto seed processing. We determined the general composition, mineral levels, amino acid composition and chemical scores, antinutritional factors, and protein quality using biological assays. The following values were obtained: 11.50% protein, 6.74% moisture, 5.22% ash, 2.22% lipids, 42.19% total carbohydrates and 28.45% fiber. The residue proved to be a food rich in fiber and also a protein source. Antinutritional factors were not detected. The most abundant amino acids were lysine, phenylalanine + tyrosine, leucine and isoleucine. Valine was the most limiting amino acid (chemical score 0.22. The protein quality of the seed residue and the isolated protein showed no significant differences. The biological value was lower than that of the control protein but higher than that found in other vegetables. Among the biochemical analyses, only creatinine level was decreased in the two test groups compared to the control group. Enzyme tests did not indicate liver toxicity. The results showed favorable aspects for the use of annatto seed residue in the human diet, meriting further research.

  4. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael D W Griffin

    Full Text Available In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS and dihydrodipicolinate reductase (DHDPR catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2 has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S-lysine. Structural studies of At-DHDPS2 show (S-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2 has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.

  5. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases

    Energy Technology Data Exchange (ETDEWEB)

    Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K.; Cosgrove, Daniel J.; Anderson, Charles T.; Roberts, Alison W.; Haigler, Candace H.

    2015-12-08

    Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure–function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.

  6. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  7. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    Science.gov (United States)

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  8. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinhua; Dan, Nianhua [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China); Dan, Weihua, E-mail: danweihua_scu@126.com [Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065 (China); Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065 (China)

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1 mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. - Highlights: • The effects of two different charged amino acids in collagen chains on the collagen fibrillogenesis were evaluated. • The positively charged lysine could improve the sizes or amounts of self-assembled collagen fibrils. • The width of D-banding of the collagen-lysine co-fibrils increased steadily after introducing lysine. • The optimal fibrillogenesis was achieved when the concentration of lysine reached to 1 mM. • The kinetic and thermodynamic collagen self-assembly were both analyzed.

  9. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  10. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    DEFF Research Database (Denmark)

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz Jakub

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine...... acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination...... in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes....

  11. Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup.

    Science.gov (United States)

    Liu, Zhenzhen; Qi, Peipei; Wang, Xiangyun; Wang, Zhiwei; Xu, Xiahong; Chen, Wenxue; Wu, Liyu; Zhang, Hu; Wang, Qiang; Wang, Xinquan

    2017-09-01

    A facile, rapid sample pretreatment method was developed based on magnetic nanoparticles for multi-pesticides residue analysis of grains. Magnetite (Fe 3 O 4 ) nanoparticles modified with 3-(N,N-diethylamino)propyltrimethoxysilane (Fe 3 O 4 -PSA) and commercial C18 were selected as the cleanup adsorbents to remove the target interferences of the matrix, such as fatty acids and non-polar compounds. Rice was used as the representative grain sample for method optimization. The amount of Fe 3 O 4 -PSA and C18 were systematically investigated for selecting the suitable purification conditions, and the simultaneous determination of 50 pesticides and 8 related metabolites in rice was established by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the method validation was performed including linearity, sensitivity, matrix effect, recovery and precision, which all satisfy the requirement for pesticides residue analysis. Compared to the conventional QuEChERS method with non-magnetic material as cleanup adsorbent, the present method can save 30% of the pretreatment time, giving the high throughput analysis possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nanocomposites of polyamide 6/residual monomer with organic-modified montmorillonite and their nanofibers produced by electrospinning

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Gonçalves Beatrice

    2012-08-01

    Full Text Available Nanocomposites of an organic-modified montmorillonite (MMT and polyamide 6 (PA6 with a residual monomer were produced by melt mixing in a torque rheometer. By wide angle X-rays diffraction (WAXD, intercalated/exfoliated structures were observed in the PA6/MMT nanocomposites with 3 and 5 wt. (% of MMT; on the other hand, when 7 wt. (% of MMT was added, a nanocomposite with exfoliated structures was obtained due to the predominant linking reactions between the residual monomer and the "nanoclays" organic surfactant. Solutions of these PA6/MMT nanocomposites at 15, 17 and 20 wt. (% in formic acid were prepared. The 3 and 5 wt. (% nanocomposites were successfully electrospun; however, electrospinning of the 7 wt. (% nanocomposite was not possible. WAXD, scanning and transmission electron microscopy results showed that the 3 and 5 wt. (% nanofibers with average diameter between 80-250 nm had exfoliated structures. These results indicate that the high elongational forces developed during the electrospinning process changed the initial intercalated/exfoliated structure of the nanocomposites to an exfoliated one.

  13. Cyclic peptide inhibitors of lysine-specific demethylase 1 with improved potency identified by alanine scanning mutagenesis.

    Science.gov (United States)

    Kumarasinghe, Isuru R; Woster, Patrick M

    2018-03-25

    Lysine-specific demethylase 1 (LSD1) is a chromatin-remodeling enzyme that plays an important role in cancer. Over-expression of LSD1 decreases methylation at histone 3 lysine 4, and aberrantly silences tumor suppressor genes. Inhibitors of LSD1 have been designed as chemical probes and potential antitumor agents. We recently reported the cyclic peptide 9, which potently and reversibly inhibits LSD1 (IC 50 2.1 μM; K i 385 nM). Systematic alanine mutagenesis of 9 revealed residues that are critical for LSD1 inhibition, and these mutated peptides were evaluated as LSD1 inhibitors. Alanine substitution at positions 2, 3, 4, 6 and 11-17 preserved inhibition, while substitution of alanine at positions 8 and 9 resulted in complete loss of activity. Cyclic mutant peptides 11 and 16 produced the greatest LSD1 inhibition, and 11, 16, 27 and 28 increased global H3K4me2 in K562 cells. In addition, 16, 27 and 28 promoted significant increases in H3K4me2 levels at the promoter sites of the genes IGFBP2 and FEZ1. Data from these LSD1 inhibitors will aid in the design of peptidomimetics with improved stability and pharmacokinetics. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamines A, C, E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.G.; Sharmanov, T.Sh.

    1992-01-01

    The effect of diet on induction of monooxygenases and distribution of radioactivity from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital was studied. 2- 14 C-lysin was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of radioactivity from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats fed diet deficient in lysine, methionine, threonine and vitamins A, C, E were more pronounced as compared with the similarly treated rats which were fed a balanced diet. The possibility of mobilization of deficient essencial components to liver from other organs and tissues for maintenance of monooxygenase induction iis discussed

  15. Lysine supplementation in late gestation of gilts: effects on piglet birth weight, and gestational and lactational performance

    Directory of Open Access Journals (Sweden)

    Diogo Magnabosco

    2013-08-01

    Full Text Available Lysine requirements for gain in maternal body reserves and piglet birth weight, during pregnancy, in contemporary prolific genotypes, are not well established. This study aimed to evaluate the effect of dietary lysine in late pregnancy on piglet birth weight, and on the gestational and lactational performance of gilts. Pregnant gilts were uniformly distributed into two groups and received, from 85 to 110 days of gestation, either of two lysine levels in their diet: Control group - 28g lysine/day (n=136, and Lysine group - 35g lysine/day (n=141. There were no effects (P>0.10 of supplemental lysine on body weight and backfat (BF gain of females or on piglet birth weight. Gilts supplemented with lysine tended to have a lower percentage of stillbirths (P=0.077, reduced within-litter birth weight variation (P=0.094 and a lower percentage of piglets weighing less than 1100g (P=0.082 than in the Control group. During lactation, the performance of sows and litters was also evaluated in a subgroup of sows (n=26/group. There were no differences between the Control and Lysine groups (P>0.10 in voluntary feed intake, body reserve losses (weight and BF, weaning-to-estrus interval of the sows, and litter weaning weight. In conclusion, an increase in lysine (from 28 to 35g/day in late gestation of gilts (85 to 110 days tends to reduce the rate of stillbirths and to improve the uniformity of litter weight at birth, but does not affect the performance of females until farrowing or during subsequent lactation.

  16. Effect of exogenous CNT on kinetics of 3H-lysine in haerbin white rabbits

    International Nuclear Information System (INIS)

    Liu Dengke; Zan Linsen; Liu Yongfeng

    2007-01-01

    Haerbin White rabbits was used as testimonial and trace kinetics and radioimmunoassay and other techniques were used to study the distribution, transportation and metabolism of 3 H-Lysine in the animal. The metabolic kinetics of 3 H-Lysine could be described by the follows equation: (Y-circumflex) (t) =983.6281e -0.021935t + 1773.9999e -0.083932t - 983.6281e -0.432590t - 0773.9999e -0.050399t + 300.2820. Experimental results showed that 3 H-Lysine was accumulated mainly in kidney, heart, liver, spleen and muscle in check group; accumulated mainly in muscle, stomach, liver, heart and genitalia in cAMP treated group; accumulated in bladder, muscle, lung and intestine in cGMP treated group; and accumulated mainly in muscle, bladder, genitalia an fat in cAMP + cGMP treated group, respectively. The distribution of 3 H-Lysine was of evidently variations being treated with exogenous CNT. The results indicated that the distribution, transportation and metabolism of 3 H-Lysine were significantly affected by exogenous CNT in the Haerbin White rabbit. (authors)

  17. Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Marwa Kamel

    2017-01-01

    Full Text Available The role of the extracellular matrix (ECM in uterine fibroids (UF has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP and lysylpyridinoline (LP cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH and lysyl oxidases (LOX], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b and LOX. Also, increased resistance to matrix metalloproteinases (MMP proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA, growth-promoting markers (PCNA; pERK1/2; FAKpY397; Ki-67; and Cyclin D1, and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.

  18. Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan adenosine triphosphate (ATP) synthases.

    Science.gov (United States)

    Walpole, Thomas B; Palmer, David N; Jiang, Huibing; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2015-04-01

    The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9-15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria. © 2015 by The American

  19. Effects of single oral doses of lysine clonixinate and acetylsalicylic acid on platelet functions in man.

    Science.gov (United States)

    Pallapies, D; Muhs, A; Bertram, L; Rohleder, G; Nagyiványi, P; Peskar, B A

    1996-01-01

    Lysine clonixinate is an analgesic drug with a so far unknown mechanism of action. We have determined its effect on platelet cyclooxygenase in man. Biosynthesis of thromboxane (TX)B2 and prostaglandin (PG)F2 alpha in clotting whole blood ex vivo as well as collagen-induced platelet aggregation measured before and at various time points after oral administration of 125 mg lysine clonixinate were compared to results obtained with 500 mg acetylsalicylic acid (ASA). While biosynthesis of both TXB2 and PGF2 alpha measured radioimmunologically was inhibited significantly 2.5 h, but not 6 h, after administration of lysine clonixinate, inhibition by ASA was much greater and still highly significant after 48 h. Similarly, collagen-induced aggregation of platelet-rich plasma was inhibited for a longer period and to a greater extent after administration of ASA than after lysine clonixinate. Our results indicate that lysine clonixinate is a cyclooxygenase inhibitor of moderate potency. It remains to be investigated whether mechanisms other than inhibition of cyclooxygenase contribute to the analgesic activity of lysine clonixinate.

  20. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.

    Science.gov (United States)

    Ma, Xiao-Juan; Gao, Jin-Yan; Tong, Ping; Li, Xin; Chen, Hong-Bing

    2017-12-01

    High-pressure processing is gaining popularity in the food industry. However, its effect on the Maillard reaction during high-pressure-assisted pasteurization and sterilization is not well documented. This study aimed to investigate the effects of high hydrostatic pressure on the Maillard reaction during these processes using amino acid (lysine or arginine)-sugar (glucose or fructose) solution models. High pressure retarded the intermediate and final stages of the Maillard reaction in the lysine-sugar model. For the lysine-glucose model, the degradation rate of Amadori compounds was decelerated, while acceleration was observed in the arginine-sugar model. Increased temperature not only accelerated the Maillard reaction over time but also formed fluorescent compounds with different emission wavelengths. Lysine reacted with the sugars more readily than arginine under the same conditions. In addition, it was easier for lysine to react with glucose, whereas arginine reacted more readily with fructose under high pressure. High pressure exerts different effects on lysine-sugar and arginine-sugar models. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  2. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit.

    Directory of Open Access Journals (Sweden)

    Franck Tarendeau

    Full Text Available Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design

  3. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  4. Comprehensive assessment of the L-lysine production process from fermentation of sugarcane molasses.

    Science.gov (United States)

    Anaya-Reza, Omar; Lopez-Arenas, Teresa

    2017-07-01

    L-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of L-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to L-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of L-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the L-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g L-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  5. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    Science.gov (United States)

    The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...

  6. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    DEFF Research Database (Denmark)

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates...... of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...... by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases....

  7. Lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats: a systematic review.

    Science.gov (United States)

    Bol, Sebastiaan; Bunnik, Evelien M

    2015-11-16

    Feline herpesvirus 1 is a highly contagious virus that affects many cats. Virus infection presents with flu-like signs and irritation of ocular and nasal regions. While cats can recover from active infections without medical treatment, examination by a veterinarian is recommended. Lysine supplementation appears to be a popular intervention (recommended by > 90 % of veterinarians in cat hospitals). We investigated the scientific merit of lysine supplementation by systematically reviewing all relevant literature. NCBI's PubMed database was used to search for published work on lysine and feline herpesvirus 1, as well as lysine and human herpesvirus 1. Seven studies on lysine and feline herpesvirus 1 (two in vitro studies and 5 studies with cats), and 10 publications on lysine and human herpesvirus 1 (three in vitro studies and 7 clinical trials) were included for qualitative analysis. There is evidence at multiple levels that lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats. Lysine does not have any antiviral properties, but is believed to act by lowering arginine levels. However, lysine does not antagonize arginine in cats, and evidence that low intracellular arginine concentrations would inhibit viral replication is lacking. Furthermore, lowering arginine levels is highly undesirable since cats cannot synthesize this amino acid themselves. Arginine deficiency will result in hyperammonemia, which may be fatal. In vitro studies with feline herpesvirus 1 showed that lysine has no effect on the replication kinetics of the virus. Finally, and most importantly, several clinical studies with cats have shown that lysine is not effective for the prevention or the treatment of feline herpesvirus 1 infection, and some even reported increased infection frequency and disease severity in cats receiving lysine supplementation. We recommend an immediate stop of lysine supplementation because of the complete lack of

  8. Hydrogen bond strengths in phosphorylated and sulfated amino acid residues.

    Directory of Open Access Journals (Sweden)

    Chaya Rapp

    Full Text Available Post-translational modification by the addition of an oxoanion functional group, usually a phosphate group and less commonly a sulfate group, leads to diverse structural and functional consequences in protein systems. Building upon previous studies of the phosphoserine residue (pSer, we address the distinct nature of hydrogen bonding interactions in phosphotyrosine (pTyr and sulfotyrosine (sTyr residues. We derive partial charges for these modified residues and then study them in the context of molecular dynamics simulation of model tripeptides and sulfated protein complexes, potentials of mean force for interacting residue pairs, and a survey of the interactions of modified residues among experimental protein structures. Overall, our findings show that for pTyr, bidentate interactions with Arg are particularly dominant, as has been previously demonstrated for pSer. sTyr interactions with Arg are significantly weaker, even as compared to the same interactions made by the Glu residue. Our work sheds light on the distinct nature of these modified tyrosine residues, and provides a physical-chemical foundation for future studies with the goal of understanding their roles in systems of biological interest.

  9. Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study.

    Science.gov (United States)

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2017-01-01

    The aim of this study is to evaluate the effects of two different charged amino acids in collagen chains, lysine and glutamic acid, on the fibrillogenesis process of collagen molecules. The turbidity, zeta potential, and fiber diameter analysis suggest that introducing the positively charged lysine into collagen might improve the sizes or amounts of the self-assembled collagen fibrils significantly. Conversely, the negatively charged glutamic acid might restrict the self-assembly of collagen building blocks into a higher order structure. Meanwhile, the optimal fibrillogenesis condition is achieved when the concentration of lysine reaches to 1mM. Both scanning electron microscopy (SEM) and atomic force microscope (AFM) analysis indicates that compared to pure collagen fibrils, the reconstructed collagen-lysine co-fibrils exhibit a higher degree of inter-fiber entanglements with more straight and longer fibrils. Noted that the specific D-period patterns of the reconstructed collagen fibrils could be clearly discernible and the width of D-banding increases steadily after introducing lysine. Besides, the kinetic and thermodynamic collagen self-assembly analysis confirms that the rate constants of both the first and second assembly phase decrease after introducing lysine, and lysine could promote the process of collagen fibrillogenesis obeying the laws of thermodynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fortification of lysine for improving protein quality in multiple-fortified quick cooking rice : Review

    NARCIS (Netherlands)

    Wongmetinee, T.; Boonstra, A.; Zimmermann, M.B.; Chavasit, V.

    2009-01-01

    Previous studies in Thailand indicated that rice-based complementary foods of breast-fed infants normally provided inadequate iron and calcium. Quick-cooking rice fortified with different nutrients was therefore developed. The idea of lysine fortification was based on the fact that lysine is a

  11. Lysine-vasopressin analogues with glycoconjugates in position 8

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2006-01-01

    Roč. 80, č. 5 (2006), s. 759-766 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506 Keywords : glycoconjugates * glycopeptides * lysine-vasopressin analogues Subject RIV: CC - Organic Chemistry Impact factor: 0.491, year: 2006

  12. [Expression of the genes for lysine biosynthesis of Bacillus subtilis in Escherichia coli cells].

    Science.gov (United States)

    Shevchenko, T N; Okunev, O V; Aleksieva, Z M; Maliuta, S S

    1984-01-01

    Hybrid plasmids pLRS33 and pLRB4 containing Bac. subtilis genes coding lysin biosynthesis were subjected to genetical analysis. It is shown that after pLRS33- and pLRB4- transformation of E. coli strains, auxotrophic relative to lysin and diaminopimelic acid, there occurs complementation of dapA, dapB, dapC, dapD, dapE, lysA mutations by plasmid pLRS33 and of dapC, dapB, lysA mutations by plasmid pLRB4. The plasmids are studied for their influence on the level of lysin and its precurror synthesis in E. coli strains.

  13. Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state.

    Science.gov (United States)

    Ying, Hanxiao; Wang, Jing; Shi, Ting; Zhao, Yilei; Wang, Xin; Ouyang, Pingkai; Chen, Kequan

    2018-01-01

    Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD + as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD + functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD + with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD + -mediated "gate keeper" function involving NAD + /NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD + in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD + -mediated "gate keeper" and substrate tunnel may assist in the exploration the NAD + function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  15. The Effect of Various Zinc Binding Groups on Inhibition of Histone Deacetylases 1–11

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Kristensen, Helle M. E.; Lanz, Gyrithe

    2014-01-01

    Histone deacetylases (HDACs) have the ability to cleave the acetyl groups of ε‐N‐acetylated lysine residues in a variety of proteins. Given that human cells contain thousands of different acetylated lysine residues, HDACS may regulate a wide variety of processes including some implicated in condi......Histone deacetylases (HDACs) have the ability to cleave the acetyl groups of ε‐N‐acetylated lysine residues in a variety of proteins. Given that human cells contain thousands of different acetylated lysine residues, HDACS may regulate a wide variety of processes including some implicated...

  16. The Lysine Residues within the Human Ribosomal Protein S17 Sequence Naturally Inserted into the Viral Nonstructural Protein of a Unique Strain of Hepatitis E Virus Are Important for Enhanced Virus Replication

    Science.gov (United States)

    Kenney, Scott P.

    2015-01-01

    ABSTRACT Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Due largely to the lack of an efficient cell culture system for HEV, the molecular mechanisms of HEV replication and pathogenesis are poorly understood. Recently, a unique genotype 3 strain of HEV recovered from a chronically infected patient was adapted for growth in HepG2C3A human hepatoma cells. The adaptation of the Kernow C-1 P6 HEV to propagate in HepG2C3A cells selected for a rare virus recombinant that contains an insertion of a 171-nucleotide sequence encoding amino acids 21 to 76 of the human ribosomal protein S17 (RPS17) within the hypervariable region (HVR) of the HEV ORF1 protein. When the RPS17 insertion was placed into a strain of genotype 1 HEV which infects only humans, it expanded the host range of the virus, allowing it to infect cell lines from multiple animal species, including cow, dog, cat, chicken, and hamster. In this study, we utilized forward and reverse genetics to attempt to define which aspects of the RPS17 insertion allow for the ability of the Kernow C-1 P6 HEV to adapt in cell culture and allow for expanded host tropism. We demonstrate that the RPS17 sequence insertion in HEV bestows novel nuclear/nucleolar trafficking capabilities to the ORF1 protein of Kernow P6 HEV and that lysine residues within the RPS17 insertion, but not nuclear localization of the ORF1 protein, correlate with the enhanced replication of the HEV Kernow C-1 P6 strain. The results from this study have important implications for understanding the mechanism of cross-species infection and replication of HEV. IMPORTANCE HEV is an important pathogen worldwide. The virus causes high mortality (up to 30%) in pregnant women and has been recognized to cause chronic hepatitis in immunocompromised populations. The life cycle of HEV has been understudied due to a lack of sufficient cell culture systems in which to propagate the virus. Recently, insertions and rearrangements of the

  17. The presence of modifiable residues in the core peptide part of precursor nisin is not crucial for precursor nisin interactions with NisB- and NisC.

    Directory of Open Access Journals (Sweden)

    Rustem Khusainov

    Full Text Available Precursor nisin is a model posttranslationally modified precursor lantibiotic that can be structurally divided into a leader peptide sequence and a modifiable core peptide part. The nisin core peptide clearly plays an important role in the precursor nisin-nisin modification enzymes interactions, since it has previously been shown that the construct containing only the nisin leader sequence is not sufficient to pull-down the nisin modification enzymes NisB and NisC. Serines and threonines in the core peptide part are the residues that NisB specifically dehydrates, and cysteines are the residues that NisC stereospecifically couples to the dehydrated amino acids. Here, we demonstrate that increasing the number of negatively charged residues in the core peptide part of precursor nisin, which are absent in wild-type nisin, does not abolish binding of precursor nisin to the modification enzymes NisB and NisC, but dramatically decreases the antimicrobial potency of these nisin mutants. An unnatural precursor nisin variant lacking all serines and threonines in the core peptide part and an unnatural precursor nisin variant lacking all cysteines in the core peptide part still bind the nisin modification enzymes NisB and NisC, suggesting that these residues are not essential for direct interactions with the nisin modification enzymes NisB and NisC. These results are important for lantibiotic engineering studies.

  18. Characterization of Citrus pectin edible films containing transglutaminase-modified phaseolin.

    Science.gov (United States)

    Giosafatto, C Valeria L; Di Pierro, Prospero; Gunning, Patrick; Mackie, Alan; Porta, Raffaele; Mariniello, Loredana

    2014-06-15

    The growing social and economic consequences of pollution derived from plastics are focusing attention on the need to produce novel bioprocesses for enhancing food shelf-life. As a consequence, in recent years the use of edible films for food packaging is generating a huge scientific interest. In this work we report the production of an edible hydrocolloid film made by using Citrus pectin and the protein phaseolin crosslinked by microbial transglutaminase, an enzyme able to covalently modify proteins by formation of isopeptide bonds between glutamine and lysine residues. The films were characterized and their morphology was evaluated by both atomic force microscopy and scanning electron microscopy. Mechanical properties and barrier properties to CO2, O2 and water vapor have demonstrated that these films possess technological features comparable to those possessed by commercial plastics. It is worth noting that these characteristics are maintained even following storage of the films at 4°C or -20°C, suggesting that our bioplastics can be tailored to protect food at low temperature. Moreover, gastric and duodenal digestion studies conducted under the same conditions found in the human digestion system have demonstrated that transglutaminase-containing films are regularly digested encouraging an application of the proposed materials as food coatings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Preparation and Properties of Asphalt Binders Modified by THFS Extracted From Direct Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-11-01

    Full Text Available This paper aims to study the preparation and viscoelastic properties of asphalt binder modified by tetrahydrofuran soluble fraction (THFS extracted from direct coal liquefaction residue. The modified asphalt binders, which blended with SK-90 (control asphalt binder and 4%, 6%, 8% and 10% THFS (by weight of SK-90, were fabricated. The preparation process for asphalt binder was optimized in terms of the orthogonal array test strategy and gray correlation analysis results. The properties of asphalt binder were measured by applying Penetration performance grade and Superpave performance grade specifications. In addition, the temperature step and frequency sweep test in Dynamic Shear Rheometer were conducted to predict the rheological behavior, temperature and frequency susceptibility of asphalt binder. The test results suggested the optimal preparation process, such as 150 °C shearing temperature, 45 min shearing time and 4000 rpm shearing rate. Subsequently, the addition of THFS was beneficial in increasing the high-temperature properties but decreased the low-temperature properties and resistance to fatigue. The content analysis of THFS showed the percentage of 4~6% achieved a balance in the high-and-low temperature properties of asphalt binder. The asphalt binder with higher THFS content exhibited higher resistance to rutting and less sensitivity to frequency and temperature.

  20. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics

    Science.gov (United States)

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L.; Huber, Steven C.; Zhao, Youfu

    2015-01-01

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  1. A Heparin Binding Motif Rich in Arginine and Lysine is the Functional Domain of YKL-40

    Directory of Open Access Journals (Sweden)

    Nipaporn Ngernyuang

    2018-02-01

    Full Text Available The heparin-binding glycoprotein YKL-40 (CHI3L1 is intimately associated with microvascularization in multiple human diseases including cancer and inflammation. However, the heparin-binding domain(s pertinent to the angiogenic activity have yet been identified. YKL-40 harbors a consensus heparin-binding motif that consists of positively charged arginine (R and lysine (K (RRDK; residues 144–147; but they don't bind to heparin. Intriguingly, we identified a separate KR-rich domain (residues 334–345 that does display strong heparin binding affinity. A short synthetic peptide spanning this KR-rich domain successfully competed with YKL-40 and blocked its ability to bind heparin. Three individual point mutations, where alanine (A substituted for K or R (K337A, K342A, R344A, led to remarkable decreases in heparin-binding ability and angiogenic activity. In addition, a neutralizing anti-YKL-40 antibody that targets these residues and prevents heparin binding impeded angiogenesis in vitro. MDA-MB-231 breast cancer cells engineered to express ectopic K337A, K342A or R344A mutants displayed reduced tumor development and compromised tumor vessel formation in mice relative to control cells expressing wild-type YKL-40. These data reveal that the KR-rich heparin-binding motif is the functional heparin-binding domain of YKL-40. Our findings shed light on novel molecular mechanisms underlying endothelial cell angiogenesis promoted by YKL-40 in a variety of diseases.

  2. Adsorption of Lysine on Na-Montmorillonite and Competition with Ca(2+): A Combined XRD and ATR-FTIR Study.

    Science.gov (United States)

    Yang, Yanli; Wang, Shengrui; Liu, Jingyang; Xu, Yisheng; Zhou, Xiaoyun

    2016-05-17

    Lysine adsorption at clay/aqueous interfaces plays an important role in the mobility, bioavailability, and degradation of amino acids in the environment. Knowledge of these interfacial interactions facilitates our full understanding of the fate and transport of amino acids. Here, X-ray diffraction (XRD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) measurements were used to explore the dynamic process of lysine adsorption on montmorillonite and the competition with Ca(2+) at the molecular level. Density functional theory (DFT) calculations were employed to determine the peak assignments of dissolved lysine in the solution phase. Three surface complexes, including dicationic, cationic, and zwitterionic structures, were observed to attach to the clay edge sites and penetrate the interlayer space. The increased surface coverage and Ca(2+) competition did not affect the interfacial lysine structures at a certain pH, whereas an elevated lysine concentration contributed to zwitterionic-type coordination at pH 10. Moreover, clay dissolution at pH 4 could be inhibited at a higher surface coverage with 5 and 10 mM lysine, whereas the inhibition effect was inconspicuous or undetected at pH 7 and 10. The presence of Ca(2+) not only could remove a part of the adsorbed lysine but also could facilitate the readsorption of dissolved Si(4+) and Al(3+) and surface protonation. Our results provide new insights into the process of lysine adsorption and its effects on montmorillonite surface sites.

  3. Identification of critical residues of the serotype modifying O-acetyltransferase of Shigella flexneri

    Directory of Open Access Journals (Sweden)

    Thanweer Farzaana

    2012-07-01

    Full Text Available Abstract Background Thirteen serotypes of Shigella flexneri (S. flexneri have been recognised, all of which are capable of causing bacillary dysentery or shigellosis. With the emergence of the newer S. flexneri serotypes, the development of an effective vaccine has only become more challenging. One of the factors responsible for the generation of serotype diversity is an LPS O-antigen modifying, integral membrane protein known as O-acetyltransferase or Oac. Oac functions by adding an acetyl group to a specific O-antigen sugar, thus changing the antigenic signature of the parent S. flexneri strain. Oac is a membrane protein, consisting of hydrophobic and hydrophilic components. Oac bears homology to several known and predicted acetyltransferases with most homology existing in the N-terminal transmembrane (TM regions. Results In this study, the conserved motifs in the TM regions and in hydrophilic loops of S. flexneri Oac were targeted for mutagenesis with the aim of identifying the amino acid residues essential for the function of Oac. We previously identified three critical arginines–R73, R75 and R76 in the cytoplasmic loop 3 of Oac. Re-establishing that these arginines are critical, in this study we suggest a catalytic role for R73 and a structural role for R75 and R76 in O-acetylation. Serine-glycine motifs (SG 52–53, GS 138–139 and SYG 274–276, phenylalanine-proline motifs (FP 78–79 and FPV 282–84 and a tryptophan-threonine motif (WT141-142 found in TM segments and residues RK 110–111, GR 269–270 and D333 found in hydrophilic loops were also found to be critical to Oac function. Conclusions By studying the effect of the mutations on Oac’s function and assembly, an insight into the possible roles played by the chosen amino acids in Oac was gained. The transmembrane serine-glycine motifs and hydrophilic residues (RK 110–111, GR 269–270 and D333 were shown to have an affect on Oac assembly which suggests a structural role

  4. Bioconversion of Agricultural By-Products to Lysin by brevibacterium flavum and physico-chemical optimization for hyper-production

    International Nuclear Information System (INIS)

    Irshad, S.; Hashmi, A. S.; Babar, M. E.; Awan, A. R.; Anjum, A. A.; Javed, M. M.

    2015-01-01

    Poultry and agriculture industry has a great role in the development of food sector in Pakistan. Whole of the Lysine required for poultry feed is imported to fulfil the desired dietary needs. Present study was designed to utilize different agricultural by-products like molasses, wheat bran, rice polishing and corn steep liquor. Different Physico-Chemical parameters were optimized to have hyper-production of Lysine through fermentation by using Brevibacterium flavum as a fermentative agent. From wheat bran, rice polishing and molasses (as best carbon source), significantly high concentrations of lysine (10.4 g/L) after 72h of incubation was observed with molasses (4 percentage) with 3 percentage (v/v) inoculum size at 30 degree C and pH 7. Among different nitrogen sources, 0.25 percentage (NH/sub 4/)2SO/sub 4/ showed significantly (P< 0.05) high yield of Lysine (16.89 g/L). Addition of different optimum levels of ionic salts; 4 percentage CaCO/sub 3/, 0.4 percentage MgSO/sub 4/.7H/sub 2/O, 0.1 percentage NaCl and 0.2 percentage KH/sub 2/PO/sub 4/ gave significantly (P< 0.05) higher quantity of Lysine 19.01 g/L. Inclusion of 0.6 percentage corn steep liquor and 0.4 mg/100mL biotin significantly (P< 0.05) raised the Lysine from 19.4 g/L - 19.45 g/L. The presence of Lysine in fermented broth was detected by TLC. Thus a cheap and practical bioprocess of Lysine production was concluded, that can be exploited commercially to save foreign exchange. (author)

  5. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  6. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate

    2012-01-01

    Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine...... acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S....... cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved...

  7. Effect of varying dietary concentrations of lysine on growth performance of the Pearl Grey guinea fowl.

    Science.gov (United States)

    Bhogoju, S; Nahashon, S N; Donkor, J; Kimathi, B; Johnson, D; Khwatenge, C; Bowden-Taylor, T

    2017-05-01

    Lysine is the second limiting essential amino acid in poultry nutrition after methionine. Understanding the lysine requirement of poultry is necessary in guiding formulation of least cost diets that effectively meet the nutritional needs of individual birds. The lysine requirement of the Pearl Grey guinea fowl (PGGF) is not known. Therefore, the objective of this study was to assess the appropriate lysine levels required for optimal growth attributes of the PGGF. In a 12-week study, 512 one-day-old Pearl Grey guinea keets were weighed individually and randomly assigned to electrically heated battery brooders. Each battery contained 12 compartments housing 15 birds each. Eight diets fed to the experimental birds consisted of corn-soybean meal and contained 0.80 to 1.22 digestible lysine in 0.06% increments. Feed and water were provided at free choice and the diets were replicated twice. Experimental diets contained 3,100 Kcal metabolizable energy (ME)/kg diet and 23% crude protein (CP), 3,150 ME Kcal ME/kg diet and 21% CP, and 3,100 ME/kg and 17% CP, at zero to 4, 5 to 10, and 11 to 12 weeks of age (WOA), respectively. Birds were provided water ad libitum and a 23:1 and 8:16-hr (light:dark) regimen at zero to 8 and 9 to 12 WOA, respectively. Birds were weighed weekly, and body weight gain, feed consumption, and feed conversions were determined. Data were analyzed using the General Linear Model (GLM) procedures of SAS (2002) with dietary lysine as treatment effect. Females responded better to diets containing 1.04 and 0.8% lysine from hatch to 4 and 5 to 12 WOA, respectively. Males responded better to diets containing 1.10 and 0.8% lysine at hatch to 4 WOA and 5 to 12 WOA, respectively. Therefore, we recommend that PGGF females and males be fed diets containing 1.04 and 1.10%, respectively, at hatch to 4 WOA and 0.80% lysine at 5 to 12 WOA. The diets should be supplied in phases. © 2016 Poultry Science Association Inc.

  8. Controllable synthesis of functional nanocomposites: Covalently functionalize graphene sheets with biocompatible L-lysine

    International Nuclear Information System (INIS)

    Mo, Zunli; Gou, Hao; He, Jingxian; Yang, Peipei; Feng, Chao; Guo, Ruibin

    2012-01-01

    Highlights: ► The biocompatible L-lysine functionalized graphene sheets (Gs/Lys) were synthesized controllably using a novel method. ► The Gs/Lys nanocomposites are water-soluble, biocompatible and chiral. ► A chiral graphene derivative was proposed. - Abstract: In this paper a novel method to synthesize functionalize graphene sheets (Gs) by biocompatible L-lysine (Gs/Lys) is reported. The method was composed of two steps: (1) we controllably synthesized self-assembly Gs/Lys-Cu-Lys through the terminal amino of copper L-lysine (Lys-Cu-Lys) attaching to graphite oxide (GO) and then reducing. (2) Obtained the Gs/Lys by eliminating the copper ion. This method could also be used to functionalize other nanomaterials by L-lysine. The Gs/Lys nanocomposites are water-soluble, biocompatible, and above all, it is a chiral material of graphene, which is proposed by us. This novel material will be promising for more applications of graphene. The formation of Gs/Lys nanocomposites were confirmed by scanning electron microscopy (SEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermal gravimetric (TG) analysis.

  9. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  10. Tyrosine residues modification studied by MALDI-TOF mass spectrometry

    International Nuclear Information System (INIS)

    Santrucek, Jiri; Strohalm, Martin; Kadlcik, Vojtech; Hynek, Radovan; Kodicek, Milan

    2004-01-01

    Amino acid residue-specific reactivity in proteins is of great current interest in structural biology as it provides information about solvent accessibility and reactivity of the residue and, consequently, about protein structure and possible interactions. In the work presented tyrosine residues of three model proteins with known spatial structure are modified with two tyrosine-specific reagents: tetranitromethane and iodine. Modified proteins were specifically digested by proteases and the mass of resulting peptide fragments was determined using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Our results show that there are only small differences in the extent of tyrosine residues modification by tetranitromethane and iodine. However, data dealing with accessibility of reactive residues obtained by chemical modifications are not completely identical with those obtained by nuclear magnetic resonance and X-ray crystallography. These interesting discrepancies can be caused by local molecular dynamics and/or by specific chemical structure of the residues surrounding

  11. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.F.L.L.W.; Oosterhout, J.F.X.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  12. Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli.

    Science.gov (United States)

    Bukhari, A I; Taylor, A L

    1971-03-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA.

  13. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach

    DEFF Research Database (Denmark)

    Feyera, Takele; Theil, Peter Kappel

    2017-01-01

    components (including uterus wall, placenta and membrane fluids) and maintenance were estimated. It was estimated that maintenance, additional heat loss, colostrum production, fetal growth, mammary growth and uterine components accounted for 66.8%, 19.3%, 7.2%, 5.0%, 1.3% and 0.5% of total ME requirements......, respectively, in the last 12 days of gestation. Oxidation/transamination, fetal growth, mammary growth, colostrum production, maintenance and uterine components were estimated to account for 29.5%, 22.7%, 16.8%, 16.1%, 10.4% and 4.5% of total SID lysine requirements, respectively, in the last 12 days...... of gestation. After parturition, ME and SID lysine requirements increased daily until peak lactation (day 17). At peak lactation, 95% and 72% of total required SID lysine and ME, respectively, were associated with milk production (including oxidation). Relative to day 104 of gestation, ME and SID lysine...

  14. Histidine-lysine peptides as carriers of nucleic acids.

    Science.gov (United States)

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  15. Identification of SUMO conjugation sites in the budding yeast proteome

    Directory of Open Access Journals (Sweden)

    Miguel Esteras

    2017-10-01

    Full Text Available Post-translational modification by the small ubiquitin-like modifier (SUMO is an important mechanism regulating protein function. Identification of SUMO conjugation sites on substrates is a challenging task. Here we employed a proteomic method to map SUMO acceptor lysines in budding yeast proteins. We report the identification of 257 lysine residues where SUMO is potentially attached. Amongst the hits, we identified already known SUMO substrates and sites, confirming the success of the approach. In addition, we tested several of the novel substrates using SUMO immunoprecipitation analysis and confirmed that the SUMO acceptor lysines identified in these proteins are indeed bona fide SUMOylation sites. We believe that the collection of SUMO sites presented here is an important resource for future functional studies of SUMOylation in yeast.

  16. Use of the modified Ames test as an indicator of the carcinogenicity of residual aromatic extracts

    Energy Technology Data Exchange (ETDEWEB)

    Boogaard, P.; Hedelin, A.; Riley, A.; Rushton, E.; Vaissiere, M.; Minsavage, G.; Rohde, A.; Dalbey, W.

    2013-01-15

    Existing data demonstrate that residual aromatic extracts (RAEs) can be either carcinogenic or non-carcinogenic. CONCAWE had previously concluded that 'Although limited data available indicate that some RAEs are weakly carcinogenic, it is not possible to provide a general recommendation. Classify on a case-by-case basis' (CONCAWE 2005). Therefore CONCAWE's Health/Toxicology Subgroup (H/TSG) has developed a proposal for the use of the modified Ames test as a short-term predictive screening tool for decisions on the classification of RAEs for carcinogenicity. The relationship between RAE chemistry and carcinogenic potential is not as well understood as it is for some other categories of substances, e.g. Other Lubricant Base Oils (OLBO). However, a correlation has been found between the results of the skin carcinogenicity bioassay and the mutagenicity index (MI) obtained from the modified Ames test. Data supporting this correlation are summarised in this report. The H/TSG confirmed that the modified Ames test can be used as a predictive screening tool and that a cut-off value can be established to make a distinction between carcinogenic and non-carcinogenic products. RAEs with a MI > 0.4 demonstrated carcinogenic potential upon dermal application to mouse skin with chronic exposure. RAEs with a MI > 0.4 did not demonstrate a carcinogenic potential. To justify the use of the modified Ames test with RAEs, additional analysis of the repeatability of the test with RAEs was required. With this objective, CONCAWE sponsored a round robin study with different samples of RAEs from member companies, at three different laboratories. The repeatability demonstrated in the round robin study with RAEs support the proposed use of the modified Ames test. As part of the tools available for use by member companies, the H/TSG proposed a standard operating procedure (SOP) (included as an Appendix to this report) on the conduct of the modified Ames test with RAEs. The H

  17. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  18. Effect of feeding three lysine to energy diets on growth, body composition and age at puberty in replacement gilts

    Science.gov (United States)

    This study evaluated the effect of diets differing in standard ileal digestible (SID) lysine on lysine intake, growth rate, body composition and age at puberty on maternal line gilts. Crossbred Large White×Landrace gilts (n =641) were fed corn-soybean diets differing in SID lysine concentration (%, ...

  19. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  20. Report: Bioconversion of agriculture waste to lysine with UV mutated strain of brevibacterium flavum and its biological evaluation in broiler chicks.

    Science.gov (United States)

    Tabassum, Alia; Hashmi, Abu Saeed; Masood, Faiza; Iqbal, Muhammad Aamir; Tayyab, Muhammad; Nawab, Amber; Nadeem, Asif; Sadeghi, Zahra; Mahmood, Adeel

    2015-07-01

    Lysine executes imperative structural and functional roles in body and its supplementation in diet beneficial to prevent the escalating threat of protein deficiency. The physical mutagenesis offers new fascinating avenues of research for overproduction of lysine through surplus carbohydrate containing agriculture waste especially in developing countries. The current study was aimed to investigate the potential of UV mutated strain of Brevibacterium flavum at 254 nm for lysine production. The physical and nutritional parameters were optimized and maximum lysine production was observed with molasses (4% substrate water ratio). Moreover, supplementation of culture medium with metal cations (i.e. 0.4% CaSO₄, 0.3% NaCl, 0.3% KH₂PO₄, 0.4% MgSO₄, and 0.2% (NH₄) ₂SO₄w/v) together with 0.75% v/v corn steep liquor significantly enhanced the lysine production up to 26.71 ± 0.31 g/L. Though, concentrations of urea, ammonium nitrate and yeast sludge did not exhibit any profound effect on lysine production. Biological evaluation of lysine enriched biomass in terms of weight gain and feed conversion ratio reflected non-significant difference for experimental and control (+ve) groups. Conclusively, lysine produced in the form of biomass was compatible to market lysine in its effectiveness and have potential to utilize at commercial scale.

  1. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  2. Impact of lysine-fortified wheat flour on morbidity and immunologic variables among members of rural families in northwest Syria.

    Science.gov (United States)

    Ghosh, Shibani; Pellett, Peter L; Aw-Hassan, Aden; Mouneime, Youssef; Smriga, Miro; Scrimshaw, Nevin S

    2008-09-01

    Previous studies have shown an effect of lysine fortification on nutrition and immunity of poor men, women, and children consuming a predominantly wheat-based diet. To examine the lysine value of diets and the effect of lysine fortification on functional protein status, anthropometry, and morbidity of men, women, and children in rural Syria. At baseline of a two-phase study using 7-day household food intake inventories (n = 98), nutrient availabilities per adult male equivalent were estimated. In the intervention phase, a 16-week double-blind trial, households (n = 106) were randomly assigned to control and lysine groups. Hematologic and anthropometric data were collected from men (n = 69; 31 control, 38 lysine), women (n = 99; 51 control, 48 lysine), and children (n = 69; 37 control, 32 lysine) at baseline, 12 weeks, and 16 weeks. Total CD3 T lymphocytes as well as T lymphocytes bearing the receptors CD4, CD8, and CD56, IgM, IgG, IgA, complement C3, C-reactive protein, serum albumin, prealbumin, transferrin, retinol-binding protein, hemoglobin, and hepatitis B surface antigen were determined. Health status and flour usage were monitored. Paired- and independent-sample t-tests and chi-square tests were performed. Mean nutrient availability per adult equivalent was 2,650 +/- 806 kcal, 70.1 +/- 26.4 g protein, 65 +/- 14% cereal protein, and 41.9 +/- 0.8 mg lysine per gram of protein. Complement C3 was significantly higher in men receiving lysine than in controls (p children, who have much higher morbidity and mortality rates from this disease than school-age children or adults.

  3. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  4. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  5. Evaluation of a new modified QuEChERS method for the monitoring of carbamate residues in high-fat cheeses by using UHPLC-MS/MS.

    Science.gov (United States)

    Hamed, Ahmed M; Moreno-González, David; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2017-01-01

    A simple and efficient method for the determination of 28 carbamates in high-fat cheeses is proposed. The methodology is based on a modified quick, easy, cheap, effective, rugged, and safe procedure as sample treatment using a new sorbent (Z-Sep + ) followed by ultra-high performance liquid chromatography with tandem mass spectrometry determination. The method has been validated in different kinds of cheese (Gorgonzola, Roquefort, and Camembert), achieving recoveries of 70-115%, relative standard deviations lower than 13% and limits of quantification lower than 5.4 μg/kg, below the maximum residue levels tolerated for these compounds by the European legislation. The matrix effect was lower than ±30% for all the studied pesticides. The combination of ultra-high performance liquid chromatography and tandem mass spectrometry with this modified quick, easy, cheap, effective, rugged, and safe procedure using Z-Sep + allowed a high sample throughput and an efficient cleaning of extracts for the control of these residues in cheeses with a high fat content. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Aspects of the selection, design and use of high lysine cereals

    International Nuclear Information System (INIS)

    Munck, L.

    1976-01-01

    A discussion of the need for and the considerations involved in the breeding of high lysine cereals is presented. Progress in the discovery and exploitation of genotypes with high lysine characters in maize and barley are briefly reviewed. The role and some of the characteristics of the dye-binding capacity (DBC) methods are evaluated along with the ways in which DBC results should be used in combination with other information. Lastly, the changes in attitudes and procedures associated with the acceptance of a product of a new technology such as nutritionally improved cereals is discussed. (author)

  8. Effect of different levels of lysine in the diet of broilers on the metabolism of /sup 35/S-methionine

    Energy Technology Data Exchange (ETDEWEB)

    Stanchev, Kh; Venkov, T; Dzharova, M [Akademiya na Selskostopanskite Nauki, Sofia-Kostinbrod (Bulgaria). Inst. po Zhivotnovydstvo

    1974-01-01

    The lack of balance of the ration with respect to lysine leads to a decrease in the rate of incorporation of /sup 35/S-methionine in the liver, pancreas, kidney and femoral muscle. Most intensive protein synthesis in the liver of chickens is observed in the group receiving ration balanced with respect to lysine while in the case of a deficiency or excess of lysine the protein biosynthesis drops. The deficiency or excess of lysine leads to an increase in the excretion rate and decreases the assimilability of radioactive methionine in the chickens organisms. (INIS)

  9. Acid dissociation constant and apparent nucleophilicity of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Xu, K.Y.

    1989-01-01

    A combination of competitive labeling with [ 3 H]acetic anhydride and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein

  10. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-06-01

    The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon. © 2017 The Authors FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  11. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  12. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamine A, C and E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.K.; Sharmanov, T.Sh.

    1991-01-01

    The effect of diet on induction of monooxygenases and distribution of label from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital (80 mg/rg, three days) was studied. 2- 14 C-lysine was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of label from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats were more pronounced as compared with the similarly trated rats that were fed a balanced diet. The possibility of mobilization of deficient essential components to liver from other organs and tissues for maintenance of monooxygenase induction is discussed

  13. Lysine and pipecolic acid and some of their derivatives show anticonvulsant activity, and stimulation of benzodiazepine receptor activity

    International Nuclear Information System (INIS)

    Chang, Yung-Feng; Gao, Xue-Min

    1989-01-01

    Benzodiazepines are one of the most widely prescribed drugs in the treatment of anxiety, epilepsy and muscle tension. The natural products lysine and pipecolic acid known to be present in the animal, plant and microorganism, have been shown to be anticonvulsant against pentetrazol (PTZ)-induced seizures in mice. Methyl and ethyl esters of L-lysine and the N-isopropanol derivative of pipecolic acid appear to increase the anticonvulsant potency of the parent compounds, presumably due to their increase in hydrophobicity. Lysine and pipecolic acid showed significant stimulation of specific [ 3 H]flunitrazepam (FZ) binding to mouse brain membranes. This stimulation was enhanced by chloride ions and stereospecific with L-isomer having higher effect. The dose-dependent anticonvulsant activity of lysine and pipecolic acid, and their stimulation of [ 3 H]FZ binding appear to be correlated. The antiepileptic activity lysine, pipecolic acid and their derivatives therefore may be mediated through the γ-aminobutyric acid-benzodiazepine receptor complex

  14. protein, tryptophan and lysine contents in quality protien maize

    African Journals Online (AJOL)

    owner

    From the human nutrition view point, lysine is the ... latitude and 79.3°E longitude and at an altitude of ... transferred to boiling tubes. ... mixtures were heated until the color changes to ... water was added into the digestion tube carefully.

  15. [Studies with 15N-labeled lysine in colostomized hens. 2. 15N excretion in feces].

    Science.gov (United States)

    Gruhn, K; Wiefel, P

    1983-05-01

    Over a period of four days colostomised hens were given 15N-lysine, and the development of 15N-excretion both in the TCA-soluble and the TCA-precipitable fraction of the faeces was measured over eight days. In both fractions the total, lysine, histidine and arginine N and 15N-excess (15N') was determined. The average apparent digestibility of 14N was 81.2% +/- 1.1% and of 15N' 93.2% +/- 0.7%. Labelled N is already excreted in faeces 3 hours after its application. The TCA-precipitable N is less strongly labelled than the TCA-soluble N. During the application of 15N' the labelling in faecal lysine is nearly one power of ten higher than in total N. The atom-% 15N' of the lysine could also be distinctly detected in arginine and histidine. The quotas of the total 15N' in faeces were 3.5% for arginine-15N' and 0.8% for histidine 15N'; 15N' can mainly be detected in the soluble fraction.

  16. Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication.

    Science.gov (United States)

    Wang, Changhui; Wu, Yu; Wang, Youquan; Bai, Leilei; Jiang, Helong; Yu, Juhua

    2018-06-15

    This study presents an approach for developing inactivating materials to achieve an initial rapid and a long-term equilibrium P immobilization to control eutrophication based on drinking water treatment residue (DWTR), which is a byproduct of potable water production. By taking advantage of the long-term equilibrium P adsorption by DWTR, the La chemical properties, and the previous success of using La-modified bentonite clay (Phoslock ® ), we used DWTR as a La carrier with different ratios to develop the specific materials. The La loading mechanisms, the potentially toxic effect of La-modified DWTR on snail Bellamya aeruginosa (within 120 d), and the short- and long-term (within 80 d) P immobilization characteristics of the modified DWTR were investigated to understand the performance of the developed materials. The results showed that La loading into DWTR was based on ligand exchanges and the formation of new particles; DWTR loaded with <5% La had no toxicity against the snail. Most importantly, the loading of 5% La to DWTR substantially enhanced the rapid immobilization capacity of DWTR, achieving an initial rapid and a long-term equilibrium P adsorption in aqueous solutions. This study promotes the beneficial recycling of DWTR and results in a win-win situation for lake restoration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Dissecting the functional role of key residues in triheme cytochrome PpcA: a path to rational design of G. sulfurreducens strains with enhanced electron transfer capabilities.

    Directory of Open Access Journals (Sweden)

    Leonor Morgado

    Full Text Available PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24% among the family, and it was suggested to be involved in e-/H(+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV, Lys18 (near heme I or Lys22 (between hemes I and III has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV, Lys52 (between hemes III and IV and Lys60 (near heme III are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+ transfer pathways. The results showed that the preferred e-/H(+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.

  18. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    Dr. Ajit

    2012-07-17

    Jul 17, 2012 ... 3Division of Livestock Product Technology, Indian Veterinary Research Institute, Izatnagar – 243 ... Key words: Carcass trait, low protein, lysine, meat quality, pigs. ... functional activities, reproduction and disease resistance.

  19. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Directory of Open Access Journals (Sweden)

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  20. Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression.

    Science.gov (United States)

    van Rooijen, R J; Dechering, K J; Niek, C; Wilmink, J; de Vos, W M

    1993-02-01

    Site-directed mutagenesis of the Lactococcus lactis lacR gene was performed to identify residues in the LacR repressor that are involved in the induction of lacABCDFEGX operon expression by tagatose-6-phosphate. A putative inducer binding domain located near the C-terminus was previously postulated based on homology studies with the Escherichia coli DeoR family of repressors, which all have a phosphorylated sugar as inducer. Residues within this domain and lysine residues that are charge conserved in the DeoR family were changed into alanine or arginine. The production of the LacR mutants K72A, K80A, K80R, D210A, K213A and K213R in the LacR-deficient L.lactis strain NZ3015 resulted in repressed phospho-beta-galactosidase (LacG) activities and decreased growth rates on lactose. Gel mobility shift assays showed that the complex between a DNA fragment carrying the lac operators and LacR mutants K72A, K80A, K213A and D210A did not dissociate in the presence of tagatose-6-phosphate, in contrast to wild type LacR. Other mutations (K62A/K63A, K72R, K73A, K73R, T212A, F214R, R216R and R216K) exhibited no gross effects on inducer response. The results strongly suggest that the lysines at positions 72, 80 and 213 and aspartic acid at position 210 are involved in the induction of lac operon expression by tagatose-6-phosphate.

  1. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    Science.gov (United States)

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  2. Strain differences in the response to morphine on incorporation of 3H-lysine into rat brain protein

    International Nuclear Information System (INIS)

    Ford, D.H.; Rhines, R.K.; Levi, M.A.

    1977-01-01

    The effect of morphine on the specific activity (SA) of lysine in the plasma free amino acid (FFA) fraction and in the cerebral cortical FAA and protein fractions, as well as on the specific accumulation and incorporation, was determined in male Sprague-Dawley and Wistar rats at various time intervals after intravenous injection of drug and amino acid into unanesthetized animals. The lysine SA was higher in Sprague-Dawley than in Wistar rats in the plasma and brain FAA fraction and in the protein fraction. In the SD strain, morphine decreased the SA of plasma FAA significantly, but had only slight effects in the Wistar strain. In the cortical gray matter, morphine elevated the SA of lysine significantly in both strains. SA of the lysine in cerebral cortical protein increased in both strains with time. When the data for the free amino acids were expressed in terms of specific accumulation, the observed rates were higher in the Sprague-Dawley animals and reached a point of maximal concentration, which was not observed in animals of the Wistar strain. Morphine elevated the levels of specific accumulation of lysine into the cortical free amino acid pool in both strains of rat. It is concluded that Sprague-Dawley and Wistar rats are not equivalent in relation to the accumulation of an amino acid in the brain FAA pool from the plasma and that the effect of morphine on specific incorporation of lysine into brain protein is greater in Wistar rats. (author)

  3. Lysine and glutamate transport in the erythrocytes of common brushtail possum, Tammar Wallaby and eastern grey, kangaroo.

    Science.gov (United States)

    Ogawa, E; Kuchel, P W; Agar, N S

    1998-04-01

    It was recently coincidentally discovered, using 1H NMR spectroscopy, that the erythrocytes of two species of Australian marsupials, Tammar Wallaby (Macropus eugenii) and Bettong (Bettongia penicillata), contain relatively high concentrations of the essential amino acid lysine (Agar NS, Rae CD, Chapman BE, Kuchel PW. Comp Biochem Physiol 1991;99B:575-97). Hence, in the present work the rates of transport of lysine into the erythrocytes from the Common Brushtail Possum (Dactylopsilia trivirgata) and Eastern Grey Kangaroo (Macropus giganteus) (which both have low lysine concentrations), and Tammar Wallaby were studied, to explore the mechanistic basis of this finding. The concentration-dependence of the uptake was studied with lysine alone and in the presence of arginine, which may be a competitor of the transport in some species. In relation to GSH metabolism, glutamate uptake was determined in the presence and absence of Na+. The data was analysed to yield estimates of the maximal velocity (Vmax) and the Km in each of the species. Erythrocytes from Tammar Wallaby lacked saturable lysine transport in contrast to the other two species. The glutamate uptake was normal in all three animals for adequate GSH biosynthesis.

  4. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  5. Standardization and performance evaluation of "modified" and "ultrasensitive" versions of the Abbott RealTime HIV-1 assay, adapted to quantify minimal residual viremia.

    Science.gov (United States)

    Amendola, Alessandra; Bloisi, Maria; Marsella, Patrizia; Sabatini, Rosella; Bibbò, Angela; Angeletti, Claudio; Capobianchi, Maria Rosaria

    2011-09-01

    Numerous studies investigating clinical significance of HIV-1 minimal residual viremia (MRV) suggest potential utility of assays more sensitive than those routinely used to monitor viral suppression. However currently available methods, based on different technologies, show great variation in detection limit and input plasma volume, and generally suffer from lack of standardization. In order to establish new tools suitable for routine quantification of minimal residual viremia in patients under virological suppression, some modifications were introduced into standard procedure of the Abbott RealTime HIV-1 assay leading to a "modified" and an "ultrasensitive" protocols. The following modifications were introduced: calibration curve extended towards low HIV-1 RNA concentration; 4 fold increased sample volume by concentrating starting material; reduced volume of internal control; adoption of "open-mode" software for quantification. Analytical performances were evaluated using the HIV-1 RNA Working Reagent 1 for NAT assays (NIBSC). Both tests were applied to clinical samples from virologically suppressed patients. The "modified" and the "ultrasensitive" configurations of the assay reached a limit of detection of 18.8 (95% CI: 11.1-51.0 cp/mL) and 4.8 cp/mL (95% CI: 2.6-9.1 cp/mL), respectively, with high precision and accuracy. In clinical samples from virologically suppressed patients, "modified" and "ultrasensitive" protocols allowed to detect and quantify HIV RNA in 12.7% and 46.6%, respectively, of samples resulted "not-detectable", and in 70.0% and 69.5%, respectively, of samples "detected laboratories for measuring MRV. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction.

    Science.gov (United States)

    López, Yosvany; Sharma, Alok; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Sattar, Abdul; Tsunoda, Tatsuhiko

    2018-01-19

    Post-translational modification is considered an important biological mechanism with critical impact on the diversification of the proteome. Although a long list of such modifications has been studied, succinylation of lysine residues has recently attracted the interest of the scientific community. The experimental detection of succinylation sites is an expensive process, which consumes a lot of time and resources. Therefore, computational predictors of this covalent modification have emerged as a last resort to tackling lysine succinylation. In this paper, we propose a novel computational predictor called 'Success', which efficiently uses the structural and evolutionary information of amino acids for predicting succinylation sites. To do this, each lysine was described as a vector that combined the above information of surrounding amino acids. We then designed a support vector machine with a radial basis function kernel for discriminating between succinylated and non-succinylated residues. We finally compared the Success predictor with three state-of-the-art predictors in the literature. As a result, our proposed predictor showed a significant improvement over the compared predictors in statistical metrics, such as sensitivity (0.866), accuracy (0.838) and Matthews correlation coefficient (0.677) on a benchmark dataset. The proposed predictor effectively uses the structural and evolutionary information of the amino acids surrounding a lysine. The bigram feature extraction approach, while retaining the same number of features, facilitates a better description of lysines. A support vector machine with a radial basis function kernel was used to discriminate between modified and unmodified lysines. The aforementioned aspects make the Success predictor outperform three state-of-the-art predictors in succinylation detection.

  7. Use of a bacteriophage lysin to identify a novel target for antimicrobial development.

    Directory of Open Access Journals (Sweden)

    Raymond Schuch

    Full Text Available We identified an essential cell wall biosynthetic enzyme in Bacillus anthracis and an inhibitor thereof to which the organism did not spontaneously evolve measurable resistance. This work is based on the exquisite binding specificity of bacteriophage-encoded cell wall-hydrolytic lysins, which have evolved to recognize critical receptors within the bacterial cell wall. Focusing on the B. anthracis-specific PlyG lysin, we first identified its unique cell wall receptor and cognate biosynthetic pathway. Within this pathway, one biosynthetic enzyme, 2-epimerase, was required for both PlyG receptor expression and bacterial growth. The 2-epimerase was used to design a small-molecule inhibitor, epimerox. Epimerox prevented growth of several Gram-positive pathogens and rescued mice challenged with lethal doses of B. anthracis. Importantly, resistance to epimerox was not detected (<10(-11 frequency in B. anthracis and S. aureus. These results describe the use of phage lysins to identify promising lead molecules with reduced resistance potential for antimicrobial development.

  8. Genetic Analysis of Diaminopimelic Acid- and Lysine-Requiring Mutants of Escherichia coli1

    Science.gov (United States)

    Bukhari, Ahmad I.; Taylor, Austin L.

    1971-01-01

    Several diaminopimelic acid (DAP)- and lysine-requiring mutants of Escherichia coli were isolated and studied by genetic, physiological, and biochemical means. The genes concerned with DAP-lysine synthesis map at several different sites on the E. coli chromosome and, therefore, do not constitute a single operon. Three separate loci affecting DAP synthesis are located in the 0 to 2.5 min region of the genetic map. The order of the loci in this region is thr-dapB-pyrA-ara-leu-pan-dapC-tonA-dapD. Two additional DAP genes map in the region between min 47 and 48, with the gene order being gua-dapA-dapE-ctr. The lys locus at min 55 determines the synthesis of the enzyme DAP decarboxylase, which catalyzes the conversion of DAP into lysine. The order of the genes in this region is serA-lysA-thyA. PMID:4926684

  9. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  10. CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner

    International Nuclear Information System (INIS)

    Dosemeci, Ayse; Thein, Soe; Yang, Yijung; Reese, Thomas S.; Tao-Cheng, Jung-Hwa

    2013-01-01

    Highlights: ► CYLD is a deubiquitinase specific for lysine63-linked polyubiquitins. ► Presence of CYLD in PSDs is established by biochemistry and immunoEM. ► CYLD accumulates on PSDs upon depolarization of neurons. ► Accumulation of CYLD at PSDs may regulate trafficking/degradation of synaptic proteins. -- Abstract: Polyubiquitin chains on proteins flag them for distinct fates depending on the type of polyubiquitin linkage. While lysine48-linked polyubiquitination directs proteins to proteasomal degradation, lysine63-linked polyubiquitination promotes different protein trafficking and is involved in autophagy. Here we show that postsynaptic density (PSD) fractions from adult rat brain contain deubiquitinase activity that targets both lysine48 and lysine63-linked polyubiquitins. Comparison of PSD fractions with parent subcellular fractions by Western immunoblotting reveals that CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, is highly enriched in the PSD fraction. Electron microscopic examination of hippocampal neurons in culture under basal conditions shows immunogold label for CYLD at the PSD complex in approximately one in four synapses. Following depolarization by exposure to high K+, the proportion of CYLD-labeled PSDs as well as the labeling intensity of CYLD at the PSD increased by more than eighty percent, indicating that neuronal activity promotes accumulation of CYLD at the PSD. An increase in postsynaptic CYLD following activity would promote removal of lysine63-polyubiquitins from PSD proteins and thus could regulate their trafficking and prevent their autophagic degradation.

  11. The course of protein synthesis during grain filling in normal and high lysine barley

    International Nuclear Information System (INIS)

    Giese, H.; Andersen, B.

    1984-01-01

    A study of the course of protein synthesis during grain filling in Bomi and the high lysine barleys Hily 82/3 and Risoe 56 showed that the four salt-soluble proteins, protein Z, β-amylase and the chymotrypsin inhibitors CI-1 and CI-2, are synthesized in greater amounts earlier in the high lysine lines than in Bomi. On the other hand, the hordeins are synthesized in greater amounts earlier during grain filling in Bomi than in Hily 82/3 and Risoe 56. There is no indication of a significant reduction of total protein synthesis in the high lysine lines compared with the standard lines Bomi and Pirrka. Hily 82/3 and Risoe 56 are very similar in protein composition in that they have a lower hordein content and higher levels, particularly of β-amylase and the chymotrypsin inhibitors, than Bomi. (author)

  12. Production of ε-poly-lysine by Streptomyces albulus PD-1 via solid-state fermentation.

    Science.gov (United States)

    Xu, Delei; Yao, Haiqing; Xu, Zhaoxian; Wang, Rui; Xu, Zheng; Li, Sha; Feng, Xiaohai; Liu, Youhua; Xu, Hong

    2017-01-01

    The aim of this study was to produce ε-poly-lysine (ε-PL) by Streptomyces albulus PD-1 through solid-state fermentation (SSF) using agro-industrial residues. Maximum ε-PL production (86.62mg/g substrate) was obtained a mixed substrate of rapeseed cake and wheat bran (2:1, w/w) supplemented with glucose (4%, w/w), (NH 4 ) 2 SO 4 (3%, w/w), with an initial moisture content of 65%, initial pH of 7.0 and inoculum size of 13% v/w, incubated at 30°C for 8days. The results of scanning electron microscopy indicated that the filamentous thallus could penetrate the substrate surface. Moreover, repeated-batch SSF was successfully conducted 8 times using 10% substrate as seeds for the next fermentation cycle, and the results suggest that repeated-batch SSF is more efficient because of the shortened lag phase. To the best of our knowledge, this is the first report on ε-PL production using the SSF process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  14. Chemical modification as an approach for the identification of UDPG-binding polypeptides of UDPG-glucose: (1,3)-Beta-glucan synthase

    International Nuclear Information System (INIS)

    Mason, T.L.

    1989-01-01

    The lysine-reactive chemical modification reagents uridine diphosphate pyridoxal (UDP-pyridoxal) and formaldehyde (HCHO) were used to identify UDPG-binding polypeptides of UDP-glucose: (1,3)-β-D-glucan synthase (GS) from red beet storage tissue. Complete enzyme inactivation occurred after exposure to micromolar levels of UDP-pyridoxal and millimolar levels of HCHO. Divalent cations (Mg 2+ and Ca 2+ , particularly Ca 2+ ) were required by both for inactivation. Substrate (UDPG) and chelators (EDTA and EGTA) protected plasma membrane GS (PMGS) against UDP-pyridoxal and HCHO inhibition. UDPG protected CHAPS solubilized GS (CSGS) against UDP-pyridoxal inactivation, but not against HCHO. It was concluded that beet GS contains a lysine residue at the UDPG-binding site. When PMGS was directly labeled with UDP[ 3 H]-pyridoxal or [ 14 C]HCHO, random labeling occurred. Therefore, a multi-step labeling procedure was developed. Nonessential lysine residues were first blocked with HCHO while 5 mM UDPG protected the active site lysine. Background labeling was reduced 4-fold. Membranes were recovered by centrifugation and the active site lysine exposed to [ 14 C] HCHO. Major labeled polypeptides were at 200, 76, and 54 kD. Minor polypeptides were seen at 94, 82, 68, 60, and 20-25 kD. CSGS was labeled by a modified multi-step procedure. CSGS was blocked by reaction with UDP-pyridoxal in the presence of UDPG. CSGS was then recovered by product entrapment and labeled with [ 14 C]HCHO. Background labeling was reduced by 8-fold and potential UDPG-binding polypeptides narrowed to 68, 54, 25 and 22 kD

  15. Ex-vivo absorption study of lysine R-lipoate salt, a new pharmaceutical form of R-ALA.

    Science.gov (United States)

    Amenta, Francesco; Buccioni, Michela; Ben, Diego Dal; Lambertucci, Catia; Navia, Aleix Martí; Ngouadjeu Ngnintedem, Michael A; Ricciutelli, Massimo; Spinaci, Andrea; Volpini, Rosaria; Marucci, Gabriella

    2018-06-15

    Alpha-lipoic acid (ALA) oral supplements were used in many pathologies associated with increased oxidative stress. Although only R-ALA is considered the biologically active form, R,S-ALA is used in therapeutic applications even showing poor water solubility. The aim of this work was to study the absorption and transport mechanism across the intestinal barrier of new R-ALA stable and water soluble form, consisting in the lysine R-ALA salt, in presence and absence of specific inhibitors of Na + /multivitamin (SMVT) and monocarboxylic acids (MCT). The absorption of a new ALA form was investigated at rat everted sacs in comparison with R-ALA, S-ALA, and R,S-ALA. Results showed that duodenum is the best portion of intestine for ALA forms absorption. The absorption percentage of R-ALA, S-ALA, R,S-ALA, and lysine R-ALA salt was 66%, 43%, 55%, and 70%, respectively. The modest effect of the SMVT inhibitor biotin demonstrated that this transporter system is not principally involved in the absorption of lysine R-lipoate salt across the rat intestinal barrier. On the contrary, the MCT inhibitor octanoic acid significantly reduced the transport of this salt, whit an absorption decrease of R-ALA and lysine R-lipoate salt of 28% and 24%, respectively. Since the highest concentration of these inhibitors did not completely inhibit the absorption of lysine R-lipoate salt, other transport mechanisms probably operate for its intracellular delivery. The new form of ALA, lysine R-lipoate salt, was the most absorbed respect to the other ALA forms demonstrating that this compound is more suitable for oral administration. This new salt could represent a promising candidate for ALA oral supplementation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, accumulates at the postsynaptic density in an activity-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Dosemeci, Ayse, E-mail: dosemeca@mail.nih.gov [Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Thein, Soe; Yang, Yijung; Reese, Thomas S. [Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Tao-Cheng, Jung-Hwa [EM Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer CYLD is a deubiquitinase specific for lysine63-linked polyubiquitins. Black-Right-Pointing-Pointer Presence of CYLD in PSDs is established by biochemistry and immunoEM. Black-Right-Pointing-Pointer CYLD accumulates on PSDs upon depolarization of neurons. Black-Right-Pointing-Pointer Accumulation of CYLD at PSDs may regulate trafficking/degradation of synaptic proteins. -- Abstract: Polyubiquitin chains on proteins flag them for distinct fates depending on the type of polyubiquitin linkage. While lysine48-linked polyubiquitination directs proteins to proteasomal degradation, lysine63-linked polyubiquitination promotes different protein trafficking and is involved in autophagy. Here we show that postsynaptic density (PSD) fractions from adult rat brain contain deubiquitinase activity that targets both lysine48 and lysine63-linked polyubiquitins. Comparison of PSD fractions with parent subcellular fractions by Western immunoblotting reveals that CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, is highly enriched in the PSD fraction. Electron microscopic examination of hippocampal neurons in culture under basal conditions shows immunogold label for CYLD at the PSD complex in approximately one in four synapses. Following depolarization by exposure to high K+, the proportion of CYLD-labeled PSDs as well as the labeling intensity of CYLD at the PSD increased by more than eighty percent, indicating that neuronal activity promotes accumulation of CYLD at the PSD. An increase in postsynaptic CYLD following activity would promote removal of lysine63-polyubiquitins from PSD proteins and thus could regulate their trafficking and prevent their autophagic degradation.

  17. Efficacy and tolerance of lysine clonixinate versus paracetamol/codeine following inguinal hernioplasty.

    Science.gov (United States)

    de los Santos, A R; Di Girolamo, G; Martí, M L

    1998-01-01

    In this study lysine clonixinate, a nonsteroidal antiinflammatory agent with selective inhibition of cyclooxygenase-2 and 5-lipooxygenase in in vitro and in vivo pharmacodynamic studies, was evaluated in a prospective, randomized, double-blind, double-dummy clinical study versus paracetamol/codeine, in 151 patients with pain following inguinal hernioplasty. Patients were treated with one 125 mg tablet of lysine clonixinate or paracetamol/codeine (500 mg + 30 mg) administered at fixed doses every 4 h during 2 days. Controls were carried out 1, 2 and 4 h after the first intake of day 1 and day 2. Each control included assessment of pain at rest, when coughing, sitting and upon moderate pressure. Both treatment groups (lysine clonixinate, 77 patients and paracetamol/codeine, 74 patients) were comparable in terms of demographic and baseline pain intensities. Spontaneous pain was reduced significantly in both treatment groups from the 1st-h control. The following values were recorded in the lysine clonixinate group during day 1: baseline: 6.86 +/- 1.24; 1st h: 4.49 +/- 1.77; 2nd h: 2.96 +/- 1.74; 4th h: 2.23 +/- 1.51. The following values for the same group during day 2 were: predose: 1.70 +/- 1.64; 1st h: 1.16 +/- 1.17; 2nd h: 0.78 +/- 1.06; 4th h: 0.63 +/- 1.05. The paracetamol/codeine group revealed the following values: day 1: baseline: 6.72 +/- 1.22; 1st h: 4.57 +/- 1.72; 2nd h: 2.97 +/- 1.68; 4th h: 2.47 +/- 1.68 and day 2: predose: 2.02 +/- 1.57; 1st h: 1.32 +/- 1.23; 2nd h: 0.82 +/- 0.99; 4th h: 0.66 +/- 0.89. Reduction of pain induced by coughing, sitting and pressure showed similar behavior patterns. No significant differences between both treatment groups were encountered in terms of analgesic efficacy. Incidence of adverse effects was significantly higher in the paracetamol/codeine group (X2: p lysine clonixinate group four out of 77 patients showed side effects but these did not require treatment discontinuation.

  18. Essential histidyl residues at the active site(s) of sucrose-phosphate synthase from Prosopis juliflora.

    Science.gov (United States)

    Sinha, A K; Pathre, U V; Sane, P V

    1998-11-10

    Chemical modification of sucrose-phosphate synthase (EC 2.4.1.14) from Prosopis juliflora by diethyl pyrocarbonate (DEP) and photo-oxidation in the presence of rose bengal (RB) which modify the histidyl residues of the protein resulted in the inactivation of the enzyme activity. This inactivation was dependent on the concentration of the modifying reagent and the time of incubation and followed pseudo-first order kinetics. For both the reagents, the inactivation was maximum at pH 7.5, which is consistent with the involvement and presence of histidine residues at the active site of the enzyme. Substrates, UDPG and F6P protected the enzyme against the inactivation by the modifying reagents suggesting that the histidine residues may be involved in the binding of these substrates and are essential for the catalytic activity. Specificity of DEP was indicated by an increase in absorbance at 240 nm along with concomitant inactivation of the enzyme and reactivation of the modified enzyme by hydroxylamine. These results strongly suggest the presence of histidine residue(s) at or near the active site of the enzyme.

  19. Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets ...

    African Journals Online (AJOL)

    Two experiments were conducted to investigate the effect of supplementing low CP diets with methionine and lysine on broiler performance, carcass measure and their immune response against Infectious Bursa Disease (IBD) virus. In Experiment 1, ten diets were formulated. Diet 1 (control diet) contained 23.0% CP and ...

  20. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    International Nuclear Information System (INIS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-01-01

    This study investigated the effects of irradiation on N ε -carboxymethyl-lysine (CML) and N ε -carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810–0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage. - Highlights: • The effect of irradiation on CML and CEL formation in meat products is investigated. • CML and CEL contents in irradiated meat products exhibit a higher growth rate than non-irradiated samples. • PUFAs oxidation induced by irradiation promotes CML and CEL formation. • Lipid oxidation pathways are an important pathway for CML and CEL accumulation in irradiated samples during storage.

  1. Comparative Analysis of Proteome-Wide Lysine Acetylation in Juvenile and Adult Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Qing Li

    2017-11-01

    Full Text Available Schistosomiasis is a devastating parasitic disease caused by tremotodes of the genus Schistosoma. Eggs produced by sexually mature schistosomes are the causative agents of for pathogenesis and transmission. Elucidating the molecular mechanism of schistosome development and sexual maturation would facilitate the prevention and control of schistosomiasis. Acetylation of lysine is a dynamic and reversible post-translational modification playing keys role in many biological processes including development in both eukaryotes and prokaryotes. To investigate the impacts of lysine acetylation on Schistosoma japonicum (S. japonicum development and sexual maturation, we used immunoaffinity-based acetyllysine peptide enrichment combined with mass spectrometry (MS, to perform the first comparative analysis of proteome-wide lysine acetylation in both female and male, juvenile (18 days post infection, 18 dpi and adult (28 dpi schistosome samples. In total, we identified 874 unique acetylated sites in 494 acetylated proteins. The four samples shared 47 acetylated sites and 46 proteins. More acetylated sites and proteins shared by both females and males were identified in 28 dpi adults (189 and 143, respectively than in 18 dpi schistosomula (76 and 59, respectively. More stage-unique acetylated sites and proteins were also identified in 28 dpi adults (494 and 210, respectively than in 18 dpi schistosomula (73 and 44, respectively. Functional annotation showed that in different developmental stages and genders, a number of proteins involving in muscle movement, glycometabolism, lipid metabolism, energy metabolism, environmental stress resistance, antioxidation, etc., displayed distinct acetylation profiles, which was in accordance with the changes of their biological functions during schistosome development, suggesting that lysine acetylation modification exerted important regulatory roles in schistosome development. Taken together, our data provided the first

  2. Effect of amino acids lysine and arginine on fracture healing in rabbits: A radiological and histomorphological analysis

    Directory of Open Access Journals (Sweden)

    Sinha Shivam

    2009-01-01

    Full Text Available Background: Amino acids like arginine and lysine have been suggested to hasten the process of fracture healing by improving the local blood supply, supplementing growth factors, and improving collagen synthesis. We studied the role of lysine and arginine in the fracture repair process with regard to the rate of healing, probable mechanisms involved in the process, and mutual synergism between these agents. Materials and Methods: In an experimental study, 40 rabbits were subjected to ulnar osteotomy. They were distributed in control (14 and test groups (26. Twenty-six animals in the test group were fed with a diet rich in lysine and arginine. Both the groups were followed radiologically and histologically till union. Results: There was better healing of osteotomy in terms of better vascularization, callus formation, and mineralization in the test group. The time of healing in the test group was reduced by a period of 2 weeks. Conclusion: We conclude that amino acids like arginine and lysine may hasten fracture healing.

  3. Digestible threonine to lysine ratio in diets for laying hens aged 24-40 weeks

    Directory of Open Access Journals (Sweden)

    Tatiana Cristina da Rocha

    2013-12-01

    Full Text Available Two-hundred sixteen white laying hens were used to assess the ideal ratio of digestible threonine:lysine in diets for laying hens at 24 to 40 weeks of age. Birds were assigned to a randomized block design, with six treatments, six replicates per treatment and six birds per experimental unit. The cage was used as the blocking criterion. Experimental diets contained different digestible threonine:digestible lysine ratios (65, 70, 75, 80, 85 and 90% with 142 g/kg of crude protein. Experimental diets were formulated to be isonitrogenous and isocaloric with different contents of L-glutamic acid. Feed intake (g/hen/d, egg production (%, egg weight (g, egg mass (g/hen/d, feed conversion ratio (kg/dozen and kg/kg egg, eggshell weight (g, albumen weight (g, yolk weight (g and body weight gain (g were assessed. The maximum egg production was observed at 78% digestible threonine:digestible lysine ratio, while the best values of feed conversion ratio (kg/dozen egg and feed conversion ratio (kg/kg of egg were observed at 77.6% and 75%, respectively. Feed intake, egg mass and egg contents (yolk, albumen and eggshell were not affected by treatments. The estimated digestible threonine:digestible lysine ratio of Hy-Line W36 laying hens at 24 to 40 weeks of age is 78%, corresponding to 5.70 g/kg of dietary digestible threonine.

  4. Aflatoxin exposure during the first 1000 days of life in rural South Asia assessed by aflatoxin B₁-lysine albumin biomarkers.

    Science.gov (United States)

    Groopman, John D; Egner, Patricia A; Schulze, Kerry J; Wu, Lee S-F; Merrill, Rebecca; Mehra, Sucheta; Shamim, Abu A; Ali, Hasmot; Shaikh, Saijuddin; Gernand, Alison; Khatry, Subarna K; LeClerq, Steven C; West, Keith P; Christian, Parul

    2014-12-01

    Aflatoxin B1 is a potent carcinogen, occurring from mold growth that contaminates staple grains in hot, humid environments. In this investigation, aflatoxin B1-lysine albumin biomarkers were measured by mass spectrometry in rural South Asian women, during the first and third trimester of pregnancy, and their children at birth and at two years of age. These subjects participated in randomized community trials of antenatal micronutrient supplementation in Sarlahi District, southern Nepal and Gaibandha District in northwestern Bangladesh. Findings from the Nepal samples demonstrated exposure to aflatoxin, with 94% detectable samples ranging from 0.45 to 2939.30 pg aflatoxin B1-lysine/mg albumin during pregnancy. In the Bangladesh samples the range was 1.56 to 63.22 pg aflatoxin B1-lysine/mg albumin in the first trimester, 3.37 to 72.8 pg aflatoxin B1-lysine/mg albumin in the third trimester, 4.62 to 76.69 pg aflatoxin B1-lysine/mg albumin at birth and 3.88 to 81.44 pg aflatoxin B1-lysine/mg albumin at age two years. Aflatoxin B1-lysine adducts in cord blood samples demonstrated that the fetus had the capacity to convert aflatoxin into toxicologically active compounds and the detection in the same 2-year-old children illustrates exposure over the first 1000 days of life. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Andersson, Jan Legaard; Bacos, Karl

    2018-01-01

    ) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting......Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs...

  6. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    Science.gov (United States)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  7. Effect of dietary nutrients on ileal endogenous losses of threonine, cysteine, methionine, lysine, leucine and protein in broiler chicks.

    Science.gov (United States)

    Cerrate, S; Vignale, S K; Ekmay, R; England, J; Coon, C

    2018-04-01

    An isotope dose technique was utilized (i) to determine endogenous amino acid (AA) and protein losses and (ii) to propose adjusted values for AA requirements. The endogenous flow rate was calculated from the pool of enrichment in plasma AA, assuming similitude to enrichment of endogenous AA. In experiment 1, chicks were orally administered D4-lysine at 2% of estimated lysine intake from 16 to 24 days to find the isotopic steady state of the atom percent excess (APE) of lysine for plasma and jejunal and ileal digesta. The APE of D4-lysine in plasma, jejunal digesta and ileal digesta reached the isotopic steady state at 5.5, 3.4 and 2.0 days, respectively, by using the broken-line model. It was assumed that the isotopic steady state at 5 days identified for D4-lysine is also representative for the 15N-labeled AA. In experiment 2, chicks were fed diets from 1 to 21 days with increasing levels of fat (6%, 8%, 12%, 13% extract ether), protein (26%, 28.5%, 31% CP) or fiber (14%, 16%, 18% NDF) by adding poultry fat, soybean meal, blended animal protein or barley. Chicks were orally administered 15N-threonine, 15N-cysteine, 15N-methionine, 15N-lysine and 15N-leucine at 2% of estimated daily intake for 5 days from 17 to 21 days of age. Dietary nutrients influenced endogenous losses (EL), where dietary fat stimulated EL of lysine (P=0.06), leucine and protein (P=0.07); dietary protein enhanced EL of leucine and protein; and finally the dietary fiber increased EL of leucine. Dietary nutrients also affected apparent ileal digestibility (AID). Dietary fat increased AID of cysteine but decreased AID of lysine. Dietary protein reduced AID of protein, threonine, lysine and leucine, and similarly dietary fiber decreased AID of protein, threonine, methionine, lysine and leucine. In contrast, dietary fat or protein did not affect real ileal digestibility (RID) of protein and AA except threonine and leucine. The dietary fiber reduced the RID of protein, threonine and leucine. This

  8. Effects of lysine clonixinate and ketorolac tromethamine on prostanoid release from various rat organs incubated ex vivo.

    Science.gov (United States)

    Pallapies, D; Salinger, A; Meyer zum Gottesberge, A; Atkins, D J; Rohleder, G; Nagyiványi, P; Peskar, B A

    1995-01-01

    The release of prostanoids from rat brain, gastric mucosa, lungs and kidneys incubated ex vivo has been investigated for up to 5 h after oral administration of 10 mg/kg lysine clonixinate or 1 mg/kg ketorolac tromethamine. Additionally, 60 min after drug administration, a time point of near-maximal inhibition of prostanoid release, the effects of 2.5, 10 and 30 mg/kg lysine clonixinate and of 0.0225, 0.15 and 1 mg/kg ketorolac tromethamine were compared. In all organs investigated both drugs inhibited fatty acid cyclooxygenase (COX) in a dose-dependent manner, but ketorolac tromethamine was more potent and had a longer-lasting effect than lysine clonixinate. While the ID50 values for lysine clonixinate were in the same order of magnitude for all 4 organs investigated, ketorolac tromethamine exhibited some organ selectivity with a particularly high activity in the kidneys. This effect might be related to the renal toxicity of ketorolac tromethamine. On the other hand, the difference in potency was smallest in brain suggesting that inhibition of central prostanoid biosynthesis could contribute to the rapid and effective inhibition of pain by both drugs. IC50 values for inhibition of purified COX-1 and COX-2 in vitro were slightly lower for lysine clonixinate (2.4 and 24.6 micrograms/ml, respectively) than for ketorolac tromethamine (3.7 and 25.6 micrograms/ml, respectively).

  9. Enantioselective adsorption of ibuprofen and lysine in metal-organic frameworks

    NARCIS (Netherlands)

    Bueno-Perez, R.; Martin-Calvo, A.; Gómez-Álvarez, P.; Gutiérrez-Sevillano, J.J.; Merkling, P.J.; Vlugt, T.J.H.; van Erp, T.S.; Dubbeldam, D.; Calero, S.

    2014-01-01

    This study reveals the efficient enantiomeric separation of bioactive molecules in the liquid phase. Chiral structure HMOF-1 separates racemic mixtures whereas heteroselectivity is observed for scalemic mixtures of ibuprofen using non-chiral MIL-47 and MIL-53. Lysine enantiomers are only separated

  10. Amino acid nutrition beyond methionine and lysine for milk protein

    Science.gov (United States)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  11. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  12. [Chemical composition and content of antiphysiological factors of jojoba (Simmondsia chinensis) residual meal].

    Science.gov (United States)

    Pérez-Gil, F; Sanginés, G L; Torreblanca, R A; Grande, M L; Carranco, J M

    1989-12-01

    Jojoba (Simmondsia chinensis) is a perennial plant with an interesting economic value by processing it for liquid wax production. By pressing of jojoba seeds, by-product which has been called "residual meal" has been obtained, and because of its high protein content, it would be a great interest to evaluate it as animal feedstuff. The results of this study showed the following. Both seed and residual meal were analyzed in regard to their chemical proximal composition: crude protein 14.03 and 25.24%; ether extract, 48.89 and 14.73%; crude fiber, 10.03 and 10.07%; ash, 1.59 and 4.72, and nitrogen-free extract, 25.46 and 45.25, the limiting amino acids being methionine, lysine and isoleucine. The trypsin inhibitor factors were 13.747 and 11,197 TIU/g; and hemagglutinins and saponins were negative for both samples. Cyanogenic glucosides were positive in both samples. It was concluded that jojoba residual meal is an alternative as an adequate feedstuff in those regions where jojoba is produced. Nevertheless, prior to consumption it must be treated so as to eliminate the toxic factors.

  13. Comparison of the Fc fragment from a human IgG1 and its CH2, pFc', and tFc' subfragments. A study using reductive methylation and 13C NMR

    International Nuclear Information System (INIS)

    Jentoft, J.E.; Rayford, R.

    1989-01-01

    The Fc fragment of a human monoclonal IgG1 was compared with subfragments containing (a) the intact CH2 domain (CH2 fragment) or (b) the intact CH3 domain (pFc' and tFc' fragments). All fragments were reductively 13 C-methylated and their resulting dimethyllysyl resonances characterized in 0.1 M KCl as a function of pH by 13 C NMR spectroscopy. Seven resonances were characterized for the 18 lysine residues of the Fc fragment, eight for the 12 lysines of the CH2 fragment, and five each for the 9 lysines of the pFc' and the 6 lysines of the tFc' fragments, respectively. The multiplicity of resonances indicates that the lysine residues in each fragment exist in a variety of microenvironments and that the fragments are all highly structured. The correspondence between 6 of the 12 or 13 perturbed lysine residues in the Fc fragment and the smaller subfragments indicates that the conformation of the CH2 and CH3 domains is largely unchanged in the smaller fragments. However, in addition to three lysines at the CH2-CH3 domain interface, whose environments were known to be disrupted in the smaller fragments, three or four lysine residues have somewhat different properties in the Fc fragment and in the subfragments, indicating that some local perturbations are included in the domain structure in the subfragments

  14. Irbesartan treatment does not influence plasma levels of the advanced glycation end products N(epsilon)(1-carboxymethyl)lysine and N(epsilon)(1-carboxyethyl)lysine in patients with type 2 diabetes and microalbuminuria. A randomized controlled trial

    DEFF Research Database (Denmark)

    Engelen, Lian; Persson, Frederik; Ferreira, Isabel

    2011-01-01

    to confirm such beneficial effects of ARBs on AGEs are lacking. Therefore, we investigated the effects of irbesartan treatment on plasma levels of the AGEs N(e)(1-carboxymethyl)lysine (CML) and N(e)(1-carboxyethyl)lysine (CEL) in hypertensive patients with type 2 diabetes and microalbuminuria. METHODS: We...... and -0.10 µmol/mol lysine (-0.76 to 0.56) for CEL. CONCLUSIONS: Long-term irbesartan treatment does not influence plasma levels of the AGE CML and CEL in patients with type 2 diabetes and microalbuminuria.......BACKGROUND: In vitro and animal experiments have shown inhibiting effects of angiotensin receptor blockers (ARBs) on the formation of advanced glycation end products (AGEs), which are known to be involved in the development of cardiovascular complications in diabetes. However, sufficient human data...

  15. Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and Phosphoenolpyruvate Carboxylase Desensitization for Glutamic Acid and Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Yokota, Atsushi; Sawada, Kazunori; Wada, Masaru

    In the 1980s, Shiio and coworkers demonstrated using random mutagenesis that the following three phenotypes were effective for boosting lysine production by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CS L ), (2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by aspartic acid (PEPC R ), and (3) pyruvate kinase (PYK) deficiency. Here, we reevaluated these phenotypes and their interrelationship in lysine production using recombinant DNA techniques.The pyk deletion and PEPC R (D299N in ppc) independently showed marginal effects on lysine production, but both phenotypes synergistically increased lysine yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine production. Similar effects were also found for glutamic acid production. CS L (S252C in gltA) further increased lysine yield. Thus, using molecular techniques, the combination of these three phenotypes was reconfirmed to be effective for lysine production. However, a simple CS L mutant showed instabilities in growth and lysine yield.Surprisingly, the pyk deletion was found to increase biomass production in wild-type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant showed a 37% increase in growth (based on OD 660 ) compared with the ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome analysis revealed the intracellular accumulation of excess precursor metabolites. Thus, their conversion into biomass was considered to relieve the metabolic distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is important to control both the intracellular oxaloacetic acid (OAA) level and respiration rate. These findings may facilitate the rational use of C. glutamicum in fermentation industries.

  16. Effect of lysine addition on growth of black iguana (Ctenosaura pectinata).

    Science.gov (United States)

    Guzmán, Juan José Ortiz; Luis, Arcos-García José; Martínez, Germán D Mendoza; Pérez, Fernando Xicoténcatl Plata; Mascorro, Gisela Fuentes; Inzunza, Gabriela Ruelas

    2013-01-01

    The effects of the addition of lysine to commercial feed given to captive black iguana (Ctenosaura pectinata) were evaluated in terms of growth and feed digestibility. Twenty-eight-day-old black iguana with an initial weight of 5.5 ± 0.3 g were housed individually in cages measuring 45 × 45 × 45 cm. The experiment lasted 150 days. The ambient temperature ranged from 28 to 35°C with a relative humidity of 60 to 95%. Treatments consisted of the addition of different percentages of lysine to the feed (0.0, 0.1, 0.2, and 0.3%, dry matter [DM] base). There was a linear response (P iguana diet in the first months of life is important to stimulate growth and intake. © 2012 Wiley Periodicals, Inc.

  17. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-01-01

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B"c"a expression did not restore adipogenesis.

  18. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Kadri, Zahra; Granger-Locatelli, Marine [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Fucharoen, Suthat [Thalassemia Research Center, Mahidol University (Thailand); Maouche-Chrétien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France); Prost, Stéphane [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Chrétien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France)

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.

  19. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 1)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Tonooka, Hiroyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using three food-simulating solvents (water, 4% acetic acid and 20% ethanol), based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. For evaporation, a water bath was used in the official method, and a hot plate in the modified method. In most laboratories, the test solutions were heated until just prior to evaporation to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods, regardless of the heating equipment used. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method.

  20. Experiment list: SRX186755 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available tion has can have different consequences depending on the specific lysine residue targeted. In general, thou...n have different consequences depending on the specific lysine residue targeted. In general, though, there a

  1. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata.

    Directory of Open Access Journals (Sweden)

    Sheida Azizi

    Full Text Available Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs. This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs, MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates

  2. The effects of acute morphine treatment on the incorporation of [3H]L-lysine by normal and regenerating facial nucleus neurons

    International Nuclear Information System (INIS)

    Sinatra, R.S.; Ford, D.H.; Rhines, R.K.

    1979-01-01

    The effect of morphine on the incorporation of [ 3 H]L-lysine into proteins of facial nucleus neurons was examined by light microscopic radioautography. Silver grains present within various compartments of normal and regenerating (3-, 7-. 14- and 21 days post-axotomy) neurons from saline-treated Wistar rats were compared with the amount present in similar cells from animals receiving 40 mg/kg morphine sulfate i.v. At 14- and 21-days post-axotomy, regenerating neurons were larger and the grain count in the emulsion over these cells was greater than that observed in normal (unoperated) neurons. In normal facial neurons, the accumulation of lysine into the nucleus and nucleolus was significantly lower 60 min after morphine adminstration. However, morphine's inhibition of lysine incorporation was even more pronounced in regenerating neurons. In these cells, nuclear lysine uptake was depressed at 3 and 7 days, while maximum inhibition of cytoplasmic incorporation occurred at 14-days post-axotomy. Morphine adminstration decreased nucleolar lysine incorporation at all survival intervals. (Auth.)

  3. Sequences of digestible lysine for gilts from 60 to 148 days of age

    Directory of Open Access Journals (Sweden)

    Veredino Louzada da Silva Júnior

    2015-01-01

    Full Text Available The experiment was conducted to evaluate five nutritional plans based on sequences of standardized ileal digestible lysine: 0.90-0.80-0.70, 1.00-0.90-0.80, 1.10-1.00-0.90, 1.20-1.10-1.00, and 1.30-1.20-1.10% fed to gilts from 60 to 99, 129 to 100, and 130 to 148 days of age, respectively. Eighty commercial hybrid gilts, selected for lean gain, with initial weight of 23.46±0.27kg were allotted in a randomized block design, with five treatments, eight replicates, and two pigs per experimental unit. No effect (P>0.05 of the nutritional plans was verified on daily feed intake, daily weight gain and feed conversion. The nutritional plans had no influence (P>0.05 on any of the carcass traits evaluated (carcass yield, meat amount, and meat yield. The nutritional plan of 0.90-0.80-0.70% standardized ileal digestible lysine fed to gilts from 60 to 99, 100 to 129, and 130 to 148 days of age, respectively, meets the standardized ileal digestible lysine requirements of gilts from 60 to 148 days of age.

  4. Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of L-Lysine.

    Science.gov (United States)

    Pathania, Amit; Sardesai, Abhijit A

    2015-06-15

    In Escherichia coli, argO encodes an exporter for L-arginine (Arg) and its toxic analogue canavanine (CAN), and its transcriptional activation and repression, by Arg and L-lysine (Lys), respectively, are mediated by the regulator ArgP. Accordingly argO and argP mutants are CAN supersensitive (CAN(ss)). We report the identification of ybjE as a gene encoding a predicted inner membrane protein that mediates export of Lys, and our results confirm the previous identification with a different approach of YbjE as a Lys exporter, reported by Ueda and coworkers (T. Ueda, Y. Nakai, Y. Gunji, R. Takikawa, and Y. Joe, U.S. patents 7,629,142 B2 [December 2009] and 8,383,363 B1 [February 2013] and European patent 1,664,318 B1 [September 2009]). ybjE was isolated as a multicopy suppressor of the CAN(ss) phenotype of a strain lacking ArgO. The absence of YbjE did not confer a CAN(ss) phenotype but instead conferred hypersensitivity to the lysine antimetabolite thialysine and led to growth inhibition by the dipeptide lysylalanine, which is associated with elevated cellular Lys content. YbjE overproduction resulted in Lys excretion and syntrophic cross-feeding of a Lys auxotroph. Constitutive overexpression of argO promoted Lys cross-feeding that is indicative of a latent Lys export potential of ArgO. Arg modestly repressed ybjE transcription in an ArgR-dependent manner, and ArgR displayed Arg-sensitive binding to the ybjE promoter region in vitro. Our studies suggest that the reciprocal repression of argO and ybjE, respectively, by Lys and Arg confers the specificity for basic amino acid export by distinct paths and that such cross-repression contributes to maintenance of cytoplasmic Arg/Lys balance. We propose that YbjE be redesignated LysO. This work ascribes a lysine export function to the product of the ybjE gene of Escherichia coli, leading to a physiological scenario wherein two proteins, ArgO and YbjE, perform the task of separately exporting arginine and lysine

  5. Role of Lysine-54 in determining cofactor specificity and binding in human dihydrofolate reductase

    International Nuclear Information System (INIS)

    Huang, Shaoming; Tan, Xuehai; Thompson, P.D.; Freisheim, J.H.; Appleman, J.R.; Blakley, R.L.; Sheridan, R.P.; Venkataraghavan, R.

    1990-01-01

    Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of K m values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating K m and k cat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The ratio of K m (NADH)/K m (NADPH) decreases from 69 in the wild-type enzyme to 4.7 in the K54Q enzyme, suggesting that Lys-54, among other interactions between protein side-chain residues and the 2'-phosphate, makes a major contribution in terms of binding energy and differentiation of K m values for NADPH and NADH. Agents at concentrations that show activating effects on the wild-type enzyme such as potassium chloride and urea all inactivate the K54Q enzyme. There appear to be no gross conformational differences between wild-type and K54Q enzyme molecules as judged by competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase and from protease susceptibility studies on both wild-type and K54Q mutant enzymes. The pH-rate profiles using NADPH for K54Q and wild-type enzymes show divergences at certain pH values, suggesting the possibility of alteration(s) in the steps of the catalytic pathway for the K54Q enzyme

  6. Post-voiding residual urine and capacity increase in orthotopic urinary diversion: Standard vs modified technique

    Directory of Open Access Journals (Sweden)

    Bančević Vladimir

    2010-01-01

    Full Text Available Background/Aim. Ever since the time when the first orthotopic urinary diversion (pouch was performed there has been a constant improvement and modification of surgical techniques. The aim has been to create a urinary reservoir similar to normal bladder, to decrease incidence of postoperative complications and provide an improved life quality. The aim of this study was to compare postvoiding residual urine (PVR and capacity of the pouch constructed by standard or modified technique. Methods. In this prospective and partially retrospective clinical study we included 79 patients. In the group of 41 patients (group ST pouch was constructed using 50-70 cm of the ileum (standard technique. In the group of 38 patients (group MT pouch was constructed using 25-35 cm of the ileum (modified technique. Postoperatively, PVR and pouch capacity were measured using ultrasound in a 3-, 6- and 12-month period. Results. Postoperatively, an increase in PVR and pouch capacity was noticed in both groups. Twelve months postoperatively, PVR was significantly smaller in the group MT than in the group ST [23 (0-90 mL vs 109 (0-570 mL, p < 0,001]. In the same period the pouch capacity was significantly smaller in the MT group than in the ST group [460 (290-710 mL vs 892 (480-2 050 mL, p < 0.001]. Conclusion. Postoperatively, an increase in PVR and pouch capacity was noticed during a 12-month period. A year following the operation the pouch created from a shorter ileal segment reached capacity of the 'normal' bladder with small PVR. The pouch created by standard technique developed an unnecessary large PVR and capacity.

  7. Lysine and Glutamic Acids as the End Products of Multi-response of Optimized Fermented Medium by Mucor mucedo KP736529.

    Science.gov (United States)

    El-Hersh, Mohammed S; Saber, WesamEldin I A; El-Fadaly, Husain A; Mahmoud, Mohammed K

    Amino acids are important for living organisms, they acting as crucial for metabolic activities and energy generation, wherein the deficiency in these amino acids cause various physiological defects. The aim of this study is to investigate the effect of some nutritional factors on the amino acids production by Mucor mucedo KP736529 during fermentation intervals. Mucor mucedo KP736529 was selected according to proteolytic activity. Corn steep liquor and olive cake were used in the fermented medium during Placket-Burman and central composite design to maximize the production of lysine and glutamic acids. During the screening by Plackett-Burman design, olive cake and Corn Steep Liquor (CSL) had potential importance for the higher production of amino acids. The individual fractionation of total amino acids showed both lysine and glutamic as the major amino acids associated with the fermentation process. Moreover, the Central Composite Design (CCD) has been adopted to explain the interaction between olive cake and CSL on the production of lysine and glutamic acids. The model recorded significant F-value, with high values of R 2, adjusted R 2 and predicted R 2 for both lysine and glutamic, indicating the validity of the data. Solving equation for maximum production of lysine recorded theoretical levels of olive cake and CSL, being 2.58 and 1.83 g L -1, respectively, with predicting value of lysine at 1.470 μg mL -1, whereas the predicting value of glutamic acid reached 0.805 mg mL -1 at levels of 2.49 and 1.93 g L -1 from olive cake and CSL, respectively. The desirability function (D) showed the actual responses being 1.473±0.009 and 0.801±0.004 μg mL -1 for lysine and glutamic acids, respectively. The model showed adequate validity to be applied in a large-scale production of both lysine and glutamic acids.

  8. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Science.gov (United States)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  9. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy

    NARCIS (Netherlands)

    Petrovic, Dejan M.; Leenhouts, Kees; van Roosmalen, Maarten L.; KleinJan, Fenneke; Broos, Jaap

    2012-01-01

    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a

  10. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    , and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...... dismutase (sod) promoter, to see whether growth could be restored. Neither pycA nor birA overexpression, whether alone or in combination, had an effect on specific growth rate, but they did have a positive effect on lysine yield, which increased by 55% in the strain overexpressing both enzymes....

  11. Co-regulation of histone-modifying enzymes in cancer.

    Directory of Open Access Journals (Sweden)

    Abul B M M K Islam

    Full Text Available Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs and histone methyltransferases (HMTs, their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.

  12. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  13. Metabolism-oriented amino acid requirement determination by means of the catabolic rates of 14C- and 15N-labelled lysine under maintenance

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.; Adam, K.

    1977-01-01

    Male Wistar rats (of 60 g live weight) allotted in 10 groups were fed diets with gradually increasing lysine levels ranging from 1.4 to 7.4 g lysine/16 g N. Feed intake was restricted so much that the experimental animals did not change their live weights during the last 3 days of the 8-day experimental period. On the 7the experimental day, 4 animals of each group were injected, i. p. 14 C-L-lysine, the 14 CO 2 -excretion being subsequently measured over a period of 2 hours. On the next day, 6 animals of each group were applied an i. p. injection of 15 N-L-lysine, the urine being collected over the following 24-hour period to measure the 15 N-frequency. Applying both labelling methods, an increased catabolisation of the amino acid was observed after the metabolically necessary lysine requirement had been covered. The methods are very sensitive and revealed, under the experimental conditions chosen, a lysine requirement coverage of about 3 g lysine/16 g N. The possibility of using also 15 N-labelled compounds in the metabolism-oriented amino acid requirement determination is likely to facilitate the transfer of the methodology to farm animals would thus allow to study the amino acid requirement of man. The metabolism-oriented amino acid requirement determination will likewise allow to estimate exact amino acid requirement data under conditions that cannot be rated on the basis of productive yields. (author)

  14. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    Science.gov (United States)

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-04

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis1

    Science.gov (United States)

    Whitaker, Paul; Meng, Xiaoli; Lavergne, Sidonie N.; El-Ghaiesh, Sabah; Monshi, Manal; Earnshaw, Caroline; Peckham, Daniel; Gooi, Jimmy; Conway, Steve; Pirmohamed, Munir; Jenkins, Rosalind E.; Naisbitt, Dean J.; Park, B. Kevin

    2011-01-01

    A mechanistic understanding of the relationship between the chemistry of drug antigen formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating antigens derived from piperacillin in patients undergoing therapy and the nature of the drug derived-epitopes on protein which can function as an antigen to stimulate T-cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptens, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time- and concentration-dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations up to 13/59 lysine residues were modified, four of which (Lys190, 195, 432 and 541) were detected in patients’ plasma. Piperacillin-specific T-lymphocyte responses (proliferation, cytokines and granzyme-B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T-cells with characterized synthetic conjugates. Analysis of minimally-modified T-cell stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, 432 and 541 as principal functional epitopes for T-cells. This study has characterized the multiple haptenic structures on albumin in patients, and showed that they constitute functional antigenic determinants for T-cells. PMID:21606251

  16. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Directory of Open Access Journals (Sweden)

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  17. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 Vif-induced degradation

    OpenAIRE

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here we show that A3G po...

  18. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    The present study was to assess the effect of feeding low protein diet with or without supplemental lysine to meet NRC (1998) requirement on growth performance, carcass trait, meat composition, and meat quality of pigs. An experiment of 126 days was conducted on 21 crossbred Landrace pigs (average weight 11.72 ...

  19. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli.

    Science.gov (United States)

    Rauschmeier, Martina; Schüppel, Valentina; Tetsch, Larissa; Jung, Kirsten

    2014-01-09

    The coordination of signal transduction and substrate transport represents a sophisticated way to integrate information on metabolite fluxes into transcriptional regulation. This widely distributed process involves protein-protein interactions between two integral membrane proteins. Here we report new insights into the molecular mechanism of the regulatory interplay between the lysine-specific permease LysP and the membrane-integrated pH sensor CadC, which together induce lysine-dependent adaptation of E. coli under acidic stress. In vivo analyses revealed that, in the absence of either stimulus, the two proteins form a stable association, which is modulated by lysine and low pH. In addition to its transmembrane helix, the periplasmic domain of CadC also participated in the interaction. Site-directed mutagenesis pinpointed Arg265 and Arg268 in CadC as well as Asp275 and Asp278 in LysP as potential periplasmic interaction sites. Moreover, a systematic analysis of 100 LysP variants with single-site replacements indicated that the lysine signal is transduced from co-sensor to sensor via lysine-dependent conformational changes (upon substrate binding and/or transport) of LysP. Our results suggest a scenario in which CadC is inhibited by LysP via intramembrane and periplasmic contacts under non-inducing conditions. Upon induction, lysine-dependent conformational changes in LysP transduce the lysine signal via a direct conformational coupling to CadC without resolving the interaction completely. Moreover, concomitant pH-dependent protonation of periplasmic amino acids in both proteins dissolves their electrostatic connections resulting in further destabilization of the CadC/LysP interaction. © 2013.

  20. Tumor accumulation of {epsilon}-poly-lysines-based polyamines conjugated with boron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Umano, Masayuki; Uechi, Kazuhiro; Uriuda, Takatoshi; Murayama, Sayuri; Azuma, Hideki [Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 5588585 (Japan); Shinohara, Atsuko [Department of Epidemiology and Environmental Health, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138421 (Japan); Liu, Young; Ono, Koji [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori 5900494 (Japan); Kirihata, Mitsunori [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 5998531 (Japan); Yanagie, Hironobu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1138656 (Japan); Nagasaki, Takeshi, E-mail: nagasaki@bioa.eng.osaka-cu.ac.jp [Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 5588585 (Japan)

    2011-12-15

    Boron Neutron Capture Therapy (BNCT) is one of the potent cancer radiotherapies using nuclear reaction between {sup 10}B atoms and the neutron. Whether BNCT will succeed or not depends on tumor selective delivery of {sup 10}B compounds. {epsilon}-Poly-L-lysine is a naturally occurring polyamine characterized by the peptide linkages between the carboxyl and {epsilon}-amino groups of L-lysine. Because of high safety {epsilon}-PLL is applied practically as a food additive due to its strong antimicrobial activity. In this study, we focus on a development of a novel polymeric delivery system for BNCT using biodegradable {epsilon}-PLL conjugated with {sup 10}B-containing clusters (BSH). This polymeric boron carrier will be expected to deliver safely and efficiently into tumor tissues based on Enhanced Permeability and Retention (EPR) effect.

  1. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    Science.gov (United States)

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection.

    Science.gov (United States)

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A; Nava, Miguel; Su, Trent; Yousef, Ahmed F; Zemke, Nathan R; Pellegrini, Matteo; Kurdistani, Siavash K; Berk, Arnold J

    2014-11-12

    Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine

    International Nuclear Information System (INIS)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel; Miyaki, Liza Aya Mabuchi; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Oliveira, Daniela Mara de

    2012-01-01

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  4. Synthesis of L-lysine imprinted cryogels for immunoglobulin G adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Çulha, Senem; Armutcu, Canan; Uzun, Lokman; Şenel, Serap, E-mail: senel@hacettepe.edu.tr; Denizli, Adil

    2015-07-01

    L-Lysine imprinted poly(2-hydroxyethyl methacrylate-co-N-methacryloyl-L-aspartic acid) [P(HEMA-co-MAAsp)] cryogels were synthesized and characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, surface area measurements, swelling, and squeezing tests. Specific surface area for imprinted cryogel was 34.2 m{sup 2}/g while the value was 21.3 m{sup 2}/g for non-imprinted cryogel. IgG adsorption from aqueous solution was examined in continuous mode examining the factors effecting adsorption capacity such as pH, concentration, flow rate, temperature, ionic strength, and incubation time. 0.5 M NaCl was used as desorption agent. The IgG adsorption capacity was determined as 55.1 mg/g for 1.0 mg/mL IgG original concentration at 25.0 °C while pH and flow rate were 7.0 and 0.5 mL/min, respectively. When human serum was used as IgG source, the removal of 90.4% of crude IgG was attained for 1/20 diluted plasma sample. The imprinted cryogel was used in ten successive cycles without significant loss in adsorption capacity. The cryogel was determined to be 1.79 times more selective to IgG than albumin and 1.45 times more selective than hemoglobin. The adsorption behavior well suited to Langmuir isotherm and the kinetics followed pseudo-second-order model. Thermodynamic parameters ΔH°, ΔS° and ΔG° for this adsorption process were also calculated. - Highlights: • L-Lysine imprinted cryogels through epitope imprinting approach • Optimization of recognition conditions for template (L-lysine) and target (IgG) biomolecules • Efficient reusability (upto 10 cycles) without any significant change in capacity • A great potential for specific and selective IgG purification • Promising, cost-friendly, specific and selective adsorbent • IgG separation/purification from complex feeding solutions like human serum.

  5. Comparative pharmacokinetics of cefuroxime lysine after single intravenous, intraperitoneal, and intramuscular administration to rats.

    Science.gov (United States)

    Zhao, Long-shan; Yin, Ran; Wei, Bin-bin; Li, Qing; Jiang, Zhen-yuan; Chen, Xiao-hui; Bi, Kai-shun

    2012-11-01

    To compare the pharmacokinetic parameters of cefuroxime lysine, a new second-generation of cephalosporin antibiotics, after intravenous (IV), intraperitoneal (IP), or intramuscular (IM) administration. Twelve male and 12 virgin female Sprague-Dawley rats, weighing from 200 to 250 g, were divided into three groups (n=4 for each gender in each group). The rats were administered a single dose (67.5 mg/kg) of cefuroxime lysine via IV bolus or IP or IM injection. Blood samples were collected and analyzed with a validated UFLC-MS/MS method. The concentration-time data were then calculated by compartmental and non-compartmental pharmacokinetic methods using DAS software. After IV, IP or IM administration, the plasma cefuroxime lysine disposition was best described by a tri-compartmental, bi-compartmental or mono-compartmental open model, respectively, with first-order elimination. The plasma concentration profiles were similar through the 3 administration routes. The distribution process was rapid after IV administration [t(1/2(d)), 0.10 ± 0.11 h vs 1.36 ± 0.65 and 1.25 ± 1.01 h]. The AUMC(0-∞) is markedly larger, and mean residence time (MRT) is greatly longer after IP administration than that in IV, or IM routes (AUMC(0-∞): 55.33 ± 20.34 vs 16.84 ± 4.85 and 36.17 ± 13.24 mg·h(2)/L; MRT: 0.93 ± 0.10 h vs 0.37 ± 0.07 h and 0.65 ± 0.05 h). The C(max) after IM injection was significantly higher than that in IP injection (73.51 ± 12.46 vs 49.09 ± 7.06 mg/L). The AUC(0-∞) in male rats were significantly higher than that in female rats after IM administration (66.38 ± 16.5 vs 44.23 ± 6.37 mg·h/L). There was no significantly sex-related difference in other pharmacokinetic parameters of cefuroxime lysine between male and female rats. Cefuroxime lysine shows quick absorption after IV injection, a long retension after IP injection, and a high C(max) after IM injection. After IM administration the AUC(0-∞) in male rats was significantly larger than that in

  6. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    Science.gov (United States)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  7. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE*

    OpenAIRE

    Korwar, Arvind M.; Vannuruswamy, Garikapati; Jagadeeshaprasad, Mashanipalya G.; Jayaramaiah, Ramesha H.; Bhat, Shweta; Regin, Bhaskaran S.; Ramaswamy, Sureshkumar; Giri, Ashok P.; Mohan, Viswanathan; Balasubramanyam, Muthuswamy; Kulkarni, Mahesh J.

    2015-01-01

    Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified...

  8. Effect Of Sprouting On Available Lysine Content Of Cowpea ( Vigna ...

    African Journals Online (AJOL)

    This study was conducted to determine the effect of sprouting on available Lysine content of cowpea (Vigna unguiculata) flour and the performance of the flour used for producing “moi – moi” (steamed bean cake). Cowpea seed was subjected to sprouting for different periods of 1 day, 2 days and 3 days for samples B, C and ...

  9. De Novo Assembly and Comparative Transcriptome Analysis Provide Insight into Lysine Biosynthesis in Toona sinensis Roem.

    Science.gov (United States)

    Zhang, Xia; Song, Zhenqiao; Liu, Tian; Guo, Linlin; Li, Xingfeng

    2016-01-01

    Toona sinensis Roem is a popular leafy vegetable in Chinese cuisine and is also used as a traditional Chinese medicine. In this study, leaf samples were collected from the same plant on two development stages and then used for high-throughput Illumina RNA-sequencing (RNA-Seq). 125,884 transcripts and 54,628 unigenes were obtained through de novo assembly. A total of 25,570 could be annotated with known biological functions, which indicated that the T. sinensis leaves and shoots were undergoing multiple developmental processes especially for active metabolic processes. Analysis of differentially expressed unigenes between the two libraries showed that the lysine biosynthesis was an enriched KEGG pathway, and candidate genes involved in the lysine biosynthesis pathway in T. sinensis leaves and shoots were identified. Our results provide a primary analysis of the gene expression files of T. sinensis leaf and shoot on different development stages and afford a valuable resource for genetic and genomic research on plant lysine biosynthesis.

  10. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Khmara, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Pavol Jozef Safarik University, Faculty of Science, Park Angelinum 9, Kosice (Slovakia); Koneracka, M.; Kubovcikova, M. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Zavisova, V., E-mail: zavisova@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Antal, I.; Csach, K.; Kopcansky, P. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M. [Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia)

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe{sub 3}O{sub 4} content were prepared and tested to define the optimal PLL/Fe{sub 3}O{sub 4} weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe{sub 3}O{sub 4} weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe{sub 3}O{sub 4} magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies. - Highlights: • Antibody-coupled magnetic nanoparticles can serve for targeting of cancer cells. • Nanoparticle properties depend on poly-L-lysine loading that prevents aggregation. • Nanoparticles show time-, concentration-, and cell type-specific cytotoxicity. • M75 antibody detects the hypoxia-induced tumor biomarker CA IX. • M75-conjugated nanoparticles exhibit selective cell binding and internalization.

  11. Quantification of nitrogen in the liquid fraction and in vitro assessment of lysine bioavailability in the solid fraction of soybean meal hydrolysates.

    Science.gov (United States)

    Luján-Rhenals, D; Morawicki, R; Shi, Z; Ricke, S C

    2018-01-02

    Soybean meal (SBM) is a product generated from the manufacture of soybean oil and has the potential for use as a source of fermentable sugars for ethanol production or as a protein source for animal feeds. Knowing the levels of nitrogen available from ammonium is a necessary element of the ethanolic fermentation process while identifying the levels of essential amino acids such as lysine is important in determining usage as a feed source. As such the purpose of this study was to quantify total nitrogen and ammonium in the liquid fraction of hydrolyzed SBM and to evaluate total and bioavailable lysine in the solid fraction of the hydrolyzed SBM. The effects of acid concentration, cellulase and β-glucosidase on total and ammonium nitrogen were studied with analysis indicating that higher acid concentrations increased nitrogen compounds with ammonium concentrations ranging from 0.20 to 1.24 g L -1 while enzymatic treatments did not significantly increase nitrogen levels. Total and bioavailable lysine was quantified by use of an auxotrophic gfpmut3 E.coli whole-cell bioassay organism incapable of lysine biosynthesis. Acid and enzymatic treatments were applied with lysine bioavailability increasing from a base of 82% for untreated SBM to up to 97%. Our results demonstrated that SBM has the potential to serve in ethanolic fermentation and as an optimal source essential amino acid lysine.

  12. Influence of the residual stresses on crack initiation in brittle materials and structures

    International Nuclear Information System (INIS)

    Henninger, C.

    2007-11-01

    Many material assemblies subjected to thermo-mechanical loadings develop thermal residual stresses which modify crack onset conditions. Besides if one of the components has a plastic behaviour, plastic residual deformations may also have a contribution. One of the issues in brittle fracture mechanics is to predict crack onset without any pre-existing defect. Leguillon proposed an onset criterion based on both a Griffth-like energetic condition and a maximum stress criterion. The analysis uses matched asymptotics and the theory of singularity. The good fit between the model and experimental measurements led on homogeneous isotropic materials under pure mechanical loading incited us to take into account residual stresses in the criterion. The comparison between the modified criterion and the experimental measurements carried out on an aluminum/epoxy assembly proves to be satisfying concerning the prediction of failure of the interface between the two components. Besides, it allows, through inversion, identifying the fracture properties of this interface. The modified criterion is also applied to the delamination of the tile/structure interface in the plasma facing components of the Tore Supra tokamak. Indeed thermal and plastic residual stresses appear in the metallic part of these coating tiles. (author)

  13. The use of crude protein content to predict concentrations of lysine ...

    African Journals Online (AJOL)

    Correlations were determined between the crude protein (CP) and lysine or methionine concentrations of grain from wheat (cultivar: palmiet), barley (cultivar: clipper) and triticale (cultivar: usgen 19) grown in the Western Cape region of South Africa. Twenty samples of varying CP content were collected for each grain type ...

  14. Lysine Restriction and Pyridoxal Phosphate Administration in a NADK2 Patient.

    Science.gov (United States)

    Tort, Frederic; Ugarteburu, Olatz; Torres, Maria Angeles; García-Villoria, Judit; Girós, Marisa; Ruiz, Angeles; Ribes, Antonia

    2016-11-01

    We report the case of a 10-year-old Spanish girl with mutations in NADK2 Prenatal central nervous system abnormalities showed ventriculomegaly, colpocephaly, and hypoplasia of the corpus callosum. At birth, axial hypotonia, uncoordinated movements, microcephaly, and generalized cerebellar atrophy were detected. Metabolic investigations revealed high lysine, lactate, and pipecolic acid levels in blood and cerebrospinal fluid. Pyruvate carboxylase and pyruvate dehydrogenase activity in fibroblasts were normal. Beginning at birth she received biotin, thiamine, and carnitine supplementation. A lysine-restricted diet was started when she was 1 month old. Because pipecolic acid was high, pyridoxine was added to treatment. At 3 years old, astatic myoclonic epilepsy appeared, with no response to levetiracetam. We switched pyridoxine to pyridoxal phosphate, with electroclinical improvement. Because the activity of mitochondrial respiratory chain complexes III and IV was slightly low in muscle, other cofactors such as ubidecarenone, idebenone, vitamin E, and creatine were added to the treatment. At 8 years old, plasma acylcarnitine testing was performed, and high levels of 2-trans, 4-cis-decadienoylcarnitine were found. Whole exome sequencing identified a homozygous splice site mutation in NADK2 (c.956+6T>C; p.Trp319Cysfs*21). This substitution generates exon skipping, leading to a truncated protein. In fact, NADK2 messenger RNA and the corresponding protein were almost absent. Now, at 10 years of age she presents with ataxia and incoordination. She has oromotor dysphasia but is able to understand fluid language and is a very friendly girl. We hypothesize that the patient's clinical improvement could be due to her lysine-restricted diet together with cofactors and pyridoxal phosphate administration. Copyright © 2016 by the American Academy of Pediatrics.

  15. Methyleneation of peptides by N,N,N,N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study.

    Science.gov (United States)

    Shirangi, Mehrnoosh; Sastre Toraño, Javier; Sellergren, Börje; Hennink, Wim E; Somsen, Govert W; van Nostrum, Cornelus F

    2015-01-21

    Free radical polymerization is often used to prepare protein and peptide-loaded hydrogels for the design of controlled release systems and molecular imprinting materials. Peroxodisulfates (ammonium peroxodisulfates (APS) or potassium peroxodisulfates (KPS)) with N,N,N,N-tetramethylethylenediamine (TEMED) are frequently used as initiator and catalyst. However, exposure to these free radical polymerization reagents may lead to modification of the protein and peptide. In this work, we show the modification of lysine residues by ammonium peroxodisulfate (APS)/TEMED of the immunostimulant thymopentin (TP5). Parallel studies on a decapeptide and a library of 15 dipeptides were performed to reveal the mechanism of modification. LC-MS of APS/TEMED-exposed TP5 revealed a major reaction product with an increased mass (+12 Da) with respect to TP5. LC-MS(2) and LC-MS(3) were performed to obtain structural information on the modified peptide and localize the actual modification site. Interpretation of the obtained data demonstrates the formation of a methylene bridge between the lysine and arginine residue in the presence of TEMED, while replacing TEMED with a sodium bisulfite catalyst did not show this modification. Studies with the other peptides showed that the TEMED radical can induce methyleneation on peptides when lysine is next to arginine, proline, cysteine, aspargine, glutamine, histidine, tyrosine, tryptophan, and aspartic acid residues. Stability of peptides and protein needs to be considered when using APS/TEMED in in situ polymerization systems. The use of an alternative catalyst such as sodium bisulfite may preserve the chemical integrity of peptides during in situ polymerization.

  16. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    Directory of Open Access Journals (Sweden)

    Xi-yu Liu

    2017-01-01

    Full Text Available Aims. Latent autoimmune diabetes in adults (LADA is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05. H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c. When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05. The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.

  17. Development and quality characteristics of shelf-stable soy-agushie: a residual by-product of soymilk production.

    Science.gov (United States)

    Nti, Christina A; Plahar, Wisdom A; Annan, Nana T

    2016-03-01

    A process was developed for the production of a high-protein food ingredient, soy-agushie, from the residual by-product of soymilk production. The product, with a moisture content of about 6%, was evaluated for its quality characteristics and performance in traditional dishes. The protein content was about 26% with similar amino acids content as that of the whole soybean. Lysine remained high in the dehydrated product (6.57 g/16 g N). While over 60% of the original B vitamins content in the beans was extracted with the milk, high proportions of the minerals were found to be retained in the residual by-product. The process adequately reduced the trypsin inhibitor levels in the beans from 25 to 1.5 mg/g. High sensory scores were obtained for recipes developed with soy-agushie in traditional dishes. The scope of utilization of the soy-agushie could be widened to include several traditional foods and bakery products for maximum nutritional benefits.

  18. Removal of ammonium from aqueous solutions using alkali-modified biochars

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2016-10-01

    Full Text Available Biochars converted from agricultural residuals can effectively remove ammonium from water. This work further improved the sorption ability of biochars to aqueous ammonium through alkali modification. Three modified biochars were prepared from agricultural residuals pre-treated with NaOH solution through low-temperature (300 °C slow pyrolysis. The modified biochars effectively removed ammonium ions from water under various conditions with relatively fast adsorption kinetics (reached equilibrium within 10 h and extremely high adsorption capacity (>200 mg/g. The Langmuir maximum capacity of the three modified biochars were between 313.9 and 518.9 mg/g, higher than many other ammonium adsorbents. Although the sorption of ammonium onto the modified biochar was affected by pH and temperature, it was high under all of the tested conditions. Findings from this work indicated that alkali-modified biochars can be used as an alternative adsorbent for the removal of ammonium from wastewater.

  19. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination.

    Science.gov (United States)

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-03-26

    5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Uptake of tritiated lysine by fresh water alga, Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Gogate, S.S.; Krishnamoorthy, T.M.

    1983-01-01

    Tritium uptake by fresh water alga. S.obliquus was studied using tritium labelled lysine, and a sequential solvent extraction procedure was used to study the distribution of tritium in different organic constituents of the algal cells. The accumulation of tritium in the algal cells was found to be 3-4 orders of magnitude more than that obtained for tritiated water. (author)

  1. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    Science.gov (United States)

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  2. ToF-SIMS analysis of poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers.

    Science.gov (United States)

    Pidhatika, Bidhari; Chen, Yin; Coullerez, Geraldine; Al-Bataineh, Sameer; Textor, Marcus

    2014-02-01

    Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL-PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL-PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL-PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL-PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has

  3. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

    2015-02-06

    Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.

  4. Protection against inflammatory β-cell damage by lysine deacetylase inhibition and microRNA expression?

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Pallesen, Emil Marek Heymans; Novotny, Guy Wayne

    Background and aims: Pro-inflammatory cytokines contribute to pancreatic β-cell apoptosis in type 1 and 2 diabetes mellitus. The detrimental effects resulting from cytokine-induced signaling in the β cell can be reduced by inhibition of class I classical lysine deacetylases (KDACi), especially HDAC...... of oxidative stress proteins responsible for β-cell death. The aim of the study is to identify novel and specific therapeutic targets for β-cell protection by mapping the miR profile of β cells rescued from inflammatory assault by inhibition of lysine deacetylation, thereby identifying miR that repress....... The perspective of this study is to develop novel anti-diabetic drugs targeting HDAC1 and/or associated miR....

  5. Experiment list: SRX186711 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available on can have different consequences depending on the specific lysine residue targeted. In general, though, th...anscriptional initiation and open chromatin structure. It remains unknown whether acetylation can have different consequences dependi...ng on the specific lysine residue targeted. In general, though, there appears to be

  6. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  7. Metabolic Availability of the Limiting Amino Acids Lysine and Tryptophan in Cooked White African Cornmeal Assessed in Healthy Young Men Using the Indicator Amino Acid Oxidation Technique.

    Science.gov (United States)

    Rafii, Mahroukh; Elango, Rajavel; Ball, Ronald O; Pencharz, Paul B; Courtney-Martin, Glenda

    2018-06-01

    Maize is a staple food in many regions of the world, particularly in Africa and Latin America. However, maize protein is limiting in the indispensable amino acids lysine and tryptophan, making its protein of poor quality. The main objective of this study was to determine the protein quality of white African cornmeal by determining the metabolic availability (MA) of lysine and tryptophan. To determine the MA of lysine, 4 amounts of l-lysine (10, 13, 16, and 18 mg · kg-1 · d-1 totaling 28.6%, 37.1%, 45.7%, and 51.4% of the mean lysine requirement of 35 mg · kg-1 · d-1, respectively) were studied in 6 healthy young men in a repeated-measures design. To determine the MA of tryptophan, 4 amounts of l-tryptophan (0.5, 1, 1.5, and 2 mg · kg-1 · d-1 totaling 12.5%, 25.0%, 37.5%, and 50.0% of the mean tryptophan requirement of 4 mg · kg-1 · d-1, respectively) were studied in 7 healthy young men in a repeated-measures design. The MAs of lysine and tryptophan were estimated by comparing the indicator amino acid oxidation (IAAO) response with varying intakes of lysine and tryptophan in cooked white cornmeal compared with the IAAO response to l-lysine and l-tryptophan intakes in the reference protein (crystalline amino acid mixture patterned after egg protein) with the use of the slope ratio method. The MAs of lysine and tryptophan from African cooked white cornmeal were 71% and 80%, respectively. Our study provides a robust estimate of the availability of lysine and tryptophan in African white maize to healthy young men. This estimate provides a basis for postproduction fortification or supplementation of maize-based diets. This trial was registered at www.clinicaltrials.gov as NCT02402179.

  8. The effect of amino acid lysine and methionine addition on feed toward the growth and retention on mud crab (Scylla serrata)

    Science.gov (United States)

    Alissianto, Y. R.; Sandriani, Z. A.; Rahardja, B. S.; Agustono; Rozi

    2018-04-01

    High market demand of mud crab (Scylla serrata) encourages farmers to increase the production of mud crab. However, mud crab can not synthesize essential amino acids, so it is necessary to supply essential amino acids such as lysine and methionine in the diet. This study aims to determine the effect of lysine and methionine on feeds to increase growth and retention of mud crabs (Scylla serrata). In this study the amount of lysine amino acid and methionine added to the trash fish diet were: P0 (0: 0%); P1 (0.75: 0.75%); P2 (1: 1%); P3 (1.25: 1.25%); P4 (1.5: 1.5%) with the ratio of lysine and methionine 1: 1. The parameters observed in this study were Survival Rate (SR), Specific Growth Rate (SGR), Feed Conversion Ratio (FCR), Efficiency Feed (EF), protein retention and energy retention. The results of the 35-day maintenance study showed significant differences (P protein retention and no significant effect (P> 0.05) on energy retention and Survival Rate (SR) on mud crab. The best results in this study were found in P4 treatment with addition of lysine amino acids and methionine (1.5: 1.5%).

  9. Changing the inhibitory specificity and function of Cucurbita maxima trypsin inhibitor-V by site-directed mutagenesis.

    Science.gov (United States)

    Wen, L; Lee, I; Chen, G; Huang, J K; Gong, Y; Krishnamoorthi, R

    1995-02-27

    Cucurbita maxima trypsin inhibitor-V (CMTI-V) is also a specific inhibitor of human blood coagulation factor beta-factor XIIa. A recombinant version of CMTI-V has allowed probing of roles of individual amino acid residues including the reactive site residue, lysine (P1), by site-directed mutagenesis. The K44R showed at least a 5-fold increase in inhibitory activity toward human beta-factor XIIa, while there was no change toward bovine trypsin. This result demonstrates that beta-factor-XIIa prefers an arginine residue over lysine residue, while trypsin is non-specific to lysine or arginine in its binding pocket. On the other hand, the specificity of CMTI-V could be changed from trypsin to chymotrypsin inhibition by mutation of the P1 residue to either leucine or methionine (K44L or K44M).

  10. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.

    Science.gov (United States)

    Wittmann, Christoph; Heinzle, Elmar

    2002-12-01

    A comprehensive approach of metabolite balancing, (13)C tracer studies, gas chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and isotopomer modeling was applied for comparative metabolic network analysis of a genealogy of five successive generations of lysine-producing Corynebacterium glutamicum. The five strains examined (C. glutamicum ATCC 13032, 13287, 21253, 21526, and 21543) were previously obtained by random mutagenesis and selection. Throughout the genealogy, the lysine yield in batch cultures increased markedly from 1.2 to 24.9% relative to the glucose uptake flux. Strain optimization was accompanied by significant changes in intracellular flux distributions. The relative pentose phosphate pathway (PPP) flux successively increased, clearly corresponding to the product yield. Moreover, the anaplerotic net flux increased almost twofold as a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes to cover the increased demand for lysine formation; thus, the overall increase was a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes. The relative flux through isocitrate dehydrogenase dropped from 82.7% in the wild type to 59.9% in the lysine-producing mutants. In contrast to the NADPH demand, which increased from 109 to 172% due to the increasing lysine yield, the overall NADPH supply remained constant between 185 and 196%, resulting in a decrease in the apparent NADPH excess through strain optimization. Extrapolated to industrial lysine producers, the NADPH supply might become a limiting factor. The relative contributions of PPP and the tricarboxylic acid cycle to NADPH generation changed markedly, indicating that C. glutamicum is able to maintain a constant supply of NADPH under completely different flux conditions. Statistical analysis by a Monte Carlo approach revealed high precision for the estimated fluxes, underlining the

  11. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  12. Sulphate Removal from Water by Carbon Residue from Biomass Gasification: Effect of Chemical Modification Methods on Sulphate Removal Efficiency

    Directory of Open Access Journals (Sweden)

    Hanna Runtti

    2016-02-01

    Full Text Available Sulphate removal from mine water is a problem because traditional chemical precipitation does not remove all sulphates. In addition, it creates lime sediment as a secondary waste. Therefore, an inexpensive and environmental-friendly sulphate removal method is needed in addition to precipitation. In this study, carbon residues from a wood gasification process were repurposed as precursors to a suitable sorbent for SO42- ion removal. The raw material was modified using ZnCl2, BaCl2, CaCl2, FeCl3, or FeCl2. Carbon residues modified with FeCl3 were selected for further consideration because the removal efficiency toward sulphate was the highest. Batch sorption experiments were performed to evaluate the effects of the initial pH, initial SO42- ion concentration, and contact time on sulphate removal. The removal of SO42- ions using Fe-modified carbon residue was notably higher compared with unmodified carbon residue and commercially available activated carbon. The sorption data exhibited pseudo-second-order kinetics. The isotherm analysis indicated that the sorption data of Fe-modified carbon residues can be represented by the bi-Langmuir isotherm model.

  13. Analytical description of fatigue crack propagation regularities taking into account residual welding stresses

    International Nuclear Information System (INIS)

    Trufyakov, V.I.; Knysh, V.V.; Mikheev, P.P.; Kuz'menko, A.Z.

    1983-01-01

    The procedure, accounting the effect of residual stresses on crack resistance of welded constructions under cyclic loads, is described. The procedure is based on the Paris equation modified by the introduction of the coefficient of residual stress intensity through the functional dependence. The dependence is determined for cases of residual stresses of tension and compression. The experimental data for the 15KhSND steel are presented

  14. Chemically modified carboxypeptidase Y with increased amidase activity

    International Nuclear Information System (INIS)

    Breddam, K.

    1984-01-01

    Treatment of carboxypeptidase Y with 14 C-iodoacetamide caused a drastic reduction in the peptidase activity towards FA-Phe-Leu-OH while the esterase activity towards FA-Phe-OMe, the amidase activity towards FA-Phe-NH 2 and the peptidyl amino acid amide hydrolase activity towards FA-Phe-Gly-NH 2 were much less affected. The loss of peptidase activity could be correlated with the incorporation of a single equivalent of reagent and it was demonstrated that the site of reaction was a methionyl residue, thus forming a sulfonium derivative. Analogous methionyl modifications were performed: carboxypeptidase Y modified with phenacylbromide hydrolysed substrates with bulky leaving groups in the P position, i.e. -OEt, -OBzl, -Gly-NH 2 ,-Gly-OH, and -Leu-OH, at reduced rates while substrates with small groups in that position, i.e. -OMe and -NH 2 , were hydrolysed with increased rates. These results indicate that the methionyl residue modified by phenacylbromide is located in the S binding site of the enzyme. Similar results were obtained with carboxypeptidase Y modified with m-nitrophen- acylbromide and p-nitrophenacylbromide. The increase in amidase activity and decrease in peptidyl amino acid amide hydrolase activity of carboxypeptidase Y following modification with phenacylbromide, m-nitrophenacylbromide, and p-nitrophenacylbromide was exploited in deamidation of peptide amides. These modified enzymes deamidated peptide amides with the exception of those containing a C-terminal glycyl or seryl residue in yields of 80-100% which is significantly higher than with unmodified carboxypeptidase Y. (author)

  15. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Pathak, Ravi; Philizaire, Marc; Mujtaba, Shiraz

    2015-01-01

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets

  16. Dichotomy in the Epigenetic Mark Lysine Acetylation is Critical for the Proliferation of Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Ravi [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Philizaire, Marc [Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States); Mujtaba, Shiraz, E-mail: smujtaba@mec.cuny.edu [Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Ave, New York, NY 10029 (United States); Medgar Evers College, City University of New York, 1638 Bedford Ave, 403D, Brooklyn, NY 11225 (United States)

    2015-08-19

    The dynamics of lysine acetylation serve as a major epigenetic mark, which regulates cellular response to inflammation, DNA damage and hormonal changes. Microarray assays reveal changes in gene expression, but cannot predict regulation of a protein function by epigenetic modifications. The present study employs computational tools to inclusively analyze microarray data to understand the potential role of acetylation during development of androgen-independent PCa. The data revealed that the androgen receptor interacts with 333 proteins, out of which at least 92 proteins were acetylated. Notably, the number of cellular proteins undergoing acetylation in the androgen-dependent PCa was more as compared to the androgen-independent PCa. Specifically, the 32 lysine-acetylated proteins in the cellular models of androgen-dependent PCa were mainly involved in regulating stability as well as pre- and post-processing of mRNA. Collectively, the data demonstrate that protein lysine acetylation plays a crucial role during the transition of androgen-dependent to -independent PCa, which importantly, could also serve as a functional axis to unravel new therapeutic targets.

  17. Digestible lysine requirement of Nile tilapia from 86 to 227 g fed arginine to lysine balanced dietsExigência de lisina digestível para a tilápia-do-Nilo de 87 a 226 g alimentada com dietas balanceadas para a relação arginina: lisina

    Directory of Open Access Journals (Sweden)

    Tadeu Orlandi Xavier

    2013-09-01

    Full Text Available This study was conducted out to determine the dietary digestible lysine requirements of Nile tilapia from 87 to 226 g. Fish (n = 170; average initial weight = 86.62 ± 4.89 g were distributed 15 1000-L cages, in a completely randomized design with five treatments and three replicates, and fed extruded diets containing 0.88; 1.12; 1.36; 1.59 and 1.83% of digestible lysine, balanced to keep the arginine to lysine ratio as 1.43:1. There was no effect of the dietary lysine levels on whole body moisture and ash. By Linear Response Plateau analysis of lysine levels on daily gain, feed conversion, protein efficiency ratio and rate of protein deposition was estimated requirement of 1.31, 1.03, 1.16 and 1.31 % of lysine, respectively. A quadratic effect of lysine levels on whole body fat deposition ratio and whole body ether extract composition were observed, and the lowest values were estimated with 1.16% and 1.43% of dietary lysine, respectively. An increase of the dietary lysine levels resulted in linear increase on the fillet yield. The digestible lysine requirements of Nile tilapia (87 to 226 g is 1.31%, in diets balanced for arginine to lysine ratio.Este estudo foi realizado com o objetivo de determinar a exigência de lisina digestível em dietas para alevinos de tilápia-do-Nilo de 87 a 226 g. Os peixes (n=300; peso inicial médio = 86,62 ± 4,89 g foram distribuídos em 15 tanques-rede de 1000 L cada, em delineamento inteiramente casualizado com cinco tratamentos e três repetições e alimentados com dietas extrusadas contendo 0,88; 1,12; 1,36; 1,59 e 1,83% de lisina digestível, balanceadas para relação arginina:lisina em 1,43:1. Não foi observado efeito dos níveis de lisina na dieta sobre os teores de umidade e proteína corporal. Pela análise Linear Response Plateau dos níveis de lisina sobre o ganho de peso diário, conversão alimentar, taxa de eficiência proteica e taxa de deposição de proteína, estimou-se exigência de 1,31; 1

  18. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    -sheet poly(L-lysine) contains up-and-down antiparallel beta-sheets based on the hairpin motif. The ROA spectrum of beta-sheet poly(L-lysine) was compared with ROA data on a number of native proteins containing different types of beta-sheet. Amide I and amide II ROA band patterns observed in beta-sheet poly(L-ly...

  19. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: troy.liu@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Bhamji, I., E-mail: imran.bhamji@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Withers, P.J., E-mail: p.j.withers@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Wolfe, D.E., E-mail: dew125@arl.psu.edu [The Pennsylvania State University, University Park, State College, PA 16801 (United States); Motta, A.T., E-mail: atmnuc@engr.psu.edu [The Pennsylvania State University, University Park, State College, PA 16801 (United States); Preuss, M., E-mail: michael.preuss@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom)

    2015-11-15

    This paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr–Nb–Sn–Fe alloy (ZIRLO™) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLO™ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∼3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this.

  20. Formation and Inhibition of Nε-(Carboxymethyllysine in Saccharide-Lysine Model Systems during Microwave Heating

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-10-01

    Full Text Available  Nε-(carboxymethyl lysine (CML is the most abundant advanced glycation end product (AGE, and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of Nε-(carboxymethyllysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  1. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by ...

    Indian Academy of Sciences (India)

    Administrator

    MS received 15 April 2008; revised 2 July 2008. Abstract. The kinetics of Ru(III) catalysed oxidation of L-lysine by diperiodatoargentate (III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0⋅50 mol dm. –3 was studied spectrophotometri- cally. The oxidation products are aldehyde (5-aminopentanal) and ...

  2. The relationship between DNA synthesis and incorporation of (14C) lysine into different histone fractions in Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Malec, J.; Kornacka, L.; Wojnarowska, M.; Moscicka, M.

    1974-01-01

    The effect of inhibition of DNA synthesis by hydroxyurea on ( 14 C) lysine incorporation into the main four histone fractions in Ehrlich ascites tumor cells, was examined in vitro. The radioactivity of lysine-rich histones, especially of histone f1, was preferentially decreased. The smallest decrease was observed for histone f3. The incorporation into other cellular proteins was but slightly affected. (author)

  3. Adsorption Property and Mechanism of Oxytetracycline onto Willow Residues

    Directory of Open Access Journals (Sweden)

    Di Wang

    2017-12-01

    Full Text Available To elucidate the adsorption property and the mechanism of plant residues to reduce oxytetracycline (OTC, the adsorption of OTC onto raw willow roots (WR-R, stems (WS-R, leaves (WL-R, and adsorption onto desugared willow roots (WR-D, stems (WS-D, and leaves (WL-D were investigated. The structural characterization was analyzed by scanning electron microscopy, Fourier-transform infrared spectra, and an elemental analyzer. OTC adsorption onto the different tissues of willow residues was compared and correlated with their structures. The adsorption kinetics of OTC onto willow residues was found to follow the pseudo-first-order model. The isothermal adsorption process of OTC onto the different tissues of willow residues followed the Langmuir and Freundlich model and the process was also a spontaneous endothermic reaction, which was mainly physical adsorption. After the willow residues were desugared, the polarity decreased and the aromaticity increased, which explained why the adsorption amounts of the desugared willow residues were higher than those of the unmodified residues. These observations suggest that the raw and modified willow residues have great potential as adsorbents to remove organic pollutants.

  4. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  5. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection

    NARCIS (Netherlands)

    Christensen, D.P.; Gysemans, C.; Lundh, M.; Dahllof, M.S.; Noesgaard, D.; Schmidt, S.F.; Mandrup, S; Birkbak, N.; Workman, C.T.; Piemonti, L.; Blaabjerg, L.; Monzani, V.; Fossati, G.; Mascagni, P.; Paraskevas, S.; Aikin, R.A.; Billestrup, N.; Grunnet, L.G.; Dinarello, C.A.; Mathieu, C.; Mandrup-Poulsen, T.

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic beta-cells. Lysine deacetylase inhibitors (KDACi) protect beta-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes

  6. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  7. Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes.

    Science.gov (United States)

    Park, Sunmin; Park, Jin Young; Lee, Ju Hong; Kim, Sung-Hoon

    2015-03-01

    This study compared plasma concentrations of amino acids in pregnant women with and without gestational diabetes mellitus (GDM) and identified the association between plasma amino acid levels and GDM, insulin resistance, and insulin secretion at 24-28 weeks of pregnancy. Circulating amino acid levels were evaluated using high-performance liquid chromatography at 24-28 weeks of pregnancy in 25 non-GDM and 64 GDM women after adjusting for covariates such as maternal age, body mass index (BMI) before pregnancy, BMI and gestational age at screening GDM, and daily caloric intake. Backward stepwise logistic regression analysis was used to identify the predictors of developing GDM, and homeostatic model assessments for insulin resistance (HOMA-IR) and β-cell function (HOMA-B). Circulating levels of amino acids except threonine and tyrosine were significantly higher in GDM women than non-GDM women. Along with the intakes of energy, protein, and fat from animal sources, the intakes of each amino acid were significantly higher in the GDM group without a direct correlation to plasma amino acid levels. The variation in GDM development was explained by maternal age, diastolic blood pressure, and plasma lysine levels (R(2)=0.691). Height, BMI before pregnancy, systolic blood pressure, and plasma tyrosine and valine levels accounted for the variation in HOMA-IR (R(2)=0.589). The 53.3% variation of HOMA-B was explained by maternal age, BMI at GDM screening, plasma insulin level at 1 h during the oral glucose tolerance test (OGTT), and plasma valine level. Circulating concentrations of lysine, tyrosine, and valine were independently and positively associated with GDM through modifying insulin resistance and secretion.

  8. Detecting organic gunpowder residues from handgun use

    Science.gov (United States)

    MacCrehan, William A.; Ricketts, K. Michelle; Baltzersen, Richard A.; Rowe, Walter F.

    1999-02-01

    The gunpowder residues that remain after the use of handguns or improvised explosive devices pose a challenge for the forensic investigator. Can these residues be reliably linked to a specific gunpowder or ammunition? We investigated the possibility by recovering and measuring the composition of organic additives in smokeless powder and its post-firing residues. By determining gunpowder additives such as nitroglycerin, dinitrotoluene, ethyl- and methylcentralite, and diphenylamine, we hope to identify the type of gunpowder in the residues and perhaps to provide evidence of a match to a sample of unfired powder. The gunpowder additives were extracted using an automated technique, pressurized fluid extraction (PFE). The conditions for the quantitative extraction of the additives using neat and solvent-modified supercritical carbon dioxide were investigated. All of the major gunpowder additives can be determined with baseline resolution using capillary electrophoresis (CE) with a micellar agent and UV absorbance detection. A study of candidate internal standards for use in the CE method is also presented. The PFE/CE technique is used to evaluate a new residue sampling protocol--asking shooters to blow their noses. In addition, an initial investigation of the compositional differences among unfired and post-fired .22 handgun residues is presented.

  9. Expression of M6 and M7 lysin in Mytilus edulis is not restricted to sperm, but occurs also in oocytes and somatic tissue of males and females.

    Science.gov (United States)

    Heß, Anne-Katrin; Bartel, Manuela; Roth, Karina; Messerschmidt, Katrin; Heilmann, Katja; Kenchington, Ellen; Micheel, Burkhard; Stuckas, Heiko

    2012-08-01

    Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26-AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male-specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females. Copyright © 2012 Wiley Periodicals, Inc.

  10. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells.

    Science.gov (United States)

    Walsh, David P; Murphy, Robert D; Panarella, Angela; Raftery, Rosanne M; Cavanagh, Brenton; Simpson, Jeremy C; O'Brien, Fergal J; Heise, Andreas; Cryan, Sally-Ann

    2018-05-07

    The field of tissue engineering is increasingly recognizing that gene therapy can be employed for modulating in vivo cellular response thereby guiding tissue regeneration. However, the field lacks a versatile and biocompatible gene delivery platform capable of efficiently delivering transgenes to mesenchymal stem cells (MSCs), a cell type often refractory to transfection. Herein, we describe the extensive and systematic exploration of three architectural variations of star-shaped poly(l-lysine) polypeptide (star-PLL) with varying number and length of poly(l-lysine) arms as potential nonviral gene delivery vectors for MSCs. We demonstrate that star-PLL vectors are capable of self-assembling with pDNA to form stable, cationic nanomedicines. Utilizing high content screening, live cell imaging, and mechanistic uptake studies we confirm the intracellular delivery of pDNA by star-PLLs to MSCs is a rapid process, which likely proceeds via a clathrin-independent mechanism. We identify a star-PLL composition with 64 poly(l-lysine) arms and five l-lysine subunits per arm as a particularly efficient vector that is capable of delivering both reporter genes and the therapeutic transgenes bone morphogenetic protein-2 and vascular endothelial growth factor to MSCs. This composition facilitated a 1000-fold increase in transgene expression in MSCs compared to its linear analogue, linear poly(l-lysine). Furthermore, it demonstrated comparable transgene expression to the widely used vector polyethylenimine using a lower pDNA dose with significantly less cytotoxicity. Overall, this study illustrates the ability of the star-PLL vectors to facilitate efficient, nontoxic nucleic acid delivery to MSCs thereby functioning as an innovative nanomedicine platform for tissue engineering applications.

  11. Investigation of the influence of the feed quantity on the utilisation of synthetic lysine (α-15N-labelled) in broiler chickens

    International Nuclear Information System (INIS)

    Liebert, F.; Gebhardt, G.

    1982-01-01

    A total of 15 broiler chickens was fed with a diet of wheat/wheat gluten supplemented with lysine on three N intake levels (I: 1,500; II: 2,100; III: 3,000 mgN/LW/sub kg//sup 0.67/) between their 11. and 20. day of life and tested with regard to the characteristic data of N metabolisation (N balance experiment) and 15 N incorporation in selected tissues and the whole body of chickens. While N metabolisation did not show any differences of process, the results of 15 N incorporation indicated a little more favorable conditions of utilisation for synthetic lysine in III concerning the whole body and the liver. The level of feed intake must not be neglected as a quantity on the utilisation of synthetic lysine but all the problems connected cannot be explained as a whole by this parameter. For the restrictions of N intake effective in the N balance experiment no negative influence is to be expected with regard to the utilisation of synthetic lysine in comparison to ad libitum feeding. (author)

  12. Bladder carcinogenesis in rats subjected to ureterosigmoidostomy and treated with L-lysine.

    Science.gov (United States)

    Dornelas, Conceição Aparecida; Santos, Alessandra Marques Dos; Correia, Antonio Lucas Oliveira; Juanes, Camila de Carvalho; Coelho, João Paulo Ferreira; Cunha, Bianca Lopes; Maciel, André Vinicius Vieira; Jamacaru, Francisco Vagnaldo Fechine

    2016-01-01

    to evaluate the effect of L-lysine in the bladder and intestinal epithelia in rats submitted to vesicosigmoidostomy. we divided forty Wistar rats into four groups: group I - control group (Sham); group II - submitted to vesicosigmoidostomy and treated with L-lysine 150mg/kg; group III - submitted only to vesicosigmoidostomy; and group IV - received L-lysine 150mg/kg. After eight weeks the animals were sacrificed. in the bladders of all operated animals we observed simple, papillary and nodular hyperplasia of transitional cells, transitional cell papillomas and squamous metaplasia. As for the occurrence of aberrant crypt foci in the colons of operated animals, we did not observe statistically significant differences in any of the distal, proximal and medium fragments, or in all fragments together (p=1.0000). Although statistically there was no promotion of carcinogenesis in the epithelia of rats treated with L-lysine in the observed time, it was clear the histogenesis of bladder carcinogenesis in its initial phase in all operated rats, this being probably associated with chronic infection and tiny bladder stones. o objetivo deste trabalho é avaliar o efeito da L-lisina nos epitélios vesical e intestinal de ratas submetidas à vesicossigmoidostomia. quarenta ratas Wistar, foram divididas em quatro grupos: grupo I- grupo controle (Sham); grupo II- submetido à vesicossigmoidostomia e tratado com L-lisina 150mg/kg; grupo III- submetido apenas à vesicossigmoidostomia; e grupo IV- recebeu L-lisina 150mg/kg. Após oito semanas os animais foram sacrificados. na bexiga de todos os animais operados observou-se hiperplasia simples, papilar e nodular de células transicionais, papiloma de células transicionais e metaplasia escamosa. Quanto à ocorrência de focos de criptas aberrantes nos colos dos animais operados, não foi evidenciado diferença estatística significante em nenhum dos fragmentos distal, proximal e médio, e todos juntos (P=1,0000). apesar de

  13. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach.

    Science.gov (United States)

    Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen

    2016-04-07

    Being one type of post-translational modifications (PTMs), protein lysine succinylation is important in regulating varieties of biological processes. It is also involved with some diseases, however. Consequently, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence having many Lys residues therein, which ones can be succinylated, and which ones cannot? To address this problem, we have developed a predictor called pSuc-Lys through (1) incorporating the sequence-coupled information into the general pseudo amino acid composition, (2) balancing out skewed training dataset by random sampling, and (3) constructing an ensemble predictor by fusing a series of individual random forest classifiers. Rigorous cross-validations indicated that it remarkably outperformed the existing methods. A user-friendly web-server for pSuc-Lys has been established at http://www.jci-bioinfo.cn/pSuc-Lys, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the formulation and approach presented here can also be used to analyze many other problems in computational proteomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression.

    Science.gov (United States)

    Ruesch, Catherine E; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S; Zaman, Riasat; Joska, Tammy M; Belden, William J

    2014-11-25

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. Copyright © 2015 Ruesch et al.

  15. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  16. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  17. Exigências de lisina digestível para codornas japonesas na fase de postura Digestible lysine requirements for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2008-12-01

    Full Text Available Objetivou-se estimar as exigências nutricionais de lisina digestível para codornas japonesas em postura. Foram utilizadas 240 codornas distribuídas em delineamento de blocos casualizados, com cinco tratamentos, cada um com seis repetições de oito aves. Os tratamentos consistiram de uma ração basal deficiente em lisina e suplementada com L-lisina.HCL, de modo a apresentar 0,88; 0,96; 1,04; 1,12 ou 1,20% de lisina digestível. Avaliaram-se o consumo de ração (CR, a produção de ovos (PR, o peso (PO e a massa (MO do ovo, a conversão alimentar por massa (CMO e por dúzia (CDZ de ovos, os pesos de albúmen (PA, gema (PG e casca (PC, as porcentagens de albúmen (%A, gema (%G e casca (%C e a gravidade específica (GE dos ovos. O nível de lisina digestível da ração influenciou o consumo de ração, enquanto a produção de ovos respondeu de forma quadrática aos níveis de lisina. As demais variáveis analisadas não foram influenciadas pelo nível de lisina digestível da ração. A exigência de lisina digestível para codornas japonesas em postura foi estimada em 1,03% da ração, que corresponde a um consumo diário de 292 mg de lisina digestível.The objective was to estimate the nutritional requirements of digestible lysine for Japanese laying quails. Two hundred and forty Japanese quails were allotted to a completely randomized block designs, with five diets, with six replications of eight birds each. Diets consisted of a basal ration deficient in lysine and supplemented with five levels 0.88, 0.96, 1.04, 1.12 or 1.20% of digestible lysine. Feed consumption, egg production, egg weight and egg mass, feed conversion by egg mass (FCEM and by dozen egg were evaluated. It was also evaluated, albumen weight, yolk weight and shell weight, percentages of albumen, yolk and shell and egg specific gravity. Dietary digestible lysine level linearly influenced feed intake, while egg production was affected in a quadratic faction by digestible

  18. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  19. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction

    OpenAIRE

    Kumar, Santosh; Kim, Young-Rae; Vikram, Ajit; Naqvi, Asma; Li, Qiuxia; Kassan, Modar; Kumar, Vikas; Bachschmid, Markus M.; Jacobs, Julia S.; Kumar, Ajay; Irani, Kaikobad

    2017-01-01

    Many oxidative stimuli engage the 66-kDa Src homology 2 domain-containing protein (p66Shc) to induce reactive oxygen species (ROS). ROS regulated by p66Shc promotes aging and contributes to cancer, diabetes, obesity, cardiomyopathy, and atherosclerosis. Here we identify a fundamental mechanism that controls p66Shc and p66Shc-regulated ROS. We show that p66Shc is lysine acetylated when cells are faced with an oxidative stimulus (diabetes), and lysine acetylation of p66Shc is obligatory for p66...

  20. Molecular imaging of reduced renal uptake of radiolabelled [DOTA{sup 0},Tyr{sup 3}]octreotate by the combination of lysine and Gelofusine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rolleman, E.J.; Bernard, B.F.; Breeman, W.A.P.; Forrer, F.; Blois, E. de; Krenning, E.P.; Jong, M. de [Dept. of Nuclear Medicine, Erasmus MC Rotterdam, Nijmegen (Netherlands); Hoppin, J. [Bioscan Inc., Washington, DC (United States); Gotthardt, M.; Boerman, O.C. [Dept. of Nuclear Medicine, Radboud Univ. Hospital, Nijmegen (Netherlands)

    2008-07-01

    Aim: in peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues, kidney uptake of radiolabelled compound is the major dose-limiting factor. We studied the effects of Gelofusine (20 mg) and lysine (100 mg) and the combination of both after injection of therapeutic doses of radiolabelled [DOTA{sup 0},Tyr{sup 3}]octreotate (60 MBq {sup 111}In or 555 MBq {sup 177}Lu labelled to 15 {mu}g peptide) in male Lewis rats. Methods: kidney uptake was measured by single photon emission computed tomography (SPECT) scans with a four-headed multi-pinhole camera (NanoSPECT) at 24 h, 5 and 7 days p. i. and was quantified by volume of interest analysis. For validation the activity concentration in the dissected kidneys was also determined ex vivo using a gamma counter and a dose calibrator. Results: Gelofusine and lysine both reduced kidney uptake of [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate significantly by about 40% at all time points. The combination of Gelofusine and lysine resulted in a 62% inhibition of kidney uptake (p < 0.01 vs. lysine alone). A weak but significant dose-response relationship for Gelofusine, but not for lysine, was found. In a study with [{sup 111}In-DOTA{sup 0},Tyr{sup 3}]octreotate, conclusions drawn from NanoSPECT data were confirmed by biodistribution data. Conclusions: we conclude that rat kidney uptake of radiolabelled somatostatin analogues can be monitored for a longer period in the same animal using animal SPECT. Gelofusine and lysine had equal potential to reduce kidney uptake of therapeutic doses of [{sup 177}Lu-DOTA{sup 0},Tyr{sup 3}]octreotate. The combination of these compounds caused a significantly larger reduction than lysine or Gelofusine alone and may therefore offer new possibilities in PRRT. The NanoSPECT data were validated by standard biodistribution experiments. (orig.)

  1. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression

    Science.gov (United States)

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-01-01

    l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574

  2. EFFECTS OF L-LYSINE AESCINAT ON INTRACRANIAL PRESSURE IN CRITICALLY ILL PATIENTS WITH SEVERE TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    S. S. Petrikov

    2016-01-01

    Full Text Available Abstract. Increased intracranial pressure results in cerebral blood flow decrease and cerebral edema formation. Correction of intracranial hypertension is one of the most important goals of intensive care in patients with severe traumatic brain injury. Objectives To determine the effects of L-lysine aescinat on ICP in patients with severe TBI.Material and methods. Twenty patients with TBI and Glasgow coma scale below 9 enrolled in the study. All patients were operated: 6 patients underwent craniotomy and intracranial hematoma removing; 11 — decompressive craniotomy and intracranial hematoma removing. In 3 patients only ICP-sensor was implanted. ICP-monitoring was used in all patients. Ten patients were randomized to L-lysine aescinat treatment (daily dose of 20 ml for 7 days after surgery (study group, 10 — to standard therapy (control group. We perfomed a comparative analysis of the mean ICP and the incidence of ICH within 7 days after surgery in the study and control groups.Results. The length of ICP monitoring was 6.4±3.7 days: in the control group — 7.6±4.9 days, in the study group — 5.2±1.4 days. Mean intracranial pressure was less in the study group as compared to patients in the control group. The number of intracranial hypertension episodes was higher in the control group compared with patients who received L-lysine aescinat.Conclusion. L-lysine aescinat treatment in patients with severe traumatic brain injury is accompanied by reduction of mean intracranial pressure and the number of intracranial hypertension episodes.

  3. Effects of maltose and lysine treatment on coffee aroma by flash gas chromatography electronic nose and gas chromatography-mass spectrometry.

    Science.gov (United States)

    He, Yuqin; Zhang, Haide; Wen, Nana; Hu, Rongsuo; Wu, Guiping; Zeng, Ying; Li, Xiong; Miao, Xiaodan

    2018-01-01

    Arabica coffee is a sub-tropical agricultural product in China. Coffee undergoes a series of thermal reactions to form abundant volatile profiles after roasting, so it loses a lot of reducing sugars and amino acids. Adding carbonyl compounds with amino acids before roasting could ensure the nutrition and flavour of coffee. The technology is versatile for the development of coffee roasting process. This investigation evaluates the effects of combining maltose and lysine (Lys) to modify coffee aroma and the possibly related mechanisms. Arabica coffee was pretreated with a series of solvent ratios of maltose and Lys with an identical concentration (0.25 mol L -1 ) before microwave heating. It was found that the combination of maltose and Lys significantly (P ≤ 0.05) influenced quality indices of coffee (pH and browning degree). Ninety-six aromatic volatiles have been isolated and identified. Twelve volatile profiles revealed the relationship between fragrance difference and compound content in coffee. Moreover, coffee aroma was modified by a large number of volatiles with different chemical classes and character. Thus, our results suggest that the combination of reagents changed overall aroma quality through a series of complex thermal reactions, especially the ratio of Lys/maltose over 2:1. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Fermented liquid feed - Feed processing has a big impact on microbial degradation of free lysine during fermentation

    DEFF Research Database (Denmark)

    Canibe, Nuria; Jensen, Bent Borg

    2010-01-01

    In order to investigate the influence of feed processing on the microbial degradation of free lysine during fermentation of liquid feed, a study at laboratory scale was carried out. Based on a standard Danish grower diet with extra free amino acids added, two treatments were prepared: treatment 1...... a few hours of fermentation, the levels in both treatments became similar. The concentration of acetic acid was higher in the mixture containing the mash feed than in that containing the pelleted feed. The disappearance of free lysine was much higher when mash feed was fermented than when the same...

  5. [Effects of lysine clonixinate on platelet function. Comparison with other non-steroidal anti-inflammatory agents].

    Science.gov (United States)

    Kramer, E H; Sassetti, B; Kaminker, A J; De Los Santos, A R; Martí, M L; Di Girolamo, G

    2001-01-01

    One of the mechanisms of action of non steroid antiinflammatory drugs (NSAIDs) consists of inhibition of prostaglandin synthesis. This explains many of the pharmacological effects and adverse events observed in medical practice. Administration of NSAIDs to patients with hemostatic disorders or perioperative conditions entails the risk of bleeding due to inhibition of platelet function. This study deals with platelet changes induced by lysine clonixinate vs diclofenac, ibuprofen and aspirin in classical tests such as platelet count, platelet factor 3 (PF3) activity and platelet aggregation with various inductors and more recent procedures such as P-selectin measurement by flow cytometry. Unlike control drugs, lysine clonixinate did not induce changes in platelet count or function when administered to healthy volunteers at the commonly used therapeutic doses.

  6. Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry.

    Science.gov (United States)

    Manikwar, Prakash; Zimmerman, Tahl; Blanco, Francisco J; Williams, Todd D; Siahaan, Teruna J

    2011-07-20

    Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.

  7. Lysine requirement of White Leghorn pullets from 8 to 21 weeks of age.

    Science.gov (United States)

    Berg, L R

    1976-01-01

    White Leghorn pullets were fed rations in which the protein supplementary to that provided by the grain portion of the ration was derived from soybean meal, meat and bone meal, anchovy fish meal or cottonseed meal from 8 to 21 weeks of age. Protein levels were varied so that each protein supplement was tested in a feeding program in which pullets received 16% protein diets from 8 to 14 weeks and 14% protein from 14 to 21 weeks and in another feeding program in which 14% protein was fed from 8 to 14 weeks and 12% protein from 14 to 21 weeks. Each of the developing rations contained sufficient nutrient to enable pullets to develop and attain high rate of laying performance. The 14% and 12% protein cottonseed meal diets contained only 0.50% and 0.45% lysine respectively. Thus the lysine requirement of White Leghorn pullets from 8 to 14 weeks and from 14 to 21 weeks is not over 0.50% and 0.45% respectively.

  8. Meal Pattern of Male Rats Maintained on Amino Acid Supplemented Diets: The Effect of Tryptophan, Lysine, Arginine, Proline and Threonine

    Directory of Open Access Journals (Sweden)

    Raghad Ayaso

    2014-07-01

    Full Text Available The macronutrient composition of the diet has been shown to affect food intake, with proteins having distinct effects. The present study investigated the effect of diet supplementation with individual amino acids (tryptophan, lysine, arginine, proline and threonine on meal pattern among male rats. Meal pattern and body weight were monitored for two weeks. Proline and threonine had minimal effects on meal pattern, while the most pronounced changes were observed in the tryptophan group. Both tryptophan and lysine decreased overall food intake, which was translated into a reduction in body weight. The reduced food intake of the tryptophan group was associated with an increase in meal size, intermeal intervals (IMI and meal time and a decrease in meal number. The decrease in the food intake of the lysine group was associated with a reduction in both IMI and meal number, and this was accompanied by an increase in meal time. Arginine increased meal number, while decreasing IMI. Proline and threonine had a minimal effect on meal pattern. Lysine seems to increase satiety, and arginine seems to decrease it, while tryptophan seems to increase satiety and decrease satiation. Accordingly, changes in meal patterns are associated with the type of amino acid added to the diet.

  9. Ferrochelatase from Rhodopseudomonas sphaeroides: substrate specificity and role of sulfhydryl and arginyl residues

    International Nuclear Information System (INIS)

    Dailey, H.A.; Fleming, J.E.; Harbin, B.M.

    1986-01-01

    Purified ferrochelatase from the bacterium Rhodopseudomonas sphaeroides was examined to determine the roles of cationic and sulfhydryl residues in substrate binding. Reaction of the enzyme sulfhydryl residues with N-ethylmaleimide or monobromobimane resulted in a rapid loss of enzyme activity. Ferrous iron, but not porphyrin substrate, had a protective effect against inactivation by these two reagents. Quantitation with 3 H-labeled N-ethylmaleimide revealed that inactivation required one to two sulfhydryl groups to be modified. Modification of arginyl residues with either 2,3-butanedione or camphorquinone 10-sulfonate resulted in a loss of ferrochelatase activity. A kinetic analysis of the modified enzyme showed that the K/sub m/ for ferrous iron was not altered but that the K/sub m/ for the prophyrin substrate was increased. These data suggested that arginyl residues may be involved in porphyrin binding, possibly via charge pair interactions between the arginyl residue and the anionic porphyrin propionate side chain. Modification of lysyl residues had no effect on enzyme activity. The authors also examined the ability of bacterial ferrochelatase to use various 2,4-disubstituted porphyrins as substrates. The authors found that 2,4-bis-acetal- and 2,4-disulfonate deuteroporphyrins were effective substrates for the purified bacterial enzyme and that N-methylprotoporphyrin was an effective inhibitor of the enzyme. Data for the ferrochelatase of R. sphaeroides are compared with previously published data for the eucaryotic enzyme

  10. Determination of digestible isoleucine: lysine ratio in diets for laying hens aged 42-58 weeks

    Directory of Open Access Journals (Sweden)

    Heloisa Helena de Carvalho Mello

    2012-05-01

    Full Text Available Two hundred and fifty-two Hy-Line W36 laying hens were allotted in a completely randomized design with 6 treatments, 7 replicates and 6 hens per experimental unit in order to determine the ideal ratio of isoleucine (Ile in relation to lysine (Lys to laying hens aged 42-58 weeks. Experimental diets contained digestible Ile at different levels, resulting in different Ile:Lys ratios (0.73:1; 0.78:1; 0.83:1; 0.88:1; 0.93:1 and 0.98:1. A basal diet was formulated to provide Isoleucine in levels below recommendations. This diet was supplemented with L-isoleucine to make up the 6 diets. Each diet was made isonitrogenous by varying the dietary contents of glutamic acid and isocaloric by adjusting the contents of cornstarch. All essential amino acids were provided proportionally to lysine. Egg production, egg weight, egg mass, feed conversion ratio, albumen, yolk and eggshell contents were recorded and compiled at every 28-day period. No differences were observed in the performance over a wide range of dietary isoleucine concentrations from 5.76 to 7.73 g/kg corresponding to 0.73:1 to 0.98:1 Ile:Lys ratios. The lowest Ile:Lys ratio (0.73:1 was sufficient to ensure satisfactory performance of birds, corresponding to the consumption of 534 mg of isoleucine and 731 mg of lysine/day.

  11. Kinetic, Thermodynamic and Structural Studies of Native and N-Bromosuccinimide-Modified Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Saeed Emami

    2016-10-01

    Full Text Available Background Mushroom tyrosinase (MT as a metalloenzyme is a good model for mechanistic studies of melanogenesis. To recognize the mechanism of MT action, it is important to investigate its inhibition, activation, mutation, and modification properties. Objectives In this study, the chemical modification of MT tryptophan residues was carried out by using N-bromosuccinimide (NBS and then, the activity, stability, and structure of the native and modified enzymes were compared. Methods Chemical modification of MT tryptophan residues was accomplished by enzyme incubation with different concentrations of NBS. The relative activity of native and modified MT was investigated through catecholase enzyme reaction in presence of dihydroxyphenylalanine (L-Dopa as substrate. Thermodynamic parameters including standard Gibbs free energy change (∆G25°C and Melting temperature (Tm were obtained from thermal denaturation of the native and modified enzymes. The circular dichroism and intrinsic fluorescence techniques were used to study secondary and tertiary structure of MT, respectively. All experiments were conducted in 2015 in biophysical laboratory of Qazvin University of Medical Sciences and Islamic Azad University, Science and Research Branch, Tehran. Results The relative activity reduced from 100% for native enzyme to 10%, 7.9%, and 6.4% for modified MT with different NBS of concentrations 2, 10, and 20 mM, respectively. Thermal instability of modified enzyme was confirmed by decreased Tm and ∆G25°C values after modification. In accordance with kinetic and thermodynamic results, the lower stability of modified MT was observed from the changes occurred on its secondary and tertiary structures. Conclusions Chemical modification of tryptophan residues with NBS reduces the activity and stability of MT simultaneously with its structural change. Thus, this study emphasizes the crucial role of tryptophan residues in the structure-function relationship of MT

  12. N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response.

    Science.gov (United States)

    Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry

    2008-03-01

    Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.

  13. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  14. Structural and biochemical alterations of human diabetic dermis studied by 3H-lysine incorporation and microscopy

    International Nuclear Information System (INIS)

    Moczar, M.; Allard, R.; Ouzilou, J.; Robert, L.; Pieraggi, M.-T.; Bouissou, H.; Julian, M.

    1976-01-01

    The alteration of the structural organization of dermal connective tissue was studied by light and electron microscopy and by biochemical techniques in normal human and in diabetic patients using skin biopsies. Part of the tissue was used for light and electron microscopy, the rest was incubated in the presence of 3 H-lysine for four hours. The 3 H-lysine labelled biopsies were submitted to a sequential extraction procedure in order to obtain representative macromolecular fractions containing the matrix macromolecules. The extracts were analyzed for their chemical composition and radioactivity. Electron microscopy revealed microstructural modifications of the fibroblasts, of the collagen and elastic fibers in the diabetic dermis. The incorporation pattern of 3 H-lysine into the macromolecular fractions was different in the normal and diabetic skin biopsies. The percentage of total radioactivity incorporated increased significantly in the 1M CaCl 2 extractable fraction and in the 6M urea extractable fraction and decreased significantly in the collagenase and elastase extracts in diabetic skin biopsy. These results demonstrate the existence of morphological and biochemical alterations in diabetic connective tissue (dermis) reflecting alterations in the relative rates of synthesis and/or degradation of the intercellular matrix macromolecules as well as of their microarchitectural arrangement

  15. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  16. Designing and Producing Modified, New-to-Nature Peptides with Antimicrobial Activity by Use of a Combination of Various Lantibiotic Modification Enzymes

    NARCIS (Netherlands)

    van Heel, Auke J.; Mu, Dongdong; Montalban-Lopez, Manuel; Hendriks, Djoke; Kuipers, Oscar P.

    Lanthipeptides are peptides that contain several post-translationally modified amino acid residues and commonly show considerable antimicrobial activity. After translation, the amino acid residues of these peptides are modified by a distinct set of modification enzymes. This process results in

  17. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    International Nuclear Information System (INIS)

    Miles, L.A.; Plow, E.F.

    1986-01-01

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [ 125 I]EDP I, [ 125 I]Glu-plasminogen, and [ 125 I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [ 125 I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 μM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. α 2 -Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of [ 125 I]EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor

  18. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar): A Mesocosm Experiment

    International Nuclear Information System (INIS)

    Villenave, C.; Kichenin, E.; Djigal, D.; Blanchart, E.; Rabary, B.; Djigal, D.

    2010-01-01

    Free-living nematodes present several characteristics that have led to their use as bio indicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean) were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders) was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  19. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Cécile Villenave

    2010-01-01

    Full Text Available Free-living nematodes present several characteristics that have led to their use as bioindicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  20. Solution Thermodynamics of Lysine Clonixinate in Some Ethanol + Water Mixtures

    OpenAIRE

    Delgado, Daniel R.; Martínez, Fleming; Gutiérrez, Rahumir A.

    2012-01-01

    The solubility of lysine clonixinate (LysClon) in several ethanol + water mixtures was determined at 293.15 to 313.15 K. The thermodynamic functions, Gibbs energy, enthalpy, and entropy of solution and of mixing were obtained from these solubility data by using the van’t Hoff and Gibbs equations. In general this drug exhibit good solubility and the greatest value was obtained in the mixture 0.60 in mass fraction of ethanol. A non-linear enthalpy–entropy relationship was observed from ...

  1. Microbial synthesis of poly(epsilon-lysine) and its various applications.

    Science.gov (United States)

    Shih, Ing-Lung; Shen, Ming-Haw; Van, Yi-Tsong

    2006-06-01

    This review article deals with the microbial synthesis, physiochemical properties, and potential applications of poly-epsilon-lysine (epsilon-PL), which is a naturally occurring biomaterial that is water soluble, biodegradable, edible and non-toxic toward humans and the environment. The potential applications of epsilon-PL as food preservatives, emulsifying agent, dietary agent, biodegradable fibers, highly water absorbable hydrogels, drug carriers, anticancer agent enhancer, biochip coatings in the fields of food, medicine, agriculture and electronics are also discussed in this review.

  2. Studies on chemical modification of cold agglutinin from the snail Achatina fulica.

    Science.gov (United States)

    Sarkar, M; Mitra, D; Sen, A K

    1987-01-01

    The cold agglutinin isolated from the albumin gland of the snail Achatina fulica was modified with various chemical reagents in order to detect the amino acids and/or carbohydrate residues present in its carbohydrate-binding sites. Treatment with reagents considered specific for modification of lysine, arginine and tryptophan residues of the cold agglutinin did not affect the carbohydrate-binding activity of the agglutinin. Modification of tyrosine residues showed some change. However, modification with carbodiimide followed by alpha-aminobutyric acid methyl ester causes almost complete loss of its binding activity, indicating the involvement of aspartic acid and glutamic acid in its carbohydrate-binding activity. The carbohydrate residues of the cold agglutinin were removed by beta-elimination reaction, indicating that the sugars are O-glycosidically linked to protein part of the molecule. Removal of galactose residues from the cold agglutinin by the action of beta-galactosidase indicated that the galactose molecules are beta-linked. These carbohydrate-modified glycoproteins showed a marked change in agglutination property, i.e. they agglutinated rabbit erythrocytes at both 10 degrees C and 25 degrees C, indicating that the galactose residues of the glycoprotein play an important role in the cold-agglutination property of the glycoprotein. The c.d. data showed the presence of an almost identical type of random-coil conformation in the native cold agglutinin at 10 degrees C and in the carbohydrate-modified glycoprotein at 10 degrees C and 25 degrees C. This particular random-coil conformation is essential for carbohydrate-binding property of the agglutinin. Images Fig. 1. PMID:3118867

  3. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  4. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells

    DEFF Research Database (Denmark)

    Bursomanno, Sara; Beli, Petra; Khan, Asif M

    2015-01-01

    SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subf......, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology....

  5. Effect of different levels of L-carnitine and lysine-methionine on broiler blood parameters

    Directory of Open Access Journals (Sweden)

    Babak Hosseintabar

    2015-09-01

    Full Text Available Objetive. In the present study a completely randomized 3×3 factorial design was used to analyze the effects of different levels of L-Carnitine, lysine(Lys and methionine (Met on the blood concentrations of energy, protein and lipid metabolites of male broiler chickens. Materials and methods. A total of 270 newly hatched male broiler chickens (Ross 308 were randomly assigned to 9 groups (ten broilers per replicate and three replicates per treatment. The control group was fed a basal diet, whereas the treatment groups were fed basal diets supplemented with L-Carnitine (0 mg/kg, 75 mg/kg and 150 mg/kg and lysine-methionine (0, 15 and 30% for 42 days. On day 42, one bird was randomly chosen per replication, a blood sample was taken and the blood concentrations of glucose (GLU, uric acid (UAc, triglyceride (TG, VLDL, HDL, LDL, total protein (TP, albumin (Alb and total cholesterol (TC were analyzed. Results. Dietary L-carnitine supplementation had a significant effect (p<0.05 on uric acid (UAc, HDL, LDL, and total cholesterol (TC. The birds feed L-carnitine plus Lys and Met presented the highest plasmatic UAc level and the lowest plasmatic TC and LDL level. Moreover, L-carnitine significantly reduced total cholesterol (TC when compared with both the control group and the birds feed Lys and Met without L-carnitine. Conclusions. A diet with 150 mg/kg L-carnitine plus 15% Lys and Met seems to be enough to sustain low plasmatic TC, LDL and HDL concentrations on male broiler.

  6. L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions

    International Nuclear Information System (INIS)

    Debrus, S.; Marchewka, M.K.; Baran, J.; Drozd, M.; Czopnik, R.; Pietraszko, A.; Ratajczak, H.

    2005-01-01

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between L-lysine and L-tartaric acid is reported. The structure was solved in two temperatures (320 and 260 K) showing incommensurate phase between them. Room-temperature powder infrared and Raman measurements for the L-lysine-L-tartaric acid molecular complex (1:1) were carried out. DSC measurements on powder samples indicate two phase transitions points at about 295, 300 and 293, 300 K, for heating and cooling, respectively, with noticeable temperature interval between them. Second harmonic generation efficiency d eff =0.35 d eff (KDP)

  7. Experiment list: SRX186748 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available It remains unknown whether acetylation can have different consequences depending on the specific lysine resi...n whether acetylation can have different consequences depending on the specific lysine residue targeted. In

  8. Differential Modulation of Cellular Bioenergetics by Poly(L-lysine)s of Different Molecular Weights

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Wu, Lin-Ping; Parhamifar, Ladan

    2015-01-01

    Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using Sea...

  9. Transglutaminase reactivity with gelatine: perspective applications in tissue engineering.

    Science.gov (United States)

    Bertoni, F; Barbani, N; Giusti, P; Ciardelli, G

    2006-05-01

    Gelatine was crosslinked by means of an enzymatic treatment using tissue transglutaminase (tTGase) (Sigma) and microbial transglutaminase (mTGase) (Ajinomoto) which catalyses the formation of isopeptide bonds between the gamma-carbonyl group of a glutamine residue and the epsilon-amino group of a lysine residue. The reaction is an interesting alternative to the traditional glutaraldehyde crosslinking, which has several drawbacks (e.g., in medical application) due to the toxicity of the chemical reagent. To further investigate the possibility to utilize the modified protein for tissue engineering application, TGase crosslinked gelatine was incorporated in a gellan matrix, a polysaccharide, to enhance the stability in aqueous media. Films obtained by casting were characterized by thermal analysis, chemical imaging, swelling behaviour and cell adhesion.

  10. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially...... interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  11. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  12. ZP Domain Proteins in the Abalone Egg Coat Include a Paralog of VERL under Positive Selection That Binds Lysin and 18-kDa Sperm Proteins

    Science.gov (United States)

    Aagaard, Jan E.; Vacquier, Victor D.; MacCoss, Michael J.; Swanson, Willie J.

    2010-01-01

    Identifying fertilization molecules is key to our understanding of reproductive biology, yet only a few examples of interacting sperm and egg proteins are known. One of the best characterized comes from the invertebrate archeogastropod abalone (Haliotis spp.), where sperm lysin mediates passage through the protective egg vitelline envelope (VE) by binding to the VE protein vitelline envelope receptor for lysin (VERL). Rapid adaptive divergence of abalone lysin and VERL are an example of positive selection on interacting fertilization proteins contributing to reproductive isolation. Previously, we characterized a subset of the abalone VE proteins that share a structural feature, the zona pellucida (ZP) domain, which is common to VERL and the egg envelopes of vertebrates. Here, we use additional expressed sequence tag sequencing and shotgun proteomics to characterize this family of proteins in the abalone egg VE. We expand 3-fold the number of known ZP domain proteins present within the VE (now 30 in total) and identify a paralog of VERL (vitelline envelope zona pellucida domain protein [VEZP] 14) that contains a putative lysin-binding motif. We find that, like VERL, the divergence of VEZP14 among abalone species is driven by positive selection on the lysin-binding motif alone and that these paralogous egg VE proteins bind a similar set of sperm proteins including a rapidly evolving 18-kDa paralog of lysin, which may mediate sperm–egg fusion. This work identifies an egg coat paralog of VERL under positive selection and the candidate sperm proteins with which it may interact during abalone fertilization. PMID:19767347

  13. Structure of the Siz/PIAS SUMO E3 Ligase Siz1 and Determinants Required for SUMO Modification of PCNA

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Ali A.; Lima, Christopher D.; (SKI)

    2010-01-12

    Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The X-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2SUMO thioester, while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a nonconsensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo.

  14. Gene Therapy Vectors with Enhanced Transfection Based on Hydrogels Modified with Affinity Peptides

    Science.gov (United States)

    Shepard, Jaclyn A.; Wesson, Paul J.; Wang, Christine E.; Stevans, Alyson C.; Holland, Samantha J.; Shikanov, Ariella; Grzybowski, Bartosz A.; Shea, Lonnie D.

    2011-01-01

    Regenerative strategies for damaged tissue aim to present biochemical cues that recruit and direct progenitor cell migration and differentiation. Hydrogels capable of localized gene delivery are being developed to provide a support for tissue growth, and as a versatile method to induce the expression of inductive proteins; however, the duration, level, and localization of expression isoften insufficient for regeneration. We thus investigated the modification of hydrogels with affinity peptides to enhance vector retention and increase transfection within the matrix. PEG hydrogels were modified with lysine-based repeats (K4, K8), which retained approximately 25% more vector than control peptides. Transfection increased 5- to 15-fold with K8 and K4 respectively, over the RDG control peptide. K8- and K4-modified hydrogels bound similar quantities of vector, yet the vector dissociation rate was reduced for K8, suggesting excessive binding that limited transfection. These hydrogels were subsequently applied to an in vitro co-culture model to induce NGF expression and promote neurite outgrowth. K4-modified hydrogels promoted maximal neurite outgrowth, likely due to retention of both the vector and the NGF. Thus, hydrogels modified with affinity peptides enhanced vector retention and increased gene delivery, and these hydrogels may provide a versatile scaffold for numerous regenerative medicine applications. PMID:21514659

  15. Mutation of charged residues to neutral ones accelerates urea denaturation of HP-35.

    Science.gov (United States)

    Wei, Haiyan; Yang, Lijiang; Gao, Yi Qin

    2010-09-16

    Following the studies of urea denaturation of β-hairpins using molecular dynamics, in this paper, molecular dynamics simulations of two peptides, a 35 residue three helix bundle villin headpiece protein HP-35 and its doubly norleucine-substituent mutant (Lys24Nle/Lys29Nle) HP-35 NleNle, were undertaken in urea solutions to understand the molecular mechanism of urea denaturation of α-helices. The mutant HP-35 NleNle was found to denature more easily than the wild type. During the expansion of the small hydrophobic core, water penetration occurs first, followed by that of urea molecules. It was also found that the initial hydration of the peptide backbone is achieved through water hydrogen bonding with the backbone CO groups during the denaturation of both polypeptides. The mutation of the two charged lysine residues to apolar norleucine enhances the accumulation of urea near the hydrophobic core and facilitates the denaturation process. Urea also interacts directly with the peptide backbone as well as side chains, thereby stabilizing nonnative conformations. The mechanism revealed here is consistent with the previous study on secondary structure of β-hairpin polypeptide, GB1, PEPTIDE 1, and TRPZIP4, suggesting that there is a general mechanism in the denaturation of protein backbone hydrogen bonds by urea.

  16. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  17. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome*

    OpenAIRE

    Tatham, Michael H.; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J.; Stark, Lesley A.; Hay, Ronald T.

    2016-01-01

    This work is supported by Cancer Research UK Grant C434/A13067 (M.H.T & R.T.H) and Wellcome Trust Grant 098391/Z/12/7 (R.T.H.). Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino-acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet...

  18. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture

    Science.gov (United States)

    Trotman, A. A.; David, P. P.; Bonsi, C. K.; Hill, W. A.; Mortley, D. G.; Loretan, P. A.

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with `Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of `Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of `TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  19. Experiment list: SRX186658 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e. It remains unknown whether acetylation has can have different consequences depending on the specific lysi...ns unknown whether acetylation has can have different consequences depending on the specific lysine residue

  20. Exigência nutricional de lisina digestível para frangos de corte Nutritional requirement of digestible lysine for broiler chickens

    Directory of Open Access Journals (Sweden)

    Walter Amaral Barboza

    2000-08-01

    Full Text Available O objetivo deste trabalho foi determinar, mediante ensaio de digestibilidade, as exigências nutricionais de lisina digestível verdadeira para frangos de corte nas quatro fases de crescimento. Quatro experimentos de desempenho, realizados previamente, permitiram estimar a exigência de lisina total para frangos de corte nas fases de 1 a 21, 15 a 40, 22 a 40 e 42 a 48 dias de idade. Foram utilizados 30 galos, adultos, Leghorn, cecectomizados com peso médio de 2316±190 g, sendo alojados, individualmente, em gaiolas com bandejas coletoras de excretas, utilizando-se o método de alimentação forçada. O delineamento experimental foi inteiramente casualizado, com cinco tratamentos (quatro com dietas e um em jejum e seis repetições. Foram utilizadas as dietas basais das quatro fases de crescimento, contendo 1,0; 0,825; 0,80; e 0,75% de lisina total. Com base nos coeficientes de digestibilidade determinados de 93,3; 93,58; 89,76; e 92,25% e considerando a L-lisina HCL suplementada como 100% digestível, as exigências de lisina digestível verdadeira foram 1,130; 1,075; 0,95; e 0,84% para as fases de 1 a 21, 15 a 40, 22 a 40 e 42 a 48 dias de idade, respectivamente. Ao aplicar o modelo de regressão linear, foram obtidas as equações (% lisina/Mcal = 0,4335 - 0,003284X r² 0,98 e (% lisina/Mcal = 0,41081 - 0,003213X, r² 0,96 para lisina total e digestível, respectivamente, sendo x a idade média das aves, em dias.The objective of this work was to determine, through a digestibility assay, the nutritional requirement of true digestible lysine for broiler chickens, in the four growing phases. Four performance experiments, previously performed, allowed the determination of total lysine requirement of broiler chickens in the periods from 1 to 21, 15 to 40, 22 to 40 and 42 to 48 days of age. Thirty cecectomized adults Leghorn roosters were used, with an average weight of 2316±190 g, and individually caged in batteries with excreta collecting trays

  1. Lysine requirement of the enterally fed term infant in the first month of life

    NARCIS (Netherlands)

    Huang, L.; Hogewind-Schoonenboom, J.E.; de Groof, F.; Twisk, J.W.R.; Voortman, G.J.; Dorst, K.; Schierbeek, H.; Boehm, G.; Huang, Y.; Chen, C.; van Goudoever, J.B.

    2011-01-01

    Background: Infant nutrition has a major impact on child growth and functional development. Low and high intakes of protein or amino acids could have a detrimental effect. Objective: The objective of the study was to determine the lysine requirement of enterally fed term neonates by using the

  2. Synthesis of stereoarray isotope labeled (SAIL) lysine via the "head-to-tail" conversion of SAIL glutamic acid.

    Science.gov (United States)

    Terauchi, Tsutomu; Kamikawai, Tomoe; Vinogradov, Maxim G; Starodubtseva, Eugenia V; Takeda, Mitsuhiro; Kainosho, Masatsune

    2011-01-07

    A stereoarray isotope labeled (SAIL) lysine, (2S,3R,4R,5S,6R)-[3,4,5,6-(2)H(4);1,2,3,4,5,6-(13)C(6);2,6-(15)N(2)]lysine, was synthesized by the "head-to-tail" conversion of SAIL-Glu, (2S,3S,4R)-[3,4-(2)H(2);1,2,3,4,5-(13)C(5);2-(15)N]glutamic acid, with high stereospecificities for all five chiral centers. With the SAIL-Lys in hand, the unambiguous simultaneous stereospecific assignments were able to be established for each of the prochiral protons within the four methylene groups of the Lys side chains in proteins.

  3. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    International Nuclear Information System (INIS)

    Alexopoulos, Eftichia; Kanjee, Usheer; Snider, Jamie; Houry, Walid A.; Pai, Emil F.

    2008-01-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta 6 Br 12 2+ ) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222 1 ; the Ta 6 Br 12 2+ cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta 6 Br 12 2+ -derivatized structure to 5 Å resolution. Many of the Ta 6 Br 12 2+ -binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546

  4. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer.

    Science.gov (United States)

    Bennett, Richard L; Swaroop, Alok; Troche, Catalina; Licht, Jonathan D

    2017-06-01

    The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. The tyrosyl residues in creatine kinase. Modification by iodine.

    Science.gov (United States)

    Fattoum, A; Kassab, R; Pradel, L A

    1975-10-20

    The effect of the iodination of tyrosyl residues in creatine kinase from rabbit muscle has been investigated at alkaline pH after reversible masking of the reactive thiol groups. The conversion of 4-5 tyrosyl residues to monoiodotyrosines as measured by spectrotitration and by radioactive iodine labelling resulted in almost total loss of enzymic activity. The modified enzyme was unable to bind its nucleotide substrates but no significant conformational change was revealed by optical rotatory dispersion or Stokes radius measurements. However, change in the reactivity of some non-essential thiol groups, presumably those located near the active thiol groups, was observed.

  6. PrP P102L and Nearby Lysine Mutations Promote Spontaneous In Vitro Formation of Transmissible Prions.

    Science.gov (United States)

    Kraus, Allison; Raymond, Gregory J; Race, Brent; Campbell, Katrina J; Hughson, Andrew G; Anson, Kelsie J; Raymond, Lynne D; Caughey, Byron

    2017-11-01

    Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro , only some are transmissible and pathogenic in vivo To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood

  7. Phenolic compounds reduce formation of Nε-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system.

    Science.gov (United States)

    Mildner-Szkudlarz, Sylwia; Siger, Aleksander; Szwengiel, Artur; Przygoński, Krzysztof; Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata

    2017-09-15

    This study had the objective of determining the antiglycation activity of phenolic compounds (PCs) ((+)-catechin, quercetin, gallic, ferulic, and caffeic acids) added to a model bread with regards to the inhibition of N ε -(carboxymethyl)lysine (CML) formation. PCs were found to significantly reduce CML (31.77%-87.56%), even at the lowest concentration, with the exception of ferulic acid (FA). The strongest inhibitory effect of FA (∼62%) appeared when concentration was increased to 1.0g/100g of flour. The available lysine losses (0.00%-90.51%) showed a significant correlation (0.853-0.990) with effectiveness of CML inhibition, except in the case of samples with FA. (+)-Catechin reduced CML levels the most, probably due to its structure-antioxidant activity relationship, its thermal stability (∼51% loss), and its reactivity with ε-lysine side chains (∼40.77% loss). Although the bread supplemented with PCs contained low levels of CML, this process may adversely affect bread flavor, reducing the formation of pyrazines (1.10%-80.77%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Free Base Lysine Increases Survival and Reduces Metastasis in Prostate Cancer Model.

    Science.gov (United States)

    Ibrahim-Hashim, Arig; Wojtkowiak, Jonathan W; de Lourdes Coelho Ribeiro, Maria; Estrella, Veronica; Bailey, Kate M; Cornnell, Heather H; Gatenby, Robert A; Gillies, Robert J

    2011-11-19

    Malignant tumor cells typically metabolize glucose anaerobically to lactic acid even under normal oxygen tension, a phenomenon called aerobic glycolysis or the Warburg effect. This results in increased acid production and the acidification of the extracellular microenvironment in solid tumors. H + ions tend to flow along concentration gradients into peritumoral normal tissue causing extracellular matrix degradation and increased tumor cell motility thus promoting invasion and metastasis. We have shown that reducing this acidity with sodium bicarbonate buffer decreases the metastatic fitness of circulating tumor cells in prostate cancer and other cancer models. Mathematical models of the tumor-host dynamics predicted that buffers with a pka around 7 will be more effective in reducing intra- and peri-tumoral acidosis and, thus, and possibly more effective in inhibiting tumor metastasis than sodium bicarbonate which has a pKa around 6. Here we test this prediction the efficacy of free base lysine; a non-bicarbonate/non-volatile buffer with a higher pKa (~10), on prostate tumor metastases model. Oxygen consumption and acid production rate of PC3M prostate cancer cells and normal prostate cells were determined using the Seahorse Extracellular Flux (XF-96) analyzer. In vivo effect of 200 mM lysine started four days prior to inoculation on inhibition of metastasis was examined in PC3M-LUC-C6 prostate cancer model using SCID mice. Metastases were followed by bioluminescence imaging. PC3M prostate cancer cells are highly acidic in comparison to a normal prostate cell line indicating that reduction of intra- and perit-tumoral acidosis should inhibit metastases formation. In vivo administration of 200 mM free base lysine increased survival and reduced metastasis. PC3M prostate cancer cells are highly glycolytic and produce large amounts of acid when compared to normal prostate cells. Administration of non-volatile buffer decreased growth of metastases and improved survival

  9. Evaluation and Enhancement of the Oxygen Reduction Reaction Activity on Hafnium Oxide Nanoparticles Assisted by L(+)-lysine

    International Nuclear Information System (INIS)

    Chisaka, Mitsuharu; Itagaki, Noriaki

    2016-01-01

    Evaluation of the oxygen reduction reaction (ORR) on oxide compounds is difficult owing to the insulating nature of oxides. In this study, various amounts of L(+)-lysine were added to the precursor dispersion for the hydrothermal synthesis of hafnium oxide nanoparticles on reduced graphene oxide sheets (HfO_x–rGO) to coat the HfO_x catalysts with layers of carbon, thereby increasing the conductivity and number of active sites. When the mass ratio of L(+)-lysine to GO, R, was above 26, carbon layers were formed and the amount monotonically increased with increasing R, as noted by cyclic voltammogrametry. X-ray photoelectron spectroscopy and rotating disk electrode analyses revealed that pyrolysis produced ORR-active oxygen defects, whose formation was proposed to involve carbothermal reduction. When 53 ≤ R ≤ 210, HfO_x–rGO contained a similar amount of oxygen defects and ORR activity, as represented by an onset potential of 0.9 V versus the reversible hydrogen electrode in 0.1 mol dm"−"3 H_2SO_4. However, the number of active sites depended on R due to the amount of L(+)-lysine-derived carbon layers that increased both the number of active sites and resistivity towards oxygen diffusion.

  10. Removal of acidic interferences in multi-pesticides residue analysis of fruits using modified magnetic nanoparticles prior to determination via ultra-HPLC-MS/MS

    International Nuclear Information System (INIS)

    Qi, Peipei; Wang, Zhiwei; Yang, Guiling; Wang, Xinquan; Shang, Chunqing; Xu, Hao; Wang, Xiangyun; Zhang, Hu; Wang, Qiang

    2015-01-01

    The authors describe magnetite (Fe 3 O 4 ) nanoparticles modified with 3-(N,N-diethylamino) propyltrimethoxysilane (Fe 3 O 4 -PSA NPs) for use as a sorbent for dispersive solid phase extraction of pesticide residues. The Fe 3 O 4 -PSA NPs were prepared by silanizing Fe 3 O 4 NPs and modifying them with 3-(N,N-diethylamino) propyltrimethoxysilane. Field-emission scanning electron microscopy, FTIR and zeta potential measurements were employed to characterize the modified NPs. They were then used as an adsorbent to remove acidic interferences (such as malic acid and succinic acid), which are major interferences in LC-MS/MS analysis in causing ion suppression in the MS spectra of pesticides. In addition, graphitized carbon black (GCB) was used as an adsorbent to eliminate interferences by pigments. The use of Fe 3 O 4 -PSA NPs can replace time-consuming centrifugation as used in the so-called QuEChERS (quick, easy, cheap, effective, rugged and safe) method. This improvement is particularly significant in high-throughput analysis. Following the optimization of the quantities of Fe 3 O 4 -PSA NPs and GCB, the method was applied to the determination of 56 pesticides in (spiked) fruits (apple, kiwi, orange and pear) by ultra-HPLC-MS/MS. The analytical ranges typically extend from 1 to 200 ng∙mL −1 , and recoveries range from 60.2 to 130 % at different concentrations of all four kinds of fruits. The LOQs for the pesticides are 10 ng∙kg −1 , which makes the method a viable tool for pesticide monitoring in fruits. (author)

  11. Immobilization of catalase on chitosan and amino acid- modified chitosan beads.

    Science.gov (United States)

    Başak, Esra; Aydemir, Tülin

    2013-08-01

    Bovine liver catalase was covalently immobilized onto amino acid-modified chitosan beads. The beads were characterized with SEM, FTIR, TGA and the effects of immobilization on optimum pH and temperature, thermostability, reusability were evaluated. Immobilized catalase showed the maximal enzyme activity at pH 7.0 at 30°C. The kinetic parameters, Km and Vmax, for immobilized catalase on alanine-chitosan beads and lysine-chitosan beads were estimated to be 25.67 mM, 27 mM and 201.39 μmol H2O2/min, 197.50 μmol H2O2/min, respectively. The activity of the immobilized catalase on Ala-CB and Lys-CB retained 40% of its high initial activity after 100 times of reuse.

  12. X-ray studies on crystalline complexes involving amino acids and peptides. XXXII. Effect of chirality on ionisation state, stoichiometry and aggregation in the complexes of oxalic acid with DL- and L-lysine.

    Science.gov (United States)

    Venkatraman, J; Prabu, M M; Vijayan, M

    1997-08-01

    Crystals of the oxalic acid complex of DL-lysine (triclinic P1; a = 5.540(1), b = 10.764(2), c = 12.056(2) A, alpha = 77.8(1), beta = 80.6(1), gamma = 75.6(1).; R = 4.7% for 2023 observed reflections) contain lysine and semioxalate ions in the 1:1 ratio, whereas the ratio of lysine and semioxalate/oxalate ions is 2:3 in the crystals of the L-lysine complex (monoclinic P2(1); alpha = 4.906(1), b = 20.145(4), c = 12.455(1) A, beta = 92.5(1).; R = 4.4% for 1494 observed reflections). The amino acid molecule in the L-lysine complex has an unusual ionisation state with positively charged alpha- and side-chain amino groups and a neutral carboxyl group. The unlike molecules aggregate into separate alternating layers in the DL-lysine complex in a manner similar to that observed in several of the amino acid complexes. The L-lysine complex exhibits a new aggregation pattern which cannot be easily explained in terms of planar features, thus emphasizing the fundamental dependence of aggregation on molecular characteristics. Despite the differences in stoichiometry, ionisation state and long-range aggregation patterns, the basic element of aggregation in the two complexes exhibits considerable similarity.

  13. Contribution of Histidine and Lysine to the Generation of Volatile Compounds in Jinhua Ham Exposed to Ripening Conditions Via Maillard Reaction.

    Science.gov (United States)

    Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming

    2018-01-01

    To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.

  14. Small molecule inhibitors of histone deacetylases and acetyltransferases as potential therapeutics in oncology

    NARCIS (Netherlands)

    van den Bosch, Thea; Leus, Niek; Timmerman, Tirza; Dekker, Frank J

    2016-01-01

    Uncontrolled cell proliferation and resistance to apoptosis in cancer are, among others, regulated by post-translational modifications of histone proteins. The most investigated type of histone modification is lysine acetylation. Histone acetyltransferases (HATs), acetylate histone lysine residues,

  15. Structure of the protein which gives the mitochondrial ATPase its sensitivity to oligomycin (OSCP). Approach of OSCP structural parameters by neutron scattering and spectroscopic techniques

    International Nuclear Information System (INIS)

    Dupuis, Alain

    1983-01-01

    This research thesis reports the study of OSCP structure of beef heart mitochondria. The OSCP is a lysine-rich protein which contains five tyrosine residues exposed to a solvent and no tryptophan residue. The molecular mass is determined by gel electrophoresis. Small angle neutron scattering is used to show that OSCP is an elongated protein. The distribution of residues of amino acids in the protein, and the preferential localisation of lysine residues in equatorial regions of the molecules are noticed by using neutron scattering by OSCP in solution in D 2 O. A preliminary functional study determined the stoichiometry and the dissociation constants with which OSCP interacts with mitochondrial ATPase [fr

  16. High-throughput screening to identify inhibitors of lysine demethylases.

    Science.gov (United States)

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  17. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  18. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase

    International Nuclear Information System (INIS)

    Yip, Wing-Kin; Dong, Jian-Guo; Yang, S.F.; Kenny, J.W.; Thompson, G.A.

    1990-01-01

    The pyridoxal phosphate (PLP)-dependent 1-aminocyclopropane-1-carboxylic acid (ACC) synthase the key enzyme in ethylene biosynthesis, is inactivated by its substrate S-adenosylmethionine (AdoMet). Apple ACC synthase was purified with an immunoaffinity gel, and its active site was probed with NaB 3 H 4 or Ado[ 14 C]Met. Peptide sequencing of both 3 H- and 14 C-labeled peptides revealed a common dodecapeptide of Ser-Leu-Ser-Xaa-Asp-Leu-Gly-Leu-Pro-Gly-Phe-Arg, where Xaa was the modified, radioactive residue in each case. Acid hydrolysis of the 3 H-labeled enzyme released radioactive N-pyridoxyllysine, indicating that the active-site peptide contained lysine at position 4. Mass spectrometry of the 14 C-labeled peptide indicated a protonated molecular ion at m/z 1390.6, from which the mass of Xaa was calculated to be 229, a number that is equivalent to the mass of a lysine residue alkylated by the 2-aminobutyrate portion of AdoMet, as we previously proposed. These results indicate that the same active-site lysine binds the PLP and convalently links to the 2-aminobutyrate portion of AdoMet during inactivation. The active site of tomato ACC synthase was probed in the same manner with Ado [ 14 C]Met. Sequencing of the tomato active-site peptide revealed two highly conserved dodecapeptides; the minor peptide possessed a sequence identical to that of the apple enzyme, whereas the major peptide differed from the minor peptide in that methionine replaced leucine at position 6

  19. Substrates for Efficient Fluorometric Screening Employing the NAD-Dependent Sirtuin 5 Lysine Deacylase (KDAC) Enzyme

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Olsen, Christian Adam

    2012-01-01

    The class III lysine deacylases (KDACs), also known as the sirtuins, have emerged as interesting drug targets for therapeutic intervention in a variety of diseases. To gain a deeper understanding of the processes affected by sirtuins, the development of selective small molecule modulators of indi...

  20. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    OpenAIRE

    Liu, Xi-yu; Li, Hong

    2017-01-01

    Aims. Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05). H3 l...

  1. Contribution of the C-terminal tri-lysine regions of human immunodeficiency virus type 1 integrase for efficient reverse transcription and viral DNA nuclear import

    Directory of Open Access Journals (Sweden)

    Fowke Keith R

    2005-10-01

    Full Text Available Abstract Background In addition to mediating the integration process, HIV-1 integrase (IN has also been implicated in different steps during viral life cycle including reverse transcription and viral DNA nuclear import. Although the karyophilic property of HIV-1 IN has been well demonstrated using a variety of experimental approaches, the definition of domain(s and/or motif(s within the protein that mediate viral DNA nuclear import and its mechanism are still disputed and controversial. In this study, we performed mutagenic analyses to investigate the contribution of different regions in the C-terminal domain of HIV-1 IN to protein nuclear localization as well as their effects on virus infection. Results Our analysis showed that replacing lysine residues in two highly conserved tri-lysine regions, which are located within previously described Region C (235WKGPAKLLWKGEGAVV and sequence Q (211KELQKQITK in the C-terminal domain of HIV-1 IN, impaired protein nuclear accumulation, while mutations for RK263,4 had no significant effect. Analysis of their effects on viral infection in a VSV-G pseudotyped RT/IN trans-complemented HIV-1 single cycle replication system revealed that all three C-terminal mutant viruses (KK215,9AA, KK240,4AE and RK263,4AA exhibited more severe defect of induction of β-Gal positive cells and luciferase activity than an IN class 1 mutant D64E in HeLa-CD4-CCR5-β-Gal cells, and in dividing as well as non-dividing C8166 T cells, suggesting that some viral defects are occurring prior to viral integration. Furthermore, by analyzing viral DNA synthesis and the nucleus-associated viral DNA level, the results clearly showed that, although all three C-terminal mutants inhibited viral reverse transcription to different extents, the KK240,4AE mutant exhibited most profound effect on this step, whereas KK215,9AA significantly impaired viral DNA nuclear import. In addition, our analysis could not detect viral DNA integration in each C

  2. Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chuanjiang Li

    2014-01-01

    Full Text Available Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M+H]+ ion at 351 m/z and the purity of ARP was confirmed to be over 90% by the relative intensity of [M+H]+ ion. Further structural characterization of the ARP was accomplished by using nuclear magnetic resonance (NMR spectroscopy, including 1D 1H NMR and 13C NMR, the distortionless enhancement by polarization transfer (DEPT-135 and 2D 1H-1H and 13C-1H correlation spectroscopy (COSY and 2D nuclear overhauser enhancement spectroscopy (NOESY. The complexity of 1D 1H NMR and 13C NMR was observed due to the presence of isomers in glucose moiety of ARP. However, DEPT-135 and 2D NMR techniques provided more structural information to assign the 1H and 13C resonances of ARP. 2D NOESY had successfully confirmed the glycosylated site between 10-N in Nα-acetyl-lysine and 7′-C in glucose.

  3. O-Methylisourea Can React with the α-Amino Group of Lysine: Implications for the Analysis of Reactive Lysine.

    Science.gov (United States)

    Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H

    2017-02-01

    The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.

  4. Study on the biological half-life and organ-distribution of tritiated lysine-vasopressin in Brattleboro rats

    International Nuclear Information System (INIS)

    Laczi, F.; Laszlo, F.A.; Keri, Gy.; Teplan, I.

    1980-01-01

    The biological half-life and organ-distribution of tritiated lysine-vasopressin were determined in R-Amsterdam rats, and in homozygous and heterozygous Brattleboro rats with hereditary central diabetes insipidus. It was found that the biological half-life of the tritiated lysin-vasopressin in the Brattleboro rats did not differ significantly from that found in the R-Amsterdam rats. The highest radioactivities were observed in the neuro- and adenohypophyses and in the kidneys of both the R-Amsterdam and the Brattleboro rats. The accumulation of tritiated LVP was higher in the small intestine of the Brattleboro rats than in that of the R-Amsterdam animals. The results have led to the conclusion that the accelerated elimination of vasopressin and its pathologic organ-accumulation are probably not involved in the water metabolism disturbance of Brattleboro rats with hereditary hypothalamic diabetes insipidus. (author)

  5. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  6. Soft-sensing Modeling Based on MLS-SVM Inversion for L-lysine Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-06-01

    Full Text Available A modeling approach 63 based on multiple output variables least squares support vector machine (MLS-SVM inversion is presented by a combination of inverse system and support vector machine theory. Firstly, a dynamic system model is developed based on material balance relation of a fed-batch fermentation process, with which it is analyzed whether an inverse system exists or not, and into which characteristic information of a fermentation process is introduced to set up an extended inversion model. Secondly, an initial extended inversion model is developed off-line by the use of the fitting capacity of MLS-SVM; on-line correction is made by the use of a differential evolution (DE algorithm on the basis of deviation information. Finally, a combined pseudo-linear system is formed by means of a serial connection of a corrected extended inversion model behind the L-lysine fermentation processes; thereby crucial biochemical parameters of a fermentation process could be predicted on-line. The simulation experiment shows that this soft-sensing modeling method features very high prediction precision and can predict crucial biochemical parameters of L-lysine fermentation process very well.

  7. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-L-lysine.

    Science.gov (United States)

    Hyon, Suong-Hyu; Nakajima, Naoki; Sugai, Hajime; Matsumura, Kazuaki

    2014-08-01

    A novel adhesive hydrogel consisting of dextran and epsilon-poly(L-lysine) (dextran-PL) with multiple biomedical applications was developed. Periodate oxidation in aqueous media almost stoichiometrically introduces aldehyde groups in dextran molecules, and aldehyde dextran can react with the primary amino groups in epsilon-PL (ɛ-PL) at neutral pH to form a hydrogel. The gelation time of the hydrogel can be easily controlled by the extent of oxidation in dextran and of the acylation in ɛ-PL by anhydrides. The shear adhesion strength of dextran-PL was 10 times higher than that of fibrin glue, when wet collagen sheets were selected as test specimens. The cytotoxicity of aldehyde dextran and ɛ-PL were 1000 times lower than that of glutaraldehyde and poly(allylamine). The considerably low cytotoxicity of aldehyde dextran could be ascribed to its low reactivity with amine species when compared with glutaraldehyde. In contrast, a high reactivity of amino groups in ɛ-PL was observed when compared with glycine, L-lysine, and gelatin, which could be explained by their poor dissociation at neutral pH, thus leading to low cytotoxicity. © 2013 Wiley Periodicals, Inc.

  8. Metabolic transit of N(ε)-carboxymethyl-lysine after consumption of AGEs from bread crust.

    Science.gov (United States)

    Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Tessier, Frédéric J; Niquet-Léridon, Céline; Strauch, Christopher; Monnier, Vincent M; Navarro, María Pilar

    2013-07-01

    Our aim was to investigate carboxymethyl-lysine (CML) intake and excretion after feeding rats with diets containing advanced glycation end-products (AGEs) from bread crust (BC) or its soluble or insoluble fractions, and to identify the factors responsible for the effects observed. CML in serum and different tissues was measured to detect possible accumulations. For 88 days, weanling rats were fed with either a control diet or one containing BC, or its soluble low molecular weight (LMW), soluble high molecular weight (HMW) or insoluble fractions. In the last week of the assay, faeces and urine were collected daily and stored as a 1 week pool. After sacrifice, blood was drawn to obtain serum and some organs were removed. CML analysis was performed by HPLC/MS/MS in diets, faeces, urines, serum and tissues. Faecal excretion of CML was strongly influenced by dietary CML levels and represents the major route of excretion (i.e. 33.2%). However, the urinary elimination of CML was probably limited or saturated, especially when more complex compounds were present in the diet. BC consumption increased CML in the cardiac tissue (170 ± 18 vs. 97 ± 3 μmol per mol lysine for BC and control groups), which correlated with the CML intake. The levels of this AGE in bone were unaffected by the dietary treatment, but in tail tendons CML was greatly increased in the animals that consumed the BC diet (102 ± 13 vs. 51 ± 8 μmol per mol lysine for BC and control groups, P = 0.006), which was associated with the intake of soluble LMW compounds present in BC. Despite the CML accumulation detected in different tissues, serum levels of protein-bound CML were unchanged, indicating the importance of measuring the free CML in this fluid as a real index of dietary CML.

  9. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA

    Science.gov (United States)

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    Summary Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The x-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2~SUMO thioester while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a non-consensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo. PMID:19748360

  10. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  11. Manipulation of charged residues within the two-peptide lantibiotic lacticin 3147

    NARCIS (Netherlands)

    Deegan, Lucy H.; Suda, Srinivas; Lawton, Elaine M.; Draper, Lorraine A.; Hugenholtz, Floor; Peschel, Andreas; Hill, Colin; Cotter, Paul D.; Ross, R. Paul

    2010-01-01

    Lantibiotics are antimicrobial peptides which contain a high percentage of post-translationally modified residues. While most attention has been paid to the role of these critical structural features, evidence continues to emerge that charged amino acids also play a key role in these peptides. Here

  12. Nutritional plans of digestible lysine for growing-finishing gilts

    Directory of Open Access Journals (Sweden)

    Gabriel Cipriano Rocha

    2014-09-01

    Full Text Available This experiment was conducted to evaluate nutritional plans of digestible lysine (DLys for growing-finishing gilts. Eighty gilts with 63 days of age and an initial weight of 24.2±1.52 kg were distributed in a completely randomized block design, with five nutritional plans of DLys (9-8-7, 10-9-8, 11-10-9, 12-11-10, and 13-12-11 g/kg, from 63 to 103, 104 to 133, and 134 to 153 days of age, respectively and eight replicates. Pigs were housed in pairs and fed their respective diets ad libitum throughout the experimental period (90 days. To monitor the animal development along the experiment at 103 and 133 days, gilts were weighed and subjected to analysis of ultrasound for evaluation of loin depth (longissimus dorsi and backfat thickness. At the end of the experiment (153 days of age the animals were weighed, and after slaughter carcasses were evaluated individually using a typifying pistol to evaluate the percentage and the content of carcass meat, loin depth and backfat thickness. From 63 to 133 days, there was no effect of the nutritional plans on daily feed intake, performance, or backfat thickness; however the loin depth was greater in the gilts that received plans with high levels of DLys (12-11; 13-12 g/kg compared with the plan with the lowest level (8-7 g/kg. For the entire period (63 to 153 days, no influence of the nutritional plans was observed on the daily feed intake, performance variables, or carcass characteristics. A nutritional plan containing 9-8-7 g/kg of digestible lysine fed from 63 to 103, 104 to 133 and 134 to 153 days, respectively, meets the requirements for performance and carcass characteristics of growing-finishing gilts.

  13. Thermal oxidative degradation of wood modified with aminophenylborates

    Directory of Open Access Journals (Sweden)

    Klyachenkova Olga

    2016-01-01

    Full Text Available Comparative thermal analysis in the presence of oxygen was carried out for samples of native pine wood and wood samples modified with aminophenylborates. Significant decrease in the amount of heat released during thermal decomposition of the modified samples was established, which is due to the increase of carbonaceous residues on the surface. Reduction of heat release during decomposition of the modified samples may be explained by the lower yield of combustible volatile products as well as by thin film of boron oxide, formed on the surface of the modified wood, that partially reflects heat flow. Produced upon the modifier decomposition water vapor and inert nitrogen oxides dilute gaseous mixture near the wood surface and isolate it from oxygen. This enhances fire-resistance of wood modified with mono- and diethanolamine(N→Bphenylborates. Hydroxyl group at the sixth carbon atom of the glucopyranose ring of cellulose participates in reactions of cellulose modification, which prevents formation of flammable levoglucosan and, consequently, improves the fire-resistance of the modified wood.

  14. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  15. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis.

    Science.gov (United States)

    Liu, L; Shaw, P D

    1997-01-01

    The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis. PMID:8990304

  16. Exigência de lisina para poedeiras semipesadas durante o pico de postura Lysine requeriment of semi-heavy laying hens during the peak of egg production

    Directory of Open Access Journals (Sweden)

    José Jordão Filho

    2006-08-01

    Full Text Available Objetivando determinar as exigências nutricionais de lisina para 252 poedeiras semipesadas, foi conduzido um experimento em delineamento inteiramente ao acaso, com sete tratamentos, constituídos de seis repetições de seis aves. As dietas, isoprotéicas (17,1% de PB e isocalóricas (2.800 kcal/kg-EM, foram formuladas para atender às exigências das aves em todos os nutrientes, exceto lisina, que foi suplementada com L-lisina • HCl (78,4% de lisina, resultando nos seguintes níveis: 0,79; 0,83; 0,87; 0,91; 0,95; 0,99 e 1,03% de lisina total. As características de desempenho foram avaliadas no período de 30 a 46 semanas de idade, que corresponde ao pico de postura. Foi observado efeito quadrático dos níveis de lisina sobre a produção, o peso e a conversão alimentar por dúzia de ovos. As exigências de lisina total foram de 0,92; 0,91 e 0,90%, que correspondem, respectivamente, a 0,84; 0,83 e 0,82% de lisina digestível. Recomenda-se 0,92 ou 0,84%, ou 996 ou 910 mg, de lisina total e digestível/ave/dia para poedeiras semipesadas durante o pico de postura.An experiment was carried out as a completely randomized design, with seven treatments, and six replicates of six birds to determine the lysine nutritional requeriments for 252 semi-heavy laying hens. The diets were formulated to be isonitrogenous (17.1%CP and isoenergy (2,800 kcal/kg-ME and to meet all bird nutrient requeriments, with the exception of lysine, that was supplemented with L-lysine • HCl (78.4% of lysine and resulted in the following levels: 0.79, 0.83, 0.87, 0.91, 0.95, 0.99, and 1.03% of total lysine. The performance variables were evaluated from 30 to 46 weeks of age, that correspond to the peak of egg production in commercial hens. Quadract effect of treatments on egg production, egg weight and egg dozen:feed ratio was observed. The total lysine requeriments were of 0.92, 0.91, and 0.90, that was correspondent to the estimate of 0.84, 0.83, and 0.82% of digestible

  17. Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    Science.gov (United States)

    Li, L; Lin, K; Correia, J J; Pilkis, S J

    1992-08-15

    Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6

  18. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen

    Directory of Open Access Journals (Sweden)

    Ngoc T. T. Nguyen

    2018-02-01

    Full Text Available The emerging relapsing fever spirochete Borrelia (B. miyamotoi is transmitted by ixodid ticks and causes the so-called hard tick-borne relapsing fever or B. miyamotoi disease (BMD. More recently, we identified a surface-exposed molecule, CbiA exhibiting complement binding and inhibitory capacity and rendering spirochetes resistant to complement-mediated lysis. To gain deeper insight into the molecular principles of B. miyamotoi-host interaction, we examined CbiA as a plasmin(ogen receptor that enables B. miyamotoi to interact with the serine protease plasmin(ogen. Recombinant CbiA was able to bind plasminogen in a dose-dependent fashion. Moreover, lysine residues appear to play a crucial role in the protein-protein interaction as binding of plasminogen was inhibited by the lysine analog tranexamic acid as well as increasing ionic strength. Of relevance, plasminogen bound to CbiA can be converted by urokinase-type plasminogen activator (uPa to active plasmin which cleaved both, the chromogenic substrate S-2251 and its physiologic substrate fibrinogen. Concerning the involvement of specific amino acids in the interaction with plasminogen, lysine residues located at the C-terminus are frequently involved in the binding as reported for various other plasminogen-interacting proteins of Lyme disease spirochetes. Lysine residues located within the C-terminal domain were substituted with alanine to generate single, double, triple, and quadruple point mutants. However, binding of plasminogen to the mutated CbiA proteins was not affected, suggesting that lysine residues distant from the C-terminus might be involved in the interaction.

  19. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...

  20. Nutrient retention capabilities of Nile tilapia ( Oreochromis niloticus) fed bio-regenerative life support system (BLSS) waste residues

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    Nile tilapia were evaluated as a bio-regenerative sub-process for reducing solid waste potentially encountered in bio-regenerative life support systems. Ten juvenile Nile tilapia (mean weight = 2.05 g) were stocked into triplicate aquaria and fed one of seven experimental diets consisting of vegetable, bacterial, or food waste for a period of seven weeks. Weight gain (g), specific growth rate (mg/d), and daily consumption (g) was significantly higher ( p diet (37.99 and 68.54, respectively) followed by fish fed the wheat bran/wheat germ diet (23.19 and 63.67, respectively). Nitrogen, sulfur, and crude protein retention was significantly higher ( p diet (23.68, 21.89, and 23.68, respectively). A general loss of minerals was observed among all groups. Strong associations were observed between crude lipid retention and sulfur retention ( r2 = 0.94), crude lipid retention and carbon retention ( r2 = 0.92), WG and fiber content of dietary treatments ( r2 = 0.92), WG and carbon retention and ( r2 = 0.88), WG and lysine content of waste residues ( r2 = 0.86), crude protein retention and carbon retention ( r2 = 0.84), sulfur retention and crude protein retention ( r2 = 0.84), and total sulfur amino acid (TSAA) content of residues and WG ( r2 = 0.81). Weaker associations existed between WG and crude lipid retention ( r2 = 0.77), crude fiber content and carbon retention ( r2 = 0.76), and WG and methionine content of waste residues ( r2 = 0.75). Additional research is needed to improve the nutritional quality of fibrous residues as a means to improve tilapia's ability to utilize these residues as a food source in bio-regenerative support systems.

  1. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  2. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Effect of Nitrogen Fertilizers on the Lysine Synthesis in Silo-Maize

    Energy Technology Data Exchange (ETDEWEB)

    Cencelj, J.; Jelenic, Dj. [Institute for the Application of Nuclear Energy in Agriculture, Veterinary Medicine and Forestry, Belgrade, Yugoslavia (Serbia)

    1968-07-01

    In investigations on amino acids of silo-maize, different nitrogen fertilizers were studied to determine their effect on amino acid composition and variation during the growth period. The experiment was carried out with silo-maize, hybrid W 464A, grown on sandy soil, which had not been treated for six years with either fertilizers or manure. Before cultivation phosphorus and potassium fertilizers were applied, and the nitrogen fertilizers, ammonium sulphate, ammonium nitrate, calcium cyanamide and urea, were applied at the most appropriate time of application. The first samples were taken at the time of flowering, the second after flowering, and the third, fourth and fifth in the lactic, wax, and full maturity phases, respectively. The percentages of crude protein of the maize gradually decreased while the nitrogen-free extraction matter increased during this period. The protein content of the maize was highest with sodium nitrate and urea fertilization and lowest when calcium cyanamide was used. Investigations to determine whether or not an increase in crude protein content was correlated with an increased content of lysine have shown that there is a correlation when plants are fertilized with calcium cyanamide. The content of essential amino acids was more satisfactory in plants fertilized with urea than with sodium nitrate. According to the statistical analysis, the best improvement in lysine content was obtained with urea (0.23%), the least satisfactory with calcium cyanamide (0.17%), and PK fertilizers without nitrogen (0.15%). (author)

  4. Sequencing Lys-N Proteolytic Peptides by ESI and MALDI Tandem Mass Spectrometry

    Science.gov (United States)

    Dupré, Mathieu; Cantel, Sonia; Verdié, Pascal; Martinez, Jean; Enjalbal, Christine

    2011-02-01

    In this study, we explored the MS/MS behavior of various synthetic peptides that possess a lysine residue at the N-terminal position. These peptides were designed to mimic peptides produced upon proteolysis by the Lys-N enzyme, a metalloendopeptidase issued from a Japanese fungus Grifola frondosa that was recently investigated in proteomic studies as an alternative to trypsin digestion, as a specific cleavage at the amide X-Lys chain is obtained that provides N-terminal lysine peptide fragments. In contrast to tryptic peptides exhibiting a lysine or arginine residue solely at the C-terminal position, and are thus devoid of such basic amino acids within the sequence, these Lys-N proteolytic peptides can contain the highly basic arginine residue anywhere within the peptide chain. The fragmentation patterns of such sequences with the ESI-QqTOF and MALDI-TOF/TOF mass spectrometers commonly used in proteomic bottom-up experiments were investigated.

  5. Facile direct electron transfer in glucose oxidase modified electrodes

    International Nuclear Information System (INIS)

    Wang Dan; Chen Liwei

    2009-01-01

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 μA/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  6. Quantitative Multiclass Pesticide Residue Analysis in Apple, Pear, and Grape by Modified QuEChERS and Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Munaretto, Juliana S; Viera, Mariela de S; Martins, Manoel L; Adaime, Martha B; Zanella, Renato

    2016-11-01

    Most of the analytical methods currently applied in food control laboratories are focused on the determination of target compounds using LC coupled to tandem MS, which is an effective technique, but low-resolution MS is limited. Thus, a method for determination of pesticide multiresidues in fruits (pear, apple, and grape) using a modified quick, easy, cheap, effective, rugged, and safe method and LC coupled to quadrupole time-of-flight (Q-TOF) MS was developed and validated. The proposed method showed good linearity (r2 > 0.99) from 1 to 100 μg/L. Recoveries for blank samples spiked at 0.01, 0.04, and 0.10 mg/kg were between 66 and 122%, with RSDs apple, pear, and grape matrixes were 0.01 mg/kg for 112, 120, and 118 compounds, and 0.04 mg/kg for 22, 12, and 17 compounds, and average mass accuracy error was 3.2 ppm. LC with Q-TOF MS detection using protonated molecular ion and/or adducts and mass accuracy provided reliability for the method. The proposed method is effective for pesticide residue determination in apple, pear, and grape samples, proving that high-resolution MS using full scan mode can be a powerful and reliable technique for quantification purposes, being adequate for application in the surveillance of maximum residue limits set by different legislations.

  7. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns

    DEFF Research Database (Denmark)

    Lundby, Alicia; Hansen, Kasper Lage; Weinert, Brian Tate

    2012-01-01

    ,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals...

  8. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate.

    Science.gov (United States)

    Marcoux, Julien; Champion, Thierry; Colas, Olivier; Wagner-Rousset, Elsa; Corvaïa, Nathalie; Van Dorsselaer, Alain; Beck, Alain; Cianférani, Sarah

    2015-08-01

    Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1. © 2015 The Protein Society.

  9. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing, E-mail: xuebinghu2010@gmail.com [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Yu, Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China); Wang, Yongqing; Zhou, Jianer [Key Laboratory of Inorganic Membrane, Jingdezhen Ceramic Institute, Jingdezhen 333001 (China); Song, Lixin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201800 (China)

    2015-02-28

    Graphical abstract: By adding an alkaline (NaOH or KOH) solution, the unprecipitated nano graphene oxide undergoes fast aggregation from the residual strong-acid filtrate of the modified Hummers method and forms the stable floccules when the pH value of the filtrate is about 1.7. The acid–base interaction with the surface functional groups of the carbon layers plays a role in the aggregation of the unprecipitated nano graphene oxide. - Highlights: • The novel and high-efficient method for separating graphene oxide was showed. • Graphene oxide undergoes aggregation and forms the floccules when pH value is ∼1.7. • The acid–base interaction plays a role in the aggregation of graphene oxide. - Abstract: In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid–base interaction with the surface functional groups of the carbon layers.

  10. Effects of lysine clonixinate on cyclooxygenase I and II in rat lung and stomach preparations.

    Science.gov (United States)

    Franchi, A M; Di Girolamo, G; de los Santos, A R; Martí, M L; Gimeno, M A

    1998-06-01

    Lysine clonixinate (LC) is a drug of antiinflammatory antipyretic and analgesic activity that produces minor digestive side-effects. This fact induced us to think that LC is possibly a weak COX-1 inhibitor. In order to investigate our hypothesis we inhibited cyclooxygenase activity with LC or indomethacin (INDO) in rat lung and stomach obtained from rats treated with lipopolysacharide (LPS) and control rats. Rat lung preparations incubated with 14C-arachidonic acid synthesise mainly PGE2. LC at 2.5 and 4.1 x 10(-5) M does not modify the basal production of PGE2 (probably COX-1) but at 6.8 x 10(-5) M significantly inhibited PGE2 production (approximately 48.5% inhibition, P<0.001). On the other hand, INDO at 10(-6) inhibited the basal production of PGE2 by around 73%. In LPS-treated rats, the production of PGE2 was significantly higher than in the lungs of control rats, probably due to the induction of COX-2. The addition of LC at 2.7 and 4.1 x 10(-5) M recovered the control values of PGE2 inhibiting, probably only from COX-2 activity. LC at higher concentrations (6.8 x 10(-5) M) and INDO 10(-6) M inhibited PGE2 formed by COX-2 and also partly by COX-1 activity.

  11. Salvage of Failed Protein Targets by Reductive Alkylation

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  12. Salvage of failed protein targets by reductive alkylation.

    Science.gov (United States)

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  13. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions.

    Science.gov (United States)

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J; Jackson, Terry

    2013-08-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-(Q)110(K)). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-(Q)110(K) substitution did not use these integrins. In contrast, the VP1-(Q)110(K) substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.

  14. Positively Charged Residues at the Five-Fold Symmetry Axis of Cell Culture-Adapted Foot-and-Mouth Disease Virus Permit Novel Receptor Interactions

    Science.gov (United States)

    Berryman, Stephen; Clark, Stuart; Kakker, Naresh K.; Silk, Rhiannon; Seago, Julian; Wadsworth, Jemma; Chamberlain, Kyle; Knowles, Nick J.

    2013-01-01

    Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable. PMID:23740982

  15. Residual power series method for fractional Sharma-Tasso-Olever equation

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2016-02-01

    Full Text Available In this paper, we introduce a modified analytical approximate technique to obtain solution of time fractional Sharma-Tasso-Olever equation. First, we present an alternative framework of the Residual power series method (RPSM which can be used simply and effectively to handle nonlinear fractional differential equations arising in several physical phenomena. This method is basically based on the generalized Taylor series formula and residual error function. A good result is found between our solution and the given solution. It is shown that the proposed method is reliable, efficient and easy to implement on all kinds of fractional nonlinear problems arising in science and technology.

  16. Chain Extension and Thermal Behavior of Recycled Poly(Ethylene Terephthalate Modified by Reactive Extrusion with Triphenyl Phosphite

    Directory of Open Access Journals (Sweden)

    Qin Dan

    2016-01-01

    Full Text Available Reactive extrusion experiments of recycled PET fabrics (R-PET were carried out in a Haake torque rheometer with triphenyl phosphite (TPP and thermal behavior of modified R-PET was investigated by differential scanning calorimetry (DSC. The reaction mechanism which TPP acts as a cross-linker is verified by the experiment of phosphorus elemental analysis. DSC results show the presence of reaction residues may not modify melting temperature Tm and crystallization temperature Tc is controlled by the combined effect of molecular weight and reaction residues.

  17. Stress-Softening and Residual Strain Effects in Suture Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone, nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data.

  18. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    Directory of Open Access Journals (Sweden)

    Ye Tong Xu

    2018-01-01

    Full Text Available Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White weaned at 28±4 days of age (8.79±0.02 kg body weight were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows for 28 days. Results Average daily gain increased quadratically (p<0.05, the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05 as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05, plasma aspartate, asparagine and cysteine decreased (p<0.05 as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05. Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6].

  19. On using smoothing spline and residual correction to fuse rain gauge observations and remote sensing data

    Science.gov (United States)

    Huang, Chengcheng; Zheng, Xiaogu; Tait, Andrew; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Li, Tao; Wang, Zhonglei

    2014-01-01

    Partial thin-plate smoothing spline model is used to construct the trend surface.Correction of the spline estimated trend surface is often necessary in practice.Cressman weight is modified and applied in residual correction.The modified Cressman weight performs better than Cressman weight.A method for estimating the error covariance matrix of gridded field is provided.

  20. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products.

    Science.gov (United States)

    Kurzchalia, T V; Wiedmann, M; Breter, H; Zimmermann, W; Bauschke, E; Rapoport, T A

    1988-03-15

    We have developed a new method for the rapid and sensitive detection of cell-free translation products. Biotinylated lysine is incorporated into newly synthesized proteins by means of lysyl-tRNA that is modified in the epsilon-position. After electrophoresis in a dodecyl sulfate gel and blotting onto nitrocellulose, the translation products can be identified by probing with streptavidin and biotinylated alkaline phosphatase, followed by incubation with a chromogenic enzyme substrate. The non-radioactive labelling by biotin approaches in its sensitivity that obtained by radioactive amino acids. The products are absolutely stable and can be rapidly identified. The new method has been tested with different mRNAs in the cell-free translation systems of wheat germ and reticulocytes. Neither the interaction of secretory proteins with the signal recognition particle nor the in vitro translocation across the endoplasmic reticulum membrane or core glycosylation of nascent polypeptides are prevented by the incorporation of biotinylated lysine residues. The results indicate that both the ribosome and the endoplasmic reticulum membrane permit the passage of polypeptides carrying bulky groups attached to the amino acids (by atomic models it was estimated that the size of the side chain of lysine changes from approximately equal to 0.8 nm to approximately equal to 2 nm after modification.