WorldWideScience

Sample records for lys63-linked ubiquitin chains

  1. Crystal Structures of Lys-63-linked tri- and di-ubiquitin Reveal a Highly Extended Chain Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, S.; Grasty, K; Hernandez-Cuebas, L; Loll, P

    2009-01-01

    The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handed helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.

  2. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6.

    Science.gov (United States)

    Li, Shih-Wen; Wang, Ching-Ying; Jou, Yu-Jen; Huang, Su-Hua; Hsiao, Li-Hsin; Wan, Lei; Lin, Ying-Ju; Kung, Szu-Hao; Lin, Cheng-Wen

    2016-05-05

    Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLPro) reportedly inhibits the production of type I interferons (IFNs) and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene 1 (RIG-I) pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ)) concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals.

  3. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6

    Directory of Open Access Journals (Sweden)

    Shih-Wen Li

    2016-05-01

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV papain-like protease (PLPro reportedly inhibits the production of type I interferons (IFNs and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3 and retinoic acid-inducible gene 1 (RIG-I pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals.

  4. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling.

    Science.gov (United States)

    Emmerich, Christoph H; Bakshi, Siddharth; Kelsall, Ian R; Ortiz-Guerrero, Juanma; Shpiro, Natalia; Cohen, Philip

    2016-06-03

    We have reported previously that activation of the MyD88-signaling network rapidly induces the formation of hybrid ubiquitin chains containing both Lys63-linked and Met1-linked ubiquitin (Ub) oligomers, some of which are attached covalently to Interleukin Receptor Associated kinase 1. Here we show that Lys63/Met1-Ub hybrids are also formed rapidly when the TNFR1/TRADD, TLR3/TRIF- and NOD1/RIP2-signaling networks are activated, some of which are attached covalently to Receptor-Interacting Protein 1 (TNFR1 pathway) or Receptor-Interacting Protein 2 (NOD1 pathway). These observations suggest that the formation of Lys63/Met1-Ub hybrids are of general significance for the regulation of innate immune signaling systems, and their potential roles in vivo are discussed. We also report that TNFα induces the attachment of Met1-linked Ub chains directly to TNF receptor 1, which do not seem to be attached covalently to Lys63-linked or other types of ubiquitin chain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Science.gov (United States)

    Branigan, Emma; Plechanovová, Anna; Jaffray, Ellis; Naismith, James H.; Hay, Ronald T.

    2015-01-01

    The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis. PMID:26148049

  6. [Progress in ubiquitin, ubiquitin chain and protein ubiquitination].

    Science.gov (United States)

    Lan, Qiuyan; Gao, Yuan; Li, Yanchang; Hong, Xuechuan; Xu, Ping

    2016-01-01

    Protein ubiquitination is one of the most important and widely exist protein post-translational modifications in eukaryotic cells, which takes the ubiquitin and ubiquitin chains as signal molecules to covalently modify other protein substrates. It plays an important roles in the control of almost all of the life processes, including gene transcription and translation, signal transduction and cell-cycle progression, besides classical 26S protesome degradation pathway. Varied modification sites in the same substrates as well as different types of ubiquitin linkages in the same modification sites contain different structural information, which conduct different signal or even determine the fate of the protein substrates in the cell. Any abnormalities in ubiquitin chain formation or its modification process may cause severe problem in maintaining the balance of intracellular environment and finally result in serious health problem of human being. In this review, we discussed the discovery, genetic characteristics and the crystal structure of the ubiquitin. We also emphasized the recent progresses of the assembly processes, structure and their biological function of ubiquitin chains. The relationship between the disregulation and related human diseases has also been discussed. These progress will shed light on the complexity of proteome, which may also provide tools in the new drug research and development processes.

  7. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains

    Science.gov (United States)

    Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro

    2017-01-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation. PMID:28103322

  8. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains.

    Science.gov (United States)

    Shibata, Yuri; Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Gohda, Jin; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro; Inoue, Jun-Ichiro

    2017-01-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.

  9. Ubiquitin chain conformation regulates recognition and activity of interacting proteins.

    Science.gov (United States)

    Ye, Yu; Blaser, Georg; Horrocks, Mathew H; Ruedas-Rama, Maria J; Ibrahim, Shehu; Zhukov, Alexander A; Orte, Angel; Klenerman, David; Jackson, Sophie E; Komander, David

    2012-12-13

    Mechanisms of protein recognition have been extensively studied for single-domain proteins, but are less well characterized for dynamic multidomain systems. Ubiquitin chains represent a biologically important multidomain system that requires recognition by structurally diverse ubiquitin-interacting proteins. Ubiquitin chain conformations in isolation are often different from conformations observed in ubiquitin-interacting protein complexes, indicating either great dynamic flexibility or extensive chain remodelling upon binding. Using single-molecule fluorescence resonance energy transfer, we show that Lys 63-, Lys 48- and Met 1-linked diubiquitin exist in several distinct conformational states in solution. Lys 63- and Met 1-linked diubiquitin adopt extended 'open' and more compact 'closed' conformations, and ubiquitin-binding domains and deubiquitinases (DUBs) select pre-existing conformations. By contrast, Lys 48-linked diubiquitin adopts predominantly compact conformations. DUBs directly recognize existing conformations, but may also remodel ubiquitin chains to hydrolyse the isopeptide bond. Disruption of the Lys 48-diubiquitin interface changes conformational dynamics and affects DUB activity. Hence, conformational equilibria in ubiquitin chains provide an additional layer of regulation in the ubiquitin system, and distinct conformations observed in differently linked polyubiquitin may contribute to the specificity of ubiquitin-interacting proteins.

  10. Ubiquitin chain topology and its impact on plant cell signalling

    Directory of Open Access Journals (Sweden)

    Charlotte Kirsten Walsh

    2014-04-01

    Full Text Available Ubiquitin is a peptide modifier able to form polymers of varying length and linkage as part of a powerful signalling system. Perhaps the best-known aspect of this protein’s function is as the driver of targeted protein degradation through the Ubiquitin Proteasome System (UPS. Through the formation of lysine 48-linked polyubiquitin chains, it is able to direct the degradation of tagged proteins by the 26S proteasome, indirectly controlling many processes within the cell. However, recent research has indicated that ubiquitin performs a multitude of other roles within the cell beyond protein degradation. It is able to form 6 other ‘atypical’ linkages though lysine residues at positions 6, 11, 27, 29, 33 and 63. These atypical chains perform a range of diverse functions, including the regulation of iron uptake in response to perceived deficiency, repair of double stranded breaks in the DNA, and regulation of the auxin response through the non-proteasomal degradation of auxin efflux carrier protein PIN1. This review explores the role ubiquitin chain topology plays in plant cellular function. We aim to highlight the importance of these varying functions and the future challenges to be encountered within this field.

  11. The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1.

    Science.gov (United States)

    Burana, Daocharad; Yoshihara, Hidehito; Tanno, Hidetaka; Yamamoto, Akitsugu; Saeki, Yasushi; Tanaka, Keiji; Komada, Masayuki

    2016-03-18

    Caveolin 1 (Cav-1) is an oligomeric protein that forms flask-shaped, lipid-rich pits, termed caveolae, on the plasma membrane. Cav-1 is targeted for lysosomal degradation in ubiquitination- and valosin-containing protein (VCP)-dependent manners. VCP, an ATPase associated with diverse cellular activities that remodels or segregates ubiquitinated protein complexes, has been proposed to disassemble Cav-1 oligomers on the endosomal membrane, facilitating the trafficking of Cav-1 to the lysosome. Genetic mutations in VCP compromise the lysosomal trafficking of Cav-1, leading to a disease called inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia (IBMPFD). Here we identified the Ankrd13 family of ubiquitin-interacting motif (UIM)-containing proteins as novel VCP-interacting molecules on the endosome. Ankrd13 proteins formed a ternary complex with VCP and Cav-1 and exhibited high binding affinity for ubiquitinated Cav-1 oligomers in an UIM-dependent manner. Mass spectrometric analyses revealed that Cav-1 undergoes Lys-63-linked polyubiquitination, which serves as a lysosomal trafficking signal, and that the UIMs of Ankrd13 proteins bind preferentially to this ubiquitin chain type. The overexpression of Ankrd13 caused enlarged hollow late endosomes, which was reminiscent of the phenotype of the VCP mutations in IBMPFD. Overexpression of Ankrd13 proteins also stabilized ubiquitinated Cav-1 oligomers on the limiting membrane of enlarged endosomes. The interaction with Ankrd13 was abrogated in IMBPFD-associated VCP mutants. Collectively, our results suggest that Ankrd13 proteins cooperate with VCP to regulate the lysosomal trafficking of ubiquitinated Cav-1.

  12. Ubiquitin Chain Editing Revealed By Polyubiquitin Linkage-Specific Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Newton, K.; Matsumoto, M.L.; Wertz, I.E.; Kirkpatrick, D.S.; Lill, J.R.; Tan, J.; Dugger, D.; Gordon, N.; Sidhu, S.S.; Fellouse, F.A.; Komuves, L.; French, D.M.; Ferrando, R.E.; Lam, C.; Compaan, D.; Yu, C.; Bosanac, I.; Hymowitz, S.G.; Kelley, R.F.; Dixit, V.M.

    2009-05-22

    Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have developed linkage-specific antibodies that recognize polyubiquitin chains joined through lysine 63 (K63) or 48 (K48). A cocrystal structure of an anti-K63 linkage Fab bound to K63-linked diubiquitin provides insight into the molecular basis for specificity. We use these antibodies to demonstrate that RIP1, which is essential for tumor necrosis factor-induced NF-{kappa}B activation, and IRAK1, which participates in signaling by interleukin-1{beta} and Toll-like receptors, both undergo polyubiquitin editing in stimulated cells. Both kinase adaptors initially acquire K63-linked polyubiquitin, while at later times K48-linked polyubiquitin targets them for proteasomal degradation. Polyubiquitin editing may therefore be a general mechanism for attenuating innate immune signaling.

  13. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    Energy Technology Data Exchange (ETDEWEB)

    Reidick, Christina [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany); El Magraoui, Fouzi; Meyer, Helmut E. [Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139 (Germany); Stenmark, Harald [Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310 (Norway); Platta, Harald W., E-mail: harald.platta@rub.de [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany)

    2014-12-23

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  14. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system

    Science.gov (United States)

    Strickson, Sam; Campbell, David G.; Emmerich, Christoph H.; Knebel, Axel; Plater, Lorna; Ritorto, Maria Stella; Shpiro, Natalia; Cohen, Philip

    2013-01-01

    The compound BAY 11-7082 inhibits IκBα [inhibitor of NF-κB (nuclear factor κB)α] phosphorylation in cells and has been used to implicate the canonical IKKs (IκB kinases) and NF-κB in >350 publications. In the present study we report that BAY 11-7082 does not inhibit the IKKs, but suppresses their activation in LPS (lipopolysaccharide)-stimulated RAW macrophages and IL (interleukin)-1-stimulated IL-1R (IL-1 receptor) HEK (human embryonic kidney)-293 cells. BAY 11-7082 exerts these effects by inactivating the E2-conjugating enzymes Ubc (ubiquitin conjugating) 13 and UbcH7 and the E3 ligase LUBAC (linear ubiquitin assembly complex), thereby preventing the formation of Lys63-linked and linear polyubiquitin chains. BAY 11-7082 prevents ubiquitin conjugation to Ubc13 and UbcH7 by forming a covalent adduct with their reactive cysteine residues via Michael addition at the C3 atom of BAY 11-7082, followed by the release of 4-methylbenzene-sulfinic acid. BAY 11-7082 stimulated Lys48-linked polyubiquitin chain formation in cells and protected HIF1α (hypoxia-inducible factor 1α) from proteasomal degradation, suggesting that it inhibits the proteasome. The results of the present study indicate that the anti-inflammatory effects of BAY 11-7082, its ability to induce B-cell lymphoma and leukaemic T-cell death and to prevent the recruitment of proteins to sites of DNA damage are exerted via inhibition of components of the ubiquitin system and not by inhibiting NF-κB. PMID:23441730

  15. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting

    Science.gov (United States)

    Emmerich, Christoph H.; Cohen, Philip

    2015-01-01

    Immunoblotting is a powerful technique for the semi-quantitative analysis of ubiquitylation events, and remains the most commonly used method to study this process due to its high specificity, speed, sensitivity and relatively low cost. However, the ubiquitylation of proteins is complex and, when the analysis is performed in an inappropriate manner, it can lead to the misinterpretation of results and to erroneous conclusions being reached. Here we discuss the advantages and disadvantages of the methods currently in use to analyse ubiquitin chains and protein ubiquitylation, and describe the procedures that we have found to be most useful for optimising the quality and reliability of the data that we have generated. We also highlight commonly encountered problems and the pitfalls inherent in some of these methods. Finally, we introduce a set of recommendations to help researchers obtain high quality data, especially those new to the field of ubiquitin signalling. The specific topics addressed in this article include sample preparation, the separation, detection and identification of particular ubiquitin chains by immunoblotting, and the analysis of ubiquitin chain topology through the combined use of ubiquitin-binding proteins and ubiquitin linkage-specific deubiquitylases. PMID:26325464

  16. Ubiquitin

    DEFF Research Database (Denmark)

    Vinther-Jensen, T.; Simonsen, A. H.; Budtz-Jorgensen, E.;

    2015-01-01

    , as well as aid in identifying an optimal time point for initiating a potential therapeutic intervention. METHODS: This explorative proteomics study evaluated cerebrospinal fluid from 94 Huntington's disease gene-expansion carriers (39 premanifest and 55 manifest) and 27 Huntington's disease gene......-expansion negative individuals using surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry. Differences in peak intensity from SELDI-TOF spectra were evaluated. RESULTS: Levels of 10 peaks were statistically significantly different between manifest gene-expansion carriers......-expansion carriers. CONCLUSIONS AND RELEVANCE: Multiple studies have shown that the ubiquitin-proteasome system is involved in Huntington's disease pathogenesis and understanding of this involvement may have therapeutic potential in humans. This is the first study on cerebrospinal fluid to confirm the involvement...

  17. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains

    DEFF Research Database (Denmark)

    Wilkinson, C R; Seeger, M; Hartmann-Petersen, R

    2001-01-01

    The UBA domain is a motif found in a variety of proteins, some of which are associated with the ubiquitin-proteasome system. We describe the isolation of a fission-yeast gene, mud1+, which encodes a UBA domain containing protein that is able to bind multi-ubiquitin chains. We show that the UBA...... domain is responsible for this activity. Two other proteins containing this motif, the fission-yeast homologues of Rad23 and Dsk2, are also shown to bind multi-ubiquitin chains via their UBA domains. These two proteins are implicated, along with the fission-yeast Pus1(S5a/Rpn10) subunit of the 26 S...

  18. Ubiquitin modifications

    OpenAIRE

    Swatek, Kirby N.; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex top...

  19. Organic Chemistry Applied to Synthetic Proteins: Modifying the Vicinity of the Isopeptide Bond Revealed Differential Behavior of Ubiquitin Chains with Interacting Proteins

    Science.gov (United States)

    Haj-Yahya, Najat; Haj-Yahya, Mahmood; Castañeda, Carlos A.; Spasser, Liat; Hemantha, Hosahalli P.; Jbara, Muhammad; Penner, Marlin; Ciechanover, Aaron; Fushman, David

    2013-01-01

    In Every Direction Chemical synthesis of proteins allowed the synthesis of ubiquitin chains modified in the vicinity of the isopeptide peptide to examine their behavior with deubiquitinases and ubiquitin binding domains. Our results set the ground for the generation of unique probes for studying the interactions of these chains with various ubiquitin-interacting proteins. PMID:24006204

  20. PolyUbiquitin Chain Linkage Topology Selects the Functions from the Underlying Binding Landscape

    Science.gov (United States)

    Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin

    2014-01-01

    Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages. PMID:24992446

  1. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains.

    Science.gov (United States)

    Düwel, Michael; Welteke, Verena; Oeckinghaus, Andrea; Baens, Mathijs; Kloo, Bernhard; Ferch, Uta; Darnay, Bryant G; Ruland, Jürgen; Marynen, Peter; Krappmann, Daniel

    2009-06-15

    The Carma1-Bcl10-Malt1 signaling module bridges TCR signaling to the canonical IkappaB kinase (IKK)/NF-kappaB pathway. Covalent attachment of regulatory ubiquitin chains to Malt1 paracaspase directs TCR signaling to IKK activation. Further, the ubiquitin-editing enzyme A20 was recently suggested to suppress T cell activation, but molecular targets for A20 remain elusive. In this paper, we show that A20 regulates the strength and duration of the IKK/NF-kappaB response upon TCR/CD28 costimulation. By catalyzing the removal of K63-linked ubiquitin chains from Malt1, A20 prevents sustained interaction between ubiquitinated Malt1 and the IKK complex and thus serves as a negative regulator of inducible IKK activity. Upon T cell stimulation, A20 is rapidly removed and paracaspase activity of Malt1 has been suggested to cleave A20. Using antagonistic peptides or reconstitution of Malt1(-/-) T cells, we show that Malt1 paracaspase activity is required for A20 cleavage and optimal IL-2 production, but dispensable for initial IKK/NF-kappaB signaling in CD4(+) T cells. However, proteasomal inhibition impairs A20 degradation and impedes TCR/CD28-induced IKK activation. Taken together, A20 functions as a Malt1 deubiquitinating enzyme and proteasomal degradation and de novo synthesis of A20 contributes to balance TCR/CD28-induced IKK/NF-kappaB signaling.

  2. Molecular Basis for the Unique Deubiquitinating Activity of the NF-κB Inhibitor A20

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.; Chung, J; Lamothe, B; Rajashankar, K; Lu, M; Lo, Y; Lam, A; Darnay, B; Wu, H

    2008-01-01

    Nuclear factor ?B (NF-?B) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-?B activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-?B activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.

  3. Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration

    OpenAIRE

    Balastik, M.; Ferraguti, F.; A. Pires da Silva; Lee, T; Alvarez-Bolado, G.; Lu, K.; Gruss, P

    2008-01-01

    TRIM RING finger proteins have been shown to play an important role in cancerogenesis, in the pathogenesis of some human hereditary disorders, and in the defense against viral infection, but the function of the majority of TRIM proteins remains unknown. Here, we show that TRIM RING finger protein TRIM2, highly expressed in the nervous system, is an UbcH5a-dependent ubiquitin ligase. We further demonstrate that TRIM2 binds to neurofilament light subunit (NF-L) and regulates NF-L ubiquitination...

  4. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis.

    Science.gov (United States)

    Gyrd-Hansen, Mads; Darding, Maurice; Miasari, Maria; Santoro, Massimo M; Zender, Lars; Xue, Wen; Tenev, Tencho; da Fonseca, Paula C A; Zvelebil, Marketa; Bujnicki, Janusz M; Lowe, Scott; Silke, John; Meier, Pascal

    2008-11-01

    The covalent attachment of ubiquitin to target proteins influences various cellular processes, including DNA repair, NF-kappaB signalling and cell survival. The most common mode of regulation by ubiquitin-conjugation involves specialized ubiquitin-binding proteins that bind to ubiquitylated proteins and link them to downstream biochemical processes. Unravelling how the ubiquitin-message is recognized is essential because aberrant ubiquitin-mediated signalling contributes to tumour formation. Recent evidence indicates that inhibitor of apoptosis (IAP) proteins are frequently overexpressed in cancer and their expression level is implicated in contributing to tumorigenesis, chemoresistance, disease progression and poor patient-survival. Here, we have identified an evolutionarily conserved ubiquitin-associated (UBA) domain in IAPs, which enables them to bind to Lys 63-linked polyubiquitin. We found that the UBA domain is essential for the oncogenic potential of cIAP1, to maintain endothelial cell survival and to protect cells from TNF-alpha-induced apoptosis. Moreover, the UBA domain is required for XIAP and cIAP2-MALT1 to activate NF-kappaB. Our data suggest that the UBA domain of cIAP2-MALT1 stimulates NF-kappaB signalling by binding to polyubiquitylated NEMO. Significantly, 98% of all cIAP2-MALT1 fusion proteins retain the UBA domain, suggesting that ubiquitin-binding contributes to the oncogenic potential of cIAP2-MALT1 in MALT lymphoma. Our data identify IAPs as ubiquitin-binding proteins that contribute to ubiquitin-mediated cell survival, NF-kappaB signalling and oncogenesis.

  5. Ubiquitin Ligase, MuRF-1 regulates myosin heavy chain type IIa transcripts during muscle atrophy under microgravity conditions

    Science.gov (United States)

    Kagawa, Sachiko

    Skeletal muscles are vulnerable to marked atrophy under microgravity conditions. We previously reported that gastrocnemius muscle atrophy by spaceflight was specifically sensitive to the ubiquitin-proteasome proteolytic pathway. We also screened more over 26,000 skeletal muscle genes in rats exposed to real weightlessness and found that the expression of Ubiquitin Ligase, Muscle specific Ring Finger-1 (MuRF-1) upregulated under microgravity. In the present study, we examined the role of MuRF-1 in microgravity-induced muscle atrophy. The amounts of MuRF-1 transcripts significantly increased in skeletal muscle after denervation, an in vivo model of microgravity-induced unloading. MuRF-1 deficient (MuRF-1-/-) mice significantly inhibited reduction of muscle weight for muscle atrophy, compared with wild type mice. Interestingly, MuRF-1-/- mice significantly inhibited upregulation of myosin heavy chain (MyHC) type IIa transcrips, while wild type mice significantly increased expression of MyHC type IIa transcripts in denervated skeletal muscle. Our present results suggest that MuRF-1 may play an important role in regulation of MyHC type IIa during muscle atrophy under microgravity conditions.

  6. An impaired respiratory electron chain triggers down-regulation of the energy metabolism and de-ubiquitination of solute carrier amino acid transporters

    OpenAIRE

    Aretz, I.; Hardt, C.; Wittig, I.; Meierhofer, D.

    2016-01-01

    Hundreds of genes have been associated with respiratory chain disease (RCD), the most common inborn error of metabolism so far. Elimination of the respiratory electron chain by depleting the entire mitochondrial DNA (mtDNA, rho0 cells) has therefore one of the most severe impacts on the energy metabolism in eukaryotic cells. In this study, proteomic data sets including the post transcriptional modifications (PTMs) phosphorylation and ubiquitination were integrated with metabolomic data sets a...

  7. Differentiation of compact and extended conformations of di-ubiquitin conjugates with lysine-specific isopeptide linkages by ion mobility-mass spectrometry.

    Science.gov (United States)

    Jung, Ji Eun; Pierson, Nicholas A; Marquardt, Andreas; Scheffner, Martin; Przybylski, Michael; Clemmer, David E

    2011-08-01

    Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS-MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS-MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.

  8. Citrobacter rodentium NleB Protein Inhibits Tumor Necrosis Factor (TNF) Receptor-associated Factor 3 (TRAF3) Ubiquitination to Reduce Host Type I Interferon Production.

    Science.gov (United States)

    Gao, Xiaofei; Pham, Thanh H; Feuerbacher, Leigh Ann; Chen, Kangming; Hays, Michael P; Singh, Gyanendra; Rueter, Christian; Hurtado-Guerrero, Ramon; Hardwidge, Philip R

    2016-08-26

    Interferon signaling plays important roles in both intestinal homeostasis and in the host response to pathogen infection. The extent to which bacterial pathogens inhibit this host pathway is an understudied area of investigation. We characterized Citrobacter rodentium strains bearing deletions in individual type III secretion system effector genes to determine whether this pathogen inhibits the host type I IFN response and which effector is responsible. The NleB effector limited host IFN-β production by inhibiting Lys(63)-linked ubiquitination of TNF receptor-associated factor 3 (TRAF3). Inhibition was dependent on the glycosyltransferase activity of NleB. GAPDH, a target of NleB during infection, bound to TRAF3 and was required for maximal TRAF3 ubiquitination. NleB glycosyltransferase activity inhibited GAPDH-TRAF3 binding, resulting in reduced TRAF3 ubiquitination. Collectively, our data reveal important interplay between GAPDH and TRAF3 and suggest a mechanism by which the NleB effector inhibits type I IFN signaling.

  9. Activation of nuclear factor-kappa B by linear ubiquitin chain assembly complex contributes to lung metastasis of osteosarcoma cells.

    Science.gov (United States)

    Tomonaga, Masato; Hashimoto, Nobuyuki; Tokunaga, Fuminori; Onishi, Megumi; Myoui, Akira; Yoshikawa, Hideki; Iwai, Kazuhiro

    2012-02-01

    NF-κB is involved in the metastasis of malignant cells. We have shown that NF-κB activation is involved in the pulmonary metastasis of LM8 cells, a highly metastatic subclone of Dunn murine osteosarcoma cells. Recently, it was determined that a newly identified type of polyubiquitin chain, a linear polyubiquitin chain, which is specifically generated by the linear ubiquitin chain assembly complex (LUBAC), plays a critical role in NF-κB activation. Here, we have evaluated the roles of LUBAC-mediated NF-κB activation in the development of lung metastasis of osteosarcoma cells. All three components of LUBAC (HOIL-1L, HOIP and SHARPIN) were highly expressed in LM8 cells compared to Dunn cells. Attenuation of LUBAC expression by stable knockdown of HOIL-1L in LM8 cells significantly suppressed NF-κB activity, invasiveness in vitro and lung metastasis. Induction of intracellular adhesion molecule-1 (ICAM-1) expression by LUBAC is involved in cell retention in the lungs after an intravenous inoculation of tumor cells. Moreover, we found that knockdown of LUBAC decreased not only the number but also the size of the metastatic nodules of LM8 cells in the lungs. These results indicate that LUBAC-mediated NF-κB activation plays crucial roles in several steps involved in metastasis, including extravasation and growth of osteosarcoma cells in the lung, and that suppression of LUBAC-mediated linear polyubiquitination activity may be a new approach to treat this life-threatening disease of young adolescents.

  10. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng; Hurley, James H. (NIH)

    2010-03-30

    VHS (Vps27, Hrs, and STAM) domains occur in ESCRT-0 subunits Hrs and STAM, GGA adapters, and other trafficking proteins. The structure of the STAM VHS domain-ubiquitin complex was solved at 2.6 {angstrom} resolution, revealing that determinants for ubiquitin recognition are conserved in nearly all VHS domains. VHS domains from all classes of VHS-domain containing proteins in yeast and humans, including both subunits of ESCRT-0, bound ubiquitin in vitro. ESCRTs have been implicated in the sorting of Lys63-linked polyubiquitinated cargo. Intact human ESCRT-0 binds Lys63-linked tetraubiquitin 50-fold more tightly than monoubiquitin, though only 2-fold more tightly than Lys48-linked tetraubiquitin. The gain in affinity is attributed to the cooperation of flexibly connected VHS and UIM motifs of ESCRT-0 in avid binding to the polyubiquitin chain. Mutational analysis of all the five ubiquitin-binding sites in yeast ESCRT-0 shows that cooperation between them is required for the sorting of the Lys63-linked polyubiquitinated cargo Cps1 to the vacuole.

  11. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    Directory of Open Access Journals (Sweden)

    Ricardo Rajsbaum

    Full Text Available Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1 proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04, avian (HK156, swine (SwTx98 and mouse-adapted (PR8 influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  12. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction.

    Science.gov (United States)

    Park, Eui-Soon; Choi, Seunga; Shin, Bongjin; Yu, Jungeun; Yu, Jiyeon; Hwang, Jung-Me; Yun, Hyeongseok; Chung, Young-Ho; Choi, Jong-Soon; Choi, Yongwon; Rho, Jaerang

    2015-04-10

    The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.

  13. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    Science.gov (United States)

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  14. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  15. The role of the ubiquitin system in human cytomegalovirus-mediated degradation of MHC class I heavy chains

    NARCIS (Netherlands)

    Hassink, Gerrit Cornelis

    2006-01-01

    One of the mechanisms used by HCMV to downregulate cell surface expression of the MHC class I complex involves the dislocation of newly synthesized class I heavy chains into the cytosol, where they are degraded by the proteasome. Misfolded ER proteins have been found to be degraded via the same rout

  16. Allosteric regulation of deubiquitylase activity through ubiquitination

    Directory of Open Access Journals (Sweden)

    Serena eFaggiano

    2015-02-01

    Full Text Available Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

  17. Types of Ubiquitin Ligases.

    Science.gov (United States)

    Morreale, Francesca Ester; Walden, Helen

    2016-03-24

    Ubiquitination is a post-translational modification of proteins involved in a variety of cellular processes. Ubiquitination requires the sequential action of three enzymes: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-conjugating enzymes), and E3 (ubiquitin ligases). This SnapShot highlights the main types of E3 ubiquitin ligases, which can be classified in three families depending on the presence of characteristic domains and on the mechanism of ubiquitin transfer to the substrate protein.

  18. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages.

    Directory of Open Access Journals (Sweden)

    Mikael Altun

    Full Text Available Ovarian tumor domain containing proteases cleave ubiquitin (Ub and ubiquitin-like polypeptides from proteins. Here we report the crystal structure of human otubain 2 (OTUB2 in complex with a ubiquitin-based covalent inhibitor, Ub-Br2. The ubiquitin binding mode is oriented differently to how viral otubains (vOTUs bind ubiquitin/ISG15, and more similar to yeast and mammalian OTUs. In contrast to OTUB1 which has exclusive specificity towards Lys48 poly-ubiquitin chains, OTUB2 cleaves different poly-Ub linked chains. N-terminal tail swapping experiments between OTUB1 and OTUB2 revealed how the N-terminal structural motifs in OTUB1 contribute to modulating enzyme activity and Ub-chain selectivity, a trait not observed in OTUB2, supporting the notion that OTUB2 may affect a different spectrum of substrates in Ub-dependent pathways.

  19. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability

    Directory of Open Access Journals (Sweden)

    Minghua Nie

    2016-02-01

    Full Text Available Covalent attachment of ubiquitin (Ub or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.

  20. Crystallographic structure of ubiquitin in complex with cadmium ions

    Directory of Open Access Journals (Sweden)

    Cheung Peter

    2009-12-01

    Full Text Available Abstract Background Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. Findings We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. Conclusions The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.

  1. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function

    OpenAIRE

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R.; Xu, Guoqiang

    2015-01-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains a...

  2. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation

    Science.gov (United States)

    McGuire, Victoria A.; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H.; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V.; Weiβ, Anne; Houslay, Kirsty F.; Knebel, Axel; Meakin, Paul J.; Phair, Iain R.; Ashford, Michael L. J.; Trost, Matthias; Arthur, J. Simon C.

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  3. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  4. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  5. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    Protein ubiquitylation is an important post-translational modification that holds a variety of cellular functions. This Ph.D. thesis is comprised of two studies, of which one focused on ubiquitylation related to inflammatory signaling, and the other on the role of the ubiquitin-proteasome system......-terminal methionine (M1), and recently, the deubiquitylating enzyme, OTULIN, was discovered to counter LUBAC activity by exclusively cleaving M1-linked ubiquitin chains. We provide the molecular detail of the interaction between the LUBAC subunit, HOIP, and OTULIN. The interaction was mapped to the PUB-domain of HOIP...

  6. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family.

    Science.gov (United States)

    Cui, Jixin; Yao, Qing; Li, Shan; Ding, Xiaojun; Lu, Qiuhe; Mao, Haibin; Liu, Liping; Zheng, Ning; Chen, She; Shao, Feng

    2010-09-03

    A family of bacterial effectors including Cif homolog from Burkholderia pseudomallei (CHBP) and Cif from Enteropathogenic Escherichia coli (EPEC) adopt a functionally important papain-like hydrolytic fold. We show here that CHBP was a potent inhibitor of the eukaryotic ubiquitination pathway. CHBP acted as a deamidase that specifically and efficiently deamidated Gln40 in ubiquitin and ubiquitin-like protein NEDD8 both in vitro and during Burkholderia infection. Deamidated ubiquitin was impaired in supporting ubiquitin-chain synthesis. Cif selectively deamidated NEDD8, which abolished the activity of neddylated Cullin-RING ubiquitin ligases (CRLs). Ubiquitination and ubiquitin-dependent degradation of multiple CRL substrates were impaired by Cif in EPEC-infected cells. Mutations of substrate-contacting residues in Cif abolished or attenuated EPEC-induced cytopathic phenotypes of cell cycle arrest and actin stress fiber formation.

  7. Extralysosomal turnover of cellular proteins: Targeting substrates in the ubiquitin, ATP-dependent degradation system

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.

    1988-01-01

    Calmodulin derived from a cloned chicken gene can be ubiquitinated and degraded by an in vitro reticulocyte lysate system. The chemical reactivity and the surface accessibility of the {epsilon}-amino group on lysine 115 in the calmodulin polypeptide chain were studied by trace labeling with acetic anhydride and with a ubiquitin derivative containing an azido group at the C-terminal glycine residue. Fractionation of reticulocyte lysate proteins separated the activity which degrades the calmodulin moiety of ubiquitin-calmodulin conjugates from that which acts on the isopeptide linkage. Neither of these two activities act on a synthetic isopeptide, which mimics the junction of ubiquitin-calmodulin, indicating the importance of the folding of ubiquitin for recognition. Based on recent findings that the ubiquitin moieties linked to {beta}galactosidase exist as a single multiubiquitin chain, studies were carried out to determine the structure of the ubiquitin-ubiquitin linkage. Ubiquitin was in vivo labeled with ({sup 3}H) and conjugated to {beta}galactosidase. Individual conjugates were isolated and subjected to peptide mapping by trypsin digestion, and tryptic fragments were analyzed of HPLC. The results indicated that the ubiquitin-ubiquitin linkage involves lysine residue 48 in the ubiquitin sequence.

  8. Cellular contractility requires ubiquitin mediated proteolysis.

    Directory of Open Access Journals (Sweden)

    Yuval Cinnamon

    Full Text Available BACKGROUND: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. PRINCIPAL FINDINGS: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. CONCLUSIONS: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.

  9. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies.

    Science.gov (United States)

    Nguyen, Lan K

    2016-05-01

    Post-translational modification of cellular proteins by ubiquitin is a pivotal regulatory event that controls not only protein degradation, but also a variety of non-proteolytic functions. Ubiquitination is involved in a broad array of physiological processes, and its dysregulation has been associated with many human diseases, including neuronal disorders and cancers. Ubiquitin-mediated signalling has thus come to the forefront of biomedical research. It is increasingly apparent that ubiquitination is a highly complex and dynamic process, evidenced by a myriad of ways of ubiquitin chain formation, tightly regulatory mechanisms involving E3 ligases and deubiquitinating enzymes and extensive crosstalk with other post-translational modifications. To unravel the complexity of ubiquitination and understand the dynamic properties of ubiquitin-mediated signalling are challenging, but critical topics in ubiquitin research, which will undoubtedly benefit our effort in developing strategies that could target ubiquitin signalling for therapeutics. Computational modelling and model-based approaches are emerging as promising tools that help tackle the complexity and provide useful frameworks for quantitative and dynamical analysis of ubiquitin signalling. In this article, I will discuss recent advances in our understanding of the dynamic behaviour of ubiquitination from both theoretical and experimental studies, and aspects of ubiquitin signalling that may have major dynamical consequences. It is expected the discussed issues will be of relevant interest to both the ubiquitin and systems biology fields.

  10. A novel effect of thalidomide and its analogs: suppression of cereblon ubiquitination enhances ubiquitin ligase function.

    Science.gov (United States)

    Liu, Yaobin; Huang, Xiangao; He, Xian; Zhou, Yanqing; Jiang, Xiaogang; Chen-Kiang, Selina; Jaffrey, Samie R; Xu, Guoqiang

    2015-12-01

    The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 μM) and its structural analog lenalidomide (10 μM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.

  11. Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica.

    Science.gov (United States)

    Haas, A L; Katzung, D J; Reback, P M; Guarino, L A

    1996-04-30

    The marked evolutionary conservation of ubiquitin is assumed to arise from constraints imposed by folding, stability, and interaction of the polypeptide with various components of the ATP, ubiquitin-dependent degradative pathway. The present studies characterize the most divergent (75% identity) of the species-specific ubiquitin isoforms encoded as a late gene product of the baculovirus Autographa californica [Guarino, L. A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 409-413]. Viral ubiquitin supports 40% of the rate of ATP-dependent degradation exhibited by eukaryotic ubiquitin. Inhibition of proteolysis correlated with a lower steady-state concentration of ubiquitin-conjugated degradative intermediates. Rate studies revealed that viral ubiquitin exerts its effect at the step of isopeptide ligase-catalyzed (E3) ubiquitin conjugation since viral and eukaryotic polypeptides are identical in their abilities to support ATP-coupled activation by E1 and transthiolation to E2 carrier proteins. Other studies demonstrated viral ubiquitin severely attenuated the rate of K48-linked multiubiquitin chain formation in E3-independent conjugation catalyzed by recombination yeast CDC34 or rabbit reticulocyte E232K but not chain elongation of alternate linkages formed by yeast RAD6 or human E2EPF. The latter observations suggest nonconserved positions on viral ubiquitin constitute recognition signals for K48-linked chain formation. Sequence comparison of species-specific ubiquitin isoforms indicates that nonconserved positions localized to a defined region on the polypeptide surface distinct from the basic face required for E1 binding. These results suggest this novel ubiquitin isoform may function in baculoviral replication to block destruction of a short-lived protein(s) by the host degradative pathway, targeted through either E2-catalyzed K48-linked multibiquitin chain formation or general E3-mediated conjugation.

  12. Identification of sites of ubiquitination in proteins: a fourier transform ion cyclotron resonance mass spectrometry approach.

    Science.gov (United States)

    Cooper, Helen J; Heath, John K; Jaffray, Ellis; Hay, Ronald T; Lam, Tukiet T; Marshall, Alan G

    2004-12-01

    Structural elucidation of posttranslationally modified peptides and proteins is of key importance in the understanding of an array of biological processes. Ubiquitination is a reversible modification that regulates many cellular functions. Consequences of ubiquitination depend on whether a single ubiquitin or polyubiquitin chain is added to the tagged protein. The lysine residue through which the polyubiquitin chain is formed is also critical for biological activity. Robust methods are therefore required to identify sites of ubiquitination modification, both in the target protein and in ubiquitin. Here, we demonstrate the suitability of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, in conjunction with activated ion electron capture dissociation (AI ECD) or infrared multiphoton dissociation (IRMPD), for the analysis of ubiquitinated proteins. Polyubiquitinated substrate protein GST-Ubc5 was generated in vitro. Tryptic digests of polyubiquitinated species contain modified peptides in which the ubiquitin C-terminal Gly-Gly residues are retained on the modified lysine residues. Direct infusion microelectrospray FT-ICR of the digest and comparison with an in silico digest enables identification of modified peptides and therefore sites of ubiquitination. Fifteen sites of ubiquitination were identified in GST-Ubc5 and four sites in ubiquitin. Assignments were confirmed by AI ECD or IRMPD. The Gly-Gly modification is stable and both tandem mass spectrometric techniques are suitable, providing extensive sequence coverage and retention of the modification on backbone fragments.

  13. A role for PCNA ubiquitination in immunoglobulin hypermutation.

    Directory of Open Access Journals (Sweden)

    Hiroshi Arakawa

    2006-11-01

    Full Text Available Proliferating cell nuclear antigen (PCNA is a DNA polymerase cofactor and regulator of replication-linked functions. Upon DNA damage, yeast and vertebrate PCNA is modified at the conserved lysine K164 by ubiquitin, which mediates error-prone replication across lesions via translesion polymerases. We investigated the role of PCNA ubiquitination in variants of the DT40 B cell line that are mutant in K164 of PCNA or in Rad18, which is involved in PCNA ubiquitination. Remarkably, the PCNA(K164R mutation not only renders cells sensitive to DNA-damaging agents, but also strongly reduces activation induced deaminase-dependent single-nucleotide substitutions in the immunoglobulin light-chain locus. This is the first evidence, to our knowledge, that vertebrates exploit the PCNA-ubiquitin pathway for immunoglobulin hypermutation, most likely through the recruitment of error-prone DNA polymerases.

  14. The mechanism of OTUB1-mediated inhibition of ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, Reuven; Zhang, Xiangbin; Wang, Tao; Wolberger, Cynthia (JHU)

    2013-04-08

    Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13-Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13-Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13-Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13-Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13-Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13-Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1

  15. Copper-triggered aggregation of ubiquitin.

    Science.gov (United States)

    Arnesano, Fabio; Scintilla, Simone; Calò, Vincenza; Bonfrate, Elena; Ingrosso, Chiara; Losacco, Maurizio; Pellegrino, Teresa; Rizzarelli, Enrico; Natile, Giovanni

    2009-09-16

    Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80:20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing beta-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer's, amyotrophic

  16. Copper-triggered aggregation of ubiquitin.

    Directory of Open Access Journals (Sweden)

    Fabio Arnesano

    Full Text Available Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II chelation or reduction to Cu(I. In water/trifluoroethanol (80:20, v/v, a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing beta-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II chelation or reduction produced aggregate disassembly. The early formed Cu(II-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer

  17. Ubiquitin domain proteins in disease

    DEFF Research Database (Denmark)

    Klausen, Louise Kjær; Schulze, Andrea; Seeger, Michael

    2007-01-01

    The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite their s...... and cancer. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).......The human genome encodes several ubiquitin-like (UBL) domain proteins (UDPs). Members of this protein family are involved in a variety of cellular functions and many are connected to the ubiquitin proteasome system, an essential pathway for protein degradation in eukaryotic cells. Despite...

  18. UBE2E Ubiquitin-conjugating Enzymes and Ubiquitin Isopeptidase Y Regulate TDP-43 Protein Ubiquitination*

    Science.gov (United States)

    Hans, Friederike; Fiesel, Fabienne C.; Strong, Jennifer C.; Jäckel, Sandra; Rasse, Tobias M.; Geisler, Sven; Springer, Wolfdieter; Schulz, Jörg B.; Voigt, Aaron; Kahle, Philipp J.

    2014-01-01

    Trans-activation element DNA-binding protein of 43 kDa (TDP-43) characterizes insoluble protein aggregates in distinct subtypes of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 mediates many RNA processing steps within distinct protein complexes. Here we identify novel TDP-43 protein interactors found in a yeast two-hybrid screen using an adult human brain cDNA library. We confirmed the TDP-43 interaction of seven hits by co-immunoprecipitation and assessed their co-localization in HEK293E cells. As pathological TDP-43 is ubiquitinated, we focused on the ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase Y (UBPY). When cells were treated with proteasome inhibitor, ubiquitinated and insoluble TDP-43 species accumulated. All three UBE2E family members could enhance the ubiquitination of TDP-43, whereas catalytically inactive UBE2E3C145S was much less efficient. Conversely, silencing of UBE2E3 reduced TDP-43 ubiquitination. We examined 15 of the 48 known disease-associated TDP-43 mutants and found that one was excessively ubiquitinated. This strong TDP-43K263E ubiquitination was further enhanced by proteasomal inhibition as well as UBE2E3 expression. Conversely, UBE2E3 silencing and expression of UBPY reduced TDP-43K263E ubiquitination. Moreover, wild-type but not active site mutant UBPY reduced ubiquitination of TDP-43 C-terminal fragments and of a nuclear import-impaired mutant. In Drosophila melanogaster, UBPY silencing enhanced neurodegenerative TDP-43 phenotypes and the accumulation of insoluble high molecular weight TDP-43 and ubiquitin species. Thus, UBE2E3 and UBPY participate in the regulation of TDP-43 ubiquitination, solubility, and neurodegeneration. PMID:24825905

  19. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius

    Science.gov (United States)

    Anjum, Rana S.; Bray, Sian M.; Blackwood, John K.; Kilkenny, Mairi L.; Coelho, Matthew A.; Foster, Benjamin M.; Li, Shurong; Howard, Julie A.; Pellegrini, Luca; Albers, Sonja-Verena; Deery, Michael J.; Robinson, Nicholas P.

    2015-09-01

    In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.

  20. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade.

    Science.gov (United States)

    Matsuda, Noriyuki

    2016-04-01

    Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling.

  1. The ubiquitin-proteasome system

    Indian Academy of Sciences (India)

    Dipankar Nandi; Pankaj Tahiliani; Anujith Kumar; Dilip Chandu

    2006-03-01

    The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first ‘tagged’ by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.

  2. Ubiquitin Pathways in Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Graham eAtkin

    2014-07-01

    Full Text Available Control of proper protein synthesis, function, and turnover is essential for the health of all cells. In neurons these demands take on the additional importance of supporting and regulating the highly dynamic connections between neurons that are necessary for cognitive function, learning, and memory. Regulating multiple unique synaptic protein environments within a single neuron while maintaining cell health requires the highly regulated processes of ubiquitination and degradation of ubiquitinated proteins through the proteasome. In this review, we examine the effects of dysregulated ubiquitination and protein clearance on the handling of disease-associated proteins and neuronal health in the most common neurodegenerative diseases.

  3. Functional assessment of ubiquitin-depended processes under microgravity conditions

    Science.gov (United States)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins

  4. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins.

    Science.gov (United States)

    Matsumoto, Gen; Wada, Koji; Okuno, Misako; Kurosawa, Masaru; Nukina, Nobuyuki

    2011-10-21

    Selective macroautophagy (autophagy) of ubiquitinated protein is implicated as a compensatory mechanism of the ubiquitin-proteasome system. p62/SQSTM1 is a key molecule managing autophagic clearance of polyubiquitinated proteins. However, little is known about mechanisms controlling autophagic degradation of polyubiquitinated proteins. Here, we show that the specific phosphorylation of p62 at serine 403 (S403) in its ubiquitin-associated (UBA) domain increases the affinity between UBA and polyubiquitin chain, resulting in efficiently targeting polyubiquitinated proteins in "sequestosomes" and stabilizing sequestosome structure as a cargo of ubiquitinated proteins for autophagosome entry. Casein kinase 2 (CK2) phosphorylates S403 of p62 directly. Furthermore, CK2 overexpression or phosphatase inhibition reduces the formation of inclusion bodies of the polyglutamine-expanded huntingtin exon1 fragment in a p62-dependent manner. We propose that phosphorylation of p62 at S403 regulates autophagic clearance of ubiquitinated proteins and protein aggregates that are poorly degraded by proteasomes.

  5. Ubiquitin in the immune system

    OpenAIRE

    Julia Zinngrebe; Antonella Montinaro; Nieves Peltzer; Henning Walczak

    2013-01-01

    Ubiquitination is a post-translational modification process that has been implicated in the regulation of innate and adaptive immune responses. There is increasing evidence that both ubiquitination and its reversal, deubiquitination, play crucial roles not only during the development of the immune system but also in the orchestration of an immune response by ensuring the proper functioning of the different cell types that constitute the immune system. Here, we provide an overview of the lates...

  6. A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development.

    Science.gov (United States)

    Franco, Maribel; Seyfried, Nicholas T; Brand, Andrea H; Peng, Junmin; Mayor, Ugo

    2011-05-01

    Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.

  7. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Hikaru; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp; Saeki, Yasushi, E-mail: saeki-ys@igakuken.or.jp

    2013-06-28

    Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures that typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.

  8. Structural Basis for Ubiquitin Recognition by the Otu1 Ovarian Tumor Domain Protein

    Energy Technology Data Exchange (ETDEWEB)

    T Messick; N Russel; A Iwata; K Sarachan; R Shiekhattar; I Shanks; F Reyes-Turcu; K Wilkinson; R Marmorstein

    2011-12-31

    Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of {approx}130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys{sup 48} linkages, having little or no activity on Lys{sup 63}- and Lys{sup 29}-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.

  9. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination

    Science.gov (United States)

    de Almagro, M C; Goncharov, T; Newton, K; Vucic, D

    2015-01-01

    Necroptosis is a caspase-independent regulated type of cell death that relies on receptor-interacting protein kinases RIP1 (receptor-interacting protein kinases 1) and RIP3. Tumor necrosis factor-α (TNFα)-stimulated assembly of the TNFR1 (TNF receptor 1)-associated signaling complex leads to the recruitment of RIP1, whose ubiquitination is mediated by the cellular inhibitors of apoptosis (c-IAPs). Translocation of RIP1 to the cytoplasm and association of RIP1 with the necrosome is believed to correlate with deubiquitination of RIP1. However, we found that RIP1 is ubiquitinated with K63 and linear polyubiquitin chains during TNFα, IAP antagonist BV6 and caspase inhibitor zVAD-fmk-induced necroptotic signaling. Furthermore, ubiquitinated RIP1 is associated with the necrosome, and RIP1 ubiquitination in the necrosome coincides with RIP3 phosphorylation. Both cellular IAPs and LUBAC (linear ubiquitin chain assembly complex) modulate RIP1 ubiquitination in IAP antagonist-treated necrotic cells, but they use different mechanisms. c-IAP1 regulates RIP1 recruitment to the necrosome without directly affecting RIP1 ubiquitination, whereas HOIP and HOIL1 mediate linear ubiquitination of RIP1 in the necrosome, but are not essential for necrosome formation. Knockdown of the E3 ligase c-IAP1 decreased RIP1 ubiquitination, necrosome assembly and necroptosis induced by TNFα, BV6 and zVAD-fmk. c-IAP1 deficiency likely decreases necroptotic cell death through the activation of the noncanonical NF-κB pathway and consequent c-IAP2 upregulation. The ability to upregulate c-IAP2 could determine whether c-IAP1 absence will have a positive or negative impact on TNFα-induced necroptotic cell death and necrosome formation. Collectively, these results reveal unexpected complexity of the roles of IAP proteins, IAP antagonists and LUBAC in the regulation of necrosome assembly. PMID:26111062

  10. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.

    Directory of Open Access Journals (Sweden)

    Kiira Ratia

    2014-05-01

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV encodes a papain-like protease (PLpro with both deubiquitinating (DUB and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15 specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a "ridge" region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response.

  11. Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis

    Directory of Open Access Journals (Sweden)

    Andrew M. Hamilton

    2013-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.

  12. Dysfunction of the Ubiquitin Proteasome and Ubiquitin-Like Systems in Schizophrenia

    OpenAIRE

    Rubio, María D; Wood, Krista; Haroutunian, Vahram; Meador-Woodruff, James H

    2013-01-01

    Protein expression abnormalities have been implicated in the pathophysiology of schizophrenia, but the underlying cause of these changes is not known. We sought to investigate ubiquitin and ubiquitin-like (UBL) systems (SUMOylation, NEDD8ylation, and Ufmylation) as putative mechanisms underlying protein expression abnormalities seen in schizophrenia. For this, we performed western blot analysis of total ubiquitination, free ubiquitin, K48- and K63-linked ubiquitination, and E1 activases, E2 c...

  13. In vitro detection of NEMO-ubiquitin binding using DELFIA and microscale thermophoresis assays.

    Science.gov (United States)

    Vincendeau, Michelle; Krappmann, Daniel; Hadian, Kamyar

    2015-01-01

    Canonical NF-κB signaling in response to various stimuli converges at the level of the IκB kinase (IKK) complex to ultimately activate NF-κB. To achieve this, the IKK complex uses one of its regulatory subunit (IKKγ/NEMO) to sense ubiquitin chains formed by upstream complexes. Various studies have shown that different Ubiquitin chains are involved in the binding of NEMO and thereby the activation of NF-κB. We have utilized two distinct biochemical methods, i.e., Dissociation-Enhanced Lanthanide Fluorescence Immunoassay (DELFIA) and Microscale Thermophoresis (MST), to detect the interaction of NEMO to linear and K63-linked Ubiquitin chains, respectively. Here, we describe the brief basis of the methods and a detailed underlying protocol.

  14. Preparation of ubiquitin-conjugated proteins using an insect cell-free protein synthesis system.

    Science.gov (United States)

    Suzuki, Takashi; Ezure, Toru; Ando, Eiji; Nishimura, Osamu; Utsumi, Toshihiko; Tsunasawa, Susumu

    2010-01-01

    Ubiquitination is one of the most significant posttranslational modifications (PTMs). To evaluate the ability of an insect cell-free protein synthesis system to carry out ubiquitin (Ub) conjugation to in vitro translated proteins, poly-Ub chain formation was studied in an insect cell-free protein synthesis system. Poly-Ub was generated in the presence of Ub aldehyde (UA), a de-ubiquitinating enzyme inhibitor. In vitro ubiquitination of the p53 tumor suppressor protein was also analyzed, and p53 was poly-ubiquitinated when Ub, UA, and Mdm2, an E3 Ub ligase (E3) for p53, were added to the in vitro reaction mixture. These results suggest that the insect cell-free protein synthesis system contains enzymatic activities capable of carrying out ubiquitination. CBB-detectable ubiquitinated p53 was easily purified from the insect cell-free protein synthesis system, allowing analysis of the Ub-conjugated proteins by mass spectrometry (MS). Lys 305 of p53 was identified as one of the Ub acceptor sites using this strategy. Thus, we conclude that the insect cell-free protein synthesis system is a powerful tool for studying various PTMs of eukaryotic proteins including ubiqutination presented here.

  15. Dynamic survey of mitochondria by ubiquitin.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2014-03-01

    Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria.

  16. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP.

    Science.gov (United States)

    Goto, Eiji; Tokunaga, Fuminori

    2017-02-09

    NF-κB is crucial to regulate immune and inflammatory responses and cell survival. LUBAC generates a linear ubiquitin chain and activates NF-κB through ubiquitin ligase (E3) activity in the HOIP subunit. Here, we show that HOIP is predominantly cleaved by caspase at Asp390 upon apoptosis, and that is subjected to proteasomal degradation. We identified that FADD, as well as NEMO, is a substrate for LUBAC. Although the C-terminal fragment of HOIP retains NF-κB activity, linear ubiquitination of NEMO and FADD decreases upon apoptosis. Moreover, the N-terminal fragment of HOIP binds with deubiquitinases, such as OTULIN and CYLD-SPATA2. These results indicate that caspase-mediated cleavage of HOIP divides critical functional regions of HOIP, and that this regulates linear (de)ubiquitination of substrates upon apoptosis.

  17. Ubiquitin initiates sorting of Golgi and plasma membrane proteins into the vacuolar degradation pathway

    Directory of Open Access Journals (Sweden)

    Scheuring David

    2012-09-01

    Full Text Available Abstract Background In yeast and mammals, many plasma membrane (PM proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT machinery into the intraluminal vesicles of multivesicular endosomes. Degradation of these proteins occurs after endosomes fuse with lysosomes/lytic vacuoles to release their content into the lumen. In plants, some PM proteins, which cycle between the PM and endosomal compartments, have been found to be ubiquitinated, but it is unclear whether ubiquitin is sufficient to mediate internalization and thus acts as a primary sorting signal for the endocytic pathway. To test whether plants use ubiquitin as a signal for the degradation of membrane proteins, we have translationally fused ubiquitin to different fluorescent reporters for the plasma membrane and analyzed their transport. Results Ubiquitin-tagged PM reporters localized to endosomes and to the lumen of the lytic vacuole in tobacco mesophyll protoplasts and in tobacco epidermal cells. The internalization of these reporters was significantly reduced if clathrin-mediated endocytosis was inhibited by the coexpression of a mutant of the clathrin heavy chain, the clathrin hub. Surprisingly, a ubiquitin-tagged reporter for the Golgi was also transported into the lumen of the vacuole. Vacuolar delivery of the reporters was abolished upon inhibition of the ESCRT machinery, indicating that the vacuolar delivery of these reporters occurs via the endocytic transport route. Conclusions Ubiquitin acts as a sorting signal at different compartments in the endomembrane system to target membrane proteins into the vacuolar degradation pathway: If displayed at the PM, ubiquitin triggers internalization of PM reporters into the endocytic transport route

  18. The Role of Ubiquitination in TWEAK-Stimulated Signaling.

    Science.gov (United States)

    Vucic, Domagoj

    2013-12-19

    Tumor necrosis factor superfamily ligands and receptors are responsible for development, immunity, and homeostasis of metazoan organisms. Thus, it is not surprising that signals emanating from these receptors are tightly regulated. Binding of TNF-related weak inducer of apoptosis (TWEAK) to its cognate receptor, FN14, triggers the assembly of receptor-associated signaling complex, which allows the activation of canonical and non-canonical nuclear factor kappa B (NF-κB) as well as mitogen-activated protein kinase signaling pathways. Ubiquitin ligases cellular inhibitor of apoptosis 1 and 2 (c-IAP1 and 2) and adaptor proteins TNFR-associated factors 2 and 3 (TRAF2 and TRAF3) are crucial for the regulation of TWEAK signaling as they facilitate the recruitment of distal signaling components including IKK and linear ubiquitin chain assembly complex complexes. At the same time c-IAP1/2, together with TRAF2 and TRAF3, promote constitutive ubiquitination and proteasomal degradation of NF-κB inducing kinase (NIK) - a kinase with critical role in the activation of non-canonical NF-κB signaling. While c-IAP1/2 mediated ubiquitination allows the activation of TWEAK-stimulated canonical NF-κB signaling, these E3 ligases are negative regulators of non-canonical signaling. TWEAK stimulation prompts the recruitment of c-IAP1/2 as well as TRAF2 and TRAF3 to the FN14 signaling complex leading to c-IAP1/2 autoubiquitination and degradation, which stabilizes NIK and allows subsequent phosphorylation of IKKα and partial proteasomal processing of p100 to activate gene expression. Recent studies have revealed that the spatio-temporal pattern of TWEAK-stimulated ubiquitination is a carefully orchestrated process involving several substrates that are modified by different ubiquitin linkages. Understanding the significance of ubiquitination for TWEAK signaling is important for the overall understanding of TWEAK biology and for the design of therapeutics that can be used in the

  19. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan (Purdue)

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  20. Activation of duck RIG-I by TRIM25 is independent of anchored ubiquitin.

    Directory of Open Access Journals (Sweden)

    Domingo Miranzo-Navarro

    Full Text Available Retinoic acid inducible gene I (RIG-I is a viral RNA sensor crucial in defense against several viruses including measles, influenza A and hepatitis C. RIG-I activates type-I interferon signalling through the adaptor for mitochondrial antiviral signaling (MAVS. The E3 ubiquitin ligase, tripartite motif containing protein 25 (TRIM25, activates human RIG-I through generation of anchored K63-linked polyubiquitin chains attached to lysine 172, or alternatively, through the generation of unanchored K63-linked polyubiquitin chains that interact non-covalently with RIG-I CARD domains. Previously, we identified RIG-I of ducks, of interest because ducks are the host and natural reservoir of influenza viruses, and showed it initiates innate immune signaling leading to production of interferon-beta (IFN-β. We noted that K172 is not conserved in RIG-I of ducks and other avian species, or mouse. Because K172 is important for both mechanisms of activation of human RIG-I, we investigated whether duck RIG-I was activated by TRIM25, and if other residues were the sites for attachment of ubiquitin. Here we show duck RIG-I CARD domains are ubiquitinated for activation, and ubiquitination depends on interaction with TRIM25, as a splice variant that cannot interact with TRIM25 is not ubiquitinated, and cannot be activated. We expressed GST-fusion proteins of duck CARD domains and characterized TRIM25 modifications of CARD domains by mass spectrometry. We identified two sites that are ubiquitinated in duck CARD domains, K167 and K193, and detected K63 linked polyubiquitin chains. Site directed mutagenesis of each site alone, does not alter the ubiquitination profile of the duck CARD domains. However, mutation of both sites resulted in loss of all attached ubiquitin and polyubiquitin chains. Remarkably, the double mutant duck RIG-I CARD still interacts with TRIM25, and can still be activated. Our results demonstrate that anchored ubiquitin chains are not necessary for

  1. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  2. Non-degradative Ubiquitination of Protein Kinases.

    Science.gov (United States)

    Ball, K Aurelia; Johnson, Jeffrey R; Lewinski, Mary K; Guatelli, John; Verschueren, Erik; Krogan, Nevan J; Jacobson, Matthew P

    2016-06-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  3. Ciliary/Flagellar Protein Ubiquitination

    OpenAIRE

    Huan Long; Qiyu Wang; Kaiyao Huang

    2015-01-01

    Cilia/flagella are conserved eukaryotic organelles that play an important role in the control of cell motility and detection of environmental cues. However, the molecular mechanisms underlying ciliary/flagellar assembly, maintenance, disassembly, and signal transduction are not yet completely understood. Recent studies demonstrated that post-translational modifications (PTMs) such as phosphorylation, methylation, glutamylation, and ubiquitination are involved in these processes. In this mini ...

  4. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells.

    Science.gov (United States)

    Schlesinger, D H; Goldstein, G; Niall, H D

    1975-05-20

    The complete amino acid sequence was determined for bovine ubiquitin, and adenylate cyclase stimulating polypeptide, which is probably represented universally in living cells. Ubiquitin has a molecular weight of 8451 and consists of a single polypeptide chain containing 74 amino acid residues. It contains four arginine residues but no cysteine or trytophan residues. The first 61 amino acid residues were obtained by automated Edman degradations. Tryptic digestion of maleated ubiquitin yielded four peptide fragments that were resolved by molecular sieve chromatography and coded in order of decreasing chain length (MT-1, MT-2, MT-3, and MT-4). The automated sequenator determinations on native ubiquintin provided overlapping sequence data for three of these fragments that gave an order of MT-1, MT-3, and then MT-2; Peptide MT-4, a dipeptide, was therefore assigned to the C terminus, and the placement of peptide MT-2 was corroborated by analysis of data from carboxypeptidase digestions of maleated ubiquitin. Peptide MT-2 was domaleated and sequenced by manual Edman degradations through a single lysine residue. It was cleaved at this residue with trypsin, and the two resultant peptides were separated by ion-exchange chromatography. Manual sequencing of the C-terminal demaleated tryptic peptide of MT-2 completed the sequence of MT-2 and that of native ubiquitin. The sequence of ubiquitin was further confirmed and supported by amino acid and parital sequence anlysis of fragments obtained by digestion of maleated ubiquitin with chymotrypsin or staphylococcal protease.

  5. OTULIN Restricts Met1-Linked Ubiquitination to Control Innate Immune Signaling

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Damgaard, Rune Busk; Wagner, Sebastian Alexander;

    2013-01-01

    Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in innate immune signaling. So far, only few Met1-Ub substrates have been described, and the regulatory mechanisms have remained elusive. We recently i...

  6. Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination.

    Directory of Open Access Journals (Sweden)

    Grace G Y Lim

    Full Text Available Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired.

  7. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    Science.gov (United States)

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-06

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic

  8. Ubiquitination in Periodontal Disease: A Review

    Science.gov (United States)

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-01-01

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue’s response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin–protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases. PMID:28698506

  9. Regulation of nucleotide excision repair through ubiquitination

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Audesh Bhat; Wei Xiao

    2011-01-01

    Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms.While bacteria require only three proteins to complete the incision step of NER,eukaryotes employ about 30 proteins to complete the same step.Here we summarize recent studies demonstrating that ubiquitination,a post-translational modification,plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis.Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process.We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.

  10. The role of histone ubiquitination during spermatogenesis.

    Science.gov (United States)

    Sheng, Kai; Liang, Xiaotong; Huang, Sizhou; Xu, Wenming

    2014-01-01

    Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.

  11. The Role of Histone Ubiquitination during Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kai Sheng

    2014-01-01

    Full Text Available Protein ubiquitin-proteasome (ubiquitin-proteasome system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI, DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.

  12. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Tram Thu [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Bertelsen, Vibeke; Rødland, Marianne Skeie [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Stang, Espen [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene, E-mail: i.h.madshus@medisin.uio.no [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)

    2013-02-01

    The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ► A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ► Receptor fragmentation is not required for endocytosis of ErbB2. ► Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ► ErbB2-Ub4 is internalized clathrin-dependently.

  13. Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport

    Directory of Open Access Journals (Sweden)

    Gerco Hassink

    2012-05-01

    The ubiquitin system plays an important role in trafficking of signaling receptors from the plasma membrane to lysosomes. Triad1 is a ubiquitin ligase that catalyzes the formation of poly-ubiquitin chains linked via lysine-48 as well as lysine-63 residues. We show that depletion of Triad1 affects the sorting of both growth hormone and epidermal growth factor. Triad1-depleted cells accumulate both ligands in endosomes. While fluid phase transport to the lysosomes is reduced in the absence of Triad1, growth hormone receptor can recycle back to the plasma membrane together with transferrin. Using immune electron microscopy we show that Triad1 depletion results in enlarged endosomes with enlarged and irregular shaped intraluminal vesicles. The endosomes display prominent clathrin coats and show increased levels of growth hormone label. We conclude that Triad1 is required for the proper function of multivesicular bodies.

  14. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes.

    Science.gov (United States)

    Susor, Andrej; Liskova, Lucie; Toralova, Tereza; Pavlok, Antonin; Pivonkova, Katerina; Karabinova, Pavla; Lopatarova, Miloslava; Sutovsky, Peter; Kubelka, Michal

    2010-06-01

    The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.

  15. The APC/C Ubiquitin Ligase: from Cell Biology to Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Clara ePenas

    2012-01-01

    Full Text Available The ubiquitin proteasome system (UPS is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5 kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box proteins (SCF ubiquitin ligases and the Anaphase Promoting Complex/cyclosome (APC/C are the most studied. SCF involvement in cancer has been known for some time while APC/C’s cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, thus underscoring its possible contribution to transformation. We will also put forth the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.

  16. The natural history of ubiquitin and ubiquitin-related domains.

    Science.gov (United States)

    Burroughs, Alexander Maxwell; Iyer, Lakshminarayan M; Aravind, L

    2012-01-01

    The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system.

  17. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  18. Role of ubiquitination in meiotic recombination repair

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associated with ubiquitination with regard to homologous recombination (HR)-dependent DSB repair.

  19. Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation.

    Science.gov (United States)

    Oeckinghaus, Andrea; Wegener, Elmar; Welteke, Verena; Ferch, Uta; Arslan, Seda Cöl; Ruland, Jürgen; Scheidereit, Claus; Krappmann, Daniel

    2007-11-14

    Triggering of antigen receptors on lymphocytes is critical for initiating adaptive immune response against pathogens. T-cell receptor (TCR) engagement induces the formation of the Carma1-Bcl10-Malt1 (CBM) complex that is essential for activation of the IkappaB kinase (IKK)/NF-kappaB pathway. However, the molecular mechanisms that link CBM complex formation to IKK activation remain unclear. Here we report that Malt1 is polyubiquitinated upon T-cell activation. Ubiquitin chains on Malt1 provide a docking surface for the recruitment of the IKK regulatory subunit NEMO/IKKgamma. TRAF6 associates with Malt1 in response to T-cell activation and can function as an E3 ligase for Malt1 in vitro and in vivo, mediating lysine 63-linked ubiquitination of Malt1. Multiple lysine residues in the C-terminus of Malt1 serve as acceptor sites for the assembly of polyubiquitin chains. Malt1 mutants that lack C-terminal ubiquitin acceptor lysines are impaired in rescuing NF-kappaB signaling and IL-2 production in Malt1-/- T cells. Thus, our data demonstrate that induced Malt1 ubiquitination is critical for the engagement of CBM and IKK complexes, thereby directing TCR signals to the canonical NF-kappaB pathway.

  20. RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX

    Directory of Open Access Journals (Sweden)

    Gaudino Giovanni

    2009-06-01

    Full Text Available Abstract Background Modulation of chromatin structure has emerged as a critical molecular device to control gene expression. Histones undergo different post-translational modifications that increase chromatin accessibility to a number of regulatory factors. Among them, histone ubiquitination appears relevant in nuclear processes that govern gene silencing, either by inhibiting or activating transcription, and maintain genome stability, acting as scaffold to properly organize the DNA damage response. Thus, it is of paramount importance the identification and the characterization of new ubiquitin ligases that address histones. Results We identified and characterized RNF168, a new chromatin-associated RING finger protein. We demonstrated that RNF168 is endowed with ubiquitin ligase activity both in vitro and in vivo, which targets histones H2A and H2AX, but not H2B, forming K63 polyubiquitin chains. We previously described the presence within RNF168 sequence of two MIU domains, responsible for the binding to ubiquitinated proteins. Here we showed that inactivation of the MIUs impairs ubiquitin binding ability in vitro and reduces chromatin association of RNF168 in vivo. Moreover, upon formation of DNA double strand breaks induced by chemical and physical agents, RNF168 is recruited to the DNA damage foci, where it co-localizes with γH2AX and 53BP1. The localization of RNF168 at the site of damage highly increases the local concentration of ubiquitinated proteins and determines the prolonged ubiquitination signal. Conclusion The RING finger protein RNF168 is a new ubiquitin ligase that functions as chromatin modifier, through histone ubiquitination. We hypothesize a dual function for RNF168. In normal condition RNF168 modifies chromatin structure by modulating ubiquitination of histone H2A. Upon DNA lesions, RNF168 is recruited to DNA damage response foci where it contributes to increase the amount of ubiquitinated proteins, thereby facilitating

  1. RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX.

    Science.gov (United States)

    Pinato, Sabrina; Scandiuzzi, Cristina; Arnaudo, Nadia; Citterio, Elisabetta; Gaudino, Giovanni; Penengo, Lorenza

    2009-06-05

    Modulation of chromatin structure has emerged as a critical molecular device to control gene expression. Histones undergo different post-translational modifications that increase chromatin accessibility to a number of regulatory factors. Among them, histone ubiquitination appears relevant in nuclear processes that govern gene silencing, either by inhibiting or activating transcription, and maintain genome stability, acting as scaffold to properly organize the DNA damage response. Thus, it is of paramount importance the identification and the characterization of new ubiquitin ligases that address histones. We identified and characterized RNF168, a new chromatin-associated RING finger protein. We demonstrated that RNF168 is endowed with ubiquitin ligase activity both in vitro and in vivo, which targets histones H2A and H2AX, but not H2B, forming K63 polyubiquitin chains. We previously described the presence within RNF168 sequence of two MIU domains, responsible for the binding to ubiquitinated proteins. Here we showed that inactivation of the MIUs impairs ubiquitin binding ability in vitro and reduces chromatin association of RNF168 in vivo. Moreover, upon formation of DNA double strand breaks induced by chemical and physical agents, RNF168 is recruited to the DNA damage foci, where it co-localizes with gammaH2AX and 53BP1. The localization of RNF168 at the site of damage highly increases the local concentration of ubiquitinated proteins and determines the prolonged ubiquitination signal. The RING finger protein RNF168 is a new ubiquitin ligase that functions as chromatin modifier, through histone ubiquitination. We hypothesize a dual function for RNF168. In normal condition RNF168 modifies chromatin structure by modulating ubiquitination of histone H2A. Upon DNA lesions, RNF168 is recruited to DNA damage response foci where it contributes to increase the amount of ubiquitinated proteins, thereby facilitating the downstream signalling cascade.

  2. Cellular content of ubiquitin and formation of ubiquitin conjugates during chicken spermatogenesis.

    Science.gov (United States)

    Agell, N; Mezquita, C

    1988-03-15

    Ubiquitin was purified from chicken testis and its content, biosynthesis and formation of conjugates was determined in germinal cells at successive stages of spermatogenesis. Free ubiquitin increased markedly during spermatogenesis, reaching its maximum level in early spermatids. High levels of ubiquitin were still present in late spermatids but were not detectable in mature spermatozoa. Biosynthesis of ubiquitin occurred in vitro in a fraction containing meiotic and pre-meiotic cells, and during spermiogenesis, in early and late spermatids. The cellular content of free ubiquitin increased after ATP depletion, especially in early spermatids. Lysates of chicken testis cells, particularly those obtained from spermatids, were able to form nuclear (24 and 27 kDa) and extranuclear (55-90 kDa) ubiquitin conjugates in vitro. The presence of increasing levels of ubiquitin and ubiquitin conjugates in chicken spermatids may suggest a possible involvement of this protein in the marked changes of protein turnover, chromatin structure and cell-cell interactions that spermatids undergo during spermiogenesis.

  3. HUWE1 and TRIP12 Collaborate in Degradation of Ubiquitin-Fusion Proteins and Misframed Ubiquitin

    DEFF Research Database (Denmark)

    Poulsen, Esben G; Steinhauer, Cornelia; Lees, Michael

    2012-01-01

    In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD) pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Rec...

  4. Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level

    Directory of Open Access Journals (Sweden)

    Gentry Matthew S

    2011-07-01

    Full Text Available Abstract Background Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin. Results After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex. Conclusions We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.

  5. Data in support of UbSRD: The Ubiquitin Structural Relational Database.

    Science.gov (United States)

    Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian

    2015-12-01

    This article provides information to support the database article titled "UbSRD: The Ubiquitin Structural Relational Database" (Harrison et al., 2015) [1] . The ubiquitin-like homology fold (UBL) represents a large family that encompasses both post-translational modifications, like ubiquitin (UBQ) and SUMO, and functional domains on many biologically important proteins like Parkin, UHRF1 (ubiquitin-like with PDB and RING finger domains-1), and Usp7 (ubiquitin-specific protease-7) (Zhang et al., 2015; Rothbart et al., 2013; Burroughs et al., 2012; Wauer et al., 2015) [2], [3], [4], [5]. The UBL domain can participate in several unique protein-protein interactions (PPI) since protein adducts can be attached to and removed from amino groups of lysine side chains and the N-terminus of proteins. Given the biological significance of UBL domains, many have been characterized with high-resolution techniques, and for UBQ and SUMO, many protein complexes have been characterized. We identified all the UBL domains in the PDB and created a relational database called UbSRD (Ubiquitin Structural Relational Database) by using structural analysis tools in the Rosetta (Leaver et al., 2013; O'Meara et al., 2015; Leaver-fay et al., 2011) [1], [6], [7], [8]. Querying UbSRD permitted us to report many quantitative properties of UBQ and SUMO recognition at different types interfaces (noncovalent: NC, conjugated: CJ, and deubiquitanse: DB). In this data article, we report the average number of non-UBL neighbors, secondary structure of interacting motifs, and the type of inter-molecular hydrogen bonds for each residue of UBQ and SUMO. Additionally, we used PROMALS3D to generate a multiple sequence alignment used to construct a phylogram for the entire set of UBLs (Pei and Grishin, 2014) [9]. The data described here will be generally useful to scientists studying the molecular basis for recognition of UBQ or SUMO.

  6. RBR E3 ubiquitin ligases: new structures, new insights, new questions.

    Science.gov (United States)

    Spratt, Donald E; Walden, Helen; Shaw, Gary S

    2014-03-15

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

  7. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  8. Ubiquitination of specific mitochondrial matrix proteins.

    Science.gov (United States)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins.

  9. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response

    Science.gov (United States)

    Ben Yehuda, Adi; Risheq, Marwa; Novoplansky, Ofra; Bersuker, Kirill; Kopito, Ron R.; Goldberg, Michal; Brandeis, Michael

    2017-01-01

    Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington’s disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality. PMID:28052107

  10. Ubiquitin Signaling: Extreme Conservation as a Source of Diversity

    Directory of Open Access Journals (Sweden)

    Alice Zuin

    2014-07-01

    Full Text Available Around 2 × 103–2.5 × 103 million years ago, a unicellular organism with radically novel features, ancestor of all eukaryotes, dwelt the earth. This organism, commonly referred as the last eukaryotic common ancestor, contained in its proteome the same functionally capable ubiquitin molecule that all eukaryotic species contain today. The fact that ubiquitin protein has virtually not changed during all eukaryotic evolution contrasts with the high expansion of the ubiquitin system, constituted by hundreds of enzymes, ubiquitin-interacting proteins, protein complexes, and cofactors. Interestingly, the simplest genetic arrangement encoding a fully-equipped ubiquitin signaling system is constituted by five genes organized in an operon-like cluster, and is found in archaea. How did ubiquitin achieve the status of central element in eukaryotic physiology? We analyze here the features of the ubiquitin molecule and the network that it conforms, and propose notions to explain the complexity of the ubiquitin signaling system in eukaryotic cells.

  11. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs......) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate...

  12. Differential Contributions of Ubiquitin-Modified APOBEC3G Lysine Residues to HIV-1 Vif-Induced Degradation.

    Science.gov (United States)

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-08-28

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation.

  13. Ubiquitination as an efficient molecular strategy employed in salmonella infection.

    Science.gov (United States)

    Narayanan, Lakshmi A; Edelmann, Mariola J

    2014-01-01

    The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin function during infection with Salmonella enterica Typhimurium and hypothesize how these studies on the host-pathogen interactions can help to understand the general function of the ubiquitination pathway in the host cell.

  14. Ubiquitination as an efficient molecular strategy employed in Salmonella infection

    Directory of Open Access Journals (Sweden)

    Lakshmi A Narayanan

    2014-11-01

    Full Text Available The protein modification with ubiquitin has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitinating or deubiquitinating enzymes by its effector proteins. In this review we describe the multiple facets of ubiquitin function during infection with Salmonella enterica Typhimurium and hypothesize how these studies on the host-pathogen interactions can help to understand the general function of the ubiquitination pathway in the host cell.

  15. Principles of ubiquitin and SUMO modifications in DNA repair

    NARCIS (Netherlands)

    Bergink, Steven; Jentsch, Stefan

    2009-01-01

    With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are im

  16. Ubiquitination as an efficient molecular strategy employed in salmonella infection

    Science.gov (United States)

    The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin func...

  17. Ubiquitin-proteasome system in cardiac dysfunction

    OpenAIRE

    Mearini, Giulia; Schlossarek, Saskia; Willis, Monte S.; Carrier, Lucie

    2008-01-01

    Ubiquitin-proteasome system in cardiac dysfunction correspondance: Corresponding author. Tel.: +49 40 42803 7208; fax: +49 40 42803 5925. (Carrier, Lucie) (Carrier, Lucie) Institute of Experimental and Clinical Pharmacology and Toxicology--> , University Medical Center Hamburg-Eppendorf--> , Hamburg--> - GERMANY (Mearini, Giulia) Institute of Experimental and Clinical Pharmacology and...

  18. Endosome-lysosomes, ubiquitin and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  19. Ubiquitin in signaling and protein quality control

    DEFF Research Database (Denmark)

    Al-Saoudi, Sofie Vincents

    Protein ubiquitylation is an important post-translational modification that holds a variety of cellular functions. This Ph.D. thesis is comprised of two studies, of which one focused on ubiquitylation related to inflammatory signaling, and the other on the role of the ubiquitin-proteasome system ...

  20. Cytochrome P450 3A Conjugation to Ubiquitin in a Process Distinct from Classical Ubiquitination Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zangar, Richard C.(BATTELLE (PACIFIC NW LAB)); Kimzey, Amy L.(ASSOC WESTERN UNIVERSITY); Okita, Janice R.(Washington State University); Wunschel, David S.(BATTELLE (PACIFIC NW LAB)); Edwards, Robert J.(Imperial College School of Medical, Hammersmith Campus); Kim, Hyesook (Wayne State University); Okita, Richard T.(Washington State University)

    2001-12-01

    We characterize a novel microsome system that forms high-molecular-mass (HMM) CYP3A, CYP2E1, and ubiquitin conjugates, but does not alter CYP4A or most other microsomal proteins. The formation of the HMM bands was observed in hepatic microsomes isolated from rats treated 1 week or more with high doses (50 mg/kg/day) of nicardipine, clotrimazole, or pregnenolone 16alpha-carbonitrile, but not microsomes from control, dexamethasone-, nifedipine-, or diltiazem-treated rats. Extensive washing of the microsomes to remove loosely attached proteins or cytosolic contaminants did not prevent the conjugation reaction. In contrast to prototypical ubiquitination pathways, this reaction did not require addition of ubiquitin, ATP, Mg(2+), or cytosol. Addition of cytosol did result in the degradation of the HMM CYP3A bands in a process that was not blocked by proteasome inhibitors. Immunoprecipitated CYP3A contained HMM ubiquitin. Even so, mass spectrometric analysis of tryptic peptides indicated that the HMM CYP3A was in molar excess to ubiquitin, suggesting that the formation of the HMM CYP3A may have resulted from conjugation to itself or a diffuse pool of ubiquitinated proteins already present in the microsomes. Addition of CYP3A substrates inhibited the formation of the HMM CYP3A and the cytosol-dependent degradation of HMM CYP3A. These results suggest that after extended periods of elevated CYP3A expression, microsomal factors are induced that catalyze the formation of HMM CYP3A conjugates that contain ubiquitin. This conjugation reaction, however, seems to be distinct from the classical ubiquitination pathway but may be related to the substrate-dependent stabilization of CYP3A observed in vivo.

  1. Reconstruction of an active SOCS3-based E3 ubiquitin ligase complex in vitro: identification of the active components and JAK2 and gp130 as substrates.

    Science.gov (United States)

    Kershaw, Nadia J; Laktyushin, Artem; Nicola, Nicos A; Babon, Jeffrey J

    2014-02-01

    SOCS3 (suppressor of cytokine signaling 3) inhibits the intracellular signaling cascade initiated by exposure of cells to cytokines. SOCS3 regulates signaling via two distinct mechanisms: directly inhibiting the catalytic activity of Janus kinases (JAKs) that initiate the intracellular signaling cascade and catalysing the ubiquitination of signaling components by recruiting components of an E3 ubiquitin ligase complex. Here we investigate the latter mode-of-action biochemically by reconstructing a SOCS3-based E3 ubiquitin ligase complex in vitro using fully purified, recombinant components and examining its ability to promote the ubiquitination of molecules involved in the cytokine signaling cascade. We show that SOCS3 is an active substrate recruitment module for a Cullin5-based E3 ligase and have defined the core protein components required for ubiquitination. SOCS3-induced polyubiquitination was rapid and could proceed through a number of different ubiquitin lysines. SOCS3 catalyzed the ubiquitination of both the IL-6 receptor common chain (gp130) and JAK2.

  2. Wwp2, an E3 Ubiquitin Ligase That Targets Transcription Factor Oct-4 for Ubiquitination

    Institute of Scientific and Technical Information of China (English)

    HuiMingXu; BingLiao; QianJunZhang; BeiBeiWang; Hui,Li; XiaoMinZhong; HuiZhenSheng; YingXinZhao; YingMingZhao; YingJin

    2005-01-01

    The POU transcription factor Oct-4 is a master regulator affecting the fate of pluripotent embryonic stem cells. However, the precise mechanisms by which the activation and expression of Oct-4 are regulated still remain to be elucidated. We describe here a novel murine ubiquitin ligase, Wwp2, that specifically interacts with Oct-4 and promotes its ubiquitination both in vivo and in vitro. Remarkably, the expression of a catalytically inactive point mutant of Wwp2 abolishes Oct-4 ubiquitination. Moreover, Wwp2 promotes Oct-4 degradation in the presence of overexpressed ubiquitin. The degradation is blocked by treatment with proteasome inhibitor. Fusion of a single ubiquitin to Oct-4 inactivates its transcriptional activity in a heterologous Oct-4-driven reporter system. Furthermore, overexpression of Wwp2 in embryonic stem cells significantly reduces the Oct-4-transcriptional activities. Collectively, we demonstrate for the first time that Oct-4 can be posttranslationatly modified by ubiquitination and that this modification dramatically suppresses its transcriptional activity. These results reveal that the functional status of Oct-4, in addition to its expression level, dictates its transcriptional activity, and the results open up a new avenue to understand how Oct-4 defines the fate of embryonic stem cells.

  3. MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation.

    Science.gov (United States)

    Chen, Guangping; Huang, Haidong; Fröhlich, Otto; Yang, Yuan; Klein, Janet D; Price, S Russ; Sands, Jeff M

    2008-11-01

    UT-A1 is the primary urea transporter in the apical plasma membrane responsible for urea reabsorption in the inner medullary collecting duct. Although the physiological function of UT-A1 has been well established, the molecular mechanisms that regulate its activity are less well understood. Analysis of the UT-A1 amino acid sequence revealed a potential MDM2 E3 ubiquitin ligase-binding motif in the large intracellular loop of UT-A1, suggesting that UT-A1 urea transporter protein may be regulated by the ubiquitin-proteasome pathway. Here, we report that UT-A1 is ubiquitinated and degraded by the proteasome but not the lysosome proteolytic pathway. Inhibition of proteasome activity causes UT-A1 cell surface accumulation and concomitantly increases urea transport activity. UT-A1 interacts directly with MDM2; the binding site is located in the NH2-terminal p53-binding region of MDM2. MDM2 mediates UT-A1 ubiquitination both in vivo and in vitro. Overexpression of MDM2 promotes UT-A1 degradation. The mechanism is likely to be physiologically important as UT-A1 ubiquitination was identified in kidney inner medullary tissue. The ubiquitin-proteasome degradation pathway provides an important novel mechanism for UT-A1 regulation.

  4. Functional constraints on adaptive evolution of protein ubiquitination sites

    Science.gov (United States)

    Lu, Liang; Li, Yang; Liu, Zhongyang; Liang, Fengji; Guo, Feifei; Yang, Shuai; Wang, Dan; He, Yangzhige; Xiong, Jianghui; Li, Dong; He, Fuchu

    2017-01-01

    It is still unclear whether there exist functional constraints on the evolution of protein ubiquitination sites, because most previous studies regarded all protein ubiquitination sites as a whole or only focused on limited structural properties. We tried to clarify the relation between functional constraints and ubiquitination sites evolution. We investigated the evolutionary conservation of human ubiquitination sites in a broad evolutionary scale from G. gorilla to S. pombe, and we found that in organisms originated after the divergence of vertebrate, ubiquitination sites are more conserved than their flanking regions, while the opposite tendency is observed before this divergence time. By grouping the ubiquitination proteins into different functional categories, we confirm that many functional constraints like certain molecular functions, protein tissue expression specificity and protein connectivity in protein-protein interaction network enhance the evolutionary conservation of ubiquitination sites. Furthermore, by analyzing the gains of ubiquitination sites at different divergence time and their functional characters, we validate that the emergences of ubiquitination sites at different evolutionary time were also affected by the uncovered functional constraints. The above results suggest that functional constraints on the adaptive evolution of ubiquitination sites increase the opportunity for ubiquitination to synthetically regulate various cellular and developmental processes during evolution. PMID:28054638

  5. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling.

    Science.gov (United States)

    Klein, Theo; Fung, Shan-Yu; Renner, Florian; Blank, Michael A; Dufour, Antoine; Kang, Sohyeong; Bolger-Munro, Madison; Scurll, Joshua M; Priatel, John J; Schweigler, Patrick; Melkko, Samu; Gold, Michael R; Viner, Rosa I; Régnier, Catherine H; Turvey, Stuart E; Overall, Christopher M

    2015-11-03

    Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.

  6. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling

    Science.gov (United States)

    Klein, Theo; Fung, Shan-Yu; Renner, Florian; Blank, Michael A.; Dufour, Antoine; Kang, Sohyeong; Bolger-Munro, Madison; Scurll, Joshua M.; Priatel, John J.; Schweigler, Patrick; Melkko, Samu; Gold, Michael R.; Viner, Rosa I.; Régnier, Catherine H.; Turvey, Stuart E.; Overall, Christopher M.

    2015-01-01

    Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1mut/mut patient with healthy MALT1+/mut family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway—first promoting activation via the CBM—then triggering HOIL1-dependent negative-feedback termination, preventing reactivation. PMID:26525107

  7. Ubiquitin reference technique and its use in ubiquitin-lacking prokaryotes.

    Directory of Open Access Journals (Sweden)

    Konstantin Piatkov

    Full Text Available In a pulse-chase assay, the in vivo degradation of a protein is measured through a brief labeling of cells with, for example, a radioactive amino acid, followed by cessation of labeling and analysis of cell extracts prepared at different times afterward ("chase", using immunoprecipitation, electrophoresis and autoradiography of a labeled protein of interest. A conventional pulse-chase assay is fraught with sources of data scatter, as the efficacy of labeling and immunoprecipitation can vary, and sample volumes can vary as well. The ubiquitin reference technique (URT, introduced in 1996, addresses these problems. In eukaryotes, a DNA-encoded linear fusion of ubiquitin to another protein is cleaved by deubiquitylases at the ubiquitin-protein junction. A URT assay uses a fusion in which the ubiquitin moiety is located between a downstream polypeptide (test protein and an upstream polypeptide (a long-lived reference protein. The cotranslational cleavage of a URT fusion by deubiquitylases after the last residue of ubiquitin produces, at the initially equimolar ratio, a test protein with a desired N-terminal residue and a reference protein containing C-terminal ubiquitin moiety. In addition to being more accurate than pulse-chases without a reference, URT makes it possible to detect and measure the degradation of a test protein during the pulse (before the chase. Because prokaryotes, including Gram-negative bacteria such as, for example, Escherichia coli and Vibrio vulnificus, lack the ubiquitin system, the use of URT in such cells requires ectopic expression of a deubiquitylase. We describe designs and applications of plasmid vectors that coexpress, in bacteria, both a URT-type fusion and Ubp1, a deubiquitylase of the yeast Saccharomyces cerevisiae. This single-plasmid approach extends the accuracy-enhancing URT assay to studies of protein degradation in prokaryotes.

  8. The Ubiquitin System and Jasmonate Signaling

    Directory of Open Access Journals (Sweden)

    Astrid Nagels Durand

    2016-01-01

    Full Text Available The ubiquitin (Ub system is involved in most, if not all, biological processes in eukaryotes. The major specificity determinants of this system are the E3 ligases, which bind and ubiquitinate specific sets of proteins and are thereby responsible for target recruitment to the proteasome or other cellular processing machineries. The Ub system contributes to the regulation of the production, perception and signal transduction of plant hormones. Jasmonic acid (JA and its derivatives, known as jasmonates (JAs, act as signaling compounds regulating plant development and plant responses to various biotic and abiotic stress conditions. We provide here an overview of the current understanding of the Ub system involved in JA signaling.

  9. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Satoshi Nakajima

    Full Text Available During the DNA damage response (DDR, ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5, a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.

  10. Structural view and substrate specificity of papain-like protease from avian infectious bronchitis virus.

    Science.gov (United States)

    Kong, Lingying; Shaw, Neil; Yan, Lingming; Lou, Zhiyong; Rao, Zihe

    2015-03-13

    Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys(48)- and Lys(63)-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys(101), His(264), and Asp(275) is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the β-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus.

  11. Ubiquitination as an Efficient Molecular Strategy Employed in Salmonella Infection

    OpenAIRE

    Narayanan, Lakshmi A.; Edelmann, Mariola J.

    2014-01-01

    The protein modification with ubiquitin has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitinating or deubiquitinating enzymes by its effector proteins. In this review we describe the multiple facets of ubiquitin function during infection with Salmonella enterica Typhimurium and hypothesize how these studies on the host-pathogen interactions can help to understand the general...

  12. Assessing ubiquitination of viral proteins: lessons from flavivirus NS5

    OpenAIRE

    Taylor, R. Travis; Best, Sonja M.

    2011-01-01

    Ubiquitin (Ub) conjugation to a substrate protein is a widely used cellular mechanism for control of protein stability and function, modulation of signal transduction pathways and antiviral responses. Identification and characterization of ubiquitinated viral proteins is an important step in understanding novel mechanisms of viral protein regulation as well as elucidating cellular antiviral strategies. Here we describe a protocol to easily detect and characterize the ubiquitination status of ...

  13. Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-07-29

    We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.

  14. Ubiquitin at the crossroad of cell death and survival

    Institute of Scientific and Technical Information of China (English)

    Yu-Shan Chen; Xiao-Bo Qiu

    2013-01-01

    Ubiquitination is crucial for cellular processes, such as protein degradation, apoptosis, autophagy, and cell cycle progression. Dysregulation of the ubiquitination network accounts for the development of numerous diseases, including cancer. Thus, targeting ubiquitination is a promising strategy in cancer therapy. Both apoptosis and autophagy are involved in tumorigenesis and response to cancer therapy. Although both are categorized as types of celldeath, autophagy is general y considered to have protective functions, including protecting cells from apoptosis under certain cellular stress conditions. This review highlights recent advances in understanding the regulation of apoptosis and autophagy by ubiquitination.

  15. BICP0 and its RING finger domain act as ubiquitin E3 ligases in vitro

    Institute of Scientific and Technical Information of China (English)

    DIAO Lirong; QIAO Wentao; CHEN Qimin; WANG Chen; GENG Yunqi

    2005-01-01

    Bovine infected-cell protein 0 (BICP0) encoded by bovine herpes virus 1 (BHV-1) immediate early gene is necessary for efficient productive infection, in a large part because it activates all 3 classes of BHV-1 genes. It also has the ability to efficiently transactivate promoters that are not derived from BHV-1. To investigate the mechanism by which BICP0 achieves these effects, we expressed and purified BICP0 and its different mutants in E. coli. In vitro assays showed that both full-length BICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in BICP0 activity in other assays. Based on these, we conclude that BICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and its RING finger domain is necessary for this function. These strongly support the hypothesis that BICP0 might influence virus infection through its ability to interact with the ubiquitin-proteasome pathway.

  16. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS.

    Science.gov (United States)

    Krönke, Jan; Fink, Emma C; Hollenbach, Paul W; MacBeth, Kyle J; Hurst, Slater N; Udeshi, Namrata D; Chamberlain, Philip P; Mani, D R; Man, Hon Wah; Gandhi, Anita K; Svinkina, Tanya; Schneider, Rebekka K; McConkey, Marie; Järås, Marcus; Griffiths, Elizabeth; Wetzler, Meir; Bullinger, Lars; Cathers, Brian E; Carr, Steven A; Chopra, Rajesh; Ebert, Benjamin L

    2015-07-09

    Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1α) by the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)), resulting in CK1α degradation. CK1α is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1α. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4(CRBN). These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.

  17. Origin and diversification of TRIM ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Ignacio Marín

    Full Text Available Most proteins of the TRIM family (also known as RBCC family are ubiquitin ligases that share a peculiar protein structure, characterized by including an N-terminal RING finger domain closely followed by one or two B-boxes. Additional protein domains found at their C termini have been used to classify TRIM proteins into classes. TRIMs are involved in multiple cellular processes and many of them are essential components of the innate immunity system of animal species. In humans, it has been shown that mutations in several TRIM-encoding genes lead to diverse genetic diseases and contribute to several types of cancer. They had been hitherto detected only in animals. In this work, by comprehensively analyzing the available diversity of TRIM and TRIM-like protein sequences and evaluating their evolutionary patterns, an improved classification of the TRIM family is obtained. Members of one of the TRIM subfamilies defined, called Subfamily A, turn to be present not only in animals, but also in many other eukaryotes, such as fungi, apusozoans, alveolates, excavates and plants. The rest of subfamilies are animal-specific and several of them originated only recently. Subfamily A proteins are characterized by containing a MATH domain, suggesting a potential evolutionary connection between TRIM proteins and a different type of ubiquitin ligases, known as TRAFs, which contain quite similar MATH domains. These results indicate that the TRIM family emerged much earlier than so far thought and contribute to our understanding of its origin and diversification. The structural and evolutionary links with the TRAF family of ubiquitin ligases can be experimentally explored to determine whether functional connections also exist.

  18. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation

    OpenAIRE

    Oeckinghaus, Andrea; Wegener, Elmar; Welteke, Verena; Ferch, Uta; Arslan, Seda Çöl; Ruland, Jürgen; Scheidereit, Claus; Krappmann, Daniel

    2007-01-01

    Triggering of antigen receptors on lymphocytes is critical for initiating adaptive immune response against pathogens. T-cell receptor (TCR) engagement induces the formation of the Carma1–Bcl10–Malt1 (CBM) complex that is essential for activation of the IκB kinase (IKK)/NF-κB pathway. However, the molecular mechanisms that link CBM complex formation to IKK activation remain unclear. Here we report that Malt1 is polyubiquitinated upon T-cell activation. Ubiquitin chains on Malt1 provide a docki...

  19. Ubiquitin proteasome system research in gastrointestinal cancer.

    Science.gov (United States)

    Zhong, Jia-Ling; Huang, Chang-Zhi

    2016-02-15

    The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.

  20. HUWE1 and TRIP12 collaborate in degradation of ubiquitin-fusion proteins and misframed ubiquitin.

    Directory of Open Access Journals (Sweden)

    Esben G Poulsen

    Full Text Available In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Recently the human E3 ubiquitin-protein ligase TRIP12 was connected with the UFD pathway, but little is otherwise known about this system in mammalian cells. In the present work, we utilized high-throughput imaging on cells transfected with a targeted siRNA library to identify components involved in degradation of the UFD substrate Ub(G76V-YFP. The most significant hits from the screen were the E3 ubiquitin-protein ligase HUWE1, as well as PSMD7 and PSMD14 that encode proteasome subunits. Accordingly, knock down of HUWE1 led to an increase in the steady state level and a retarded degradation of the UFD substrate. Knock down of HUWE1 also led to a stabilization of the physiological UFD substrate UBB(+1. Precipitation experiments revealed that HUWE1 is associated with both the Ub(G76V-YFP substrate and the 26S proteasome, indicating that it functions late in the UFD pathway. Double knock down of HUWE1 and TRIP12 resulted in an additive stabilization of the substrate, suggesting that HUWE1 and TRIP12 function in parallel during UFD. However, even when both HUWE1 and TRIP12 are downregulated, ubiquitylation of the UFD substrate was still apparent, revealing functional redundancy between HUWE1, TRIP12 and yet other ubiquitin-protein ligases.

  1. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity.

    Science.gov (United States)

    Morrow, Marie E; Kim, Myung-Il; Ronau, Judith A; Sheedlo, Michael J; White, Rhiannon R; Chaney, Joseph; Paul, Lake N; Lill, Markus A; Artavanis-Tsakonas, Katerina; Das, Chittaranjan

    2013-05-21

    Ubiquitination is countered by a group of enzymes collectively called deubiquitinases (DUBs); ∼100 of them can be found in the human genome. One of the most interesting aspects of these enzymes is the ability of some members to selectively recognize specific linkage types between ubiquitin in polyubiquitin chains and their endo and exo specificity. The structural basis of exo-specific deubiquitination catalyzed by a DUB is poorly understood. UCH37, a cysteine DUB conserved from fungi to humans, is a proteasome-associated factor that regulates the proteasome by sequentially cleaving polyubiquitin chains from their distal ends, i.e., by exo-specific deubiquitination. In addition to the catalytic domain, the DUB features a functionally uncharacterized UCH37-like domain (ULD), presumed to keep the enzyme in an inhibited state in its proteasome-free form. Herein we report the crystal structure of two constructs of UCH37 from Trichinella spiralis in complex with a ubiquitin-based suicide inhibitor, ubiquitin vinyl methyl ester (UbVME). These structures show that the ULD makes direct contact with ubiquitin stabilizing a highly unusual intramolecular salt bridge between Lys48 and Glu51 of ubiquitin, an interaction that would be favored only with the distal ubiquitin but not with the internal ones in a Lys48-linked polyubiquitin chain. An inspection of 39 DUB-ubiquitin structures in the Protein Data Bank reveals the uniqueness of the salt bridge in ubiquitin bound to UCH37, an interaction that disappears when the ULD is deleted, as revealed in the structure of the catalytic domain alone bound to UbVME. The structural data are consistent with previously reported mutational data on the mammalian enzyme, which, together with the fact that the ULD residues that bind to ubiquitin are conserved, points to a similar mechanism behind the exo specificity of the human enzyme. To the best of our knowledge, these data provide the only structural example so far of how the exo

  2. Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes

    Science.gov (United States)

    Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY

    2016-01-01

    Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502

  3. Promoters active in interphase are bookmarked during mitosis by ubiquitination.

    Science.gov (United States)

    Arora, Mansi; Zhang, Jie; Heine, George F; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D

    2012-11-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis.

  4. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  5. COMMD1-mediated ubiquitination regulates CFTR trafficking.

    Directory of Open Access Journals (Sweden)

    Loïc Drévillon

    Full Text Available The CFTR (cystic fibrosis transmembrane conductance regulator protein is a large polytopic protein whose biogenesis is inefficient. To better understand the regulation of CFTR processing and trafficking, we conducted a genetic screen that identified COMMD1 as a new CFTR partner. COMMD1 is a protein associated with multiple cellular pathways, including the regulation of hepatic copper excretion, sodium uptake through interaction with ENaC (epithelial sodium channel and NF-kappaB signaling. In this study, we show that COMMD1 interacts with CFTR in cells expressing both proteins endogenously. This interaction promotes CFTR cell surface expression as assessed by biotinylation experiments in heterologously expressing cells through regulation of CFTR ubiquitination. In summary, our data demonstrate that CFTR is protected from ubiquitination by COMMD1, which sustains CFTR expression at the plasma membrane. Thus, increasing COMMD1 expression may provide an approach to simultaneously inhibit ENaC absorption and enhance CFTR trafficking, two major issues in cystic fibrosis.

  6. Ubiquitin-positive inclusions in ependymal cells.

    Science.gov (United States)

    Kawanishi, Ryuta; Mizutani, Tomohiko; Yamada, Hiroshi; Minami, Masayuki; Kakimi, Shigeo; Yamada, Tsutomu; Hatori, Tsutomu; Akima, Michio

    2003-08-01

    Ubiquitin-positive inclusions (UbIs) have not been well studied in ependymal cells. Since we detected such UbIs in the central canals of the medulla and spinal cord while investigating UbIs in neurodegenerative diseases, we studied UbIs in the entire ependymal system of 42 patients with various neurological diseases and of 10 non-neurological controls. UbIs were located in the cytoplasm of the ependymal cells, and were round to oval in shape, measuring 4-11 microm in diameter. The UbIs were non-argyrophilic and undetectable by hematoxylin and eosin staining, but mildly reactive to periodic acid-Schiff staining with and without digestion. The UbIs were variably immunoreactive for anti-epithelial membrane antigen (EMA) antibody, but did not react with several other antibodies. The co-existence of ubiquitin and EMA was confirmed by confocal laser microscopy. Throughout the ependymal system, UbIs were variably found in ependymal cells as well as in subependymal cells. There was no significant difference in the overall incidence of either ependymal or subependymal UbIs between the patients with neurological diseases and controls. However, ependymal UbIs in the central canal were more frequent in the neurological disease patients than in controls, although there was no disease specificity. This is the first comprehensive report to show common occurrence of UbIs in the ependymal cells of adult human brains.

  7. KF-1 ubiquitin ligase: an anxiety suppressor

    Directory of Open Access Journals (Sweden)

    Tamotsu Hashimoto-Gotoh

    2009-05-01

    Full Text Available Anxiety is an instinct that may have developed to promote adaptive survival by evading unnecessary danger. However, excessive anxiety is disruptive and can be a basic disorder of other psychiatric diseases such as depression. The KF-1, a ubiquitin ligase located to the endoplasmic reticulum (ER, may prevent excessive anxiety; kf-1−/− mice exhibit selectively elevated anxiety-like behavior against light or heights. Thus, KF-1 may degrade some target proteins, responsible for promoting anxiety, through the ER-associated degradation pathway, similar to Parkin in Parkinson's disease (PD. Parkin, another ER-ubiquitin ligase, prevents the degeneration of dopaminergic neurons by degrading the target proteins responsible for PD. Molecular phylogenetic studies have revealed that the prototype of kf-1 appeared in the very early phase of animal evolution but was lost, unlike parkin, in the lineage leading up to Drosophila. Therefore, kf-1−/− mice, be a powerful tool for elucidating the molecular mechanisms involved in emotional regulation, and for screening novel anxiolytic/antidepressant compounds.

  8. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina;

    2012-01-01

    After oxidative stress proteins which are oxidatively modified are degraded by the 20S proteasome. However, several studies documented an enhanced ubiquitination of yet unknown proteins. Since ubiqutination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner......, we were able to confirm an increase of ubiquitinated proteins 16h upon oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide treated cells, as well as from control and lactacystin, an irreversible proteasome inhibitor, treated cells, and identified some......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  9. Interactions of bacterial proteins with host eukaryotic ubiquitin pathways

    Directory of Open Access Journals (Sweden)

    Charlotte Averil Perrett

    2011-07-01

    Full Text Available Ubiquitination is a post-translational modification in which one or more 76 amino acid polypeptide ubiquitin molecules are covalently linked to the lysine residues of target proteins. Ubiquitination is the main pathway for protein degradation that governs a variety of eukaryotic cellular processes, including the cell cycle, vesicle trafficking, antigen presentation and signal transduction. Not surprisingly, aberrations in the system have been implicated in the pathogenesis of many diseases including inflammatory and neurodegenerative disorders. Recent studies have revealed that viruses and bacterial pathogens exploit the host ubiquitination pathways to gain entry and to aid their survival/replication inside host cells. This review will summarize recent developments in understanding the biochemical and structural mechanisms utilized by bacterial pathogens to interact with the host ubiquitination pathways.

  10. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen; Liu, Yao; Nakayasu, Ernesto S.; Piehowski, Paul D.; Shaw, Jared B.; Puvar, Kedar; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2017-05-12

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encoded by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.

  11. Lipid raft-dependent FcepsilonRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors.

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    Full Text Available The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcepsilonRI expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcepsilonRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcepsilonRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.

  12. PKC-Dependent GlyT1 Ubiquitination Occurs Independent of Phosphorylation: Inespecificity in Lysine Selection for Ubiquitination.

    Directory of Open Access Journals (Sweden)

    Susana P Barrera

    Full Text Available Neurotransmitter transporter ubiquitination is emerging as the main mechanism for endocytosis and sorting of cargo into lysosomes. In this study, we demonstrate PKC-dependent ubiquitination of three different isoforms of the glycine transporter 1 (GlyT1. Incubation of cells expressing transporter with the PKC activator phorbol ester induced a dramatic, time-dependent increase in GlyT1 ubiquitination, followed by accumulation of GlyT1 in EEA1 positive early endosomes. This occurred via a mechanism that was abolished by inhibition of PKC. GlyT1 endocytosis was confirmed in both retinal sections and primary cultures of mouse amacrine neurons. Replacement of only all lysines in the N-and C-termini to arginines prevented ubiquitination and endocytosis, displaying redundancy in the mechanism of ubiquitination. Interestingly, a 40-50% reduction in glycine uptake was detected in phorbol-ester stimulated cells expressing the WT-GlyT1, whereas no significant change was for the mutant protein, demonstrating that endocytosis participates in the reduction of uptake. Consistent with previous findings for the dopamine transporter DAT, ubiquitination of GlyT1 tails functions as sorting signal to deliver transporter into the lysosome and removal of ubiquitination sites dramatically attenuated the rate of GlyT1 degradation. Finally, we showed for the first time that PKC-dependent GlyT1 phosphorylation was not affected by removal of ubiquitination sites, suggesting separate PKC-dependent signaling events for these posttranslational modifications.

  13. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like modifier activating enzyme 6, Uba6.

    Science.gov (United States)

    Gavin, James M; Chen, Jesse J; Liao, Hua; Rollins, Neil; Yang, Xiaofeng; Xu, Qing; Ma, Jingya; Loke, Huay-Keng; Lingaraj, Trupti; Brownell, James E; Mallender, William D; Gould, Alexandra E; Amidon, Benjamin S; Dick, Lawrence R

    2012-05-01

    Uba6 is a homolog of the ubiquitin-activating enzyme, Uba1, and activates two ubiquitin-like proteins (UBLs), ubiquitin and FAT10. In this study, biochemical and biophysical experiments were performed to understand the mechanisms of how Uba6 recognizes two distinct UBLs and catalyzes their activation and transfer. Uba6 is shown to undergo a three-step activation process and form a ternary complex with both UBLs, similar to what has been observed for Uba1. The catalytic mechanism of Uba6 is further supported by inhibition studies using a mechanism-based E1 inhibitor, Compound 1, which forms covalent adducts with both ubiquitin and FAT10. In addition, pre-steady state kinetic analysis revealed that the rates of UBL-adenylate (step 1) and thioester (step 2) formation are similar between ubiquitin and FAT10. However, distinct kinetic behaviors were also observed for ubiquitin and FAT10. FAT10 binds Uba6 with much higher affinity than ubiquitin while demonstrating lower catalytic activity in both ATP-PP(i) exchange and E1-E2 transthiolation assays. Also, Compound 1 is less potent with FAT10 as the UBL compared with ubiquitin in ATP-PP(i) exchange assays, and both a slow rate of covalent adduct formation and weak adduct binding to Uba6 contribute to the diminished potency observed for FAT10. Together with expression level analysis in IM-9 cells, this study sheds light on the potential role of cytokine-induced FAT10 expression in regulating Uba6 pathways.

  14. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases

    OpenAIRE

    Pruneda, Jonathan N.; Durkin, Charlotte H.; Geurink, Paul P.; Ovaa, Huib; Santhanam, Balaji; Holden, David W.; Komander, David

    2016-01-01

    Summary Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Es...

  15. Enhanced Detection of Ubiquitin Isopeptides Using Reductive Methylation

    Science.gov (United States)

    Chicooree, Navin; Connolly, Yvonne; Tan, Chong-Teik; Malliri, Angeliki; Li, Yaoyong; Smith, Duncan L.; Griffiths, John R.

    2013-03-01

    Identification of ubiquitination (Ub) sites is of great interest due to the critical roles that the modification plays in cellular regulation. Current methods using mass spectrometry rely upon tryptic isopeptide diglycine tag generation followed by database searching. We present a novel approach to ubiquitin detection based upon the dimethyl labeling of isopeptide N-termini glycines. Ubiquitinated proteins were digested with trypsin and the resulting peptide mixture was derivatized using formaldehyde-D2 solution and sodium cyanoborohydride. The dimethylated peptide mixtures were next separated by liquid chromatography and analyzed on a quadrupole-TOF based mass spectrometer. Diagnostic b2' and a1' ions released from the isopeptide N-terminus upon collision-induced dissociation (CID) were used to spectrally improve the identification of ubiquitinated isopeptides. Proof of principle was established by application to a ubiquitinated protein tryptic digest spiked into a six-protein mix digest background. Extracted ion chromatograms of the a1' and b2' diagnostic product ions from the diglycine tag resulted in a significant reduction in signal complexity and demonstrated a selectivity towards the identification of diglycine branched isopeptides. The method was further shown to be capable of identifying diglycine isopeptides resulting from in-gel tryptic digests of ubiquitin enriched material from a His-Ub transfected cell line. We envisage that these ions may be utilized in global ubiquitination studies with post-acquisition MS/MS (or MSe) data interrogation on high resolution hybrid mass spectrometers.

  16. The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming

    Directory of Open Access Journals (Sweden)

    Bharathi Suresh

    2016-01-01

    Full Text Available Ubiquitination of core stem cell transcription factors can directly affect stem cell maintenance and differentiation. Ubiquitination and deubiquitination must occur in a timely and well-coordinated manner to regulate the protein turnover of several stemness related proteins, resulting in optimal embryonic stem cell maintenance and differentiation. There are two switches: an E3 ubiquitin ligase enzyme that tags ubiquitin molecules to the target proteins for proteolysis and a second enzyme, the deubiquitinating enzyme (DUBs, that performs the opposite action, thereby preventing proteolysis. In order to maintain stemness and to allow for efficient differentiation, both ubiquitination and deubiquitination molecular switches must operate properly in a balanced manner. In this review, we have summarized the importance of the ubiquitination of core stem cell transcription factors, such as Oct3/4, c-Myc, Sox2, Klf4, Nanog, and LIN28, during cellular reprogramming. Furthermore, we emphasize the role of DUBs in regulating core stem cell transcriptional factors and their function in stem cell maintenance and differentiation. We also discuss the possibility of using DUBs, along with core transcription factors, to efficiently generate induced pluripotent stem cells. Our review provides a relatively new understanding regarding the importance of ubiquitination/deubiquitination of stem cell transcription factors for efficient cellular reprogramming.

  17. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration

    Directory of Open Access Journals (Sweden)

    Arun Upadhyay

    2017-05-01

    Full Text Available Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.

  18. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  19. The Role of Ubiquitin and Ubiquitin-Like Modification Systems in Papillomavirus Biology

    Directory of Open Access Journals (Sweden)

    Van G. Wilson

    2014-09-01

    Full Text Available Human papillomaviruses (HPVs are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.

  20. Structural Basis of Dimerization-dependent Ubiquitination by the SCFFbx4 Ubiquitin Ligase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Hao, B

    2010-01-01

    The F-box proteins are the substrate recognition subunits of the SCF (Skp1-Cul1-Rbx1-F-box protein) ubiquitin ligase complexes that control the stability of numerous regulators in eukaryotic cells. Here we show that dimerization of the F-box protein Fbx4 is essential for SCF{sup Fbx4} (the superscript denotes the F-box protein) ubiquitination activity toward the telomere regulator Pin2 (also known as TRF1). The crystal structure of Fbx4 in complex with an adaptor protein Skp1 reveals an antiparallel dimer configuration in which the linker domain of Fbx4 interacts with the C-terminal substrate-binding domain of the other protomer, whereas the C-terminal domain of the protein adopts a compact {alpha}/{beta} fold distinct from those of known F-box proteins. Biochemical studies indicate that both the N-terminal domain and a loop connecting the linker and C-terminal domain of Fbx4 are critical for the dimerization and activation of the protein. Our findings provide a framework for understanding the role of F-box dimerization in the SCF-mediated ubiquitination reaction.

  1. Ubiquitin in the peroxisomal protein import pathway.

    Science.gov (United States)

    Francisco, Tânia; Rodrigues, Tony A; Pinto, Manuel P; Carvalho, Andreia F; Azevedo, Jorge E; Grou, Cláudia P

    2014-03-01

    PEX5 is the shuttling receptor for newly synthesized peroxisomal matrix proteins. Alone, or with the help of an adaptor protein, this receptor binds peroxisomal matrix proteins in the cytosol and transports them to the peroxisomal membrane docking/translocation module (DTM). The interaction between cargo-loaded PEX5 and the DTM ultimately results in its insertion into the DTM with the concomitant translocation of the cargo protein across the organelle membrane. PEX5 is not consumed in this event; rather it is dislocated back into the cytosol so that it can promote additional rounds of protein transportation. Remarkably, the data collected in recent years indicate that dislocation is preceded by monoubiquitination of PEX5 at a conserved cysteine residue. This mandatory modification is not the only type of ubiquitination occurring at the DTM. Indeed, several findings suggest that defective receptors jamming the DTM are polyubiquitinated and targeted to the proteasome for degradation.

  2. P62/Ubiquitin IHC expression in gastrointestinal carcinomas

    Directory of Open Access Journals (Sweden)

    Amr eMohamed

    2015-03-01

    Full Text Available P62 and ubiquitin are small regulatory proteins demonstrated to have implications in the prognosis and survival of various malignancies including: hepatocellular, breast, ovarian, and some gastrointestinal carcinomas. Several trials studied the link of their activity to the extrinsic apoptosis pathway and showed that their autophagy modification has a critical stand point in tumorigenesis. These findings explain their vital role in controlling the process of cell death and survival. It has been shown recently that p62 and ubiquitin overexpression in different types of cancers, such as triple negative breast and ovarian cancers, have directly correlated with incidence of distant metastases. We aim to evaluate p62/ubiquitin expression in gastrointestinal carcinomas of gastric, colonic and pancreatic origin. In gastric carcinoma (45, positive p62 nuclear expression was noted in 53% and cytoplasmic in 57%, while positive ubiquitin was nuclear expressed in 80%, and cytoplasmic in 24%. In colon carcinoma (70, positive p62 nuclear expression was noted in 41% and cytoplasmic in 68.5%, while positive ubiquitin was nuclear in 57% and cytoplasmic in 42%. In pancreatic cancer, positive p62 nuclear expression was noted in 86% and cytoplasmic in 60%, while positive ubiquitin was nuclear in 100% and cytoplasmic in 80%. Normal gastric (6, colon (4 and pancreatic (4 tissues were negative for both P62 and ubiquitin (nuclear and cytoplasmic staining <20%. The results suggest that p62 and ubiquitin are highly expressed in nuclei and cytoplasm of gastric, colonic and pancreatic carcinomas. More studies are needed to correlate IHC expression of p62/ubiquitin with clinicopathologic parameters and overall survival in GI carcinomas.

  3. The multiple levels of regulation by p53 ubiquitination

    OpenAIRE

    Lee, JT; Gu, W

    2010-01-01

    p53 is a central integrator of a plethora of signals and outputs these signals in the form of tumor suppression. It is well accepted that ubiquitination plays a major part in p53 regulation. Nonetheless, the molecular mechanisms by which p53 activity is controlled by ubiquitination are complex. Mdm2, a RING oncoprotein, was once thought to be the sole E3 ubiquitin ligase for p53, however recent studies have shown that p53 is stabilized but still degraded in the cells of Mdm2-null mice. Althou...

  4. FONCTIONS UBIQUITINE-DEPENDANTES DE LA DEACETYLASE HDAC6

    OpenAIRE

    Boyault, Cyril

    2006-01-01

    At the start of my Ph.D., the lab had discovered and characterized HDAC6, an unusual deacetylase that possesses two deacetylase domains and directly binds to ubiquitin. Moreover, the lab had found that HDAC6 interacts with UFD3/PLAP, a regulator of ubiquitin turnover, and VCP, a mouse homologue of the chaperone Cdc48. However, nothing was known about HDAC6 biological function, especially its role in the ubiquitination pathway. We first observed that HDAC6 over-expression slows down the degrad...

  5. Water Evaporation and Conformational Changes from Partially Solvated Ubiquitin

    Directory of Open Access Journals (Sweden)

    Saravana Prakash Thirumuruganandham

    2010-01-01

    Full Text Available Using molecular dynamics simulation, we study the evaporation of water molecules off partially solvated ubiquitin. The evaporation and cooling rates are determined for a molecule at the initial temperature of 300 K. The cooling rate is found to be around 3 K/ns, and decreases with water temperature in the course of the evaporation. The conformation changes are monitored by studying a variety of intermediate partially solvated ubiquitin structures. We find that ubiquitin shrinks with decreasing hydration shell and exposes more of its hydrophilic surface area to the surrounding.

  6. Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway.

    Science.gov (United States)

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-10-23

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%-5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.

  7. Autophagy and ubiquitin-mediated proteolysis may not be involved in the degradation of spermatozoon mitochondria in mouse and porcine early embryos.

    Science.gov (United States)

    Jin, Yong-Xun; Zheng, Zhong; Yu, Xian-Feng; Zhang, Jia-Bao; Namgoong, Suk; Cui, Xiang-Shun; Hyun, Sang-Hwan; Kim, Nam-Hyung

    2016-02-01

    The mitochondrial genome is maternally inherited in animals, despite the fact that paternal mitochondria enter oocytes during fertilization. Autophagy and ubiquitin-mediated degradation are responsible for the elimination of paternal mitochondria in Caenorhabditis elegans; however, the involvement of these two processes in the degradation of paternal mitochondria in mammals is not well understood. We investigated the localization patterns of light chain 3 (LC3) and ubiquitin in mouse and porcine embryos during preimplantation development. We found that LC3 and ubiquitin localized to the spermatozoon midpiece at 3 h post-fertilization, and that both proteins were colocalized with paternal mitochondria and removed upon fertilization during the 4-cell stage in mouse and the zygote stage in porcine embryos. Sporadic paternal mitochondria were present beyond the morula stage in the mouse, and paternal mitochondria were restricted to one blastomere of 4-cell embryos. An autophagy inhibitor, 3-methyladenine (3-MA), did not affect the distribution of paternal mitochondria compared with the positive control, while an autophagy inducer, rapamycin, accelerated the removal of paternal mitochondria compared with the control. After the intracytoplasmic injection of intact spermatozoon into mouse oocytes, LC3 and ubiquitin localized to the spermatozoon midpiece, but remnants of undegraded paternal mitochondria were retained until the blastocyst stage. Our results show that paternal mitochondria colocalize with autophagy receptors and ubiquitin and are removed after in vitro fertilization, but some remnants of sperm mitochondrial sheath may persist up to morula stage after intracytoplasmic spermatozoon injection (ICSI).

  8. Falling chains

    Science.gov (United States)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  9. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    Science.gov (United States)

    Huseinovic, Angelina; van Leeuwen, Jolanda S.; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P. E.; Kooter, Jan M.; Vos, J. Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity. PMID:28291796

  10. Ubiquitination profiling identifies sensitivity factors for IAP antagonist treatment.

    Science.gov (United States)

    Varfolomeev, Eugene; Izrael-Tomasevic, Anita; Yu, Kebing; Bustos, Daisy; Goncharov, Tatiana; Belmont, Lisa D; Masselot, Alexandre; Bakalarski, Corey E; Kirkpatrick, Donald S; Vucic, Domagoj

    2015-02-15

    Evasion of cell death is one crucial capability acquired by tumour cells to ward-off anti-tumour therapies and represents a fundamental challenge to sustaining clinical efficacy for currently available agents. Inhibitor of apoptosis (IAP) proteins use their ubiquitin E3 ligase activity to promote cancer cell survival by mediating proliferative signalling and blocking cell death in response to diverse stimuli. Using immunoaffinity enrichment and MS, ubiquitination sites on thousands of proteins were profiled upon initiation of cell death by IAP antagonists in IAP antagonist-sensitive and -resistant breast cancer cell lines. Our analyses identified hundreds of proteins with elevated levels of ubiquitin-remnant [K-GG (Lys-Gly-Gly)] peptides upon activation of cell death by the IAP antagonist BV6. The majority of these were observed in BV6-sensitive, but not-resistant, cells. Among these were known pro-apoptotic regulators, including CYC (cytochrome c), RIP1 (receptor-interacting protein 1) and a selection of proteins known to reside in the mitochondria or regulate NF-κB (nuclear factor κB) signalling. Analysis of early time-points revealed that IAP antagonist treatment stimulated rapid ubiquitination of NF-κB signalling proteins, including TRAF2 [TNF (tumour necrosis factor) receptor-associated factor 2], HOIL-1 (haem-oxidized iron-regulatory protein 2 ubiquitin ligase-1), NEMO (NF-κB essential modifier), as well as c-IAP1 (cellular IAP1) auto-ubiquitination. Knockdown of several NF-κB pathway members reduced BV6-induced cell death and TNF production in sensitive cell lines. Importantly, RIP1 was found to be constitutively ubiquitinated in sensitive breast-cancer cell lines at higher basal level than in resistant cell lines. Together, these data show the diverse and temporally defined roles of protein ubiquitination following IAP-antagonist treatment and provide critical insights into predictive diagnostics that may enhance clinical efficacy.

  11. Picosecond to Millisecond Structural Dynamics in Human Ubiquitin.

    Science.gov (United States)

    Lindorff-Larsen, Kresten; Maragakis, Paul; Piana, Stefano; Shaw, David E

    2016-08-25

    Human ubiquitin has been extensively characterized using a variety of experimental and computational methods and has become an important model for studying protein dynamics. Nevertheless, it has proven difficult to characterize the microsecond time scale dynamics of this protein with atomistic resolution. Here we use an unbiased computer simulation to describe the structural dynamics of ubiquitin on the picosecond to millisecond time scale. In the simulation, ubiquitin interconverts between a small number of distinct states on the microsecond to millisecond time scale. We find that the conformations visited by free ubiquitin in solution are very similar to those found various crystal structures of ubiquitin in complex with other proteins, a finding in line with previous experimental studies. We also observe weak but statistically significant correlated motions throughout the protein, including long-range concerted movement across the entire β sheet, consistent with recent experimental observations. We expect that the detailed atomistic description of ubiquitin dynamics provided by this unbiased simulation may be useful in interpreting current and future experiments on this protein.

  12. Regulation of G Protein-Coupled Receptors by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kamila Skieterska

    2017-04-01

    Full Text Available G protein-coupled receptors (GPCRs comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.

  13. Cdk5 regulates PSD-95 ubiquitination in neurons

    Science.gov (United States)

    Bianchetta, Michael J.; Lam, TuKiet T.; Jones, Stephen N.; Morabito, Maria A.

    2011-01-01

    The kinase Cdk5 and its activator p35 have been implicated in drug addiction, neurodegenerative diseases such as Alzheimer’s, learning and memory, and synapse maturation and plasticity. However the molecular mechanisms by which Cdk5 regulates synaptic plasticity are still unclear. PSD-95 is a major postsynaptic scaffolding protein of glutamatergic synapses that regulates synaptic strength and plasticity. PSD-95 is ubiquitinated by the Ubiquitin E3 Ligase Mdm2, and rapid and transient PSD-95 ubiquitination has been implicated in NMDA receptor-induced AMPA receptor endocytosis. Here we demonstrate that genetic or pharmacological reduction of Cdk5 activity increases the interaction of Mdm2 with PSD-95 and enhances PSD-95 ubiquitination without affecting PSD-95 protein levels in vivo in mice, suggesting a non-proteolytic function of ubiquitinated PSD-95 at synapses. We show that PSD-95 ubiquitination correlates with increased interaction with β-adaptin, a subunit of the clathrin adaptor protein complex AP-2. This interaction is increased by genetic reduction of Cdk5 activity or NMDA receptor stimulation and is dependent on Mdm2. Together these results support a function for Cdk5 in regulating PSD-95 ubiqutination and its interaction with AP-2 and suggest a mechanism by which PSD-95 may regulate NMDA receptor-induced AMPA receptor endocytosis. PMID:21849563

  14. Ancient origin of animal U-box ubiquitin ligases

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2010-10-01

    Full Text Available Abstract Background The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. Results Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4 were already present in the ancestor of all current metazoans and the seventh (WDSUB1 is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT of ubiquitin ligases. Conclusions Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system.

  15. Detection of ubiquitinated huntingtin species in intracellular aggregates

    Directory of Open Access Journals (Sweden)

    Katrin eJuenemann

    2015-01-01

    Full Text Available Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

  16. The regulation of DNA damage tolerance by Ubiquitin and Ubiquitin-like modifiers

    Directory of Open Access Journals (Sweden)

    Lina Cipolla

    2016-06-01

    Full Text Available DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is incredibly fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in presence of an unrepaired template. One of such mechanisms is called Post Replication Repair (PRR and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error free and in an error prone manner. In light of these two possible outcomes, PRR needs to be tightly regulated and controlled in order to prevent accumulation of mutations leading ultimately to genome instability. Post-translational modifications provide the framework for this regulation and Ubiquitylation and SUMOylation of PRR proteins play a pivotal role in choosing which pathway to activate, controlling the different outcomes of damage bypass. PCNA (Proliferating Cell Nuclear Antigen, the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by Ubiquitin and SUMO controls both the error free and error prone branches of PRR. Furthermore, a significant number of polymerases involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how Ubiquitin and Ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they are capable of controlling the recruitment of different proteins to the replication fork.

  17. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes

    Directory of Open Access Journals (Sweden)

    Peter Draber

    2015-12-01

    Full Text Available Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1 ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC, at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors.

  18. Polyubiquitin chain assembly and organisation determine the dynamics of protein activation and degradation

    Directory of Open Access Journals (Sweden)

    Lan K. Nguyen

    2014-01-01

    Full Text Available Protein degradation via ubiquitination is a major proteolytic mechanism in cells. Once a protein is destined for degradation, it is tagged by multiple ubiquitin molecules. The synthesised polyubiquitin chains can be recognised by the 26S proteosome where proteins are degraded. These chains form through multiple ubiquitination cycles that are similar to multi-site phosphorylation cycles. As kinases and phosphatases, two opposing enzymes (E3 ligases and deubiquitinases DUBs catalyse (deubiquitination cycles. Although multi-ubiquitination cycles are fundamental mechanisms of controlling protein concentrations within a cell, their dynamics have never been explored. Here, we fill this knowledge gap. We show that under permissive physiological conditions, the formation of polyubiquitin chain of length greater than two and subsequent degradation of the ubiquitinated protein, which is balanced by protein synthesis, can display bistable, switch-like responses. Interestingly, the occurrence of bistability becomes pronounced, as the chain grows, giving rise to all-or-none regulation at the protein levels. We give predictions of protein distributions under bistable regime awaiting experimental verification. Importantly, we show for the first time that sustained oscillations can robustly arise in the process of formation of ubiquitin chain, largely due to the degradation of the target protein. This new feature is opposite to the properties of multi-site phosphorylation cycles, which are incapable of generating oscillation if the total abundance of interconverted protein forms is conserved. We derive structural and kinetic constraints for the emergence of oscillations, indicating that a competition between different substrate forms and the E3 and DUB is critical for oscillation. Our work provides the first detailed elucidation of the dynamical features brought about by different molecular setups of the polyubiquitin chain assembly process responsible for

  19. Characterization of the Arabidopsis thaliana E3 ubiquitin-ligase AtSINAL7 and identification of the ubiquitination sites.

    Directory of Open Access Journals (Sweden)

    Diego A Peralta

    Full Text Available Protein ubiquitination leading to degradation by the proteasome is an important mechanism in regulating key cellular functions. Protein ubiquitination is carried out by a three step process involving ubiquitin (Ub activation by a E1 enzyme, the transfer of Ub to a protein E2, finally an ubiquitin ligase E3 catalyzes the transfer of the Ub peptide to an acceptor protein. The E3 component is responsible for the specific recognition of the target, making the unveiling of E3 components essential to understand the mechanisms regulating fundamental cell processes through the protein degradation pathways. The Arabidopsis thaliana seven in absentia-like 7 (AtSINAL7 gene encodes for a protein with characteristics from a C3HC4-type E3 ubiquitin ligase. We demonstrate here that AtSINAL7 protein is indeed an E3 protein ligase based on the self-ubiquitination in vitro assay. This activity is dependent of the presence of a Lys residue in position 124. We also found that higher AtSINAL7 transcript levels are present in tissues undergoing active cell division during floral development. An interesting observation is the circadian expression pattern of AtSINAL7 mRNA in floral buds. Furthermore, UV-B irradiation induces the expression of this transcript indicating that AtSINAL7 may be involved in a wide range of different cell processes.

  20. Falling chains

    CERN Document Server

    Wong, C W; Wong, Chun Wa; Yasui, Kosuke

    2006-01-01

    The one-dimensional falling motion of a bungee chain suspended from a rigid support and of a chain falling from a resting heap on a table is studied. Their Lagrangians are found to contain no explicit time dependence. As a result, these falling chains are conservative systems. Each of their Lagrange's equations of motion is shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show in particular that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when the transferred link is emitted by the emitting subchain. The maximum chain tension measured by Calkin and March for the falling bungee chain is given a simple if rough interpretation. In the simplified one-dimensional treatment, the kinetic energy of the center of mass of the falling bungee chain is found to be converted by the chain tension at the rigid support into the internal kinetic energy of the chain. However, as t...

  1. The HECTD3 E3 ubiquitin ligase suppresses cisplatin-induced apoptosis via stabilizing MALT1.

    Science.gov (United States)

    Li, Yi; Chen, Xi; Wang, Zehua; Zhao, Dong; Chen, Hui; Chen, Wenlin; Zhou, Zhongmei; Zhang, Junran; Zhang, Jing; Li, Hongmin; Chen, Ceshi

    2013-01-01

    Homologous to the E6-associated protein carboxyl terminus domain containing 3 (HECTD3) is an E3 ubiquitin ligase with unknown functions. Here, we show that HECTD3 confers cancer cell resistance to cisplatin. To understand the molecular mechanisms, we performed a yeast two-hybrid analysis and identified mucosa-associated lymphoid tissue 1 (MALT1) as an HECTD3-interacting protein. HECTD3 promotes MALT1 ubiquitination with nondegradative polyubiquitin chains by direct interacting with the MALT1 through its N-terminal destruction of cyclin domain. HECTD3 does not target MALT1 for degradation but stabilize it. HECTD3 depletion dramatically decreases the levels of MALT1 in MCF7 and HeLa cells treated with cisplatin, which is correlated to an increase in apoptosis. Knockdown of MALT1 likewise increases cisplatin-induced apoptosis in these cancer cells. However, HECTD3 over-expression leads to a decreased cisplatin-induced apoptosis, whereas overexpression of MALT1 partially rescues HECTD3 depletion-induced apoptosis. These findings suggest that HECTD3 promotes cell survival through stabilizing MALT1. Our data have important implications in cancer therapy by providing novel molecular targets.

  2. The HECTD3 E3 Ubiquitin Ligase Suppresses Cisplatin-Induced Apoptosis via Stabilizing MALT1

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available Homologous to the E6-associated protein carboxyl terminus domain containing 3 (HECTD3 is an E3 ubiquitin ligase with unknown functions. Here, we show that HECTD3 confers cancer cell resistance to cisplatin. To understand the molecular mechanisms, we performed a yeast two-hybrid analysis and identified mucosa-associated lymphoid tissue 1 (MALT1 as an HECTD3-interacting protein. HECTD3 promotes MALT1 ubiquitination with non-degradative polyubiquitin chains by direct interacting with the MALT1 through its N-terminal destruction of cyclin domain. HECTD3 does not target MALT1 for degradation but stabilize it. HECTD3 depletion dramatically decreases the levels of MALT1 in MCF7 and HeLa cells treated with cisplatin, which is correlated to an increase in apoptosis. Knockdown of MALT1 likewise increases cisplatin-induced apoptosis in these cancer cells. However, HECTD3 overexpression leads to a decreased cisplatin-induced apoptosis, whereas overexpression of MALT1 partially rescues HECTD3 depletion–induced apoptosis. These findings suggest that HECTD3 promotes cell survival through stabilizing MALT1. Our data have important implications in cancer therapy by providing novel molecular targets.

  3. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag.

    Directory of Open Access Journals (Sweden)

    Eric R Weiss

    Full Text Available Retroviruses engage the ESCRT pathway through late assembly (L domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA. The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release.

  4. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however......, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines....... Evaluation of the relative importance of different residues positioned -2, -1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the -1 and -2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter...

  5. The Role of Ubiquitin Ligases in Cardiac Disease

    Science.gov (United States)

    Willis, Monte S.; Bevilacqua, Ariana; Pulinilkunnil, Thomas; Kienesberger, Petra; Tannu, Manasi; Patterson, Cam

    2014-01-01

    Rigorous surveillance of protein quality control is essential for the maintenance of normal cardiac function, while the dysregulation of protein turnover is present in a diverse array of common cardiac diseases. Central to the protein quality control found in all cells is the ubiquitin proteasome system (UPS). The UPS plays a critical role in protein trafficking, cellular signaling, and most prominently, protein degradation. As ubiquitin ligases (E3s) control the specificity of the UPS, their description in the cardiomyocyte has highlighted how ubiquitin ligases are critical to the turnover and function of the sarcomere complex, responsible for the heart’s required continuous contraction. In this review, we provide an overview of the UPS, highlighting a comprehensive overview of the cardiac ubiquitin ligases identified to date. We then focus on recent studies of new cardiac ubiquitin ligases outlining their novel roles in protein turnover, cellular signaling, and the regulation of mitochondrial dynamics and receptor turnover in the pathophysiology of cardiac hypertrophy, cardiac atrophy, myocardial infarction, and heart failure. PMID:24262338

  6. FBW7-mediated ubiquitination and degradation of KLF5

    Institute of Scientific and Technical Information of China (English)

    Yi; Luan; Ping; Wang

    2014-01-01

    Krüppel-like factor(KLF) family proteins are transcription factors that regulate numerous cellular functions, such as cell proliferation, differentiation, and cell death. Posttranslational modification of KLF proteins is important for their transcriptional activities and biological functions. One KLF family member with important roles in cell proliferation and tumorigenesis is KLF5. The function of KLF5 is tightly controlled by post-translational modifications, including SUMOylation, phosphorylation, and ubiquitination. Recent studies from our lab and others’ have demonstrated that the tumor suppressor FBW7 is an essential E3 ubiquitin ligase that targets KLF5 for ubiquitination and degradation. KLF5 contains functional Cdc4 phospho-degrons(CPDs), which are required for its interaction with FBW7. Mutation of CPDs in KLF5 blocks the ubiquitination and degradation of KLF5 by FBW7. The protein kinase Glycogen synthase kinase 3β is involved in the phosphorylation of KLF5 CPDs. In both cancer cell lines and mousemodels, it has been shown that FBW7 regulates the expression of KLF5 target genes through the modulation of KLF5 stability. In this review, we summarize the current progress on delineating FBW7-mediated KLF5 ubiquitination and degradation.

  7. The ubiquitin-proteasome system in spongiform degenerative disorders.

    Science.gov (United States)

    Whatley, Brandi R; Li, Lian; Chin, Lih-Shen

    2008-12-01

    Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.

  8. Ubiquitin and Autophagy%泛素与自噬

    Institute of Scientific and Technical Information of China (English)

    冯梅; 王莉新; 王易

    2011-01-01

    Protein degradation mediated by ubiquitin and autophagy are the basic mechanisms involved in cellular self-regulation. Ubiquitin may be involved in the process of autophagy by serving as a umversal recognition signal. Induction of autophagy can promote ubiquitination, thereby enhancing the degradation of substrate. This paper mainly focuses on the relation and the potential mutual regulation between ubiquitination and autophagy, as well as the phenomenon of programmed cell death that is associated with both ubiquitination and autophagy processes.%泛素调节的蛋白质降解过程和细胞的自噬现象都是细胞自我调节的基本机制.其中,泛素可能作为一种普遍的识别信号参与了自噬过程;而自噬的诱导又能促进泛素化作用,从而增强对底物的降解.本文着重探讨这两者间的关系及可能存在的相互调节作用,并兼及两者共同涉及的细胞程序性死亡现象.

  9. Force-clamp analysis techniques reveal stretched exponential unfolding kinetics in ubiquitin

    CERN Document Server

    Lannon, Herbert; Brujic, Jasna

    2012-01-01

    Force-clamp spectroscopy reveals the unfolding and disulfide bond rupture times of single protein molecules as a function of the stretching force, point mutations and solvent conditions. The statistics of these times reveal whether the protein domains are independent of one another, the mechanical hierarchy in the polyprotein chain, and the functional form of the probability distribution from which they originate. It is therefore important to use robust statistical tests to decipher the correct theoretical model underlying the process. Here we develop multiple techniques to compare the well-established experimental data set on ubiquitin with existing theoretical models as a case study. We show that robustness against filtering, agreement with a maximum likelihood function that takes into account experimental artifacts, the Kuiper statistic test and alignment with synthetic data all identify the Weibull or stretched exponential distribution as the best fitting model. Our results are inconsistent with recently ...

  10. Protein microarrays for the identification of praja1 e3 ubiquitin ligase substrates.

    Science.gov (United States)

    Loch, Christian M; Eddins, Michael J; Strickler, James E

    2011-06-01

    Although they are the primary determinants of substrate specificity, few E3-substrate pairs have been positively identified, and few E3's profiled in a proteomic fashion. Praja1 is an E3 implicated in bone development and highly expressed in brain. Although it has been well studied relative to the majority of E3's, little is known concerning the repertoire of proteins it ubiquitylates. We sought to identify high confidence substrates for Praja1 from an unbiased proteomic profile of thousands of human proteins using protein microarrays. We first profiled Praja1 activity against a panel of E2's to identify its optimal partner in vitro. We then ubiquitylated multiple, identical protein arrays and detected putative substrates with reagents that vary in ubiquitin recognition according to the extent of chain formation. Gene ontology clustering identified putative substrates consistent with information previously known about Praja1 function, and provides clues into novel aspects of this enzyme's function.

  11. Ataxia, Dementia, and Hypogonadotropism Caused by Disordered Ubiquitination

    DEFF Research Database (Denmark)

    Margolin, David H.; Kousi, Maria; Chan, Yee-Ming

    2013-01-01

    affected patients. Neurologic and reproductive endocrine phenotypes were characterized in detail. The effects of sequence variants and the presence of an epistatic interaction were tested in a zebrafish model. RESULTS Digenic homozygous mutations in RNF216 and OTUD4, which encode a ubiquitin E3 ligase...... in cerebellar pathways and the hippocampus; surviving hippocampal neurons contained ubiquitin-immunoreactive intranuclear inclusions. Defects were detected at the hypothalamic and pituitary levels of the reproductive endocrine axis. CONCLUSIONS The syndrome of hypogonadotropic hypogonadism, ataxia, and dementia...... can be caused by inactivating mutations in RNF216 or by the combination of mutations in RNF216 and OTUD4. These findings link disordered ubiquitination to neurodegeneration and reproductive dysfunction and highlight the power of whole-exome sequencing in combination with functional studies to unveil...

  12. Scores of RINGS but no PHDs in ubiquitin signaling.

    Science.gov (United States)

    Aravind, L; Iyer, L M; Koonin, E V

    2003-01-01

    Recently, it has been reported that PHD fingers of MEKK1 kinase and a family of viral and cellular membrane proteins have E3 ubiquitin ligase activity. Here we describe unique sequence and structural signatures that distinguish PHD fingers from RING fingers, which function primarily as E3 ubiquitin ligases, and demonstrate that the Zn-binding modules of the above proteins are distinct versions of the RING domain rather than PHD fingers. Thus, currently available data reveal extreme versatility of RINGs and their derivatives that function as E3 ubiquitin ligases but provide no evidence of this activity among PHD fingers whose principal function appears to involve specific protein-protein and possibly protein-DNA interactions in chromatin.

  13. KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination

    Science.gov (United States)

    Ramirez-Martinez, Andres; Cenik, Bercin Kutluk; Bezprozvannaya, Svetlana; Chen, Beibei; Bassel-Duby, Rhonda

    2017-01-01

    Maintenance of muscle function requires assembly of contractile proteins into highly organized sarcomeres. Mutations in Kelch-like protein 41 (KLHL41) cause nemaline myopathy, a fatal muscle disorder associated with sarcomere disarray. We generated KLHL41 mutant mice, which display lethal disruption of sarcomeres and aberrant expression of muscle structural and contractile proteins, mimicking the hallmarks of the human disease. We show that KLHL41 is poly-ubiquitinated and acts, at least in part, by preventing aggregation and degradation of Nebulin, an essential component of the sarcomere. Furthermore, inhibition of KLHL41 poly-ubiquitination prevents its stabilization of nebulin, suggesting a unique role for ubiquitination in protein stabilization. These findings provide new insights into the molecular etiology of nemaline myopathy and reveal a mechanism whereby KLHL41 stabilizes sarcomeres and maintains muscle function by acting as a molecular chaperone. Similar mechanisms for protein stabilization likely contribute to the actions of other Kelch proteins. PMID:28826497

  14. The Role of Ubiquitine Proteasome Pathway in Carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.Ceren Sumer Turanligil

    2010-02-01

    Full Text Available Ubiquitin works as a marker protein which targets misfolded or injured proteins to cellular degradation. It brings the abnormal proteins to a subcellular organelle named proteasome and it maintains the degradation of proteins in limited lenghts of peptides by leaving the process withuout being changed. Mistakes in ubiquitin-dependent proteolysis in various steps of carcinogenesis is known. In this review, we dealed with the effects of ubiquitin-proteasome pathway (UPP on carcinogenesis via intercellular signaling molecules like Ras, transcription factors like NF-kB, cytokines like TNF-alfa Tumor necrosis factor, protooncogenes like p53 and MDM2(murine double minute 2, components of cell cycle and DNA repair proteins like BRCA1. We also focused on the relationship of UPP on antigen presentation which is active in immune response and its place in the aetiology of colon cancer to provide a specific example. [Archives Medical Review Journal 2010; 19(1.000: 36-55

  15. Markov chains

    CERN Document Server

    Revuz, D

    1984-01-01

    This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.

  16. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics

    DEFF Research Database (Denmark)

    Akimov, Vyacheslav; Rigbolt, Kristoffer T G; Nielsen, Mogens M;

    2011-01-01

    ) for selectively decoding ubiquitination-driven processes involved in the regulation of cellular signaling networks. We applied this approach to characterize the temporal dynamics of ubiquitination events accompanying epidermal growth factor receptor (EGFR) signal transduction. We used recombinant UBDs derived...

  17. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis

    Science.gov (United States)

    Plechanovová, Anna; Jaffray, Ellis; Tatham, Michael H.; Naismith, James H.; Hay, Ronald T.

    2012-01-01

    SUMMARY Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING of RNF4 in complex with E2 (UbcH5a) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The C-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilise the consequent tetrahedral transition state intermediate. PMID:22842904

  18. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases

    NARCIS (Netherlands)

    Jansen, A.H.P.; Reits, E.A.J.; Hol, E.M.

    2014-01-01

    The ubiquitin proteasome system (UPS) is crucial for intracellular protein homeostasis and for degradation of aberrant and damaged proteins. The accumulation of ubiquitinated proteins is a hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's,

  19. In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species.

    Science.gov (United States)

    Arya, Shweta; Sharma, Gaurav; Gupta, Preeti; Tiwari, Swati

    2012-07-01

    Covalent modification of proteins by ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) regulates many cellular functions in eukaryotes. These modifications are likely to be associated with pathogenesis, growth, and development of many protozoan parasites but molecular details about this pathway are unavailable for most protozoa. This study presents an analysis of the Ub pathway in three members of the Entamoeba species. Using bioinformatics tools we have identified all Ub and Ubl genes along with their corresponding activating, conjugating, and ligating enzymes (E1, E2s, and E3s) in three Entamoeba species, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens. Phylogenetic trees were established for the identified E2s and RING finger E3s using maximum-likelihood method to infer the relationship among these proteins. In silico co-domain analysis of RING finger E3s implicates these proteins in a variety of functions. Several known and putative regulatory motifs were identified in the upstream regions of RING finger domain containing E3 genes. All E2 and E3 genes were analyzed in genomic context in E. histolytica and E. dispar. Most E2s and E3s were in syntenic positions in the two genomes. Association of these genes with transposable elements (TEs) was compared between E. histolytica and E. dispar. A closer association was found between RING finger E3s with TEs in E. histolytica. In summary, our analyses suggests that the complexity of the Ub pathway in Entamoeba species is close to that observed in higher eukaryotes. This study provides important data for further understanding the role of Ub pathway in the biology of these organisms.

  20. Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model.

    Science.gov (United States)

    Reddy, Govardhan; Thirumalai, D

    2015-08-27

    Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (Tm's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At Tm, Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at Tm, with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion-collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a Pfold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for

  1. The ubiquitin system: a critical regulator of innate immunity and pathogen–host interactions

    OpenAIRE

    Li, Jie; Chai, Qi-Yao; Liu, Cui Hua

    2016-01-01

    The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host–pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autop...

  2. Archaeal Tuc1/Ncs6 homolog required for wobble uridine tRNA thiolation is associated with ubiquitin-proteasome, translation, and RNA processing system homologs.

    Directory of Open Access Journals (Sweden)

    Nikita E Chavarria

    Full Text Available While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6 and ubiquitin-related modifier-1 (Urm1 are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii that is essential for maintaining cellular pools of thiolated tRNA(LysUUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1. Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(LysUUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.

  3. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiazhang; Sheedlo, Michael J.; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S.; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-04-06

    Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or as enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. The E1/E2-independent ubiquitination catalyzed by these enzymes requires NAD but not ATP and Mg2+. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. These results establish that ubiquitination can be catalyzed by a single enzyme.

  4. UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation

    NARCIS (Netherlands)

    Alwan, H.A.J.; Leeuwen, J.E.M. van

    2007-01-01

    Whereas poly-ubiquitination targets protein substrates for proteasomal degradation, mono-ubiquitination is known to regulate protein trafficking in the endosomal system and to target cargo proteins for lysosomal degradation. The role of the de-ubiquitinating enzymes AMSH and UBPY in endosomal traffi

  5. Selectivity of E2-E3 interactions in the human ubiquitin system

    NARCIS (Netherlands)

    van Wijk, S.J.L.

    2010-01-01

    Highly selective interactions between ubiquitin-conjugating enzymes and RING-type E3 ligases are crucial for the adequate and efficient action of ubiquitin and ubiquitin-like pathways. Within these cascades, E2 enzymes provide a connecting link between activation and the final covalent conjugation,

  6. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3.

    Science.gov (United States)

    Zhang, Jiazhen; Macartney, Thomas; Peggie, Mark; Cohen, Philip

    2017-06-26

    Interleukin-1 (IL-1) signaling induces the formation of Lys63-linked ubiquitin (K63-Ub) chains, which are thought to activate the 'master' protein kinase TGFβ-activated kinase 1 (TAK1) by interacting with its TAK1-binding 2 (TAB2) and TAB3 subunits. Here, we report that IL-1β can also activate the TAB1-TAK1 heterodimer present in TAB2/TAB3 double knockout (DKO) IL-1 receptor-expressing cells. The IL-1β-dependent activation of the TAB1-TAK1 heterodimer in TAB2/3 DKO cells is required for the expression and E3 ligase activity of tumor necrosis factor receptor-associated factor 6 (TRAF6) and is reduced by the small interfering RNA (siRNA) knockdown of ubiquitin conjugating 13 (Ubc13), an E2-conjugating enzyme that directs the formation of K63-Ub chains. IL-1β signaling was restored to TAB1/2/3 triple KO cells by the re-expression of either TAB1 or TAB2, but not by an ubiquitin binding-defective mutant of TAB2. We conclude that IL-1β can induce the activation of TAK1 in two ways, only one of which requires the binding of K63-Ub chains to TAB2/3. The early IL-1β-stimulated, TAK1-dependent activation of p38α mitogen-activated protein (MAP) kinase and the canonical IκB kinase (IKK) complex, as well as the NF-κB-dependent transcription of immediate early genes, was similar in TAB2/3 DKO cells and TAB2/3-expressing cells. However, in contrast with TAB2/3-expressing cells, IL-1β signaling was transient in TAB2/3 DKO cells, and the activation of c-Jun N-terminal kinase 1 (JNK1), JNK2 and p38γ was greatly reduced at all times. These observations indicate a role for TAB2/3 in directing the TAK1-dependent activation of MAP kinase kinases that switch on JNK1/2 and p38γ MAP kinases. These observations and the transient activation of the TAB1-TAK1 heterodimer may explain why IL-1β-dependent IL-8 mRNA formation was abolished in TAB2/3 DKO cells. © 2017 The Author(s).

  7. How the ubiquitin proteasome system regulates the regulators of transcription.

    Science.gov (United States)

    Ee, Gary; Lehming, Norbert

    2012-01-01

    The ubiquitin proteasome system plays an important role in transcription. Monoubiquitination of activators is believed to aid their function, while the 26S proteasomal degradation of repressors is believed to restrict their function. What remains controversial is the question of whether the degradation of activators aids or restricts their function.

  8. The bacterial pathogen-ubiquitin interface: lessons learned from Shigella.

    Science.gov (United States)

    Tanner, Kaitlyn; Brzovic, Peter; Rohde, John R

    2015-01-01

    Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post-translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin-modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host-pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.

  9. Ubiquitination-deubiquitination balance dictates ligand-stimulated PTHR sorting.

    Science.gov (United States)

    Alonso, Verónica; Magyar, Clara E; Wang, Bin; Bisello, Alessandro; Friedman, Peter A

    2011-12-01

    Parathyroid hormone receptors (PTHR) are promptly internalized upon stimulation by activating (PTH[1-84], PTH[1-34]) and non-activating (PTH[7-84], PTH[7-34]) ligands. Here, we characterized the mechanism regulating the sorting of internalized receptors between recycling and degradative pathways. PTHR recycles faster after challenge with PTH(1-34) than with PTH(7-34). PTHR recycling is complete by 2 h after PTH(1-34) stimulation, but incomplete at this time in cells treated with PTH(7-34). The slower and incomplete recycling induced by PTH(7-34) is due to proteasomal degradation. Both PTH(1-34) and PTH(7-34) induced PTHR polyubiquitination. Ubiquitination by PTH(1-34) was transient, whereas receptor ubiquitination after PTH(7-34) was sustained. PTH(1-34), but not PTH(7-34), induced expression of the PTHR-specific deubiquitinating enzyme USP2. Overexpression of USP2 prevented PTH(7-34)-induced PTHR degradation. We conclude that PTH(1-34) promotes coupled PTHR ubiquitination and deubiquitination, whereas PTH(7-34) activates only ubiquitination, thereby leading to PTHR downregulation. These findings may explain PTH resistance in diseases associated with elevated PTH(7-84) levels. Copyright © 2011 American Society for Bone and Mineral Research.

  10. Mechanism for the selective conjugation of ubiquitin to phytochrome

    Energy Technology Data Exchange (ETDEWEB)

    Vierstra, R.D.

    1990-01-01

    The goal of this project is to understand at the molecular level how phytochrome functions and how intracellular proteins are degraded. Phytochrome is marked for degradation by covalent attachment of ubiquitin. Ubiquitin-phytochrome conjugates (UbP) were characterized with respect to formation kinetics, subcellular localization and site of ubiquitin attachment. UbP appears to be a general phenomenon during phytochrome degradation in a variety of species. UbP was isolated from oat seedlings and characterized. Residues 747-830 of phytochrome have been identified as a possible attachment site for ubiquitin. By placing the gene for etiolated phytochrome in tobacco we have created a transgenic system for over expressing phytochrome. The effects of this over expression are described, and it appears that tobacco degrades this foreign protein through formation of UbP. We have created a series of site-directed mutants of the oat phytochrome gene, and are in the process of characterizing them to determine sequence requirements for ubiquination. 8 refs., 1 fig. (MHB)

  11. Chain Gang

    Science.gov (United States)

    2006-01-01

    6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters. Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring

  12. CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication

    Directory of Open Access Journals (Sweden)

    Yu-Chen Lin

    2017-05-01

    Full Text Available Influenza A virus (IAV RNA segments are individually packaged with viral nucleoprotein (NP and RNA polymerases to form a viral ribonucleoprotein (vRNP complex. We previously reported that NP is a monoubiquitinated protein which can be deubiquitinated by a cellular ubiquitin protease, USP11. In this study, we identified an E3 ubiquitin ligase, CNOT4 (Ccr4-Not transcription complex subunit 4, which can ubiquitinate NP. We found that the levels of viral RNA, protein, viral particles, and RNA polymerase activity in CNOT4 knockdown cells were lower than those in the control cells upon IAV infection. Conversely, overexpression of CNOT4 rescued viral RNP activity. In addition, CNOT4 interacted with the NP in the cell. An in vitro ubiquitination assay also showed that NP could be ubiquitinated by in vitro-translated CNOT4, but ubiquitination did not affect the protein stability of NP. Significantly, CNOT4 increased NP ubiquitination, whereas USP11 decreased it. Mass spectrometry analysis of ubiquitinated NP revealed multiple ubiquitination sites on the various lysine residues of NP. Three of these, K184, K227, and K273, are located on the RNA-binding groove of NP. Mutations of these sites to arginine reduced viral RNA replication. These results indicate that CNOT4 is a ubiquitin ligase of NP, and ubiquitination of NP plays a positive role in viral RNA replication.

  13. [Ubiquitous Ribonucleic Acid:miRNA is the Ubiquitin of RNA].

    Science.gov (United States)

    Zheng, Xiao-fei

    2015-10-01

    Small RNAs, especially microRNAs (miRNAs),widely exist in eukaryotic cells, with their main functions being regulating gene expression and function of target molecules through the degradation of cellular target RNAs by the ribonuclease-based system. Ubiquitins and ubiquitin-like proteins are polypeptides that exist in most eukaryotic cells, and their main function is almost to regulate protein level through the degradation of cellular proteins by ubiquitin proteasome system. Small RNAs, including miRNAs,and ubiquitins or ubiquitin-like proteins have similarities in many aspects although small RNAs and ubiquitin or ubiquitin-like proteins interact different substrates respectively. Therefore, miRNAs can be defined as ubiquitra (ubiquitous ribonucleic acid, ubiquitra or uRNA), and the other small RNAs can be defined as ubiquitra-like RNA or uRNA-like RNA. The concept of ubiquitra may be applied for explaining the biological essence of small RNAs diversity.

  14. Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests.

    Science.gov (United States)

    Purdy, Georgiana E; Russell, David G

    2007-01-01

    Bacterial killing by autophagic delivery to the lysosomal compartment has been shown for Mycobacteria, Streptococcus, Shigella, Legionella and Salmonella, indicating an important role for this conserved trafficking pathway for the control of intracellular bacterial pathogens.(1-5) In a recent study we found that solubilized lysosomes isolated from bone marrow-derived macrophages had potent antibacterial properties against M. tuberculosis and M. smegmatis that were associated with ubiquitin and ubiquitin-derived peptides. We propose that ubiquitinated proteins are delivered to the lysosomal compartment, where degradation by lysosomal proteinases generates ubiquitin-derived peptides with antimycobacterial properties. This surprising finding provokes a number of questions regarding the nature and trafficking of ubiquitin and ubiquitin-modified proteins in mammalian cells. We discuss the possible role(s) that the multivesicular body (MVB), the late endosome and the autophagosome may play in trafficking of ubiquitinated proteins to the lysosome.

  15. [Human single chain antibodies directed to tumor necrosis factor].

    Science.gov (United States)

    Vikhrova, M A; Batanova, T A; Lebedev, L R; Shingarova, L N; Frank, L A; Kirpichnikov, M P; Tikunova, N V

    2011-01-01

    Six unique phage antibodies to human TNF have been selected from a combinatorial library of human single chain fragment variable. ELISA and Western-blotting was used to study selected phage antibodies binding with TNF. The specificity of selected antibodies was determined by binding with interferon alpha and gamma, bovine serum albumin, ovalbumin and ubiquitin. Two antibodies, sA1 and sB3, were converted into a soluble single-chain antibody form and their affinity was 2.5 and 13.7 nM respectively.

  16. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.

    Science.gov (United States)

    Qiu, Jiazhang; Sheedlo, Michael J; Yu, Kaiwen; Tan, Yunhao; Nakayasu, Ernesto S; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2016-05-01

    Signalling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalysed by the E1, E2 and E3 three-enzyme cascade, which links the carboxy terminus of ubiquitin to the ε-amino group of, in most cases, a lysine of the substrate via an isopeptide bond. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents. For example, many bacterial pathogens exploit ubiquitin signalling using virulence factors that function as E3 ligases, deubiquitinases or as enzymes that directly attack ubiquitin. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a permissive niche for its replication in phagocytes. Here we demonstrate that members of the SidE effector family of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum. Moreover, we show that these proteins are capable of catalysing ubiquitination without the need for the E1 and E2 enzymes. A putative mono-ADP-ribosyltransferase motif critical for the ubiquitination activity is also essential for the role of the SidE family in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalysed by these enzymes is energized by nicotinamide adenine dinucleotide, which activates ubiquitin by the formation of ADP-ribosylated ubiquitin. These results establish that ubiquitination can be catalysed by a single enzyme, the activity of which does not require ATP.

  17. The Nedd4-like ubiquitin E3 ligases target angiomotin/p130 to ubiquitin-dependent degradation.

    Science.gov (United States)

    Wang, Chenji; An, Jian; Zhang, Pingzhao; Xu, Chen; Gao, Kun; Wu, Di; Wang, Dejie; Yu, Hongxiu; Liu, Jun O; Yu, Long

    2012-06-01

    AMOT (angiomotin) is a membrane-associated protein that is expressed in ECs (endothelial cells) and controls migration, TJ (tight junction) formation, cell polarity and angiogenesis. Recent studies have revealed that AMOT and two AMOT-like proteins, AMOTL1 and AMOTL2, play critical roles in the Hippo pathway by regulating the subcellular localization of the co-activators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif). However, it has been unclear how AMOT is regulated. In the present study, we report that AMOT undergoes proteasomal degradation. We identify three members of Nedd4 (neural-precursor-cell-expressed developmentally down-regulated)-like ubiquitin E3 ligases, Nedd4, Nedd4-2 and Itch, as the ubiquitin E3 ligases for the long isoform of AMOT, AMOT/p130. We demonstrate that Nedd4, Nedd4-2 and Itch mediate poly-ubiquitination of AMOT/p130 in vivo. Overexpression of Nedd4, Nedd4-2 or Itch leads to AMOT/p130 proteasomal degradation. Knockdown of Nedd4, Nedd4-2 and Itch causes an accumulation of steady-state level of AMOT/p130. We also show that three L/P-PXY motifs of AMOT/p130 and the WW domains of Nedd4 mediate their interaction. Furthermore, Nedd4-like ubiquitin E3 ligases might compete with YAP for the binding to AMOT/p130, and subsequently targeting AMOT/p130 for ubiquitin-dependent degradation. Together, these observations reveal a novel post-translational regulatory mechanism of AMOT/p130.

  18. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination.

    Directory of Open Access Journals (Sweden)

    Chueh-Ling Kuo

    Full Text Available Botulinum neurotoxin (BoNT, a Category A biodefense agent, delivers a protease to motor neuron cytosol that cleaves one or more soluble NSF attachment protein receptors (SNARE proteins involved in neurotransmission to cause a flaccid paralysis. No antidotes exist to reverse symptoms of BoNT intoxication so severely affected patients require artificial respiration with prolonged intensive care. Time to recovery depends on toxin serotype because the intraneuronal persistence of the seven known BoNT serotypes varies widely from days to many months. Our therapeutic antidote strategy is to develop 'targeted F-box' (TFB agents that target the different intraneuronal BoNT proteases for accelerated degradation by the ubiquitin proteasome system (UPS, thus promoting rapid recovery from all serotypes. These agents consist of a camelid heavy chain-only V(H (VHH domain specific for a BoNT protease fused to an F-box domain recognized by an intraneuronal E3-ligase. A fusion protein containing the 14 kDa anti-BoNT/A protease VHH, ALcB8, joined to a 15 kDa F-box domain region of TrCP (D5 was sufficient to cause increased ubiquitination and accelerate turnover of the targeted BoNT/A protease within neurons. Neuronal cells expressing this TFB, called D5-B8, were also substantially resistant to BoNT/A intoxication and recovered from intoxication at least 2.5 fold quicker than control neurons. Fusion of D5 to a VHH specific for BoNT/B protease (BLcB10 led to accelerated turnover of the targeted protease within neurons, thus demonstrating the modular nature of these therapeutic agents and suggesting that development of similar therapeutic agents specific to all botulinum serotypes should be readily achievable.

  19. Mastermind-Like 1 Is Ubiquitinated: Functional Consequences for Notch Signaling.

    Directory of Open Access Journals (Sweden)

    Mozhgan Farshbaf

    Full Text Available Early studies demonstrated the involvement of ubiquitination of the Notch intracellular domain for rapid turnover of the transcriptional complex at Notch target genes. It was shown that this ubiquitination was promoted by the co-activator Mastermind like 1 (MAML1. MAML1 also contains numerous lysine residues that may also be ubiquitinated and necessary for protein regulation. In this study, we show that over-expressed MAML1 is ubiquitinated and identify eight conserved lysine residues which are required for ubiquitination. We also show that p300 stimulates ubiquitination and that Notch inhibits ubiquitination. Furthermore, we show that a mutant MAML1 that has decreased ubiquitination shows increased output from a HES1 reporter gene assay. Therefore, we speculate that ubiquitination of MAML1 might be a mechanism to maintain low levels of the protein until needed for transcriptional activation. In summary, this study identifies that MAML1 is ubiquitinated in the absence of Notch signaling to maintain low levels of MAML1 in the cell. Our data supports the notion that a precise and tight regulation of the Notch pathway is required for this signaling pathway.

  20. Direct observation of silver nanoparticle-ubiquitin corona formation

    CERN Document Server

    Ding, Feng; Choudhary, Poonam; Chen, Ran; Brown, Jared M; Ke, Pu Chun

    2012-01-01

    Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Understanding the structure and dynamics of nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. We combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Specifically, ubiquitins competed with citrates for the nanoparticle surface and bound to the particle in a specific manner. Under a high protein/nanoparticle stoichiometry, ubiquitions formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich kinetics originated from protein-protein, protein-citrate, and protein-nanoparticle interactions. Furthermore, the binding destabilized the {\\alpha}-helices while increasi...

  1. Role of the Ubiquitin Proteasome System in Regulating Skin Pigmentation

    Directory of Open Access Journals (Sweden)

    Hideya Ando

    2009-10-01

    Full Text Available Pigmentation of the skin, hair and eyes is regulated by tyrosinase, the critical rate-limiting enzyme in melanin synthesis by melanocytes. Tyrosinase is degraded endogenously, at least in part, by the ubiquitin proteasome system (UPS. Several types of inherited hypopigmentary diseases, such as oculocutaneous albinism and Hermansky-Pudlak syndrome, involve the aberrant processing and/or trafficking of tyrosinase and its subsequent degradation which can occur due to the quality-control machinery. Studies on carbohydrate modifications have revealed that tyrosinase in the endoplasmic reticulum (ER is proteolyzed via ER-associated protein degradation and that tyrosinase degradation can also occur following its complete maturation in the Golgi. Among intrinsic factors that regulate the UPS, fatty acids have been shown to modulate tyrosinase degradation in contrasting manners through increased or decreased amounts of ubiquitinated tyrosinase that leads to its accelerated or decelerated degradation by proteasomes.

  2. Cell fate determination by ubiquitin-dependent regulation of translation

    Science.gov (United States)

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T.; Rape, Michael

    2015-01-01

    Metazoan development depends on accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates 1. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell fate determination is less well understood. Here, we have identified the vertebrate-specific ubiquitin ligase CUL3KBTBD8 as an essential regulator of neural crest specification. CUL3KBTBD8 monoubiquitylates NOLC1 and its paralog TCOF1, whose mutation underlies the neurocristopathy Treacher Collins Syndrome 2,3. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favor of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell fate determination. PMID:26399832

  3. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Marisa S Goo

    2015-10-01

    Full Text Available Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

  4. Regulation of NF-κB by Ubiquitination

    OpenAIRE

    Chen, Jueqi; Chen, Zhijian J.

    2013-01-01

    The nuclear factor κ enhancer binding protein (NF-κB) family of transcription factors regulates the expression of a large array of genes involved in diverse cellular processes including inflammation, immunity and cell survival. Activation of NF-κB requires ubiquitination, a highly conserved and versatile modification that can regulate cell signaling through both proteasome dependent and independent mechanisms. Studies in the past few years have provided new insights into the mechanisms underl...

  5. Role of the ubiquitin proteasome system in Parkinson's disease

    OpenAIRE

    2007-01-01

    Abstract Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Although a subject of intense research, the etiology of PD remains poorly understood. Recently, several lines of evidence have implicated an intimate link between aberrations in the ubiquitin proteasome system (UPS) and PD pathogenesis. Derangements of the UPS, which normally functions as a type of protein degradation machinery, lead to alterations in protein homeostasis that could conceivably promote th...

  6. The Ubiquitin Ligase Siah2 Regulates PPARγ Activity in Adipocytes

    OpenAIRE

    Kilroy, Gail; Kirk-Ballard, Heather; Carter, Lauren E.; Floyd, Z. Elizabeth

    2012-01-01

    Moderate reductions in peroxisome proliferator-activated receptor (PPAR)γ levels control insulin sensitivity as effectively as activation of PPARγ in adipocytes by the thiazolidinediones. That observation suggests that PPARγ activity can be regulated by modulating the amount of PPARγ protein in adipocytes. Activation of PPARγ in adipocytes is linked to changes in PPARγ protein levels via increased degradation of PPARγ proteins by the ubiquitin proteasome system. Identification of the ubiquiti...

  7. UbSRD: The Ubiquitin Structural Relational Database.

    Science.gov (United States)

    Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian

    2016-02-22

    The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd.

  8. Ubiquitin-related modifiers of Arabidopsis thaliana influence root development.

    Directory of Open Access Journals (Sweden)

    Florian John

    Full Text Available Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation. Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.

  9. Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways

    Directory of Open Access Journals (Sweden)

    Peter Wimmer

    2015-08-01

    Full Text Available Posttranslational modifications (PTMs of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub and small ubiquitin-like modifier (SUMO moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways.

  10. Enhancing ubiquitin crystallization through surface-entropy reduction.

    Science.gov (United States)

    Loll, Patrick J; Xu, Peining; Schmidt, John T; Melideo, Scott L

    2014-10-01

    Ubiquitin has many attributes suitable for a crystallization chaperone, including high stability and ease of expression. However, ubiquitin contains a high surface density of lysine residues and the doctrine of surface-entropy reduction suggests that these lysines will resist participating in packing interactions and thereby impede crystallization. To assess the contributions of these residues to crystallization behavior, each of the seven lysines of ubiquitin was mutated to serine and the corresponding single-site mutant proteins were expressed and purified. The behavior of these seven mutants was then compared with that of the wild-type protein in a 384-condition crystallization screen. The likelihood of obtaining crystals varied by two orders of magnitude within this set of eight proteins. Some mutants crystallized much more readily than the wild type, while others crystallized less readily. X-ray crystal structures were determined for three readily crystallized variants: K11S, K33S and the K11S/K63S double mutant. These structures revealed that the mutant serine residues can directly promote crystallization by participating in favorable packing interactions; the mutations can also exert permissive effects, wherein crystallization appears to be driven by removal of the lysine rather than by addition of a serine. Presumably, such permissive effects reflect the elimination of steric and electrostatic barriers to crystallization.

  11. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  12. Exogenous H2S facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy.

    Science.gov (United States)

    Wu, Jichao; Tian, Zhiliang; Sun, Yu; Lu, Cuicui; Liu, Ning; Gao, Zhaopeng; Zhang, Linxue; Dong, Shiyun; Yang, Fan; Zhong, Xin; Xu, Changqing; Lu, Fanghao; Zhang, Weihua

    2017-08-10

    Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. Hydrogen sulphide (H2S), a newly found gaseous signalling molecule, has an important role in many regulatory functions. The purpose of this study is to investigate the effects of exogenous H2S on autophagy and its possible mechanism in DCM induced by type II diabetes (T2DCM). In this study, we found that sodium hydrosulphide (NaHS) attenuated the augment in left ventricular (LV) mass and increased LV volume, decreased reactive oxygen species (ROS) production and ameliorated H2S production in the hearts of db/db mice. NaHS facilitated autophagosome content degradation, reduced the expression of P62 (a known substrate of autophagy) and increased the expression of microtubule-associated protein 1 light chain 3 II. It also increased the expression of autophagy-related protein 7 (ATG7) and Beclin1 in db/db mouse hearts. NaHS increased the expression of Kelch-like ECH-associated protein 1 (Keap-1) and reduced the ubiquitylation level in the hearts of db/db mice. 1,4-Dithiothreitol, an inhibitor of disulphide bonds, increased the ubiquitylation level of Keap-1, suppressed the expression of Keap-1 and abolished the effects of NaHS on ubiquitin aggregate clearance and ROS production in H9C2 cells treated with high glucose and palmitate. Overall, we concluded that exogenous H2S promoted ubiquitin aggregate clearance via autophagy, which might exert its antioxidative effect in db/db mouse myocardia. Moreover, exogenous H2S increased Keap-1 expression by suppressing its ubiquitylation, which might have an important role in ubiquitin aggregate clearance via autophagy. Our findings provide new insight into the mechanisms responsible for the antioxidative effects of H2S in the context of T2DCM.

  13. A design principle underlying the paradoxical roles of E3 ubiquitin ligases

    Science.gov (United States)

    Lee, Daewon; Kim, Minjin; Cho, Kwang-Hyun

    2014-07-01

    E3 ubiquitin ligases are important cellular components that determine the specificity of proteolysis in the ubiquitin-proteasome system. However, an increasing number of studies have indicated that E3 ubiquitin ligases also participate in transcription. Intrigued by the apparently paradoxical functions of E3 ubiquitin ligases in both proteolysis and transcriptional activation, we investigated the underlying design principles using mathematical modeling. We found that the antagonistic functions integrated in E3 ubiquitin ligases can prevent any undesirable sustained activation of downstream genes when E3 ubiquitin ligases are destabilized by unexpected perturbations. Interestingly, this design principle of the system is similar to the operational principle of a safety interlock device in engineering systems, which prevents a system from abnormal operation unless stability is guaranteed.

  14. Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response.

    Science.gov (United States)

    Ferry, Christine; Gaouar, Samia; Fischer, Benoit; Boeglin, Marcel; Paul, Nicodeme; Samarut, Eric; Piskunov, Aleksandr; Pankotai-Bodo, Gabriella; Brino, Laurent; Rochette-Egly, Cecile

    2011-12-20

    SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3-based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA.

  15. The ubiquitin system and Kaposi’s sarcoma-associated herpesvirus

    Directory of Open Access Journals (Sweden)

    Akira eAshizawa

    2012-02-01

    Full Text Available Ubiquitination is a post-translational modification in which one or more ubiquitin molecules are covalently linked to lysine residues of target proteins. The ubiquitin system plays a key role in the regulation of protein degradation, including cell signaling, endocytosis, vesicle trafficking, apoptosis, and immune responses. Bacterial and viral pathogens exploit the cellular ubiquitin system by encoding their own proteins to serve their survival and replication in infected cells. Recent studies have revealed that Kaposi’s sarcoma-associated herpesvirus (KSHV manipulates the ubiquitin system of infected cells to facilitate cell proliferation, anti-apoptosis, and evasion from immunity. This review summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cellular ubiquitin machinery.

  16. Sperm ubiquitination and DNA fragmentation in men with occupational exposure and varicocele.

    Science.gov (United States)

    Hosseinpour, E; Shahverdi, A; Parivar, K; Sedighi Gilani, M A; Nasr-Esfahani, M H; Salman Yazdi, R; Sharbatoghli, M; Tavalaee, M; Chehrazi, M

    2014-05-01

    Assessment of sperm ubiquitination and DNA fragmentation as sperm functional markers are proposed to complement routine semen analysis. This study focuses on the evaluation of these markers in infertile men with varicocele or exposed to occupational background. The results were compared with normozoospermic men. Semen parameters in both groups were lower than those in the control group. Ubiquitination median, as a marker for functionality of the ubiquitin-proteasome system, was also lower in both groups. The ubiquitination median showed a significant positive correlation with motility in both groups, while it showed only a negative correlation with sperm morphology in the varicocele group. DNA fragmentation showed a significant correlation with semen parameters, in total varicocele and also total exposure groups. In conclusion, significant difference of sperm ubiquitination between normal and study groups further validates that sperm ubiquitination as a potential molecular marker for sperm evaluation in addition to routine semen analysis in clinical laboratories. © 2013 Blackwell Verlag GmbH.

  17. Function of protein ubiquitination and SUMOylation in regulating flowering time of plants:A Function of protein ubiquitination and SUMOylation in regulating flowering time of plants:A review%蛋白泛素化和类泛素化修饰在植物开花时间调控中的作用

    Institute of Scientific and Technical Information of China (English)

    张孝廉; 张吉顺; 邹颉; 赵杰宏; 任学良

    2015-01-01

    processes are then repeated to attach new ubiquitin molecules to the substrate protein , and polyubiquitination has been shown to be essential for recognition and degradation of the substrate by the 26S proteasome . The polyubiquitin chain can be disassembled by the DUB ( deubiquitinating enzyme) to release ubiquitin moieties . The process of SUMOylation is similar with ubiquitination except for some small differences . Flowering time appears to be regulated by modulation of protein stability and degradation mediated by ubiquitination and SUMOylation . According to the study of A rabidopsis genome , there are more than 1 400 genes encoding components of the ubiquitin/26S proteasome pathway . Many of these genes mediate the degradation of the key proteins in the flowering pathways , such as CO protein . In this paper , recent advance on mechanisms of ubiquitination and SUMOylation regulating flowering time was discussed . First , the functions of the ubiquitination and related genes in the photoperiod pathway , as a major part of this review , were described in details . Furthermore , ubiquitination taking part in photoreceptor degradation , circadian clock regulation , and the modulation of the downstream gene expression and protein stability was discussed . The second part was that the ubiquitination involved in the temperature pathways including the vernalization pathway , the ambient temperature pathway , and the short‐term cold stress pathway . The function of DELLA proteins was discussed in the third part . In the fourth part , the roles of SUMOylation and its related genes in the flowering regulation pathways were briefly summarized . At last , some suggestions were given on the methods to study the function mechanisms of ubiquitination and SUMOylation on flowering time . We hope that this review will provide a foundation for a better understanding of the role of protein post‐translational modifications in flowering pathways .%开花是植物由营养生长向生

  18. Novel Inhibitors of Rad6 Ubiquitin Conjugating Enzyme: Design, Synthesis, Identification, and Functional Characterization

    Science.gov (United States)

    Nangia-Makker, Pratima; Balan, Vitaly; Morelli, Matteo; Kothayer, Hend; Westwell, Andrew D.; Shekhar, Malathy P.V.

    2013-01-01

    Protein ubiquitination is important for cell signaling, DNA repair, and proteasomal degradation, and it is not surprising that alterations in ubiquitination occur frequently in cancer. Ubiquitin-conjugating enzymes (E2) mediate ubiquitination by selective interactions with ubiquitin-activating (E1) and ubiquitin ligase (E3) enzymes, and thus selective E2 small molecule inhibitor (SMI) will provide specificity unattainable with proteasome inhibitors. Here we describe synthesis and functional characterization of the first SMIs of human E2 Rad6B, a fundamental component of translesion synthesis DNA repair. A pharmacophore model for consensus E2 ubiquitin-binding sites was generated for virtual screening to identify E2 inhibitor candidates. Twelve triazine (TZ) analogs screened in silico by molecular docking to the Rad6B X-ray structure were verified by their effect on Rad6B ubiquitination of histone H2A. TZs #8 and 9 docked to the Rad6B catalytic site with highest complementarity. TZs #1, 2, 8, and 9 inhibited Rad6B-ubiquitin thioester formation and subsequent ubiquitin transfer to histone H2A. SMI #9 inhibition of Rad6 was selective as BCA2 ubiquitination by E2 UbcH5 was unaffected by SMI #9. SMI #9 more potently inhibited proliferation, colony formation, and migration than SMI #8, and induced MDA-MB-231 breast cancer cell G2–M arrest and apoptosis. Ubiquitination assays using Rad6 immunoprecipitated from SMI #8- or 9-treated cells confirmed inhibition of endogenous Rad6 activity. Consistent with our previous data showing Rad6B-mediated polyubiquitination stabilizes β-catenin, MDAMB-231 treatment with SMIs #8 or 9 decreased β-catenin protein levels. Together these results describe identification of the first Rad6 SMIs. PMID:23339190

  19. USP8 Promotes Smoothened Signaling by Preventing Its Ubiquitination and Changing Its Subcellular Localization

    OpenAIRE

    Shuang Li; Yongbin Chen; Qing Shi; Tao Yue; Bing Wang; Jin Jiang

    2012-01-01

    Hedgehog transduces signal by promoting cell surface expression of the seven-transmembrane protein Smoothened (Smo) in Drosophila, but the underlying mechanism remains unknown. Here we demonstrate that Smo is downregulated by ubiquitin-mediated endocytosis and degradation, and that Hh increases Smo cell surface expression by inhibiting its ubiquitination. We find that Smo is ubiquitinated at multiple Lysine residues including those in its autoinhibitory domain (SAID), leading to endocytosis a...

  20. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding.

    Directory of Open Access Journals (Sweden)

    Maria Zhadina

    Full Text Available The membrane scission event that separates nascent enveloped virions from host cell membranes often requires the ESCRT pathway, which can be engaged through the action of peptide motifs, termed late (L- domains, in viral proteins. Viral PTAP and YPDL-like L-domains bind directly to the ESCRT-I and ALIX components of the ESCRT pathway, while PPxY motifs bind Nedd4-like, HECT-domain containing, ubiquitin ligases (e.g. WWP1. It has been unclear precisely how ubiquitin ligase recruitment ultimately leads to particle release. Here, using a lysine-free viral Gag protein derived from the prototypic foamy virus (PFV, where attachment of ubiquitin to Gag can be controlled, we show that several different HECT domains can replace the WWP1 HECT domain in chimeric ubiquitin ligases and drive budding. Moreover, artificial recruitment of isolated HECT domains to Gag is sufficient to stimulate budding. Conversely, the HECT domain becomes dispensable if the other domains of WWP1 are directly fused to an ESCRT-1 protein. In each case where budding is driven by a HECT domain, its catalytic activity is essential, but Gag ubiquitination is dispensable, suggesting that ubiquitin ligation to trans-acting proteins drives budding. Paradoxically, however, we also demonstrate that direct fusion of a ubiquitin moiety to the C-terminus of PFV Gag can also promote budding, suggesting that ubiquitination of Gag can substitute for ubiquitination of trans-acting proteins. Depletion of Tsg101 and ALIX inhibits budding that is dependent on ubiquitin that is fused to Gag, or ligated to trans-acting proteins through the action of a PPxY motif. These studies underscore the flexibility in the ways that the ESCRT pathway can be engaged, and suggest a model in which the identity of the protein to which ubiquitin is attached is not critical for subsequent recruitment of ubiquitin-binding components of the ESCRT pathway and viral budding to proceed.

  1. Expression of TRAF6 and ubiquitin mRNA in skeletal muscle of gastric cancer patients

    Directory of Open Access Journals (Sweden)

    Sun Yuan-Shui

    2012-09-01

    Full Text Available Abstract Objective To investigate the prognostic significance of tumor necrosis factor receptor (TNFR,-associated factor 6 (TRAF6,-and ubiquitin in gastric cancer patients. Methods Biopsies of the rectus abdominis muscle were obtained intra operatively from 102 gastric cancer patients and 29 subjects undergoing surgery for benign abdominal diseases, and muscle TRAF6 and ubiquitin mRNA expression and proteasome proteolytic activities were assessed. Results TRAF6 was significantly upregulated in muscle of gastric cancer compared with the control muscles. TRAF6 was upregulated in 67.65% (69/102 muscle of gastric cancer. Over expression of TRAF6 in muscles of gastric cancer were associated with TNM stage, level of serum albumin and percent of weight loss. Ubiquitin was significantly upregulated in muscle of gastric cancer compared with the control muscles. Ubiquitin was upregulated in 58.82% (60/102 muscles of gastric cancer. Over expression of ubiquitin in muscles of gastric cancer were associated with TNM (Tumor-Node-Metastasis stage and weight loss. There was significant relation between TRAF6 and ubiquitin expression. Conclusions We found a positive correlation between TRAF6 and ubiquitin expression, suggesting that TRAF6 may up regulates ubiquitin activity in cancer cachexia. While more investigations are required to understand its mechanisms of TRAF6 and ubiquitin in skeletal muscle. Correct the catabolic-anabolic imbalance is essential for the effective treatment of cancer cachexia.

  2. New insights to the ubiquitin-proteasome pathway (UPP) mechanism during spermatogenesis.

    Science.gov (United States)

    Hou, Cong-Cong; Yang, Wan-Xi

    2013-04-01

    Spermatogenesis is a complicated and highly ordered process which begins with the differentiation of spermatogonial stem cells and ends with the formation of mature sperm. After meiosis, several morphological changes occur during spermatogenesis. During spermatogenesis, many proteins and organelles are degraded, and the ubiquitin-proteasome pathway (UPP) plays a key role in the process which facilitates the formation of condensed sperm. UPP contains various indispensable components: ubiquitin, ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin ligase enzyme E3 and proteasomes. At some key stages of spermatogenesis, such as meiosis, acrosome biogenesis, and spermatozoa maturation, the ubiquitin-related components (including deubiquitination enzymes) exert positive and active functions. Generally speaking, deficient UPP will block spermatogenesis which may induce infertility at various degrees. Although ubiquitination during spermatogenesis has been widely investigated, further detailed aspects such as the mechanism of ubiquitination during the formation of midpiece and acrosome morphogenesis still remains unknown. The present review will overview current progress on ubiquitination during spermatogenesis, and will provide some suggestions for future studies on the functions of UPP components during spermatogenesis.

  3. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy

    Directory of Open Access Journals (Sweden)

    Zhang Hui

    2007-02-01

    Full Text Available Abstract Recent investigation of Cullin 4 (CUL4 has ushered this class of multiprotein ubiquitin E3 ligases to center stage as critical regulators of diverse processes including cell cycle regulation, developmental patterning, DNA replication, DNA damage and repair, and epigenetic control of gene expression. CUL4 associates with DNA Damage Binding protein 1 (DDB1 to assemble an ubiquitin E3 ligase that targets protein substrates for ubiquitin-dependent proteolysis. CUL4 ligase activity is also regulated by the covalent attachment of the ubiquitin-like protein NEDD8 to CUL4, or neddylation, and the COP9 signalosome complex (CSN that removes this important modification. Recently, multiple WD40-repeat proteins (WDR were found to interact with DDB1 and serve as the substrate-recognition subunits of the CUL4-DDB1 ubiquitin ligase. As more than 150–300 WDR proteins exist in the human genome, these findings impact a wide array of biological processes through CUL4 ligase-mediated proteolysis. Here, we review the recent progress in understanding the mechanism of CUL4 ubiquitin E3 ligase and discuss the architecture of CUL4-assembled E3 ubiquitin ligase complexes by comparison to CUL1-based E3s (SCF. Then, we will review several examples to highlight the critical roles of CUL4 ubiquitin ligase in genome stability, cell cycle regulation, and histone lysine methylation. Together, these studies provide insights into the mechanism of this novel ubiquitin ligase in the regulation of important biological processes.

  4. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

    Science.gov (United States)

    Lu, Xiaolong; Malley, Konstantin R.; Brenner, Caitlin C.; Koroleva, Olga; Korolev, Sergey; Downes, Brian P.

    2016-08-01

    Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2~Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.

  5. The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling.

    Science.gov (United States)

    Miao, Min; Niu, Xiangli; Kud, Joanna; Du, Xinran; Avila, Julian; Devarenne, Timothy P; Kuhl, Joseph C; Liu, Yongsheng; Xiao, Fangming

    2016-07-01

    We recently identified a defense-related tomato (Solanum lycopersicum) NAC (NAM, ATAF1,2, CUC2) transcription factor, NAC1, that is subjected to ubiquitin-proteasome system-dependent degradation in plant cells. In this study, we identified a tomato ubiquitin ligase (termed SEVEN IN ABSENTIA3; SINA3) that ubiquitinates NAC1, promoting its degradation. We conducted coimmunoprecipitation and bimolecular fluorescence complementation to determine that SINA3 specifically interacts with the NAC1 transcription factor in the nucleus. Moreover, we found that SINA3 ubiquitinates NAC1 in vitro and promotes NAC1 degradation via polyubiquitination in vivo, indicating that SINA3 is a ubiquitin ligase that ubiquitinates NAC1, promoting its degradation. Our real-time PCR analysis indicated that, in contrast to our previous finding that NAC1 mRNA abundance increases upon Pseudomonas infection, the SINA3 mRNA abundance decreases in response to Pseudomonas infection. Moreover, using Agrobacterium-mediated transient expression, we found that overexpression of SINA3 interferes with the hypersensitive response cell death triggered by multiple plant resistance proteins. These results suggest that SINA3 ubiquitinates a defense-related NAC transcription factor for degradation and plays a negative role in defense signaling.

  6. Dietary flavonoids bind to mono-ubiquitinated annexin A1 in nuclei, and inhibit chemical induced mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Fusao, E-mail: fhirata@wayne.edu; Harada, Takasuke; Corcoran, George B.; Hirata, Aiko

    2014-01-15

    Highlight: • Nuclear mono-ubiquitinated annexin A1 is involved in DNA damage induced mutagenesis. • Dietary flavonoids bind to and inhibit purified mono-ubiquitinated annexin A1 helicase. • Dietary flavonoids show anti-mutagenic action. • Annexin A1 may serve as a putative target of cancer chemoprevention by flavonoids. - Abstract: In order to investigate the mechanisms of anti-mutagenic action by dietary flavonoids, we investigated if they inhibit mutation of the thymidine kinase (tk) gene in L5178Ytk(±) lymphoma cells. Silibinin, quercetin and genistein suppressed mutation of the tk gene induced in L5178Ytk(±) lymphoma cells by methyl methanesulfonate (MMS) and As{sup 3+}. Flavone and flavonol were less effective. To establish that mutation of the tk gene in L5178Ytk(±) lymphoma cells by MMS and As{sup 3+} is mediated through mono-ubiquitinated annexin A1, L5178Ytk(±) lymphoma cells were treated with annexin A1 anti-sense oligonucleotide. The treatment reduced mRNA as well as protein levels of annexin A1, and suppressed mutation of the tk gene. Nuclear extracts from L5178Ytk(±) lymphoma cells catalyzed translesion DNA synthesis with an oligonucleotide template containing 8-oxo-guanosine in an annexin A1 dependent manner. This translesion DNA synthesis was inhibited by the anti-mutagenic flavonoids, silibinin, quercetin and genistein, in a concentration dependent manner, but only slightly by flavone and flavonol. Because these observations implicate involvement of annexin A1 in mutagenesis, we examined if flavonoids suppress nuclear annexin A1 helicase activity. Silibinin, quercetin and genistein inhibited ssDNA binding, DNA chain annealing and DNA unwinding activities of purified nuclear mono-ubiquitinated annexin A1. Flavone and flavonol were ineffective. The apparent direct binding of anti-mutagenic flavonoids to the annexin A1 molecule was supported by fluorescence quenching. Taken together, these findings illustrate that nuclear annexin A1 may be

  7. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling.

    Science.gov (United States)

    Strickson, Sam; Emmerich, Christoph H; Goh, Eddy T H; Zhang, Jiazhen; Kelsall, Ian R; Macartney, Thomas; Hastie, C James; Knebel, Axel; Peggie, Mark; Marchesi, Francesco; Arthur, J Simon C; Cohen, Philip

    2017-04-25

    It is widely accepted that the essential role of TRAF6 in vivo is to generate the Lys63-linked ubiquitin (K63-Ub) chains needed to activate the "master" protein kinase TAK1. Here, we report that TRAF6 E3 ligase activity contributes to but is not essential for the IL-1-dependent formation of K63-Ub chains, TAK1 activation, or IL-8 production in human cells, because Pellino1 and Pellino2 generate the K63-Ub chains required for signaling in cells expressing E3 ligase-inactive TRAF6 mutants. The IL-1-induced formation of K63-Ub chains and ubiquitylation of IRAK1, IRAK4, and MyD88 was abolished in TRAF6/Pellino1/Pellino2 triple-knockout (KO) cells, but not in TRAF6 KO or Pellino1/2 double-KO cells. The reexpression of E3 ligase-inactive TRAF6 mutants partially restored IL-1 signaling in TRAF6 KO cells, but not in TRAF6/Pellino1/Pellino2 triple-KO cells. Pellino1-generated K63-Ub chains activated the TAK1 complex in vitro with similar efficiently to TRAF6-generated K63-Ub chains. The early phase of TLR signaling and the TLR-dependent secretion of IL-10 (controlled by IRAKs 1 and 2) was only reduced modestly in primary macrophages from knockin mice expressing the E3 ligase-inactive TRAF6[L74H] mutant, but the late-phase production of IL-6, IL-12, and TNFα (controlled only by the pseudokinase IRAK2) was abolished. RANKL-induced signaling in macrophages and the differentiation of bone marrow to osteoclasts was similar in TRAF6[L74H] and wild-type cells, explaining why the bone structure and teeth of the TRAF6[L74H] mice was normal, unlike TRAF6 KO mice. We identify two essential roles of TRAF6 that are independent of its E3 ligase activity.

  8. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  9. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis.

    Science.gov (United States)

    Abrigo, Johanna; Rivera, Juan Carlos; Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando; Ezquer, Marcelo; Cabello-Verrugio, Claudio

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  10. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Science.gov (United States)

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  11. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

    Science.gov (United States)

    Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.

    2014-01-01

    We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65

  12. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites.

    Directory of Open Access Journals (Sweden)

    Tzong-Yi Lee

    Full Text Available Ubiquitin (Ub is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3 enzymes. Three major enzymes participate in ubiquitin conjugation. They are E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF network to identify protein ubiquitin conjugation (ubiquitylation sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (-20∼+20 revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information, which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence

  13. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites.

    Science.gov (United States)

    Lee, Tzong-Yi; Chen, Shu-An; Hung, Hsin-Yi; Ou, Yu-Yen

    2011-03-09

    Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (-20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub

  14. Unfolding Ubiquitin by force: water mediated H-bond destabilization

    Directory of Open Access Journals (Sweden)

    Germán Pabón

    2012-12-01

    Full Text Available Using the “pull and wait” (PNW simulation protocol at 300 K, we studied the unfolding by force of an ubiquitin molecule. PNW was implemented in the CHARMM program using an integration time step of 1 fs and a uniform dielectric constant of 1. The ubiquitin molecule, initially solvated, was put under mechanical stress, exerting forces from different directions. The rupture of five hydrogen bonds between parallel strands β1 and β5 takes place during the extension from 13 to 15 Å, defines a mechanical barrier for unfolding and dominates the point of maximum unfolding force. The simulations described here show that given adequate time, a small applied force can destabilize those five H-bonds relative to the bonds that can be created to water molecules; allowing the formation of stable H-bonds between a single water molecule and the donor and acceptor groups of the interstrand H-bonds. Thus, simulations run with PNW show that the force is not responsible for “ripping apart” the backbone H-bonds; it merely destabilizes them making them less stable than the H-bonds they can make with water. Additional simulations show that the force necessary to destabilize the H-bonds and allow them to be replaced by H-bonds to water molecules depends strongly on the pulling direction. By using a simulation protocol that allows equilibration at each extension we have been able to observe the details of the events leading to the unfolding of ubiquitin by mechanical force.

  15. Ubiquitin-proteasome system involvement in Huntington’s disease

    Directory of Open Access Journals (Sweden)

    Zaira eOrtega

    2014-09-01

    Full Text Available Huntington’s disease (HD is a genetic autosomal dominant neurodegenerative disease caused by the expansion of a CAG repeat in the huntingtin (htt gene. This triplet expansion encodes a polyglutamine stretch (polyQ in the N-terminus of the high molecular weight (348-kDa and ubiquitously expressed protein huntingtin (htt. Normal individuals have between 6 and 35 CAG triplets, while expansions longer than 40 repeats lead to HD. The onset and severity of the disease depend on the length of the polyQ tract: the longer the polyQ is, the earlier the disease begins and the more severe the symptoms are. One of the main histopathological hallmarks of HD is the presence of intraneuronal proteinaceous inclusion bodies (IBs, whose prominent and invariant feature is the presence of Ubiquitin (Ub; therefore, they can be detected with anti-ubiquitin and anti-proteasome antibodies. This, together with the observation that mutations in components of the Ubiquitin Proteasome system (UPS give rise to some neurodegenerative diseases, suggests that UPS impairment may be causative of HD. Even though the link between disrupted Ub homeostasis and protein aggregation to HD is undisputed, the functional significance of these correlations and their mechanistic implications remains unresolved. Moreover, there is no consistent evidence documenting an accompanying decrease in levels of free Ub or disruption of Ub pool dynamics in neurodegenerative disease or models thus suggesting that the Ub-conjugate accumulation may be benign and just underlie lesion in 26S function. In this chapter we will elaborate on the different studies that have been performed using different experimental approaches, in order to shed light to this matter.

  16. Redox control of the ubiquitin-proteasome system

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Poulsen, Esben G; Koch, Annett

    2011-01-01

    is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown...... that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated...

  17. The Arabidopsis paralogs, PUB46 and PUB48, encoding U-box E3 ubiquitin ligases, are essential for plant response to drought stress.

    Science.gov (United States)

    Adler, Guy; Konrad, Zvia; Zamir, Lyad; Mishra, Amit Kumar; Raveh, Dina; Bar-Zvi, Dudy

    2017-01-11

    Plants respond to abiotic stress on physiological, biochemical and molecular levels. This includes a global change in their cellular proteome achieved by changes in the pattern of their protein synthesis and degradation. The ubiquitin-proteasome system (UPS) is a key player in protein degradation in eukaryotes. Proteins are marked for degradation by the proteasome by coupling short chains of ubiquitin polypeptides in a three-step pathway. The last and regulatory stage is catalyzed by a member of a large family of substrate-specific ubiquitin ligases. We have identified AtPUB46 and AtPUB48-two paralogous genes that encode ubiquitin ligases (E3s)-to have a role in the plant environmental response. The AtPUB46, -47, and -48 appear as tandem gene copies on chromosome 5, and we present a phylogenetic analysis that traces their evolution from an ancestral PUB-ARM gene. Single homozygous T-DNA insertion mutants of AtPUB46 and AtPUB48 displayed hypersensitivity to water stress; this was not observed for similar mutants of AtPUB47. Although the three genes show a similar spatial expression pattern, the steady state levels of their transcripts are differentially affected by abiotic stresses and plant hormones. AtPUB46 and AtPUB48 encode plant U-Box E3s and are involved in the response to water stress. Our data suggest that despite encoding highly homologous proteins, AtPUB46 and AtPUB48 biological activity does not fully overlap.

  18. MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-κB signaling.

    Science.gov (United States)

    Elton, Lynn; Carpentier, Isabelle; Staal, Jens; Driege, Yasmine; Haegman, Mira; Beyaert, Rudi

    2016-02-01

    Human paracaspase 1 (PCASP1), better known as mucosa associated lymphoid tissue lymphoma translocation 1 (MALT1), plays a key role in immunity and inflammation by regulating gene expression in lymphocytes and other immune cell types. Deregulated MALT1 activity has been implicated in autoimmunity, immunodeficiency and certain types of lymphoma. As a scaffold MALT1 assembles downstream signaling proteins for nuclear factor-κB (NF-κB) activation, while its proteolytic activity further enhances NF-κB activation by cleaving NF-κB inhibitory proteins. MALT1 also processes and inactivates a number of mRNA destabilizing proteins, which further fine-tunes gene expression. MALT1 protease inhibitors are currently developed for therapeutic targeting. Here we show that T cell activation, as well as overexpression of the oncogenic fusion protein API2-MALT1, induces the MALT1-mediated cleavage of haem-oxidized IRP2 ubiquitin ligase 1 (HOIL-1). In addition, to acting as a K48-polyubiquitin specific E3 ubiquitin ligase for different substrates, HOIL-1 co-operates in a catalytic-independent manner with the E3 ubiquitin ligase HOIL-1L interacting protein (HOIP) as part of the linear ubiquitin chain assembly complex (LUBAC). Intriguingly, cleavage of HOIL-1 does not directly abolish its ability to support HOIP-induced NF-κB signaling, which is still mediated by the N-terminal cleavage fragment, but generates a C-terminal fragment with LUBAC inhibitory properties. We propose that MALT1-mediated HOIL-1 cleavage provides a gain-of-function mechanism that is involved in the negative feedback regulation of NF-κB signaling.

  19. The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Carrier, Lucie; Schlossarek, Saskia; Willis, Monte S; Eschenhagen, Thomas

    2010-01-15

    Cardiomyopathies represent an important cause of cardiovascular morbidity and mortality due to heart failure, arrhythmias, and sudden death. Most forms of hypertrophic cardiomyopathy (HCM) are familial with an autosomal-dominant mode of inheritance. Over the last 20 years, the genetic basis of the disease has been largely unravelled. HCM is considered as a sarcomeropathy involving mutations in sarcomeric proteins, most often beta-myosin heavy chain and cardiac myosin-binding protein C. 'Missense' mutations, more common in the former, are associated with dysfunctional proteins stably integrated into the sarcomere. 'Nonsense' and frameshift mutations, more common in the latter, are associated with low mRNA and protein levels derived from the diseased allele, leading to haploinsufficiency of the remaining healthy allele. The two quality control systems responsible for the removal of the affected mRNAs and proteins are the nonsense-mediated mRNA decay (NMD) and the ubiquitin-proteasome system (UPS), respectively. This review discusses clinical and genetic aspects of HCM and the role of NMD and UPS in the regulation of mutant proteins, evidence for impairment of UPS as a pathogenic factor, as well as potential therapies for HCM.

  20. Conserved expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in mammalian testes.

    Science.gov (United States)

    Devi, Lalitha; Pawar, Rahul Mohanchandra; Makala, Himesh; Goel, Sandeep

    2015-05-01

    Spermatogonia, the adult germ cells that initiate spermatogenesis in mammalian testis, are capable of dividing both mitotically and meiotically. Isolation and preservation of spermatogonia helps in preserving genetic pool of endangered animals. In this context, identification of marker(s) that can distinguish spermatogonia from other cells in testis gains significance. Here, we examined the expression of ubiquitin carboxyl-terminal esterase L1 (UCHL1) gene and protein in the testes of several mammals, including highly endangered species. Semi-quantitative-reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed presence of UCHL1 amplicon of 442 bp in all the 18 mammals studied. Nucleotide sequence analysis of these amplicons and their predicted protein sequences revealed 88-99% and 95-100% homology with available human UCHL1 and UCHL1 sequences of other available species in the GenBank, respectively. Western blot analysis showed that UCHL1 protein size was unique in all wild mammals. Immunohistology results confirmed UCHL1 expression in the spermatogonia/gonocytes in testes of several mammals belonging to eight distinct families including highly endangered Felidae, Canidae and Cercopithecoidae. These findings suggest that UCHL1 expression is conserved in the mammalian testis, and could be used as a specific marker for gonocytes/spermatogonia for developing male germ-cell based conservation techniques.

  1. A conserved catalytic residue in the ubiquitin-conjugating enzyme family

    Science.gov (United States)

    Wu, Pei-Ying; Hanlon, Mary; Eddins, Michael; Tsui, Colleen; Rogers, Richard S.; Jensen, Jane P.; Matunis, Michael J.; Weissman, Allan M.; Wolberger, Cynthia P.; Pickart, Cecile M.

    2003-01-01

    Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In constrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor. PMID:14517261

  2. Ubiquitinated Sirtuin 1 (SIRT1) Function Is Modulated during DNA Damage-induced Cell Death and Survival*

    Science.gov (United States)

    Peng, Lirong; Yuan, Zhigang; Li, Yixuan; Ling, Hongbo; Izumi, Victoria; Fang, Bin; Fukasawa, Kenji; Koomen, John; Chen, Jiandong; Seto, Edward

    2015-01-01

    Downstream signaling of physiological and pathological cell responses depends on post-translational modification such as ubiquitination. The mechanisms regulating downstream DNA damage response (DDR) signaling are not completely elucidated. Sirtuin 1 (SIRT1), the founding member of Class III histone deacetylases, regulates multiple steps in DDR and is closely associated with many physiological and pathological processes. However, the role of post-translational modification or ubiquitination of SIRT1 during DDR is unclear. We show that SIRT1 is dynamically and distinctly ubiquitinated in response to DNA damage. SIRT1 was ubiquitinated by the MDM2 E3 ligase in vitro and in vivo. SIRT1 ubiquitination under normal conditions had no effect on its enzymatic activity or rate of degradation; hypo-ubiquitination, however, reduced SIRT1 nuclear localization. Ubiquitination of SIRT1 affected its function in cell death and survival in response to DNA damage. Our results suggest that ubiquitination is required for SIRT1 function during DDR. PMID:25670865

  3. Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface

    Energy Technology Data Exchange (ETDEWEB)

    Gorelik, Maryna; Orlicky, Stephen; Sartori, Maria A.; Tang, Xiaojing; Marcon, Edyta; Kurinov, Igor; Greenblatt, Jack F.; Tyers, Mike; Moffat, Jason; Sicheri, Frank; Sidhu, Sachdev S.

    2016-03-14

    The ubiquitin proteasome components are often misregulated in numerous diseases, encouraging the search for drug targets and inhibitors. E3 ligases that specify ubiquitination targets are of particular interest. Multimeric Skp1–Cul1–F-box (SCF) E3 ligases constitute one of the largest E3 families connected to every cellular process and multiple diseases; however, their characterization as therapeutic targets is impeded by functional diversity and poor characterization of its members. Herein we describe a strategy to inhibit SCF E3 ligases using engineered ubiquitin-based binders. We identify a previously uncharacterized inhibitory site and design ubiquitin-based libraries targeting this site. Our strategy to target SCF E3 ligases with small-molecule–like agents will have broad applications for basic research and drug development relating to SCF E3 ligase function.

  4. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination.

    Science.gov (United States)

    Xu, Wenteng; Li, Hailong; Dong, Zhongdian; Cui, Zhongkai; Zhang, Ning; Meng, Liang; Zhu, Ying; Liu, Yang; Li, Yangzhen; Guo, Hua; Ma, Jialu; Wei, Zhanfei; Zhang, Nianwei; Yang, Yingming; Chen, Songlin

    2016-10-30

    E3 ubiquitin ligases are a large gene family that plays a diversity of roles in spermatogenesis. In this study, the functional characterization of a neuralized E3 ubiquitin protein ligase 3 (neurl3) revealed its potential participation in spermatogenesis. Firstly, we found that neurl3 exhibited male-biased transcription and that its translation was predominant in testis germ cells. The knockdown of neurl3 by RNA interference caused increased transcription of spermatogenesis-related genes. These results corroborate previous studies indicating a role for neurl3 in spermatogenesis. Moreover, the levels of neurl3 transcription and testis protein ubiquitination were closely correlated. Based on these findings, we speculate that neurl3 modulates testis protein ubiquitination in a dosage-dependent manner and that this influences spermatogenesis.

  5. ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases.

    Science.gov (United States)

    Guzmán, Plinio

    2014-02-01

    Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution.

  6. Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo

    NARCIS (Netherlands)

    Vlaming, Hanneke; van Welsem, Tibor; de Graaf, Erik L; Ontoso, David; Altelaar, A F Maarten; San-Segundo, Pedro A; Heck, Albert J R; van Leeuwen, Fred

    2014-01-01

    Histone H2B ubiquitination is a dynamic modification that promotes methylation of histone H3K79 and H3K4. This crosstalk is important for the DNA damage response and has been implicated in cancer. Here, we show that in engineered yeast strains, ubiquitins tethered to every nucleosome promote H3K79 a

  7. Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo (Corrigendum)

    NARCIS (Netherlands)

    Vlaming, Hanneke; van Welsem, Tibor; de Graaf, Erik L; Ontoso, David; Altelaar, A F Maarten; San-Segundo, Pedro A; Heck, Albert J R; van Leeuwen, Fred

    2014-01-01

    Histone H2B ubiquitination is a dynamic modification that promotes methylation of histone H3K79 and H3K4. This crosstalk is important for the DNA damage response and has been implicated in cancer. Here, we show that in engineered yeast strains, ubiquitins tethered to every nucleosome promote H3K79 a

  8. Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner

    DEFF Research Database (Denmark)

    Kny, Melanie; Standera, Sybille; Hartmann-Petersen, Rasmus

    2011-01-01

    in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We...

  9. The BAH domain of BAF180 is required for PCNA ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Atsuko [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Hopkins, Suzanna R; Downs, Jessica A [Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Masutani, Chikahide, E-mail: masutani@riem.nagoya-u.ac.jp [Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-15

    Highlights: • The expression of BAF180 promotes UV-induced PCNA ubiquitination during S phase. • The BAH domains of BAF180 alone are sufficient to promote PCNA ubiquitination. • The BAH domains are not assembled into the PBAF in the absence of the C-terminus. - Abstract: Monoubiquitination of proliferating cell nuclear antigen (PCNA) is a critical regulator of post replication repair (PRR). The depletion of BAF180, a unique subunit of the PBAF chromatin remodeling complex in human cells results in reduced PCNA ubiquitination leading to less efficient fork progression following DNA damage, but little is known about the mechanism. Here, we report that the expression of exogenous BAF180 in cells promotes PCNA ubiquitination during S-phase after UV irradiation and it persists for many hours. No correlation was observed between the protein level of ubiquitin-specific protease 1 (USP1) and ubiquitinated PCNA in BAF180 expressing cells. Analysis of cells expressing BAF180 deletion mutants showed that the bromo-adjacent homology (BAH) domains are responsible for this effect. Surprisingly, a deletion construct encoding only the BAH domain region is able to increase the level of ubiquitinated PCNA, even though it is unable to be assembled into the PBAF complex. These results suggest that the ATPase-dependent chromatin remodeling activity of PBAF is not necessary, but instead the BAH domains are sufficient to promote PCNA ubiquitination.

  10. Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma.

    Science.gov (United States)

    Song, Y; Ray, A; Li, S; Das, D S; Tai, Y T; Carrasco, R D; Chauhan, D; Anderson, K C

    2016-09-01

    Proteasome inhibitor bortezomib is an effective therapy for relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance can limit its long-term utility. Recent research has focused on targeting ubiquitin receptors upstream of 20S proteasome, with the aim of generating less toxic therapies. Here we show that 19S proteasome-associated ubiquitin receptor Rpn13 is more highly expressed in MM cells than in normal plasma cells. Rpn13-siRNA (small interfering RNA) decreases MM cell viability. A novel agent RA190 targets Rpn13 and inhibits proteasome function, without blocking the proteasome activity or the 19S deubiquitylating activity. CRISPR/Cas9 Rpn13-knockout demonstrates that RA190-induced activity is dependent on Rpn13. RA190 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma and overcomes bortezomib resistance. Anti-MM activity of RA190 is associated with induction of caspase-dependent apoptosis and unfolded protein response-related apoptosis. MM xenograft model studies show that RA190 is well tolerated, inhibits tumor growth and prolongs survival. Combining RA190 with bortezomib, lenalidomide or pomalidomide induces synergistic anti-MM activity. Our preclinical data validates targeting Rpn13 to overcome bortezomib resistance, and provides the framework for clinical evaluation of Rpn13 inhibitors, alone or in combination, to improve patient outcome in MM.

  11. Nuclear targeting of an endosomal E3 ubiquitin ligase.

    Science.gov (United States)

    Bocock, Jeffrey P; Carmicle, Stephanie; Madamba, Egbert; Erickson, Ann H

    2010-06-01

    Ring finger protein 13 (RNF13) is an E3 ubiquitin ligase embedded in endosome membranes. The protein undergoes constitutive post-translational proteolysis, making its detection difficult unless cells are incubated with a proteasome inhibitor to allow biosynthetic forms to accumulate. When cells were treated with phorbol 12-myristate 13-acetate (PMA), RNF13 avoided proteolysis. A similar stabilization was seen on ionomycin treatment of cells. Drug treatment stabilized both the full-length protein and a membrane-embedded C-terminal fragment generated following ectodomain shedding. Immunofluorescence staining revealed that PMA treatment caused the protein to accumulate in recycling endosomes, where it colocalized with transferrin receptor, and on the inner nuclear membrane, where it colocalized with lamin B. Expression of dominant-negative Rab11 inhibited nuclear localization, suggesting RNF13 was targeted to the inner nuclear membrane through recycling endosomes. New protein synthesis was necessary for this targeting. Nuclear localization was confirmed by immunoelectron microscopy and by purification of the inner nuclear membrane. Stress-induced transport of an endosomal protein to the inner nuclear membrane is a novel mechanism for introduction of regulatory proteins to the DNA environment. RNF13, with its ubiquitin ligase-active RING domain, has the potential to turn over key nuclear proteins in response to signals received at the plasma membrane.

  12. Ubiquitination-dependent control of sexual differentiation in fission yeast.

    Science.gov (United States)

    Simonetti, Fabrizio; Candelli, Tito; Leon, Sebastien; Libri, Domenico; Rougemaille, Mathieu

    2017-08-25

    In fission yeast, meiosis-specific transcripts are selectively eliminated during vegetative growth by the combined action of the YTH-family RNA-binding protein Mmi1 and the nuclear exosome. Upon nutritional starvation, the master regulator of meiosis Mei2 inactivates Mmi1, thereby allowing expression of the meiotic program. Here, we show that the E3 ubiquitin ligase subunit Not4/Mot2 of the evolutionarily conserved Ccr4-Not complex, which associates with Mmi1, promotes suppression of meiotic transcripts expression in mitotic cells. Our analyses suggest that Mot2 directs ubiquitination of Mei2 to preserve the activity of Mmi1 during vegetative growth. Importantly, Mot2 is not involved in the constitutive pathway of Mei2 turnover, but rather plays a regulatory role to limit its accumulation or inhibit its function. We propose that Mmi1 recruits the Ccr4-Not complex to counteract its own inhibitor Mei2, thereby locking the system in a stable state that ensures the repression of the meiotic program by Mmi1.

  13. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation

    Science.gov (United States)

    Fiesel, Fabienne C; Ando, Maya; Hudec, Roman; Hill, Anneliese R; Castanedes-Casey, Monica; Caulfield, Thomas R; Moussaud-Lamodière, Elisabeth L; Stankowski, Jeannette N; Bauer, Peter O; Lorenzo-Betancor, Oswaldo; Ferrer, Isidre; Arbelo, José M; Siuda, Joanna; Chen, Li; Dawson, Valina L; Dawson, Ted M; Wszolek, Zbigniew K; Ross, Owen A; Dickson, Dennis W; Springer, Wolfdieter

    2015-01-01

    Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson’s disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development. PMID:26162776

  14. REGULATION OF Fc RECEPTOR ENDOCYTIC TRAFFICKING BY UBIQUITINATION

    Directory of Open Access Journals (Sweden)

    Rosa eMolfetta

    2014-09-01

    Full Text Available Most immune cells, particularly phagocytes, express various receptors for the Fc-portion of the different immunoglobulin isotypes (Fc receptors, FcRs. By binding to the antibody, they provide a link between the adaptive immune system and the powerful effector functions triggered by innate immune cells such as mast cells, neutrophils, macrophages, and NK cells. Upon ligation of the immune complexes, the downstream signalling pathways initiated by the different receptors are quite similar for different FcR classes leading to the secretion of preformed and de novo synthesized pro-inflammatory mediators. FcR engagement also promotes negative signals through the combined action of several molecules that limit the extent and duration of positive signalling. To this regard, ligand-induced ubiquitination of Fc receptors for IgE (FcεR and IgG (FcγR has become recognized as a key modification that generates signals for the internalization and/or delivery of engaged receptor complexes to lysosomes or cytoplasmic proteasomes for degradation, providing negative-feedback regulation of Fc receptor activity.In this review, we discuss recent advances in our understanding of the molecular mechanisms that ensure the clearance of engaged Fcε and Fcγ receptor complexes from the cell surface with an emphasis given to the cooperation between the ubiquitin pathway and endosomal adaptors including the endosomal sorting complex required for transport (ESCRT in controlling receptor internalization and sorting along the endocytic compartments.

  15. Cycle Inhibiting Factors (Cifs): Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Science.gov (United States)

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2011-01-01

    Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions. PMID:22069713

  16. Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Boomsma, Wouter Krogh; Nielsen, Sofie Vincents; Lindorff-Larsen, Kresten

    2016-01-01

    The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2...... ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions...... of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we...

  17. Cycle inhibiting factors (cifs): cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells.

    Science.gov (United States)

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2011-04-01

    Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are "cyclomodulins" that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  18. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  19. Graphs: Associated Markov Chains

    OpenAIRE

    2012-01-01

    In this research paper, weighted / unweighted, directed / undirected graphs are associated with interesting Discrete Time Markov Chains (DTMCs) as well as Continuous Time Markov Chains (CTMCs). The equilibrium / transient behaviour of such Markov chains is studied. Also entropy dynamics (Shannon entropy) of certain structured Markov chains is investigated. Finally certain structured graphs and the associated Markov chains are studied.

  20. DMPD: Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16982211 Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Wullaer...vg) (.html) (.csml) Show Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. PubmedID 1698221...1 Title Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Author

  1. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    DEFF Research Database (Denmark)

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were...

  2. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    Science.gov (United States)

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  3. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.

    Science.gov (United States)

    Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

    2013-01-01

    Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.

  4. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock.

    Science.gov (United States)

    Li, Guang-Qi; Zang, Xiao-Nan; Zhang, Xue-Cheng; Lu, Ning; Ding, Yan; Gong, Le; Chen, Wen-Chao

    2014-03-15

    To study the response of Gracilaria lemaneiformis to heat stress, two key enzymes - ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzyme (E2) - of the Ubiquitin/26S proteasome pathway (UPP) were studied in three strains of G. lemaneiformis-wild type, heat-tolerant cultivar 981 and heat-tolerant cultivar 07-2. The full length DNA sequence of E1 contained only one exon. The open reading frame (ORF) sequence was 981 nucleotides encoding 326 amino acids, which contained conserved ATP binding sites (LYDRQIRLWGLE, ELAKNVLLAGV, LKEMN, VVCAI) and the ubiquitin-activating domains (VVCAI…LMTEAC, VFLDLGDEYSYQ, AIVGGMWGRE). The gene sequence of E2 contained four exons and three introns. The sum of the four exons gave an open reading frame sequence of 444 nucleotides encoding 147 amino acids, which contained a conserved ubiquitin-activating domain (GSICLDIL), ubiquitin-conjugating domains (RIYHPNIN, KVLLSICSLL, DDPLV) and ubiquitin-ligase (E3) recognition sites (KRI, YPF, WSP). Real-time-PCR analysis of transcription levels of E1 and E2 under heat shock conditions (28°C and 32°C) showed that in wild type, transcriptions of E1 and E2 were up-regulated at 28°C, while at 32°C, transcriptions of the two enzymes were below the normal level. In cultivar 981 and cultivar 07-2 of G. lemaneiformis, the transcription levels of the two enzymes were up-regulated at 32°C, and transcription level of cultivar 07-2 was even higher than that of cultivar 981. These results suggest that the UPP plays an important role in high temperature resistance of G. lemaneiformis and the bioactivity of UPP is directly related to the heat-resistant ability of G. lemaneiformis.

  5. Neurotoxin-induced selective ubiquitination and regulation of MEF2A isoform in neuronal stress response.

    Science.gov (United States)

    She, Hua; Yang, Qian; Mao, Zixu

    2012-09-01

    The myocyte enhancer factor 2A-D (MEF2) proteins are members of the MCM1-agamous-deficiens-serum response factor family of transcription factors. Various MEF2 isoform proteins are enriched in neurons and exhibit distinct patterns of expression in different regions of the brain. In neurons, MEF2 functions as a converging factor to regulate many neuronal functions including survival. MEF2 activities are tightly controlled in neurons in response to stress. Whether stress signal may differentially regulate MEF2s remains largely unknown. In this work, we showed that MEF2A, but not MEF2C or MEF2D, was modified by ubiquitination in dopaminergic neuronal cell line SN4741 cells. MEF2A was ubiquitinated at its N'-terminus, and the ubiquitination of MEF2A was first detectable in the nuclear compartment and later in the cytoplasm. Ubiquitination of MEF2A correlated with reduced DNA-binding activity and transcriptional activity. More importantly, disturbing the degradation of ubiquitinated MEF2A through proteasome pathway by neurotoxins known to induce Parkinson's disease features in model animals caused accumulation of ubiquitinated MEF2A, reduced MEF2 activity, and impaired cellular viability. Our work thus provides the first evidence to demonstrate an isoforms-specific regulation of MEF2s by ubiquitination-proteasome pathway in dopaminergic neuronal cell by neurotoxins, suggesting that stress signal and cellular context-dependent dysregulation of MEF2s may underlie the loss of neuronal viability.

  6. Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons.

    Science.gov (United States)

    Bianchetta, Michael J; Lam, TuKiet T; Jones, Stephen N; Morabito, Maria A

    2011-08-17

    Cyclin-dependent kinase 5 (Cdk5) and its activator p35 have been implicated in drug addiction, neurodegenerative diseases such as Alzheimer's, learning and memory, and synapse maturation and plasticity. However, the molecular mechanisms by which Cdk5 regulates synaptic plasticity are still unclear. PSD-95 is a major postsynaptic scaffolding protein of glutamatergic synapses that regulates synaptic strength and plasticity. PSD-95 is ubiquitinated by the ubiquitin E3 ligase Mdm2, and rapid and transient PSD-95 ubiquitination has been implicated in NMDA receptor-induced AMPA receptor endocytosis. Here we demonstrate that genetic or pharmacological reduction of Cdk5 activity increases the interaction of Mdm2 with PSD-95 and enhances PSD-95 ubiquitination without affecting PSD-95 protein levels in vivo in mice, suggesting a nonproteolytic function of ubiquitinated PSD-95 at synapses. We show that PSD-95 ubiquitination correlates with increased interaction with β-adaptin, a subunit of the clathrin adaptor protein complex AP-2. This interaction is increased by genetic reduction of Cdk5 activity or NMDA receptor stimulation and is dependent on Mdm2. Together these results support a function for Cdk5 in regulating PSD-95 ubiquitination and its interaction with AP-2 and suggest a mechanism by which PSD-95 may regulate NMDA receptor-induced AMPA receptor endocytosis.

  7. The Role of Ubiquitin and the 26S Proteasome in Plant Abiotic Stress Signaling

    Directory of Open Access Journals (Sweden)

    Stone L Sophia

    2014-04-01

    Full Text Available Ubiquitin is a small, highly conserved, ubiquitously expressed eukaryotic protein with immensely important and diverse regulatory functions. A well-studied function of ubiquitin is its role in selective proteolysis by the ubiquitin-proteasome system (UPS. The UPS has emerged as an integral player in plant response and adaptation to environmental stresses such as drought, salinity, cold and nutrient deprivation. The UPS has also been shown to influence the production and signal transduction of stress-related hormones such as abscisic acid. Understanding UPS function has centered mainly on defining the role of E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination pathway. The recent identification of stress signaling/regulatory proteins that are the subject of ubiquitin-dependent degradation has increased our knowledge of how the UPS facilitate responses to adverse environmental conditions. A brief overview is provided on role of the UPS in modulating protein stability during abiotic stress signaling. E3 ubiquitin ligases for which stress-related substrate proteins have been identified are discussed.

  8. Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Misaghi, S.; Galardy, P.J.; Meester, W.J.; Ovaa, H.; Ploegh, H.L.; Gaudet, R. (Harvard)

    2009-03-24

    Ubiquitin C-terminal hydrolases (UCHs) comprise a family of small ubiquitin-specific proteases of uncertain function. Although no cellular substrates have been identified for UCHs, their highly tissue-specific expression patterns and the association of UCH-L1 mutations with human disease strongly suggest a critical role. The structure of the yeast UCH Yuh1-ubiquitin aldehyde complex identified an active site crossover loop predicted to limit the size of suitable substrates. We report the 1.45 {angstrom} resolution crystal structure of human UCH-L3 in complex with the inhibitor ubiquitin vinylmethylester, an inhibitor that forms a covalent adduct with the active site cysteine of ubiquitin-specific proteases. This structure confirms the predicted mechanism of the inhibitor and allows the direct comparison of a UCH family enzyme in the free and ligand-bound state. We also show the efficient hydrolysis by human UCH-L3 of a 13-residue peptide in isopeptide linkage with ubiquitin, consistent with considerable flexibility in UCH substrate size. We propose a model for the catalytic cycle of UCH family members which accounts for the hydrolysis of larger ubiquitin conjugates.

  9. Ubiquitin-mediated signalling and Paget's disease of bone

    Directory of Open Access Journals (Sweden)

    Shaw Barry

    2007-11-01

    Full Text Available Abstract Multiple steps in the RANK-NF-κB signalling pathway are regulated by ubiquitylation. Mutations affecting different components of this pathway, including the ubiquitin binding p62 signalling adapter protein, are found in patients with Paget's disease of bone or related syndromes. Here, we review the molecular defects and potential disease mechanisms in these conditions and conclude that the mutations may confer a common increased sensitivity of osteoclasts to cytokines, resulting in disordered NF-κB-dependent osteoclast function. Modulation of the osteoclast RANK-NF-κB signalling axis may represent a viable therapeutic strategy for Paget's disease and other conditions where excessive bone resorption or remodelling is a feature. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  10. Ubiquitination and SUMOylation in Telomere Maintenance and Dysfunction

    Directory of Open Access Journals (Sweden)

    Zeliha Yalçin

    2017-05-01

    Full Text Available Telomeres are essential nucleoprotein structures at linear chromosomes that maintain genome integrity by protecting chromosome ends from being recognized and processed as damaged DNA. In addition, they limit the cell’s proliferative capacity, as progressive loss of telomeric DNA during successive rounds of cell division eventually causes a state of telomere dysfunction that prevents further cell division. When telomeres become critically short, the cell elicits a DNA damage response resulting in senescence, apoptosis or genomic instability, thereby impacting on aging and tumorigenesis. Over the past years substantial progress has been made in understanding the role of post-translational modifications in telomere-related processes, including telomere maintenance, replication and dysfunction. This review will focus on recent findings that establish an essential role for ubiquitination and SUMOylation at telomeres.

  11. SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking.

    Science.gov (United States)

    Dragone, Leonard L; Shaw, Laura A; Myers, Margaret D; Weiss, Arthur

    2009-11-01

    Src-like adapter proteins (SLAP and SLAP-2) constitute a family of proteins that are expressed in a variety of cell types but are studied most extensively in lymphocytes. They have been shown to associate with proximal components of the T-cell receptor (TCR) and B-cell receptor (BCR) signaling complexes. An interaction of SLAP with c-Cbl leads to the ubiquitination and degradation of phosphorylated components of the TCR- and BCR-signaling complexes. The absence of this process in immature SLAP-deficient T and B cells leads to increased immunoreceptor levels due to decreased intracellular retention and degradation. We propose a model in which SLAP-dependent regulation of immunoreceptor levels allows for finer control of immunoreceptor signaling. Thus, SLAP functions to dampen immunoreceptor signaling, thereby influencing lymphocyte development and repertoire selection.

  12. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  13. RUBI: rapid proteomic-scale prediction of lysine ubiquitination and factors influencing predictor performance.

    Science.gov (United States)

    Walsh, Ian; Di Domenico, Tomás; Tosatto, Silvio C E

    2014-04-01

    Post-translational modification of protein lysines was recently shown to be a common feature of eukaryotic organisms. The ubiquitin modification is regarded as a versatile regulatory mechanism with many important cellular roles. Large-scale datasets are becoming available for H. sapiens ubiquitination. However, using current experimental techniques the vast majority of their sites remain unidentified and in silico tools may offer an alternative. Here, we introduce Rapid UBIquitination (RUBI) a sequence-based ubiquitination predictor designed for rapid application on a genome scale. RUBI was constructed using an iterative approach. At each iteration, important factors which influenced performance and its usability were investigated. The final RUBI model has an AUC of 0.868 on a large cross-validation set and is shown to outperform other available methods on independent sets. Predicted intrinsic disorder is shown to be weakly anti-correlated to ubiquitination for the H. sapiens dataset and improves performance slightly. RUBI predicts the number of ubiquitination sites correctly within three sites for ca. 80% of the tested proteins. The average potentially ubiquitinated proteome fraction is predicted to be at least 25% across a variety of model organisms, including several thousand possible H. sapiens proteins awaiting experimental characterization. RUBI can accurately predict ubiquitination on unseen examples and has a signal across different eukaryotic organisms. The factors which influenced the construction of RUBI could also be tested in other post-translational modification predictors. One of the more interesting factors is the influence of intrinsic protein disorder on ubiquitinated lysines where residues with low disorder probability are preferred.

  14. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function.

    Science.gov (United States)

    Lee, Shirley Y; Pullen, Lester; Virgil, Daniel J; Castañeda, Carlos A; Abeykoon, Dulith; Bolon, Daniel N A; Fushman, David

    2014-04-03

    Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. TRIM65 negatively regulates p53 through ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Ma, Chengyuan [Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021 (China); Zhou, Tong [Department of Endocrinology, The First Hospital of Jilin University, Changchun 130021 (China); Liu, Ying [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China); Sun, Luyao [Department of Infectious Diseases, The First Hospital of Jilin University, Changchun 130021 (China); Yu, Zhenxiang, E-mail: zhenxiangyu2015@gmail.com [Department of Respiration, The First Hospital of Jilin University, Changchun 130021 (China)

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediated degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.

  16. The pineal gland: A model for adrenergic modulation of ubiquitin ligases

    Science.gov (United States)

    Liu, Wenjun; Reiter, Russel J.

    2017-01-01

    Introduction A recent study of the pineal gland of the rat found that the expression of more than 3000 genes showed significant day/night variations (The Hartley dataset). The investigators of this report made available a supplemental table in which they tabulated the expression of many genes that they did not discuss, including those coding for components of the ubiquitin proteasome system. Herein we identify the genes of the ubiquitin proteasome system whose expression were significantly influenced by environmental lighting in the Hartley dataset, those that were stimulated by DBcAMP in pineal glands in culture, and those that were stimulated by norepinephrine. Purpose Using the Ubiquitin and Ubiquitin-like Conjugation Database (UUCA) we identified ubiquitin ligases and conjugases, and deubiquitinases in the Hartley dataset for the purpose of determining whether expression of genes of the ubiquitin proteasome pathway were significantly influenced by day/night variations and if these variations were regulated by autonomic innervation of the pineal gland from the superior cervical ganglia. Methods In the Hartley experiments pineal glands groups of rats sacrificed during the day and groups sacrificed during the night were examined for gene expression. Additional groups of rats had their superior cervical ganglia removed surgically or surgically decentralized and the pineal glands likewise examined for gene expression. Results The genes with at least a 2-fold day/night significant difference in expression included genes for 5 ubiquitin conjugating enzymes, genes for 58 ubiquitin E3 ligases and genes for 6 deubiquitinases. A 35-fold day/night difference was noted in the expression of the gene Sik1, which codes for a protein containing both an ubiquitin binding domain (UBD) and an ubiquitin-associated (UBA) domain. Most of the significant differences in these genes were prevented by surgical removal, or disconnection, of the superior cervical ganglia, and most were

  17. Structural Basis for Ubiquitin Recognition by the Human ESCRT-II EAP45 GLUE Domain

    Energy Technology Data Exchange (ETDEWEB)

    Alam,S.; Langelier, C.; Whitby, F.; Koirala, S.; Robinson, H.; Hill, C.; Sundquist, W.

    2006-01-01

    ESCRT-IESCRT-IIGLUEEAP45VPS36The ESCRT-I and ESCRT-II complexes help sort ubiquitinated proteins into vesicles that accumulate within multivesicular bodies (MVBs). Crystallographic and biochemical analyses reveal that the GLUE domain of the human ESCRT-II EAP45 (also called VPS36) subunit is a split pleckstrin-homology domain that binds ubiquitin along one edge of the {beta}-sandwich. The structure suggests how human ESCRT-II can couple recognition of ubiquitinated cargoes and endosomal phospholipids during MVB protein sorting.

  18. Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Free-Electron Laser Pulses.

    Science.gov (United States)

    Schlathölter, Thomas; Reitsma, Geert; Egorov, Dmitrii; Gonzalez-Magaña, Olmo; Bari, Sadia; Boschman, Leon; Bodewits, Erwin; Schnorr, Kirsten; Schmid, Georg; Schröter, Claus Dieter; Moshammer, Robert; Hoekstra, Ronnie

    2016-08-26

    The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates. Consistent with this interpretation, the effect is almost unaffected by the charge state, as fragmentation of sixfold deprotonated ubiquitin leads to a very similar fragmentation pattern. Ubiquitin responds to EUV multiphoton ionization as an ensemble of small peptides.

  19. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kyung Jin eCho

    2013-11-01

    Full Text Available MHC class II (MHC-II molecules are present on antigen presenting cells (APCs and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs. In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.

  20. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to n

  1. Health supply chain management.

    Science.gov (United States)

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors.

  2. RNF168 cooperates with RNF8 to mediate FOXM1 ubiquitination and degradation in breast cancer epirubicin treatment.

    Science.gov (United States)

    Kongsema, M; Zona, S; Karunarathna, U; Cabrera, E; Man, E P S; Yao, S; Shibakawa, A; Khoo, U-S; Medema, R H; Freire, R; Lam, E W-F

    2016-08-15

    The forkhead box M1 (FOXM1) transcription factor has a central role in genotoxic agent response in breast cancer. FOXM1 is regulated at the post-translational level upon DNA damage, but the key mechanism involved remained enigmatic. RNF168 is a ubiquitination E3-ligase involved in DNA damage response. Western blot and gene promoter-reporter analyses showed that the expression level and transcriptional activity of FOXM1 reduced upon RNF168 overexpression and increased with RNF168 depletion by siRNA, suggesting that RNF168 negatively regulates FOXM1 expression. Co-immunoprecipitation studies in MCF-7 cells revealed that RNF168 interacted with FOXM1 and that upon epirubicin treatment FOXM1 downregulation was associated with an increase in RNF168 binding and conjugation to the protein degradation-associated K48-linked polyubiquitin chains. Consistently, RNF168 overexpression resulted in an increase in turnover of FOXM1 in MCF-7 cells treated with the protein synthesis inhibitor cycloheximide. Conversely, RNF168, knockdown significantly enhanced the half-life of FOXM1 in both absence and presence of epirubicin. Using a SUMOylation-defective FOXM1-5x(K>R) mutant, we demonstrated that SUMOylation is required for the recruitment of RNF168 to mediate FOXM1 degradation. In addition, clonogenic assays also showed that RNF168 mediates epirubicin action through targeting FOXM1, as RNF168 could synergise with epirubicin to repress clonal formation in wild-type but not in FOXM1-deficient mouse embryo fibroblasts (MEFs). The physiological relevance of RNF168-mediated FOXM1 repression is further emphasized by the significant inverse correlation between FOXM1 and RNF168 expression in breast cancer patient samples. Moreover, we also obtained evidence that RNF8 recruits RNF168 to FOXM1 upon epirubicin treatment and cooperates with RNF168 to catalyse FOXM1 ubiquitination and degradation. Collectively, these data suggest that RNF168 cooperates with RNF8 to mediate the ubiquitination and

  3. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers

    Science.gov (United States)

    Bett, John S.; Ritorto, Maria Stella; Ewan, Richard; Jaffray, Ellis G.; Virdee, Satpal; Chin, Jason W.; Knebel, Axel; Kurz, Thimo; Trost, Matthias; Tatham, Michael H.; Hay, Ronald T.

    2014-01-01

    Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo. PMID:25489924

  4. Regulation of TGF-β Superfamily Signaling by SMAD Mono-Ubiquitination

    Directory of Open Access Journals (Sweden)

    Feng Xie

    2014-10-01

    Full Text Available TGF-β(transforming growth factor-β superfamily signaling mediators are important regulators of diverse physiological and pathological events. TGF-β signals are transduced by transmembrane type I and type II serine/threonine kinase receptors and their downstream effectors, the SMAD(drosophila mothers against decapentaplegic protein proteins. Numerous studies have already demonstrated crucial regulatory roles for modification of TGF-β pathway components by poly-ubiquitination. Recently, several studies also uncovered mono-ubiquitination of SMADs as a mechanism for SMAD activation or inactivation. Mono-ubiquitination and subsequent deubiquitination of SMAD proteins accordingly play important roles in the control of TGF-β superfamily signaling. This review highlights the major pathways regulated by SMAD mono-ubiquitination.

  5. A Bacterial Inhibitor of Host Programmed Cell Death Defenses is an E3 Ubiquitin Ligase

    Energy Technology Data Exchange (ETDEWEB)

    Janjusevic,R.; Abramovitch, R.; Martin, G.; Stebbins, C.

    2005-01-01

    The Pseudomonas syringae protein AvrPtoB is translocated into plant cells, where it inhibits immunity-associated programmed cell death (PCD). The structure of a C-terminal domain of AvrPtoB that is essential for anti-PCD activity reveals an unexpected homology to the U-box and RING-finger components of eukaryotic E3 ubiquitin ligases, and we show that AvrPtoB has ubiquitin ligase activity. Mutation of conserved residues involved in the binding of E2 ubiquitin-conjugating enzymes abolishes this activity in vitro, as well as anti-PCD activity in tomato leaves, which dramatically decreases virulence. These results show that Pseudomonas syringae uses a mimic of host E3 ubiquitin ligases to inactivate plant defenses.

  6. CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation.

    Science.gov (United States)

    Chen, Li; Kong, Xiuqin; Fu, Jin; Xu, Yimiao; Fang, Shuping; Hua, Peng; Luo, Lan; Yin, Zhimin

    2009-01-01

    Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. It is reported that iNOS is degraded mainly by the ubiquitin-proteasome pathway in RAW264.7 cells and human embryonic kidney (HEK) 293 cells. In this study, we showed that iNOS was ubiquitinated and degraded dependent on CHIP (COOH terminus of heat shock protein 70-interacting protein), a chaperone-dependent ubiquitin ligase. The results from overexpression and RNAi experiments demonstrated that CHIP decreased the protein level of iNOS, shortened the half-life of iNOS and attenuated the production of NO. Furthermore, CHIP promoted ubiquitination and proteasomal degradation of iNOS by associating with iNOS. These results suggest that CHIP plays an important role in regulation iNOS activity.

  7. Multiple sclerosis autoantigen myelin basic protein escapes control by ubiquitination during proteasomal degradation.

    Science.gov (United States)

    Belogurov, Alexey; Kudriaeva, Anna; Kuzina, Ekaterina; Smirnov, Ivan; Bobik, Tatyana; Ponomarenko, Natalia; Kravtsova-Ivantsiv, Yelena; Ciechanover, Aaron; Gabibov, Alexander

    2014-06-20

    The vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis. Enzymatic deimination prevents hydrolysis of MBP by the proteasome, suggesting that an abnormally basic charge contributes to its susceptibility toward proteasome-mediated degradation. To our knowledge, our data reveal the first case of a pathophysiologically important autoantigen as a ubiquitin-independent substrate of the 26S proteasome.

  8. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases

    National Research Council Canada - National Science Library

    Riley, B E; Lougheed, J C; Callaway, K; Velasquez, M; Brecht, E; Nguyen, L; Shaler, T; Walker, D; Yang, Y; Regnstrom, K; Diep, L; Zhang, Z; Chiou, S; Bova, M; Artis, D R; Yao, N; Baker, J; Yednock, T; Johnston, J A

    2013-01-01

    Parkin is a RING-between-RING E3 ligase that functions in the covalent attachment of ubiquitin to specific substrates, and mutations in Parkin are linked to Parkinson's disease, cancer and mycobacterial infection...

  9. Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Fujimuro, Masahiro; Hayward, S Diane; Yokosawa, Hideyoshi

    2007-01-01

    Ubiquitination, one of several post-translational protein modifications, plays a key role in the regulation of cellular events, including protein degradation, signal transduction, endocytosis, protein trafficking, apoptosis and immune responses. Ubiquitin attachment at the lysine residue of cellular factors acts as a signal for endocytosis and rapid degradation by the 26S proteasome. It has recently been observed that viruses, especially oncogenic herpesviruses, utilise molecular piracy by encoding their own proteins to interfere with regulation of cell signalling. Kaposi's sarcoma- associated herpesvirus (KSHV) manipulates the ubiquitin system to facilitate cell proliferation, anti-apoptosis and evasion from immunity. In this review, we will describe the strategies used by KSHV at distinct stages of the viral life-cycle to control the ubiquitin system and promote oncogenesis and viral persistence.

  10. Research Progress of UbiquitinL igase Complex KPC%Medical Recapitulate

    Institute of Scientific and Technical Information of China (English)

    杨波; 林新铎; 唐俊明; 杨建业; 张蕾; 姜峰波(综述); 王家宁(审校)

    2016-01-01

    泛素蛋白酶体途径是真核生物体内最重要的蛋白质降解途径之一,其中,目标蛋白的泛素化过程涉及泛素激活酶、泛素结合酶和泛素蛋白连接酶(E 3)。目标蛋白识别中起关键作用的是E 3, Kip1泛素-促进复合体( KPC)是一种E3复合体,由KPC1和 KPC2组成,KPC1在 C端含有一个环指结构域作为催化亚基,是E3不可缺少的组成部分,KPC2含有一个类泛素结构域和两个泛素相关结构域。 KPC广泛存在于真核生物中,在神经系统疾病、血液系统疾病、肿瘤疾病等方面起着重要的调控作用。%Ubiquitin-proteasome pathway is one of the most important protein degradation pathways in eukaryotes,among which ubiquitination of target proteins involves in the ubiquitin-activating enzyme, the ubiquitin-conjugating enzyme and the ubiquitin ligase ( E3 ) .The ubiquitin ligase plays a key role in the identification of target proteins,Kip1 ubiquitination-promoting complex( KPC) being a ubiquitin ligase com-plex that consists of KPC1 and KPC2.KPC1 contains a RING finger domain at the C-terminus as the catalytic subunit that is the integral part of the ubiquitin ligase E3,and KPC2 contains a ubiquitin-like domain and two ubiquitin-associated domains.KPC is widespread in the eukaryotes,playing an important role of regula-tion in nervous system diseases,blood diseases and neoplastic diseases.

  11. Ubiquitination and degradation of CFTR by the E3 ubiquitin ligase MARCH2 through its association with adaptor proteins CAL and STX6.

    Science.gov (United States)

    Cheng, Jie; Guggino, William

    2013-01-01

    Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.

  12. Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment.

    Science.gov (United States)

    Liu, Hsiu-Yu; Pfleger, Cathie M

    2013-01-01

    Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and other alterations in the Ubiquitin Pathway observed in neurodegenerative diseases have led to the question of whether impairment of the Ubiquitin Pathway on its own can increase mortality or if ongoing neurodegeneration alters Ubiquitin Pathway function as a side-effect. To address the role of the Ubiquitin Pathway in vivo, we studied loss-of-function mutations in the Drosophila Ubiquitin Activating Enzyme, Uba1 or E1, the most upstream enzyme in the Ubiquitin Pathway. Loss of only one functional copy of E1 caused a significant reduction in adult lifespan. Rare homozygous hypomorphic E1 mutants reached adulthood. These mutants exhibited further reduced lifespan and showed inappropriate Ras activation in the brain. Removing just one functional copy of Ras restored the lifespan of heterozygous E1 mutants to that of wild-type flies and increased the survival of homozygous E1 mutants. E1 homozygous mutants also showed severe motor impairment. Our findings suggest that processes that impair the Ubiquitin Pathway are sufficient to cause early mortality. Reduced lifespan and motor impairment are seen in the human disease X-linked Infantile Spinal Muscular Atrophy, which is associated with mutation in human E1 warranting further analysis of these mutants as a potential animal model for study of this disease.

  13. BAG-2 Acts as an Inhibitor of the Chaperone-associated Ubiquitin Ligase CHIP

    OpenAIRE

    Arndt, Verena; Daniel, Christina; Nastainczyk, Wolfgang; Alberti, Simon; Höhfeld, Jörg

    2005-01-01

    Cellular protein quality control involves a close interplay between molecular chaperones and the ubiquitin/proteasome system. We recently identified a degradation pathway, on which the chaperone Hsc70 delivers chaperone clients, such as misfolded forms of the cystic fibrosis transmembrane conductance regulator (CFTR), to the proteasome. The cochaperone CHIP is of central importance on this pathway, because it acts as a chaperone-associated ubiquitin ligase. CHIP mediates the attachment of a u...

  14. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    OpenAIRE

    Jaime M. Ross; Lars Olson; Giuseppe Coppotelli

    2015-01-01

    Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, t...

  15. Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8

    OpenAIRE

    Yu, Clinton; Mao, Haibin; Novitsky, Eric J.; Tang, Xiaobo; Rychnovsky, Scott D.; Zheng, Ning; Huang, Lan

    2015-01-01

    The full enzymatic activity of the cullin-RING ubiquitin ligases (CRLs) requires a ubiquitin-like protein (that is, Nedd8) modification. By deamidating Gln40 of Nedd8 to glutamate (Q40E), the bacterial cycle-inhibiting factor (Cif) family is able to inhibit CRL E3 activities, thereby interfering with cellular functions. Despite extensive structural studies on CRLs, the molecular mechanism by which Nedd8 Gln40 deamidation affects CRL functions remains unclear. We apply a new quantitative cross...

  16. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells

    OpenAIRE

    Stępiński, D.

    2012-01-01

    In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provi...

  17. Proteasome Inhibition Promotes Parkin-Ubc13 Interaction and Lysine 63-Linked Ubiquitination

    OpenAIRE

    2013-01-01

    Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto u...

  18. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U

    DEFF Research Database (Denmark)

    Davis, Matti; Hatzubai, Ada; Andersen, Jens S

    2002-01-01

    beta-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF(beta-TrCP) ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IkappaB(alpha) and beta-catenin, are present in the cytoplasm, we have found that E3RS is located predominantly......, and efficacy of a specific protein-ubiquitin ligase....

  19. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.

  20. Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control.

    Science.gov (United States)

    Thompson, Winston E; Ramalho-Santos, João; Sutovsky, Peter

    2003-07-01

    Ubiquitination of the sperm mitochondria during spermatogenesis has been implicated in the targeted degradation of paternal mitochondria after fertilization, a mechanism proposed to promote the predominantly maternal inheritance of mitochondrial DNA in humans and animals. The identity of ubiquitinated substrates in the sperm mitochondria is not known. In the present study, we show that prohibitin, a highly conserved, 30- to 32-kDa mitochondrial membrane protein, occurs in a number of unexpected isoforms, ranging from 64 to greater than 185 kDa in the mammalian sperm mitochondria, which are the ubiquitinated substrates. These bands bind antiubiquitin antibodies, displaying a pattern consistent with polyubiquitinated "ladders." Immunoprecipitation of sperm extracts with antiprohibitin antibodies followed by probing of the resultant immunocomplexes with antiubiquitin yields a banding pattern identical to that observed by antiprohibitin Western blot analysis. In fact, the presumably nonubiquitinated 30-kDa prohibitin band shows no antiubiquitin immunoreactivity. We demonstrate that ubiquitination of prohibitin occurs in testicular spermatids and spermatozoa. Ubiquitinated prohibitin molecules also accumulate in the defective fractions of ejaculated spermatozoa, which are thought to undergo surface ubiquitination during epididymal passage. In such sperm fractions, ubiquitin also coprecipitates with tubulin and microtubule-associated proteins, presumably contributed by the axonemes of defective, ubiquitinated spermatozoa. The results of the present study suggest that prohibitin is one of the ubiquitinated substrates that makes the sperm mitochondria recognizable by the egg's ubiquitin-proteasome dependent proteolytic machinery after fertilization and most likely facilitates the marking of defective spermatozoa in the epididymis for degradation.

  1. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    Directory of Open Access Journals (Sweden)

    Elisabetta eCitterio

    2015-09-01

    Full Text Available Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin are crucial for the cellular response to DNA double-strand breaks (DSBs, one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ubiquitin ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs, as supported by the implication of a growing number of DUBs in DNA damage response (DDR processes. Here, we discuss the current knowledge of how ubiquitin-mediated signaling at DSBs is controlled by deubiquitinating enzymes, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.

  2. Stressing the ubiquitin-proteasome system without 20S proteolytic inhibition selectively kills cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Ravi K Anchoori

    Full Text Available Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine.

  3. Interference with ubiquitination in CFTR modifies stability of core glycosylated and cell surface pools.

    Science.gov (United States)

    Lee, Seakwoo; Henderson, Mark J; Schiffhauer, Eric; Despanie, Jordan; Henry, Katherine; Kang, Po Wei; Walker, Douglas; McClure, Michelle L; Wilson, Landon; Sorscher, Eric J; Zeitlin, Pamela L

    2014-07-01

    It is recognized that both wild-type and mutant CFTR proteins undergo ubiquitination at multiple lysines in the proteins and in one or more subcellular locations. We hypothesized that ubiquitin is added to specific sites in wild-type CFTR to stabilize it and at other sites to signal for proteolysis. Mass spectrometric analysis of wild-type CFTR identified ubiquitinated lysines 68, 710, 716, 1041, and 1080. We demonstrate that the ubiquitinated K710, K716, and K1041 residues stabilize wild-type CFTR, protecting it from proteolysis. The polyubiquitin linkage is predominantly K63. N-tail mutants, K14R and K68R, lead to increased mature band CCFTR, which can be augmented by proteasomal (but not lysosomal) inhibition, allowing trafficking to the surface. The amount of CFTR in the K1041R mutant was drastically reduced and consisted of bands A/B, suggesting that the site in transmembrane 10 (TM10) was critical to further processing beyond the proteasome. The K1218R mutant increases total and cell surface CFTR, which is further accumulated by proteasomal and lysosomal inhibition. Thus, ubiquitination at residue 1218 may destabilize wild-type CFTR in both the endoplasmic reticulum (ER) and recycling pools. Small molecules targeting the region of residue 1218 to block ubiquitination or to preserving structure at residues 710 to 716 might be protein sparing for some forms of cystic fibrosis.

  4. Ubiquitin is associated with the survival of ectopic stromal cells in endometriosis

    Directory of Open Access Journals (Sweden)

    Bebington Catherine R

    2004-09-01

    Full Text Available Abstract Background Endometriosis is a condition that affects women of reproductive age, where the glandular and/or stromal tissues from the eutopic endometrium implant in ectopic locations. It is well established that the survival of ectopic implants is due to lower levels of apoptosis, but no consensus exists as to which pathway/s this is mediated by. The ubiquitin protein shares a similar sequence homology to an anti-apoptotic protein called BAG-1 and is expressed in the normal endometrium. Currently, no studies have been conducted to determine ubiquitin expression and its possible anti-apoptotic effects in endometriosis. Methods Archived endometrial tissues from endometriosis patients and women undergoing laparoscopic diagnosis (controls from January 2000 to July 2003 at Westmead Hospital were examined, where 14 cases of endometriosis and 55 controls were included in the study. Results Both the ubiquitin protein and apoptosis were expressed in both glandular and stromal cells throughout the menstrual cycle of the eutopic endometrium, in which ubiquitin exhibited a cyclic expression, reaching a peak in late proliferative phase. In contrast, ubiquitin was predominantly expressed in cells of stromal origin in endometriosis, was no longer regulated by a cyclic pattern and was associated with an aberrant level of cell survival. Conclusions For the first time, this study shows that ubiquitin is expressed in endometriotic cells and may contribute to a reduced sensitivity of ectopic endometrial tissue to apoptosis. These findings also suggest that stromal cells contribute differentially to the development of ectopic endometrial tissue.

  5. Dysfunction of the ubiquitin-proteasome system in the cerebellum of aging Ts65Dn mice.

    Science.gov (United States)

    Necchi, Daniela; Lomoio, Selene; Scherini, Elda

    2011-12-01

    In the cerebellum of adult-aging Ts65Dn mice, a murine model of Down syndrome, Purkinje cells undergo degeneration. Searching for the cause of Purkinje cell degeneration, we have studied the ubiquitin-proteasome system (UPS) in the cerebellum of aging Ts65Dn mice. Inhibition of UPS is sufficient to induce neuron degeneration and death. Proteasome chymotrypsin-like proteolytic activity was reduced by 35% in the cerebellum of Ts65Dn mice in comparison with euploid animals. Accordingly, Western blot analysis of ubiquitin showed an increase in ubiquitinated proteins. Immunocytochemistry for ubiquitin revealed strongly positive intranuclear inclusions in Purkinje cells and large neurons of cerebellar nuclei. The Western blot analysis of ubiquitin in nuclear protein extracts confirmed the increase of ubiquitinated proteins in the cell nuclei. After FUS immunocytochemistry, large intranuclear inclusions were visible in Purkinje cells and large neurons of cerebellar nuclei in Ts65Dn mice. Together, data indicate a possible role for proteasome inhibition in the cerebellar neurodegeneration in Ts65Dn mice.

  6. Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Hui; Ali, Yousuf O.; Ravichandran, Mani; Dong, Aiping; Qiu, Wei; MacKenzie, Farrell; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.; Zhai, R. Grace (UHN); (Toronto); (Miami-MED)

    2012-07-11

    The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.

  7. USP15 attenuates IGF-I signaling by antagonizing Nedd4-induced IRS-2 ubiquitination.

    Science.gov (United States)

    Fukushima, Toshiaki; Yoshihara, Hidehito; Furuta, Haruka; Hakuno, Fumihiko; Iemura, Shun-Ichiro; Natsume, Tohru; Nakatsu, Yusuke; Kamata, Hideaki; Asano, Tomoichiro; Komada, Masayuki; Takahashi, Shin-Ichiro

    2017-03-11

    Insulin receptor substrates (IRSs) are phosphorylated by IGF-I receptor tyrosine kinase in a ligand-dependent manner. In turn, they bind to and activate effector proteins such as PI3K, leading to various cell responses including cell proliferation. We had reported that ubiquitin ligase Nedd4 induces mono-ubiquitination of IRS-2, thereby enhancing IRS-2 tyrosine phosphorylation, leading to increased IGF signaling and mitogenic activity. Here we show that ubiquitin-specific protease 15 (USP15) antagonizes the effect of Nedd4 on IRS-2. We identified USP15 as a protein that preferentially bound to IRS-2 when IRS-2 was conjugated with ubiquitin. In HEK293 cells, Nedd4 overexpression induced IRS-2 ubiquitination, which was decreased by USP15 co-expression while increased by USP15 knockdown. Nedd4 overexpression enhanced IGF-I-dependent IRS-2 tyrosine phosphorylation, and USP15 co-expression suppressed it. Conversely, USP15 knockdown increased IRS-2 tyrosine phosphorylation and downstream signaling in prostate cancer PC-3 cells. We concluded that USP15 attenuates IGF-I signaling by antagonizing Nedd4-induced IRS-2 ubiquitination.

  8. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis

    Institute of Scientific and Technical Information of China (English)

    Teng Ma; Jennifer A.Keller; Xiaochun Yu

    2011-01-01

    Histone ubiquitination regulates the chromatin structure that is important for many biological processes. Recently,ubiquitination of histones was observed during the DNA damage response (DDR), and this modification is controlled by really interesting new gene (RING) domain E3 ligase, RNF8. Together with the E2 conjugating enzyme UBC13, RNF8 catalyzes ubiquitination of the histones H2A and H2AX during the DDR, thus facilitating downstream recruitment of DDR factors, such as p53 binding protein 1 (53BP1) and breast cancer type 1 susceptibility protein (BRCA1), to the damage site.Accordingly, the RNF8 knockout mice display phenotypes associated with failed DDR, including hypersensitivity to ionizing radiation, V(D)J recombination deficiency, and a predisposition to cancer. In addition to the DDR phenotypes, RNF8 knockout mice fail to generate mature sperm during spermatogenesis, resulting in male sterility. The RNF8 knockout mice also have a drastic reduction in histone ubiquitination in the testes. These findings indicate that the role of histone ubiquitination during chromatin remodeling in two different biological events could be linked by an RNF8-dependent mechanism. Here, we review the molecular mechanism of RNF8-dependent histone ubiquitination both in DDR and spermatogenesis.

  9. Ubiquitin dynamics in complexes reveal molecular recognition mechanisms beyond induced fit and conformational selection.

    Directory of Open Access Journals (Sweden)

    Jan H Peters

    Full Text Available Protein-protein interactions play an important role in all biological processes. However, the principles underlying these interactions are only beginning to be understood. Ubiquitin is a small signalling protein that is covalently attached to different proteins to mark them for degradation, regulate transport and other functions. As such, it interacts with and is recognised by a multitude of other proteins. We have conducted molecular dynamics simulations of ubiquitin in complex with 11 different binding partners on a microsecond timescale and compared them with ensembles of unbound ubiquitin to investigate the principles of their interaction and determine the influence of complex formation on the dynamic properties of this protein. Along the main mode of fluctuation of ubiquitin, binding in most cases reduces the conformational space available to ubiquitin to a subspace of that covered by unbound ubiquitin. This behaviour can be well explained using the model of conformational selection. For lower amplitude collective modes, a spectrum of zero to almost complete coverage of bound by unbound ensembles was observed. The significant differences between bound and unbound structures are exclusively situated at the binding interface. Overall, the findings correspond neither to a complete conformational selection nor induced fit scenario. Instead, we introduce a model of conformational restriction, extension and shift, which describes the full range of observed effects.

  10. RNF38 encodes a nuclear ubiquitin protein ligase that modifies p53

    Energy Technology Data Exchange (ETDEWEB)

    Sheren, Jamie E. [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Kassenbrock, C. Kenneth, E-mail: ken.kassenbrock@ucdenver.edu [Department of Pathology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 (United States)

    2013-11-01

    Highlights: •RNF38 is shown to be a nuclear protein with a bipartite nuclear localization signal. •RNF38 protein is purified and shown to have ubiquitin protein ligase (E3) activity. •We show that RNF38 binds p53 and can ubiquitinate p53 in vitro. •Overexpression of RNF38 increases p53 ubiquitination in HEK293T cells. •Overexpression of RNF38 in HEK293T cells alters p53 localization. -- Abstract: The RNF38 gene encodes a RING finger protein of unknown function. Here we demonstrate that RNF38 is a functional ubiquitin protein ligase (E3). We show that RNF38 isoform 1 is localized to the nucleus by a bipartite nuclear localization sequence (NLS). We confirm that RNF38 is a binding partner of p53 and demonstrate that RNF38 can ubiquitinate p53 in vitro and in vivo. Finally, we show that overexpression of RNF38 in HEK293T cells results in relocalization of p53 to discrete foci associated with PML nuclear bodies. These results suggest RNF38 is an E3 ubiquitin ligase that may play a role in regulating p53.

  11. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation.

    Science.gov (United States)

    Srikumar, Tharan; Lewicki, Megan C; Costanzo, Michael; Tkach, Johnny M; van Bakel, Harm; Tsui, Kyle; Johnson, Erica S; Brown, Grant W; Andrews, Brenda J; Boone, Charles; Giaever, Guri; Nislow, Corey; Raught, Brian

    2013-04-01

    Like ubiquitin, the small ubiquitin-related modifier (SUMO) proteins can form oligomeric "chains," but the biological functions of these superstructures are not well understood. Here, we created mutant yeast strains unable to synthesize SUMO chains (smt3(allR)) and subjected them to high-content microscopic screening, synthetic genetic array (SGA) analysis, and high-density transcript profiling to perform the first global analysis of SUMO chain function. This comprehensive assessment identified 144 proteins with altered localization or intensity in smt3(allR) cells, 149 synthetic genetic interactions, and 225 mRNA transcripts (primarily consisting of stress- and nutrient-response genes) that displayed a >1.5-fold increase in expression levels. This information-rich resource strongly implicates SUMO chains in the regulation of chromatin. Indeed, using several different approaches, we demonstrate that SUMO chains are required for the maintenance of normal higher-order chromatin structure and transcriptional repression of environmental stress response genes in budding yeast.

  12. The ubiquitin-proteasome system in cardiac dysfunction.

    Science.gov (United States)

    Mearini, Giulia; Schlossarek, Saskia; Willis, Monte S; Carrier, Lucie

    2008-12-01

    Since proteins play crucial roles in all biological processes, the finely tuned equilibrium between their synthesis and degradation regulates cellular homeostasis. Controlling the quality of proteome informational content is essential for cell survival and function. After initial synthesis, membrane and secretory proteins are modified, folded, and assembled in the endoplasmic reticulum, whereas other proteins are synthesized and processed in the cytosol. Cells have different protein quality control systems, the molecular chaperones, which help protein folding and stabilization, and the ubiquitin-proteasome system (UPS) and lysosomes, which degrade proteins. It has generally been assumed that UPS and lysosomes are regulated independently and serve distinct functions. The UPS degrades both cytosolic, nuclear proteins, and myofibrillar proteins, whereas the lysosomes degrade most membrane and extracellular proteins by endocytosis as well as cytosolic proteins and organelles via autophagy. Over the last two decades, the UPS has been increasingly recognized as a major system in several biological processes including cell proliferation, adaptation to stress and cell death. More recently, activation or impairment of the UPS has been reported in cardiac disease and recent evidence indicate that autophagy is a key mechanism to maintain cardiac structure and function. This review mainly focuses on the UPS and its various components in healthy and diseased heart, but also summarizes recent data suggesting parallel activation of the UPS and autophagy in cardiac disease.

  13. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    Science.gov (United States)

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.

  14. Muscle atrophy, ubiquitin-proteasome, and autophagic pathways in dysferlinopathy.

    Science.gov (United States)

    Fanin, Marina; Nascimbeni, Anna C; Angelini, Corrado

    2014-09-01

    Muscle fiber atrophy and the molecular pathways underlying this process have not been investigated in dysferlinopathy patients. In 22 muscles from dysferlinopathy patients we investigated fiber atrophy by morphometry and ubiquitin-proteasome and autophagic pathways using protein and/or transcriptional analysis of atrophy- and autophagy-related genes (MuRF1, atrogin1, LC3, p62, Bnip3). Dysferlinopathy showed significant fiber atrophy and higher MuRF-1 protein and mRNA levels, which correlated with fiber size, suggesting activation of the atrophy program by proteasome induction. Some of the MuRF-1 upregulation and proteasome induction may be attributed to the prominent regeneration found. A potential role of impaired autophagy was suggested by p62-positive protein aggregates in atrophic fibers and significantly higher levels of LC3-II and p62 proteins and overexpression of p62 and Bnip3 mRNA. Damaged muscle fibers and prominent inflammatory changes may also enhance autophagy due to the insufficient level of proteasomal degradation of mutant dysferlin. Copyright © 2014 Wiley Periodicals, Inc.

  15. Role of the ubiquitin proteasome system in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Lim Kah-Leong

    2007-11-01

    Full Text Available Abstract Parkinson's disease (PD is the most common neurodegenerative movement disorder. Although a subject of intense research, the etiology of PD remains poorly understood. Recently, several lines of evidence have implicated an intimate link between aberrations in the ubiquitin proteasome system (UPS and PD pathogenesis. Derangements of the UPS, which normally functions as a type of protein degradation machinery, lead to alterations in protein homeostasis that could conceivably promote the toxic accumulation of proteins detrimental to neuronal survival. Not surprisingly, various cellular and animal models of PD that are based on direct disruption of UPS function reproduce the most prominent features of PD. Although persuasive, new developments in the past few years have in fact raised serious questions about the link between the UPS and PD. Here I review current thoughts and controversies about their relationship and discuss whether strategies aimed at mitigating UPS dysfunction could represent rational ways to intervene in the disease. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  16. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    Science.gov (United States)

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.

  17. Failures of chain systems

    CSIR Research Space (South Africa)

    James, A

    1997-03-01

    Full Text Available . In general, there are three basic types of system: hoisting and securing chains conveying and elevating chains power transmission chains The materials used can vary significantly and are specifically tailored for the application...-uniform or if the system is subjected to dynamic loading. In addition, adequate lubrication of such chain systems is very important to ensure that friction (and surface corrosion) is reduced as much as possible. Abnormal loading, directly...

  18. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  19. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  20. Serum Free Light Chains

    Science.gov (United States)

    ... or of one of its component parts – a kappa or lambda light chain, or rarely, a heavy chain. Traditionally, plasma cell ... protein (M-protein) production and to calculate a kappa/lambda free light chain ratio. If the protein electrophoresis test is abnormal, ...

  1. Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis

    OpenAIRE

    Xiaolian Zhang; Ning Wang; Pei Chen; Mengmeng Gao; Juge Liu; Yufeng Wang; Tuanjie Zhao; Yan Li; Junyi Gai

    2014-01-01

    Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine...

  2. Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica

    DEFF Research Database (Denmark)

    Noor, Natassya M; Møllgård, Kjeld; Wheaton, Benjamin J;

    2013-01-01

    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to pos...... changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets....

  3. Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice.

    Science.gov (United States)

    Carmignac, Virginie; Quéré, Ronan; Durbeej, Madeleine

    2011-02-01

    Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we have investigated whether increased proteasomal degradation is a feature of MDC1A. Using the generated dy(3K)/dy(3K) mutant mouse model of MDC1A, we studied the expression of members of the ubiquitin-proteasome pathway in laminin α2 chain-deficient muscle, and we treated dy(3K)/dy(3K) mice with the proteasome inhibitor MG-132. We show that members of the UPS are upregulated and that the global ubiquitination of proteins is raised in dystrophic limb muscles. Also, phosphorylation of Akt is diminished in diseased muscles. Importantly, proteasome inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. Specifically, treatment with MG-132 increases lifespan, enhances locomotive activity, enlarges muscle fiber diameter, reduces fibrosis, restores Akt phosphorylation and decreases apoptosis. These studies promote better understanding of the disease process in mice and could lead to a drug therapy for MDC1A patients.

  4. Food vacuole associated enolase in plasmodium undergoes multiple post-translational modifications: evidence for atypical ubiquitination.

    Directory of Open Access Journals (Sweden)

    Saudamini Shevade

    Full Text Available Plasmodium enolase localizes to several sub-cellular compartments viz. cytosol, nucleus, cell membrane, food vacuole (FV and cytoskeleton, without having any organelle targeting signal sequences. This enzyme has been shown to undergo multiple post-translational modifications (PTMs giving rise to several variants that show organelle specific localization. It is likely that these PTMs may be responsible for its diverse distribution and moonlighting functions. While most variants have a MW of ~50 kDa and are likely to arise due to changes in pI, food vacuole (FV associated enolase showed three forms with MW~50, 65 and 75 kDa. Evidence from immuno-precipitation and western analysis indicates that the 65 and 75 kDa forms of FV associated enolase are ubiquitinated. Using mass spectrometry (MS, definitive evidence is obtained for the nature of PTMs in FV associated variants of enolase. Results showed several modifications, viz. ubiquitination at K147, phosphorylation at Y148 and acetylation at K142 and K384. MS data also revealed the conjugation of three ubiquitin (Ub molecules to enolase through K147. Trimeric ubiquitin has a linear peptide linkage between the NH2-terminal methionine of the first ubiquitin (Ub1 and the C-terminal G76 of the second (Ub2. Ub2 and third ubiquitin (Ub3 were linked through an atypical isopeptide linkage between K6 of Ub2 and G76 of Ub3, respectively. Further, the tri-ubiquitinated form was found to be largely associated with hemozoin while the 50 and 65 kDa forms were present in the NP-40 soluble fraction of FV. Mass spectrometry results also showed phosphorylation of S42 in the cytosolic enolase from P. falciparum and T337 in the cytoskeleton associated enolase from P. yoelii. The composition of food vacuolar proteome and likely interactors of enolase are also being reported.

  5. Ubiquitin-Related Roles of β-Arrestins in Endocytic Trafficking and Signal Transduction.

    Science.gov (United States)

    Jean-Charles, Pierre-Yves; Rajiv, Vishwaesh; Shenoy, Sudha K

    2016-10-01

    The non-visual arrestins, β-arrestin1, and β-arrestin2 were originally identified as proteins that bind to seven-transmembrane receptors (7TMRs, also called G protein-coupled receptors, GPCRs) and block heterotrimeric G protein activation, thus leading to desensitization of transmembrane signaling. However, as subsequent discoveries have continually demonstrated, their functionality is not constrained to desensitization. They are now recognized for their critical roles in mediating intracellular trafficking of 7TMRs, growth factor receptors, ion transporters, ion channels, nuclear receptors, and non-receptor proteins. Additionally, they function as crucial mediators of ubiquitination of 7TMRs as well as other receptors and non-receptor proteins. Recently, emerging studies suggest that a class of proteins with predicted structural features of β-arrestins regulate substrate ubiquitination in yeast and higher mammals, lending support to the idea that the adaptor role of β-arrestins in protein ubiquitination is evolutionarily conserved. β-arrestins also function as scaffolds for kinases and transduce signals from 7TMRs through pathways that do not require G protein activation. Remarkably, the endocytic and scaffolding functions of β-arrestin are intertwined with its ubiquitination status; the dynamic and site specific ubiquitination on β-arrestin plays a critical role in stabilizing β-arrestin-7TMR association and the formation of signalosomes. This review summarizes the current findings on ubiquitin-dependent regulation of 7TMRs as well as β-arrestins and the potential role of reversible ubiquitination as a "biological switch" in signal transduction. J. Cell. Physiol. 231: 2071-2080, 2016. © 2016 Wiley Periodicals, Inc.

  6. Structural Insights into Linear Tri-ubiquitin Recognition by A20-Binding Inhibitor of NF-κB, ABIN-2.

    Science.gov (United States)

    Lin, Shan-Meng; Lin, Su-Chang; Hong, Jhen-Yi; Su, Tsung-Wei; Kuo, Bai-Jiun; Chang, Wei-Hsin; Tu, Yi-Fan; Lo, Yu-Chih

    2017-01-03

    Recognition of linear polyubiquitin by specific ubiquitin-binding proteins plays an important role in mediating nuclear factor-κB (NF-κB) signaling. A20 binding proteins, ABINs, recognize linear polyubiquitin and A20 through UBAN and AHD1, respectively, for the inhibition of NF-κB activation. Here we report the crystal structure of the AHD1-UBAN fragment of ABIN2 in complex with linear tri-ubiquitin, which reveals a 2:1 stoichiometry of the complex. Structural analyses together with mutagenesis, pull-down, and isothermal titration calorimetry assays show that the hABIN2:tri-ubiquitin interaction is mainly through the primary ubiquitin-binding site, and also through the secondary ubiquitin-binding site under a high local protein concentration. Surprisingly, three ubiquitin units could form a right-handed helical trimer to bridge two ABIN2 dimers. The residues around the M1-linkage are crucial for ABIN2 to recognize tri-ubiquitin. The tri-ubiquitin bridging two ABIN2 dimers model suggests a possible higher-order signaling complex assembled between M1-linked polyubiquitinated proteins, ubiquitin-binding proteins, and effector signaling proteins in signal transduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Involvement of NF-κB and muscle specific E3 ubiquitin ligase MuRF1 in cigarette smoke-induced catabolism in C2 myotubes.

    Science.gov (United States)

    Kaisari, Sharon; Rom, Oren; Aizenbud, Dror; Reznick, Abraham Z

    2013-01-01

    Cigarette smoking has been identified as a risk factor for muscular damage and sarcopenia, the age-related loss of muscle mass and strength in old age. Cigarette smoke (CS)-induced oxidative stress and p38 MAPK activation have been shown to be the main cellular mechanisms leading to skeletal muscle catabolism. In order to investigate the involvement of NF-κB as another possible cellular mechanism by which CS promotes muscle catabolism, C2 myotubes, from an in vitro skeletal muscle cell line, were exposed to different time periods of whole vapor phase CS in the presence or absence of NF-κB inhibitor, IMD-0354. The CS-induced reduction in diameter of myotubes and time-dependent degradation of the main contractile protein myosin heavy chain were abolished by NF-κB inhibition. Also, C2 exposure to CS resulted in IκB-α degradation and NF-κB activation, which led to upregulation of the muscle specific E3 ubiquitin ligase MuRF1, but not MAFbx/atrogin-1. In conclusion, our results demonstrate that vapor phase CS exposure to skeletal myotubes triggers NF-κB activation leading to skeletal muscle cell damage and breakdown of muscle proteins mediated by muscle specific E3 ubiquitin ligase MuRF1. Our findings provide another possible molecular mechanism for the catabolic effects of CS in skeletal muscle.

  8. Detection of O-propargyl-puromycin with SUMO and ubiquitin by click chemistry at PML-nuclear bodies during abortive proteasome activities

    Energy Technology Data Exchange (ETDEWEB)

    Uozumi, Naoki; Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-05-27

    The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuous association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.

  9. A novel injectable BRET-based in vivo imaging probe for detecting the activity of hypoxia-inducible factor regulated by the ubiquitin-proteasome system

    Science.gov (United States)

    Kuchimaru, Takahiro; Suka, Tomoya; Hirota, Keisuke; Kadonosono, Tetsuya; Kizaka-Kondoh, Shinae

    2016-01-01

    The ubiquitin-proteasome system (UPS) is a selective protein degradation system that plays a critical role in many essential biological processes by regulating the existence of various cellular proteins. The target proteins of UPS are recognized and tagged with polyubiquitin chains by E3 ubiquitin ligases, which have high substrate-specific activities. Here we present a novel injectable imaging probe POL-N that can detect the UPS-regulated hypoxia-inducible factor (HIF) activity in vivo. Because the luciferase is fused to the E3 ligase-recognition domain of the HIF-1α, POL-N is intact only in the HIFα-overexpressing cells, that is, HIF-active cells, generating signals via an intramolecular bioluminescence resonance energy transfer (BRET) between luciferase and a near-infrared (NIR) fluorescent dye at the C-terminal end of the probe. Off-target signals of the NIR-BRET were so low that we could achieve highly sensitive and fast detection of intratumoral HIF-activity. Notably, we successfully detected hypoxic liver metastasis, which is extremely difficult to detect by injectable imaging probes due to strong off-target signals, as early as 1 h after systemic injection of POL-N. Our probe design can be widely adapted to UPS-target proteins and may contribute to the exploration of their roles in animal disease models. PMID:27698477

  10. Gushing metal chain

    Science.gov (United States)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  11. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity.

    Science.gov (United States)

    Persaud, Avinash; Alberts, Philipp; Mari, Sara; Tong, Jiefei; Murchie, Ryan; Maspero, Elena; Safi, Frozan; Moran, Michael F; Polo, Simona; Rotin, Daniela

    2014-10-07

    Ligand binding to the receptor tyrosine kinase fibroblast growth factor (FGF) receptor 1 (FGFR1) causes dimerization and activation by transphosphorylation of tyrosine residues in the kinase domain. FGFR1 is ubiquitylated by the E3 ligase NEDD4 (also known as NEDD4-1), which promotes FGFR1 internalization and degradation. Although phosphorylation of FGFR1 is required for NEDD4-dependent endocytosis, NEDD4 directly binds to a nonphosphorylated region of FGFR1. We found that activation of FGFR1 led to activation of c-Src kinase-dependent tyrosine phosphorylation of NEDD4, enhancing the ubiquitin ligase activity of NEDD4. Using mass spectrometry, we identified several FGF-dependent phosphorylated tyrosines in NEDD4, including Tyr(43) in the C2 domain and Tyr(585) in the HECT domain. Mutating these tyrosines to phenylalanine to prevent phosphorylation inhibited FGF-dependent NEDD4 activity and FGFR1 endocytosis and enhanced cell proliferation. Mutating the tyrosines to glutamic acid to mimic phosphorylation enhanced NEDD4 activity. Moreover, the NEDD4 C2 domain bound the HECT domain, and the presence of phosphomimetic mutations inhibited this interaction, suggesting that phosphorylation of NEDD4 relieves an inhibitory intra- or intermolecular interaction. Accordingly, activation of FGFR1 was not required for activation of NEDD4 that lacked its C2 domain. Activation of c-Src by epidermal growth factor (EGF) also promoted tyrosine phosphorylation and enhanced the activity of NEDD4. Thus, we identified a feedback mechanism by which receptor tyrosine kinases promote catalytic activation of NEDD4 and that may represent a mechanism of receptor crosstalk.

  12. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  13. RNF13: a novel RING-type ubiquitin ligase over-expressed in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Qiang Zhang; Yunxiao Meng; Lei Zhang; Jie Chen; Dahai Zhu

    2009-01-01

    Protein ubiquitination by E3 ubiquitin ligases plays an important role in cancer development. In this study, we provide experimental evidence that a RING-finger-containing protein RNF13 is an ER/Golgi membrane-associated E3 ubiquitin ligase and its RING finger domain is required for the ubiquitin iigase activity, lmmunohistochemical analysis of pancreatic ductal adenocarcinoma (PDAC) and paracancerous normal tissues from 72 patients documented RNF13 over-expression in 30 tumor samples (41.7%, 30/72), and its expression was significantly associated with histological grading (P= 0.024). In addition, RNFI3 was detected in precancerous lesions: tubular complexes in chronic pancreatitis (CP) and pancreatic intraepithelial neoplasia (PanlN) (79.3%, 23/29 and 62.8%, 22/35, respectively). Moreover, RNF13 staining was significantly correlated with Tenascin-C expression (P = 0.004) in PDAC samples, further supporting the role of RNF13 in cancer progression. Over-expression of wild type but not RING domain-mutant RNF13 in pancreatic MiaPaca-2 cancer cells increased invasive potential and gelatinolytic activity by matrix metalloproteinase-9. Taken together, these findings reveal that RNF13 is a novel E3 ubiquitin ligase involved in pancreatic carcinogenesis; ubiqui-tin-mediated modification of proteins by RNF13 may participate in pancreatic cancer development.

  14. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome.

    Science.gov (United States)

    Basel-Vanagaite, Lina; Dallapiccola, Bruno; Ramirez-Solis, Ramiro; Segref, Alexandra; Thiele, Holger; Edwards, Andrew; Arends, Mark J; Miró, Xavier; White, Jacqueline K; Désir, Julie; Abramowicz, Marc; Dentici, Maria Lisa; Lepri, Francesca; Hofmann, Kay; Har-Zahav, Adi; Ryder, Edward; Karp, Natasha A; Estabel, Jeanne; Gerdin, Anna-Karin B; Podrini, Christine; Ingham, Neil J; Altmüller, Janine; Nürnberg, Gudrun; Frommolt, Peter; Abdelhak, Sonia; Pasmanik-Chor, Metsada; Konen, Osnat; Kelley, Richard I; Shohat, Mordechai; Nürnberg, Peter; Flint, Jonathan; Steel, Karen P; Hoppe, Thorsten; Kubisch, Christian; Adams, David J; Borck, Guntram

    2012-12-07

    Ubiquitination plays a crucial role in neurodevelopment as exemplified by Angelman syndrome, which is caused by genetic alterations of the ubiquitin ligase-encoding UBE3A gene. Although the function of UBE3A has been widely studied, little is known about its paralog UBE3B. By using exome and capillary sequencing, we here identify biallelic UBE3B mutations in four patients from three unrelated families presenting an autosomal-recessive blepharophimosis-ptosis-intellectual-disability syndrome characterized by developmental delay, growth retardation with a small head circumference, facial dysmorphisms, and low cholesterol levels. UBE3B encodes an uncharacterized E3 ubiquitin ligase. The identified UBE3B variants include one frameshift and two splice-site mutations as well as a missense substitution affecting the highly conserved HECT domain. Disruption of mouse Ube3b leads to reduced viability and recapitulates key aspects of the human disorder, such as reduced weight and brain size and a downregulation of cholesterol synthesis. We establish that the probable Caenorhabditis elegans ortholog of UBE3B, oxi-1, functions in the ubiquitin/proteasome system in vivo and is especially required under oxidative stress conditions. Our data reveal the pleiotropic effects of UBE3B deficiency and reinforce the physiological importance of ubiquitination in neuronal development and function in mammals.

  15. The E3 ubiquitin ligase activity of Trip12 is essential for mouse embryogenesis.

    Directory of Open Access Journals (Sweden)

    Masashi Kajiro

    Full Text Available Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/mt that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12(mt/mt embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16. In contrast, Trip12(mt/mt ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12(mt/mt ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.

  16. Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid.

    Science.gov (United States)

    Shao, Rui; Liu, Jia; Yan, Guang; Zhang, Jinfang; Han, Yujiao; Guo, Jianfeng; Xu, Zhan; Yuan, Zhu; Liu, Jiankang; Malumbres, Marcos; Wan, Lixin; Wei, Wenyi; Zou, Weiguo

    2016-06-01

    Craniofacial anomalies (CFAs) characterized by birth defects of skull and facial bones are the most frequent congenital disease. Genomic analysis has identified multiple genes responsible for CFAs; however, the underlying genetic mechanisms for the majority of CFAs remain largely unclear. Our previous study revealed that the Wwp2 E3 ubiquitin ligase facilitates craniofacial development in part through inducing monoubiquitination and activation of the paired-like homeobox transcription factor, Goosecoid (Gsc). Here we report that Gsc is also ubiquitinated and activated by the APC(Cdh1) E3 ubiquitin ligase, leading to transcriptional activation of various Gsc target genes crucial for craniofacial development. Consistenly, neural crest-specific Cdh1-knockout mice display similar bone malformation as Wwp2-deficient mice in the craniofacial region, characterized by a domed skull, a short snout and a twisted nasal bone. Mechanistically, like Wwp2-deficient mice, mice with Cdh1 deficiency in neural crest cells exhibit reduced Gsc/Sox6 transcriptional activities. Simultaneous deletion of Cdh1 and Wwp2 results in a more severe craniofacial defect compared with single gene deletion, suggesting a synergistic augmentation of Gsc activity by these two E3 ubiquitin ligases. Hence, our study reveals a novel role for Cdh1 in craniofacial development through promoting APC-dependent non-proteolytic ubiquitination and activation of Gsc.

  17. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice.

    Science.gov (United States)

    Ignacio-Souza, Leticia M; Bombassaro, Bruna; Pascoal, Livia B; Portovedo, Mariana A; Razolli, Daniela S; Coope, Andressa; Victorio, Sheila C; de Moura, Rodrigo F; Nascimento, Lucas F; Arruda, Ana P; Anhe, Gabriel F; Milanski, Marciane; Velloso, Licio A

    2014-08-01

    In both human and experimental obesity, inflammatory damage to the hypothalamus plays an important role in the loss of the coordinated control of food intake and energy expenditure. Upon prolonged maintenance of increased body mass, the brain changes the defended set point of adiposity, and returning to normal weight becomes extremely difficult. Here we show that in prolonged but not in short-term obesity, the ubiquitin/proteasome system in the hypothalamus fails to maintain an adequate rate of protein recycling, leading to the accumulation of ubiquitinated proteins. This is accompanied by an increased colocalization of ubiquitin and p62 in the arcuate nucleus and reduced expression of autophagy markers in the hypothalamus. Genetic protection from obesity is accompanied by the normal regulation of the ubiquitin/proteasome system in the hypothalamus, whereas the inhibition of proteasome or p62 results in the acceleration of body mass gain in mice exposed for a short period to a high-fat diet. Thus, the defective regulation of the ubiquitin/proteasome system in the hypothalamus may be an important mechanism involved in the progression and autoperpetuation of obesity.

  18. BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72.

    Science.gov (United States)

    Schönbühler, Bianca; Schmitt, Verena; Huesmann, Heike; Kern, Andreas; Gamerdinger, Martin; Behl, Christian

    2016-12-30

    The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells.

  19. The role of ubiquitination in lysosomal trafficking of δ-opioid receptors.

    Science.gov (United States)

    Henry, Anastasia G; White, Ian J; Marsh, Mark; von Zastrow, Mark; Hislop, James N

    2011-02-01

    The δ-opioid receptor (DOR) undergoes ligand-induced downregulation by endosomal sorting complex required for transport (ESCRT)-dependent endocytic trafficking to lysosomes. In contrast to a number of other signaling receptors, the DOR can downregulate effectively when its ubiquitination is prevented. We explored the membrane trafficking basis of this behavior. First, we show that internalized DORs traverse the canonical multivesicular body (MVB) pathway and localize to intralumenal vesicles (ILVs). Second, we show that DOR ubiquitination stimulates, but is not essential for, receptor transfer to ILVs and proteolysis of the receptor endodomain. Third, we show that receptor ubiquitination plays no detectable role in the early sorting of internalized DORs out of the recycling pathway. Finally, we show that DORs undergo extensive proteolytic fragmentation in the ectodomain, even when receptor ubiquitination is prevented or ILV formation itself is blocked. Together, these results are sufficient to explain why DORs downregulate effectively in the absence of ubiquitination, and they place a discrete molecular sorting operation in the MVB pathway effectively upstream of the ESCRT. More generally, these findings support the hypothesis that mammalian cells can control the cytoplasmic accessibility of internalized signaling receptors independently from their ultimate trafficking fate.

  20. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination

    Science.gov (United States)

    Zhou, Wenchao; Mack, Stephen C.; Wang, Xiuxing; Ouyang, Gaoliang; Bian, Xiu-wu

    2017-01-01

    Glioblastoma is the most lethal brain tumor and harbors glioma stem cells (GSCs) with potent tumorigenic capacity. The function of GSCs in tumor propagation is maintained by several core transcriptional regulators including c-Myc. c-Myc protein is tightly regulated by posttranslational modification. However, the posttranslational regulatory mechanisms for c-Myc in GSCs have not been defined. In this study, we demonstrate that the deubiquitinase USP13 stabilizes c-Myc by antagonizing FBXL14-mediated ubiquitination to maintain GSC self-renewal and tumorigenic potential. USP13 was preferentially expressed in GSCs, and its depletion potently inhibited GSC proliferation and tumor growth by promoting c-Myc ubiquitination and degradation. In contrast, overexpression of the ubiquitin E3 ligase FBXL14 induced c-Myc degradation, promoted GSC differentiation, and inhibited tumor growth. Ectopic expression of the ubiquitin-insensitive mutant T58A–c-Myc rescued the effects caused by FBXL14 overexpression or USP13 disruption. These data suggest that USP13 and FBXL14 play opposing roles in the regulation of GSCs through reversible ubiquitination of c-Myc. PMID:27923907

  1. Evolutionary analysis of the ubiquitin gene of baculovirus and insect hosts.

    Science.gov (United States)

    Ma, S S; Zhang, Z; Xia, H C; Chen, L; Yang, Y H; Yao, Q; Chen, K P

    2015-08-21

    Baculovirus is the only virus that has been found to encode the ubiquitin protein. In this study, ubiquitin sequences from 16 insects and 49 viruses were collected and compared. The resulting sequences were aligned with virus genomes. Then MAGE 5.0, k-estimated software, as well as other software programs were used for systemic evolutionary, selection pressure, and evolutionary distance analysis. The results of the pairwise ratio of non-synonymous to synonymous substitution values and evolutionary distances showed that ubiquitin from baculovirus and insect hosts have been under purifying selection during evolution and are thus evolutionarily conserved. Moreover, genes from insect hosts were more conserved than those in baculovirus. Analysis of the non-synonymous to synonymous substitution rates at each site and entropy calculations revealed the evolutionary status of every site in the ubiquitin genes of baculovirus and their hosts. Genome locations and phylogenetic trees indicated that granuloviruses and non-photosynthetic vegetation evolved, and granulovirus evolution was more similar to that of insect hosts. Our results suggest that the ubiquitin gene in baculovirus may have been acquired through horizontal transfer from the host.

  2. Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination.

    Science.gov (United States)

    Hsiao, Eric S L; Tzen, Jason T C

    2011-01-01

    Sesame (Sesamum indicum L.) seed oil bodies are composed of triacylglycerols encapsulated by a monolayer of phospholipids embedded with three classes of proteins, oleosin, caleosin and steroleosin. Among proteins extracted from sesame oil bodies after germination, laddering bands higher than the original antigens were recognized by antibodies against oleosin-H (17 kDa) and caleosin (27 kDa), but not those against oleosin-L (15 kDa), steroleosin-A (39 kDa) and steroleosin-B (41 kDa). Regardless the original antigens, the lowest but relatively abundant laddering band (32 kDa) detected by antibodies against oleosin-H and that (42 kDa) detected by antibodies against caleosin were eluted from SDS-PAGE gels, and then subjected to mass spectrometric analyses. The results showed that the 32 kDa and 42 kDa bands were ubiquitinated oleosin-H and caleosin, respectively. The ubiquitination was further confirmed by immunological detection using antibodies against ubiquitin. Ubiquitination sites were found at three lysine residues (130, 143 and 145) of oleosin-H and two lysine residues (165 and 235) of caleosin. Two ubiquitination sites of oleosin-H, Lys(143) and Lys(145), were located in the extra 18-residue segment found only in oleosin-H, but not oleosin-L isoforms. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  3. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    Science.gov (United States)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  4. A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains.

    Science.gov (United States)

    Kristariyanto, Yosua Adi; Abdul Rehman, Syed Arif; Weidlich, Simone; Knebel, Axel; Kulathu, Yogesh

    2017-03-01

    The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage-selective recognition of Ub chains by Ub-binding domain (UBD)-containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY-1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48-linked polyUb. We here identify that this linkage-selective binding is mediated by a single MIU motif (MIU2) in MINDY-1. The crystal structure of MIU2 in complex with K48-linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48-linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs. © 2017 The Authors.

  5. Inactivation of the putative ubiquitin-E3 ligase PDLIM2 in classical Hodgkin and anaplastic large cell lymphoma

    Science.gov (United States)

    Wurster, K D; Hummel, F; Richter, J; Giefing, M; Hartmann, S; Hansmann, M-L; Kreher, S; Köchert, K; Krappmann, D; Klapper, W; Hummel, M; Wenzel, S-S; Lenz, G; Janz, M; Dörken, B; Siebert, R; Mathas, S

    2017-01-01

    Apart from its unique histopathological appearance with rare tumor cells embedded in an inflammatory background of bystander cells, classical Hodgkin lymphoma (cHL) is characterized by an unusual activation of a broad range of signaling pathways involved in cellular activation. This includes constitutive high-level activity of nuclear factor-κB (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), activator protein-1 (AP-1) and interferon regulatory factor (IRF) transcription factors (TFs) that are physiologically only transiently activated. Here, we demonstrate that inactivation of the putative ubiquitin E3-ligase PDLIM2 contributes to this TF activation. PDLIM2 expression is lost at the mRNA and protein levels in the majority of cHL cell lines and Hodgkin and Reed–Sternberg (HRS) cells of nearly all cHL primary samples. This loss is associated with PDLIM2 genomic alterations, promoter methylation and altered splicing. Reconstitution of PDLIM2 in HRS cell lines inhibits proliferation, blocks NF-κB transcriptional activity and contributes to cHL-specific gene expression. In non-Hodgkin B-cell lines, small interfering RNA-mediated PDLIM2 knockdown results in superactivation of TFs NF-κB and AP-1 following phorbol 12-myristate 13-acetate (PMA) stimulation. Furthermore, expression of PDLIM2 is lost in anaplastic large cell lymphoma (ALCL) that shares key biological aspects with cHL. We conclude that inactivation of PDLIM2 is a recurrent finding in cHL and ALCL, promotes activation of inflammatory signaling pathways and thereby contributes to their pathogenesis. PMID:27538486

  6. Supply Chain Management og Supply Chain costing

    DEFF Research Database (Denmark)

    Nielsen, Steen; Mortensen, Ole

    2002-01-01

    Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed...

  7. Hepatitis B Virus-Induced Parkin-Dependent Recruitment of Linear Ubiquitin Assembly Complex (LUBAC to Mitochondria and Attenuation of Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mohsin Khan

    2016-06-01

    Full Text Available Hepatitis B virus (HBV suppresses innate immune signaling to establish persistent infection. Although HBV is a DNA virus, its pre-genomic RNA (pgRNA can be sensed by RIG-I and activates MAVS to mediate interferon (IFN λ synthesis. Despite of the activation of RIG-I-MAVS axis by pgRNA, the underlying mechanism explaining how HBV infection fails to induce interferon-αβ (IFN synthesis remained uncharacterized. We demonstrate that HBV induced parkin is able to recruit the linear ubiquitin assembly complex (LUBAC to mitochondria and abrogates IFN β synthesis. Parkin interacts with MAVS, accumulates unanchored linear polyubiquitin chains on MAVS via LUBAC, to disrupt MAVS signalosome and attenuate IRF3 activation. This study highlights the novel role of parkin in antiviral signaling which involves LUBAC being recruited to the mitochondria. These results provide avenues of investigations on the role of mitochondrial dynamics in innate immunity.

  8. Understanding the Chain Fountain

    CERN Document Server

    Biggins, John Simeon

    2013-01-01

    If a chain is initially at rest in a beaker at a height h1 above the ground, and the end of the chain is pulled over the rim of the beaker and down towards the ground and then released, the chain will spontaneously "flow" out of the beaker under gravity. Furthermore, if h1 is sufficient, the beads do not simply drag over the edge of the beaker but form a fountain reaching a height h2 above it. We show that the formation of a fountain requires that the beads come into motion not only by being pulled upwards by the part of the chain immediately above the pile, but also by being pushed upwards by an anomalous reaction force from the pile of stationary chain. We propose possible origins for this force, argue that its magnitude will be proportional to the square of the chain velocity, and predict and verify experimentally that h2 is proportional to h1.

  9. Binding to any ESCRT can mediate ubiquitin-independent cargo sorting

    Science.gov (United States)

    Mageswaran, Shrawan Kumar; Dixon, Megan Gorringe; Curtiss, Matt; Keener, James P.; Babst, Markus

    2013-01-01

    The ESCRT machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT-like protein fusions. These studies showed that lowering ESCRT-binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin-independent MVB sorting. PMID:24148098

  10. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2011-01-01

    DNA double-strand breaks (DSBs) represent the most destructive type of chromosomal lesion and trigger rapid chromatin restructuring accompanied by accumulation of proteins in the vicinity of the DSB. Non-proteolytic ubiquitylation of chromatin surrounding DSBs, mediated by the RNF8/RNF168 ubiquitin...... ligase cascade, has emerged as a key mechanism for restoration of genome integrity by licensing the DSB-modified chromatin to concentrate genome caretaker proteins such as 53BP1 and BRCA1 near the lesions. In parallel, SUMOylation of upstream DSB regulators is also required for execution...... of this ubiquitin-dependent chromatin response, but its molecular basis is currently unclear. Here, we discuss recent insights into how ubiquitin- and SUMO-dependent signaling processes cooperate to orchestrate protein interactions with sites of DNA damage to facilitate DSB repair....

  11. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

    Science.gov (United States)

    Wu, Hong; Watanabe, Tomoko; Araki, Yoshio; Kitagaki, Hiroshi; Akao, Takeshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2009-06-01

    Sake yeast can produce high levels of ethanol in concentrated rice mash. While both sake and laboratory yeast strains belong to the species Saccharomyces cerevisiae, the laboratory strains produce much less ethanol. This disparity in fermentation activity may be due to the strains' different responses to environmental stresses, including ethanol accumulation. To obtain more insight into the stress response of yeast cells under sake brewing conditions, we carried out small-scale sake brewing tests using laboratory yeast strains disrupted in specific stress-related genes. Surprisingly, yeast strains with disrupted ubiquitin-related genes produced more ethanol than the parental strain during sake brewing. The elevated fermentation ability conferred by disruption of the ubiquitin-coding gene UBI4 was confined to laboratory strains, and the ubi4 disruptant of a sake yeast strain did not demonstrate a comparable increase in ethanol production. These findings suggest different roles for ubiquitin in sake and laboratory yeast strains.

  12. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase

    DEFF Research Database (Denmark)

    Liu, C.; Poitelea, M.; Watson, A.

    2005-01-01

    Cullin-4 forms a scaffold for multiple ubiquitin ligases. In Schizosaccharomyces pombe, the Cullin-4 homologue (Pcu4) physically associates with Ddb1 and the COP9 signalosome (CSN). One target of this complex is Spd1. Spd1 regulates ribonucleotide reductase (RNR) activity. Spd1 degradation during S...... phase, or following DNA damage of G2 cells, results in the nuclear export of the small RNR subunit. We demonstrate that Cdt2, an unstable WD40 protein, is a regulatory subunit of Pcu4-Ddb1-CSN ubiquitin ligase. cdt2 deletion stabilises Spd1 and prevents relocalisation of the small RNR subunit from...... degradation. We propose that Cdt2 incorporation into the Pcu4-Ddb1-CSN complex prompts Spd1 targeting and subsequent degradation and that Cdt2 is a WD40 repeat adaptor protein for Cullin-4-based ubiquitin ligase....

  13. Roles of Ubiquitination and SUMOylation on Prostate Cancer: Mechanisms and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Zhenbang Chen

    2015-02-01

    Full Text Available The initiation and progression of human prostate cancer are highly associated with aberrant dysregulations of tumor suppressors and proto-oncogenes. Despite that deletions and mutations of tumor suppressors and aberrant elevations of oncogenes at the genetic level are reported to cause cancers, emerging evidence has revealed that cancer progression is largely regulated by posttranslational modifications (PTMs and epigenetic alterations. PTMs play critical roles in gene regulation, cellular functions, tissue development, diseases, malignant progression and drug resistance. Recent discoveries demonstrate that ubiquitination and SUMOylation are complicated but highly-regulated PTMs, and make essential contributions to diseases and cancers by regulation of key factors and signaling pathways. Ubiquitination and SUMOylation pathways can be differentially modulated under various stimuli or stresses in order to produce the sustained oncogenic potentials. In this review, we discuss some new insights about molecular mechanisms on ubiquitination and SUMOylation, their associations with diseases, oncogenic impact on prostate cancer (PCa and clinical implications for PCa treatment.

  14. Food supply chains

    OpenAIRE

    Zhou, Qian

    2011-01-01

    The dissertation analyses food waste in global supply chain. From the related managerial literature, the process of supply chain operation, from agriculture, manufacturing, warehouses, retailers to customers are explained clearly. Then the reasons and characteristics of food wastes in any point of food supply chain are analyzed. From some case studies and questionnaire investigation, some corresponding methods to reduce food waste are put forward in the following. Lastly, in terms of method s...

  15. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.

    2011-01-01

    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  16. Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease.

    Science.gov (United States)

    Chou, Chi-Yuan; Lai, Hsing-Yi; Chen, Hung-Yi; Cheng, Shu-Chun; Cheng, Kai-Wen; Chou, Ya-Wen

    2014-02-01

    Papain-like protease (PLpro) is one of two cysteine proteases involved in the proteolytic processing of the polyproteins of Severe acute respiratory syndrome coronavirus (SARS-CoV). PLpro also shows significant in vitro deubiquitinating and de-ISGylating activities, although the detailed mechanism is still unclear. Here, the crystal structure of SARS-CoV PLpro C112S mutant in complex with ubiquitin (Ub) is reported at 1.4 Å resolution. The Ub core makes mostly hydrophilic interactions with PLpro, while the Leu-Arg-Gly-Gly C-terminus of Ub is located in the catalytic cleft of PLpro, mimicking the P4-P1 residues and providing the first atomic insights into its catalysis. One of the O atoms of the C-terminal Gly residue of Ub is located in the oxyanion hole consisting of the main-chain amides of residues 112 and 113. Mutations of residues in the PLpro-Ub interface lead to reduced catalytic activity, confirming their importance for Ub binding and/or catalysis. The structure also revealed an N-cyclohexyl-2-aminethanesulfonic acid molecule near the catalytic triad, and kinetic studies suggest that this binding site is also used by other PLpro inhibitors. Overall, the structure provides a foundation for understanding the molecular basis of coronaviral PLpro catalysis.

  17. The molecular basis of ubiquitin-like protein NEDD8 deamidation by the bacterial effector protein Cif.

    Science.gov (United States)

    Crow, Allister; Hughes, Richard K; Taieb, Frédéric; Oswald, Eric; Banfield, Mark J

    2012-07-03

    The cycle inhibiting factors (Cifs) are a family of translocated effector proteins, found in diverse pathogenic bacteria, that interfere with the host cell cycle by catalyzing the deamidation of a specific glutamine residue (Gln40) in NEDD8 and the related protein ubiquitin. This modification prevents recycling of neddylated cullin-RING ligases, leading to stabilization of various cullin-RING ligase targets, and also prevents polyubiquitin chain formation. Here, we report the crystal structures of two Cif/NEDD8 complexes, revealing a conserved molecular interface that defines enzyme/substrate recognition. Mutation of residues forming the interface suggests that shape complementarity, rather than specific individual interactions, is a critical feature for complex formation. We show that Cifs from diverse bacteria bind NEDD8 in vitro and conclude that they will all interact with their substrates in the same way. The "occluding loop" in Cif gates access to Gln40 by forcing a conformational change in the C terminus of NEDD8. We used native PAGE to follow the activity of Cif from the human pathogen Yersinia pseudotuberculosis and selected variants, and the position of Gln40 in the active site has allowed us to propose a catalytic mechanism for these enzymes.

  18. Supply chain planning classification

    Science.gov (United States)

    Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans

    2001-10-01

    Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.

  19. Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2016-06-09

    The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known to stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.

  20. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  1. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Meerang, Mayura; Ritz, Danilo; Paliwal, Shreya

    2011-01-01

    cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling...

  2. The Ubiquitin-Specific Protease 14 (USP14) Is a Critical Regulator of Long-Term Memory Formation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Hallengren, Jada J.; Wilson, Scott M.; Helmstetter, Fred J.

    2014-01-01

    Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme…

  3. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation

    DEFF Research Database (Denmark)

    Adhikary, Sovana; Marinoni, Federica; Hock, Andreas

    2005-01-01

    The Myc oncoprotein forms a binary activating complex with its partner protein, Max, and a ternary repressive complex that, in addition to Max, contains the zinc finger protein Miz1. Here we show that the E3 ubiquitin ligase HectH9 ubiquitinates Myc in vivo and in vitro, forming a lysine 63-linked...

  4. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression

    DEFF Research Database (Denmark)

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S.

    2017-01-01

    T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR...

  5. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide

    OpenAIRE

    Fischer, Eric S.; Böhm, Kerstin; Lydeard, John R.; Yang, Haidi; Stadler, Michael B.; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M.; Tichkule, Ritesh B.; Schebesta, Michael; Forrester, William C.; Schirle, Markus; Hassiepen, Ulrich

    2015-01-01

    In the 1950s the drug thalidomide administered as a sedative to pregnant women led to the birth of thousands of children with multiple defects. Despite its teratogenicity, thalidomide and its derivatives lenalidomide and pomalidomide (together known as Immunomodulatory Drugs: IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-dysplasia. IMiDs target the CUL4-RBX1-DDB1-CRBN (CRL4CRBN) E3 ubiquitin ligase and promote the ubiquitination of Ikaros/Aiolos transcription fac...

  6. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling

    Institute of Scientific and Technical Information of China (English)

    Feng Wang; Xing Wang Deng

    2011-01-01

    The ubiquitin-proteasome system (UPS) in plants,like in other eukaryotes,targets numerous intracellular regulators and thus modulates almost every aspect of growth and development.The well-known and best-characterized outcome of ubiquitination is mediating target protein degradation via the 26S proteasome,which represents the major selective protein degradation pathway conserved among eukaryotes.In this review,we will discuss the molecular composition,regulation and function of plant UPS,with a major focus on how DELLA protein degradation acts as a key in gibberellin signal transduction and its implication in the regulation of plant growth.

  7. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation

    OpenAIRE

    Xu, Zhiliang; Song,Zhenhua; Li, Guoping; Tu, Huayu; Liu, Weixiao; Liu, Yujiao; Wang, Pan; Wang, Yuanting; Cui, Xiuhong; Liu, Chao; Shang, Yongliang; de Rooij, Dirk G.; Gao, Fei; Li, Wei

    2016-01-01

    Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility. The Stra8-Rnf20−/− spermatocytes arrest at the pachytene stage because of impaired programmed double-strand break (DSB...

  8. Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive.

    Science.gov (United States)

    Ribeiro-Rodrigues, Teresa M; Catarino, Steve; Pinho, Maria J; Pereira, Paulo; Girao, Henrique

    2015-06-01

    Connexins (Cxs) are transmembrane proteins that form channels which allow direct intercellular communication (IC) between neighbouring cells via gap junctions. Mechanisms that modulate the amount of channels at the plasma membrane have emerged as important regulators of IC and their de-regulation has been associated with various diseases. Although Cx-mediated IC can be modulated by different mechanisms, ubiquitination has been described as one of the major post-translational modifications involved in Cx regulation and consequently IC. In this review, we focus on the role of ubiquitin and its effect on gap junction intercellular communication.

  9. The E3 Ligase CHIP Mediates Ubiquitination and Degradation of Mixed-Lineage Kinase 3

    OpenAIRE

    Blessing, Natalya A.; Brockman, April L.; Chadee, Deborah N.

    2014-01-01

    Mixed-lineage kinase 3 (MLK3) activates mitogen-activated protein kinase (MAPK) signaling pathways and has important functions in migration, invasion, proliferation, tumorigenesis, and apoptosis. We investigated the role of the E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) in the regulation of MLK3 protein levels. We show that CHIP interacts with MLK3 and, together with the E2 ubiquitin-conjugating enzyme UbcH5 (UbcH5a, -b, -c, or -d), ubiquitinates MLK3 in vitro. CHIP or Hs...

  10. Role of the ubiquitin system and tumor viruses in AIDS-related cancer.

    Science.gov (United States)

    Shackelford, Julia; Pagano, Joseph S

    2007-11-22

    Tumor viruses are linked to approximately 20% of human malignancies worldwide. This review focuses on examples of human oncogenic viruses that manipulate the ubiquitin system in a subset of viral malignancies; those associated with AIDS. The viruses include Kaposi's sarcoma herpesvirus, Epstein-Barr virus and human papilloma virus, which are causally linked to Kaposi's sarcoma, certain B-cell lymphomas and cervical cancer, respectively. We discuss the molecular mechanisms by which these viruses subvert the ubiquitin system and potential viral targets for anti-cancer therapy from the perspective of this system. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).

  11. The SOCS2 Ubiquitin Ligase Complex Regulates Growth Hormone Receptor Levels

    DEFF Research Database (Denmark)

    Vesterlund, Mattias; Zadjali, Fahad; Persson, Torbjörn

    2011-01-01

    that SOCS2 is part of a multimeric complex with intrinsic ubiquitin ligase activity. Mutational analysis shows that the interaction with Elongin B/C controls SOCS2 protein turnover and affects its molecular activity. Increased GHR levels were observed in livers from SOCS2(-/-) mice and in the absence...... to be responsible for the interaction with SOCS2, but only Y487 to account for the effects of SOCS2. The demonstration that SOCS2 is an ubiquitin ligase for the GHR unveils the molecular basis for its physiological actions....

  12. Cullin-RING Ubiquitin Ligase Family in Plant Abiotic Stress Pathways

    Institute of Scientific and Technical Information of China (English)

    Liquan Guo; Cynthia D.Nezames; Lianxi Sheng; Xingwang Deng; Ning Wei

    2013-01-01

    The ubiquitin-proteasome system is a key mechanism that plants use to generate adaptive responses in coping with various environmental stresses.Cullin-RING (CRL) complexes represent a predominant group of ubiquitin E3 ligases in this system.In this review,we focus on the CRL E3s that have been implicated in abiotic stress signaling pathways in Arabidopsis.By comparing and analyzing these cases,we hope to gain a better understanding on how CRL complexes work under various settings in an attempt to decipher the clues about the regulatory mechanism of CRL E3s.

  13. Independent sets in chain cacti

    CERN Document Server

    Sedlar, Jelena

    2011-01-01

    In this paper chain cacti are considered. First, for two specific classes of chain cacti (orto-chains and meta-chains of cycles with h vertices) the recurrence relation for independence polynomial is derived. That recurrence relation is then used in deriving explicit expressions for independence number and number of maximum independent sets for such chains. Also, the recurrence relation for total number of independent sets for such graphs is derived. Finaly, the proof is provided that orto-chains and meta-chains are the only extremal chain cacti with respect to total number of independent sets (orto-chains minimal and meta-chains maximal).

  14. Value Chain Engineering

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Slepniov, Dmitrij

    2015-01-01

    This workbook is recommended for the attention of students of and managers in Danish small and medium sized enterprises (SMEs). Danish SMEs are currently facing a number of key challenges related to their position in global value chains. This book provides an insight into value chain management t...

  15. Sustainable Supply Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy

    design for TBL sustainability. These are located in catastrophe-ridden Haiti and supported by the Germany-based investor company Yunus Social Business. Three supply chain archetypes combining physical and support chains are presented that focus on TBL sustainable outputs and outcomes. For SSCM research...

  16. Supply Chain Management

    DEFF Research Database (Denmark)

    Wieland, Andreas; Handfield, Robert B.

    Supply chain management has made great strides in becoming a discipline with a standalone body of theories. As part of this evolution, researchers have sought to embed and integrate observed supply chain management phenomena into theoretical statements. In our review, we explore where we have been...

  17. REVERSE SUPPLY CHAIN

    Directory of Open Access Journals (Sweden)

    Tomasz DOMAGAŁA

    2013-10-01

    Full Text Available The paper focuses on the presentation of the reverse supply chain, of which the role in the modern business grows along with the increasing number of environmental regulations and possibilities of reducing an operating cost. The paper also describes main problems in developing the profitable chain and possibilities to take an action in order to overcome them.

  18. Fields From Markov Chains

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2005-01-01

    A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly.......A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly....

  19. Decisive Markov Chains

    CERN Document Server

    Abdulla, Parosh Aziz; Mayr, Richard

    2007-01-01

    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show...

  20. Supply Chain Management

    DEFF Research Database (Denmark)

    Wieland, Andreas; Handfield, Robert B.

    Supply chain management has made great strides in becoming a discipline with a standalone body of theories. As part of this evolution, researchers have sought to embed and integrate observed supply chain management phenomena into theoretical statements. In our review, we explore where we have been...

  1. Shared Value Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy L.

    In Sustainable Supply Chain Management (SSCM) research still the classic economic perspective is the dominating perspective, although the triple bottom line (including economic, social and ecological) is well accepted. The theoretical foundation for the paper is Stakeholder Theory. Case studies...... in local communities, fundamentally changing supply chains....

  2. Project Decision Chain

    DEFF Research Database (Denmark)

    Rolstadås, Asbjørn; Pinto, Jeffrey K.; Falster, Peter

    2015-01-01

    To add value to project performance and help obtain project success, a new framework for decision making in projects is defined. It introduces the project decision chain inspired by the supply chain thinking in the manufacturing sector and uses three types of decisions: authorization, selection...

  3. THE UBIQUITIN-PROTEASOME SYSTEM: POTENTIAL THERAPEUTIC TARGETS FOR ALZHEIMER’S DISEASE AND SPINAL CORD INJURY

    Directory of Open Access Journals (Sweden)

    Bing eGong

    2016-01-01

    Full Text Available The ubiquitin-proteasome system (UPS is a crucial protein degradation system in eukaryotes. Herein we will review advances in the understanding of the role of several proteins of the UPS in Alzheimer’s disease (AD and functional recovery after spinal cord injury (SCI. The UPS consists of many factors that include E3 ubiquitin ligases, ubiquitin hydrolases, ubiquitin and ubiquitin-like molecules, and the proteasome itself. An extensive body of work links UPS dysfunction with AD pathogenesis and progression. More recently, the UPS has been shown to have vital roles in recovery of function after SCI. The ubiquitin hydrolase Uch-L1 has been proposed to increase cellular levels of mono-ubiquitin and hence to increase rates of protein turnover by the UPS. A low Uch-L1 level has been linked with Aß accumulation in AD and reduced neuroregeneration after SCI. One likely mechanism for these beneficial effects of Uch-L1 is reduced turnover of the PKA regulatory subunit and, consequently, reduced signaling via CREB. The neuron-specific F-box protein Fbx2 ubiquitinates ß-secretase thus targeting it for proteasomal degradation and reducing generation of Aß. Both Uch-L1 and Fbx2 improve synaptic plasticity and cognitive function in mouse AD models. The role of Fbx2 after SCI has not been examined, but abolishing ß-secretase reduces neuronal recovery after SCI, associated with reduced myelination. UBB+1, which arises through a frame-shift mutation in the ubiquitin gene that adds 19 amino acids to the C-terminus of ubiquitin, inhibits proteasomal function and is associated with increased neurofibrillary tangles in patients with AD, Pick’s disease and Downs syndrome. These advances in understanding of the roles of the UPS in AD and SCI raise new questions but, also, identify attractive and exciting targets for potential, future therapeutic interventions.

  4. Targeted ubiquitination and degradation of G-protein-coupled receptor kinase 5 by the DDB1-CUL4 ubiquitin ligase complex.

    Directory of Open Access Journals (Sweden)

    Ziyan Wu

    Full Text Available The G protein-coupled receptor kinases (GRKs phosphorylate agonist occupied G protein-coupled receptors (GPCRs and desensitize GPCR-mediated signaling. Recent studies indicate they also function non-catalytically via interaction with other proteins. In this study, a proteomic approach was used to screen interacting proteins of GRK5 in MDA-MB-231 cells and HUVEC cells. Mass spectrometry analysis reveals several proteins in the GRK5 immunocomplex including damaged DNA-binding protein 1 (DDB1, an adaptor subunit of the CUL4-ROC1 E3 ubiquitin ligase complex. Co-immunoprecipitation experiments confirmed the association of GRK5 with DDB1-CUL4 complex, and reveal that DDB1 acts as an adapter to link GRK5 to CUL4 to form the complex. Overexpression of DDB1 promoted, whereas knockdown of DDB1 inhibited the ubiquitination of GRK5, and the degradation of GRK5 was reduced in cells deficient of DDB1. Furthermore, the depletion of DDB1 decreased Hsp90 inhibitor-induced GRK5 destabilization and UV irradiation-induced GRK5 degradation. Thus, our study identified potential GRK5 interacting proteins, and reveals the association of GRK5 with DDB1 in cell and the regulation of GRK5 level by DDB1-CUL4 ubiquitin ligase complex-dependent proteolysis pathway.

  5. Supply Chain Connectivity: Enhancing Participation in the Global Supply Chain

    OpenAIRE

    Epictetus E. Patalinghug

    2015-01-01

    Supply chain connectivity is vital for the efficient flow of trade among APEC economies. This paper reviews the literature and supply chain management, describes the barriers to enhancing participation in global supply chain, analyzes the various measures of supply chain performance, and suggests steps for the Philippines to fully reap the benefits of the global value chain.

  6. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.

    Science.gov (United States)

    Xie, Qi; Guo, Hui-Shan; Dallman, Geza; Fang, Shengyun; Weissman, Allan M; Chua, Nam-Hai

    2002-09-12

    The plant hormone indole-3 acetic acid (IAA or auxin) controls many aspects of plant development, including the production of lateral roots. Ubiquitin-mediated proteolysis has a central role in this process. The genes AXR1 and TIR1 aid the assembly of an active SCF (Skp1/Cullin/F-box) complex that probably promotes degradation of the AUX/IAA transcriptional repressors in response to auxin. The transcription activator NAC1, a member of the NAM/CUC family of transcription factors, functions downstream of TIR1 to transduce the auxin signal for lateral root development. Here we show that SINAT5, an Arabidopsis homologue of the RING-finger Drosophila protein SINA, has ubiquitin protein ligase activity and can ubiquitinate NAC1. This activity is abolished by mutations in the RING motif of SINAT5. Overexpressing SINAT5 produces fewer lateral roots, whereas overexpression of a dominant-negative Cys49 --> Ser mutant of SINAT5 develops more lateral roots. These lateral root phenotypes correlate with the expression of NAC1 observed in vivo. Low expression of NAC1 in roots can be increased by treatment with a proteasome inhibitor, which indicates that SINAT5 targets NAC1 for ubiquitin-mediated proteolysis to downregulate auxin signals in plant cells.

  7. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  8. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    Energy Technology Data Exchange (ETDEWEB)

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.; Luo, Kunxin

    2001-09-11

    Smad proteins mediate transforming growth factor-b signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGFb signaling that functions to maintain the repressed state of TGFb target genes in the absence of ligand. Upon TGFb stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGFb target genes. Here we show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase promoting complex (APC) and the UbcH5 family of ubiquitin conjugating enzymes. Smad3 and to a lesser extent, Smad2, interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box-dependent manner. In addition to the destruction box, efficient degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGFb signaling. Our studies elucidate an important pathway for the degradation of SnoN and reveal a novel role of the APC in regulation of TGFb signaling.

  9. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells.

    Science.gov (United States)

    Chen, Xi; Shen, Jianjun; Li, Xingyu; Wang, Xi; Long, Min; Lin, Fang; Wei, Junxia; Yang, Longfei; Yang, Chinglai; Dong, Ke; Zhang, Huizhong

    2014-07-01

    Stathmin is an oncoprotein and is expressed at high levels in a wide variety of human malignancies, which plays important roles in maintenance of malignant phenotypes. The regulation of Stathmin gene overexpression has been wildly explored, but the exact mechanism still needs to be elucidated. It is believed that regulation of an oncogene protein abundance through post-translational modifications is essential for maintenance of malignant phenotypes. Here we identified the Rlim, a Ring H2 zinc finger protein with intrinsic ubiquitin ligase activity, as a Stathmin-interacting protein that could increase Stathmin turnover through binding with this targeted protein and then induce its degradation by proteasome in a ubiquitin-dependent manner. Inhibition of endogenous Rlim expression by siRNA could increase the level of Stathmin protein, which further led to cell proliferation and cell cycle changes in human osteosarcoma cell lines. On the other hand, forced overexpression of Rlim could decrease the level of Stathmin protein. These results demonstrate that Rlim is involved in the negative regulation of Stathmin protein level through physical interaction and ubiquitin-mediated proteolysis. Hence, Rlim is a novel regulator of Stathmin protein in a ubiquitin-dependent manner, and represents a new pathway for malignant phenotype turnover by modulating the level of Stathmin protein in human osteosarcomas.

  10. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA.

    Science.gov (United States)

    Zhong, Bo; Zhang, Lu; Lei, Caoqi; Li, Ying; Mao, Ai-Ping; Yang, Yan; Wang, Yan-Yi; Zhang, Xiao-Lian; Shu, Hong-Bing

    2009-03-20

    Viral infection activates transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. MITA (also known as STING) has recently been identified as an adaptor that links virus-sensing receptors to IRF3 activation. Here, we showed that the E3 ubiquitin ligase RNF5 interacted with MITA in a viral-infection-dependent manner. Overexpression of RNF5 inhibited virus-triggered IRF3 activation, IFNB1 expression, and cellular antiviral response, whereas knockdown of RNF5 had opposite effects. RNF5 targeted MITA at Lys150 for ubiquitination and degradation after viral infection. Both MITA and RNF5 were located at the mitochondria and endoplasmic reticulum (ER) and viral infection caused their redistribution to the ER and mitochondria, respectively. We further found that virus-induced ubiquitination and degradation of MITA by RNF5 occurred at the mitochondria. These findings suggest that RNF5 negatively regulates virus-triggered signaling by targeting MITA for ubiquitination and degradation at the mitochondria.

  11. Ubiquitin-SUMO Circuitry Controls Activated Fanconi Anemia ID Complex Dosage in Response to DNA Damage

    DEFF Research Database (Denmark)

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase...

  12. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart

    Science.gov (United States)

    In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known. We set out to characterize the transcriptional profile of regulators of the UPS during atrop...

  13. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.

    Science.gov (United States)

    Fischer, Eric S; Böhm, Kerstin; Lydeard, John R; Yang, Haidi; Stadler, Michael B; Cavadini, Simone; Nagel, Jane; Serluca, Fabrizio; Acker, Vincent; Lingaraju, Gondichatnahalli M; Tichkule, Ritesh B; Schebesta, Michael; Forrester, William C; Schirle, Markus; Hassiepen, Ulrich; Ottl, Johannes; Hild, Marc; Beckwith, Rohan E J; Harper, J Wade; Jenkins, Jeremy L; Thomä, Nicolas H

    2014-08-07

    In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.

  14. The Ubiquitin-Proteasome System and Its Role in Inflammatory and Autoimmune Diseases

    Institute of Scientific and Technical Information of China (English)

    Jingsong Wang; Michael A. Maldonado

    2006-01-01

    Protein degradation through the ubiquitin-proteasome system is the major pathway of non-lysosomal proteolysis of intracellular proteins. It plays important roles in a variety of fundamental cellular processes such as regulation of cell cycle progression, division, development and differentiation, apoptosis, cell trafficking, and modulation of the immune and inflammatory responses. The central element of this system is the covalent linkage of ubiquitin to targeted proteins, which are then recognized by the 26S proteasome, an adenosine triphosphate-dependent,multi-catalytic protease. Damaged, oxidized, or misfolded proteins as well as regulatory proteins that control many critical cellular functions are among the targets of this degradation process. Aberration of this system leads to the dysregulation of cellular homeostasis and the development of multiple diseases. In this review, we described the basic biochemistry and molecular biology of the ubiquitin-proteasome system, and its complex role in the development of inflammatory and autoimmune diseases. In addition, therapies and potential therapeutic targets related to the ubiquitin-proteasome system are discussed as well. Cellular & Molecular Immunology. 2006;3(4):255-261.

  15. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

    NARCIS (Netherlands)

    Reggiori, Fulvio; Pelham, Hugh R B; Reggiori, Fulvio

    2002-01-01

    Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. W

  16. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNF AIP3/A20

    NARCIS (Netherlands)

    Drennan, M.B. (Michael B.); Govindarajan, S. (Srinath); Verheugen, E. (Eveline); Coquet, J.M. (Jonathan M.); Staal, J. (Jens); McGuire, C. (Conor); T. Taghon (Tom); G. Leclercq (Georges); R. Beyaert (Rudi); G. van Loo (Geert); B.N.M. Lambrecht (Bart); Elewaut, D. (Dirk)

    2016-01-01

    textabstractNatural killer T (NKT) cells are innate lymphocytes that differentiate into NKT1, NKT2, and NKT17 sublineages during development. However, the signaling events that control NKT sublineage specification and differentiation remain poorly understood. Here, we demonstrate that the ubiquitin-

  17. Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1

    Energy Technology Data Exchange (ETDEWEB)

    Popko-Scibor, Anita E.; Lindberg, Mikael J.; Hansson, Magnus L.; Holmlund, Teresa [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden); Wallberg, Annika E., E-mail: Annika.Wallberg@ki.se [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm (Sweden)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer p300 acetylates conserved lysines within Notch1 C-terminal nuclear localization signal. Black-Right-Pointing-Pointer MAML1 and CSL, components of Notch transcription complex, increase Notch acetylation. Black-Right-Pointing-Pointer MAML1-dependent acetylation of Notch1 by p300 decreases the ubiquitination of Notch1. Black-Right-Pointing-Pointer CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. -- Abstract: Earlier studies demonstrated the involvement of the p300 histone acetyltransferase in Notch signaling but the precise mechanisms by which p300 might modulate Notch function remains to be investigated. In this study, we show that p300 acetylates Notch1 ICD in cell culture assay and in vitro, and conserved lysines located within the Notch C-terminal nuclear localization signal are essential for Notch acetylation. MAML1 and CSL, which are components of the Notch transcription complex, enhance Notch acetylation and we suggest that MAML1 increases Notch acetylation by potentiating p300 autoacetylation. Furthermore, MAML1-dependent acetylation of Notch1 ICD by p300 decreases the ubiquitination of Notch1 ICD in cellular assays. CDK8 has been shown to target Notch1 for ubiquitination and proteosomal degradation. We show that CDK8 inhibits Notch acetylation and Notch transcription enhanced by p300. Therefore, we speculate that acetylation of Notch1 might be a mechanism to regulate Notch activity by interfering with ubiquitin-dependent pathways.

  18. Control of the negative IRES trans-acting factor KHSRP by ubiquitination

    Science.gov (United States)

    Kung, Yu-An; Hung, Chuan-Tien; Chien, Kun-Yi; Shih, Shin-Ru

    2017-01-01

    Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation. PMID:27899653

  19. Ubiquitination as a Mechanism To Transport Soluble Mycobacterial and Eukaryotic Proteins to Exosomes.

    Science.gov (United States)

    Smith, Victoria L; Jackson, Liam; Schorey, Jeffrey S

    2015-09-15

    Exosomes are extracellular vesicles of endocytic origin that function in intercellular communication. Our previous studies indicate that exosomes released from Mycobacterium tuberculosis-infected macrophages contain soluble mycobacterial proteins. However, it was unclear how these secreted proteins were targeted to exosomes. In this study, we determined that exosome production by the murine macrophage cell line RAW264.7 requires the endosomal sorting complexes required for transport and that trafficking of mycobacterial proteins from phagocytosed bacilli to exosomes was dependent on protein ubiquitination. Moreover, soluble mycobacterial proteins, when added exogenously to RAW264.7 or human HEK293 cells, were endocytosed, ubiquitinated, and released via exosomes. This suggested that endocytosed proteins could be recycled from cells through exosomes. This hypothesis was supported using the tumor-associated protein He4, which, when endocytosed by RAW264.7 or HEK293 cells, was transported to exosomes in a ubiquitin-dependent manner. Our data suggest that ubiquitination is a modification sufficient for trafficking soluble proteins within the phagocytic/endocytic network to exosomes.

  20. Affinity chromatography using protein immobilized via arginine residues: purification of ubiquitin carboxyl-terminal hydrolases.

    Science.gov (United States)

    Duerksen-Hughes, P J; Williamson, M M; Wilkinson, K D

    1989-10-17

    4-(Oxoacetyl)phenoxyacetic acid (OAPA) forms a stable, covalent bond between its glyoxal group and the guanidino group of arginine and arginine derivatives [Duerksen, P. J., & Wilkinson, K. D. (1987) Anal. Biochem. 160, 444-454]. Studies were carried out to determine the chemical nature of this linkage, and the structure of the stable adduct between OAPA and methylguanidine was elucidated. The stable product results from an internal oxidation-reduction of the Schiff base adduct to form a cyclic alpha-aminoamide, 4-[4-(carboxymethoxy)phenyl]-2-(methylimino)-5-oxoimidazolidine. OAPA coupled to polyacrylamide beads was used to immobilize ubiquitin via its arginine residues, and the resulting affinity support was shown to specifically and reversibly bind a previously described enzyme, ubiquitin carboxyl-terminal hydrolase [Pickart, C. M., & Rose, I. A. (1985) J. Biol. Chem. 260, 7903-7910]. The resin was then used to isolate three newly identified ubiquitin carboxyl-terminal hydrolytic activities, which did not bind to ubiquitin immobilized via lysine residues. Significant purification was achieved in each case, and one isozyme was further purified to homogeneity.

  1. The study of fkbp and ubiquitin reveals interesting aspects of Artemia stress history.

    Science.gov (United States)

    Maniatsi, Stefania; Farmaki, Theodora; Abatzopoulos, Theodore J

    2015-08-01

    Research on stress responses in animals has increased greatly during the last decades. Though most studies focus on the cellular and molecular bases of the stress response mechanisms, the ecological and evolutionary aspects of stress responses gain more and more interest. Here, we use species and parthenogenetic strains of the genus Artemia, an extremophile model organism, to study, for the first time, a protein well known for its chaperone activity and its involvement in stress responses. More specifically, transcription and protein accumulation of an FK506-Binding Protein (FKBP) homologue were investigated under heat and salt stresses. Additionally, the mRNA levels of ubiquitin, a heat-inducible protein related to the proteasomal pathway, were quantitated under these conditions. Biochemical and phylogenetic analyses showed that the studied FKBP orthologue is a typical representative of the family that clusters with other crustacean sequences. The expression was increased in both fkbp and ubiquitin genes after salt and heat stresses. However, our results in combination with the fact that Artemia species and parthenogenetic strains, selected for this study, exhibit different heat or salt tolerance provide useful hints about the evolutionary significance of FKBP and ubiquitin. Regarding FKBP, mRNA expression and protein accumulation seem to depend on the environmental conditions and the evolutionary history of each Artemia population while ubiquitin has a clear and more conserved role under heat shock.

  2. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

    NARCIS (Netherlands)

    Reggiori, Fulvio; Pelham, Hugh R B; Reggiori, Fulvio

    2002-01-01

    Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. W

  3. Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration

    NARCIS (Netherlands)

    H. Seelaar (Harro); K.Y. Klijnsma (Kirsten); I. de Koning (Inge); A. van der Lugt (Aad); W.Z. Chiu (Wang Zheng); A. Azmani (Asma); A.J.M. Rozemuller (Annemieke); J.C. van Swieten (John)

    2010-01-01

    textabstractFrontotemporal lobar degeneration (FTLD) is a clinically, genetically and pathologically heterogeneous disorder. Within FTLD with ubiquitin-positive inclusions (FTLD-U), a new pathological subtype named FTLD-FUS was recently found with fused in sarcoma (FUS) positive, TDP-43-negative inc

  4. Multiple Ionization of Free Ubiquitin Molecular Ions in Extreme Ultraviolet Free-Electron Laser Pulses

    NARCIS (Netherlands)

    Schlathölter, Thomas; Reitsma, Geert; Egorov, Dmitrii; Gonzalez-Magaña, Olmo; Bari, Sadia; Boschman, Leon; Bodewits, Erwin; Schnorr, Kirsten; Schmid, Georg; Schröter, Claus Dieter; Moshammer, Robert; Hoekstra, Ronnie

    2016-01-01

    The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions

  5. Problem-Solving Test: The Role of Ubiquitination in Epidermal Growth Factor Receptor Trafficking

    Science.gov (United States)

    Szeberenyi, Jozsef

    2012-01-01

    Terms to be familiar with before you start to solve the test: growth factor signaling, epidermal growth factor, tyrosine protein kinase, tyrosine phosphorylation, ubiquitin, monoubiquitination, polyubiquitination, site-directed mutagenesis, transfection, expression vector, cDNA, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, Western…

  6. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation.

    Science.gov (United States)

    Aravind, L

    2001-05-01

    Sequence profile analysis was used to detect a conserved globular domain in several proteins including deltex, Trip12 and poly-ADP-ribose polymerase homologs. It was named the WWE domain after its most conserved residues and is predicted to mediate specific protein-protein interactions in ubiquitin and ADP-ribose conjugation systems.

  7. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  8. High Levels of Serum Ubiquitin and Proteasome in a Case of HLA-B27 Uveitis

    Science.gov (United States)

    Rossi, Settimio; Gesualdo, Carlo; Maisto, Rosa; Trotta, Maria Consiglia; Di Carluccio, Nadia; Brigida, Annalisa; Di Iorio, Valentina; Testa, Francesco; Simonelli, Francesca; D’Amico, Michele; Di Filippo, Clara

    2017-01-01

    In this paper, the authors describe a case of high serum levels of ubiquitin and proteasome in a woman under an acute attack of autoimmune uveitis. The woman was 52 years old, diagnosed as positive for the Human leukocyte antigen-B27 gene, and came to our observation in January 2013 claiming a severe uveitis attack that involved the right eye. During the acute attack of uveitis, this woman had normal serum biochemical parameters but higher levels of serum ubiquitin and proteasome 20S subunit, with respect to a healthy volunteer matched for age and sex. These levels correlated well with the clinical score attributed to uveitis. After the patient was admitted to therapy, she received oral prednisone in a de-escalation protocol (doses from 50 to 5 mg/day) for four weeks. Following this therapy, she had an expected reduction of clinical signs and score for uveitis, but concomitantly she had a reduction of the serum levels of ubiquitin, poliubiquitinated proteins (MAb-FK1) and proteasome 20S activity. Therefore, a role for ubiquitin and proteasome in the development of human autoimmune uveitis has been hypothesized. PMID:28245629

  9. High Levels of Serum Ubiquitin and Proteasome in a Case of HLA-B27 Uveitis.

    Science.gov (United States)

    Rossi, Settimio; Gesualdo, Carlo; Maisto, Rosa; Trotta, Maria Consiglia; Di Carluccio, Nadia; Brigida, Annalisa; Di Iorio, Valentina; Testa, Francesco; Simonelli, Francesca; D'Amico, Michele; Di Filippo, Clara

    2017-02-26

    In this paper, the authors describe a case of high serum levels of ubiquitin and proteasome in a woman under an acute attack of autoimmune uveitis. The woman was 52 years old, diagnosed as positive for the Human leukocyte antigen-B27 gene, and came to our observation in January 2013 claiming a severe uveitis attack that involved the right eye. During the acute attack of uveitis, this woman had normal serum biochemical parameters but higher levels of serum ubiquitin and proteasome 20S subunit, with respect to a healthy volunteer matched for age and sex. These levels correlated well with the clinical score attributed to uveitis. After the patient was admitted to therapy, she received oral prednisone in a de-escalation protocol (doses from 50 to 5 mg/day) for four weeks. Following this therapy, she had an expected reduction of clinical signs and score for uveitis, but concomitantly she had a reduction of the serum levels of ubiquitin, poliubiquitinated proteins (MAb-FK1) and proteasome 20S activity. Therefore, a role for ubiquitin and proteasome in the development of human autoimmune uveitis has been hypothesized.

  10. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage

    DEFF Research Database (Denmark)

    Thorslund, Tina; Ripplinger, Anita; Hoffmann, Saskia

    2015-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions that trigger non-proteolytic ubiquitylation of adjacent chromatin areas to generate binding sites for DNA repair factors. This depends on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 (refs 1-6), and UBC13 (also...

  11. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex

    NARCIS (Netherlands)

    Albert, TK; Hanzawa, H; Legtenberg, YIA; de Ruwe, MJ; van den Heuvel, FAJ; Collart, MA; Boelens, R; Timmers, HTM

    2002-01-01

    The RING finger protein CNOT4 is a component of the CCR4-NOT complex. This complex is implicated in repression of RNA polymerase II transcription. Here we demonstrate that CNOT4 functions as a ubiquitin-protein ligase (E3). We show that the unique C4C4 RING domain of CNOT4 interacts with a subset of

  12. pVHL mediates K63-linked ubiquitination of nCLU.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available pVHL, product of von Hippel-Lindau (VHL tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase that targets proteins for ubiquitination and proteasomal degradation. Hypoxia-inducible factor α (HIFα is the well-known substrate of pVHL. Besides HIFα, pVHL also binds to many other proteins and has multiple functions. In this manuscript, we report that the nuclear clusterin (nCLU is a target of pVHL. We found that pVHL had a direct interaction with nCLU. nCLU bound to pVHL at pVHL's β domain, the site for recognition of substrate, indicating that nCLU might be a substrate of pVHL. Interestingly, pVHL bound to nCLU but did not lead to nCLU destruction. Further studies indicated that pVHL mediated K63-linked ubiquitination of nCLU and promoted nCLU nuclear translocation. In summary, our results disclose a novel function of pVHL that mediates K63-linked ubiquitination and identify nCLU as a new target of pVHL.

  13. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation

    NARCIS (Netherlands)

    Sargent, Graeme; van Zutphen, Tim; Shatseva, Tatiana; Zhang, Ling; Di Giovanni, Valeria; Bandsma, Robert; Kim, Peter Kijun

    2016-01-01

    Peroxisomes are metabolic organelles necessary for anabolic and catabolic lipid reactions whose numbers are highly dynamic based on the metabolic need of the cells. One mechanism to regulate peroxisome numbers is through an autophagic process called pexophagy. In mammalian cells, ubiquitination of

  14. The ubiquitin conjugating enzyme, TaU4 regulates wheat defence against the phytopathogen Zymoseptoria tritici

    Science.gov (United States)

    Millyard, Linda; Lee, Jack; Zhang, Cunjin; Yates, Gary; Sadanandom, Ari

    2016-01-01

    Mycosphaerella graminicola (Zymoseptoria tritici commonly known as Septoria), the causal agent of Septoria Leaf Blotch (STB), is considered one of the major threats to European wheat production. Previous studies have shown the importance of ubiquitination in plant defence against a multitude of pathogens. However the ubiquitination machinery in wheat is under studied, particularly E2 enzymes that have the ability to control the ubiquitination and thereby the fate of many different target proteins. In this study we identify an E2 enzyme, Triticum aestivum Ubiquitin conjugating enzyme 4 (TaU4) that functions in wheat defence against Septoria. We demonstrate TaU4 to be a bona fide E2 enzyme through an E2 charging assay. TaU4 localises in both the cytoplasm and nucleus, therefore potentially interacting with E3 ligases and substrate proteins in multiple compartments. Virus Induced Gene Silencing of TaU4 in wheat leaves resulted in delayed development of disease symptoms, reduced Septoria growth and reproduction. We conclude that TaU4 is a novel negative regulator of defence against Septoria. PMID:27759089

  15. Understanding the supply chain

    Directory of Open Access Journals (Sweden)

    Aćimović Slobodan

    2006-01-01

    Full Text Available Supply chain management represents new business philosophy and includes strategically positioned and much wider scope of activity in comparison with its "older brother" - management of logistics. Philosophy of the concept of supply chain is directed to more coordination of key business functions of every link in distribution chain in the process of organization of the flow of both goods and information, while logistic managing instruments are focused on internal optimum of flows of goods and information within one company. Applying the concept of integrated supply chain among several companies makes the importance of operative logistics activity even greater on the level of one company, thus advancing processes of optimum and coordination within and between different companies and confirms the importance of logistics performances for the company’s profitability. Besides the fact that the borders between companies are being deleted, this concept of supply chain in one distribution channel influences increasing of importance of functional, i.e. traditional business managing approaches but instead it points out the importance of process managing approaches. Although the author is aware that "there is nothing harder, more dangerous and with uncertain success, but to find a way for introducing some novelties (Machiavelli, it would be even his additional stimulation for trying to bring closer the concept and goals of supply chain implementation that are identified in key, relevant, modern, theoretical and consulting approaches in order to achieve better understanding of the subject and faster implementation of the concept of supply chain management by domestic companies.

  16. Development Value Chains Meet Business Supply Chains: The concept of Global Value Chains unraveled

    OpenAIRE

    Drost, Sarah; Wijk, Jeroen; Vellema, Sietze

    2011-01-01

    textabstractValue chain promotion is considered a key element of private sector development strategies and pro-poor growth. However, (value) chain concepts are rather complex and unclear. This paper unravels the concept of global value chains and studies the diversity of key value chain-related (supply chain, commodity chain, value chain) approaches. To this aim, we reviewed academic literature and donor agencies’ reports, and consulted a limited number of key informants of donor agencies. Th...

  17. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  18. Global Value Chain Configuration

    DEFF Research Database (Denmark)

    Hernandez, Virginia; Pedersen, Torben

    2017-01-01

    This paper reviews the literature on global value chain configuration, providing an overview of this topic. Specifically, we review the literature focusing on the concept of the global value chain and its activities, the decisions involved in its configuration, such as location, the governance...... modes chosen and the different ways of coordinating them. We also examine the outcomes of a global value chain configuration in terms of performance and upgrading. Our aim is to review the state of the art of these issues, identify research gaps and suggest new lines for future research that would...

  19. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayal Hendel

    2011-09-01

    Full Text Available Translesion DNA synthesis (TLS is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.

  20. Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6.

    Science.gov (United States)

    Min, Yoon; Wi, Sae Mi; Kang, Jung-Ah; Yang, Taewoo; Park, Chul-Seung; Park, Sung-Gyoo; Chung, Sungkwon; Shim, Jae-Hyuck; Chun, Eunyoung; Lee, Ki-Young

    2016-07-28

    Cereblon (CRBN) is a substrate receptor protein for the CRL4A E3 ubiquitin ligase complex. In this study, we report on a new regulatory role of CRBN in TLR4 signaling. CRBN overexpression leads to suppression of NF-κB activation and production of pro-inflammatory cytokines including IL-6 and IL-1β in response to TLR4 stimulation. Biochemical studies revealed interactions between CRBN and TAK1, and TRAF6 proteins. The interaction between CRBN and TAK1 did not affect the association of the TAB1 and TAB2 proteins, which have pivotal roles in the activation of TAK1, whereas the CRBN-TRAF6 interaction critically affected ubiquitination of TRAF6 and TAB2. Binding mapping results revealed that CRBN interacts with the Zinc finger domain of TRAF6, which contains the ubiquitination site of TRAF6, leading to attenuation of ubiquitination of TRAF6 and TAB2. Functional studies revealed that CRBN-knockdown THP-1 cells show enhanced NF-κB activation and p65- or p50-DNA binding activities, leading to up-regulation of NF-κB-dependent gene expression and increased pro-inflammatory cytokine levels in response to TLR4 stimulation. Furthermore, Crbn(-/-) mice exhibit decreased survival in response to LPS challenge, accompanied with marked enhancement of pro-inflammatory cytokines, such as TNF-α and IL-6. Taken together, our data demonstrate that CRBN negatively regulates TLR4 signaling via attenuation of TRAF6 and TAB2 ubiquitination.

  1. Chaperone-dependent E3 ligase CHIP ubiquitinates and mediates proteasomal degradation of soluble guanylyl cyclase.

    Science.gov (United States)

    Xia, Tian; Dimitropoulou, Christiana; Zeng, Jingmin; Antonova, Galina N; Snead, Connie; Venema, Richard C; Fulton, David; Qian, Shuibing; Patterson, Cam; Papapetropoulos, Andreas; Catravas, John D

    2007-11-01

    The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.

  2. Lenalidomide Stabilizes the Erythropoietin Receptor by Inhibiting the E3 Ubiquitin Ligase RNF41.

    Science.gov (United States)

    Basiorka, Ashley A; McGraw, Kathy L; De Ceuninck, Leentje; Griner, Lori N; Zhang, Ling; Clark, Justine A; Caceres, Gisela; Sokol, Lubomir; Komrokji, Rami S; Reuther, Gary W; Wei, Sheng; Tavernier, Jan; List, Alan F

    2016-06-15

    In a subset of patients with non-del(5q) myelodysplastic syndrome (MDS), lenalidomide promotes erythroid lineage competence and effective erythropoiesis. To determine the mechanism by which lenalidomide promotes erythropoiesis, we investigated its action on erythropoietin receptor (EpoR) cellular dynamics. Lenalidomide upregulated expression and stability of JAK2-associated EpoR in UT7 erythroid cells and primary CD71+ erythroid progenitors. The effects of lenalidomide on receptor turnover were Type I cytokine receptor specific, as evidenced by coregulation of the IL3-Rα receptor but not c-Kit. To elucidate this mechanism, we investigated the effects of lenalidomide on the E3 ubiquitin ligase RNF41. Lenalidomide promoted EpoR/RNF41 association and inhibited RNF41 auto-ubiquitination, accompanied by a reduction in EpoR ubiquitination. To confirm that RNF41 is the principal target responsible for EpoR stabilization, HEK293T cells were transfected with EpoR and/or RNF41 gene expression vectors. Steady-state EpoR expression was reduced in EpoR/RNF41 cells, whereas EpoR upregulation by lenalidomide was abrogated, indicating that cellular RNF41 is a critical determinant of drug-induced receptor modulation. Notably, shRNA suppression of CRBN gene expression failed to alter EpoR upregulation, indicating that drug-induced receptor modulation is independent of cereblon. Immunohistochemical staining showed that RNF41 expression decreased in primary erythroid cells of lenalidomide-responding patients, suggesting that cellular RNF41 expression merits investigation as a biomarker for lenalidomide response. Our findings indicate that lenalidomide has E3 ubiquitin ligase inhibitory effects that extend to RNF41 and that inhibition of RNF41 auto-ubiquitination promotes membrane accumulation of signaling competent JAK2/EpoR complexes that augment Epo responsiveness. Cancer Res; 76(12); 3531-40. ©2016 AACR.

  3. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  4. Ubiquitin and stromal cell-derived factor-1α in bronchoalveolar lavage fluid after burn and inhalation injury.

    Science.gov (United States)

    Baker, Todd A; Davis, Christopher S; Bach, Harold H; Romero, Jacqueline; Burnham, Ellen L; Kovacs, Elizabeth J; Gamelli, Richard L; Majetschak, Matthias

    2012-01-01

    The objective of the study was to determine whether the CXC chemokine receptor (CXCR) 4 ligands ubiquitin and stromal cell-derived factor (SDF)-1α are detectable in bronchoalveolar lavage fluid (BALF) after burn and inhalation injury and whether their concentrations in BALF are associated with injury severity, physiological variables, or clinical outcomes. BALF was obtained on hospital admission from 51 patients (48 ± 18 years) with burn (TBSA: 23 ± 24%) and inhalation injury (controls: 10 healthy volunteers, 42 ± 8 years). BALF was analyzed for total protein and for ubiquitin and SDF-1α by enzyme-linked immunosorbent assay. Ubiquitin/SDF-1α levels were normalized to total BALF protein content. The extent of inhalation injury was determined during bronchoscopy using a standardized scoring system. Percent TBSA, Baux scores, revised Baux scores, and clinical variables were documented. Ubiquitin and SDF-1α were detectable in 40% of normal BALF specimens. After injury, ubiquitin was detectable in 90% (P patients (P burn and inhalation injury. Increases in BALF ubiquitin after inhalation injury may maintain CXCR4-mediated lung protection and repair processes. The finding that BALF ubiquitin decreased with higher grades of inhalation injury may provide a biological correlate for an insufficient local inflammatory response after severe inhalation injury.

  5. Glutamine enema regulates colonic ubiquitinated proteins but not proteasome activities during TNBS-induced colitis leading to increased mitochondrial activity.

    Science.gov (United States)

    Bertrand, Julien; Marion-Letellier, Rachel; Azhar, Saïda; Chan, Philippe; Legrand, Romain; Goichon, Alexis; Ghouzali, Ibtissem; Aziz, Moutaz; Vaudry, David; Savoye, Guillaume; Déchelotte, Pierre; Coëffier, Moïse

    2015-07-01

    Ubiquitin proteasome system contributes to the regulation of intestinal inflammatory response as its inhibition is associated with tissue damage improvement. We aimed to evaluate whether glutamine is able to limit inflammation by targeting ubiquitin proteasome system in experimental colitis. Colitis was induced in male rats by intrarectal instillation of 2-4-6-trinitrobenzen sulfonic acid (TNBS) at day 1. From day 2 to day 6, rats daily received either an intrarectal instillation of PBS (TNBS/PBS group) or glutamine (TNBS/Gln). Rats were euthanized at day 7 and colonic samples were taken to evaluate ubiqutinated proteins by proteomic approach combining 2D electrophoresis and immunoblots directed against ubiquitin. Results were then confirmed by evaluating total expression of proteins and mRNA levels. Survival rate, TNFα, and IL-1β mRNA were improved in TNBS/Gln compared with TNBS/PBS (p TNBS but not by glutamine. We identified eight proteins that were less ubiquitinated in TNBS/PBS compared with controls with no effect of glutamine. Four proteins were more ubiquitinated in TNBS/PBS group and restored in TNBS/Gln group. Finally, 12 ubiquitinated proteins were only affected by glutamine. Among proteins affected by glutamine, eight proteins (GFPT1, Gapdh, Pkm2, LDH, Bcat2, ATP5a1, Vdac1, and Vdac2) were involved in metabolic pathways. In conclusion, glutamine may regulate ubiquitination process during intestinal inflammation.

  6. Peroxynitrite-dependent zinc release and inactivation of guanosine 5'-triphosphate cyclohydrolase 1 instigate its ubiquitination in diabetes.

    Science.gov (United States)

    Zhao, Yu; Wu, Jiliang; Zhu, Huaiping; Song, Ping; Zou, Ming-Hui

    2013-12-01

    Aberrant degradation of guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1) with consequent deficiency of tetrahydrobiopterin is considered the primary cause for endothelial dysfunction in diabetes. How GTPCH1 becomes susceptible to the degradation remains unknown. We hypothesized that oxidation and release of the zinc ion by peroxynitrite (ONOO(-)), a potent oxidant generated by nitric oxide and superoxide anions, instigates GTPCH1 ubiquitination and degradation. Zinc contents, GTPCH1 ubiquitination, and GTPCH1 activity were assayed in purified GTPCH1, endothelial cells, and hearts from diabetic mice. Exogenous ONOO(-) dose-dependently released zinc, inhibited its activity, and increased the ubiquitin binding affinity of GTPCH1 in vitro and in endothelial cells. Consistently, high glucose (30 mmol/L) inhibited GTPCH1 activity with increased ubiquitination, which was inhibited by antioxidants. Furthermore, mutation of the zinc-binding cysteine (141) (C141R or C141A) significantly reduced GTPCH1 activity and reduced its half-life but increased GTPCH1 ubiquitination, indicating an essential role of the zinc ion in maintaining the catalytic activity and stability of GTPCH1. Finally, GTPCH1 ubiquitination and degradation markedly increased in parallel with decreased GTPCH1 activity in the aortas and hearts of diabetic mice, both of which were attenuated by the inhibitors of ONOO(-) in mice in vivo. Taken together, we conclude that ONOO(-) releases zinc and inhibits GTPCH1, resulting in its ubiquitination and degradation of the enzyme.

  7. Editorial: Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Aidonis, D.

    2012-01-01

    Full Text Available This special issue has followed up the 2nd Olympus International Conference on Supply Chains held on October 5-6, 2012, in Katerini, Greece. The Conference was organized by the Department of Logistics of Alexander Technological Educational Institution (ATEI of Thessaloniki, in collaboration with the Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH. During the 2-Days Conference more than 50 research papers were presented covering the following thematic areas: (i Business Logistics, (ii Transportation, Telematics and Distribution Networks, (iii Green Logistics, (iv Information and Communication Technologies in Supply Chain Management, and (v Services and Quality. Three keynote invited speakers addressed interesting issues for the Humanitarian Logistics, Green Supply Chains of the Agrifood Sector and the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.

  8. Moldova - Value Chain Training

    Data.gov (United States)

    Millennium Challenge Corporation — The evaluation of the GHS value chain training subactivity wwas designed to measure the extent, if any, to which the training activities improved the productivity...

  9. Supply chain risk management

    Directory of Open Access Journals (Sweden)

    Christian Hollstein

    2013-03-01

    Full Text Available Background: Supply chain risk management increasingly gains prominence in many international industries. In order to strengthen supply chain structures, processes, and networks, adequate potentials for risk management need to be built (focus on effective logistics and to be utilized (focus on efficient logistics. Natural-based disasters, such as the case of Fukushima, illustrate how crucial risk management is. Method: By aligning a theoretical-conceptual framework with empirical-inductive findings, it may be hypothesized that logistical systems do have a positive effect on supply chain risk management activities.  Result/conclusion:  Flexibility and capacity, as well as redundancy and standardization, are often viewed as being conflictionary. It shows, however, that in the light of supply chain risk management, those factors may yield a common benefit if proper logistics systems are applied.  

  10. A microarray of ubiquitylated proteins for profiling deubiquitylase activity reveals the critical roles of both chain and substrate.

    Science.gov (United States)

    Loch, Christian M; Strickler, James E

    2012-11-01

    Substrate ubiquitylation is a reversible process critical to cellular homeostasis that is often dysregulated in many human pathologies including cancer and neurodegeneration. Elucidating the mechanistic details of this pathway could unlock a large store of information useful to the design of diagnostic and therapeutic interventions. Proteomic approaches to the questions at hand have generally utilized mass spectrometry (MS), which has been successful in identifying both ubiquitylation substrates and profiling pan-cellular chain linkages, but is generally unable to connect the two. Interacting partners of the deubiquitylating enzymes (DUBs) have also been reported by MS, although substrates of catalytically competent DUBs generally cannot be. Where they have been used towards the study of ubiquitylation, protein microarrays have usually functioned as platforms for the identification of substrates for specific E3 ubiquitin ligases. Here, we report on the first use of protein microarrays to identify substrates of DUBs, and in so doing demonstrate the first example of microarray proteomics involving multiple (i.e., distinct, sequential and opposing) enzymatic activities. This technique demonstrates the selectivity of DUBs for both substrate and type (mono- versus poly-) of ubiquitylation. This work shows that the vast majority of DUBs are monoubiquitylated in vitro, and are incapable of removing this modification from themselves. This work also underscores the critical role of utilizing both ubiquitin chains and substrates when attempting to characterize DUBs. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.

  11. Supply chain quality management

    OpenAIRE

    Hannan Amoozad Mahdiraji; Meysam Arabzadeh; Reza Ghaffari

    2012-01-01

    In recent years, there are several methods introduced for the improvement of operational performances. Total quality management and supply chain management are two methods recommended for this purpose. These two approaches have been studied in most researches separately, while they have objectives in common, and this makes them a strategic means, which can be used, simultaneously. Total quality management and supply chain management play significant roles to increase the organizational compet...

  12. Light chain nephropathy

    Directory of Open Access Journals (Sweden)

    Sihem Darouich

    2015-01-01

    Full Text Available Light chain deposition disease (LCDD is characterized by the tissue deposition of monotypic immunoglobulin light chains of either kappa or lambda isotype. It is the archetypal systemic disease that is most frequently diagnosed on a kidney biopsy, although the deposits may involve several other organs. This brief review focuses on the clinicopathological features of LCDD-associated nephropathy with an emphasis on the diagnostic and therapeutic difficulties related to this elusive condition.

  13. Innovation Across the Supply Chain

    DEFF Research Database (Denmark)

    Druehl, Cheryl; Carrillo, Janice; Hsuan, Juliana

    Innovation is an integral part of every firm’s ongoing operations. Beyond product innovation, supply chain innovations offer a unique source of competitive advantage. We synthesize recent research on innovation in the supply chain, specifically, innovative supply chain processes...

  14. MASTERING SUPPLY CHAIN RISKS

    Directory of Open Access Journals (Sweden)

    Borut Jereb

    2012-11-01

    Full Text Available Risks in supply chains represent one of the major business issues today. Since every organizationstrives for success and uninterrupted operations, efficient supply chain risk management is crucial.During supply chain risk research at the Faculty of Logistics in Maribor (Slovenia some keyissues in the field were identified, the major being the lack of instruments which can make riskmanagement in an organization easier and more efficient. Consequently, a model which captures anddescribes risks in an organization and its supply chain was developed. It is in accordance with thegeneral risk management and supply chain security standards, the ISO 31000 and ISO 28000families. It also incorporates recent finding from the risk management field, especially from theviewpoint of segmenting of the public.The model described in this paper focuses on the risks itself by defining them by different keydimensions, so that risk management is simplified and can be undertaken in every supply chain andorganizations within them. Based on our mode and consequent practical research in actualorganizations, a freely accessible risk catalog has been assembled and published online from the risksthat have been identified so far. This catalog can serve as a checklist and a starting point in supplychain risk management in organizations. It also incorporates experts from the field into a community,in order to assemble an ever growing list of possible risks and to provide insight into the model andits value in practice.

  15. High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1.

    Science.gov (United States)

    Carvalho, Andreia F; Pinto, Manuel P; Grou, Cláudia P; Vitorino, Rui; Domingues, Pedro; Yamao, Fumiaki; Sá-Miranda, Clara; Azevedo, Jorge E

    2012-07-01

    Research in the ubiquitin field requires large amounts of ubiquitin-activating enzyme (E1) for in vitro ubiquitination assays. Typically, the mammalian enzyme is either isolated from natural sources or produced recombinantly using baculovirus/insect cell protein expression systems. Escherichia coli is seldom used to produce mammalian E1 probably due to the instability and insolubility of this high-molecular mass protein. In this report, we show that 5-10 mg of histidine-tagged mouse E1 can be easily obtained from a 1 l E. coli culture. A low temperature during the protein induction step was found to be critical to obtain an active enzyme.

  16. An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline

    Directory of Open Access Journals (Sweden)

    Proctor Carole J

    2007-03-01

    Full Text Available Abstract Background The ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of distinctive ubiquitin-positive inclusion bodies in affected regions of the brain. These inclusions consist of insoluble, unfolded, ubiquitinated polypeptides that fail to be targeted and degraded by the proteasome. We are using a systems biology approach to try and determine the primary event in the decline in proteolytic capacity with age and whether there is in fact a vicious cycle of inhibition, with accumulating aggregates further inhibiting proteolysis, prompting accumulation of aggregates and so on. A stochastic model of the ubiquitin-proteasome system has been developed using the Systems Biology Mark-up Language (SBML. Simulations are carried out on the BASIS (Biology of Ageing e-Science Integration and Simulation system and the model output is compared to experimental data wherein levels of ubiquitin and ubiquitinated substrates are monitored in cultured cells under various conditions. The model can be used to predict the effects of different experimental procedures such as inhibition of the proteasome or shutting down the enzyme cascade responsible for ubiquitin conjugation. Results The model output shows good agreement with experimental data under a number of different conditions. However, our model predicts that monomeric ubiquitin pools are always depleted under conditions of proteasome inhibition, whereas experimental data show that monomeric pools were depleted in IMR-90 cells but not in ts20 cells, suggesting that cell lines vary in their ability to replenish ubiquitin pools and there is the need to incorporate ubiquitin turnover into the model. Sensitivity

  17. Issues on Supply Chain Management

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Although supply chain is regarded as an integrated pr ocess, actually, researchers and practitioners have primarily investigated the v arious processes of the supply chain individually. The competitive field in most markets requires well-designed integrated supply chain instead of individual o perations. In this paper, some traditional thinking of supply chain is given fir st, then SCM (Supply Chain Management) is introduced, which views the entire sup ply chain as a whole rather than individual process a...

  18. Phasic Triplet Markov Chains.

    Science.gov (United States)

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  19. PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins.

    Science.gov (United States)

    Hall, Emma A; Nahorski, Michael S; Murray, Lyndsay M; Shaheen, Ranad; Perkins, Emma; Dissanayake, Kosala N; Kristaryanto, Yosua; Jones, Ross A; Vogt, Julie; Rivagorda, Manon; Handley, Mark T; Mali, Girish R; Quidwai, Tooba; Soares, Dinesh C; Keighren, Margaret A; McKie, Lisa; Mort, Richard L; Gammoh, Noor; Garcia-Munoz, Amaya; Davey, Tracey; Vermeren, Matthieu; Walsh, Diana; Budd, Peter; Aligianis, Irene A; Faqeih, Eissa; Quigley, Alan J; Jackson, Ian J; Kulathu, Yogesh; Jackson, Mandy; Ribchester, Richard R; von Kriegsheim, Alex; Alkuraya, Fowzan S; Woods, C Geoffrey; Maher, Eamonn R; Mill, Pleasantine

    2017-05-04

    During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Poulsen, Maria; Lukas, Claudia; Lukas, Jiri

    2012-01-01

    Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid double-strand breaks (DSBs), mediated by the RNF8/RNF168 ubiquitin ligases, plays a key role in recruiting repair factors, including 53BP1 and BRCA1, to reestablish genome integrity. In this paper, we show that human RNF......169, an uncharacterized E3 ubiquitin ligase paralogous to RNF168, accumulated in DSB repair foci through recognition of RNF168-catalyzed ubiquitylation products by its motif interacting with ubiquitin domain. Unexpectedly, RNF169 was dispensable for chromatin ubiquitylation and ubiquitin...... chromatin, RNF169 stimulated homologous recombination and restrained nonhomologous end joining, affecting cell survival after DSB infliction. Our results show that RNF169 functions in a noncanonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing...

  1. Activity of the Respiratory Chain Enzymes of Blood Leucocytes’ Mitochondria Under the Conditions of Toxic Hepatitis Induced Against the Background Alimentary Deprivation of Protein

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2015-12-01

    Full Text Available Full functioning of the leucocytes’ energy supply system is one of the essential factors for the immune surveillance system effective work. The pivotal enzymes of the leucocytes’ energy biotransformation system are NADH-ubiquitin reductase, a marker of the Complex I of respiratory chain activity, and succinate dehydrogenase, key enzyme of the Complex II of respiratory chain. The aim of research – to study the NADH-ubiquitin reductase and succinate dehydrogenase activity of the blood leucocytes’ mitochondria under the conditions of toxic hepatitis induced against the background alimentary deprivation of protein. It is shown, that under the conditions of acetaminophen-induced hepatitis a reduction of the NADH-ubiquitin reductase enzymatic activity is observed on the background activation of the succinate-dependent way of the mitochondrial oxidation. Conclusion was made that alimentary deprivation or protein is a factor, aggravating the misbalance of the energy biotransformation system in the leucocytes of rats with toxic hepatitis. Established activity changes of the leucocytes’ mitochondria respiratory chain key enzymes may be considered as one of the mechanisms, directed on the maintenance of leucocytes energy supply on a level, sufficient for their functioning. Research results may be used for the biochemical rationale of the therapeutic approaches to the elimination and correction of the leucocytes’ energy metabolism disturbances consequences under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  2. Expression of Smad7 and Smad ubiquitin regulatory factor 2 in a rat model of chronic pancreatitis.

    Science.gov (United States)

    Hou, Xiao Jia; Jin, Zhen Dong; Jiang, Fei; Zhu, Jian Wei; Li, Zhao Shen

    2015-07-01

    To quantify the expressions of Smad7 and Smad ubiquitin regulatory factor 2 (Smurf2) in the pancreas in rats with chronic pancreatitis (CP). A total of 16 male Wistar rats were randomly divided into the control group and the CP group, with 8 rats in each group. CP was induced in vivo with dibutyltin dichloride (DBTC). Four weeks after DBTC administration, histological assessment and the measurement of hydroxyproline content in the pancreatic tissues were performed to assess the inflammation and fibrosis of the pancreas. Immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR) for transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) were applied to assess activated pancreatic stellate cells (PSC) and TGF-β1 expression. Smad7 and Smurf2 expressions in the pancreas were measured using Western blot and RT-PCR. Typical histopathological characteristics of DBTC-induced CP in the rats with extensively activated PSC. Compared with the control group, the expressions of TGF-β1, α-SMA and hydroxyproline content in the pancreatic tissues in the CP group were significantly increased. Meanwhile, the mRNA and protein expressions of Smad7 and Smurf2 were significant increased in the fibrotic pancreas, in which the expressions of Smad7 proteins showed an obvious reduction compared with controls. The dysregulation of Smad7 and Smurf2 may be associated with the pathogenesis of pancreatic fibrosis through the TGF-β signaling pathway. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  3. Supply chain quality management

    Directory of Open Access Journals (Sweden)

    Hannan Amoozad Mahdiraji

    2012-10-01

    Full Text Available In recent years, there are several methods introduced for the improvement of operational performances. Total quality management and supply chain management are two methods recommended for this purpose. These two approaches have been studied in most researches separately, while they have objectives in common, and this makes them a strategic means, which can be used, simultaneously. Total quality management and supply chain management play significant roles to increase the organizational competitiveness power. Moreover, they have only one purpose that is customer satisfaction, and they are different only on their approaches to reach their objectives. In this research, we aim to study both approaches of quality management and supply chain, their positive increasing effects that may be generated after their integration. For this purpose, the concept and definitions of each approach is studied, independently, their similarities and differences are recognized, and finally, the advantages of their integration are introduced.

  4. Spatial Data Supply Chains

    Science.gov (United States)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  5. Environmental Retail Supply Chains

    DEFF Research Database (Denmark)

    Kotzab, Herbert; Munch, Hilde; de Faultrier, Birgitte

    2011-01-01

    Purpose – The purpose of this paper is to develop a scale that evaluates the environmental elements in retail supply chains and to examine the environmental supply chain management initiatives of the world's largest 100 retailing companies. Design/methodology/approach – The empirical evaluation has...... short-term oriented (green operations). Long-term oriented green design initiatives were hardly observed. Furthermore, the specific environmental activities of three retailers from Denmark, France and the UK were compared. Research limitations/implications – The empirical study investigates supply chain...... operations of retailers and excludes other areas of retail management. The results are based on material that is published by the respective companies and thus do not include internal reports. Originality/value – The main contribution of this paper is to test the proposition that global retailers follow...

  6. SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation

    Institute of Scientific and Technical Information of China (English)

    Yong Ran; Tian-Tian Liu; Qian Zhou; Shu Li; Ai-Ping Mao; Ying Li; Li-Juan Liu; Jin-Ke Cheng; Hong-Bing Shu

    2011-01-01

    Transcription factor IRF3-mediated type I interferon induction is essential for antiviral innate immunity.We identified the deSUMOylating enzyme Sentrin/SUMO-specific protease (SENP) 2 as a negative regulator of virus-triggered IFN-β induction.Overexpression of SENP2 caused IRF3 deSUMOylation,K48-linked ubiquitination,and degradation,whereas depletion of SENP2 had opposite effects.Both the SUMOylation and K48-linked ubiquitination of IRF3 occurred at iysines 70 and 87,and these processes are competitive.The level of virus-triggered IFN-β was markedly up-regulated and viral replication was reduced in SENP2-deficient cells comparing with wild-type controls.Our findings suggest that SENP2 regulates antiviral innate immunity by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation,and provide an example of cross-talk between the ubiquitin and SUMO pathways in innate immunity.%Transcription factor IRF3-mediated type I interferon induction is essential for antiviral innate immunity. We identified the deSUMOylating enzyme Sentrin/SUMO-specific protease (SENP) 2 as a negative regulator of virus-triggered IFN-p induction. Overexpression of SENP2 caused IRF3 deSUMOylation, K48-linked ubiquitination, and degradation, whereas depletion of SENP2 had opposite effects. Both the SUMOylation and K48-linked ubiquitination of IRF3 occurred at lysines 70 and 87, and these processes are competitive. The level of virus-triggered IFN-β was markedly up-regulated and viral replication was reduced in SENP2-deficient cells comparing with wild-type controls. Our findings suggest that SENP2 regulates antiviral innate immunity by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation, and provide an example of cross-talk between the ubiquitin and SUMO pathways in innate immunity.

  7. Specific analogues uncouple transport, signalling, oligo-ubiquitination and endocytosis in the yeast Gap1 amino acid transceptor.

    Science.gov (United States)

    Van Zeebroeck, Griet; Rubio-Texeira, Marta; Schothorst, Joep; Thevelein, Johan M

    2014-07-01

    The Saccharomyces cerevisiae amino acid transceptor Gap1 functions as receptor for signalling to the PKA pathway and concomitantly undergoes substrate-induced oligo-ubiquitination and endocytosis. We have identified specific amino acids and analogues that uncouple to certain extent signalling, transport, oligo-ubiquitination and endocytosis. L-lysine, L-histidine and L-tryptophan are transported by Gap1 but do not trigger signalling. Unlike L-histidine, L-lysine triggers Gap1 oligo-ubiquitination without substantial induction of endocytosis. Two transported, non-metabolizable signalling agonists, β-alanine and D-histidine, are strong and weak inducers of Gap1 endocytosis, respectively, but both causing Gap1 oligo-ubiquitination. The non-signalling agonist, non-transported competitive inhibitor of Gap1 transport, L-Asp-γ-L-Phe, induces oligo-ubiquitination but no discernible endocytosis. The Km of L-citrulline transport is much lower than the threshold concentration for signalling and endocytosis. These results show that molecules can be transported without triggering signalling or substantial endocytosis, and that oligo-ubiquitination and endocytosis do not require signalling nor metabolism. Oligo-ubiquitination is required, but apparently not sufficient to trigger endocytosis. In addition, we demonstrate intracellular cross-induction of endocytosis of transport-defective Gap1(Y395C) by ubiquitination- and endocytosis-deficient Gap1(K9R,K16R). Our results support the concept that different substrates bind to partially overlapping binding sites in the same general substrate-binding pocket of Gap1, triggering divergent conformations, resulting in different conformation-induced downstream processes.

  8. Chlamydia trachomatis Is Resistant to Inclusion Ubiquitination and Associated Host Defense in Gamma Interferon-Primed Human Epithelial Cells

    Science.gov (United States)

    Haldar, Arun K.; Piro, Anthony S.; Finethy, Ryan; Espenschied, Scott T.; Brown, Hannah E.; Giebel, Amanda M.; Frickel, Eva-Maria; Nelson, David E.

    2016-01-01

    ABSTRACT The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis. The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. PMID:27965446

  9. Modelling the coal chain

    Energy Technology Data Exchange (ETDEWEB)

    Gertenbach, J.-D.; Varendorff, R. von [Knowledge Based Engineering, Sandton (South Africa)

    1999-03-01

    Managing the supply chain in an integrated coal operation involves many operation and control options often too complex for the human mind to comprehend and react to. By integrating all the knowledge of a supply chain into an expert system, both off-line and on-line real time decisions are possible. Knowledge Based Engineering based in South Africa, has gained valuable experience in modelling such mining operations. The article discusses the methodologies that the company has implemented. KBE uses Gensym`s G2 Real Time Expert System as the foundation of the system and the knowledge base is developed modularly.

  10. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.

  11. Electron Transfer Chain Catalysis

    Institute of Scientific and Technical Information of China (English)

    LIU; LingKang

    2001-01-01

    Electron-transfer chain (ETC) catalysis belongs to the family of chain reactions where the electron is the catalyst. The ETC mechanism could be initiated by chemical activation, electrochemistry, or photolysis. If this pathway is applied to the preparation of organometallic complexes, it utilizes the greatly enhanced reactivity of organometallic 17e and 19e radicals. The chemical propagation is followed by the cross electron-transfer while the electron-transfer step is also followed by the chemical propagation, creating a loop in which reactants are facilely transformed into products. Interestingly the overall reaction is without any net redox change.  ……

  12. Essentials of supply chain management

    CERN Document Server

    Hugos, Michael H

    2011-01-01

    The latest thinking, strategies, developments, and technologies to stay current in supply chain management Presenting the core concepts and techniques of supply chain management in a clear, concise and easily readable style, the Third Edition of Essentials of Supply Chain Management outlines the most crucial tenets and concepts of supply chain management.

  13. Fuzzy Markov chains: uncertain probabilities

    OpenAIRE

    2002-01-01

    We consider finite Markov chains where there are uncertainties in some of the transition probabilities. These uncertainties are modeled by fuzzy numbers. Using a restricted fuzzy matrix multiplication we investigate the properties of regular, and absorbing, fuzzy Markov chains and show that the basic properties of these classical Markov chains generalize to fuzzy Markov chains.

  14. Supply-Chain Optimization Template

    Science.gov (United States)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  15. The Ubiquitin-Like SUMO System and Heart Function: From Development to Disease.

    Science.gov (United States)

    Mendler, Luca; Braun, Thomas; Müller, Stefan

    2016-01-01

    SUMOylation is a ubiquitin-related transient posttranslational modification pathway catalyzing the conjugation of small ubiquitin-like modifier (SUMO) proteins (SUMO1, SUMO2, and SUMO3) to lysine residues of proteins. SUMOylation targets a wide variety of cellular regulators and thereby affects a multitude of different cellular processes. SUMO/sentrin-specific proteases are able to remove SUMOs from targets, contributing to a tight control of SUMOylated proteins. Genetic and cell biological experiments indicate a critical role of balanced SUMOylation/deSUMOylation for proper cardiac development, metabolism, and stress adaptation. Here, we review the current knowledge about SUMOylation/deSUMOylation in the heart and provide an integrated picture of cardiac functions of the SUMO system under physiologic or pathologic conditions. We also describe potential therapeutic approaches targeting the SUMO machinery to combat heart disease.

  16. Cell-fate determination by ubiquitin-dependent regulation of translation.

    Science.gov (United States)

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen A; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T; Rape, Michael

    2015-09-24

    Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.

  17. Classic Pick's disease type with ubiquitin-positive and tau-negative inclusions: case report

    Directory of Open Access Journals (Sweden)

    Brito-Marques Paulo Roberto de

    2001-01-01

    Full Text Available We report on a patient presenting Pick's disease similar to the one reported by Pick in 1892, with ubiquitin-positive and tau-negative inclusions. His diagnosis was made on the basis of clinical (language disturbance and behavioural disorders, neuropsychological (progressive aphasia of the expression type and late mutism, neuroimaging with magnetic resonance (bilateral frontal and temporal lobes atrophy and brain single photon emission computed tomography (frontal and temporal lobes hypoperfusion studies. Macroscopic examination showed atrophy on the frontal and temporal lobes. The left hippocampus displayed a major circumscribed atrophy. The diagnostic confirmation was made by the neuropathological findings of the autopsy that showed neuronal loss with gliosis of the adjacent white matter and apearence of status spongiosus in the middle frontal and especially in the upper temporal lobes. There were also neuronal swelling (ballooned cell and argyrophilic inclusions (Pick's bodies in the left and right hippocampi. Anti-ubiquitin reaction tested positive and anti-tau tested negative.

  18. Role of the ubiquitin system and tumor viruses in AIDS-related cancer

    Directory of Open Access Journals (Sweden)

    Pagano Joseph S

    2007-11-01

    Full Text Available Abstract Tumor viruses are linked to approximately 20% of human malignancies worldwide. This review focuses on examples of human oncogenic viruses that manipulate the ubiquitin system in a subset of viral malignancies; those associated with AIDS. The viruses include Kaposi's sarcoma herpesvirus, Epstein-Barr virus and human papilloma virus, which are causally linked to Kaposi's sarcoma, certain B-cell lymphomas and cervical cancer, respectively. We discuss the molecular mechanisms by which these viruses subvert the ubiquitin system and potential viral targets for anti-cancer therapy from the perspective of this system. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  19. RING finger palmitoylation of the endoplasmic reticulum Gp78 E3 ubiquitin ligase.

    Science.gov (United States)

    Fairbank, Maria; Huang, Kun; El-Husseini, Alaa; Nabi, Ivan R

    2012-07-30

    Gp78 is an E3 ubiquitin ligase within the endoplasmic reticulum-associated degradation pathway. We show that Flag-tagged gp78 undergoes sulfhydryl cysteine palmitoylation (S-palmitoylation) within the RING finger motif, responsible for its ubiquitin ligase activity. Screening of 19 palmitoyl acyl transferases (PATs) identified five that increased gp78 RING finger palmitoylation. Endoplasmic reticulum (ER)-localized Myc-DHHC6 overexpression promoted the peripheral ER distribution of Flag-gp78 while RING finger mutation and the palmitoylation inhibitor 2-bromopalmitate restricted gp78 to the central ER. Palmitoylation of RING finger cysteines therefore regulates gp78 distribution to the peripheral ER. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Molecular Chaperones, Cochaperones, and Ubiquitination/Deubiquitination System: Involvement in the Production of High Quality Spermatozoa

    Directory of Open Access Journals (Sweden)

    Rosaria Meccariello

    2014-01-01

    Full Text Available Spermatogenesis is a complex process in which mitosis, meiosis, and cell differentiation events coexist. The need to guarantee the production of qualitatively functional spermatozoa has evolved into several control systems that check spermatogenesis progression/sperm maturation and tag aberrant gametes for degradation. In this review, we will focus on the importance of the evolutionarily conserved molecular pathways involving molecular chaperones belonging to the superfamily of heat shock proteins (HSPs, their cochaperones, and ubiquitination/deubiquitination system all over the spermatogenetic process. In this respect, we will discuss the conserved role played by the DNAJ protein Msj-1 (mouse sperm cell-specific DNAJ first homologue and the deubiquitinating enzyme Ubpy (ubiquitin-specific processing protease-y during the spermiogenesis in both mammals and nonmammalian vertebrates.

  1. The E3 ubiquitin ligase CTRIP controls CLOCK levels and PERIOD oscillations in Drosophila.

    Science.gov (United States)

    Lamaze, Angélique; Lamouroux, Annie; Vias, Carine; Hung, Hsiu-Cheng; Weber, Frank; Rouyer, François

    2011-06-01

    In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.

  2. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin?

    Directory of Open Access Journals (Sweden)

    Jaime M. Ross

    2015-08-01

    Full Text Available Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing.

  3. Nutritional conditions regulate transcriptional activity of SF-1 by controlling sumoylation and ubiquitination.

    Science.gov (United States)

    Lee, Jiwon; Yang, Dong Joo; Lee, Syann; Hammer, Gary D; Kim, Ki Woo; Elmquist, Joel K

    2016-01-11

    Steroidogenic factor 1 (SF-1) is a transcription factor expressed in the ventral medial nucleus of the hypothalamus that regulates energy homeostasis. However, the molecular mechanisms of SF-1 in the control of energy balance are largely unknown. Here, we show that nutritional conditions, such as the presence or absence of serum, affect SF-1 action. Serum starvation significantly decreased hypothalamic SF-1 levels by promoting ubiquitin-dependent degradation, and sumoylation was required for this process. SF-1 transcriptional activity was also differentially regulated by nutritional status. Under normal conditions, the transcriptional activity of hypothalamic SF-1 was activated by SUMO, but this was attenuated during starvation. Taken together, these results indicate that sumoylation and ubiquitination play crucial roles in the regulation of SF-1 function and that these effects are dependent on nutritional conditions, further supporting the importance of SF-1 in the control of energy homeostasis.

  4. Non-26S Proteasome Proteolytic Role of Ubiquitin in Plant Endocytosis and Endosomal Trafficking

    Institute of Scientific and Technical Information of China (English)

    Miaomiao Tian; Qi Xie

    2013-01-01

    The 76 amino acid protein ubiquitin (Ub) is highly conserved in all eukaryotic species.It plays important roles in many cellular processes by covalently attaching to the target proteins.The best known function of Ub is marking substrate proteins for degradation by the 26S proteasome.In fact,other consequences of ubiquitination have been discovered in yeast and mammals,such as membrane trafficking,DNA repair,chromatin modification,and protein kinase activation.The common mechanism underlying these processes is that Ub serves as a signal to sort proteins to the vacuoles or lysosomes for degradation as opposed to 26S proteasome-dependent degradation.To date,several reports have indicated that a similar function of Ub also exists in plants.This review focuses on a summary and analysis of the recent research progress on Ub acting as a signal to mediate endocytosis and endosomal trafficking in plants.

  5. The centrosomal E3 ubiquitin ligase FBXO31-SCF regulates neuronal morphogenesis and migration.

    Directory of Open Access Journals (Sweden)

    Mayur Vadhvani

    Full Text Available Neuronal development requires proper migration, polarization and establishment of axons and dendrites. Growing evidence identifies the ubiquitin proteasome system (UPS with its numerous components as an important regulator of various aspects of neuronal development. F-box proteins are interchangeable subunits of the Cullin-1 based E3 ubiquitin ligase, but only a few family members have been studied. Here, we report that the centrosomal E3 ligase FBXO31-SCF (Skp1/Cullin-1/F-box protein regulates neuronal morphogenesis and axonal identity. In addition, we identified the polarity protein Par6c as a novel interaction partner and substrate targeted for proteasomal degradation in the control of axon but not dendrite growth. Finally, we ascribe a role for FBXO31 in dendrite growth and neuronal migration in the developing cerebellar cortex. Taken together, we uncovered the centrosomal E3 ligase FBXO31-SCF as a novel regulator of neuronal development.

  6. TRAIP is a PCNA-binding ubiquitin ligase that protects genome stability after replication stress

    DEFF Research Database (Denmark)

    Hoffmann, Saskia; Smedegaard, Stine; Nakamura, Kyosuke

    2016-01-01

    , allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes...... ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced...... chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication....

  7. Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters.

    Science.gov (United States)

    Stewart, Gavin S; O'Brien, Jennifer H; Smith, Craig P

    2008-07-01

    The renal UT-A urea transporters UT-A1, UT-A2, and UT-A3 are known to play an important role in the urinary concentrating mechanism. The control of the cellular localization of UT-A transporters is therefore vital to overall renal function. In the present study, we have investigated the effect of ubiquitination on UT-A plasma membrane expression in Madin-Darby canine kidney (MDCK) cell lines expressing each of the three renal UT-A transporters. Inhibition of the ubiquitin-proteasome pathway caused an increase in basal transepithelial urea flux across MDCK-rat (r)UT-A1 and MDCK-mouse (m)UT-A2 monolayers (P UT-A transporter expression in the plasma membrane (P UT-A3 expression in the plasma membrane (P UT-A urea transporters, but that this is not the mechanism primarily used by vasopressin to produce its physiological effects.

  8. TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1.

    Science.gov (United States)

    Zotti, Tiziana; Scudiero, Ivan; Settembre, Pio; Ferravante, Angela; Mazzone, Pellegrino; D'Andrea, Luca; Reale, Carla; Vito, Pasquale; Stilo, Romania

    2014-03-01

    The atypical protein kinase C-interacting protein p62/sequestosome-1 (p62) has emerged as a crucial molecule in a variety of cellular functions due to its involvement in various signaling mechanisms. p62 has been implicated in the activation of NF-κB in TNFα-stimulated cells and has been shown to be activated in response to interleukin-1β (IL-1β). Here we demonstrate that p62 interacts with NEMO, the regulatory subunit of the complex responsible for activation of NF-κB transcription factor. Depletion of p62 obtained through a short interfering RNA targeting p62 mRNA abrogated TRAF6 capacity to promote NEMO ubiquitination and severely impairs NF-κB activation following IL-1β stimulation. Together, these results indicate that p62 is an important intermediary in the NF-κB activation pathways implemented through non-degradative ubiquitination events.

  9. TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1☆☆☆

    Science.gov (United States)

    Zotti, Tiziana; Scudiero, Ivan; Settembre, Pio; Ferravante, Angela; Mazzone, Pellegrino; D’Andrea, Luca; Reale, Carla; Vito, Pasquale; Stilo, Romania

    2014-01-01

    The atypical protein kinase C-interacting protein p62/sequestosome-1 (p62) has emerged as a crucial molecule in a variety of cellular functions due to its involvement in various signaling mechanisms. p62 has been implicated in the activation of NF-κB in TNFα-stimulated cells and has been shown to be activated in response to interleukin-1β (IL-1β). Here we demonstrate that p62 interacts with NEMO, the regulatory subunit of the complex responsible for activation of NF-κB transcription factor. Depletion of p62 obtained through a short interfering RNA targeting p62 mRNA abrogated TRAF6 capacity to promote NEMO ubiquitination and severely impairs NF-κB activation following IL-1β stimulation. Together, these results indicate that p62 is an important intermediary in the NF-κB activation pathways implemented through non-degradative ubiquitination events. PMID:24270048

  10. Integrated supply chain risk management

    Directory of Open Access Journals (Sweden)

    Riaan Bredell

    2007-11-01

    Full Text Available Integrated supply chain risk management (ISCRM has become indispensable to the theory and practice of supply chain management. The economic and political realities of the modern world require not only a different approach to supply chain management, but also bold steps to secure supply chain performance and sustainable wealth creation. Integrated supply chain risk management provides supply chain organisations with a level of insight into their supply chains yet to be achieved. If correctly applied, this process may optimise management decision-making and assist in the protection and enhancement of shareholder value.

  11. Investigation of genetic variants in ubiquitin enzyme genes involved in the modulation of neurodevelopmental processes: a role in schizophrenia susceptibility?

    Science.gov (United States)

    Andrews, Jessica L; Fernandez-Enright, Francesca

    2014-11-24

    Despite extensive research during the last few decades, the etiology of schizophrenia remains unclear. Evidence of both genetic and environmental influences in the developmental profile of schizophrenia has grown, and due to the complexity of this disorder, a polygenic aspect has been associated with this neuropsychiatric pathology. Unfortunately, no diagnostic strategies based on biological measurement or genetic testing is currently available for schizophrenia. Gene-expression profiling and recent protein studies have shown a decrease in the expression of ubiquitin pathway proteins in the prefrontal cortex of schizophrenia patients. We have examined single nucleotide polymorphisms (or SNPs) within three genes from the ubiquitin protein system: the ubiquitin conjugating enzyme E2D1 (UBE2D1) gene, the E3 SUMO-protein ligase protein inhibitor of activated STAT 2 (PIAS2) gene, and the E3 ubiquitin ligase F-box and leucine-rich repeat protein 21 (FBXL21) gene, in a Caucasian case-control population for schizophrenia. After Bonferroni correction for multiple testing was applied, no significant associations were reported for any of the tested SNPs. Additional genetic analyses will be necessary to fully explore the role of these three genes in schizophrenia. Regarding the rising interest in ubiquitin-related proteins as a therapeutic target in other pathologies such as cancer, further research into the role of ubiquitin pathways in schizophrenia seems topical and timely.

  12. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3.

    Directory of Open Access Journals (Sweden)

    Nicholas M Chesarino

    2015-08-01

    Full Text Available Interferon (IFN-induced transmembrane protein 3 (IFITM3 is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection.

  13. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane.

    LENUS (Irish Health Repository)

    Knodler, Leigh A

    2009-11-01

    The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella-containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here we identify by mass spectrometry six lysine residues of SopB that are mono-ubiquitinated. Substitution of these six lysine residues with arginine, SopB-K(6)R, almost completely eliminated SopB ubiquitination. We found that ubiquitination does not affect SopB stability or membrane association, or SopB-dependent events in SCV biogenesis. However, two spatially and temporally distinct events are dependent on ubiquitination, downregulation of SopB activity at the plasma membrane and prolonged retention of SopB on the SCV. Activation of the mammalian pro-survival kinase Akt\\/PKB, a downstream target of SopB, was intensified and prolonged after infection with the SopB-K(6)R mutant. At later times, fewer SCV were decorated with SopB-K(6)R compared with SopB. Instead SopB-K(6)R was present as discrete vesicles spread diffusely throughout the cell. Altogether, our data show that ubiquitination of SopB is not related to its intracellular stability but rather regulates its enzymatic activity at the plasma membrane and intracellular localization.

  14. ρ0 Cells Feature De-Ubiquitination of SLC Transporters and Increased Levels and Fluxes of Amino Acids

    Directory of Open Access Journals (Sweden)

    André Bordinassi Medina

    2017-04-01

    Full Text Available Solute carrier (SLC transporters are a diverse group of membrane transporter proteins that regulate the cellular flux and distribution of endogenous and xenobiotic compounds. Post-translational modifications (PTMs, such as ubiquitination, have recently emerged as one of the major regulatory mechanisms in protein function and localization. Previously, we showed that SLC amino acid transporters were on average 6-fold de-ubiquitinated and increased amino acid levels were detected in ρ0 cells (lacking mitochondrial DNA, mtDNA compared to parental cells. Here, we elucidated the altered functionality of SLC transporters and their dynamic ubiquitination status by measuring the uptake of several isotopically labeled amino acids in both human osteosarcoma 143B.TK- and ρ0 cells. Our pulse chase analysis indicated that de-ubiquitinated amino acid transporters in ρ0 cells were accompanied by an increased transport rate, which leads to higher levels of amino acids in the cell. Finding SLC transport enhancers is an aim of the pharmaceutical industry in order to compensate for loss of function mutations in these genes. Thus, the ubiquitination status of SLC transporters could be an indicator for their functionality, but evidence for a direct connection between de-ubiquitination and transporter activity has to be further elucidated.

  15. E3 Ubiquitin Ligase Cbl-b Regulates Pten via Nedd4 in T Cells Independently of Its Ubiquitin Ligase Activity

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2012-05-01

    Full Text Available E3 ubiquitin ligase Cbl-b plays a crucial role in T cell activation and tolerance induction. However, the molecular mechanism by which Cbl-b inhibits T cell activation remains unclear. Here, we report that Cbl-b does not inhibit PI3K but rather suppresses TCR/CD28-induced inactivation of Pten. The elevated Akt activity in Cbl-b−/− T cells is therefore due to heightened Pten inactivation. Suppression of Pten inactivation in T cells by Cbl-b is achieved by impeding the association of Pten with Nedd4, which targets Pten K13 for K63-linked polyubiquitination. Consistent with this finding, introducing Nedd4 deficiency into Cbl-b−/− mice abrogates hyper-T cell responses caused by the loss of Cbl-b. Hence, our data demonstrate that Cbl-b inhibits T cell activation by suppressing Pten inactivation independently of its ubiquitin ligase activity.

  16. Deficiency of UBE2T, the E2 Ubiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia

    Directory of Open Access Journals (Sweden)

    Kimberly A. Rickman

    2015-07-01

    Full Text Available Fanconi anemia (FA is a rare bone marrow failure and cancer predisposition syndrome resulting from pathogenic mutations in genes encoding proteins participating in the repair of DNA interstrand crosslinks (ICLs. Mutations in 17 genes (FANCA-FANCS have been identified in FA patients, defining 17 complementation groups. Here, we describe an individual presenting with typical FA features who is deficient for the ubiquitin-conjugating enzyme (E2, UBE2T. UBE2T is known to interact with FANCL, the E3 ubiquitin-ligase component of the multiprotein FA core complex, and is necessary for the monoubiquitination of FANCD2 and FANCI. Proband fibroblasts do not display FANCD2 and FANCI monoubiquitination, do not form FANCD2 foci following treatment with mitomycin C, and are hypersensitive to crosslinking agents. These cellular defects are complemented by expression of wild-type UBE2T, demonstrating that deficiency of the protein UBE2T can lead to Fanconi anemia. UBE2T gene gains an alias of FANCT.

  17. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    Science.gov (United States)

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response.

  18. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage

    DEFF Research Database (Denmark)

    Stewart, Grant S.; Panier, Stephanie; Townsend, Kelly

    2009-01-01

    for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited...... the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome....

  19. The Role of Ubiquitin-Mediated Proteolysis of Cyclin D in Breast Cancer

    Science.gov (United States)

    2005-04-01

    compartmentalization through protein- protein interactions with known Cdc34- interacting proteins and to characterize how phosphorylation may regulate...investigations are identifying novel interacting proteins and post-translational modifications of the ubiquitin conjugating enzymes as well as the...analysis for Cdc34p and known Cdc34 interacting proteins (Fig 2A). SCF components, Cullin1, p45Skp2, and p19Skp1 all co-fractionated with Cdc34 in the

  20. Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression.

    Directory of Open Access Journals (Sweden)

    Hai Dang Nguyen

    Full Text Available Deficiency in DNA ligase I, encoded by CDC9 in budding yeast, leads to the accumulation of unligated Okazaki fragments and triggers PCNA ubiquitination at a non-canonical lysine residue. This signal is crucial to activate the S phase checkpoint, which promotes cell cycle delay. We report here that a pol30-K107 mutation alleviated cell cycle delay in cdc9 mutants, consistent with the idea that the modification of PCNA at K107 affects the rate of DNA synthesis at replication forks. To determine whether PCNA ubiquitination occurred in response to nicks or was triggered by the lack of PCNA-DNA ligase interaction, we complemented cdc9 cells with either wild-type DNA ligase I or a mutant form, which fails to interact with PCNA. Both enzymes reversed PCNA ubiquitination, arguing that the modification is likely an integral part of a novel nick-sensory mechanism and not due to non-specific secondary mutations that could have occurred spontaneously in cdc9 mutants. To further understand how cells cope with the accumulation of nicks during DNA replication, we utilized cdc9-1 in a genome-wide synthetic lethality screen, which identified RAD59 as a strong negative interactor. In comparison to cdc9 single mutants, cdc9 rad59Δ double mutants did not alter PCNA ubiquitination but enhanced phosphorylation of the mediator of the replication checkpoint, Mrc1. Since Mrc1 resides at the replication fork and is phosphorylated in response to fork stalling, these results indicate that Rad59 alleviates nick-induced replication fork slowdown. Thus, we propose that Rad59 promotes fork progression when Okazaki fragment processing is compromised and counteracts PCNA-K107 mediated cell cycle arrest.