WorldWideScience

Sample records for lyot northern mars

  1. The Geomorphology of Lyot crater,Mars

    Science.gov (United States)

    Balme, Matthew; Gallagher, Colman; Conway, Susan

    2013-04-01

    Lyot crater, Mars, is a relatively young (ii) studies of glacial and periglacial environments useful for studying water on Mars throughout its history. Here we present preliminary mapping of the various ice- and water-related landforms found in and around Lyot crater. Of particular interest are polygonal networks of metre-scale clasts (perhaps periglacial in origin?) and a variety of channels, fans and lobate flows that could be interpreted as proglacial fluvial systems [2]. The putative glacial assemblage exists within the crater rim and in high relief areas outside of the crater. Fluvial-like channels and fans are seen both within the crater and on the ejecta blanket. The networks of polygonal clasts occur only on the margins of the continuous ejecta blanket, at a radial distance of about 300 km from the crater's centre. The clastic polygons that compose the networks are found only on the Eastern side of Lyot basin, and extend in a broad swathe from about nor-northwest to southwest of the crater. The polygons are generally one to two hundred metres in diameter and consist of lines of clasts (sometime double lines) with flat, low centre-regions between them. Their spatial distribution strongly indicates that they have a genetic link to the formation of the impact crater. Our working hypothesis is that the glacial/fluvial assemblages are related to climate-controlled deposition of ice, with later flow and probably thaw as well. The polygonal clast network is harder to explain, but could reflect the location of water ice-rich zones of the ejecta blanket. Hence, this could be material excavated from the cryosphere during impacts and then reworked by periglacial processes at a much later time. [1] Harrison, T.N., et al., Impact-induced overland fluid flow and channelized erosion at Lyot Crater, Mars. Geophys. Res. Let., 2010. 37(L21201): doi:10.1029/2010GL045074 [2] Dickson, J.L., et al., Amazonian-aged fluvial valley systems in a climatic microenvironment on Mars

  2. Extensive Amazonian-aged fluvial channels on Mars: Evaluating the role of Lyot crater in their formation

    Science.gov (United States)

    Weiss, David K.; Head, James W.; Palumbo, Ashley M.; Cassanelli, James P.

    2017-06-01

    Widespread Amazonian-aged fluvial channels have been mapped proximal to Lyot crater, a 225 km diameter impact basin in the northern lowlands of Mars. Comparable in area to some Noachian/Hesperian fluvial systems, their morphology differs, being dominated by broad, shallow braided channels. Using new developments in the study of cratering, water inventory, and climate history, we assess eight different models for their origin. Dewatering of excavated ice-rich Lyot ejecta and contact melting from hot Lyot ejecta superposed on surface ice deposits are the most plausible channel origins. The existence of this extensive Amazonian fluvial system is attributed to: (1) the large size of Lyot, and its consequent hot ejecta, and (2) the presence of surface ice at the time of impact, attributed to obliquity changes redistributing polar ice to the mid-latitudes, a relatively common occurrence in Martian geologic history.Plain Language SummaryA vast network of relatively young broad and shallow fluvial channels were previously mapped near Lyot crater, a 225 km diameter impact basin located in one of the lowest regions of Mars. These channels are highly unusual based on their young age and dispersed scour morphology. We use new developments in the study of cratering, water inventory, and climate history to assess different models for the origin of these channels. We find that the fluvial channels likely formed through runoff of water derived from dewatering of melted pore ice from within the ejecta and/or meltwater from contact melting of hot Lyot ejecta superposed on a regional surface ice sheet. The existence of this extensive young fluvial system is attributed to: (1) the large size of Lyot, and its consequent hot ejecta, and (2) the presence of surface ice at the time of impact, attributed to obliquity changes redistributing polar ice to the mid-latitudes, a relatively common occurrence in Martian geologic history.

  3. Young Valley Networks on Mars: Persistent Flow of Water in Lyot Crater, a Distinctive Amazonian Impact Basin Microenvironment

    Science.gov (United States)

    Dickson, J.; Fassett, C.; Head, J.

    2008-09-01

    Introduction While Amazonian fluvial landforms are not abundant on Mars, remote sensing data have revealed details regarding the role of ice in non-polar regions in the Amazonian. Evidence includes 1) deposits interpreted to be remnants of cold-based glaciers at low- and mid-latitudes [1-6]; 2) mantling deposits interpreted to be a desiccating layer of ground ice [7- 8]; 3) detection of hydrogen (inferred to be bound as water ice) in soil in the mid- and high-latitudes in each hemisphere [9-10]; and 4) viscous flow features interpreted to be the product of glacial-like flow along steep valley/crater walls [11-12]. The climate of Mars straddles the triple point, which motivated us to investigate the most-likely locations/microclimates for melting of these surface/near-surface ice features [13-14]: large-scale impact craters at low elevations and mid-latitudes, which provide 1) relatively high surface pressure; 2) increased solor insolation; and 3) potential residual thermal anomalies from the impact event. Lyot Crater, a ~215 km peak-ring impact basin in the northern lowlands of Mars (50°N, 30°E), provides an environment that meets these constraints. We analyzed recently obtained CTX data to document evidence of remnant glacial deposits and surface features that appear indicative of melting and drainage. Description The floor of Lyot exhibits several networks of sinuous valleys that have been incised exclusively into a pervasive stippled mantling unit (Fig. 1). Twenty separate networks are observed in CTX and THEMIS data, 15 of which occur in the eastern half of Lyot. The valleys range in length from short, 2 km long isolated valleys to 50 km long networks of multiple valleys that have widths that average ~250 m. Valley floors are smooth at CTX resolution, in contrast to the adjacent stippled mantling unit (Fig. 1). Profiles extracted from the Mars Orbiter Laser Altimeter (MOLA) data set show that, without exception, the valleys follow the local topographic

  4. Lithostratigraphical analysis in northern Sinus Meridiani, Mars.

    Science.gov (United States)

    Baioni, D.; Sgavetti, M.; Tampella, G.; Wezel, F. C.

    2012-04-01

    In the Terra Meridiani- Arabia Terra region of Mars, layered rock units with a range of stratal patterns have been widely reported in the literature, and the record of the spectral signatures indicative of hydrate minerals suggests the existence of aqueous activity in at least some of the stratigraphic units. . In this work we investigated the area in the northern region of Sinus Meridiani located between 2°N to 3°N latitude and 2°W to 1°E longitude, using multiple remote sensing data sets to identify, characterize in detail, and understand the origin and evolution of the selected units in this region of Mars. MOLA and HiRISE data were used in combination to classify and correlate surface units recorded in distinct stratigraphic logs, based on planimetric configuration, topography, morphological and litho-facies characteristics. In particular, detailed analyses were focused on the layered units discovered in the walls of two impact craters located at a distance of about 100 km to each other within the study area. The stratigraphic interval analysed here corresponds to the upper part of the well known "light-toned layered deposits" identified by several authors. Distinct competent layers are observed in the internal slopes of both craters. Our observations indicate that the lithostratigraphic sections can be divided in three units. The lower unit consists of very thick bodies of light-toned bouldery breccia deposits. In the HiRISE images these white-coloured beds are composed of irregularly-shaped, white nodules which are either isolated or coalescent, distributed between bedding planes. The middle unit mainly consists of alternating thin strong layers and thicker sequences of relatively weak layers, horizontally bedded. The strong, competent layers maintain steeper erosional profiles and play a major role in controlling the overall shape and geomorphology of the wall slopes. The upper unit can be traced laterally in the surrounding ground level, displaying mesa

  5. Unraveling Local Dust Storm Structure on Mars: The Case of Northern Amazonis During Mars Year 24

    Science.gov (United States)

    Heavens, N. G.

    2015-12-01

    On an average Martian afternoon, two or three local dust storms are taking place somewhere on the planet. By definition, these storms range in area from a few square kilometers to hundreds of thousands, rarely surviving from sol to the next. After more than 40 years of observation, a great deal is known about where and when they occur, but very little is known about the structure and dynamics of individual storms. This contrast in our knowledge about local dust storms results from how they are observed. Daily global mapping of Mars in the visible has enabled an accurate census of storms as well as observation of their morphological diversity. However, even under ideal conditions, an individual storm is only observed by sounder-type instrumentation once or twice (if it is a large enough), providing an incomplete picture of structure of an individual storm. Early studies of cyclogenesis on Earth had a similar problem. Cyclones were many, but observations of individual cyclones, especially over the ocean, were sparse. The structure and dynamics of cyclones was unraveled by noting similarities in properties between certain classes of cyclones and using observational data to generate composite cyclones that could be analyzed and modeled. Variability within the composite also could be studied. Here I establish the existence of a well-defined class of Martian local dust storms defined by: (1) occurrence along the axis of the dark albedo feature in northern Amazonis Planitia (36 N, 155 W); (2) not being associated with lifting or cloudiness due to a baroclinic wave/frontal boundary at higher latitude; (3) being textured, that is, having dust clouds with sharp, well-defined features that are thought to indicate their clouds are supplied by the active lifting of dust; (4) having dust clouds organized in well-defined streets indicative of convective rolls. In Mars Year 24, such storms developed on thirteen occasions in northern fall and autumn. Using data from the Mars

  6. Global Pattern of Dissection on Mars and the Northern Ocean Hypothesis

    Science.gov (United States)

    Stepinski, T. F.; Luo, W.

    2010-03-01

    Global distribution of valley networks on Mars is accounted for by a weather pattern that follows from the existence of a northern ocean; precipitation is restricted to the regions located directly south of the dichotomy boundary.

  7. Telescope Bernard Lyot: operation, instrumentation, perspectives

    Science.gov (United States)

    Cabanac, R.

    2016-12-01

    This talk is the TBL director report at the 3rd French national telescopes Users Meeting of 2016. Telescope Bernard Lyot, the 2-m at Pic du midi (2870m), is dedicated to spectro-polarimetric studies since 2007 with the instrument Narval. This paper presents TBL operation, science highlights and statistics of the past 10 years of operation. It also opens perspectives for the coming 10 years with the funding of Neo-Narval (Narval stabilized to v_r Pic du midi (aka SPIP) for the study of the young exoplanetary systems.

  8. Sensing Phase Aberrations behind Lyot Coronagraphs

    Science.gov (United States)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  9. Seasonal erosion and restoration of Mars' northern polar dunes

    Science.gov (United States)

    Hansen, C.J.; Bourke, M.; Bridges, N.T.; Byrne, S.; Colon, C.; Diniega, S.; Dundas, C.; Herkenhoff, K.; McEwen, A.; Mellon, M.; Portyankina, G.; Thomas, N.

    2011-01-01

    Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars' CO 2 seasonal polar caps. Numerous dunes in Mars' north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars' current climate.

  10. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    Science.gov (United States)

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  11. Hybrid Lyot Coronagraph for the ACCESS Mission

    Science.gov (United States)

    Trauger, J.; ACCESS Science and Engineering Team

    2010-10-01

    We report the design and fabrication of hybrid focal-plane masks for Lyot coronagraphy, supported this year by NASA's Technology Demonstration for Exoplanet Missions (TDEM) program. These masks are composed of thickness-profiled metallic and dielectric thin films, and manufactured by vacuum deposition on a glass substrate. Hybrid masks are in principle band-limited in both the real and imaginary parts of the complex amplitude characteristics, providing the theoretical basis for mathematically perfect starlight suppression. Together with a deformable mirror for control of wavefront phase, these masks achieve contrast levels of 2e-10 at inner working angles of 3 lambda/D, over spectral bandwidths of 20% or more, and with throughput efficiencies of 60%. We evaluate the science potential of these coronagaph masks in the context of ACCESS, a representative exoplanet mission concept. ACCESS is one of four medium-class concepts studied in 2008-2009 under NASA's Astrophysics Strategic Mission Concepts Study program. In a nutshell, the ACCESS study seeks the most capable medium-class coronagraphic mission that is possible with high-readiness telescope, instrument, and spacecraft technologies available today. The ACCESS study compared the performance of four major coronagraph architectures. It defined a conceptual space observatory platform as the "level playing field" for comparisons among coronagraph types. And it used laboratory validation of the representative coronagraph types as a second "level playing field" for assessing coronagraph hardware readiness. ACCESS identifies a class of scientifically compelling mission concepts built upon mature (TRL6+) subsystem technologies, and evaluates science reach of a medium-class coronagraph mission. Using current high-TRL technologies, the ACCESS minimum science program surveys the nearest 120+ AFGK stars for exoplanet systems, and surveys the majority of those for exozodiacal dust to the level of 1 zodi at 3 AU. Discoveries are

  12. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A.

    2003-01-01

    Geologic mapping of the northern plains of Mars, based on Mars Orbiter Laser Altimeter topography and Viking and Mars Orbiter Camera images, reveals new insights into geologic processes and events in this region during the Hesperian and Amazonian Periods. We propose four successive stages of lowland resurfacing likely related to the activity of near-surface volatiles commencing at the highland-lowland boundary (HLB) and progressing to lower topographic levels as follows (highest elevations indicated): Stage 1, upper boundary plains, Early Hesperian, <-2.0 to -2.9 km; Stage 2, lower boundary plains and outflow channel dissection, Late Hesperian, <-2.7 to -4.0 km; Stage 3, Vastitas Borealis Formation (VBF) surface, Late Hesperian to Early Amazonian, <-3.1 to -4.1 km; and Stage 4, local chaos zones, Early Amazonian, <-3.8 to -5.0 km. At Acidalia Mensa, Stage 2 and 3 levels may be lower (<-4.4 and -4.8 km, respectively). Contractional ridges form the dominant structure in the plains and developed from near the end of the Early Hesperian to the Early Amazonian. Geomorphic evidence for a northern-plains-filling ocean during Stage 2 is absent because one did not form or its evidence was destroyed by Stage 3 resurfacing. Remnants of possible Amazonian dust mantles occur on top of the VBF. The north polar layered deposits appear to be made up of an up to kilometer-thick lower sequence of sandy layers Early to Middle Amazonian in age overlain by Late Amazonian ice-rich dust layers; both units appear to have outliers, suggesting that they once were more extensive.

  13. Lyot Coronagraphy on Giant Segmented-Mirror Telescopes

    CERN Document Server

    Sivaramakrishnan, A; Sivaramakrishnan, Anand; Yaitskova, Natalia

    2005-01-01

    We present a study of Lyot style (i.e., classical, band-limited, and Gaussian occulter) coronagraphy on extremely large, highly-segmented telescopes. We show that while increased telescope diameter is always an advantage for high dynamic range science (assuming wavefront errors have been corrected sufficiently well), segmentation itself sets a limit on the performance of Lyot coronagraphs. Diffraction from inter-segment gaps sets a floor to the achievable extinction of on-axis starlight with Lyot coronagraphy. We derive an analytical expression for the manner in which coronagraphic suppression of an on-axis source decreases with increasing gap size when the segments are placed in a spatially periodic array over the telescope aperture, regardless of the details of the arrangement. A simple Lyot stop masking out pupil edges produces good extinction of the central peak in the point-spread function (PSF), but leaves satellite images caused by inter-segment gaps essentially unaffected. Masking out the bright segme...

  14. Thermal mapping of the northern equatorial and temperate latitudes of Mars

    Science.gov (United States)

    Zimbelman, J. R.; Kieffer, H. H.

    1979-01-01

    The paper describes the mapping of nighttime temperatures over the northern hemisphere of Mars by using Viking infrared thermal mapping observations. It is shown that large variations of the temperature residual, -45 to +19 K, are related primarily to the thermal inertia of the surface. A general hypothesis is given for the transport of loose material on the Martian surface, which invokes the stability of the smooth, fine-grained surfaces to account for the bimodal thermal behavior observed.

  15. A Very Large Population of Likely Buried Impact Basins in the Northern Lowlands of Mars Revealed by MOLA Data

    Science.gov (United States)

    Frey, H. V.; Shockey, K. M.; Frey, E. L.; Roark, J. H.; Sakimoto, S. E. H.

    2001-01-01

    High resolution Mars Orbiter Laser Altimeter (MOLA) data have revealed a large number of subdued quasi-circular depressions (QCDs) >50 km diameter in the northern lowlands of Mars which are generally not visible in Viking imagery and which may be buried ancient impact basins. Additional information is contained in the original extended abstract.

  16. Mapping the northern plains of Mars: origins, evolution and response to climate change

    Science.gov (United States)

    Balme, Matthew; Conway, Susan; Costard, François; Gallagher, Colman; van Gasselt, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna

    2014-05-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material near, beneath, or at the surface. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The northern plains comprise three linked zones: Acidalia Planitia, Utopia Planitia and Arcadia Planitia. Each region consists of a shallow basin, with the three areas are separated by low topographic divides. Our aim is to study the ice-related geomorphology of each region in order to understand the origins, evolution and response to climate change of ice on Mars. In particular, by comparing and contrasting the three separate basins we hope to determine if the processes that created the ice-related terrains are regional (perhaps basin limited) or global in scope, and whether the differing geology of each basin has an effect on the ice-related features observed there. The ISSI team is using planetary geomorphological mapping to meet this aim. Three long strips, each about 250 km wide and spanning the ~30N to ~80N latitude range have been defined and sub-teams are each mapping a single area. The group contains experts in mapping, GIS and crater counting (details in the size-frequency distribution of impact craters on a planetary surface can reveal

  17. Fast computation of Lyot-style coronagraph propagation

    CERN Document Server

    Soummer, Remi; Sivaramakrishnan, Anand; Vanderbei, Robert J

    2007-01-01

    We present a new method for numerical propagation through Lyot-style coronagraphs using finite occulting masks. Standard methods for coronagraphic simulations involve Fast Fourier Transforms (FFT) of very large arrays, and computing power is an issue for the design and tolerancing of coronagraphs on segmented Extremely Large Telescopes (ELT) in order to handle both the speed and memory requirements. Our method combines a semi-analytical approach with non-FFT based Fourier transform algorithms. It enables both fast and memory-efficient computations without introducing any additional approximations. Typical speed improvements based on computation costs are of about ten to fifty for propagations from pupil to Lyot plane, with thirty to sixty times less memory needed. Our method makes it possible to perform numerical coronagraphic studies even in the case of ELTs using a contemporary commercial laptop computer, or any standard commercial workstation computer.

  18. Optimization of Apodized Pupil Lyot Coronagraph for ELTs

    CERN Document Server

    Martínez, P; Kasper, M; Baudoz, P; Cavarroc, C

    2007-01-01

    We study the optimization of the Apodized Pupil Lyot Coronagraph (APLC) in the context of exoplanet imaging with ground-based telescopes. The APLC combines an apodization in the pupil plane with a small Lyot mask in the focal plane of the instrument. It has been intensively studied in the literature from a theoretical point of view, and prototypes are currently being manufactured for several projects. This analysis is focused on the case of Extremely Large Telescopes, but is also relevant for other telescope designs. We define a criterion to optimize the APLC with respect to telescope characteristics like central obscuration, pupil shape, low order segment aberrations and reflectivity as function of the APLC apodizer function and mask diameter. Specifically, the method was applied to two possible designs of the future European-Extremely Large Telescope (E-ELT). Optimum configurations of the APLC were derived for different telescope characteristics. We show that the optimum configuration is a stronger function...

  19. Simplified solution of diffraction from a Lyot system

    Science.gov (United States)

    Wang, Yaujen; Vaughan, Arthur H.

    1988-01-01

    This paper presents a derivation of a simplified analytical solution of diffraction from a Lyot (1939) system designed for observation of the solar corona outside of eclipses. Applying the theorem of Papoulis (1986) to simplify the calculations, a simplified solution is derived which is found to be in reasonable agreement with the exact solution. The simplified solution suffices for the preliminary evaluation of the amount of diffraction reduction needed to meet certain system requirements and also serves as a guideline for further apodization.

  20. Survey of TES high albedo events in Mars' northern polar craters

    Science.gov (United States)

    Armstrong, J.C.; Nielson, S.K.; Titus, T.N.

    2007-01-01

    Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.

  1. Lyot coronagraph design study for large, segmented space telescope apertures

    Science.gov (United States)

    Zimmerman, Neil T.; N'Diaye, Mamadou; St. Laurent, Kathryn E.; Soummer, Rémi; Pueyo, Laurent; Stark, Christopher C.; Sivaramakrishnan, Anand; Perrin, Marshall; Vanderbei, Robert J.; Kasdin, N. J.; Shaklan, Stuart; Carlotti, Alexis

    2016-07-01

    Recent efforts combining the optimization techniques of apodized pupil Lyot coronagraphs (APLC) and shaped pupils have demonstrated the viability of a binary-transmission mask architecture for extremely high contrast (10-10) exoplanet imaging. We are now building on those innovations to carry out a survey of Lyot coronagraph performance for large, segmented telescope apertures. These apertures are of the same kind under considera- tion for NASA's Large UV/Optical/IR (LUVOIR) observatory concept. To map the multi-dimensional design parameter space, we have developed a software toolkit to manage large sets of mask optimization programs and execute them on a computing cluster. Here we summarize a preliminary survey of 500 APLC solutions for 4 reference hexagonal telescope apertures. Several promising designs produce annular, 10-10 contrast dark zones down to inner working angle 4λ0=D over a 15% bandpass, while delivering a half-max PSF core throughput of 18%. We also report our progress on devising solutions to the challenges of Lyot stop alignment/fabrication tolerance that arise in this contrast regime.

  2. Traveling Waves in the northern hemisphere of Mars - Structure, Variability and Energetics

    Science.gov (United States)

    Wang, Huiqun; Toigo, Anthony D.

    2015-11-01

    Investigations of the variability, structure and energetics of traveling waves in the northern hemisphere of Mars were conducted with the MarsWRF general circulation model. Using a simple annually repeatable dust scenario, the model reproduces the general characteristics of the observed traveling waves, including major wave periods and thermal signatures of traveling waves, suppression of transient eddy activity near the surface at northern winter solstice, and wave mode transitions among zonal wavenumber m = 1, 2 and 3 eastward traveling waves near the surface. Simulated wave structures in the temperature field differ from those in the geopotential field. Wave energetics calculations indicate a mixed baroclinic-barotropic nature for representative wave modes. This is consistent with Barnes et al. (1993). There is a large contrast in wave energetics between the near surface and higher altitudes, as well as between the poleward and equatorward side of the maximum eddy available potential energy at higher altitudes. The modeled transient eddies exhibit strong zonal variations in kinetic energy and various energy transfer terms. In particular, the eddy kinetic energy for a time period dominated by a m = 3 traveling wave shows local maxima in Acidalia, Utopia, and Arcadia, which are the origination locations of “flushing” dust storms. The eddy kinetic energy for a time period transitioning from m = 2 to m = 3 traveling waves shows local maxima in Acidalia and Utopia. There are direct energy exchanges between thermal tides and traveling waves, but the exchange rate is much slower than other major energetics terms. When thermal tides are removed from the MarsWRF simulation, the amplitudes of m = 3 traveling waves are greatly reduced. In the meantime, the isotherms of the northern baroclinic zone slope more towards the pole, satisfying an empirical condition for weaker traveling waves near the surface. However, this change cannot fully explain the strength of the

  3. Insights into the stratigraphy of Mars' northern plains from impact crater mineralogy

    Science.gov (United States)

    Pan, Lu; Ehlmann, Bethany; Carter, John; Ernst, Carolyn; CRISM Team

    2016-10-01

    The northern lowland of Mars has an ancient basement, buried underneath widespread Hesperian lavas and outflow channel sediments, and may have recorded geologic and aqueous activity related to global climate, e.g., the existence of a northern ocean. To better understand the geologic record of this depositional basin, we conducted a comprehensive survey of the mineralogy of northern plains impact craters, using 1905 images covering 689 impact craters, acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO). Mafic minerals are detected in 33% of all the craters, and hydrated minerals in 10% of the craters. Thus, though the northern plains surface is relatively spectrally homogeneous, the subsurface is spectrally diverse and includes a set of mafic (olivine and pyroxene) and hydrated minerals (Fe/Mg phyllosilicate, chlorite/prehnite, hydrated silica etc.) similar to the southern highlands. The distribution of hydrated minerals, especially Fe/Mg phyllosilicates, is more concentrated in large craters, while mafic minerals are relatively insensitive to crater size. This is consistent with a deeper origin for hydrated minerals compared to mafic minerals, or alternatively the post-impact formation of hydrated minerals due to impact-induced hydrothermal alteration only in the largest craters. Under the assumption of excavation from depth, we calculate the possible origin of these hydrated minerals to be -5000 ~ -6000 m relative to the global Mars Orbital Laser Altimeter (MOLA) datum, possibly representing the ancient basement buried by 1-2 km layer with mafic minerals. In contrast, the mafic materials are derived from only ~200 m deep. We also delineate several distinct topographic and geographic provinces. The large number of mafic mineral detections in Chryse Planitia probably indicates the influence of a local volcanic source; and Arcadia and Amazonis Planitiae probably have been resurfaced more recently

  4. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars.

    Science.gov (United States)

    Wyatt, Michael B; McSween, Harry Y

    2002-05-16

    Mineral abundances derived from the analysis of remotely sensed thermal emission data from Mars have been interpreted to indicate that the surface is composed of basalt (Surface Type 1) and andesite (Surface Type 2). The global distribution of these rock types is divided roughly along the planetary dichotomy which separates ancient, heavily cratered crust in the southern hemisphere (basalt) from younger lowland plains in the north (andesite). But the existence of such a large volume of andesite is difficult to reconcile with our present understanding of the geological evolution of Mars. Here we reinterpret martian surface rock lithologies using mineral abundances from previous work and new mineralogies derived from a spectral end-member set representing minerals common in unaltered and low-temperature aqueously altered basalts. Our results continue to indicate the dominance of unaltered basalt in the southern highlands, but reveal that the northern lowlands can be interpreted as weathered basalt as an alternative to andesite. The coincidence between locations of such altered basalt and a suggested northern ocean basin implies that lowland plains material may be composed of basalts weathered under submarine conditions or weathered basaltic sediments transported into this depocentre.

  5. Detection of Northern Hemisphere Transient Baroclinic Eddies in REMS Pressure Data at Gale Crater Mars

    Science.gov (United States)

    Haberle, Robert; Kahre, Melinda A.; De la Torre, Manuel; Kass, David M.; Mars Science Laboratory Science Team

    2016-10-01

    Wintertime transient baroclinic eddies in the northern midlatitudes of Mars were identified in Viking Lander 2 (VL2, 48.3N, 134.0E) surface pressure data back in the early 1980s. Here we report the results of an analysis of REMS surface pressure data acquired by the Curiosity Rover in Gale Crater (4.5S, 137.4E) that suggests the meridional scale of these eddies is so large that the disturbances in the surface pressure fields they create extend across the equator and into the southern hemisphere. A power spectrum analysis of the seasonally detrended REMS pressure data from Ls=240-280 shows dominant periods of ~ 6 sols and ~2.2 sols (though with greatly reduced power) which are close the dominant periods of the transient eddies observed by VL2 at this season. Analysis of the surface pressure fields from the Ames Mars GCM for the same season also shows dominant periods at the grid points closest to VL2 and Gale Crater similar to those observed. In the model, the disturbances responsible for these oscillations are eastward traveling baroclinic eddies whose amplitudes are greatest at northern mid latitudes at this season, but whose meridional extent does indeed extend into the low latitudes of the southern hemisphere. REMS appears to be seeing the signature of these eddies, not only for this season but for the early fall and late winter seasons as well. While orbital images of the so called "flushing storms", which more closely correspond to the shorter period waves, show dust-lifting frontal systems that cross the equator, REMS data - even though acquired at a longitude of comparatively weak storm activity - provide the first in-situ evidence that northern hemisphere transient eddies can be detected at the surface in low latitudes of the southern hemisphere.

  6. Design of a Four Degree_of_Freedom Manipulator for Northern Light Mars Mission

    Science.gov (United States)

    Lee, Regina; Quine, Brendan; Sathiyanathan, Kartheephan; Roberts, Caroline

    Northern Light is a Canadian mission to Mars, currently developed by a team of engineers, scientists and industrial organizations. The mission objectives include scientific goals such as the search for life and water, preparation for a sample return and engineering goals including the demonstration of interplanetary travel, an entry, descent and landing system, a rover design, a manipulator/drilling system, and semi-autonomous control in remote operations. The Northern Light team at York University is developing a four degree-of-freedom manipulator system, specifically for this remote operation. The Northern Light manipulator system will be mounted directly on the lander (not on the rover), providing an opportunity to perform scientific missions directly from the lander. The drilling instrument, to be mounted on the manipulator, is currently under development by Dr. Tze Chuen Ng now with the help of Hong Kong's Polytechnics University. The operation concept is based on a “single command cycle” approach. The operation plans are designed to handle exceptions, failures and unforeseen events using local intelligence and a contingency planner.

  7. Veiki-moraine-like landforms in Nereidum Montes on Mars: Insights from analogues in northern Sweden.

    Science.gov (United States)

    Johnsson, Andreas; Reiss, Dennis; Hauber, Ernst; Johnson, Mark D.; Olvmo, Mats; Hiesinger, Harald

    2016-04-01

    Mars is a cold hyper-arid planet where liquid water is extremely rare [1]. The observable water budget is instead found in a number of frozen reservoirs such as the polar caps, near surface ground ice and as glacier ice. Previously, numerous studies reported on glacier landforms such as viscous flow features and lobate debris aprons where water-ice is believed to be present under insulating debris cover [2]. This notion was confirmed by SHARAD measurements [3]. However, very little is known about glacial landforms in which water is an important factor. Most studies have focused on moraine-like ridges that are associated to gully systems [4], glacial landforms at the equatorial volcanic province [5] and possible drop-moraines from CO2 glaciers [6]. Here we report on an unusual lobate assemblage of irregular ring-shaped landforms within a mountain complex in Nereidum Montes, Mars. These landforms are well-preserved and may suggest recent ablation of a debris-covered glacier. These martian ring-shaped landforms show a striking morphological resemblance to the Veiki moraine in northern Sweden. Veiki moraines are believed to have formed at the lobate margins of a stagnant ice-sheet during the first Weichselian glaciation [7]. As it sharply ends to the east it may represent the maximum extent of this former ice sheet. The Veiki moraine is characterized by ridged plateaus that are more or less circular and surrounded by a rim ridge. The newly acquired national LiDAR data over Sweden enable us studying these landforms in unprecedented detail. They also enable us exploring geomorphological similarities between Earth and Mars in large spatial contexts. This study aims to increase our understanding of glacial landforms on Mars by comparison to terrestrial analogues. Questions addressed are: (1) How morphological similar are the Martian landforms to the Veiki moraine of Sweden? (2) How does the ring-shaped landforms relate to other possible glacial landforms within the

  8. Multi-stage apodized pupil Lyot coronagraph experimental results

    Science.gov (United States)

    Abe, L.; Venet, M.; Enya, K.; Kataza, H.; Nakagawa, T.; Tamura, M.

    2008-07-01

    Prolate (Pupil) Apodized Lyot Coronagraphs (PPALC) are known to offer optimal performances for a Lyot-type Coronagraph configuration, i.e. with an opaque occulting focal mask. One additional benefit of PPALC is its possible use in a multi-stage configuration. In theory, the coronagraphic performance can be QN, where Q is the energy rejection factor of one stage (the first one), and N the number of stages. Several ground-based telescopes are considering PPALC as an option for their high-contrast instrumentation (e.g. Gemini/GPI, EELT/EPICS, Subaru HiCIAO). Although the PPALC suffers from several limitations, several works are currently focused on fabricating entrance pupil apodizers and trying to find ways to overcome chromatism issues. In this work, we present the first experimental results from Multi-Stage PPALC (MS-PPALC) that was done in the context of the Japanese space telescope SPICA coronagraph project. Our entrance pupil apodizers use small diameter High Energy Beam Sensitive glass (HEBS-glass) from Canyon Materials Inc. The current results show modest coronagraphic performance due to uncompensated phase aberrations inherent to HEBS-glass material. In addition, and due to these uncompensated phase aberrations, the present optical configuration is an altered version of the originally planned set-up. However, we can demonstrate the validity the MS-PPALC concept and compare it to numerical simulations.

  9. Mars

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Mars exploration has never been more active, and our understanding of the planet is advancing rapidly. New discoveries reveal gullies carved by recent groundwater flow, thick ice deposits protected by rocks and soil even at the equator, and new evidence for lakes and seas in Mars' past. The Martian surface has some of the oldest planetary crust in the solar system, containing clues to conditions in early planets that cannot be obtained elsewhere.Beginning with a discussion of Mars as a planet in orbit, Mars, Revised Edition covers fundamental facts about this planet, including its mass and siz

  10. Surface processes on a mud-dominated Mars analogue alluvial fan, Atacama Desert, northern Chile

    Science.gov (United States)

    Hobley, D. E.; Howard, A. D.; Morgan, A. M.; Matsubara, Y.; Moore, J. M.; Parsons, R.; Williams, R. M.; Burr, D. M.; Hayes, A. G.; Dietrich, W.

    2012-12-01

    We characterize surface processes on highly unusual terrestrial alluvial fans, which we interpret as a strong analogue for large fans on Mars. The Mars fans date to post-Noachian periods when the martian climate was dominated by cold, hyperarid conditions. Some of the martian fans are differentially eroded to leave their distributary channels in positive relief. This inversion, along with the lack of boulders visible on most fan surfaces, reveals that the dominant grain size of the fans is fine enough for the overbank deposits to be stripped by wind. Degradation, image resolution, and lack of ground truthing all act to obscure the nature of the past flow processes. The fans in the Pampa de Tamarugal of the Atacama Desert of northern Chile are excellent potential Mars analogues for a number of reasons: 1. Hyperaridity, with ~2 mm/y rainfall over the fans themselves, resulting in 2. very little vegetation, 3. no fluvial erosion on the fans themselves, and 4. wind-driven erosion of the fan surfaces; 5. equivalent fan scale (tens of km); 6. similar fan gradient (low); 7. low channel branching density; 8. runoff fed from adjacent, much steeper terrain receiving more precipitation (~500 km2 drainages receiving 0.1-1 m/y precipitation in the High Andes, crater walls and interpreted orographic effects on Mars). Both the modern channels and the preserved stratigraphy are dominated by debris flow-like sheetflow mud deposits. Channels are leveed by concrete-like mass-supported deposits of granules and sand suspended in a silt and clay matrix, often overtopping the channel margins and forming up to 150 m wide levees and km-length sheet flows. This leveeing strongly constrains the aggrading channel, which is typically dominated by better sorted and imbricated fluvial deposits. We infer that the wetter tail of mudlfows sorts the deposits, keeping the central channel unblocked by mud. Relatively few channels are active at any time, but aggradation triggers occasional avulsions

  11. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  12. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  13. Time Evolution and Inter-Annual Variability of Seasonal Ice on the Mars Northern Polar Cap

    Science.gov (United States)

    Mount, C.; Titus, T. N.

    2012-03-01

    We explore the temporal density variations of Mars' NPSC and use ice depth and density estimates to constrain the CROCUS date for a specific location and compare it to the CROCUS dates from three previous Mars years.

  14. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    Science.gov (United States)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  15. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    Science.gov (United States)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  16. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars, Vertical Projection

    Science.gov (United States)

    2008-01-01

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars. The full-circle panorama in approximately true color shows the polygonal patterning of ground in the landing area, similar to patterns in permafrost areas on Earth. North is toward the top. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible just north of the lander. This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a vertical projection. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus

    Science.gov (United States)

    Zimbelman, J. R.

    2009-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geo-logic maps, generated under an earlier PGG mapping grant.

  18. Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus

    Science.gov (United States)

    Zimbelman, J. R.

    2010-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.

  19. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    CERN Document Server

    Ruane, Garreth J; Absil, Olivier; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Swartzlander, Grover A

    2015-01-01

    The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^...

  20. Full-Circle Color Panorama of Phoenix Lander Deck and Landing Site on Northern Mars, Animation

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation This view combines more than 500 images taken after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars. This movie makes a slow tour around highlights of the image including the landscape and the spacecraft's science deck. The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama. This view comprises more than 100 different Stereo Surface Imager camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars, Polar Projection

    Science.gov (United States)

    2008-01-01

    This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars. The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. South is toward the top. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the lower half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama. This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a polar projection. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Full-Circle Color Panorama of Phoenix Landing Site on Northern Mars

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Mission Success Pan Click on image to view the movie This view combines more than 400 images taken during the first several weeks after NASA's Phoenix Mars Lander arrived on an arctic plain at 68.22 degrees north latitude, 234.25 degrees east longitude on Mars. The movie makes a slow tour around highlights of the image. The full-circle panorama in approximately true color shows the polygonal patterning of ground at the landing area, similar to patterns in permafrost areas on Earth. The center of the image is the westward part of the scene. Trenches where Phoenix's robotic arm has been exposing subsurface material are visible in the right half of the image. The spacecraft's meteorology mast, topped by the telltale wind gauge, extends into the sky portion of the panorama. This view comprises more than 100 different camera pointings, with images taken through three different filters at each pointing. It is presented here as a cylindrical projection. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes

    CERN Document Server

    Zimmerman, Neil T; Kasdin, N Jeremy; Carlotti, Alexis; Vanderbei, Robert J

    2016-01-01

    Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope-Astrophysics Focused Te...

  4. Fresh Shallow Valleys in Northern Arabia Terra: Evidence for a Late, Widespread Period of Aqueous Activity on Mars

    Science.gov (United States)

    Wilson, S. A.; Howard, A. D.; Moore, J. M.; Grant, J. A., III

    2015-12-01

    Concentrations of fresh shallow valleys (FSVs) on Mars occur between ~30-45° in both hemispheres as well as near the equator (e.g., Gale crater and vicinity). FSVs in the northern hemisphere occur along the dichotomy boundary, with the highest concentration in northern Arabia Terra from 35-40°N between 0-20ºE. In this region, FSVs developed both on and away from ejecta of relatively fresh craters, making the direct association between impact processes and formation less likely. Crater statistics and cross-cutting relationships indicate the formation of FSVs terminated prior to about 1.4 Ga, suggesting they may be contemporaneous with alluvial fan and delta formation in the equatorial and mid-latitudes. Many FSV systems are 150+ km long, and in several cases appear to cross depressions that were likely filled with ice or water during FSV formation. Most FSV systems could have formed from a single episode of erosion but incision of the main channel in some locations may imply episodic formation. One long valley system in N. Arabia Terra with an incised channel (100 m wide, up to 10 m deep) yields formative discharges in the range of 100-200 m3/s assuming sand sized particles and a flow depth of 0.25 m, consistent with formation via snowmelt. The grain size is unknown, therefore discharges could range from 10s m3/s for active transport of fine sand to 1000 m3/s for gravel sized grains. Approximately 25 small craters (diameters ranging from ~2-10 km) have single channels extending outward from their rim, implying overflow of the crater and the possible presence of a deep lake. Widespread occurrence of FSVs, their similar morphology, and modest state of degradation is consistent with most forming during one or more global intervals of favorable climate, likely through snowmelt from surface or sub-ice flows during the Hesperian.

  5. Mapping the northern plains of Mars: origins, evolution and response to climate change - a new overview of the recent ice-related landforms in Utopia Planitia

    Science.gov (United States)

    Costard, Francois; Sejourne, Antoine; Losiak, Ania; Swirad, Zusanna; Balm, Matthew; Conway, Susan; Gallagher, Colman; van-Gassel, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Skinner, James

    2015-04-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains of Mars are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The western Utopia Planitia contains numerous relatively young ice-related landforms (Utopia Planitia along a long strip from ~30N to ~80N latitude and about 250km wide. The goals are to: (i) map the geographical distribution of the ice-related landforms; (ii) identify their association with subtly-expressed geological units and; (iii) discuss the climatic modifications of the ice-rich permafrost in UP. Our work combines a study with CTX (5-6 m/pixel) and HRSC (~12.5-50 m/pixel) images, supported by higher resolution HiRISE (25 cm/pixel) and MOC (~2 m/pixel) and a comparison with analogous landforms on Earth.

  6. Mapping the northern plains of Mars: origins, evolution and response to climate change - a new overview of recent ice-related landforms in Utopia Planitia

    Science.gov (United States)

    Séjourné, A.; Costard, F.; Losiak, A.; Swirad, Z. M.; Balme, M. R.; Conway, S. J.; Gallagher, C.; Hauber, E.; Johnsson, A. E.; Kereszturi, A.; Orgel, C.; Platz, T.; Ramsdale, J. D.; Reiss, D.; Skinner, J. A., Jr.; Van Gasselt, S.

    2015-10-01

    An International Space Science Institute (ISSI) team project has been convened to study ice-related landforms in targeted areas in the northern plain of Mars: Acidalia Planitia, Arcadia Planitia, and Utopia Planitia. Here, over western Utopia Planitia, ice-related landforms were identified and recorded in a sub-grid square. The end result of the mapping is a "raster" showing the distribution of thevarious different types of landforms across the whole strip providing a digital geomorph ological map (Fig. 1).

  7. Huge, CO2-charged debris-flow deposits and tectonic sagging in the northern plains of Mars

    Science.gov (United States)

    Tanaka, K.L.; Banerdt, W.B.; Kargel, J.S.; Hoffman, N.

    2001-01-01

    The northern plains of Mars contain a vast deposit, covering one-sixth of the planet, that apparently resulted in extensive lithospheric deformation. The center of the deposit may be as much as 2-3 km thick. The deposit has lobate margins consistent with the flow of fluidized debris for hundreds to thousands of kilometers derived from highland and high-plains sources. The deposit surface lowers inward by ???900 m in places and is locally bordered by a bulge ???300 m high. Similar deformation accompanied development of Pleistocene ice sheets on Earth. The lack of burial of a large inlier of older terrain and the response time of the mantle to the loading require that the deposit was emplaced in <1000 yr, assuming that the deposit was originally flat. We account for what may have been the largest catastrophic erosional and/or depositional event in solar system history by invoking pore-filling subsurface CO2 as an active agent in the processes of source-rock collapse and debris flow.

  8. High LMD GCM Resolution Modeling of the Seasonal Evolution of the Martian Northern Permanent Cap: Comparison with Mars Express OMEGA Observations

    Science.gov (United States)

    Levrard, B.; Forget, F.; Montmessin, F.; Schmitt, B.; Doute, S.; Langevin, Y.; Poulet, F.; Bibring, J. P.; Gondet, B.

    2005-01-01

    Analyses of imaging data from Mariner, Viking and MGS have shown that surface properties (albedo, temperature) of the northern cap present significant differences within the summer season and between Mars years. These observations include differential brightening and/or darkening between polar areas from the end of the spring to midsummer. These differences are attributed to changes in grain size or dust content of surface ice. To better understand the summer behavior of the permanent northern polar cap, we perfomed a high resolution modeling (approximately 1 deg x 1 deg.) of northern cap in the Martian Climate/water cycle as simulated by the Laboratoire de Meteorologie Dynamique (LMD) global climate model. We compare the predicted properties of the surface ice (ice thickness, temperature) with the Mars Express Omega summer observations of the northern cap. albedo and thermal inertia svariations model. In particular, albedo variations could be constrained by OMEGA data. Meteorological predictions of the LMD GCM wil be presented at the conference to interpret the unprecedently resolved OMEGA observations. The specific evolution of regions of interest (cap center, Chasma Boreal...) and the possibility of late summer global cap brightening will be discussed.

  9. Preliminary geological assessment of the Northern edge of ultimi lobe, Mars South Polar layered deposits

    Science.gov (United States)

    Murray, B.; Koutnik, M.; Byrne, S.; Soderblom, L.; Herkenhoff, K.; Tanaka, K.L.

    2001-01-01

    faults are poorly constrained. These fractures, along with the relatively undeformed layers between them, suggest to us that whatever horizontal motion may have taken place outward from the central cap region was accomplished by ancient basal sliding rather than large-scale glacial-like flow or ice migration by differential ablation, as proposed recently for the northern permanent cap and underlying NPLD. We have also obtained the, first direct estimate of the regional dip of the SPLD, around 2-3* outward (northward) in one area. ?? 2001 Elsevier Science.

  10. Phase Closure Nulling: A "Lyot Mask" on correlated flux of stars

    Science.gov (United States)

    Duvert, G.; Chelli, A.; Malbet F.; Kern, P.

    2010-10-01

    "Phase closure nulling" (PCN in short) is a technique which consists of observing fully resolved stars around the spatial frequency regions where the interferometric visibility amplitude is close to zero. Chelli et al. (2009) have shown that the phase closure in these regions is dominated by the signature of close and faint companions (if present), as if a "Lyot mask" was blocking the correlated flux of the star. This contribution will present the theory of PCN and results obtained on recent AMBER/VLTI and CHARA/MIRC observations, showing the high detection dynamics achieved by this observational technique.

  11. Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap

    Science.gov (United States)

    Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.

    2008-12-01

    The discovery of substantial amounts of magnesium and perchlorate by Phoenix' "Wet Chemistry Lab" (WCL) in the soil of Polar Mars suggests that magnesium perchlorate could be the dominant salt in the polar region's soils. This prospect opens some unexpected doors for moving liquid water around at temperatures as low as -68C. In its fully hydrated form ,this salt water mixture has a high density (~ 1700 kgm /cubic meter) (Besley and Bottomley,1969) and a freezing point of -68C (Pestova et al., 2005).This perchlorate is very deliquescent and gives off heat as it melts ice. About 1.8 gram of ice can be 'melted' by 1 gm of pure magnesium perchlorate . If the reported 1 percent perchlorate is typical of polar soils and if 5 percent of the Northern Permanent Ice Cap is soil then the perchorate , makes up about 0.0005 the of the ice cap. Given the average thickness of the ice cap is about 2000 meters,this suggests there enough perchorate in the ice cap to generate about 2m of salty water at the bed. Because of its density the perclorate salty water would pool over impervious layers and make the bed into a perchorate sludge that could be mobilized and deformed by the overburden of ice. The deformation of mobile beds is a well known phenomenon on some terrestrial glaciers presently and was thought to have played a major role during the Wisconsinan ice age (Fisher et al., 1985) . The perchorate sludge would be deformed and moved outwards possibly resulting its re-introduction to the polar environment. Having a deliquescent salt sludge at the bed whose melting point is -68C would mean that the ice cap could slide on its deformable bed while the ice itself was still very cold and stiff . This possibility has been modeled with a 2D time varying model . Adding the deformable bed material allows ice cap motion even at ice temperatures cold enough to generate and preserve the scarp/trough features. When the perchlorate formation mechanisms and rates are known the ultimate

  12. High Performance Lyot and PIAA Coronagraphy for Arbitrarily shaped Telescope Apertures

    CERN Document Server

    Guyon, Olivier; Cady, Eric; Belikov, Ruslan; Martinache, Frantz

    2013-01-01

    Two high performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, named Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, named Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-lambda/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described fo...

  13. Mars at Ls 357o

    Science.gov (United States)

    2006-01-01

    31 January 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 357o during a previous Mars year. This month, Mars looks similar, as Ls 357o occurred in mid-January 2006. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  14. Mars at Ls 324o

    Science.gov (United States)

    2005-01-01

    29 November 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 324o during a previous Mars year. This month, Mars looks similar, as Ls 324o occurred in mid-November 2005. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  15. High Performance Lyot and PIAA Coronagraphy for Arbitrarily Shaped Telescope Apertures

    Science.gov (United States)

    Guyon, Olivier; Hinz, Philip M.; Cady, Eric; Belikov, Ruslan; Martinache, Frantz

    2014-01-01

    Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.

  16. High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, Olivier; Hinz, Philip M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cady, Eric [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Belikov, Ruslan [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Martinache, Frantz, E-mail: guyon@naoj.org [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States)

    2014-01-10

    Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.

  17. Double stage Lyot coronagraph with the apodized reticulated stop for extremely large telescope

    CERN Document Server

    Yaitskova, N

    2005-01-01

    One of the science drivers for the extremely large telescope (ELT) is imaging and spectroscopy of exo-solar planets located as close as 20mas to their parent star. The application requires a well thought-out design of the high contrast imaging instrumentation. Several working coronagraphic concepts have already been developed for the monolithic telescope with the diameter up to 8 meter. Nevertheless the conclusions made about the performance of these systems cannot be applied directly to the telescope of the diameter 30-100m. The existing schemes are needed to be reconsidered taking into account the specific characteristics of a segmented surface. We start this work with the classical system ? Lyot coronagraph. We show that while the increase in telescope diameter is an advantage for the high contrast range science, the segmentation sets a limit on the performance of the coronagraph. Diffraction from intersegment gaps sets a floor to the achievable extinction of the starlight. Masking out the bright segment g...

  18. Optical Fiber Temperature and Torsion Sensor Based on Lyot-Sagnac Interferometer.

    Science.gov (United States)

    Shao, Li-Yang; Zhang, Xinpu; He, Haijun; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan

    2016-10-24

    An optical fiber temperature and torsion sensor has been proposed by employing the Lyot-Sagnac interferometer, which was composed by inserting two sections of high-birefringence (HiBi) fiber into the Sagnac loop. The two inserted sections of HiBi fiber have different functions; while one section acts as the temperature sensitive region, the other can be used as reference fiber. The temperature and twist sensor based on the proposed interferometer structure have been experimentally demonstrated. The experimental results show that the envelope of the output spectrum will shift with the temperature evolution. The temperature sensitivity is calculated to be -17.99 nm/°C, which is enlarged over 12 times compared to that of the single Sagnac interferometer. Additionally, the fringe visibility of the spectrum will change due to the fiber twist, and the test results reveal that the fringe visibility and twist angle perfectly conform to a Sine relationship over a 360° twist angle. Consequently, simultaneous torsion and temperature measurement could be realized by detecting the envelope shift and fringe visibility of the spectrum.

  19. Late Hesperian plains formation and degradation in a low sedimentation zone of the northern lowlands of Mars

    Science.gov (United States)

    Rodriguez, J.A.P.; Tanaka, K.L.; Berman, D.C.; Kargel, J.S.

    2010-01-01

    The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically

  20. In-situ Ice Core Analysis of Longyearbreen Glacier Using a Cryobot: Preparation for the Northern Polar Cap of Mars

    Science.gov (United States)

    Anderson, F.; Hecht, M. H.; Carsey, F. D.; Conrad, P. G.; Zimmerman, W. F.; French, L. C.; Engelhardt, H.

    2001-12-01

    A prototype cryobot will be used to provide an in-situ analysis of Longyearbreen glacier, in Svalbard. The cryobot is a small steerable robotic vehicle capable of melting through ice at a rate of ~20 m/day and carries a suite of instruments commonly used for ice core analysis. Terrestrial ice cores record climatological and geological history, such as changing atmospheric chemistry or volcanic eruptions. Unfortunately, coring or drilling in remote and harsh environmental conditions can be difficult and expensive. Furthermore, drilling and coring technologies are limited in penetration depth and commonly contaminate the sample with drilling fluids or surface debris. We present results from a cryobot designed to obtain geologic, climatologic, and biologic data while avoiding the problems of current methods; it can be installed in the ice with minimal effort, can be operated remotely, is relatively inexpensive, and is environmentally safe. The prototype will be used to record optical, pH, conductivity, redox, density, and temperature profiles of the Longyearbreen, glacier in Svalbard, Norway, which is 160 m deep, and located at 75N. These results will be compared with adjacent ice core measurements, for a direct comparison of the two technologies for obtaining science data. The ice core data will also be used to test the sensitivity and operating constraints a suite of instruments under development for use in the cryobot, including visible/near IR spectroscopy, UV fluorescence, and biomass identification. We have proposed the cryobot for use on a Scout class mission to Mars. The Svalbard melt test will serve as a simple Mars analog and a demonstration of the scientific return of the cryobot vehicle and instrument suite.

  1. Stop-less Lyot coronagraph for exoplanet characterization: design, manufacturing, and tests of the apodizer

    Science.gov (United States)

    Vigan, A.; N'Diaye, M.; Dohlen, K.

    2014-07-01

    Upcoming high-contrast imagers will all provide spectroscopic capabilities for the characterization of directly detected giant planets in wide orbits. While integral field spectroscopy (IFS) can provide both spatial and spectral information, it is usually limited in terms of field of view and resolution. The alternative is to use long slit spectroscopy coupled with coronagraphy (LSC), which can easily provide higher resolution and larger field of view. The SPHERE instrument for the VLT provides a LSC mode in its near-infrared imager and spectrograph, IRDIS. However, the fact that the occulting coronagraphic mask is merged in the focal plane with the slit reduces significantly its capacity to attenuate the diffraction, limiting the high-contrast capabilities of the instrument at close angular separations (0.3"-0.4"). To improve the diffraction suppression of the LSC in IRDIS, we recently proposed to use the stop-less Lyot coronagraph (SLLC) to build an apodized long slit coronagraph (ALSC), and we demonstrated that it improves notably the performance at small angular separation, allowing the spectral analysis of colder planets. The design of the SLLC apodizer has been optimized for an implementation in SPHERE/IRDIS, and it has recently been manufactured before being inserted into the instrument during reintegration of SPHERE in Paranal. In the current work, we present the final design of the SLLC apodizer, its specifications for the manufacturing step, and the first results obtained on SPHERE. We compare the results between the simple LSC and the new ALSC, and we draw the conclusions on the advantages and drawbacks of our design.

  2. Electric Field Reconstruction in the Image Plane of a High-Contrast Coronagraph Using a Set of Pinholes around the Lyot Plane

    Science.gov (United States)

    Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent

    2012-01-01

    In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.

  3. A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: Evidence from northern Arabia valleys and paleolakes

    Science.gov (United States)

    Wilson, Sharon A.; Howard, Alan D.; Moore, Jeffrey M.; Grant, John A.

    2016-09-01

    The growing inventory of post-Noachian fluvial valleys may represent a late, widespread episode of aqueous activity on Mars, contrary to the paradigm that fluvial activity largely ceased around the Noachian-Hesperian boundary. Fresh shallow valleys (FSVs) are widespread from ~30 to 45° in both hemispheres with a high concentration in northern Arabia Terra. Valleys in northern Arabia Terra characteristically start abruptly on steeper slopes and terminate in topographic depressions at elevations corresponding to model-predicted lake levels. Longer valley systems flowed into and out of chains of paleolakes. Minimum discharges based on the dimensions of the incised channel assuming medium to coarse sand-size grains ranges from tens to hundreds of m3 s-1, respectively, consistent with formation via snowmelt from surface or sub-ice flows. Hydrologic calculations indicate the valleys likely formed in hundreds of years or less, and crater statistics constrain the timing of fluvial activity to between the Hesperian and middle Amazonian. Several craters with channels extending radially outward supports evidence for overflow of interior crater lakes possibly fed by groundwater. Most FSVs occur away from young impact craters which make an association with impact processes improbable. The widespread occurrence of FSVs along with their similar morphology and shared modest state of degradation is consistent with most forming during a global interval of favorable climate, perhaps contemporaneous with alluvial fan formation in equatorial and midlatitudes. Evidence for a snowmelt-based hydrology and considerable depths of water on the landscape in Arabia supports a cold, wet, and possibly habitable environment late in Martian history.

  4. Fault geometry and mechanics of marly carbonate multilayers: An integrated field and laboratory study from the Northern Apennines, Italy

    Science.gov (United States)

    Giorgetti, C.; Collettini, C.; Scuderi, M. M.; Barchi, M. R.; Tesei, T.

    2016-12-01

    Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°-20°) and at high angles in clay-rich layers (θi = 45°-86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.

  5. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan

    Science.gov (United States)

    Skinner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2010-01-01

    The Libya Montes-Tyrrhena Terra highland-lowland transitional zone of Mars is a complex tectonic and erosional region that contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. Our 1:1M scale mapping project includes the geologic materials and landforms contained within MTMs 00282, -05282, -10282, 00277, - 05277, and -10277, which cover the highland portion of the transitional zone. The map region extends from the Libya Montes southward into Tyrrhena Terra and to the northern rim of Hellas basin and includes volcanic rocks of Syrtis Major Planum and a broad lowlying plain (palus) that forms a topographic divide between Isidis and Hellas basins. The objective of this project is to describe the geologic history of regional massif and plains materials by combining geomorphological and compositional mapping observations. This abstract summarizes the technical approaches and interim scientific results of Year 1 efforts and the expected work plan for Year 2 efforts.

  6. A Hybrid Lyot Coronagraph for the Direct Imaging and Spectroscopy of Exoplanet Systems: Recent Laboratory Demonstrations and Prospects

    Science.gov (United States)

    Trauger, John T.; Moody, D.; Gordon, B.; Krist, J.; Mawet, D.

    2012-01-01

    We report our best laboratory contrast demonstrations achieved to date. We review the design, fabrication, performance, and future prospects of a hybrid focal plane occulter for exoplanet coronagraphy. Composed of thickness-profiled metallic and dielectric thin films superimposed on a glass substrate, the hybrid occulter provides control over both the real and imaginary parts of a complex attenuation pattern. Together with a deformable mirror for control of wavefront phase, the hybrid Lyot coronagraph potentially exceeds billion-to-one contrast over dark fields extending to within angular separations of 3 λ/D from the central star, over spectral bandwidths of 20% or more, and with throughput efficiencies up to 60%. We report laboratory contrasts of 3×10-10 over 2% bandwidths, 6×10-10 over 10% bandwidths, and 2×10-9 over 20% bandwidths, achieved across high contrast fields extending from an inner working angle of 3 λ/D to a radius of 15 λ/D. Occulter performance is analyzed in light of recent experiments and optical models, and prospects for further improvements are summarized. The science capabilities of the hybrid Lyot coronagraph are compared with requirements for the ACCESS mission, a representative exoplanet space telescope concept study for the direct imaging and spectroscopy of exoplanet systems. This work has been supported by NASA's Technology Demonstration for Exoplanet Missions (TDEM) program.

  7. A Hybrid Lyot Coronagraph for the Direct Imaging and Spectroscopy of Exoplanet Systems: Recent Results and Prospects

    Science.gov (United States)

    Trauger, John; Moody, Dwight; Gordon, Brian; Krist, John; Mawet, Dimitri

    2011-01-01

    We report our best laboratory contrast demonstrations achieved to date. We review the design, fabrication, performance, and future prospects of a hybrid focal plane occulter for exoplanet coronagraphy. Composed of thickness-profiled metallic and dielectric thin films vacuum deposited on a fused silica substrate, the hybrid occulter uses two superimposed thin films for control over both the real and imaginary parts of the complex attenuation pattern. Together with a deformable mirror for adjustment of wavefront phase, the hybrid Lyot coronagraph potentially exceeds billion-to one contrast over dark fields extending to within angular separations of 3 lambda/D (3 x the cosmological constant / diameter of the telescope) from the central star, over spectral bandwidths of 20 percent or more, and with throughput efficiencies up to 60 percent. We report laboratory contrasts of 3 x 10 (sup -10) degrees over 2 percent bandwidths, 6 x 10 (sup -10) degrees over 10 percent bandwidths, and 2 x 10 (sup -9) over 20 percent bandwidths, achieved across high contrast fields extending from an inner working angle of 3 lambda/D to a radius of 15 lambda/D. Occulter performance is analyzed in light of recent experiments and optical models, and prospects for further improvements are summarized. The science capabilities of the hybrid Lyot coronagraph are compared with requirements of the ACCESS mission, a representative exoplanet space telescope concept study for the direct imaging and spectroscopy of exoplanet systems. This work has been supported by NASA's Technology Demonstration for Exoplanet Missions (TDEM) program.

  8. Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater

    Science.gov (United States)

    Arvidson, R. E.; Bell, J. F.; Bellutta, P.; Cabrol, N. A.; Catalano, J. G.; Cohen, J.; Crumpler, L. S.; Des Marais, D. J.; Estlin, T. A.; Farrand, W. H.; Gellert, R.; Grant, J. A.; Greenberger, R. N.; Guinness, E. A.; Herkenhoff, K. E.; Herman, J. A.; Iagnemma, K. D.; Johnson, J. R.; Klingelhöfer, G.; Li, R.; Lichtenberg, K. A.; Maxwell, S. A.; Ming, D. W.; Morris, R. V.; Rice, M. S.; Ruff, S. W.; Shaw, A.; Siebach, K. L.; de Souza, P. A.; Stroupe, A. W.; Squyres, S. W.; Sullivan, R. J.; Talley, K. P.; Townsend, J. A.; Wang, A.; Wright, J. R.; Yen, A. S.

    2010-09-01

    This paper summarizes Spirit Rover operations in the Columbia Hills, Gusev crater, from sol 1410 (start of the third winter campaign) to sol 2169 (when extrication attempts from Troy stopped to winterize the vehicle) and provides an overview of key scientific results. The third winter campaign took advantage of parking on the northern slope of Home Plate to tilt the vehicle to track the sun and thus survive the winter season. With the onset of the spring season, Spirit began circumnavigating Home Plate on the way to volcanic constructs located to the south. Silica-rich nodular rocks were discovered in the valley to the north of Home Plate. The inoperative right front wheel drive actuator made climbing soil-covered slopes problematical and led to high slip conditions and extensive excavation of subsurface soils. This situation led to embedding of Spirit on the side of a shallow, 8 m wide crater in Troy, located in the valley to the west of Home Plate. Examination of the materials exposed during embedding showed that Spirit broke through a thin sulfate-rich soil crust and became embedded in an underlying mix of sulfate and basaltic sands. The nature of the crust is consistent with dissolution and precipitation in the presence of soil water within a few centimeters of the surface. The observation that sulfate-rich deposits in Troy and elsewhere in the Columbia Hills are just beneath the surface implies that these processes have operated on a continuing basis on Mars as landforms have been shaped by erosion and deposition.

  9. Mars at Ls 93o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    15 August 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 93o during a previous Mars year. This month, Mars looks similar, as Ls 93o occurs in mid-August 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Summer/Southern Winter

  10. Mars at Ls 249o: Tharsis

    Science.gov (United States)

    2005-01-01

    5 July 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 249o during a previous Mars year. This month, Mars looks similar, as Ls 249o occurs in mid-July 2005. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Autumn/Southern Spring

  11. Mars at Ls 53o: Tharsis

    Science.gov (United States)

    2006-01-01

    2 May 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 53o during a previous Mars year. This month, Mars looks similar, as Ls 53o occurs in mid-May 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  12. Mars at Ls 79o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    18 July 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 79o during a previous Mars year. This month, Mars looks similar, as Ls 79o occurs in mid-July 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  13. Mars at Ls 269o: Tharsis

    Science.gov (United States)

    2005-01-01

    2 August 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 269o during a previous Mars year. This month, Mars looks similar, as Ls 269o occurs in mid-August 2005. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: last days of Northern Autumn/Southern Spring

  14. Mars at Ls 12o: Tharsis

    Science.gov (United States)

    2006-01-01

    7 February 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 12o during a previous Mars year. This month, Mars looks similar, as Ls 12o occurs in mid-February 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  15. Mars at Ls 25o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    21 March 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 25o during a previous Mars year. This month, Mars looks similar, as Ls 25o occurs in mid-March 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring

  16. Mars at Ls 79o: Tharsis

    Science.gov (United States)

    2006-01-01

    4 July 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 79o during a previous Mars year. This month, Mars looks similar, as Ls 79o occurs in mid-July 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  17. Mars at Ls 306o: Tharsis

    Science.gov (United States)

    2005-01-01

    4 October 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 306o during a previous Mars year. This month, Mars looks similar, as Ls 306o occurs in mid-October 2005. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  18. Mars at Ls 357o: Tharsis

    Science.gov (United States)

    2006-01-01

    4 January 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 357o during a previous Mars year. This month, Mars looks similar, as Ls 357o occurs in mid-January 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. NASA/JPL/Malin Space Science SystemsSeason: Northern Winter/Southern Summer

  19. Mars at Ls 66o: Tharsis

    Science.gov (United States)

    2006-01-01

    6 June 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 66o during a previous Mars year. This month, Mars looks similar, as Ls 66o occurs in mid-June 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  20. Mars at Ls 53o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    16 May 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 53o during a previous Mars year. This month, Mars looks similar, as Ls 53o occurs in mid-May 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  1. Mars at Ls 341o: Tharsis

    Science.gov (United States)

    2005-01-01

    6 December 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 341o during a previous Mars year. This month, Mars looks similar, as Ls 341o occurs in mid-December 2005. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  2. Mars at Ls 25o: Tharsis

    Science.gov (United States)

    2006-01-01

    7 March 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 25o during a previous Mars year. This month, Mars looks similar, as Ls 25o occurs in mid-March 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  3. Mars at Ls 93o: Tharsis

    Science.gov (United States)

    2006-01-01

    1 August 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 93o during a previous Mars year. This month, Mars looks similar, as Ls 93o occurs in mid-August 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Summer/Southern Winter

  4. Mars at Ls 12o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    21 February 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 12o during a previous Mars year. This month, Mars looks similar, as Ls 12o occurs in mid-February 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  5. Mars at Ls 39o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    18 April 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 39o during a previous Mars year. This month, Mars looks similar, as Ls 39o occurs in mid-April 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  6. Mars at Ls 39o: Tharsis

    Science.gov (United States)

    2006-01-01

    4 April 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 39o during a previous Mars year. This month, Mars looks similar, as Ls 39o occurs in mid-April 2006. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  7. Mars at Ls 324o: Tharsis

    Science.gov (United States)

    2005-01-01

    1 November 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 324o during a previous Mars year. This month, Mars looks similar, as Ls 324o occurs in mid-November 2005. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  8. Mars at Ls 288o: Tharsis

    Science.gov (United States)

    2005-01-01

    6 September 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 288o during a previous Mars year. This month, Mars looks similar, as Ls 288o occurs in mid-September 2005. The picture shows the Tharsis face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  9. Mars at Ls 66o: Syrtis Major

    Science.gov (United States)

    2006-01-01

    20 June 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 66o during a previous Mars year This month, Mars looks similar, as Ls 66o occurs in mid-June 2006. The picture shows the Syrtis Major face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  10. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. IV. Reduced Inner Working Angle and Increased Robustness to Low-Order Aberrations

    CERN Document Server

    N'Diaye, Mamadou; Soummer, Rémi

    2014-01-01

    The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a prolate apodization, the current implementations offer raw contrasts down to $10^{-7}$ at 0.2 arcsec from a star over a wide bandpass (20\\%), in the presence of central obstruction and struts, enabling the study of young or massive gaseous planets. Observations of older or lighter companions at smaller separations would require improvements in terms of inner working angle (IWA) and contrast, but the methods originally used for these designs were not able to fully explore the parameter space. We here propose a novel approach to improve the APLC performance. Our method relies on the linear properties of the coronagraphic electric field with the apodization at any wavelength to develop numerical solutions producing coronagraphic star images with high-contrast region in...

  11. Mars at Ls 137o

    Science.gov (United States)

    2006-01-01

    13 November 2006 These images capture what Mars typically looks like in mid-afternoon at Ls 137o. In other words, with the exception of occasional differences in weather and polar frost patterns, this is what the red planet looks like this month (November 2006). Six views are shown, including the two polar regions. These are composites of 24-26 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global mapping images acquired at red and blue wavelengths. The 'hole' over the south pole is an area where no images were obtained, because this polar region is enveloped in wintertime darkness. Presently, it is summer in the northern hemisphere and winter in the southern hemisphere. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Northern summer/southern winter begins at Ls 90o, northern autumn/southern spring start at Ls 180o, and northern winter/southern summer begin at Ls 270o. Ls 137o occurs in the middle of this month (November 2006). The pictures show how Mars appeared to the MOC wide angle cameras at a previous Ls 137o in March 2001. The six views are centered on the Tharsis region (upper left), Acidalia and Mare Eyrthraeum (upper right), Syrtis Major and Hellas (middle left), Elysium and Mare Cimmeria (middle right), the north pole (lower left), and the south pole (lower right).

  12. Mars at Ls 121o

    Science.gov (United States)

    2006-01-01

    1 October 2006 These images capture what Mars typically looks like in mid-afternoon at L s 121o. In other words, with the exception of occasional differences in weather and polar frost patterns, this is what the red planet looks like this month (October 2006). Six views are shown, including the two polar regions. These are composites of 24-26 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global mapping images acquired at red and blue wavelengths. The 'hole' over the south pole is an area where no images were obtained, because this polar region is enveloped in wintertime darkness. Presently, it is summer in the northern hemisphere and winter in the southern hemisphere. Ls, solar longitude, a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Northern summer/southern winter begins at Ls 90o, northern autumn/southern spring start at Ls 180o, and northern winter/southern summer begin at Ls 270o. Ls 121o occurs in the middle of this month (October 2006). The pictures show how Mars appeared to the MOC wide angle cameras at a previous Ls 121o in February 2001. The six views are centered on the Tharsis region (upper left), Acidalia and Mare Eyrthraeum (upper right), Syrtis Major and Hellas (middle left), Elysium and Mare Cimmeria (middle right), the north pole (lower left), and the south pole (lower right).

  13. Spiders from Mars?

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  14. APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. IV. REDUCED INNER WORKING ANGLE AND INCREASED ROBUSTNESS TO LOW-ORDER ABERRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    N' Diaye, Mamadou; Pueyo, Laurent; Soummer, Rémi, E-mail: mamadou@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a prolate apodization, the current implementations offer raw contrasts down to 10{sup –7} at 0.2 arcsec from a star over a wide bandpass (20%), in the presence of central obstruction and struts, enabling the study of young or massive gaseous planets. Observations of older or lighter companions at smaller separations would require improvements in terms of the inner working angle (IWA) and contrast, but the methods originally used for these designs were not able to fully explore the parameter space. We propose a novel approach to improve the APLC performance. Our method relies on the linear properties of the coronagraphic electric field with the apodization at any wavelength to develop numerical solutions producing coronagraphic star images with high-contrast region in broadband light. We explore the parameter space by considering different aperture geometries, contrast levels, dark-zone sizes, bandpasses, and focal plane mask sizes. We present an application of these solutions to the case of Gemini/GPI with a design delivering a 10{sup –8} raw contrast at 0.19 arcsec and offering a significantly reduced sensitivity to low-order aberrations compared to the current implementation. Optimal solutions have also been found to reach 10{sup –10} contrast in broadband light regardless of the aperture shape, with effective IWA in the 2-3.5 λ/D range, therefore making the APLC a suitable option for the future exoplanet direct imagers on the ground or in space.

  15. Mars at Ls 306o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    11 October 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 306o during a previous Mars year. This month, Mars looks similar, as Ls 306o occurs in mid-October 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  16. Mars at Ls 79o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    25 July 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 79o during a previous Mars year. This month, Mars looks similar, as Ls 79o occurred in mid-July 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  17. Mars at Ls 53o: North Polar Region

    Science.gov (United States)

    2006-01-01

    30 May 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 53o during a previous Mars year. This month, Mars looks similar, as Ls 53o occurred in mid-May 2006. The picture shows the north polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  18. Mars at Ls 324o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    8 November 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 324o during a previous Mars year. This month, Mars looks similar, as Ls 324o occurs in mid-November 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  19. Mars at Ls 12o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    28 February 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 12o during a previous Mars year. This month, Mars looks similar, as Ls 12o occurred in mid-February 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  20. Mars at Ls 269o: South Polar Region

    Science.gov (United States)

    2005-01-01

    30 August 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 269o during a previous Mars year. This month, Mars looks similar, as Ls 269o occurred in mid-August 2005. The picture shows the south polar region of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: last days of Northern Autumn/Southern Spring

  1. Mars at Ls 39o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    25 April 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 39o during a previous Mars year. This month, Mars looks similar, as Ls 39o occurred in mid-April 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  2. Mars at Ls 53o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    9 May 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 53o during a previous Mars year. This month, Mars looks similar, as Ls 53o occurs in mid-May 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  3. Mars at Ls 306o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    25 October 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 306o during a previous Mars year. This month, Mars looks similar, as Ls 306o occurred in mid-October 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  4. Mars at Ls 269o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    9 August 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 269o during a previous Mars year. This month, Mars looks similar, as Ls 269o occurs in mid-August 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: last days of Northern Autumn/Southern Spring

  5. Mars at Ls 288o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    27 September 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 288o during a previous Mars year. This month, Mars looks similar, as Ls 288o occurred in mid-September 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  6. Mars at Ls 107o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    13 September 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 107o during a previous Mars year. This month, Mars looks similar, as Ls 107o occurs in mid-September 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Summer/Southern Winter

  7. Mars at Ls 357o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    10 January 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 357o during a previous Mars year. This month, Mars looks similar, as Ls 357o occurs in mid-January 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  8. Mars at Ls 25o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    14 March 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 25o during a previous Mars year. This month, Mars looks similar, as Ls 25o occurs in mid-March 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  9. Mars at Ls 93o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    22 August 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 93o during a previous Mars year. This month, Mars looks similar, as Ls 93o occurred in mid-August 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Location near: 86.1oN, 208.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer/Southern Winter

  10. Mars at Ls 230o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    28 June 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 230o during a previous Mars year. This month, Mars looks similar, as Ls 230o occurred in mid-June 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season Northern Autumn/Southern Spring

  11. Mars at Ls 324o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    22 November 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 324o during a previous Mars year. This month, Mars looks similar, as Ls 324o occurred in mid-November 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  12. Mars at Ls 12o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    15 February 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 12o during a previous Mars year. This month, Mars looks similar, as Ls 12o occurs in mid-February 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  13. Mars at Ls 39o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    11 April 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 39o during a previous Mars year. This month, Mars looks similar, as Ls 39o occurs in mid-April 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  14. Mars at Ls 107o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    26 September 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 107o during a previous Mars year. This month, Mars looks similar, as Ls 107o occurred in mid-September 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Summer/Southern Winter

  15. Mars at Ls 249o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    12 July 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 249o during a previous Mars year. This month, Mars looks similar, as Ls 249o occurs in mid-July 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Autumn/Southern Spring

  16. Mars at Ls 288o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    13 September 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 288o during a previous Mars year. This month, Mars looks similar, as Ls 288o occurs in mid-September 2005. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  17. Mars at Ls 25o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    28 March 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 25o during a previous Mars year. This month, Mars looks similar, as Ls 25o occurred in mid-March 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  18. Mars at Ls 79o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    11 July 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 79o during a previous Mars year. This month, Mars looks similar, as Ls 79o occurs in mid-July 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  19. Mars at Ls 341o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    27 December 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 341o during a previous Mars year. This month, Mars looks similar, as Ls 341o occurred in mid-December 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  20. Mars at Ls 66o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    13 June 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 66o during a previous Mars year. This month, Mars looks similar, as Ls 66o occurs in mid-June 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  1. Mars at Ls 357o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    25 January 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 357o during a previous Mars year. This month, Mars looks similar, as Ls 357o occurred in mid-January 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Winter/Southern Summer

  2. Mars at Ls 66o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    27 June 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 66o during a previous Mars year. This month, Mars looks similar, as Ls 66o occurred in mid-June 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Northern Spring/Southern Autumn

  3. Mars at Ls 93o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2006-01-01

    8 August 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 93o during a previous Mars year. This month, Mars looks similar, as Ls 93o occurs in mid-August 2006. The picture shows the Acidalia/Mare Erythraeum face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Summer/Southern Winter

  4. Mars at Ls 53o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2006-01-01

    23 May 2006 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 53o during a previous Mars year. This month, Mars looks similar, as Ls 53o occurred in mid-May 2006. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Spring/Southern Autumn

  5. Mars at Ls 249o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    26 July 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 249o during a previous Mars year. This month, Mars looks similar, as Ls 249o occurred in mid-July 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: Northern Autumn/Southern Spring

  6. Mars at Ls 269o: Elysium/Mare Cimmerium

    Science.gov (United States)

    2005-01-01

    23 August 2005 This picture is a composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired at Ls 269o during a previous Mars year. This month, Mars looks similar, as Ls 269o occurred in mid-August 2005. The picture shows the Elysium/Mare Cimmerium face of Mars. Over the course of the month, additional faces of Mars as it appears at this time of year are being posted for MOC Picture of the Day. Ls, solar longitude, is a measure of the time of year on Mars. Mars travels 360o around the Sun in 1 Mars year. The year begins at Ls 0o, the start of northern spring and southern autumn. Season: last days of Northern Autumn/Southern Spring

  7. Icebergs on early Mars

    Science.gov (United States)

    Uceda, E.; Fairen, A.; Woodworth-Lynas, C.; Palmero Rodriguez, A.

    2015-12-01

    The smooth topography of the Martian northern lowlands has been classically equated to an ancient ocean basin. The High-Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter (MRO) is providing unprecedented images of the Martian surface at scales of 25 to 32 cm per pixel. The analysis of this high-resolution imaging reveals the presence of three differentiated geomorphologies throughout the northern lowlands of Mars and the Hellas basin, which are informative of the presence of icebergs floating in ancient oceans and/or seas. These morphologies are: (i) scattered scour marks, including curvilinear furrows several km long and some meters deep; (ii) boulders ranging in size from 0.5 m to ~2 m in diameter, distributed forming clusters with sizes from several hundred meters to 1-2 km; and (iii) flat-topped and conical circular fractured mounds. The association of plough marks, clusters of boulders and mounds on the northern plains of Mars can be related to the dual processes of ice keel scouring and ice rafting of both glacial and non-glacial detritus by a floating ice canopy and icebergs. These processes are well documented on Earth and result in distinct morphologies on the ocean floor, which are analogous to features observed in the Martian basins. Importantly, the features are located in elevated areas of the northern plains and Hellas, near the dichotomy boundary and on local topographic highs. Such distribution is expected, as these relatively shoal areas are where the iceberg-related features should occur on Mars: these areas had shallow water depths, less than the iceberg's keel depth, and therefore keels reached through the full depth of the water column to impinge on the sediments below. The presence of icebergs floating in cold oceans early in Mars' history imply the occurrence of continental glaciers forming in the highlands and streaming northward towards the lowlands, and towards the Hellas and Argyre Basins. Glacier

  8. MAR-ECO, a Census of Marine Life Programme

    NARCIS (Netherlands)

    O.A. Bergstad; T. Falkenhaug; A.C. Pierrot-Bults

    2005-01-01

    Mar-Eco is an international exploratory study of the macro- and megafauna of the northern Mid-Atlantic in the waters around the Mid-Atlantic Ridge (MAR) from Iceland to the Azores. Scientists from 16 nations around the northern Atlantic Ocean are participating. Research is focussed on the following

  9. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  10. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  11. Lunar and Planetary Science XXXV: Mars

    Science.gov (United States)

    2004-01-01

    The session "Mars" included the following reports:Tentative Theories for the Long-Term Geological and Hydrological Evolution of Mars; Stratigraphy of Special Layers Transient Ones on Permeable Ones: Examples from Earth and Mars; Spatial Analysis of Rootless Cone Groups on Iceland and Mars; Summer Season Variability of the North Residual Cap of Mars from MGS-TES; Spectral and Geochemical Characteristics of Lake Superior Type Banded Iron Formation: Analog to the Martian Hematite Outcrops; Martian Wave Structures and Their Relation to Mars; Shape, Highland-Lowland Chemical Dichotomy and Undulating Atmosphere Causing Serious Problems to Landing Spacecrafts; Shear Deformation in the Graben Systems of Sirenum Fosssae, Mars: Preliminary Results; Components of Martian Dust Finding on Terrestrial Sedimentary Deposits with Use of Infrared Spectra; Morphologic and Morphometric Analyses of Fluvial Systems in the Southern Highlands of Mars; Light Pattern and Intensity Analysis of Gray Spots Surrounding Polar Dunes on Mars; The Volume of Possible Ancient Oceanic Basins in the Northern Plains of Mars MARSES: Possibilities of Long-Term Monitoring Spatial and Temporal Variations and Changes of Subsurface Geoelectrical Section on the Base; Results of the Geophysical Survey Salt/Water Interface and Groundwater Mapping on the Marina Di Ragusa, Sicily and Shalter Island, USA ;A Miniature UV-VIS Spectrometer for the Surface of Mars; Automatic Recognition of Aeolian Ripples on Mars; Absolute Dune Ages and Implications for the Time of Formation of Gullies in Nirgal Vallis, Mars; Diurnal Dust Devil Behaviour for the Viking 1 Landing Site: Sols 1 to 30; Topography Based Surface Age Computations for Mars: A Step Toward the Formal Proof of Martian Ocean Recession, Timing and Probability; Gravitational Effects of Flooding and Filling of Impact Basins on Mars; Viking 2 Landing Site in MGS/MOC Images South Polar Residual Cap of Mars: Features, Stratigraphy, and Changes.

  12. Mars Pathfinder

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  13. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  14. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  15. Mar Capeans

    CERN Multimedia

    2017-01-01

    Mar Capeans, CERN researcher, answers the question to "What can we do in the world of sciences and innovation to make visible the invisible?". This piece belongs to a series of videos made by the Spanish Aquae Foundation, a supporter of the CERN & Society Foundation.

  16. Mar adentro

    OpenAIRE

    Florián Guerrero, Mayra

    2014-01-01

    La bravura del mar destruyó primero las canchas de fútbol, luego se tragó casas y finalmente las playas. El otrora balneario exclusivo de Buenos Aires, donde se fundó el famoso restaurant Morillas en los años 40, es ahora un tímido recuerdo en medio del chocar incesante de las olas.

  17. Mars at Ls 341o: Acidalia/Mare Erythraeum

    Science.gov (United States)

    2005-01-01

    13 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a banded surface in Argyre Planitia, the second largest impact basin in the martian southern hemisphere. The bands are the erosional expression of layered, perhaps sedimentary, rock. Season: Northern Winter/Southern Summer

  18. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    2014-01-01

    To develop and test wind power technology for use on Mars, Ames Research Center turned to Northern Power Systems (NPS), based in Barre, Vermont. Ames awarded NPS an SBIR contract so the company could enhance their turbine’s function. Today, over 200 NASA-derived Northern Power 100s are in operation on Earth and have reduced carbon emissions by 50,000 tons annually.

  19. Distribution, origin and evolution of hypothesized mud volcanoes, thumbprint terrain, small mounds and giant polygons: Implications for sedimentary processes in the northern lowlands of Mars: Case study from the Acidalia Planitia.

    Science.gov (United States)

    Orgel, Csilla; Hauber, Ernst; van Gasselt, Stephan; Pozzobon, Riccardo; Skinner, James, Jr.

    2016-04-01

    This study is part of the activities of an ISSI International Team, which intends to produce new geomorphological maps of the northern lowlands of Mars along three long traverses across Acidalia, Utopia, and Arcadia Planitiae [1]. This specific study focuses on mounds of different sizes: Large Pitted Mounds (LPM), Thumbprint Terrain (TPT), Small Mounds (SM) as well as km-sized, giant polygons (GP) [2,3]. These landforms were formed on the Vastitas Borealis Formation (VBF) Marginal and Interior Units, which are interpreted as outflow channel deposits or sediments of a hypothesized ocean. The aim of our study is to map the above mentioned features in the northern lowlands and establish a formational history and stratigraphy of landforms using morphological observations and geostatistics in Acidalia Planitia. Our study is based on CTX mosaics (6 m/pixel) and we also used data from HiRISE (0.25 m/px), HRSC (images >10 m/px, HRSC- derived Digital Elevation Models [DEM], grid size 50-200 m), MOLA DEM (~460 m/px), and THEMIS Nighttime IR (~100 m/px). The TPT appears north of about 30°N in the termination zones of the Chryse outflow channels and shows a transition zone with the LPMs at around 36°N in Acidalia Planitia. North of 39°N, only LPM can be observed. LPM are typically surrounded by topographic moats. Sometimes more than 75% of a mound can be covered or embayed by „plain filling material" of varying thickness. The LPM are observed in the same area as large-scale polygon troughs (buried and fresh) associated with circular-shaped small mounds (SM). The SM are located from 34°N to 48°N, completely overlapping the area of LPM and partly the TPT. These features are randomly distributed, but commonly arranged in clusters. Their domical shape with the central pit shows morphological resemblance with the LPM. These features characterize the area from 35 N° to 61 N° and completely disappear in the Acidalia Colles region. The mapping results show a morphological

  20. Apodized pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid Shaped Pupil designs for imaging Earth-like planets with future space observatories

    CERN Document Server

    N'Diaye, Mamadou; Pueyo, Laurent; Carlotti, Alexis; Stark, Christopher C; Perrin, Marshall D

    2016-01-01

    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of $10^{10}$. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures or segment gaps. We illustrate the technique with a design that could reach $10^{10}$ contrast level at 34\\,mas for a 12\\,m segmented telescope over a 10\\% bandpass centered at a wavelength $\\lambda_0=$500\\,nm. These designs can be optimized specifically for the presence of a resolved star, and in our example, for stellar angular size up to 1.1\\,mas. This would allow probing the vicinity of Sun-like stars located beyond 4.4\\,pc, therefore fully retiring this concern. If the fr...

  1. Mars @ ASDC

    Science.gov (United States)

    Carraro, Francesco

    "Mars @ ASDC" is a project born with the goal of using the new web technologies to assist researches involved in the study of Mars. This project employs Mars map and javascript APIs provided by Google to visualize data acquired by space missions on the planet. So far, visualization of tracks acquired by MARSIS and regions observed by VIRTIS-Rosetta has been implemented. The main reason for the creation of this kind of tool is the difficulty in handling hundreds or thousands of acquisitions, like the ones from MARSIS, and the consequent difficulty in finding observations related to a particular region. This led to the development of a tool which allows to search for acquisitions either by defining the region of interest through a set of geometrical parameters or by manually selecting the region on the map through a few mouse clicks The system allows the visualization of tracks (acquired by MARSIS) or regions (acquired by VIRTIS-Rosetta) which intersect the user defined region. MARSIS tracks can be visualized both in Mercator and polar projections while the regions observed by VIRTIS can presently be visualized only in Mercator projection. The Mercator projection is the standard map provided by Google. The polar projections are provided by NASA and have been developed to be used in combination with APIs provided by Google The whole project has been developed following the "open source" philosophy: the client-side code which handles the functioning of the web page is written in javascript; the server-side code which executes the searches for tracks or regions is written in PHP and the DB which undergoes the system is MySQL.

  2. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. V. Hybrid Shaped Pupil Designs for Imaging Earth-like planets with Future Space Observatories

    Science.gov (United States)

    N'Diaye, Mamadou; Soummer, Rémi; Pueyo, Laurent; Carlotti, Alexis; Stark, Christopher C.; Perrin, Marshall D.

    2016-02-01

    We introduce a new class of solutions for Apodized Pupil Lyot Coronagraphs (APLC) with segmented aperture telescopes to remove broadband diffracted light from a star with a contrast level of 1010. These new coronagraphs provide a key advance to enabling direct imaging and spectroscopy of Earth twins with future large space missions. Building on shaped pupil (SP) apodization optimizations, our approach enables two-dimensional optimizations of the system to address any aperture features such as central obstruction, support structures, or segment gaps. We illustrate the technique with a design that could reach a 1010 contrast level at 34 mas for a 12 m segmented telescope over a 10% bandpass centered at a wavelength of {λ }0 = 500 nm. These designs can be optimized specifically for the presence of a resolved star and, in our example, for stellar angular size up to 1.1 mas. This would allow one to probe the vicinity of Sun-like stars located beyond 4.4 pc, therefore, fully retiring this concern. If the fraction of stars with Earth-like planets is {η }\\oplus =0.1, with 18% throughput, assuming a perfect, stable wavefront and considering photon noise only, 12.5 exo-Earth candidates could be detected around nearby stars with this design and a 12 m space telescope during a five-year mission with two years dedicated to exo-Earth detection (one total year of exposure time and another year of overheads). Our new hybrid APLC/SP solutions represent the first numerical solution of a coronagraph based on existing mask technologies and compatible with segmented apertures, and that can provide contrast compatible with detecting and studying Earth-like planets around nearby stars. They represent an important step forward toward enabling these science goals with future large space missions.

  3. Mars Public Engagement Overview

    Science.gov (United States)

    Johnson, Christine

    2009-01-01

    This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.

  4. The Climate of Early Mars

    Science.gov (United States)

    Wordsworth, Robin D.

    2016-06-01

    The nature of the early martian climate is one of the major unanswered questions of planetary science. Key challenges remain, but a new wave of orbital and in situ observations and improvements in climate modeling have led to significant advances over the past decade. Multiple lines of geologic evidence now point to an episodically warm surface during the late Noachian and early Hesperian periods 3-4 Ga. The low solar flux received by Mars in its first billion years and inefficiency of plausible greenhouse gases such as CO2 mean that the steady-state early martian climate was likely cold. A denser CO2 atmosphere would have caused adiabatic cooling of the surface and hence migration of water ice to the higher-altitude equatorial and southern regions of the planet. Transient warming caused melting of snow and ice deposits and a temporarily active hydrological cycle, leading to erosion of the valley networks and other fluvial features. Precise details of the warming mechanisms remain unclear, but impacts, volcanism, and orbital forcing all likely played an important role. The lack of evidence for glaciation across much of Mars's ancient terrain suggests the late Noachian surface water inventory was not sufficient to sustain a northern ocean. Though mainly inhospitable on the surface, early Mars may nonetheless have presented significant opportunities for the development of microbial life.

  5. Rotorcrafts for Mars Exploration

    Science.gov (United States)

    Balaram, J.; Tokumaru, P. T.

    2014-06-01

    Rotorcraft mobility provides a number of useful capabilities to potential Mars missions. We present some recent results relating to the design and test of Mars rotorcraft mobility elements, and aspects of rotorcraft system and mission design.

  6. Mars Gashopper Airplane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Gas Hopper Airplane, or "gashopper" is a novel concept for propulsion of a robust Mars flight and surface exploration vehicle that utilizes indigenous CO2...

  7. Modeling the hydrological cycle on Mars

    Directory of Open Access Journals (Sweden)

    Ghada Machtoub

    2012-03-01

    Full Text Available The study provides a detailed analysis of the hydrological cycle on Mars simulated with a newly developed microphysical model, incorporated in a spectral Mars General Circulation Model. The modeled hydrological cycle is compared well with simulations of other global climate models. The simulated seasonal migration ofwater vapor, circulation instability, and the high degree of temporal variability of localized water vapor outbursts are shown closely consistent with recent observations. The microphysical parameterization provides a significant improvement in the modeling of ice clouds evolved over the tropics and major ancient volcanoes on Mars. The most significant difference between the simulations presented here and other GCM results is the level at which the water ice clouds are found. The model findings also support interpretation of observed thermal anomalies in the Martian tropics during northern spring and summer seasons.

  8. Discovery of diffuse aurora on Mars.

    Science.gov (United States)

    Schneider, N M; Deighan, J I; Jain, S K; Stiepen, A; Stewart, A I F; Larson, D; Mitchell, D L; Mazelle, C; Lee, C O; Lillis, R J; Evans, J S; Brain, D; Stevens, M H; McClintock, W E; Chaffin, M S; Crismani, M; Holsclaw, G M; Lefevre, F; Lo, D Y; Clarke, J T; Montmessin, F; Jakosky, B M

    2015-11-01

    Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment. We report the discovery of low-altitude, diffuse auroras spanning much of Mars' northern hemisphere, coincident with a solar energetic particle outburst. The Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, detected auroral emission in virtually all nightside observations for ~5 days, spanning nearly all geographic longitudes. Emission extended down to ~60 kilometer (km) altitude (1 microbar), deeper than confirmed at any other planet. Solar energetic particles were observed up to 200 kilo--electron volts; these particles are capable of penetrating down to the 60 km altitude. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit auroras more globally than Earth.

  9. Beagle 2: Seeking the Signatures of Life on Mars

    Science.gov (United States)

    Gibson, Everett K., Jr.; Pillinger, Colin T.; Wright, Ian P.; Morse, Andy; Stewart, Jenny; Morgan, G.; Praine, Ian; Leigh, Dennis; Sims, Mark R.; Pullan, Derek

    2003-01-01

    Beagle 2 is a 60 kg probe (with a 30 kg lander) developed in the United Kingdom for inclusion on the European Space Agency s 2003 Mars Express. Beagle 2 will deliver to the Martian surface a payload which consists of a high percentage of science instruments to landed spacecraft mass. Beagle 2 will be launched in June 2003 with Mars Express on a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. Beagle 2 will land on Mars in December 2003 in Isidis Planitia (approx. 11.5 deg.N and 275 deg.W), a large sedimentary basin that overlies the boundary between ancient highlands and northern plains. Isidis Planitia, the third largest basin on Mars, which is possibly filled with sediment deposited at the bottom of long-standing lakes or seas, offers an ideal environment for preserving traces of life. Beagle 2 is completed and undergoing integration with the Mars Express orbiter prior to launch.

  10. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    Science.gov (United States)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  11. Ion flux profiles observed at Mars

    Science.gov (United States)

    Fowler, C. M.; Andersson, L.; Lundin, R. N.; Frahm, R. A.

    2012-12-01

    How Mars lost it's water and atmosphere is still an important question. Many studies have investigated high-energy ion fluxes (>10 eV) surrounding the planet and derived ion outflow rates in order to determine atmospheric loss. These rates suggest that the outflow from high-energy ions is not the dominant escape path for atmospheric loss. Over the years increasing evidence has indicated that the loss of low-energy ions are more important than the high-energy ion loss. In this presentation ion observations (down to the spacecraft potential) from the Mars Express (MEX) mission (2010/11), are used to describe the ion altitude distribution at Mars. The focus of this study is below the altitude of ~1000 km. Within the Mars environment, using the MEX electron observations different plasma regions was identified. Supported by electron identification, different altitude profiles of ion fluxes have been analyzed from the different plasma regions. One of the results from this study is that the altitude profile of the ion flux observed below the photoelectron boundary is different when comparing the northern and the southern hemispheres. The ion distributions, resulting altitude profile, the influence of the crustal magnetic field at Mars, and the implications relating to plasma outflow will be discussed in this presentation.

  12. SAR mapping of Burfellshraun: A terrestrial analog for recent volcanism on Mars

    DEFF Research Database (Denmark)

    Haack, Henning; Rossi, Matti; Dall, Jørgen

    2006-01-01

    Images of the Northern plain on Mars have revealed up to 1500 km long lava flows. The low density of impact craters on the lava flows implies that these lava flows were formed during the most recent volcanic activity on Mars. Estimates of the ages of the flows are controversial but generally...

  13. Effects of rolling on wind-induced detachment thresholds of volcanic glass on Mars

    NARCIS (Netherlands)

    S.J. de Vet; J.P. Merrison; M.C. Mittelmeijer-Hazeleger; E.E. van Loon; L.H. Cammeraat

    2014-01-01

    Dunes in the northern lowlands on planet Mars are composed of volcanic sands with high contents of volcanic glass and these deposits are mobilised and transported by winds in the present-day surface environment. In this experimental study we measured fluid thresholds for detachment of Mars-analogue

  14. Long-Term Seismicity of Northern (15° N-60° N) Mid-Atlantic Ridge (MAR) Recorded by two Regional Hydrophone Arrays: a Widespread Along-Ridge Influence of the Azores and Iceland Hotspots

    Science.gov (United States)

    Goslin, J.; Bazin, S.; Dziak, R. P.; Fox, C.; Fowler, M.; Haxel, J.; Lourenco, N.; Luis, J.; Martin, C.; Matsumoto, H.; Perrot, J.; Royer, J.

    2004-12-01

    The seismicity of the North Atlantic was recorded by two networks of hydrophones moored in the SOFAR channel, north and south of the Azores Plateau. The interpretation of the hydro-acoustic signals recorded during the first six-month common period of operation of the two networks (June 2002 to Nov. 2002) provides a unique data set on the spatial and time distributions of the numerous low-magnitude earthquakes which occurred along the Mid-Atlantic Ridge. Close to 2000 events were localized during this six-month period between latitudes 15° N and 63° N, 501 of which are localized within the SIRENA network (40° N-51° N) and 692 within the wider South Azores network (17° N-33° N). Using hydrophones to locate seafloor earthquakes by interpreting T-wave signals lowers the detection threshold of Mid-Atlantic Ridge events to 3.0 mb from the 4.7 mb of global seismic networks. This represents an average thirty-fold increase in the number of events: 62 events were detected by global seismological networks within the same area during the same period. An along-ridge spatial distribution of the seismicity is obtained by computing the cumulated numbers of events in 1° -wide latitudinal bins. When plotted vs. latitude, this first-order distribution shows remarkable long-wavelength patterns: the seismicity rate is low when approaching the Azores and Iceland (reaching values as low as 10 events/d° ), while it peaks to 70 events/d° in the vicinity of the Gibbs FZ. Moreover, the latitudinal distribution of the seismicity hints at an asymmetric influence of the Azores hotpot on the MAR. Finally, the spatial distribution of the seismicity anti-correlates well at long wavelengths with the zero-age depths along the MAR and correlates with the zero-age Mantle Bouguer (MBA) anomaly values and the Vs velocity anomalies at 100 km in the upper mantle. It is thus proposed that the seismicity level would be partly tied to the rheology and thickness of the brittle layer and be thus

  15. Sightings of Delphinus delphis (Cetacea, Odontoceti in the Otranto Channel (Southern Adriatic Sea and Northern Ionian Sea / Avvistamenti di Delphinus delphis (Cetacea, Odontoceti nel Canale d'Otranto (Mar Adriatico Meridionale e Mar Ionio Settentrionale

    Directory of Open Access Journals (Sweden)

    Francesco Maria Angelici

    1992-07-01

    Full Text Available Abstract Two sightings of Common dolphin Delphinus delphis in the Channel of Otranto are reported, and the status of this species in the Mediterranean Sea is briefly discussed. Riassunto Sono riportati due avvistamenti di Delfino comune Delphinus delphis nel Canale d'Otranto, lungo la costa greca e quella italiana. Viene inoltre brevemente commentata la frequenza degli avvistamenti e degli spiaggiamenti di tale specie nel Mar Mediterraneo.

  16. NORTHERN TANZANIA

    African Journals Online (AJOL)

    inertia, water balance, physiological strength, and susceptibility to predation between adults .... Judd PW and Rose FL 1977 Aspects of the thermal biology of the Texas tortoise ... pctrdolis lmheoeki) and their conservation in northern Tanzania.

  17. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  18. Mars at Opposition

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    On January 29, Mars will reach opposition, a point along its orbit around the Sun where Mars will be directly opposite from the Sun in a two-planet and Sun line-up with the Earth in between. At this opposition, the Earth and Mars will be separated by nearly 100 million km. An opposition is similar to a full Moon in that the planet at opposition…

  19. Mars Museum Visualization Alliance

    Science.gov (United States)

    Sohus, A. M.; Viotti, M. A.; de Jong, E. M.

    2004-11-01

    The Mars Museum Visualization Alliance is a collaborative effort funded by the Mars Public Engagement Office and supported by JPL's Informal Education staff and the Solar System Visualization Project to share the adventure of exploration and make Mars a real place. The effort started in 2002 with a small working group of museum professionals to learn how best to serve museum audiences through informal science educators. By the time the Mars Exploration Rovers landed on Mars in January 2004, over 100 organizations were partners in the Alliance, which has become a focused community of Mars educators. The Alliance provides guaranteed access to images, information, news, and resources for use by the informal science educators with their students, educators, and public audiences. Thousands of people have shared the adventure of exploring Mars and now see it as a real place through the efforts of the Mars Museum Visualization Alliance partners. The Alliance has been lauded for "providing just the right inside track for museums to do what they do best," be that webcasts, live presentations with the latest images and information, high-definition productions, planetarium shows, or hands-on educational activities. The Alliance is extending its mission component with Cassini, Genesis, Deep Impact, and Stardust. The Mars Exploration and Cassini Programs, as well as the Genesis, Deep Impact, and Stardust Projects, are managed for NASA by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

  20. Erosionsrinnen auf dem Mars

    OpenAIRE

    Reiß, Dennis Emil

    2010-01-01

    The work presented here analyses gullies on Mars using high resolution images (Mars Orbiter Camera – MOC) of the Mars Global Surveyor Mission (MGS). Gullies on Earth are formed by debris flows, a mass movement in which water is involved. It is assumed that gully features on Mars are young and therefore they could indicate the presence of liquid water in the recent past. The main focus of this work lies in a morphological analysis, a global mapping of their distribution and a determination of ...

  1. Digital cartography of Mars

    Science.gov (United States)

    Batson, R. M.

    1987-01-01

    A medium-resolution Digital Image Model (DIM) of Mars is being compiled. A DIM is a mosaic of radiometrically corrected, photometrically modelled spacecraft images displaying accurate reflectance properties at uniform resolution, and geometrically tied to the best available control. The Mars medium-resolution DIM contains approximately 4700 Viking Orbiter image frames that were used to compile the recently completed 1:2,000,000-scale controlled photomosaic series of Mars. This DIM provides a planimetric control base to which all other Mars maps will be registered. A similar control base of topographic elevations (Digital Terrain Model, or DTM) is also being compiled. These products are scheduled for completion in 1989.

  2. A study of candidate marine target impact craters in Arabia Terra, Mars

    NARCIS (Netherlands)

    Villiers, G. de; King, D.T.; Marzen, L.J.

    2010-01-01

    Previous workers have proposed that a northern ocean existed early during Martian geologic history and the shorelines of that ocean would coincide roughly with the crustal dichotomy that divides the smooth, northern lowlands with the cratered, southern highlands. Arabia Terra is a region on Mars tha

  3. Beagle 2: Mission to Mars - Current Status

    Science.gov (United States)

    Gibson, E. K., Jr.; Pillinger, C. T.; Wright, I. P.; Morgan, G. H.; Yau, D.; Stewart, J. L. C.; Leese, M. R.; Praine, I. J.; Sheridan, S.

    2004-01-01

    Beagle 2 is a 72 kg probe (with a 32 kg lander) developed in the United Kingdom for inclusion on the European Space Agency's 2003 Mars Express. Beagle 2 was launched on June 2, 2003 with Mars Express on a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. Beagle 2 landed on Mars on December 25th, 2003 in Isidis Planitia (approx. 10.7 N and 268.6 W), a large sedimentary basin that overlies the boundary between ancient highlands and northern plains. Isidis Planitia, the third largest impact basin on Mars, which is possibly filled with sediment deposited at the bottom of long-standing lakes or seas, offers an ideal environment for preserving traces of life. The team is awaiting signals from the Beagle 2 lander at the time when this abstract was written. Current status of the mission will be reported. Beagle 2 was developed to search for organic material and other volatiles on and below the surface of Mars in addition to the study of the inorganic chemistry and mineralogy. Several fundamental properties can be used to determine the existence of an active or past biology on any planet, Earth or Mars. Beagle 2's targets for investigation included: (a) The presence of water, or the existence of minerals deposited from water to show that water was present, even if only transiently; (b) The detection of carbonaceous debris, the remains of organisms that might have lived in water or were washed to a final resting place by the action of water; (c) The structure of organic matter, to demonstrate that it might have been synthesized for a biological purpose; (d) The recognition of isotopic fractionation between carbonaceous phases (organic vs inorganic carbon phases), a condition which on Earth suggests that life emerged nearly 4 billion years ago.

  4. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  5. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  6. Phoenix Deepens Trenches on Mars (3D)

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this anaglyph on Oct. 21, 2008, during the 145th Martian day, or sol. Phoenix landed on Mars' northern plains on May 25, 2008. The trench on the upper left, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the middle,called 'Ice Man,' is about 30 centimeters (12 inches) long and 3 centimeters (1 inch) deep. The trench on the right, called 'La Mancha,' is about 31 centimeters (12 inches) and 5 centimeters (2 inches) deep. The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Clay Minerals in Mawrth Vallis Region of Mars

    Science.gov (United States)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold. The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green. The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter. Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars. CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  8. ExoMars 2016 arrives at Mars

    Science.gov (United States)

    Svedhem, Hakan; Vago, Jorge L.; ExoMars Team

    2016-10-01

    The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and

  9. MARS: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Tribble, R.E.; Gagliardi, C.A.; Liu, W. (Cyclotron Inst., Texas A and M Univ., College Station (USA))

    1991-05-01

    We are building a momentum achromat recoil spectrometer (MARS) for use with the new K500 superconducting cyclotron at Texas A and M University. MARS uses a unique optical design utilizing two dispersive planes to combine a momemtum achromat with a recoil mass spectrometer. This configuration makes MARS applicable to a broad range of nuclear reaction studies utilizing inverse kinematics. It also leads to a system that is well matched to the range of secondary particle energies that will be produced in reactions with K500 beam. MARS will have a typical mass resolution of {delta}M/M{approx equal}1/300, with an energy acceptance of {+-}9% {Delta}E/E and a geometric solid angle of up to 9 msr. A beam swinger system will alow reaction products in the angular range 0deg to 30deg to be studied. MARS will be used to study both the excited states and decay properties of very proton- and neutron-rich nuclei. MARS will also be used to provide a reaction mechanism filter to assist investigations of the dynamics of heavy ion collisions and to produce secondary radioactive beams for reaction and spectroscopic studies of particular interest for nuclear astrophysics. We briefly describe the design of MARS, give a status report on its construction and an overview of the scientific program planned for it. (orig.).

  10. Mars Observer's costly solitude

    Science.gov (United States)

    Travis, John

    1993-09-01

    An evaluation is presented of the ramifications of the loss of contact with the Mars Observer spacecraft in August, 1993; the Observer constituted the first NASA mission to Mars in 17 years. It is noted that most, if not all of the scientists involved with the mission will have to find alternative employment within 6 months. The loss of the Observer will leave major questions concerning the geologic history of Mars, and its turbulent atmospheric circulation, unanswered. A detailed account of the discovery of the loss of communications, the unsuccessful steps taken to rectify the problem, and the financial losses incurred through the failure of the mission, are also given.

  11. Splashing on Mars

    Science.gov (United States)

    Kawaguchi, Cota; Suzuki, Ayako; Kurita, Kei

    2008-09-01

    1 Introduction In the northern lowland regions of Mars such as Chryse Planitia and Utopia Planitia there exist several wel-preserved fresh-looking craters having distinct fluidized ejecta morphologies. They are mostly composed of two contrasting types of ejecta, One is massive and forms clear topography concentrated near the rim. The other is less massive and faintly spreading in the outer region. When they are clearly recognized, it is classified as Double Layered Ejecta crater(DLE) and they are named Inner Lobe and Outer Lobe,respectively. But sometimes Outer Lobe is faintly recognisable only in the albedo pattern or completely lacking. This suggests that the material forming the Outer Lobe is gas or liquid dominant. To understand the nature of the Outer Lobe material is a key in the exploration of the subsurface environments in the northern lowlands of Mars, where large amount of volatiles are supposed to be stored. Here we present several examples of images supporting this nature as well as experimental images simulating the formation process of Outer Lobe in the laboratory. 2 THEMIS IR Night images THEMIS-IR Night-time images have been used to characterize the nature of the ejecta materials (1,2,3). Because of the contrast of thermal inertia, night time IR image is a powerful tool to identify the morphology of the Outer Lobe even when the associated topography is so faint. Fig. 1 shows such example. The Inner Lobe is recognized as topographic high in the Day-time image. In the Night-time image, this part is characterized by bright color. The remarkable point is the splash pattern morphology. The edge of the Inner Lobe is round shaped while that of the Outer Lobe is sharp angular shaped and irregular. The Outer Lobe is composed of many slender flow units whose length seems quite heterogeneous. Sometimes the extent of the flow units exhibits anisotropic pattern while the Inner Lobe and the cavity are circular. This suggests the flow forming the Outer Lobe has

  12. Mars' core and magnetism.

    Science.gov (United States)

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  13. Mars Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s Mars Exploration Program (MEP) calls for a series of highly ambitious missions over the next decade and beyond. The overall goals of the MEP must be...

  14. Mars Rover Photos API

    Data.gov (United States)

    National Aeronautics and Space Administration — This API is designed to collect image data gathered by NASA's Curiosity, Opportunity, and Spirit rovers on Mars and make it more easily available to other...

  15. Internal constitution of Mars.

    Science.gov (United States)

    Anderson, D. L.

    1972-01-01

    Models of the internal structure of Mars consistent with the mass, radius and moment of inertia of the planet are constructed. The models assume that the radius of the core is between 0.36 and 0.60 of the radius of the planet, that the zero-pressure density of the mantle is between 3.54 and 3.49 g/cu cm, and that the planet contains 25 to 28% iron. Meteorite models of Mars containing 25 wt % iron and 12 wt % core are also proposed. It is maintained that Mars in contrast to the earth is an incompletely differentiated planet with a core substantially richer in sulfur than the core of the earth. The absence of a magnetic field on Mars is possibly linked with lack of lunar precessional torque and the small size and high resistivity of the Martian core.

  16. A Mars 1984 mission

    Science.gov (United States)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  17. Mars Ice Age, Simulated

    Science.gov (United States)

    2003-01-01

    December 17, 2003This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  18. Status of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  19. Why exobiology on Mars?

    Science.gov (United States)

    Brack, A.

    1996-11-01

    Processing of organic molecules by liquid water was probably an essential requirement towards the emergence of terrestrial primitive life. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Geochemists favour now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere very few building blocks are formed. Import of extra-terrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, meteorites and micrometeorites. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well. Liquid water disappeared from the surface of Mars very early, about 3.8 Ga ago. The Viking missions did not find, at the surface of the Martian soil, any organic molecules or clear-cut evidence for microbial activities such as photo-synthesis, respiration or nutrition. The results can be explained referring to an active photochemistry of Martian soil driven by the high influx of solar UV. These experiments do not exclude the existence of organic molecules and fossils of micro-organisms which developed on early Mars until liquid water disappeared. Mars may store below its surface some well preserved clues of a still hypothetical primitive life.

  20. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-11-27

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.

  1. Clouds over Mars!

    Science.gov (United States)

    1997-01-01

    This is the first color image ever taken from the surface of Mars of an overcast sky. Featured are pink stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  2. Mars Digital Image Mosaic Globe

    Science.gov (United States)

    2000-01-01

    suitable for the production of a globe; the number, size, and placement of text annotations were chosen for a 12-inch globe. Prominent features are labeled with names approved by the International Astronomical Union. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The northern hemisphere of Mars is shown on the left, and the southern hemisphere on the right.

  3. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    Science.gov (United States)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  4. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    Science.gov (United States)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  5. Magnetic Strips Preserve Record of Ancient Mars

    Science.gov (United States)

    1999-01-01

    have the resolution to detect these features,' Acuna noted. 'We began with misfortune, and ended up winning the lottery.' The bands of magnetized crust apparently formed in the distant past when Mars had an active dynamo, or hot core of molten metal, which generated a global magnetic field. Mars was geologically active, with molten rock rising from below cooling at the surface and forming new crust. As the new crust solidified, the magnetic field that permeated the rock was 'frozen' in the crust. Periodically, conditions in the dynamo changed and the global magnetic field reversed direction. The oppositely directed magnetic field was then frozen into newer crust. [figure removed for brevity, see original site] (P50331,MRPS94770) Above: These images are an artist's concept of the process that may have generated magnetic stripes in the crust of ancient Mars. In the left image, the blue arrows and compass needle indicate the direction of the magnetic field. The yellow-orange shape represents a pool of molten rock (magma)upwelling beneath the Martian crust. The red and blue bands are magnetized crust on either side of a spreading center, or rift. 'Like a Martian tape recorder, the crust has preserved a fossil record of the magnetic field directions that prevailed at different times in the ancient past,' Connerney said. When the planet's hot core cooled, the dynamo ceased and the global magnetic field of Mars vanished. However, a record of the magnetic field was preserved in the crust and detected by the Global Surveyor instrument. The mission's map of Martian magnetic regions may help solve another mystery -- the origin of a striking difference in appearance between the smooth, sparsely cratered northern lowlands of Mars and the heavily cratered southern highlands. The map reveals that the northern regions are largely free of magnetism, indicating the northern crust formed after the dynamo died. 'The dynamo likely died a few hundred million years after Mars' formation. One

  6. Guidelines for 2008 MARS exercise

    CERN Multimedia

    HR Department

    2008-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://cern.ch/hr-dept/ https://cern.ch/hr-eguide/mars/mars.asp You will find on these pages: MARS procedures including the MARS timetable for proposals and decisions; Regulations with links to the scheme’s statutory basis; Frequently Asked Questions; Useful documents with links to relevant documentation; e.g. mandate of the Senior Staff Advisory Committee (SSAC); Related links and contacts. HR Department Tel. 73566

  7. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-10-01

    Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. There is a duplicate copy and three copies in the file.

  8. The Mars Plasma Environment

    CERN Document Server

    Russell, C. T

    2007-01-01

    Mars sits very exposed to the solar wind and, because it is a small planet, has but a weak hold on its atmosphere. The solar wind therefore plays an important role in the evolution of the martian atmosphere. Over the last four decades a series of European missions, first from the Soviet Union and more recently from the European Space Agency, together with a single investigation from the U.S., the Mars Global Surveyor spacecraft, have added immeasurably to our understanding of the interplay between the solar wind and Mars atmosphere. Most recently the measurements of the plasma and fast neutral populations, conducted on the Mars Express spacecraft by the ASPERA-3 instrument have been acquired and analyzed. Their presentation to the public, most notably at the workshop "The Solar Wind Interaction and Atmosphere Evolution of Mars" held in Kiruna in early 2006, was the inspiration for this series of articles. However participation in the Kiruna conference was not a selection criterion for this volume. The papers ...

  9. Mars Spark Source Prototype

    Science.gov (United States)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  10. Magnetic storms on Mars

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2011-01-01

    Based on data from the Mars Global Surveyor magnetometer we examine periods of significantly enhanced magnetic disturbances in the martian space environment. Using almost seven years of observations during the maximum and early declining phase of the previous solar cycle the occurrence pattern...... and typical time profile of such periods is investigated and compared to solar wind measurements at Earth. Typical durations of the events are 20–40h, and there is a tendency for large events to last longer, but a large spread in duration and intensity are found. The large and medium intensity events at Mars...... field disturbance at Mars is solar wind dynamic pressure variations associated with the eccentricity of the martian orbit around the Sun....

  11. Remanent magnetism at Mars

    Science.gov (United States)

    Curtis, S. A.; Ness, N. F.

    1988-01-01

    It is shown that a strong case can be made for an intrinsic magnetic field of dynamo origin for Mars earlier in its history. The typical equatorial magnetic field intensity would have been equal to about 0.01-0.1 gauss. The earlier dynamo activity is no longer extant, but a significant remanent magnetic field may exist. A highly non-dipole magnetic field could result from the remanent magnetization of the surface. Remanent magnetization may thus play an important role in the Mars solar wind interactions, in contrast to Venus with its surface temperatures above the Curie point. The anomalous characteristics of Mars'solar wind interaction compared to that of Venus may be explicable on this basis.

  12. VR for Mars Pathfinder

    Science.gov (United States)

    Blackmon, Theodore

    1998-01-01

    Virtual reality (VR) technology has played an integral role for Mars Pathfinder mission, operations Using an automated machine vision algorithm, the 3d topography of the Martian surface was rapidly recovered fro -a the stereo images captured. by the Tender camera to produce photo-realistic 3d models, An advanced, interface was developed for visualization and interaction with. the virtual environment of the Pathfinder landing site for mission scientists at the Space Flight Operations Facility of the Jet Propulsion Laboratory. The VR aspect of the display allowed mission scientists to navigate on Mars in Bud while remaining here on Earth, thus improving their spatial awareness of the rock field that surrounds the lenders Measurements of positions, distances and angles could be easily extracted from the topographic models, providing valuable information for science analysis and mission. planning. Moreover, the VR map of Mars has also been used to assist with the archiving and planning of activities for the Sojourner rover.

  13. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  14. Widespread Weathered Glass on the Surface of Mars

    Science.gov (United States)

    Horgan, Briony; Bell, James F., III

    2012-01-01

    Low albedo sediments cover >10(exp 7) sq km in the northern lowlands of Mars, but the composition and origin of these widespread deposits have remained ambiguous despite many previous investigations. Here we use near-infrared spectra acquired by the Mars Express OMEGA (Observatoire pour la Mineralogie, l'Eau, les Glaces, et l'Activite') imaging spectrometer to show that these sediments exhibit spectral characteristics that are consistent with both high abundances of iron-bearing glass and silica-enriched leached rinds on glass. This interpretation is supported by observations of low-albedo soil grains with possible rinds at the Phoenix Mars Lander landing site in the northern lowlands. By comparison with the extensive glass-rich dune fields and sand sheets of Iceland, we propose an explosive volcanic origin for these glass-rich sediments. We also propose that the glassy remnant rinds on the sediments are the result of post-depositional alteration, as these rinds are commonly formed in arid terrestrial volcanic environments during water-limited, moderately acidic leaching. These weathered, glass-rich deposits in the northern lowlands are also colocated with the strongest concentrations of a major global compositional surface type previously identified in mid-infrared spectra, suggesting that they may be representative of global processes. Our results provide potential confirmation of models suggesting that explosive volcanism has been widespread on Mars, and also raise the possibilities that glass-rich volcaniclastics are a major source of eolian sand on Mars and that widespread surficial aqueous alteration has occurred under Amazonian climatic conditions.

  15. The Mars Pathfinder Mission

    Science.gov (United States)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  16. Flying To Mars

    Institute of Scientific and Technical Information of China (English)

    周铭杨

    2015-01-01

    <正>Do you know"Mars migration programme"by SpaceX?It’s an immigrant plan to a planet—Mars,Sounds incredible,isn’t it?After two-round tests,Li Dapeng,graduating from Handan NO.1 high school in 2001,was selected.There entered four Chinese in final test.To be more precise,Li is the only one who comes from the mainland of China.Last weekend,Li came to our school for a speech.Driven by

  17. EquiMar

    DEFF Research Database (Denmark)

    Johnstone, C. M.; McCombes, T.; Bahaj, A. S.

    2011-01-01

    / financiers etc when attempting to quantify the performance of a device since it makes it very difficult to reference and benchmark the performance of a marine energy converter. The EC Framework Programme VII EquiMar project has set out to develop a suite of Best Practices to be adopted when undertaking...... the performance evaluation of such systems in order to address this deficiency. This paper reports the development of a set of ‘Best Practices’ within the ECFPVII EquiMar project to be adopted for the performance quantification of wave and tidal energy converters as they evolve from an engineering concept...

  18. Mars Obliquity Cycle Illustration

    Science.gov (United States)

    2008-01-01

    The tilt of Mars' spin axis (obliquity) varies cyclically over hundreds of thousands of years, and affects the sunlight falling on the poles. Because the landing site of NASA's Phoenix Mars Lander is so near the north pole, higher sun and warmer temperatures during high obliquity lead to warmer, more humid surface environments, and perhaps thicker, more liquid-like films of water in soil. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  20. Ecologia e contribuição dos anelídeos poliquetos para a biomassa bêntica da zona das marés, no litoral norte do Estado de São Paulo The ecology and contribution of polychaetous annelids to the benthic biomass of the tidal zones in the northern coast of São Paulo State

    Directory of Open Access Journals (Sweden)

    A. Cecília Z Amaral

    1979-06-01

    Full Text Available A pesquisa visou ao conhecimento das condições biológicas de algumas praias do litoral norte do Estado de São Paulo, tendo sido os poliquetos os organismos indicadores. O material estudado proveio de um total de 191 estações, distribuídas em vários níveis da zona das marés, em onze praias da Enseada do Flamengo (continente e Enseada das Palmas (Ilha Anchieta. Em cada estação foi amostrada uma área de 1/20 m² , com uma profundidade de 10 cm e medidos a temperatura, pH, salinidade e o teor de oxigênio dissolvido da água intersticial. Simultaneamente foram coletadas amostras da água do mar ao nível da baixa-mar, para medida dos mesmos parâmetros. As amostras de sedimento colhidas entre 5 e 10 cm de profundidade, foram analisadas quanto à granulometria, porosidade, conteúdo de calcário e de matéria orgânica. Os resultados mostram que tanto a granulometria, e o teor de matéria orgânica do substrato quanto às características da água intersticial têm papel relevante no condicionamento da endofauna dessas praias. Observou-se ainda ausência de macrofauna em praias de areia grossa com arrebentação intensa. Quando a areia da praia é fina e homogênea, constitui um substrato compacto, praticamente imune a ação das vagas, Esse tipo de substrato ocorre na Praia da Enseada (no continente e Praia Grande da Ilha Anchieta. Nessas praias constatou-se a existencia das mesmas especies de poliquetos: Nerine agilis, Arenicola bvasiliensis e Diopatra cf. cuprea. Os fatores mais seletivos forama salinidade e o teor de matéria orgânica. As espécies amplamente eurialinas, como Laeonereis culveri e Nevine agilis têm uma larga distribuição na faixa entre-marés; porem alcançam sua maior concentração em áreas de salinidade abaixo de 10‰. A Praia do Saco da Ribeira mostrou ser a mais diversificada, com 20 espécies de poliquetos, entre as quais Laeonereis culveri e Diopatra cf. cuprea, que, devido à alta freq

  1. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een

  2. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een be

  3. Vulkanisme en water op Mars?

    NARCIS (Netherlands)

    Van Loef, J.; Schmets, A.J.M.

    2005-01-01

    In januari 2004 werd Mars bezocht door de tweeling robotverkenners Spirit en Opportunity. Zij werden erop uitgestuurd om eindelijk het definitieve antwoord te geven op de vraag of er leven op Mars is geweest. Alles wijst er inmiddels op dat er op Mars ooit vloeibaar water stroomde. Of daarmee een be

  4. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  5. Insertional mutation of marA vitiates inducible multiple antimicrobial resistance in Salmonella enterica subsp. enterica serovar Choleraesuis.

    Science.gov (United States)

    Tibbetts, Robert J; Lin, Tsang Long; Wu, Ching Ching

    2005-08-30

    marA has been shown to mediate a multiple antimicrobial resistance (MAR) phenotype following induction in some members of the Enterobacteriaceae. When Salmonella Choleraesuis was exposed to inducing agents they displayed higher minimal inhibitory concentrations (MIC) to multiple antimicrobial agents and an increase in marA expression as determined by northern hybridization analysis. The objective of the present study was to determine if mutation of marA vitiated multiple antimicrobial resistance inducibility in S. Choleraesuis. A loss-of-function mutation of marA in a single S. Choleraesuis isolate was created by insertion of the dihydrofolate reductase (DHFR) gene cassette within marA using double homologous recombination. This mutation was complemented with an expression plasmid possessing marA under the control of an IPTG-inducible promoter. Mutation and complementation of marA was verified using polymerase chain reaction, Northern hybridization, and Western blotting assays. Minimum inhibitory concentrations (MICs) of tetracycline, chloramphenicol, nalidixic acid, and rifampin were determined against induced and uninduced wildtype, marA-disrupted and marA-complemented strains using a microbroth dilution assay. Minimum inhibitory concentrations against induced wildtype and marA-complemented strains increased four- to eight-fold for all antimicrobials tested when compared to the uninduced strains while the MICs of the induced marA-disrupted mutant remained the same. However, this increase was abrogated when the cells were grown in the presence of the efflux pump inhibitor compound EPI phe-arg-naphthylamide. The results indicate that a functional marA is solely required for an inducible multiple antimicrobial resistance phenotype in S. Choleraesuis.

  6. Ancient aliens on mars

    CERN Document Server

    Bara, Mike

    2013-01-01

    Best-selling author and Secret Space Program researcher Bara brings us this lavishly illustrated volume on alien structures on Mars. Was there once a vast, technologically advanced civilization on Mars, and did it leave evidence of its existence behind for humans to find eons later? Did these advanced extraterrestrial visitors vanish in a solar system wide cataclysm of their own making, only to make their way to Earth and start anew? Was Mars once as lush and green as the Earth, and teeming with life? Did Mars once orbit a missing member of the solar system, a "Super Earth” that vanished in a disaster that devastated life on Earth and Venus and left us only the asteroid belt as evidence of its once grand existence? Did the survivors of this catastrophe leave monuments and temples behind, arranged in a mathematical precision designed to teach us the Secret of a new physics that could lift us back to the stars? Does the planet have an automated defense shield that swallows up robotic probes if they wander int...

  7. Mission from Mars

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  8. Carbon sequestration on Mars

    OpenAIRE

    Edwards, Christopher S.; Ehlmann, Bethany L.

    2015-01-01

    On Earth, carbon sequestration in geologic units plays an important role in the carbon cycle, scrubbing CO_2 from the atmosphere for long-term storage. While carbonate is identified in low abundances within the dust and soils of Mars, at

  9. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  10. The Phoenix Mars Mission

    Science.gov (United States)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  11. The Small Mars System

    Science.gov (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  12. [MaRS Project

    Science.gov (United States)

    Aruljothi, Arunvenkatesh

    2016-01-01

    The Space Exploration Division of the Safety and Mission Assurances Directorate is responsible for reducing the risk to Human Space Flight Programs by providing system safety, reliability, and risk analysis. The Risk & Reliability Analysis branch plays a part in this by utilizing Probabilistic Risk Assessment (PRA) and Reliability and Maintainability (R&M) tools to identify possible types of failure and effective solutions. A continuous effort of this branch is MaRS, or Mass and Reliability System, a tool that was the focus of this internship. Future long duration space missions will have to find a balance between the mass and reliability of their spare parts. They will be unable take spares of everything and will have to determine what is most likely to require maintenance and spares. Currently there is no database that combines mass and reliability data of low level space-grade components. MaRS aims to be the first database to do this. The data in MaRS will be based on the hardware flown on the International Space Stations (ISS). The components on the ISS have a long history and are well documented, making them the perfect source. Currently, MaRS is a functioning excel workbook database; the backend is complete and only requires optimization. MaRS has been populated with all the assemblies and their components that are used on the ISS; the failures of these components are updated regularly. This project was a continuation on the efforts of previous intern groups. Once complete, R&M engineers working on future space flight missions will be able to quickly access failure and mass data on assemblies and components, allowing them to make important decisions and tradeoffs.

  13. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  14. Mars: Periglacial Morphology and Implications for Future Landing Sites

    Science.gov (United States)

    Heldmann, Jennifer L.; Schurmeier, Lauren; McKay, Christopher; Davila, Alfonso; Stoker, Carol; Marinova, Margarita; Wilhelm, Mary Beth

    2015-01-01

    At the Mars Phoenix landing site and in much of the Martian northern plains, there is ice-cemented ground beneath a layer of dry permafrost. Unlike most permafrost on Earth, though, this ice is not liquid at any time of year. However, in past epochs at higher obliquity the surface conditions during summer may have resulted in warmer conditions and possible melting. This situation indicates that the ice-cemented ground in the north polar plains is likely to be a candidate for the most recently habitable place on Mars as near-surface ice likely provided adequate water activity approximately 5 Myr ago. The high elevation Dry Valleys of Antarctica provide the best analog on Earth of Martian ground ice. These locations are the only places on Earth where ice-cemented ground is found beneath dry permafrost. The Dry Valleys are a hyper-arid polar desert environment and in locations above 1500 m elevation, such as University Valley, air temperatures do not exceed 0 C. Thus, similarly to Mars, liquid water is largely absent here and instead the hydrologic cycle is dominated by frozen ice and vapor phase processes such as sublimation. These conditions make the high elevation Dry Valleys a key Mars analog location where periglacial processes and geomorphic features can be studied in situ. This talk will focus on studies of University Valley as a Mars analog for periglacial morphology and ice stability. We will review a landing site selection study encompassing this information gleaned from the Antarctic terrestrial analog studies plus Mars spacecraft data analysis to identify candidate landing sites for a future mission to search for life on Mars.

  15. Radar Sounding of Mars with MARSIS

    Science.gov (United States)

    Plaut, J. J.; Picardi, G.; Orosei, R.; Gurnett, D. A.

    2009-12-01

    MARSIS, the Mars Advanced Radar for Subsurface and Ionospheric Sounding, is a radar sounder that has been observing Mars from the Mars Express orbiter since June 2005. MARSIS works in the range of 1.3 to 5.5 MHz, and includes significant onboard data summing. MARSIS also operates in an Active Ionospheric Sounding mode down to 0.1 MHz to capture echoes from the topside of the ionosphere. MARSIS signals easily penetrate the polar layered deposits (PLD), usually to their basal contact with the substrate. The typically strong echo return from the lower interface of the PLD indicates that only minor attenuation of the radar signal is occurring within the PLD, implying a composition of nearly pure water ice. MARSIS data have been used to map the bed of the polar deposits to their maximum depth of over 3.5 km in the south. In the north, MARSIS delineates the extent of the “basal unit,” a sediment-laden icy layer that makes up more than a third of the total volume of the topographic cap. In both polar regions, the bed topography does not display a regional-scale deflection that might be expected from a flexural response to the PLD load, indicating a thick elastic lithosphere in these regions. Subsurface interfaces in the low latitudes of Mars are also being mapped by MARSIS, in the equatorial Medusae Fossae Formation. MARSIS has not detected any unambiguous evidence for sizable shallow aquifers. While it is possible that such features exist, the lack of detection more likely indicates that liquid water is not abundant in the shallow (< several km) subsurface of Mars. However, water ice is abundant in the polar regions, including a large area surrounding the polar layered deposits that is associated with the Dorsa Argentea Formation. In addition, analysis of the MARSIS surface echo strength suggests that a substantial fraction of the upper km of the subsurface of the northern plains may be ice-rich. In its ionospheric mode, MARSIS has characterized the complex structure

  16. Polygonal terrains on Mars

    Directory of Open Access Journals (Sweden)

    Pedro Pina

    2009-06-01

    Full Text Available The presence of water ice on Mars is well established. Some featureson the planet point to the occurrence of processes similar to those that take place in periglacial areas of Earth. One of the clues for this is the existence of small-scale polygonal terrains. In this paper, we present a methodology that aims at the automated identification of polygonal patterns on high-spatial resolution images of the surface of Mars. In the context of the research project TERPOLI, this step will be complemented with a full characterization, in both geometric and topological terms, of thenetworks detected. In this manner, we hope to collect data that will lead to a better understanding of the conditions of formation of the polygons, and of their temporal evolution; namely, we intend to identify different groups of polygons and to compare them with terrestrial examples.

  17. The politics of Mars

    Science.gov (United States)

    Schmitt, Harrison H.

    1986-01-01

    A discussion is presented comparing past and present major accomplishments of the U.S. and the Soviet Union in space. It concludes that the Soviets are presently well ahead of the U.S. in several specific aspects of space accomplishment and speculates that the Soviet strategy is directed towards sending a man to the vicinity of Mars by the end of this century. A major successful multinational space endeavor, INTELSAT, is reviewed and it is suggested that the manned exploration of Mars offers a unique opportunity for another such major international cooperative effort. The current attitude of U.S. leadership and the general public is assessed as uniformed or ambivalent about the perceived threat of Soviet dominance in space.

  18. Geophysics of Mars

    Science.gov (United States)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  19. Organics on Mars?

    Science.gov (United States)

    ten Kate, Inge L

    2010-01-01

    Organics are expected to exist on Mars based on meteorite infall, in situ production, and any possible biological sources. Yet they have not been detected on the martian surface; are they there, or are we not capable enough to detect them? The Viking gas chromatograph-mass spectrometer did not detect organics in the headspace of heated soil samples with a detection limit of parts per billion. This null result strongly influenced the interpretation of the reactivity seen in the Viking biology experiments and led to the conclusion that life was not present and, instead, that there was some chemical reactivity in the soil. The detection of perchlorates in the martian soil by instruments on the Phoenix lander and the reports of methane in the martian atmosphere suggest that it may be time to reconsider the question of organics. The high-temperature oxidizing properties of perchlorate will promote combustion of organics in pyrolytic experiments and may have affected the ability of both Phoenix's organic analysis experiment and the Viking mass spectrometer experiments to detect organics. So the question of organics on Mars remains open. A primary focus of the upcoming Mars Science Laboratory will be the detection and identification of organic molecules by means of thermal volatilization, followed by gas chromatography-mass spectrometry--as was done on Viking. However, to enhance organic detectability, some of the samples will be processed with liquid derivatization agents that will dissolve organics from the soil before pyrolysis, which may separate them from the soil perchlorates. Nonetheless, the problem of organics on Mars is not solved, and for future missions other organic detection techniques should therefore be considered as well.

  20. Meteorites from Mars

    Science.gov (United States)

    Grady, M.; Murdin, P.

    2002-01-01

    The SNC METEORITES, named after the initials of the first discovered members (Shergotty, Nakhla and Chassigny), are a group of stony meteorites that are thought to come from Mars, rather than the asteroid belt. They are all igneous rocks (i.e. formed by crystallizing from molten material) and are distinguished from other meteorites by their ages, which are as low as 165 million years old. A young...

  1. Chemical Thermodynamics on Mars

    Science.gov (United States)

    Selco, Jodye I.

    1995-07-01

    This seven question take-home exam guides the students through a marathon problem to arrive at a single answer to the overall question: "How sensitive a probe do you need in order to detect signs of "life" (methane produced by bacteria instead of by chemical equilibrium) on Mars". This exam was originally written to correspond to chapters four through seven in Ira Levine's Physical Chemistry, 3rd edition, McGraw Hill, New York, 1988.

  2. Hygroscopic Salts on Mars

    Science.gov (United States)

    Melchiorri, R.; Davila, A. F.; Chittenden, J.; Haberle, R. M.

    2008-12-01

    We present preliminary results on the influence of a salt-rich regolith in the water cycle of Mars. Global climate modeling shows that the relative humidity on the Martian surface often reaches values above the deliquescence point of salts that are common components of the regolith. At the deliquescence point, these salts will absorb atmospheric water vapor and form a saturated, transient liquid solution that is stable under a range of temperatures. If atmospheric temperatures fall below the eutectic point of the solution, the later will freeze in the pore space of the regolith, thereby resulting in a net transport of water from the vapor phase in the atmosphere, to the solid state in the regolith. This simple model partially accounts for some the distribution of water on the Martian surface as revealed by Mars Odyssey, in particular, we find that: even though the Cl and surface water distributions detected by HEND/ODYSSEY are highly correlated, salt deliquescence under the the present atmospheric conditions does not explain the overall distribution of water in the near surface regolith. However deliquescence of salt-rich soils could be an important contributor to the distribution of water in the regolith at high obliquity. In that scenario the water in the near-surface regolith would be the remnant of high obliquity conditions salt deliquescence is still active in different regions on Mars today, and it should be introduced as a parameter in the modern GCMs as a new ground/atmosphere interaction

  3. Exobiological exploration of Mars

    Science.gov (United States)

    Klein, H. P.; Devincenzi, D. L.

    1995-01-01

    Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting 'critical' experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft.

  4. Mars Rocket Propulsion System

    Science.gov (United States)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  5. Ion Outflow at Mars Using MEX Ion And Electron Data

    Science.gov (United States)

    Fowler, C. M.; Andersson, L.; Frahm, R. A.; Lundin, R. N.

    2013-12-01

    It is widely believed that Mars once hosted a significant amount of water on its surface that is no longer present. Identifying and constraining various escape channels for the Martian atmosphere into space is critical in helping determine the evolution of the planet and its water content. Previous authors have looked for significant ion escape at Mars. Using higher energy (10-50eV) ion data from the ESA MEX spacecraft, significant ion escape was observed in the northern hemisphere but not in the southern. One possible explanation that has been put forward to explain this is that the magnetic crustal fields located primarily in the southern hemisphere at Mars trap ions and recycle them back to the planet as Mars rotates from day to night. Here we propose a different escape channel previously not considered for ions. Estimations suggest that the proposed channel contains at least three times as many ions in the southern hemisphere as in the northern. During strong solar wind compression events this channel could potentially contain as many ions as observed flowing tail ward in nominal solar wind conditions. Data also suggest that differences between northern and southern hemispheres are in part dependent on the ion energies analyzed and provide information regarding the relative importance of physical processes present there. Particle tracing simulations support the data analysis and demonstrate the possibility of this escape channel. The results and implications of these studies are presented along with discussion of the importance of various factors involved in the data analysis and simulations.

  6. Solar Cycle/Seasonal Variations of H, D, H2 and He Distributions and Escape on Mars as Determined by the Mars Thermosphere Global Circulation Model (MTGCM)

    Science.gov (United States)

    Bougher, Stephen

    2005-01-01

    The Mars Thermosphere General Circulation Model (MTGCM) was exercised for Ls = 90 (aphelion) solar minimum, and Ls = 270 perihelion) solar maximum conditions. Simulated MTGCM outputs (i.e. helium density distributions) were compared to those previously observed for Earth and Venus. Winter polar night bulges of helium are predicted on Mars, similar to those observed on the nightside of Venus and in the winter polar regions of Earth. A poster on this research was presented at the European Geophysical Society Meeting (EGS) in 2003. This research paves the way for what might be expected in the polar night regions of Mars during upcoming aerobraking and mapping Campaigns. Lastly, Mars thermosphere (approx. 100-130 km) winter polar warming was observed at high Northern latitudes during the perihelion season, but not at high Southern latitudes during the opposite aphelion season. Presumably, the Mars thermospheric circulation is responsible for the dynamically controlled heating needed to warm polar night temperatures above radiative equilibrium values. Again, MTGCM simulations were conducted for Ls = 90 and Ls = 270 conditions; polar temperatures were examined and found to be much warmer at Northern high latitudes (perihelion) than at Southern high latitudes (aphelion), similar to Mars aerobraking datasets. The Mars thermospheric circulation is found to be stronger during perihelion solstice conditions than during aphelion conditions, owing to both stronger seasonal solar and dust heating during Mars perihelion. An invited talk was given at the Spring AGU 2004 on this research. A forthcoming GRL paper was drafted on this same topic, but not submitted before the termination of this 1-year grant.

  7. The geology and geophysics of Mars

    Science.gov (United States)

    Saunders, R. S.

    1976-01-01

    The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

  8. Guidelines for 2007 MARS exercise

    CERN Multimedia

    HR Department

    2007-01-01

    Following the introduction of the new Merit Appraisal and Recognition Scheme (MARS), full details of the scheme are now available via the HR Department's homepage or directly on the Department's MARS web page: in English: http://humanresources.web.cern.ch/HumanResources/internal/personnel/pmd/cr/MARS.asp or French: http://humanresources.web.cern.ch/humanresources/internal/personnel/pmd/cr/mars_fr.asp You will find on this page: 'Introduction to MARS' with detailed information presented in Frequently Asked Questions; these include the MARS timetable for proposals and decisions; 'Regulations' with links to the scheme's statutory documents; 'Procedures and Forms' and 'Useful Information' with links to all the relevant documentation; these include the mandates of the Senior Staff Advisory Committee (SSAC) and the Technical Engineers and Administrative Careers Committee (TEACC). HR Department Tel. 73566

  9. The surface of Mars: Morphology and process

    Science.gov (United States)

    Aharonson, Oded

    The goal of this work is a quantitative description of the morphology of the surface of Mars, in order to constrain the nature of processes acting during the ancient past through today. Emphasis is placed on linking geometric properties to physical mechanisms. Surface smoothness on Mars is distinctive in the vast northern hemisphere plains. Amazonis Planitia is remarkable in its smoothness, exhibiting an rms variation in topography of relief-building tectonics and volcanics. The shallower long-wavelength portion of the lowlands' topographic power spectrum relative to the highlands' can be accounted for by a simple model of sedimentation such as might be expected at an ocean's floor, but the addition of another process such as cratering is necessary to explain the spectral slope in short wavelengths. Large drainage systems on Mars have geomorphic characteristics that are inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. We demonstrate that features known as slope streaks form exclusively in regions of low thermal inertia, steep slopes, and incredibly, only where daily peak temperatures exceed 275 K during the martian year. The results suggest that at least small amounts of water may be currently present and undergo phase transitions. We detect subtle changes of the polar surface height during the course of seasonal cycles. Using altimetric crossover residuals, we show that while zonally averaged data captures the global behavior of CO 2 exchange, there is a strong dependence of the pattern on longitude. Decomposition of the signal into harmonics in time shows the amplitudes are correlated with the polar cap deposits. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  10. Mars Orbiter Laser Altimiter (MOLA) Globe

    Science.gov (United States)

    2000-01-01

    The color shaded relief image used as the base for this globe has a resolution of 32 pixels per degree (approximately 1850 m/pixel), and was produced and supplied by the MOLA Science Team (http://ltpwww.gsfc.nasa.gov/tharsis/mola.html). The image is shaded as if illuminated everywhere from the west. The elevations represented in color are with respect to a gravitational equipotential surface whose mean equatorial radius is that of the topography. The Astrogeology Team of the U.S. Geological Survey reprojected the image into the format displayed above.The images are presented in a projection that portrays the entire surface of Mars in a manner suitable for the production of a globe; the number, size, and placement of text annotations were chosen for a 12-inch globe. Prominent features are labeled with names approved by the International Astronomical Union. A specialized program was used to create the 'flower petal' appearance of the images; the area of each petal from 0 to 75 degrees latitude is in the Transverse Mercator projection, and the area from 75 to 90 degrees latitude is in the Lambert Azimuthal Equal-Area projection. The northern hemisphere of Mars is shown on the left, and the southern hemisphere on the right.

  11. A Mars Riometer

    Science.gov (United States)

    Fry, C. D.; Rosenberg, T. J.; Lutz, L.; Detrick, D. L.; Weatherwax, A. T.; Knouse, E.; Breden, H.; Giganti, J.

    1998-09-01

    The Planetary Surface Instruments Workshop (Meyer et al., LPI Tech. Rpt. 95-05, 1995) identified surface-based radio science instruments as key tools for observing Mars' middle atmosphere, its ionosphere and solar-wind interaction. For example, Mars has a substantial daytime ionosphere, and some important features of the Martian ionosphere can only be observed from below. One instrument, the Relative Ionospheric Opacity Meter (Riometer), is expected to work well on Mars (Detrick et al., PSS, 45, p. 289, 1997). In the past, the size, power requirements and complexity of these instruments have argued against including them on a lander or rover mission, in spite of the potentially rich science return. We describe the development of a miniature radio receiver designed to operate as a Riometer. The development of this receiver was funded by NASA as an enabling technology for future planetary radio science missions. Our receiver includes features that are desirable for extended autonomous operation: low power consumption, wide dynamic range and linearity, computer command and data interface, and the ability to be remotely reconfigured. The receiver design provides significant improvements over previous implementations used in terrestrial riometry. The high degree of system linearity, combined with a digital feedback loop (including a low-duty calibration cycle), allows a longer measurement time. We were able to significantly miniaturize the receiver by using modern, low-power electronic components that have come on the market. We also implemented several of the subsystems in a field-programmable gate array, including the receiver detector, the control logic, and the data acquisition and processing blocks. Considerable efforts were made to eliminate or minimize RF noise and spurious emissions generated by the receiver's digital circuitry. Results of laboratory and field tests are presented and discussed.

  12. Un mar compartido

    OpenAIRE

    2008-01-01

    Existen pocos ámbitos más reveladores que el mar para entender las virtudes de la cooperación internacional en materia científica. En las ciencias marinas esta cooperación es más que deseable: es imprescindible para poder contestar preguntas relacionadas con el movimiento de las corrientes, el aporte de los ríos, los ciclos migratorios de las especies, las pesquerías, etc. Se analiza la importancia de los proyectos conjuntos donde participaron países latinoamericanos, algunos con éxitos, y so...

  13. Mars Rover RTG Study

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1989-08-25

    This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of SpecialApplications, in suppport of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. The report is a rearranged, updated, and significantly expanded amalgam of three interrelated papers presented at the 24th Intersocity Energy Conversion Engineering Conference (IECEC) at Arlington, Virginia, on August 10, 1989.

  14. The salts of Mars

    Science.gov (United States)

    Clark, B. C.; Van Hart, D. C.

    1981-01-01

    Salt compounds are apparently an important component of the fine-grained regolith on Mars. Salt enrichment may be explained either as a secondary concentration of chemical weathering products or as direct incorporation of planetary released volatiles. Geochemical measurements and chemical relationships constrain the salt species and resultant physicochemical consequences. A likely assemblage is dominated by (Mg,Na)SO4, NaCl, and (Mg,Ca)CO3. Formation of brine in equilibrium with such a salt mixture is unlikely under the temperature and water-vapor restrictions prevalent over most, if not all, of the Martian surface. Acidic conditions, accompanying salt formation, favor the preferential destruction of susceptible igneous minerals.

  15. Mars Surface Simulations

    Science.gov (United States)

    Nørnberg, Per; Merrison, Jonathan P.; Gunnlaugsson, Haraldur P.

    2010-05-01

    Laboratory simulations of the Martian surface are of importance to broaden scientific understanding of the physical processes, but also in order to develop the technology necessary for exploration of the planet. The Mars Simulation Laboratory at Aarhus University [1] has been involved in such simulations for around ten years and has developed several experimental facilities for carrying out science or instrument testing under conditions similar to those at the Martian surface, specifically low pressure, low temperature and importantly recreating the wind flow environment and dust suspension (reproducing the Martian dusty aerosol) using Mars analogue material [2]. The science involved in this simulation work has covered a broad spectrum including, erosion induced mineralogy/chemistry, particulate electrification, magnetic properties of Martian dust, biological survival, UV induced chemistry/mineralogy (using a solar simulator), adhesion/cohesion processes and the wind driven transport of dust and sand [3,4]. With regard to technology the wind tunnel facilities have been used in the development of the latest wind and dust sensing instrumentation [5,6]. With support from the European Space Agency (ESA) and Danish national funding an advanced Mars simulation facility has recently been constructed (2009). This wind tunnel facility has a cross section of 2 x 1 m and a length of 8 m, a temperature range down to below -120C, wind speeds in excess of 20m/s, and automated dust control. With a range of (specialised) sensing instrumentation it provides the opportunity to perform a new generation of scientific experiments and allow testing and technology development in the most realistic and rigorous environment. As well as being available for the space agencies, this facility will be open to all potential scientific collaborators. Also European planetary scientists may benefit from support through the EU Europlanet FP7 networking programme. For more information on access

  16. MARS15 overview

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2007-01-01

    MARS15 is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion, and low-energy neutron transport in accelerator, detector, spacecraft, and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Main features of the code are described in this paper with a focus on recent developments and benchmarking. Newest developments concern inclusive and exclusive nuclear event generators, extended particle list in both modes, heavy-ion capability, electromagnetic interactions, enhanced geometry, tracking, histogramming and residual dose modules, improved graphical-user interface, and other external interfaces.

  17. Volcano-ice interactions on Mars

    Science.gov (United States)

    Allen, C. C.

    1979-01-01

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.

  18. BUILDING ON THE MARS PLANET

    Directory of Open Access Journals (Sweden)

    Valeriy Pershakov

    2012-09-01

    Full Text Available  The main task is the terraforming of the Mars planet. Nowadays it is a very important task, because there are a lot of problems on the planet Earth, which deals with the exhaustion of natural resources. The solution is in the colonizing and building on the Mars planet.

  19. Monitoring Mars for Electrostatic Disturbances

    Science.gov (United States)

    Compton, D.

    2011-01-01

    The DSN radio telescope DSS-13 was used to monitor Mars for electrostatic discharges from 17 February to 11 April, 2010, and from 19 April to 4 May, 2011, over a total of 72 sessions. Of these sessions, few showed noteworthy results and no outstanding electrostatic disturbances were observed on Mars from analyzing the kurtosis of radio emission from Mars. Electrostatic discharges on mars were originally detected in June of 2006 by Ruf et al. using DSS-13. he kurtosis (normalized fourth moment of the electrical field strength) is sensitive to non-thermal radiation. Two frequencies bands, either 2.4 and 8.4 GHz or 8.4 and 32 GHz were used. The non-thermal radiation spectrum should have peaks at the lowest three modes of the theoretical Schumann Resonances of Mars. The telescope was pointed away from Mars every 5 minutes for 45 seconds to confirm if Mars was indeed the sources of any events. It was shown that by including a down-link signal in one channel and by observing when the kurtosis changed as the telescope was pointed away from the source that the procedure can monitor Mars without the need of extra equipment monitoring a control source.

  20. A Revolution in Mars Topography and Gravity and Magnetic Fields

    Science.gov (United States)

    Smith, David E.

    2002-01-01

    Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.

  1. The 2009 Mars Telecommunications Orbiter

    Science.gov (United States)

    Wilson, G. R.; Depaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Gibbs, R. G.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.

    The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even great networking capabilities in the future. During its nearly 10-year mission in orbit, Mars Telecommunications Orbiter would aid navigation of arriving spacecraft to their martian landing sites and monitor critical events during landings and orbit insertions. In addition, it would enable data-transmission volumes great enough to bring a virtual Mars presence to the public through a range of Internet and video features.

  2. Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS)

    Science.gov (United States)

    Pätzold, M.; Häusler, B.; Tyler, G. L.; Andert, T.; Asmar, S. W.; Bird, M. K.; Dehant, V.; Hinson, D. P.; Rosenblatt, P.; Simpson, R. A.; Tellmann, S.; Withers, P.; Beuthe, M.; Efimov, A. I.; Hahn, M.; Kahan, D.; Le Maistre, S.; Oschlisniok, J.; Peter, K.; Remus, S.

    2016-08-01

    The Mars Express spacecraft is operating in Mars orbit since early 2004. The Mars Express Radio Science Experiment (MaRS) employs the spacecraft and ground station radio systems (i) to conduct radio occultations of the atmosphere and ionosphere to obtain vertical profiles of temperature, pressure, neutral number densities and electron density, (ii) to conduct bistatic radar experiments to obtain information on the dielectric and scattering properties of the surface, (iii) to investigate the structure and variation of the crust and lithosphere in selected target areas, (iv) to determine the mass, bulk and internal structure of the moon Phobos, and (v) to track the MEX radio signals during superior solar conjunction to study the morphology of coronal mass ejections (CMEs). Here we report observations, results and discoveries made in the Mars environment between 2004 and 2014 over almost an entire solar cycle.

  3. Intimations of water on Mars.

    Science.gov (United States)

    2000-08-01

    This photo essay contains images of Mars that propose evidence of the possible present or past existence of liquid water on Mars. Images were taken by the Mars Global Surveyor Mars Orbiter Camera. Images presented include: Polar Wall Pit region, consisting of gully landforms possibly caused by seepage and runoff of liquid water; Noachis Terra region, an area of gullies eroded into the wall of a meteor impact crater, where channels and related debris are seen, possibly formed by seepage, runoff, and debris flow; two images of Gorgonum Chaos region, one a series of troughs and layers of gullies and the other of gullies in a specific layer forming an alcove similar to an aquifer; Sirenum Fossae/Gorgonum Chaos mosaic of two images from this region of the southern hemisphere of Mars, showing 20 different channels coming down from a trough and their associated debris fans. Images and their enhancements are from NASA/JPL/Malin Space Science System.

  4. Mathematics and Mars Exploration

    Science.gov (United States)

    Velasco, M. P.; Usero, D.; Jiménez, S.; Aguirre, C.; Vázquez, L.

    2015-01-01

    In this study we consider modelization associated with study of solar radiation at the surface of Mars and the Martian atmosphere. In particular, we present elements concerning retrieval of the solar irradiance spectrum on the surface of Mars from data collected by arrays of photodiodes, such as those onboard the "Curiosity" MSL-rover and other missions currently under design. By using these techniques we are able to provide an approximate description of the expected measures. In this work we have also developed a new method of tomography-based signal analysis for detection of events in the Martian atmosphere boundary layer, such as dust devils. In general, this method enables detection of events that occur briefly in time and are localized in space. This tomographic method allows us to identify the presence of more dust devils than detected previously using the same data. Finally we show new scenarios of modelization through fractional differential equations associated with diffusion processes and nonlocal problems. Such approaches could be used to model complex Martian dynamics.

  5. Mars synthetic topographic mapping

    Science.gov (United States)

    Wu, S.S.C.

    1978-01-01

    Topographic contour maps of Mars are compiled by the synthesis of data acquired from various scientific experiments of the Mariner 9 mission, including S-band radio-occulation, the ultraviolet spectrometer (UVS), the infrared radiometer (IRR), the infrared interferometer spectrometer (IRIS) and television imagery, as well as Earth-based radar information collected at Goldstone, Haystack, and Arecibo Observatories. The entire planet is mapped at scales of 1:25,000,000 and 1:25,000,000 using Mercator, Lambert, and polar stereographic map projections. For the computation of map projections, a biaxial spheroid figure is adopted. The semimajor and semiminor axes are 3393.4 and 3375.7 km, respectively, with a polar flattening of 0.0052. For the computation of elevations, a topographic datum is defined by a gravity field described in terms of spherical harmonics of fourth order and fourth degree combined with a 6.1-mbar occulation pressure surface. This areoid can be approximated by a triaxial ellipsoid with semimajor axes of A = 3394.6 km and B = 3393.3 km and a semiminor axis of C = 3376.3 km. The semimajor axis A intersects the Martian surface at longitude 105??W. The dynamic flattening of Mars is 0.00525. The contour intercal of the maps is 1 km. For some prominent features where overlapping pictures from Mariner 9 are available, local contour maps at relatively larger scales were also compiled by photogrammetric methods on stereo plotters. ?? 1978.

  6. Oxygen foreshock of Mars

    Science.gov (United States)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  7. Water on early Mars

    Science.gov (United States)

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  8. [Cryptobiosphere of Mars].

    Science.gov (United States)

    Gal'chenko, V F

    2003-01-01

    The US Viking missions (1975-1976) failed to discover any biological activity on the surface of Mars. Yet, life may exist in the planet lithosphere which was found to contain a substantial amount of water. Martian interior can also provide microbial cryptolife with sources of carbon (CO, CO2, CH4) and energy (reduced elements and compounds, e.g. H2, CO, H2S, NH4+, CH4, Fe3+). Microorganisms identical to the Earth's anaerobic methanogens, sulfate reducers, acetogens, denitrifiers etc. are the most probable Martian aborigines. Well-balanced continuous functioning of the Martian cryptobiosphere implies closure of biochemical carbon, sulfur and nitrogen cycles which cannot be reached but with participation of organotrophic and anaerobic hydrolytic and zymotic organisms, ammonifiers and denitrifiers. Considering the low intensity of biological and chemical processes in the absence of surface hydrosphere, low-power atmosphere and cryptobiosphere closure on Mars, and slow global energy matter cycles, evolution of the presumable Martian cryptolife should also go at a slack pace and directions and forms of the evolution of living substance can have little in common with those on Earth. Comprehensive investigations of the Martian biota will employ a great variety of geochemical, radi- and stable isotope, microbiological, enzymatic and molecular biology methods.

  9. Water on early Mars.

    Science.gov (United States)

    Carr, M H

    1996-01-01

    Large flood channels, valley networks and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment 3.8 Ga ago, with an inventory of water at the surface equivalent to at least a few hundred metres spread over the whole planet, as compared with 3 km for the Earth. The mantle of Mars is much drier than that of the Earth, possibly as a result of global melting at the end of accretion and the lack of plate tectonics to subsequently reintroduce water into the interior. The surface water resided primarily in a porous, kilometres-thick megaregolith created by the high impact rates. Under today's climatic conditions groundwater is trapped below a thick permafrost zone. At the end of heavy bombardment any permafrost zone would have been much thinner because of the high heat flows, but climatic conditions may have been very different then, as suggested by erosion rates 1000 times higher than subsequent rates. Water trapped below the permafrost periodically erupted onto the surface to form large flood channels and lakes. Given abundant water at the surface and sustained volcanism, hydrothermal activity must have frequently occurred but we have yet to make the appropriate observations to detect the results of such activity.

  10. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  11. Safety during MARS exercise

    CERN Multimedia

    2015-01-01

    It is MARS(1) time again! All employed members of the CERN personnel are currently undergoing the annual MARS evaluations.   This is also a good occasion for supervisors and their supervisees to fill in or update the OHS-0-0-3 form(2) “Identification of occupational hazards”. Filling in the OHS-0-0-3 form is an opportunity to assess any safety issues related to the supervisee's activities.  Each of us should, together with our supervisor, regularly identify and assess the hazards we may be exposed to in the course of our professional activities and reflect on how to control and mitigate them. When filling in the OHS form for the first time, it is important to determine any potential hazards as well as the corresponding preventive measures, in particular training and protective equipment. When updating the form, please review the available information to ensure that it still corresponds to the current activities. The form should be updated w...

  12. Olivine and pyroxene diversity in the crust of Mars.

    Science.gov (United States)

    Mustard, J F; Poulet, F; Gendrin, A; Bibring, J-P; Langevin, Y; Gondet, B; Mangold, N; Bellucci, G; Altieri, F

    2005-03-11

    Data from the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) on the Mars Express spacecraft identify the distinct mafic, rock-forming minerals olivine, low-calcium pyroxene (LCP), and high-calcium pyroxene (HCP) on the surface of Mars. Olivine- and HCP-rich regions are found in deposits that span the age range of geologic units. However, LCP-rich regions are found only in the ancient Noachian-aged units, which suggests that melts for these deposits were derived from a mantle depleted in aluminum and calcium. Extended dark regions in the northern plains exhibit no evidence of strong mafic absorptions or absorptions due to hydrated materials.

  13. HUBBLE WATCHES THE RED PLANET AS MARS GLOBAL SURVEYOR BEGINS AEROBRAKING

    Science.gov (United States)

    2002-01-01

    his NASA Hubble Space Telescope picture of Mars was taken on Sept. 12, one day after the arrival of the Mars Global Surveyor (MGS) spacecraft and only five hours before the beginning of autumn in the Martian northern hemisphere. (Mars is tilted on its axis like Earth, so it has similar seasonal changes, including an autumnal equinox when the Sun crosses Mars' equator from the northern to the southern hemisphere). This Hubble picture was taken in support of the MGS mission. Hubble is monitoring the Martian weather conditions during the early phases of MGS aerobraking; in particular, the detection of large dust storms are important inputs into the atmospheric models used by the MGS mission to plan aerobraking operations. Though a dusty haze fills the giant Hellas impact basin south of the dark fin-shaped feature Syrtis Major, the dust appears to be localized within Hellas. Unless the region covered expands significantly, the dust will not be of concern for MGS aerobraking. Other early signs of seasonal transitions on Mars are apparent in the Hubble picture. The northern polar ice cap is blanketed under a polar hood of clouds that typically start forming in late northern summer. As fall progresses, sunlight will dwindle in the north polar region and the seasonal polar cap of frozen carbon dioxide will start condensing onto the surface under these clouds. Hubble observations will continue until October 13, as MGS carefully uses the drag of the Martian atmosphere to circularize its orbit about the Red Planet. After mid-October, Mars will be too close to the Sun, in angular separation, for Hubble to safely view. The image is a composite of three separately filtered colored images taken with the Wide Field Planetary Camera 2 (WFPC2). Resolution is 35 miles (57 kilometers) per pixel (picture element). The Pathfinder landing site near Ares Valles is about 2200 miles (3600 kilometers) west of the center of this image, so was not visible during this observation. Mars was 158

  14. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera

    OpenAIRE

    Wang, Huiqun; Ingersoll, Andrew P.

    2002-01-01

    We have made daily global maps that cover both polar and equatorial regions of Mars for Ls 135°–360° and 0°–111° using the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red and blue wide-angle swaths taken from May 1999 to January 2001. We study the seasonal distribution of condensate clouds and dust clouds during roughly 1 Martian year using these daily global maps. We present the development and decay of the tropical cloud belt and the polar hoods, the spatial and temporal distributi...

  15. Mars Before the Space Age

    CERN Document Server

    Jones, Barrie W

    2008-01-01

    Mars has surely been scrutinised since the dawn of humankind. In the 16th century Tycho Brahe made accurate observations of the position of Mars that enabled Johannes Kepler to obtain his first two laws of planetary motion. In the 17th century the first telescope observations were made, but very little surface detail could be discerned. Throughout the 18th and 19th centuries telescopes improved, revealing many dark areas on the red tinted surface. After the close opposition of 1877 Giovanni Schiaparelli announced about 40 canali on Mars. This led to the saga of the canals of Mars, laid to rest in 1971 when Mariner 9 made observations from Martian orbit showing that the canali/canals of Mars do not exist. Belief that there was life on Mars was widespread in the 19th century, including the view that the dark areas were some form of plant life. This view persisted until Mariner 4 flew past Mars in 1965 and discovered a far thinner atmosphere than previously thought, with impact craters dominating the images. It ...

  16. Mars: a small terrestrial planet

    Science.gov (United States)

    Mangold, N.; Baratoux, D.; Witasse, O.; Encrenaz, T.; Sotin, C.

    2016-11-01

    Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared imagery, altimetry, radar, chemistry, etc) acquired by a dozen of missions over the last two decades. In situ data have provided ground truth for remote-sensing data and have opened a new era in the study of Mars geology. While large sections of Mars science have made progress and new topics have emerged, a major question in Mars exploration—the possibility of past or present life—is still unsolved. Without entering into the debate around the presence of life traces, our review develops various topics of Mars science to help the search of life on Mars, building on the most recent discoveries, going from the exosphere to the interior structure, from the magmatic evolution to the currently active processes, including the fate of volatiles and especially liquid water.

  17. Kepler's "War on Mars"

    Science.gov (United States)

    Dorsey, William; Orchiston, W.; Stephenson, F. R.

    2011-01-01

    This paper presents an interpretation of how Johannes Kepler changed the study of astronomy. We propose that in his metaphorical "War on Mars,” the Astronomia Nova, Kepler used a revolutionary rhetoric to bring about the usurpation of seventeenth-century astronomy. We discuss how Kepler approached the well-established conceptual framework within which the hypotheses of Ptolemy, Copernicus and Tycho Brahe functioned, and how he sought comprehensive physical principles that could determine the true cause and form of the known Universe. We examine Kepler's need to redefine reality and his use of rhetoric in shaping his astronomical argument for a new astronomy, and we show that his new `laws’ represent a fusion of physics and geometry based upon astronomical observations. We suggest that although Kepler may have believed in and defended some Copernican ideas, his innovative Astronomia Nova opened up a whole new vista for international astronomy.

  18. Mars - an escaping planet?

    CERN Document Server

    Dvorak, R

    2005-01-01

    The chaotic behaviour of the motion of the planets in our Solar System is well established. Numerical experiments with a modified Solar System consisting of a more massive Earth have shown, that for special values of an enlargement factor K around 5 the dynamical state of a truncated planetary system (excluding Mercury and the outer planets Uranus and Neptune) is highly chaotic. On the contrary for values of the mass of the Earth up to the mass of Saturn no irregular dynamical behaviour was observed. We extended our investigations to the complete planetary system and showed, that this chaotic window found before still exists. Tests in different 'Solar Systems' showed that only including Jupiter and Saturn with their actual masses together with a 'massive' Earth (between 4 and 6 times more massive) destabilize the orbit of Mars so that even escapes from the system are possible.

  19. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  20. Illustration of Launching Samples Home from Mars

    Science.gov (United States)

    2005-01-01

    One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.

  1. NASA Mars Science Laboratory Rover

    Science.gov (United States)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  2. Approach to Mars Field Geology

    Science.gov (United States)

    Muehlberger, William; Rice, James W.; Parker, Timothy; Lipps, Jere H.; Hoffman, Paul; Burchfiel, Clark; Brasier, Martin

    1998-01-01

    The goals of field study on Mars are nothing less than to understand the processes and history of the planet at whatever level of detail is necessary. A manned mission gives us an unprecedented opportunity to use the immense power of the human mind to comprehend Mars in extraordinary detail. To take advantage of this opportunity, it is important to examine how we should approach the field study of Mars. In this effort, we are guided by over 200 years of field exploration experience on Earth as well as six manned missions exploring the Moon.

  3. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Science.gov (United States)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  4. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  5. Boots on Mars: Earth Independent Human Exploration of Mars

    Science.gov (United States)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  6. The ballistic Mars hopper: An alternative Mars mobility concept

    OpenAIRE

    1987-01-01

    The ballistic Mars hopper is proposed as an alternative mobility concept for unmanned exploration of the martian surface. In the ballistic Mars hopper concept, oxygen and carbon monoxide produced from the martian atmosphere are used as propellants in a rocket propulsion system for an unmanned vehicle on suborbital trajectories between landing sights separated by distances of up to 1000 km. This mobility concept is seen as uniquely capable of allowing both intensive and extensive exploration o...

  7. Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis

    Science.gov (United States)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.

  8. Late Tharsis formation and implications for early Mars.

    Science.gov (United States)

    Bouley, Sylvain; Baratoux, David; Matsuyama, Isamu; Forget, Francois; Séjourné, Antoine; Turbet, Martin; Costard, Francois

    2016-03-17

    The Tharsis region is the largest volcanic complex on Mars and in the Solar System. Young lava flows cover its surface (from the Amazonian period, less than 3 billion years ago) but its growth started during the Noachian era (more than 3.7 billion years ago). Its position has induced a reorientation of the planet with respect to its spin axis (true polar wander, TPW), which is responsible for the present equatorial position of the volcanic province. It has been suggested that the Tharsis load on the lithosphere influenced the orientation of the Noachian/Early Hesperian (more than 3.5 billion years ago) valley networks and therefore that most of the topography of Tharsis was completed before fluvial incision. Here we calculate the rotational figure of Mars (that is, its equilibrium shape) and its surface topography before Tharsis formed, when the spin axis of the planet was controlled by the difference in elevation between the northern and southern hemispheres (hemispheric dichotomy). We show that the observed directions of valley networks are also consistent with topographic gradients in this configuration and thus do not require the presence of the Tharsis load. Furthermore, the distribution of the valleys along a small circle tilted with respect to the equator is found to correspond to a southern-hemisphere latitudinal band in the pre-TPW geographical frame. Preferential accumulation of ice or water in a south tropical band is predicted by climate model simulations of early Mars applied to the pre-TPW topography. A late growth of Tharsis, contemporaneous with valley incision, has several implications for the early geological history of Mars, including the existence of glacial environments near the locations of the pre-TPW poles of rotation, and a possible link between volcanic outgassing from Tharsis and the stability of liquid water at the surface of Mars.

  9. 2031, an edaphological Mars odyssey

    Science.gov (United States)

    Barrón, Vidal

    2016-04-01

    NASA is projecting to send humans to Mars in the 2030s. In the PICO session we will make a 4D experience, a journey in space and time. Wéll connect with a meeting in the future mission "Edaphos one" travelling to Mars in 2031. In that meeting, an international scientific team with one geophysicist, one mineralogist and two agronomist will review the state of the art of the geo-edaphological knowledge of the martian surface, based on the main Mars missions using orbiters (Mariner), landers (Viking) and rovers (Pathfinder, Spirit-Opportunity, Curiosity). A special attention will be devoted to the mineralogy of the iron oxides, as important aquamarkers. Finally, they discuss about the biological, physical and chemical limitations for plants growth on Mars. You can see the trailer of the presentation in this link: https://www.youtube.com/watch?v=yRS0tPNpvFU

  10. BUILDING ON THE MARS PLANET

    National Research Council Canada - National Science Library

    Valeriy Pershakov; Tatyana Petrova

    2012-01-01

    The main task is the terraforming of the Mars planet. Nowadays it is a very important task, because there are a lot of problems on the planet Earth, which deals with the exhaustion of natural resources...

  11. Properties of cryobrines on Mars

    DEFF Research Database (Denmark)

    Möhlmann, D.; Thomsen, Kaj

    2011-01-01

    Brines, i.e. aqueous salty solutions, increasingly play a role in a better understanding of physics and chemistry (and eventually also putative biology) of the upper surface of Mars. Results of physico-chemical modeling and experimentally determined data to characterize properties of cryobrines...... of potential interest with respect to Mars are described. Eutectic diagrams, the related numerical eutectic values of composition and temperature, the water activity of Mars-relevant brines of sulfates, chlorides, perchlorides and carbonates, including related deliquescence relative humidity, are parameters...... and properties, which are described here in some detail. The results characterize conditions for liquid low-temperature brines ("cryobrines") to evolve and to exist, at least temporarily, on present Mars. (C) 2010 Elsevier Inc. All rights reserved....

  12. Mars Regolith Water Extractor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Regolith Water Extractor (MRWE) is a system for acquiring water from the Martian soil. In the MRWE, a stream of CO2 is heated by solar energy or waste heat...

  13. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  14. Mars Exploration Science in 2050

    Science.gov (United States)

    Ehlmann, B. L.; Johnson, S. S.; Horgan, B.; Niles, P. B.; Amador, E. S.; Archer, P. D.; Byrne, S.; Edwards, C. S.; Fraeman, A. A.; Glavin, D. P.; Glotch, T. D.; Hardgrove, C.; Hayne, P. O.; Kite, E. S.; Lanza, N. L.; Lapotre, M. G. A.; Michalski, J.; Rice, M.; Rogers, A. D.

    2017-02-01

    We describe an approach to Mars exploration in 2050 and the decades leading in that couples fundamental science on the workings of planets and the search for life with collection of information on resources and hazards essential for human exploration.

  15. MARVY: Mars Velocity Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The successful landing of the large Mars rover Curiosity on August 5, 2012 outlined the increasing complexity of safely landing large rovers on the planet. A precise...

  16. Outstanding problems in Mars aeronomy

    Science.gov (United States)

    Luhmann, J. G.

    1995-01-01

    Although the Phobos-2 spacecraft recently obtained important results relevant to some of the major remaining questions in Mars aeronomy, much remains to be done. In particular, not since the Viking Landers have we made in-situ measurements of aeronomical quantities such as atmospheric and ionospheric densities and temperatures below 400 km altitude. We have never made magnetic field measurements at these altitudes. Without such measurements we cannot unambiguously resolve arguments concerning issues such as the significance of the planetary magnetic field in the solar wind interaction, or understand the atmospheric cycle that leads to escape to space. With the trio of future orbiters including Mars Observer, Mars-94, and Planet-B we should see a veritable explosion of new knowledge, but some gaps in aeronomical science coverage will still remain. This paper briefly reviews some of the major unsolved problems in Mars aeronomy, and points out which are expected to remain outstanding after this flotilla of missions.

  17. Ice at Mars lander site

    National Research Council Canada - National Science Library

    Showstack, Randy

    2008-01-01

    Eight dice‐sized bits of ice vanished within 4 days from a trench dug on Mars by the robotic arm on NASA's Phoenix lander, confirming what scientists suspected the material was. “It must be ice...

  18. Mars Aqueous Processing System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars Aqueous Processing System (MAPS) is an innovative method to produce useful building materials from Martian regolith. Acids and bases produced from the regolith...

  19. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  20. Mars Express releases Beagle 2

    Science.gov (United States)

    2003-12-01

    At 9:31 CET, the crucial sequence started to separate the Beagle 2 lander from Mars Express. As data from Mars Express confirm, the pyrotechnic device was fired to slowly release a loaded spring, which gently pushed Beagle 2 away from the mother spacecraft. An image from the onboard visual monitoring camera (VMC) showing the lander drifting away is expected to be available later today. Since the Beagle 2 lander has no propulsion system of its own, it had to be put on the correct course for its descent before it was released. For this reason, on 16 December the trajectory of the whole Mars Express spacecraft had to be adjusted to ensure that Beagle 2 would be on course to enter the atmosphere of Mars. This manoeuvre, called "retargeting'' was critical: if the entry angle is too steep, the lander could overheat and burn up in the atmosphere; if the angle is too shallow, the lander might skim like a pebble on the surface of a lake and miss its target. This fine targeting and today's release were crucial manoeuvres for which ESA's Ground Control Team at ESOC (European Space Operations Centre) had trained over the past several months. The next major milestone for Mars Express will be the manoeuvre to enter into orbit around Mars. This will happen at 3:52 CET on Christmas morning, when Beagle 2 is expected to land on the surface of Mars. "Good teamwork by everybody - ESA, industry and the Beagle 2 team - has got one more critical step accomplished. Mars, here comes Europe!" said David Southwood, ESA Director of Science.

  1. Europe's eye on Mars: first spectacular results from Mars Express

    Science.gov (United States)

    2004-01-01

    Although the seven scientific instruments on board Mars Express are still undergoing a thorough calibration phase, they have already started collecting amazing results. The first high-resolution images and spectra of Mars have already been acquired. This first spectacular stereoscopic colour picture was taken on 14 January 2004 by ESA’s Mars Express satellite from 275 km above the surface of Mars by the High Resolution Stereo Camera (HRSC). This image is available on the ESA portal at: http://mars.esa.int The picture shows a portion of a 1700 km long and 65 km wide swath which was taken in south-north direction across the Grand Canyon of Mars (Valles Marineris). It is the first image of this size that shows the surface of Mars in high resolution (12 metres per pixel), in colour, and in 3D. The total area of the image on the Martian surface (top left corner) corresponds to 120 000 km². The lower part of the picture shows the same region in perspective view as if seen from a low-flying aircraft. This perspective view was generated on a computer from the original image data. One looks at a landscape which has been predominantly shaped by the erosional action of water. Millions of cubic kilometres of rock have been removed, and the surface features seen now such as mountain ranges, valleys, and mesas, have been formed. The HRSC is just one of the instruments to have collected exciting data. To learn more about the very promising beginning to ESA's scientific exploration of Mars, media representatives are invited to attend a press conference on Friday, 23 January 2004, at 11:00 CET at ESA’s Space Operations Centre in Darmstadt, Germany, and in video-conference with the other ESA centres. There, under the auspices of ESA Council Chair at Ministerial level, Germany's Minister for Education and Research, Mrs Edelgard Bulmahn, ESA's Director of the Scientific Programme, Prof. David Southwood and the Principal Investigators of all instruments on board Mars Express will

  2. Are the Dorsa Argentea on Mars eskers?

    Science.gov (United States)

    Butcher, Frances E. G.; Conway, Susan J.; Arnold, Neil S.

    2016-09-01

    The Dorsa Argentea are an extensive assemblage of ridges in the southern high latitudes of Mars. They have previously been interpreted as eskers formed by deposition of sediment in subglacial meltwater conduits, implying a formerly more extensive south polar ice sheet. In this study, we undertake the first large-scale statistical analysis of aspects of the geometry and morphology of the Dorsa Argentea in comparison with terrestrial eskers in order to evaluate this hypothesis. The ridges are re-mapped using integrated topographic (MOLA) and image (CTX/HRSC) data, and their planar geometries compared to recent characterisations of terrestrial eskers. Quantitative tests for esker-like relationships between ridge height, crest morphology and topography are then completed for four major Dorsa Argentea ridges. The following key conclusions are reached: (1) Statistical distributions of lengths and sinuosities of the Dorsa Argentea are similar to those of terrestrial eskers in Canada. (2) Planar geometries across the Dorsa Argentea support formation of ridges in conduits extending towards the interior of an ice sheet that thinned towards its northern margin, perhaps terminating in a proglacial lake. (3) Variations in ridge crest morphology are consistent with observations of terrestrial eskers. (4) Statistical tests of previously observed relationships between ridge height and longitudinal bed slope, similar to those explained by the physics of meltwater flow through subglacial meltwater conduits for terrestrial eskers, confirm the strength of these relationships for three of four major Dorsa Argentea ridges. (5) The new quantitative characterisations of the Dorsa Argentea may provide useful constraints for parameters in modelling studies of a putative former ice sheet in the south polar regions of Mars, its hydrology, and mechanisms that drove its eventual retreat.

  3. Site Selection for Mars Exopaleontology in 2001

    Science.gov (United States)

    Farmer, Jack

    1998-01-01

    of these lie in the southern highlands beyond the l5 deg S constraint for 2001. However, deposits of paleolakes may offer the largest and most easily identified exopaleontological targets from orbit. Based on a variety of arguments, some workers have suggested that there was once an ancient ocean on the northern plains, and some sites of interest (potential shoreline terraces) fall within the 30 deg N constraint. From a paleontological standpoint the most interesting places of this type are terminal paleolake basins which are likely to have been both saline and alkaline. Models by Schaefer suggest such environments could be widespread on Mars. The conditions in terminal lake basin settings favor widespread chemical sedimentation, an important condition for microbial fossilization. Important lithological targets for a microbial fossil record in terminal lake basins include spring-deposited carbonates, shoreline cements, a wide variety of evaporite minerals and fine-grained detrital sediments including shales, marls, and water-lain volcanic ash deposits. In developing a strategy to explore for ancient hydrothermal deposits on Mars, we can learn from the methods that have been developed by explorationists to explore for economic mineral deposits on Earth. Due to their simple mineralogy, hydrothermal deposits can often be detected using remote sensing methods. Common thermal spring mineral assemblages include silica, carbonate, and various metallic oxides and sulfides. But there are also a number of diagnostic silicate minerals, including clays, formed by the hydrothermal alteration of country rocks. These hydrothermal minerals have characteristic spectral signatures that could be detected from Mars orbit using high resolution infrared remote sensing methods. In playa lake settings, evaporite deposits often form a predictable "bull's eye" pattern with carbonates being deposited in marginal basin areas, and sulfates and halides occurring progressively mo re basinward. The

  4. Site Selection for Mars Exopaleontology in 2001

    Science.gov (United States)

    Farmer, Jack

    1998-01-01

    of these lie in the southern highlands beyond the l5 deg S constraint for 2001. However, deposits of paleolakes may offer the largest and most easily identified exopaleontological targets from orbit. Based on a variety of arguments, some workers have suggested that there was once an ancient ocean on the northern plains, and some sites of interest (potential shoreline terraces) fall within the 30 deg N constraint. From a paleontological standpoint the most interesting places of this type are terminal paleolake basins which are likely to have been both saline and alkaline. Models by Schaefer suggest such environments could be widespread on Mars. The conditions in terminal lake basin settings favor widespread chemical sedimentation, an important condition for microbial fossilization. Important lithological targets for a microbial fossil record in terminal lake basins include spring-deposited carbonates, shoreline cements, a wide variety of evaporite minerals and fine-grained detrital sediments including shales, marls, and water-lain volcanic ash deposits. In developing a strategy to explore for ancient hydrothermal deposits on Mars, we can learn from the methods that have been developed by explorationists to explore for economic mineral deposits on Earth. Due to their simple mineralogy, hydrothermal deposits can often be detected using remote sensing methods. Common thermal spring mineral assemblages include silica, carbonate, and various metallic oxides and sulfides. But there are also a number of diagnostic silicate minerals, including clays, formed by the hydrothermal alteration of country rocks. These hydrothermal minerals have characteristic spectral signatures that could be detected from Mars orbit using high resolution infrared remote sensing methods. In playa lake settings, evaporite deposits often form a predictable "bull's eye" pattern with carbonates being deposited in marginal basin areas, and sulfates and halides occurring progressively mo re basinward. The

  5. The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24-30 (1999-2011)

    Science.gov (United States)

    Wang, Huiqun; Richardson, Mark I.

    2015-05-01

    Mars Daily Global Maps (MDGM) derived from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) are used to study the distribution and evolution of large dust storms over the period from Mars years 24-30 (1999-2001). Large storms are defined here as discrete dust events visible in image sequences extending over at least 5 sols (Mars days) and where the dust covers areas beyond the origination region. A total of 65 large dust storms meeting these criteria are identified during the observational period and all are observed during the Ls = 135-30° seasonal window. Dust storms originating in the northern and southern hemispheres appear to form two distinct families. All but two of the storms originating in the northern hemisphere are observed in two seasonal windows at Ls = 180-240° and Ls = 305-350°; while all but two of those originating in the southern hemisphere are observed during Ls = 135-245°. None of the large dust storms originating in the northern hemisphere are observed to develop to global scale, but some of them develop into large regional storms with peak area >1 × 107 km2 and duration on the order of several weeks. In comparison, large dust storms originating in the southern hemisphere are typically much smaller, except notably in the two cases that expanded to global scale (the 2001 and 2007 global storms). Distinct locations of preferred storm origination emerge from the dust storm image sequences, including Acidalia, Utopia, Arcadia and Hellas. A route (trajectory) 'graph' for the observed sequences is provided. The routes are highly asymmetric between the two hemispheres. In the south, for non-global dust storms, the main routes are primarily oriented eastwest, whereas in the north, the routes are primarily north-south and zonally-concentrated into meridional channels. In a few impressive cases, storms originating in the northern hemisphere are observed to "flush" through

  6. Interpretation of collapsed terrain on Mars

    Science.gov (United States)

    Ewa Zalewska, Natalia; Skocki, Krzysztof

    2016-10-01

    On the images from HiRISE camera within volcanoes and circumpolar areas there are depressions that can be explained in two ways, either by melting subsurface layer of ice or by cooling of lava which forms branch intrusion and flank craters underneath. On many pictures from Mars similar cavities are found on the slopes of Martian craters on Arsia Mons , Pavonis Mons on northern hemisphere and Alba Patera on southern hemisphere. Such cavities can be compared to a Hawaiian type volcanoes. At the top of Mauna Loa linearly arranged craters can be seen, strikingly similar to those on Arsia Mons . Basing on map ice content measured by Odyssey GRS apparatus, in this place of the volcanic cone, quite small ice content can be observed that varies in the range of 2-4% hydrogen abundance. It is therefore difficult to explain these collapses by unfreezing of subsurface ice. In an infrared spectrum of these areas there are no bands of water in the CRISM spectra, although it does not say that the water in the form of ice couldn't have been there before. In the central part of Chryse, there are series of chains depressions caused most likely by the collapse of land. These forms have been associated with an open pingo type system additionally with assisted topography of the area or tectonics and internal cracks in the rocks. These are noticed on the slopes of craters or wherever the area decline. Then flowing subsurface water or brine coming from the ice layer could while freezing accumulate and create a longitudinal hill that collapsed due to seasonal thawing forming gullies or canyons . At the end of these gullies remaining trace of the leak can be seen, as if there was a crack in the ground and liquid flew out on the surface. Cryosubsurface processes on Mars can support the hypothesis of geochemical origin of water, which separates from the magma, and its primary source comes from the protoplanetary disk. The water separated from the magma migrates up to the surface and if the

  7. Observations of the north polar region of Mars from the Mars orbiter laser altimeter

    Science.gov (United States)

    Zuber, M. T.; Smith, D. E.; Solomon, S. C.; Abshire, J. B.; Afzal, R. S.; Aharonson, O.; Fishbaugh, K.; Ford, P. G.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Ivanov, A. B.; Johnson, C. L.; Muhleman, D. O.; Neumann, G. A.; Pettengill, G. H.; Phillips, R. J.; Sun, X.; Zwally, H. J.; Banerdt, W. B.; Duxbury, T. C.

    1998-01-01

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  8. The ExoMars 2016 Mission arriving at Mars

    Science.gov (United States)

    Svedhem, H.; Vago, J. L.

    2016-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and is scheduled to arrive at Mars on 19 October 2016. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. This presentation will cover a description of the 2016 mission, including the spacecraft

  9. A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars

    Science.gov (United States)

    Zou, Hong; Ye, Yu Guang; Wang, Jin Song; Nielsen, Erling; Cui, Jun; Wang, Xiao Dong

    2016-04-01

    A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars is introduced in this study. The neutral densities at 130 km can be derived from the ionospheric and atmospheric measurements of the Radio Science experiment on board Mars Global Surveyor (MGS). The derived neutral densities cover a large longitude range in northern high latitudes from summer to late autumn during 3 Martian years, which fills the gap of the previous observations for the upper atmosphere of Mars. The simulations of the Laboratoire de Météorologie Dynamique Mars global circulation model can be corrected with a simple linear equation to fit the neutral densities derived from the first MGS/RS (Radio Science) data sets (EDS1). The corrected simulations with the same correction parameters as for EDS1 match the derived neutral densities from two other MGS/RS data sets (EDS2 and EDS3) very well. The derived neutral density from EDS3 shows a dust storm effect, which is in accord with the Mars Express (MEX) Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars measurement. The neutral density derived from the MGS/RS measurements can be used to validate the Martian atmospheric models. The method presented in this study can be applied to other radio occultation measurements, such as the result of the Radio Science experiment on board MEX.

  10. Nitrogen on Mars: Insights from Curiosity

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Jackson, W. A.; Navarro-Gonzalez, Rafael; McKay, Chrisopher P.; Ming, W.; Archer, P. Douglas; Glavin, D. P.; Fairen, A. G.; Mahaffy, Paul R.

    2017-01-01

    Recent detection of nitrate on Mars indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars.

  11. Guidelines for the 2011 MARS exercise

    CERN Multimedia

    HR Department

    2011-01-01

    Full details of the Merit Appraisal and Recognition Scheme (MARS) are available via the HR Department’s homepage or directly on the Department’s MARS web page: https://admin-eguide.web.cern.ch/admin-eguide/mars/mars.asp You will find on these pages: MARS procedures, including the MARS timetable for proposals and decisions; regulations with links to the scheme’s statutory basis; a list of frequently asked questions; useful documents with links to relevant documentation, e.g. mandate of the Senior Staff Advisory Committee (SSAC); and related links and contacts. Tel. 70674 / 72728  

  12. Fertilization of Northern Hardwoods

    Science.gov (United States)

    R. Lea; D.G. Brockway

    1986-01-01

    Northern hardwoods grow over a considerable range of climatic and edaphic conditions and exhibit a wide range in productivity.Many northern hardwood forests are capable of high production relative to other forest types, but are often slow to reach maximum productivity because of low nutrient availability.Altering the patterns of biomass accumulation so that managers...

  13. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  14. Mars Analytical Microimager

    Science.gov (United States)

    Batory, Krzysztof J.; Govindjee; Andersen, Dale; Presley, John; Lucas, John M.; Sears, S. Kelly; Vali, Hojatollah

    Unambiguous detection of extraterrestrial nitrogenous hydrocarbon microbiology requires an instrument both to recognize potential biogenic specimens and to successfully discriminate them from geochemical settings. Such detection should ideally be in-situ and not jeopardize other experiments by altering samples. Taken individually most biomarkers are inconclusive. For example, since amino acids can be synthesized abiotically they are not always considered reliable biomarkers. An enantiomeric imbalance, which is characteristic of all terrestrial life, may be questioned because chirality can also be altered abiotically. However, current scientific understanding holds that aggregates of identical proteins or proteinaceous complexes, with their well-defined amino acid residue sequences, are indisputable biomarkers. Our paper describes the Mars Analytical Microimager, an instrument for the simultaneous imaging of generic autofluorescent biomarkers and overall morphology. Autofluorescence from ultraviolet to near-infrared is emitted by all known terrestrial biology, and often as consistent complex bands uncharacteristic of abiotic mineral luminescence. The MAM acquires morphology, and even sub-micron morphogenesis, at a 3-centimeter working distance with resolution approaching a laser scanning microscope. Luminescence is simultaneously collected via a 2.5-micron aperture, thereby permitting accurate correlation of multi-dimensional optical behavior with specimen morphology. A variable wavelength excitation source and photospectrometer serve to obtain steady-state and excitation spectra of biotic and luminescent abiotic sources. We believe this is the first time instrumentation for detecting hydrated or desiccated microbiology non-destructively in-situ has been demonstrated. We have obtained excellent preliminary detection of biota and inorganic matrix discrimination from terrestrial polar analogues, and perimetric morphology of individual magnetotactic bacteria. Proposed

  15. Pluto is the new Mars!

    Science.gov (United States)

    Moore, Jeffrey M.; Mckinnon, William B.; Spencer, John R.; Howard, Alan D.; Grundy, William M.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy

    2016-01-01

    Data from NASA's New Horizons encounter with Pluto in July 2015 revealed an astoundingly complex world. The surface seen on the encounter hemisphere ranged in age from ancient to recent. A vast craterless plain of slowly convecting solid nitrogen resides in a deep primordial impact basin, reminiscent of young enigmatic deposits in Mars' Hellas basin. Like Mars, regions of Pluto are dominated by valleys, though the Pluto valleys are thought to be carved by nitrogen glaciers. Pluto has fretted terrain and halo craters. Pluto is cut by tectonics of several different ages. Like Mars, vast tracts on Pluto are mantled by dust and volatiles. Just as on Mars, Pluto has landscapes that systematically vary with latitude due to past and present seasonal (and mega-seasonal) effects on two major volatiles. On Mars, those volatiles are H2O and CO2; on Pluto they are CH4 and N2. Like Mars, some landscapes on Pluto defy easy explanation. In the Plutonian arctic there is a region of large (approx. 40 km across) deep (approx. 3-4 km) pits that probably could not be formed by sublimation, or any other single process, alone. Equally bizarre is the Bladed terrain, which is composed of fields of often roughly aligned blade-like ridges covering the flanks and crests of broad regional swells. Topping the unexpected are two large mounds approximately150 km across, approx. 5-6 km high, with great central depressions at their summits. The central depressions are almost as deep as the mounds are tall. These mounds have many of the characteristics of volcanic mountains seen on Mars and elsewhere in the inner solar system. Hypotheses for the formation of these Plutonian mounds so far all have challenges, principally revolving around the need for H2O ice to support their relief and the difficulty imagining mechanisms that would mobilize H2O. From the perspective of one year after the encounter, our appreciation of the extent of Pluto's diversity and complexity is quite reminiscent of the

  16. The International Mars Data Base

    Science.gov (United States)

    Slavney, S.; Arvidson, R. E.; Eichentopf, K.; Natenzon, M.; Kirsanova, T.; Tarnopolsky, V.

    1996-03-01

    The next five years will witness the beginning of a period of unprecedented activity and interest in the exploration of Mars. Numerous missions are scheduled involving a broad array of spacecraft and instrumentation, and several important experiments will depend on international collaborations. They include Mars Global Surveyor and Pathfinder to be launched in 1996, along with the Russian Mars 96 Mission. Through the Mars Surveyor Program, a lander will descend to the south polar latitudes in 1999 while an orbiter circles the planet and acquires images and infrared data. These missions will produce a welcome deluge of new data, as well as a sharp increase in the demand for data from past Mars missions. One result of this increased activity will be the need for a rapid, efficient system for sharing new data with the scientific community after the proprietary periods have elapsed. With the boom in growth of the Internet, it is now possible to design a system for international access using ordinary laboratory and desktop computers. The advantage of using the World-Wide Web as the basis for such a system is that the infrastructure is already in place, as many users are already accustomed to using Web browsers to locate and transfer information.

  17. Space radiation protection: Destination Mars

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure.

  18. The So-Called 'Face on Mars'

    Science.gov (United States)

    2002-01-01

    (Released 13 April 2002) The Science The so called 'Face on Mars' can be seen slightly above center and to the right in this THEMIS visible image. This 3-km long knob, located near 10o N, 40o W (320o E), was first imaged by the Viking spacecraft in the 1970's and was seen by some to resemble a face carved into the rocks of Mars. Since that time the Mars Orbiter Camera on the Mars Global Surveyor spacecraft has provided detailed views of this hill that clearly show that it is a normal geologic feature with slopes and ridges carved by eons of wind and downslope motion due to gravity. A similar-size hill in Phoenix, Arizona resembles a camel lying on the ground, and Phoenicians whimsically refer to it as Camelback Mountain. Like the hills and knobs of Mars, however, Camelback Mountain was carved into its unusual shape by thousands of years of erosion. The THEMIS image provides a broad perspective of the landscape in this region, showing numerous knobs and hills that have been eroded into a remarkable array of different shapes. Many of these knobs, including the 'Face', have several flat ledges partway up the hill slopes. These ledges are made of more resistant layers of rock and are the last remnants of layers that once were continuous across this entire region. Erosion has completely removed these layers in most places, leaving behind only the small isolated hills and knobs seen today. Many of the hills and ridges in this area also show unusual deposits of material that occur preferentially on the cold, north-facing slopes. It has been suggested that these deposits were 'pasted' on the slopes, with the distinct, rounded boundary on their upslope edges being the highest remaining point of this pasted-on layer. In several locations, such as in the large knob directly south of the 'Face', these deposits occur at several different heights on the hill. This observation suggests the layer once draped the entire knob and has since been removed from all but the north

  19. The search for active release of volcanic gases on Mars

    Science.gov (United States)

    Khayat, Alain; Villanueva, Geronimo; Mumma, Michael; Tokunaga, Alan

    2015-11-01

    The study of planetary atmospheres by means of spectroscopy is important for understanding their origin and evolution. The presence of short-lived trace gases in the martian atmosphere would imply recent production, for example, by ongoing geologic activity. On Earth, sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) are the main sulfur-bearing gases released during volcanic outgassing. Carbonyl sulfide (OCS), also released from some volcanoes on Earth (e.g., Erebus and Nyiragongo), could be formed by reactions involving SO2 or H2S inside magma chambers. We carried out the first ground-based, semi-simultaneous, multi-band and multi-species search for such gases above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 13 May 2012 which corresponded to Mars’ mid Northern Spring and early Northern Summer seasons (Ls = 34-110°). The strong submillimeter rotational transitions of SO2, SO and H2S were targeted using the high-resolution heterodyne receiver (aka Barney) on the Caltech Submillimeter Observatory. We reached sensitivities sufficient to detect a volcanic release on Mars that is 4% of the SO2 released continuously from Kilauea volcano in Hawaii, or 5% that of the Masaya volcano in Nicaragua. The infrared search covered OCS in its combination band (ν2+ν3) at 3.42 μm at two successive Mars years, during Mars’ late Northern Spring and mid Northern Summer seasons, spanning Ls= 43º and Ls= 147º. The targeted volcanic districts were observed during the two intervals, 14 Dec. 2011 to 6 Jan. 2012 in the first year, and 30 May 2014 to 16 June 2014 in the second year, using the high resolution infrared spectrometer (CSHELL) on NASA’s Infrared Telescope Facility (NASA/IRTF). We will present our results and discuss their implications for current volcanic outgassing activity on the red planet. We gratefully acknowledge support from the NASA Planetary Astronomy Program under NASA

  20. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.

    1999-01-01

    The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first...... FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from...... the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic...

  1. SAR mapping of Burfellshraun: A terrestrial analog for recent volcanism on Mars

    DEFF Research Database (Denmark)

    Haack, Henning; Rossi, Matti; Dall, Jørgen

    2006-01-01

    Images of the Northern plain on Mars have revealed up to 1500 km long lava flows. The low density of impact craters on the lava flows implies that these lava flows were formed during the most recent volcanic activity on Mars. Estimates of the ages of the flows are controversial but generally...... between 10 and 100 Myr. Parts of the lava flows show smooth kilometer-sized plates that appear to have rafted on the moving lava flow. We have found a terrestrial analogue with similar features, the Burfellshraun lava flow in Northern Iceland. This is the only known lava flow on Earth where kilometer......-sized rafting plates are observed and constitute the dominating feature. Using a combination of airborne remote sensing data and field observations we have studied the emplacement and physical properties of the flow. On the basis of our observations we have reconstructed the sequence of events that led...

  2. Mars Integrated Propellant Production System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Mars In-Situ Propellant Production System (IMISPPS) is an end-to-end system that will produce rocket propellant on Mars from CO2 in the Martian...

  3. Overview of the Mars Reconnaissance Orbiter mission

    Science.gov (United States)

    Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.

    2002-01-01

    The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.

  4. Mars Integrated Propellant Production System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Mars In-Situ Propellant Production System (IMISPPS) is an end-to-end system that will produce rocket propellant on Mars from CO2 in the Martian...

  5. Lunar and Planetary Science XXXV: Mars Geophysics

    Science.gov (United States)

    2004-01-01

    The titles in this section include: 1) Distribution of Large Visible and Buried Impact Basins on Mars: Comparison with Free-Air Gravity, Crustal Thickness, and Magnetization Models; 2) The Early Thermal and Magnetic State of Terra Cimmeria, Southern Highlands of Mars; 3) Compatible Vector Components of the Magnetic Field of the Martian Crust; 4) Vertical Extrapolation of Mars Magnetic Potentials; 5) Rock Magnetic Fields Shield the Surface of Mars from Harmful Radiation; 6) Loading-induced Stresses near the Martian Hemispheric Dichotomy Boundary; 7) Growth of the Hemispheric Dichotomy and the Cessation of Plate Tectonics on Mars; 8) A Look at the Interior of Mars; 9) Uncertainties on Mars Interior Parameters Deduced from Orientation Parameters Using Different Radio-Links: Analytical Simulations; 10) Refinement of Phobos Ephemeris Using Mars Orbiter Laser Altimetry Radiometry.

  6. Mars Sample Transfer Testbed (MSTT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task will assess the requirements for a testbed to study the retrieval of a Mars sample cache from the Martian surface, or from a Mars caching rover, and...

  7. The spatial distribution of planetary ion fluxes near Mars observed by MAVEN

    Science.gov (United States)

    Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Bougher, S. W.; Curry, S.; Dong, C. F.; Dong, Y.; Eparvier, F.; Fang, X.; Fortier, K.; Hara, T.; Harada, Y.; Jakosky, B. M.; Lillis, R. J.; Livi, R.; Luhmann, J. G.; Ma, Y.; Modolo, R.; Seki, K.

    2015-11-01

    We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s-1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN).

  8. Mars 2020 Planetary Protection Status

    Science.gov (United States)

    Stricker, Moogega; Bernard, Douglas; Benardini, James Nick; Jones, Melissa

    2016-07-01

    The Mars 2020 (M2020) flight system consists of a cruise stage; an entry, descent and landing system (EDL); and a Radioisotope Thermoelectric Generator (RTG) powered roving science vehicle that will land on the surface of Mars. The M2020 Mission is designed to investigate key question related to the habitability of Mars and will conduct assessments that set the stage for potential future human exploration of Mars. Per its Program Level Requirements, the project will also acquire and cache samples of rock, regolith, and/or procedural "blank" samples for possible return to Earth by a subsequent mission. NASA has assigned the M2020 Mission as a Category V Restricted Earth Return due to the possible future return of collected samples. As indicated in NPR8020.12D, Section 5.3.3.2, the outbound leg of a Category V mission that could potentially return samples to Earth, Mars 2020 would be expected to meet the requirements of a Category IVb mission. The entire flight system is subject to microbial reduction requirements, with additional specific emphasis on the sample acquisition and caching. A bioburden accounting tool is being used to track the microbial population on the surfaces to ensure that the biological cleanliness requirements are met. Initial bioburden estimates based on MSL heritage allows M2020 to gauge more precisely how the bioburden is allocated throughout each hardware element. Mars 2020 has completed a Planetary Protection Plan with Planetary Implementation Plans at a mature draft form. Planetary protection sampling activities have commenced with the start of flight system fabrication and assembly. The status of the Planetary Protection activities will be reported.

  9. The H Corona of Mars

    Science.gov (United States)

    Chaffin, Michael Scott

    The atmosphere of every planet is surrounded by a tenuous cloud of hydrogen gas, referred to as a hydrogen corona. At Mars, a substantial fraction of the H present in the corona is moving fast enough to escape the planet's gravity, permanently removing H from the Martian atmosphere. Because this H is ultimately derived from lower atmospheric water, loss of H from Mars is capable of drying and oxidizing the planet over geologic time. Understanding the processes that supply the H corona and control its escape is therefore essential for a complete understanding of the climate history of Mars and for assessing its habitability. In this thesis, I present the most complete analysis of the H corona ever attempted, surveying eight years of data gathered by the ultraviolet spectrograph SPICAM on Mars Express. Using a coupled radiative transfer and physical density model, I interpret brightness measurements of the corona in terms of escape rates of H from the planet, uncovering an order-of-magnitude variability in the H escape rate never before detected. These variations are interpreted using a completely new photochemical model of the atmosphere, demonstrating that newly discovered high altitude water vapor layers are sufficient to produce the observed variation. Finally, I present first results of the SPICAM successor instrument IUVS, an imaging ultraviolet spectrograph carried by NASA's MAVEN spacecraft. IUVS measurements are producing the most complete dataset ever gathered for the Martian H corona, enabling supply and loss processes to be assessed in more complete detail than ever before. This dataset will allow present-day loss rates to be extrapolated into the past, determining the absolute amount of water Mars has lost to space over the course of its history. Planets the size of Mars may be common throughout the universe; the work of this thesis is one step toward assessing the habitability of such planets in general.

  10. Cultivando el mar

    Directory of Open Access Journals (Sweden)

    Ricardo Radulovich

    2006-01-01

    Full Text Available Las conocidas y crecientes limitaciones a la agricultura, pesca y disponibilidad de agua para riego tienen pocas soluciones viables y muy probablemente se acrecentarán con el cambio climático. Para contrarrestar estos y otros problemas, estamos desarrollando con y para pobladores costeros empobrecidos, unos sistemas productivos flotantes altamente innovativos, a mar abierto, en aguas protegidas de alto oleaje -comenzando en el Golfo de Nicoya, Costa Rica, que es un sitio representativo que cubre miles de km2-. Estos sistemas de propósito múltiple, y de multi-estratos, que hemos probado por 3 años y que describimos aquí, consisten de: hortalizas orgánicas u otros cultivos de alto valor, en macetas sobre isletas o jardineras flotantes, construidas con botellas plásticas recicladas y otros materiales de bajo costo; maricultura de poco insumo bajo el agua (peces, crustáceos, otros con cultivo de algas flotando en la superficie; producción de agua dulce para riego y otros usos por destilación solar pasiva y cosecha de agua de lluvia; pesca desde las estructuras flotantes; facilidades para recreación; y, todavía por explorar, producción alternativa de energía. Se considera aquí también una variedad de aspectos relacionados con el ambiente y la biodiversidad. Estos sistemas compuestos, únicos en el mundo a la fecha, tienen una productividad general alta al sumar la productividad de todo el año de cada uno de varios componentes eco-amigables y de bajo insumo, lo cual permite optimizar la rentabilidad en función ambiental. Esperamos que, una vez que estén validados, la implementación equitativa a escala de estos nuevos sistemas proveerá a los pobladores costeros, alrededor del mundo tropical y subtropical, oportunidades para derivar su ingreso a partir de esta generación de nueva riqueza, incrementándose así y ganando en seguridad la capacidad mundial de producción de alimentos y agua, practicándose a la vez un uso de los

  11. Europe goes to Mars - preparations are well under way

    Science.gov (United States)

    2001-04-01

    carefully selected site on Isidis Planitia, a plain just north of the equator near where the ancient, cratered southern highlands meet the younger, smooth northern lowlands. Beagle 2 will complete its mission in about six months. The Mars Express orbiter instruments will: * Image the entire surface at high resolution (10m/pixel) and selected areas at super resolution (2m/pixel) (HRSC instrument) * Produce a map of the mineral composition of the surface at 100m resolution (OMEGA instrument) * Map the composition of the atmosphere and determine its global circulation (PFS instrument) * Determine the structure of the sub-surface to a depth of a few kilometres (MARSIS instrument) * Determine the water vapour and ozone in the atmosphere (SPICAM instrument) * Determine the interaction of the atmosphere with the solar wind (ASPERA instrument and MaRS experiment) (see below for list of full instrument names, acronyms and Principal Investigators) The Beagle 2 lander will: * Determine the geology and the mineral and chemical composition of the landing site * Search for life signatures (exobiology) * Study the weather and climate Mars Express will provide unique investigations that will contribute to an understanding of many of the unknowns about Mars. Here are a few: * If Mars really was warm and wet during its early history, where did the water go? Some may have been lost to space and some may be buried underground. ASPERA will measure water loss to space and MARSIS is the only instrument planned for any mission with the capability of looking for water or ice down to a depth of a few kilometres. The presence of underground water would have a considerable impact on the prospects for future manned missions to the planet. * If there was water could there have been, or still be, life? Beagle 2 will scoop up soil and rock samples and analyse them there and then for some of the key chemical signatures of life. The results will be far more telling than anything yet found in Martian

  12. Periodic insolation variations on Mars.

    Science.gov (United States)

    Murray, B C; Ward, W R; Yeung, S C

    1973-05-11

    Previously unrecognized insolation variations on Mars are a consequence of periodic variations in eccentricity, first established by the theory of Brouwer and Van Woerkom (1950). Such annual insolation variations, characterized by both 95,000-year and 2,000,000-year periodicities, may actually be recorded in newly discovered layered deposits in the polar regions of Mars. An additional north-south variation in seasonal insolation, but not average annual insolation, exists with 51,000-year and 2,000,000-year periodicities.

  13. The chaotic obliquity of Mars

    Science.gov (United States)

    Touma, Jihad; Wisdom, Jack

    1993-01-01

    The discovery (by Laskar, 1989, 1990) that the evolution of the solar system is chaotic, made in a numerical integration of the averaged secular approximation of the equations of motions for the planets, was confirmed by Sussman and Wisdom (1992) by direct numerical integration of the whole solar system. This paper presents results of direct integrations of the rotation of Mars in the chaotically evolved planetary system, made using the same model as that used by Sussman and Wisdom. The numerical integration shows that the obliquity of Mars undergoes large chaotic variations, which occur as the system evolves in the chaotic zone associated with a secular spin-orbit resonance.

  14. Wet-based glaciation in Phlegra Montes, Mars.

    Science.gov (United States)

    Gallagher, Colman; Balme, Matt

    2016-04-01

    Eskers are sinuous landforms composed of sediments deposited from meltwaters in ice-contact glacial conduits. This presentation describes the first definitive identification of eskers on Mars still physically linked with their parent system (1), a Late Amazonian-age glacier (~150 Ma) in Phlegra Montes. Previously described Amazonian-age glaciers on Mars are generally considered to have been dry based, having moved by creep in the absence of subglacial water required for sliding, but our observations indicate significant sub-glacial meltwater routing. The confinement of the Phlegra Montes glacial system to a regionally extensive graben is evidence that the esker formed due to sub-glacial melting in response to an elevated, but spatially restricted, geothermal heat flux rather than climate-induced warming. Now, however, new observations reveal the presence of many assemblages of glacial abrasion forms and associated channels that could be evidence of more widespread wet-based glaciation in Phlegra Montes, including the collapse of several distinct ice domes. This landform assemblage has not been described in other glaciated, mid-latitude regions of the martian northern hemisphere. Moreover, Phlegra Montes are flanked by lowlands displaying evidence of extensive volcanism, including contact between plains lava and piedmont glacial ice. These observations provide a rationale for investigating non-climatic forcing of glacial melting and associated landscape development on Mars, and can build on insights from Earth into the importance of geothermally-induced destabilisation of glaciers as a key amplifier of climate change. (1) Gallagher, C. and Balme, M. (2015). Eskers in a complete, wet-based glacial system in the Phlegra Montes region, Mars, Earth and Planetary Science Letters, 431, 96-109.

  15. Computer-generated global map of valley networks on Mars

    Science.gov (United States)

    Luo, Wei; Stepinski, T. F.

    2009-11-01

    The presence of valley networks (VN) on Mars suggests that early Mars was warmer and wetter than present. However, detailed geomorphic analyses of individual networks have not led to a consensus regarding their origin. An additional line of evidence can be provided by the global pattern of dissection on Mars, but the currently available global map of VN, compiled from Viking images, is incomplete and outdated. We created an updated map of VN by using a computer algorithm that parses topographic data and recognizes valleys by their morphologic signature. This computer-generated map was visually inspected and edited to produce the final updated map of VN. The new map shows an increase in total VN length by a factor of 2.3. A global map of dissection density, D, derived from the new VN map, shows that the most highly dissected region forms a belt located between the equator and mid-southern latitudes. The most prominent regions of high values of D are the northern Terra Cimmeria and the Margaritifer Terra where D reaches the value of 0.12 km-1 over extended areas. The average value of D is 0.062 km-1, only 2.6 times lower than the terrestrial value of D as measured in the same fashion. These relatively high values of dissection density over extensive regions of the planet point toward precipitation-fed runoff erosion as the primary mechanism of valley formation. Assuming a warm and wet early Mars, peculiarity of the global pattern of dissection is interpreted in the terms of climate controlling factors influenced by the topographic dichotomy.

  16. SPRINGTIME ON MARS: HUBBLE'S BEST VIEW OF THE RED PLANET

    Science.gov (United States)

    2002-01-01

    This NASA Hubble Space Telescope view of the planet Mars is the clearest picture ever taken from Earth, surpassed only by close-up shots sent back by visiting space probes. The picture was taken on February 25, 1995, when Mars was at a distance of approximately 65 million miles (103 million km) from Earth. Because it is spring in Mars' northern hemisphere, much of the carbon dioxide frost around the permanent water-ice cap has sublimated, and the cap has receded to a core of solid water-ice several hundred miles across. Towering 16 miles (25 km) above the surrounding plains, volcano Ascraeus Mons pokes above the cloud deck near the western or limb. This extinct volcano, measuring 250 miles (402 km) across, was discovered in the early 1970s by Mariner 9 spacecraft. Other key geologic features include (lower left) the Valles Marineris, an immense rift valley the length of the continental United States. Near the center of the disk lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom), appears white due to clouds or frost. Seasonal winds carry dust to form striking linear features reminiscent of the legendary martian 'canals.' Many of these 'wind streaks' emanate from the bowl of these craters where dark coarse sand is swept out by winds. Hubble resolves several dozen impact craters down to 30-mile diameter. The dark areas, once misinterpreted as regions of vegetation by several early Mars watchers, are really areas of coarse sand that is less reflective than the finer, lighter dust. Seasonal changes in the surface appearance occur as winds move the dust and sand around. This picture was taken with Hubble's Wide Field Planetary Camera 2 in PC mode. The pictures were map-projected onto a sphere for accurate registration and perspective. Credit: Philip James (University of Toledo), Steven Lee (University of Colorado), NASA

  17. GRS constraints on the character of possible ancient oceans on Mars: consistencies with Earth analogues

    OpenAIRE

    James M. Dohm; Baker, Victor R.; Boynton, William V.; González Fairén, Alberto; Ferris, Justin C.; Finch, Michael; Furfaro, Roberto; Hare, Trent M.; Janes, Daniel M.; Kargel, Jeffrey S.; Karunatillake, Suniti; Keller, John; Kerry, Kris; Kim, Kyeong; Komatsu, Goro

    2007-01-01

    The Gamma Ray Spectrometer (GRS) has revealed elemental distributions of potassium (K), thorium (Th), and iron (Fe) on Mars that require fractionation of K (and possibly the others) consistent with aqueous weathering, transport, sorting, and deposition in the northern plains basins, as well as first-order geomorphological boundaries identified as putative shorelines. The elemental abundances occur in patterns consistent with deposition of weathered materials (salts and clastic minerals) and w...

  18. Advanced Stellar Compass - Alenia Mars Express

    DEFF Research Database (Denmark)

    Kilsgaard, Søren; Betto, Maurizio; Jørgensen, John Leif;

    1998-01-01

    This document, submitted in reply to an Alenia R.f.P., is a proposal to implement the Advanced Stellar Compass (ASC) in the Mars Express mission.The Mars Express is an ESA dedicated mission to Mars scientific investigation.The ASC is a very advanced instrument designed by the Space Instrumentation...

  19. Exploring Mars. Grades 5-12.

    Science.gov (United States)

    Treiman, Allan; And Others

    This learning guide provides detailed information about exploring the planet Mars. The guide covers a variety of topics related to space exploration including: (1) the reasons for exploring Mars; (2) a history of the exploration of and thinking about Mars beginning with the Babylonians and continuing through the Viking missions; (3) the status of…

  20. Mission design options for human Mars missions

    Science.gov (United States)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  1. Martian Polar Region Impact Craters: Geometric Properties From Mars Orbiter Laser Altimeter (MOLA) Observations

    Science.gov (United States)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.; Matias, A.

    1998-01-01

    The Mars Orbiter Laser Altimeter (MOLA) instrument onboard the Mars Global Surveyor (MGS) spacecraft has so far observed approximately 100 impact landforms in the north polar latitudes (>60 degrees N) of Mars. Correlation of the topography with Viking Orbiter images indicate that many of these are near-center profiles, and for some of the most northern craters, multiple data passes have been acquired. The northern high latitudes of Mars may contain substantial ground ice and be topped with seasonal frost (largely CO2 with some water), forming each winter. We have analyzed various diagnostic crater topologic parameters for this high-latitude crater population with the objective of characterizing impact features in north polar terrains, and we explore whether there is evidence of interaction with ground ice, frost, dune movement, or other polar processes. We find that there are substantial topographic variations from the characteristics of midlatitude craters in the polar craters that are not readily apparent from prior images. The transition from small simple craters to large complex craters is not well defined, as was observed in the midlatitude MOLA data (transition at 7-8 km). Additionally, there appear to be additional topographic complexities such as anomalously large central structures in many polar latitude impact features. It is not yet clear if these are due to target-induced differences in the formation of the crater or post-formation modifications from polar processes.

  2. Diet composition of Bathylagus euryops (Osmeriformes: Bathylagidae) along the northern Mid-Atlantic Ridge

    Science.gov (United States)

    Sweetman, C. J.; Sutton, T. T.; Vecchione, M.; Latour, R. J.

    2014-10-01

    The northern Mid-Atlantic Ridge, from Iceland to the Azores (MAR), is the largest topographical feature in the Atlantic Ocean. Despite its size, few studies have described dietary patterns of pelagic fishes along the MAR. MAR-ECO, a Census of Marine Life field project, aimed to describe the food web structure of abundant fish species along the ridge through a series of research expeditions to the MAR. Among the midwater fishes sampled during the MAR-ECO project, Bathylagus euryops (Osmeriformes: Bathylagidae) was the biomass-dominant pelagic species and ranked third in total abundance. In this paper, we describe the dietary composition of B. euryops along the MAR. Overall, copepods represented the dominant prey group consumed by B. euryops. Multivariate analyses, including a cluster analysis and a canonical correspondence analysis, revealed that fish size significantly influenced the diet of B. euryops with ostracods representing the most important prey group at small sizes (shrimp and calanoid copepods becoming more important with increasing fish size. Due to the high abundance and biomass observed along the MAR combined with its role as a link for energy transfer between zooplankton and higher trophic level predators, B. euryops appears to be an ecologically important species in the oceanic food web of the North Atlantic Ocean.

  3. Study of the Total Electron Content in Mars ionosphere from MARSIS data set

    Science.gov (United States)

    Bergeot, Nicolas; Witasse, Olivier; Kofman, Wlodek; Grima, Cyril; Mouginot, Jeremie; Peter, Kerstin; Pätzold, Martin; Dehant, Véronique

    2016-04-01

    Centimeter level accuracy on the signal delay will be required on X-band radio link for future Mars landers such as InSIGHT, aiming at better determining the interior structure of Mars. One of the main error sources in the estimated signal delay is directly linked to the Total Electron Content (TEC) values at Earth and Mars ionosphere level. While the Earth ionosphere is now well modeled and monitored at regional and global scales, this is not the case concerning the Mars' upper atmosphere. The present paper aims at establishing the basis to model the climatological behavior of the TEC on a global scale in the Mars' ionosphere. For that we analyzed ˜8.5 years of data (mid-2005 to 2014) of the vertical Total Electron Content (vTEC) expressed in TEC units (1 TECu = 1016e-.m-2) from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar. Our study takes advantage of the double data set of EUV solar index and Mars vTEC data to develop an empirical Model of Mars Ionosphere (MoMo). The finality of this model is to predict the vTEC at a given latitude, solar zenith angle and season taking only F10.7P solar index as input. To minimize the differences during the least-square adjustment between the modeled and observed vTEC, we considered (1) a 4th-order polynomial function to describe the vTEC diurnal behavior (2) a discretization with respect to Mars seasons (depending on Ls) and (3) two latitudinal sectors (North and South hemispheres). The mean of the differences between the model and the observations is 0.00±0.07 TECu with an error of the model around 0.1 TECu depending on the Solar Zenith Angle (SZA), season and hemisphere of interest (e.g. rms 0.12 TECu for SZA equal to 50°±5° in the Northern hemisphere during the spring season). Additionally, comparison with 250 Mars Express radio occultation data shows differences with MoMo predictions of 0.02±0.06 TECu for solar zenith angles below 50 degrees. Using the model we (1) highlighted

  4. Halophilic life on Mars ?

    Science.gov (United States)

    Stan-Lotter, Helga; Fendrihan, Sergiu; Dornmayr-Pfaffenhuemer, Marion; Holzinger, Anita; Polacsek, Tatjana K.; Legat, Andrea; Grösbacher, Michael; Weigl, Andreas

    2010-05-01

    Background: The search for extraterrestrial life has been declared as a goal for the 21th century by several space agencies. Potential candidates are microorganisms on or in the surface of moons and planets, such as Mars. Extremely halophilic archaea (haloarchaea) are of astrobiological interest since viable strains have been isolated from million years old salt deposits (1) and halite has been found in Martian meteorites and in surface pools. Therefore, haloarchaeal responses to simulated and real space conditions were explored. Immuno assays for a potential Life Marker Chip experiment were developed with antisera against the universal enzyme ATP synthase. Methods: The focus of these studies was on the application of fluorescent probes since they provide strong signals, and detection devices are suitable for miniaturization. Viability of haloarchaeal strains (Halococcus dombrowskii and Halobacterium salinarum NRC-1) was probed with the LIVE/DEAD BacLight™ kit and the BacLight™ Bacterial Membrane Potential kit. Cyclobutane pyrimidine dimers (CPD) in the DNA, following exposure to simulated and real space conditions (UV irradiation from 200 - 400 nm; 18 months exposure on the International Space Station [ISS] within the ADAPT experiment by Dr. P. Rettberg), were detected with fluorescent Alexa-Fluor-488-coupled antibodies. Immuno assays with antisera against the A-ATPase subunits from Halorubrum saccharovorum were carried out with the highly sensitive Immun-Star ™ WesternC ™ chemiluminescent kit (Bio-Rad). Results: Using the LIVE/DEAD BacLight™ kit, the D37 (dose of 37% survival) for Hcc. dombrowskii and Hbt. salinarum NRC-1, following exposure to UV (200-400 nm) was about 400 kJ/m2, when cells were embedded in halite and about 1 kJ/m2, when cells were in liquid cultures. Fluorescent staining indicated a slightly higher cellular activity than that which was derived from the determination of colony forming units. Assessment of viability with the Bac

  5. Mars Science Laboratory Engineering Cameras

    Science.gov (United States)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  6. Global Geomorphometric Map of Mars

    Science.gov (United States)

    Jasiewicz, J.; Stepinski, T. F.

    2012-03-01

    A global geomorphometric map of Mars is generated from DEM using a novel computer algorithm. This map provides a new valuable tool for terrain analysis and objective quantification of surface units. Auto-mapping of surface units is a future application.

  7. Handling S/MAR vectors.

    Science.gov (United States)

    Hagedorn, Claudia; Baiker, Armin; Postberg, Jan; Ehrhardt, Anja; Lipps, Hans J

    2012-06-01

    Nonviral episomal vectors represent attractive alternatives to currently used virus-based expression systems. In the late 1990s, it was shown that a plasmid containing an expression cassette linked to a scaffold/matrix attached region (S/MAR) replicates as a low copy number episome in all cell lines tested, as well as primary cells, and can be used for the genetic modification of higher animals. Once established in the cell, the S/MAR vector replicates early during S-phase and, in the absence of selection, is stably retained in the cells for an unlimited period of time. This vector can therefore be regarded as a minimal model system for studying the epigenetic regulation of replication and functional nuclear architecture. In theory, this construct represents an almost "ideal" expression system for gene therapy. In practice, S/MAR-based vectors stably modify mammalian cells with efficiencies far below those of virus-based constructs. Consequently, they have not yet found application in gene therapy trials. Furthermore, S/MAR vector systems are not trivial to handle and several critical technical issues have to be considered when modifying these vectors for various applications.

  8. Northern Dimension: Participant Strategies

    Directory of Open Access Journals (Sweden)

    Busygina Irina

    2009-03-01

    Full Text Available This article is devoted to the “Northern Dimension” initiative of the EU which also includes North-West Russia, Norway and Iceland. It is noted that the “Northern Dimension” in the theoretical perspective can be considered as part of strategic multi-level interactions between member-states of the EU and Russia. On this basis, the authors analyze implications and effects of the strategic interdependence of all the EU-Russia relation levels.

  9. Mars Radar Opens a Planet's Third Dimension

    Science.gov (United States)

    2008-01-01

    Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders. The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.

  10. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  11. Constructing an Educational Mars Simulation

    Science.gov (United States)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the

  12. Meteorological observations on Martian surface : met-packages of Mars-96 Small Stations and Penetrators

    Science.gov (United States)

    Harri, A.-M.; Linkin, V.; Polkko, J.; Marov, M.; Pommereau, J.-P.; Lipatov, A.; Siili, T.; Manuilov, K.; Lebedev, V.; Lehto, A.; Pellinen, R.; Pirjola, R.; Carpentier, T.; Malique, C.; Makarov, V.; Khloustova, L.; Esposito, L.; Maki, J.; Lawrence, G.; Lystsev, V.

    1998-02-01

    The scientific objectives of a meterological experiment on the Martian surface are defined, and the meteorological equipment of the landing elements of the Mars-96 mission are described with emphasis on the applicability for re-use in forthcoming Mars missions. The general strategy for atmospheric surface observations is discussed. Meteorological surface observations are of utmost value in studying the Martian atmosphere. The climatological cycles and atmospheric circulations, as well as the boundary layer phenomena can be understood thoroughly only, if the contribution of in situ surface measurements are amalgamated with the remote observations. The Mars-96 mission had an ambitious goal of deploying four versatile payloads at four Northern hemispheric sites. The observations of pressure, temperature, wind, atmospheric optical thickness and humidity, as well as pressure and temperature measurements during the atmospheric descent were included in the meteorology experiment. Even though the Mars-96 mission was unsuccessful, the objectives and implementation of the meteorology experiment are applicable to any forthcoming landing mission to Mars. This applies both to a mission having a number of observation sites spread all over the surface of Mars, and to a single lander or rover. The main operational objective of this meteorological experiment is to provide a regular time series of the meteorological parameters with accelerated measurement campaigns during dawn and dusk. Such a data set would substantially improve our understanding of the atmospheric structure, dynamics, climatological cycles, and the atmosphere-surface interactions. The implementation of the meteorology instrument features advanced sensor technology and flexible system design. The application on the Mars-96 landing elements was, however, severely constrained by the limited power supply. The usefulness of the system can be substantially enhanced by modest additional resources and with few or no

  13. The Mars Color Imager (MARCI) on the Mars Climate Orbiter

    Science.gov (United States)

    Malin, M. C.; Calvin, W.; Clancy, R. T.; Haberle, R. M.; James, P. B.; Lee, S. W.; Thomas, P. C.; Caplinger, M. A.

    2001-08-01

    The Mars Color Imager, or MARCI, experiment on the Mars Climate Orbiter (MCO) consists of two cameras with unique optics and identical focal plane assemblies (FPAs), Data Acquisition System (DAS) electronics, and power supplies. Each camera is characterized by small physical size and mass (~6 × 6 × 12 cm, including baffle; case downlink data rate. Under better downlink conditions the WA will provide kilometer-scale global maps of atmospheric phenomena such as clouds, hazes, dust storms, and the polar hood. Limb observations will provide additional detail on atmospheric structure at 13 scale-height resolution. The Medium Angle (MA) camera is designed to study selected areas of Mars at regional scale. From 400 km altitude its 6° FOV, which covers ~40 km at 40 m/pixel, will permit all locations on the planet except the poles to be accessible for image acquisitions every two mapping cycles (roughly 52 sols). Eight spectral channels between 425 and 1000 nm provide the ability to discriminate both atmospheric and surface features on the basis of composition. The primary science objectives of MARCI are to (1) observe Martian atmospheric processes at synoptic scales and mesoscales, (2) study details of the interaction of the atmosphere with the surface at a variety of scales in both space and time, and (3) examine surface features characteristic of the evolution of the Martian climate over time. MARCI will directly address two of the three high-level goals of the Mars Surveyor Program: Climate and Resources. Life, the third goal, will be addressed indirectly through the environmental factors associated with the other two goals.

  14. Emirates Mars Mission (EMM) Overview

    Science.gov (United States)

    Sharaf, Omran; Amiri, Sarah; AlMheiri, Suhail; Alrais, Adnan; Wali, Mohammad; AlShamsi, Zakareyya; AlQasim, Ibrahim; AlHarmoodi, Khuloud; AlTeneiji, Nour; Almatroushi, Hessa; AlShamsi, Maryam; AlAwadhi, Mohsen; McGrath, Michael; Withnell, Pete; Ferrington, Nicolas; Reed, Heather; Landin, Brett; Ryan, Sean; Pramann, Brian

    2017-04-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Arab Islamic mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit that has a periapsis altitude of 20,000 km, an apoapsis altitude of 43,000 km, and an inclination of 25 degrees. The mission is designed to (1) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (2) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (3) characterize the spatial structure and variability of key constituents in the Martian exosphere. These objectives will be met by four investigations with diurnal variability on sub-seasonal timescales which are (1) determining the three-dimensional thermal state of the lower atmosphere, (2) determining the geographic and diurnal distribution of key constituents in the lower atmosphere, (3) determining the abundance and spatial variability of key neutral species in the thermosphere, and (4) determining the three-dimensional structure and variability of key species in the exosphere. EMM will collect these information about the Mars atmospheric circulation and connections through a combination of three distinct instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths and they are the Emirates eXploration Imager (EXI), the Emirates Mars InfraRed Spectrometer (EMIRS), and the EMM Mars Ultraviolet Spectrometer (EMUS). EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), and Preliminary Design Review (PDR) phases. The mission is led by Emiratis from Mohammed

  15. Curation of Samples from Mars

    Science.gov (United States)

    Lindstrom, D.; Allen, C.

    One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. We have been conducting feasibility studies and developing designs for a facility that would be at least as capable as current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels exceeding those of the cleanest electronics manufacturing labs. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samp les require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation

  16. A Little Vacation on Mars: Mars Simulation Microbial Challenge Experiments

    Science.gov (United States)

    Boston, P.; Todd, P.; Van De Camp, J.; Northup, D.; Spilde, M.

    2008-06-01

    Communities of microbial organisms isolated from a variety of extreme environments were subjected to 1 to 5 weeks of simulated Martian environmental conditions using the Mars Environment Simulation Chamber at the Techshot, Inc. facility in Greenville, Indiana. The goal of the overall experiment program was to assess survival of test Earth organisms under Mars full spectrum sunlight, low-latitude daily temperature profile and various Mars-atmosphere pressures (~50 mbar to 500 mbar, 100% CO2) and low moisture content. Organisms surviving after 5 weeks at 100 mbar included those from gypsum surface fracture communities in a Permian aged evaporite basin, desert varnish on andesite lavas around a manganese mine, and iron and manganese oxidizing organisms isolated from two caves in Mew Mexico. Phylogenetic DNA analysis revealed strains of cyanobacteria, bacterial genera (present in all surviving communities) Asticacaulis, Achromobacter, Comamonas, Pantoea, Verrucomicrobium, Bacillus, Gemmatimonas, Actinomyces, and others. At least one microcolonial fungal strain from a desert varnish community and at least one strain from Utah survived simulations. Strains related to the unusual cave bacterial group Bacteroidetes are present in survivor communities that resist isolation into pure culture implying that their consortial relationships may be critical to their survival.

  17. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  18. Geologic history of the polar regions of Mars based on Mars Global survey data. I. Noachian and Hesperian Periods

    Science.gov (United States)

    Tanaka, K.L.; Kolb, E.J.

    2001-01-01

    During the Noachian Period, the south polar region of Mars underwent intense cratering, construction of three groups of volcanoes, widespread contractional deformation, resurfacing of low areas, and local dissection of valley networks; no evidence for polar deposits, ice sheets, or glaciation is recognized. South polar Hesperian geology is broadly characterized by waning impacts, volcanism, and tectonism. Emplacement of the polar Dorsa Argentea Formation (DAF) occurred during the Hesperian Period. Mars Orbiter Laser Altimeter topographic data and Mars Orbiter Camera images elucidate stratigraphic, morphologic, and topographic relations, permitting the dividing of the DAF into eight members, which surround and underlie about half of the Amazonian south polar layered deposits. The lobate fronts and lack of typical volcanic-flow morphology of the six plains units indicate that they may be made up of debris flows. We think that these flows, tens of meters to 200 m thick, may have originated by the discharge of huge volumes of slurry fluidized by ground water or liquid CO2, perhaps triggered by local impacts, igneous activity, or basal melting beneath polar deposits. The cavi and rugged members include irregular depressions that penetrate the subsurface; some of the pits have raised rims. The depressions may have formed by collapse due to expulsion of subsurface material in which local explosive activity built up the raised rims. Further, smaller eruptions of volatile-rich material may have resulted in narrow, sinuous channel deposits within aggrading fine-grained unconsolidated material perhaps produced by gaseous discharge of subsurface volatiles; preferential erosion of the latter material could have produced the Dorsa Argentea-type ginuous ridges associated mainly with the DAF. Alternatively, the ridges may be eskers, but the lack of associated glacial and fluvial morphologies casts doubt on this interpretation. The knobby, degraded materials forming Scandia Colles

  19. Evolution of the rheological structure of Mars

    Science.gov (United States)

    Azuma, Shintaro; Katayama, Ikuo

    2017-01-01

    The evolution of Mars has been greatly influenced by temporal changes in its rheological structure, which may explain the difference in tectonics between Mars and Earth. Some previous studies have shown the rheological structures of Mars calculated from the flow law of rocks and the predicted thermal structure. However, the Peierls mechanism, which is the dominant deformation mechanism at relatively low temperature, and the evolution of water reservoirs on Mars were not considered in such studies. In this paper, we apply the Peierls mechanism to refine the rheological structure of Mars to show a new history of the planet that considers the most recent reports on its evolution of water reservoirs. Considering the Peierls creep and the evolution of water reservoirs, we attempt to explain why the tectonics of Mars is inactive compared with that of Earth. On early Mars, the lithospheric thickness inferred from the brittle-ductile transition was small, and the lithospheric strength was low ( 200-300 MPa) under wet conditions at 4 Gya. This suggests that plate boundaries could have developed on the early "wet" Mars, which is a prerequisite for the operation of plate tectonics. Our results also imply that the lithospheric strength had significantly increased in the Noachian owing to water loss. Therefore, plate tectonics may have ceased or could no longer be initiated on Mars. At the least, the tectonic style of Mars would have dramatically changed during the Noachian.[Figure not available: see fulltext.

  20. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  1. Mars and the Mind of Don

    Science.gov (United States)

    Solomon, S. C.

    2002-12-01

    Among the many interests of Don Turcotte have been the terrestrial planets, both as individual bodies and as test beds for generalizations on the processes that have affected the form, evolution, and interior dynamics of Earth-like planets. Over a span of more than 20 years, Turcotte and his collaborators have contributed many insights into the surface evolution and mantle dynamics of Mars on topics ranging from the nature of support of long-wavelength topography, the origin of the Tharsis rise, the internal thermal evolution and its effect on topography and lithospheric stress, and the history of outgassing. A summary of recent findings concerning early Martian evolution permits Turcotte's contributions to be placed within the context of current understanding. Core-mantle differentiation occurred within 10-15 My of the start of solar system evolution, on the basis of isotope systematics in Martian meteorites. A magnetic dynamo was active in the early Noachian but apparently ceased before the end of heavy bombardment. Crustal formation was largely complete by the earliest Noachian, on the basis of the density of both well-preserved and largely buried impact structures. Gravity-topography admittances for Noachian terrain suggests that the general south-to-north thinning of the crust may have been the result of lower crustal flow, but rapid cooling of the crust is indicated by the preservation of early Noachian relief and large crustal magnetization anomalies. The onset of the Tharsis province as a site of voluminous magmatism and concentrated deformation likely postdated the establishment of the crustal thickness dichotomy, but much of the magmatism occurred prior to the formation of late Noachian valley networks. Extensive resurfacing of the northern hemisphere occurred in the Noachian, on the basis of the detection of large impact structures superposed on older filled basins. Extensive evidence for water-surface interactions during this period supports the view

  2. Volume of Valley Networks on Mars and Its Hydrologic Implications

    Science.gov (United States)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.

    2015-12-01

    estimated to be ~7.1×1017 m3. Because of the coarse resolution of MOLA data, this is a conservative lower bound. Comparing with the hypothesized northern ocean volume 2.3×1016 m3 estimated by Carr and Head (2003), our estimate of water volume suggests and confirms an active hydrologic cycle for early Mars. Further hydrologic analysis will improve the estimate accuracy.

  3. Giant Icebergs and Biological Productivity on Early Mars

    Science.gov (United States)

    Uceda, E.; Fairen, A. G.; Woodworth-Lynas, C.

    2016-12-01

    We have previously presented evidence for furrows, dump structures and chains of craters that we interpret as indication for giant iceberg transport and grounding on very cold oceans on early Mars, both in the northern plains and in the Hellas basin. Structures include: 1. Furrows: The furrows are located in elevated areas or on local topographic highs, particularly on the Hellas basin. We interpret these features in terms of iceberg rafting and grounding. 2. Chains of craters: High-resolution images of Utopia and Isidis Basins reveal chains of crater-like structures several hundred meters wide and 1 to 5 km long. 3. Dump structures: Dark boulder clusters are revealed at large scales by their slightly darker tonality with respect to the surrounding terrain. These clusters have sizes ranging from several hundred meters to 1-2 km. On Earth's oceans, giant icebergs release melting water containing nanoparticulate iron and other micronutrients, which support biological metabolism and growth to the near-coastal euphotic ecosystems, many of which are iron limited. This iron limitation of primary producers has been documented in large regions of the Earth's oceans, most notably in polar areas proximal to significant glacial activity, and is counterbalanced by the substantial enrichment of terrigenous material supplied by icebergs. The biological productivity extends hundreds of kilometres from the giant icebergs, and persists for over one month after the iceberg passes. Here we propose that giant iceberg activity on early Mars could have promoted a similar enhancing of biological productivity on the planet's oceans. The identification of specific biosignatures in icebergs trails on Earth could give clues as to what kind of biosignatures could be expected on the ancient Mars ocean floors, and where to look for them. In particular, assuming that life existed on Mars coeval to glacial activity, enhanced concentrations of organic carbon could be anticipated near giant iceberg

  4. Degradation of Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Grant, J. A.; Wilson, S. A.; Cohen, B. A.; Golombek, M. P.; Geissler, P. E.; Sullivan, R. J.

    2007-12-01

    Victoria crater (2.05N, 354.51E) is ~750 m in diameter and the largest crater on Mars observed in situ. The Mars Exploration Rover Opportunity traversed NW to SE across a broad annulus dominated by dark sand that at least partially surrounds the crater before navigating the northern crater rim. Rover observations of the crater and ejecta deposits are complemented by images with 26-52 cm/pixel scales from the High Resolution Imaging Science Experiment (HiRISE) on Mars Reconnaissance Orbiter and enable assessment of degradation state. The present depth/diameter ratio for Victoria is 0.1, less than the 0.2 expected for a pristine primary impact structure. Together with the eroded, serrated rim, this implies an originally smaller crater diameter and/or considerable infilling consistent with occurrence of a large dune field and few exposed rocks on the crater floor. The height and width of the raised rim is generally 4-5 m and 150-225 m, respectively, less than the 30 m and 500-600 m, respectively, expected for a pristine 750 m diameter crater. Ejecta thicknesses around the rim were derived using rover-based and HiRISE images and yield consistent estimates averaging ~3 m. The serrated rim plan creates a series of promontories extending up to 50 m into the crater and generally fronted by 30-60 degree slopes that are locally vertical and are separated by bays whose floors typically slope 15-25 degrees. A crater originally on order of 600-650 m in diameter and subsequently enlarged by mass wasting and aeolian erosion may yield a structure resembling Victoria today. The steep expression of the promontories and local outcroppings of rocks in the ejecta blanket points to some ongoing mass wasting, but the relative paucity of associated flanking talus indicates derived blocks of sulfate sandstone are not resistant to saltating sand and are rapidly broken down by the wind or are completely covered/filled in by aeolian drift. At Cape St. Vincent, the promontory appears undercut

  5. Photovoltaic Cell Operation on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  6. CMEs at Earth and Mars

    Science.gov (United States)

    Falkenberg, T. V.; Vennerstrom, S.; Taktakishvili, A.; Pulkkinen, A.; Brain, D. A.; Delory, G. T.; Mitchell, D.

    2010-12-01

    We perform a survey of the longitudinal extent and general nature of fast Coronal Mass Ejections (CMEs) identifiable at both Mars and Earth and use the ENLIL Magneto-Hydro-Dynamic model to replicate data for the CMEs at both planets. We have chosen 18 fast CMEs with initial velocities, according to the SOHO/LASCO catalogue, between 1200 and 2700 km/s in the period 2001-2003. CME arrival is identified at Earth by sharp increases in velocity, density and magnetic field strength in data compiled from the ACE,WIND and Geotail spacecraft, while CME arrival at Mars is identified by a large increase in magnetic field strength and by increases in the background countrate of the Electron Reflectometer (ER) instrument on Mars Global Surveyor (MGS). The ER backgrounds are used to determine the presence of Solar Energetic Particles related to fast CMEs. We run ENLIL using two different sets of input parameters, both estimated from SOHO/LASCO images, but one set is estimated manually and one set is estimated using an automated method. Specific parameters of interest are arrival time, longitudinal span, and propagation direction of the CMEs. At Earth the velocity, density and magnetic field strength are compared to Omni data, while at Mars the solar wind dynamic pressure is compared to an upstream pressure proxy estimated from magnetic field data from MGS. A qualitative estimate of the usefulness of ENLIL in CME modeling will be given, as well as a comparison of the effectiveness of the two methods used to find input parameters for the model.

  7. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  8. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  9. Medical Archive Recording System (MARS

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Tajvidi

    2007-08-01

    Full Text Available In this talk, one of the most efficient, and reliable integrated tools for CD/DVD production workflow, called Medical Archive Recording System (MARS by ETIAM Company, France, which is a leader in multimedia connectivity for healthcare in Europe, is going to be introduced. "nThis tool is used to record all patient studies, route the studies to printers and PACS automatically, print key images and associated reports and log all study production for automated post processing/archiving. Its benefits vary from multi-departmental system to highly customizability, IHE compliancy, high productivity, inclusion of workflow manager and web interface."nAn automated user-friendly DICOM viewer is in-cluded in this tool, which is used to display reports and key image. It also allows comparing several stu-dies on several discs."nThe viewer supports all DICOM objects including compressed images such as JPEG, JPEG 2000, RLE etc. and video added-value non-image DICOM ob-jects."nThe ETIAM MARS is offered in two versions: MARS 15d for medium productions and MARS 20d for medium to large productions. Some of the new features that are added are supports for Windows Vista, support of new DICOM objects (enhanced CT, MR, XA, Encapsulated PDF ... IHE PDI update, creation of object keys for key images; importing non-standard reports form files and many other features."nThe tool enables users to create, verify and index CDs and DVDs by simply sending studies from any DICOM node.

  10. Magnetic Signatures of Impact Fractured Rocks from Sierra Madera, Texas, USA - Implications to Magnetic Anomalies on Mars

    Science.gov (United States)

    Adachi, T.; Kletetschka, G.; Wasilewski, P. J.; Mikula, V.

    2007-05-01

    Mars Express Orbiter (sounding radar data) revealed that craters of ancient origin had been covered by thick sediments in northern hemisphere. Mars MOLA topography mission identified many crater on Mars surface. Thus despite the Mars dichotomy, both northern and southern hemisphere have been covered by impacts to similar density. Mars currently has no global magnetic field of internal origin. In southern hemisphere, magnetic field intensities due to anomalies of remanent origin are much lower over the gigantic impact craters (e.g. Hellas, Prometheus, and Argyre). Low magnetic field may not relate to the absence of internal dynamo but due to impacts. For example, the aerial survey over a two billion year old, largest crater on Earth, Vredefort in South Africa observed much lower magnetic intensity over the crater, despite of the strongly magnetized simgle domain (SD) magnetite in shocked granites. Randomized magnetic vector orientations caused by impact may be the origin of the lower magnetic field observed on both Vredefort and Mars. We conducted magnetic analysis for a suite of Sierra Madera Impact deformed rock sites with complete shatter cone structures and multiple striated joint set (MSJS), and the initial results were intriguing. NRM vector orientations, REM ratios, and AF demagnetization curves showed contrasted magnetic signatures between the sites as well as within the samples. The NRM signatures in small scale shatter cones and larger scale shatter cones indicated shock demagnetization (SDM). The peculiar signatures of the site with MSJS may be both SDM and shock magnetization (SRM). We characterized the complexity and distinct magnetic signatures of impact fractured rocks. The results suggest that the size of the shatter cones and structures may reflect the magnetic signatures of both intensity and directions. Also, the dimensional scale of shatter cones is indicative parameters for randomization of the magnetic vector orientations. Such variations may

  11. Human Mars Mission Contamination Issues

    Science.gov (United States)

    Lupisella, M. L.

    2001-01-01

    A potential challenge for a human Mars mission is that while humans are by most measures the obvious best way to search for life on Mars, we may also be the most problematic in that we could unduly compromise the search for life by contaminating relevant environments and/or possibly adversely and irreversibly affecting indigenous life. Perhaps more problematic is the fundamental epistemic challenge of the "one data point" limitation which could decrease confidence in applying terrestrially based research to extraterrestrial life issues in general. An informal decision tree is presented as one way to begin thinking about contamination issues. There are many sub-questions and distinctions not shown such as biological vs. nonbiological (but biologically relevant) contamination, viable vs. dead organisms, masking indigenous organisms vs. merely making the search more difficult, and independent origin vs. panspermia distinctions. While it may be unlikely that terrestrial microbes could survive on Mars, let alone reproduce and unduly compromise the search for life, the unpredictable potential for microbial life to survive, grow exponentially, evolve and modify (and sometimes destroy) environments, warrants focusing carefully on biologically relevant contamination as we prepare to send humans to the first planet that may have indigenous life-forms.

  12. Cold Ion Escape from Mars

    Science.gov (United States)

    Fränz, M.; Dubinin, E.; Wei, Y.; Morgan, D.; Andrews, D.; Barabash, S.; Lundin, R.; Fedorov, A.

    2013-09-01

    It has always been challenging to observe the flux of ions with energies of less than 10eV escaping from the planetary ionospheres. We here report on new measurements of the ionospheric ion flows at Mars by the ASPERA-3 experiment on board Mars Express in combination with the MARSIS radar experiment. We first compare calculations of the mean ion flux observed by ASPERA-3 alone with previously published results. We then combine observations of the cold ion velocity by ASPERA-3 with observations of the cold plasma density by MARSIS since ASPERA-3 misses the cold core of the ion distribution. We show that the mean density of the nightside plasma observed by MARSIS is about two orders higher than observed by ASPERA-3 (Fig.1). Combining both datasets we show that the main escape channel is along the shadow boundary on the tailside of Mars (Fig. 2). At a distance of about 0.5 R_M the flux settles at a constant value (Fig. 3) which indicates that about half of the transterminator ionospheric flow escapes from the planet. Possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime.

  13. Dynamical Modeling of Mars' Paleoclimate

    Science.gov (United States)

    Richardson, Mark I.

    2004-01-01

    This report summarizes work undertaken under a one-year grant from the NASA Mars Fundamental Research Program. The goal of the project was to initiate studies of the response of the Martian climate to changes in planetary obliquity and orbital elements. This work was undertaken with a three-dimensional numerical climate model based on the Geophysical Fluid Dynamics Laboratory (GFDL) Skyhi General Circulation Model (GCM). The Mars GCM code was adapted to simulate various obliquity and orbital parameter states. Using a version of the model with a basic water cycle (ice caps, vapor, and clouds), we examined changes in atmospheric water abundances and in the distribution of water ice sheets on the surface. This work resulted in a paper published in the Journal of Geophysical Research - Planets. In addition, the project saw the initial incorporation of a regolith water transport and storage scheme into the model. This scheme allows for interaction between water in the pores of the near subsurface (<3m) and the atmosphere. This work was not complete by the end of the one-year grant, but is now continuing within the auspices of a three-year grant of the same title awarded by the Mars Fundamental Research Program in late 2003.

  14. How to Snowboard on Mars

    Science.gov (United States)

    McElwaine, J.; Diniega, S.; Hansen, C. J.; Bourke, M. C.

    2014-12-01

    Long, narrow grooves found on the slopes of martian sand dunes havebeen cited as evidence of liquid water via the hypothesis thatmelt-water initiated debris flows eroded channels and depositedlateral levées. However, this theory has several short-comings forexplaining the observed morphology and activity of these lineargullies. We present an alternative hypothesis that is consistent withthe observed morphology, location, and current activity: that blocksof carbon dioxide ice break from over-steepened cornices assublimation processes destabilize the surface in the spring, and theseblocks move downslope, carving out levéed grooves of relativelyuniform width and forming terminal pits. To test this hypothesis, wedescribe experiments involving water and carbon dioxide blocks onterrestrial dunes and then compare results with the martianfeatures. We present a theoretical model of the initiation of blockmotion due to sublimation and use this to quantitatively compare theexpected behavior of blocks on the Earth and Mars. The modeldemonstrates that carbon dioxide blocks can be expected to move viaour proposed mechanism on the Earth and Mars, and the experiments showthat the motion of these blocks will naturally create the mainmorphological features of linear gullies seen on Mars.

  15. Bathypelagic Food Web Structure of the Northern Atlantic Mid-Atlantic Ridge Based on Stable Isotope Analysis

    Science.gov (United States)

    The objective of our study was to characterize the trophic connections of the dominant fishes of the deep-pelagic region of the northern Mid-Atlantic Ridge (MAR) with respect to vertical distribution using carbon (C) and nitrogen (N) stable isotope analysis. Our goals were to id...

  16. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars

    National Research Council Canada - National Science Library

    Vigo, Daniel E; Tuerlinckx, Francis; Ogrinz, Barbara; Wan, Li; Simonelli, Guido; Bersenev, Evgeny; Van Den Bergh, Omer; Aubert, André E

    2013-01-01

    The Mars500 project was conceived to gather knowledge about the psychological and physiological effects of living in an enclosed environment during 520 d as would be required for a real mission to Mars...

  17. Landscapes of Mars A Visual Tour

    CERN Document Server

    Vogt, Gregory L

    2008-01-01

    Landscapes of Mars is essentially a picture book that provides a visual tour of Mars. All the major regions and topographical features will be shown and supplemented with chapter introductions and extended captions. In a way, think of it as a visual tourist guide. Other topics covered are Martian uplands on the order of the elevation of Mt. Everest, Giant volcanoes and a rift system, the Grand Canyon of Mars, craters and the absence of craters over large regions (erosion), and wind shadows around craters, sand dunes, and dust devils. The book includes discussions on the search for water (braided channels, seepage, sedimentary layering, etc.) as well as on the Viking mission search for life, Mars meteorite fossil bacteria controversy, and planetary protection in future missions. The book concludes with an exciting gallery of the best 3D images of Mars making the book a perfect tool for understanding Mars and its place in the solar system.

  18. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  19. Effects of a CME on Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D.

    We investigate the effects of a Coronal Mass Ejection (CME) on Mars. The magnetic field in the magnetic pileup region on Mars is dominated by the dynamic pressure from the solar as increased dynamic pressure compresses the magnetic pileup region causing a larger magnetic pressure, until...... this balances the solar wind pressure. As the dynamic pressure is severely increased during a CME, so is the magnetic pressure. A CME are also typically connected to a Solar Energetic Particle (SEP) event, causing large amounts of radiation. When the shock front of a CME arrives at Mars strong signals are seen...... in both the magnetic field data and in the radiation data. Based on Mars Global Surveyor (MGS) Magnetometer (MAG) and Electron Reflectometer (ER) data we study the radiation and magnetic field variations on Mars during a CME event. We also compare the effects on Mars to the effects on Earth for the same...

  20. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  1. The NASA environmental models of Mars

    Science.gov (United States)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  2. Effects of a CME on Mars

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vennerstrøm, Susanne; Brain, D.

    We investigate the effects of a Coronal Mass Ejection (CME) on Mars. The magnetic field in the magnetic pileup region on Mars is dominated by the dynamic pressure from the solar as increased dynamic pressure compresses the magnetic pileup region causing a larger magnetic pressure, until...... this balances the solar wind pressure. As the dynamic pressure is severely increased during a CME, so is the magnetic pressure. A CME are also typically connected to a Solar Energetic Particle (SEP) event, causing large amounts of radiation. When the shock front of a CME arrives at Mars strong signals are seen...... in both the magnetic field data and in the radiation data. Based on Mars Global Surveyor (MGS) Magnetometer (MAG) and Electron Reflectometer (ER) data we study the radiation and magnetic field variations on Mars during a CME event. We also compare the effects on Mars to the effects on Earth for the same...

  3. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  4. Results from the Mars Phoenix Lander Robotic Arm experiment

    Science.gov (United States)

    Arvidson, R. E.; Bonitz, R. G.; Robinson, M. L.; Carsten, J. L.; Volpe, R. A.; Trebi-Ollennu, A.; Mellon, M. T.; Chu, P. C.; Davis, K. R.; Wilson, J. J.; Shaw, A. S.; Greenberger, R. N.; Siebach, K. L.; Stein, T. C.; Cull, S. C.; Goetz, W.; Morris, R. V.; Ming, D. W.; Keller, H. U.; Lemmon, M. T.; Sizemore, H. G.; Mehta, M.

    2009-10-01

    The Mars Phoenix Lander was equipped with a 2.4 m Robotic Arm (RA) with an Icy Soil Acquisition Device capable of excavating trenches in soil deposits, grooming hard icy soil surfaces with a scraper blade, and acquiring icy soil samples using a rasp tool. A camera capable of imaging the scoop interior and a thermal and electrical conductivity probe were also included on the RA. A dozen trench complexes were excavated at the northern plains landing site and 31 samples (including water-ice-bearing soils) were acquired for delivery to instruments on the Lander during the 152 sol mission. Deliveries included sprinkling material from several centimeters height to break up cloddy soils on impact with instrument portals. Excavations were done on the side of the Humpty Dumpty and the top of the Wonderland polygons, and in nearby troughs. Resistive forces encountered during backhoe operations show that soils above the 3-5 cm deep icy soil interfaces are stronger with increasing depth. Further, soils are similar in appearance and properties to the weakly cohesive crusty and cloddy soils imaged and excavated by the Viking Lander 2, which also landed on the northern plains. Adsorbed H2O is inferred to be responsible for the variable nature and cohesive strength of the soils. Backhoe blade chatter marks on excavated icy soil surfaces, combined with rasp motor currents, are consistent with laboratory experiments using grain-supported icy soil deposits, as is the relatively rapid decrease in icy soil strength over time as the ice sublimated on Mars.

  5. Sensitive Ground-based Search for Sulfuretted Species on Mars

    Science.gov (United States)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2012-10-01

    We searched for active release of gases on Mars during mid Northern Spring and early Northern Summer seasons, between Ls= 34° and Ls= 110°. The targeted volcanic areas, Tharsis and Syrtis Major, were observed during the interval 23 Nov. 2011 to 13 May 2012, using the high resolution infrared spectrometer (CSHELL) on NASA's Infrared Telescope Facility (NASA/IRTF) and the ultra-high resolution heterodyne receiver (Barney) at the Caltech Submillimeter Observatory (CSO). The two main reservoirs of atmospheric sulfur on Mars are expected to be SO2 and H2S. Because these two species have relatively short photochemical lifetimes, 160 and 9 days respectively (Wong et al. 2004), they stand as powerful indicators of recent activity. Carbonyl sulfide (OCS) is the expected end-product of the reactions between sulfuretted species and other molecules in the Martian atmosphere. Our multi-band survey targeted SO2, SO and H2S at their rotational transitions at 346.523 GHz, 304.078 GHz and 300.505 GHz respectively, and OCS in its combination band (ν1+ν3) at 3.42 µm and its fundamental band (ν3) centered at 4.85 µm. The radiative transfer model used to derive abundance ratios for these species was validated by performing line-inversion retrievals on the carbon monoxide (CO) strong rotational (3-2) line at sub-mm wavelengths (rest frequency 345.796 GHz). Preliminary results and abundance ratios for SO2, H2S, SO, OCS and CO will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program (AK, ATT, MJM), NASA Astrobiology Institute (MJM), NASA Planetary Atmospheres Program (GLV), and NSF grant number AST-0838261 to support graduate students at the CSO (AK). References: Wong, A.S., Atreya, S. K., Formisano, V., Encrenaz, T., Ignatiev, N.I., "Atmospheric photochemistry above possible martian hot spots", Advances in Space Research, 33 (2004) 2236-2239.

  6. Recurring Slope Lineae in Mid-Latitude and Equatorial Mars

    Science.gov (United States)

    McEwen, A. S.; Dundas, C. M.; Mattson, S.; Toigo, A. D.; Ojha, L.; Wray, J. J.; Chojnacki, M.; Byrne, S.; Murchie, S. L.; Thomas, N.

    2013-12-01

    A key to potential present-day habitability of Mars is the presence of liquid H2O (water). Recurring slope lineae (RSL) could be evidence for the seasonal flow of water on relatively warm slopes. RSL are narrow (250 K to >300 K. In the past year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris. They are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. However, predicted peak temperatures for north-facing slopes are nearly constant throughout the Martian year because orbital periapse occurs near the southern summer solstice. Although warm temperatures and steep low-albedo slopes are required, some additional effect besides temperature may serve to trigger and stop RSL activity. Seasonal variation in the atmospheric column abundance of water does not match the RSL activity. Although seasonal melting of shallow ice could explain the mid-latitude RSL, the equatorial activity requires a different explanation, perhaps migration of briny groundwater. To explain RSL flow lengths, exceeding 1 km in Valles Marineris, the water is likely to be salty. Several RSL attributes are not yet understood: (1) the relation between apparent RSL activity and dustiness of the atmosphere; (2) salt composition and concentration; (3) variability in RSL activity from year to year; (4) seasonal activity on north-facing equatorial slopes in spite of little change in temperature; and (5) temporal changes in the color properties of fans where RSL terminate. Continued orbital monitoring, laboratory experiments, and future orbital and landed exploration with new measurement types are needed. Equatorial water activity, if confirmed, creates new exploration opportunities and challenges. RSL >1 km long near boundary between Eos and Capri Chasmata of Valles Marineris, Mars.

  7. Fluvial erosion of impact craters: Earth and Mars

    Science.gov (United States)

    Baker, V. R.

    1984-01-01

    Geomorphic studies of impact structures in central Australia are being used to understand the complexities of fluvial dissection in the heavily cratered terrains of Mars. At Henbury, Northern Territory, approximately 12 small meteorite craters have interacted with a semiarid drainage system. The detailed mapping of the geologic and structural features at Henbury allowed this study to concentrate on degradational landforms. The breaching of crater rims by gullies was facilitated by the northward movement of sheetwash along an extensive pediment surface extending from the Bacon Range. South-facing crater rims have been preferentially breached because gullies on those sides were able to tap the largest amounts of runoff. At crater 6 a probable rim-gully system has captured the headward reaches of a pre-impact stream channel. The interactive history of impacts and drainage development is critical to understanding the relationships in the heavily cratered uplands of Mars. Whereas Henbury craters are younger than 4700 yrs. B.P., the Gosses Bluff structure formed about 130 million years ago. The bluff is essentially an etched central peak composed of resistant sandstone units. Fluvial erosion of this structure is also discussed.

  8. Water in the Martian regolith from OMEGA/Mars Express

    CERN Document Server

    Audouard, Joachim; Vincendon, Mathieu; Milliken, Ralph E; Jouglet, Denis; Bibring, Jean-Pierre; Gondet, Brigitte; Langevin, Yves

    2014-01-01

    Here we discuss one of the current reservoirs of water on Mars, the regolith and rocks exposed at the surface. This reservoir is characterized by the presence of H_{2}O- and OH- bearing phases that produce a broad absorption at a wavelength of \\sim 3 \\mu m in near-infrared (NIR) reflectance spectra. This absorption is present in every ice-free spectrum of the Martian surface obtained thus far by orbital NIR spectrometers. We present a quantitative analysis of the global distribution of the 3 \\mu m absorption using the Observatoire pour la Min\\'eralogie, l\\'\\Eau, les Glaces et l\\'\\Activit\\'e (OMEGA) imaging spectrometer that has been mapping the surface of Mars at kilometer scale for more than ten years. Based on laboratory reflectance spectra of a wide range of hydrous minerals and phases, we estimate a model-dependent water content of 4\\pm 1 wt. \\% in the equatorial and mid-latitudes. Surface hydration increases with latitude, with an asymmetry in water content between the northern and southern hemispheres. ...

  9. Human Mars Ascent Configuration and Design Sensitivities

    Science.gov (United States)

    Polsgrove, Tara P.; Gernhardt, Mike; Collins, Tim; Martin, John

    2017-01-01

    Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. At the end of a Mars surface mission the Mars Ascent Vehicle (MAV) crew cabin would carry the crew to their destination in orbit in a matter of hours or days. Other small cabins in support of a Mars mission would include pressurized rovers that allow crew members to travel great distances from their primary habitat on Mars while unconstrained by time limits of typical EVAs. An orbital crew taxi could allow for exploration of the moons of Mars with minimum impact to the primary Earth-Mars transportation systems. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing MAV mass is a priority and minimizing the crew cabin size and mass is one way to do that. This paper explores the benefits and impacts of using a common crew cabin design for the MAV. Results of a MAV configuration trade study will be presented along with mass and performance estimates for the selected design.

  10. The cool and distant formation of Mars

    Science.gov (United States)

    Brasser, R.; Mojzsis, S. J.; Matsumura, S.; Ida, S.

    2017-06-01

    With approximately one ninth of Earth's mass, Mars is widely considered to be a stranded planetary embryo that never became a fully-grown planet. A currently popular planet formation theory predicts that Mars formed near Earth and Venus and was subsequently scattered outwards to its present location. In such a scenario, the compositions of the three planets are expected to be similar to each other. However, bulk elemental and isotopic data for martian meteorites demonstrate that key aspects of Mars' composition are markedly different from that of Earth. This suggests that Mars formed outside of the terrestrial feeding zone during primary accretion. It is therefore probable that Mars always remained significantly farther from the Sun than Earth; its growth was stunted early and its mass remained relatively low. Here we identify a potential dynamical pathway that forms Mars in the asteroid belt and keeps it outside of Earth's accretion zone while at the same time accounting for strict age and compositional constraints, as well as mass differences. Our uncommon pathway (approximately 2% probability) is based on the Grand Tack scenario of terrestrial planet formation, in which the radial migration by Jupiter gravitationally sculpts the planetesimal disc at Mars' current location. We conclude that Mars' formation requires a specific dynamical pathway, while this is less valid for Earth and Venus. We further predict that Mars' volatile budget is most likely different from Earth's and that Venus formed close enough to our planet that it is expected to have a nearly identical composition from common building blocks.

  11. Optimal parking orbits for manned Mars missions

    Science.gov (United States)

    Cupples, Michael L.; Nordwall, Jill A.

    This paper summarizes a Mars parking orbit optimization effort. This parking orbit study includes the selection of optimal elliptic Mars parking orbits that meet mission constraints and that include pertinent apsidal misalignment losses. Mars missions examined are for the opportunity years of 2014, 2016, and 2018. For these mission opportunities, it is shown that the optimal parking orbits depend on the year that the mission occurs and are coupled with the outbound, Mars stay, and return phases of the mission. Constraints included in the parking orbit optimization process are periapsis lighting angle (related to a daylight landing requirement), periapsis latitude (related to a landing latitude range requirement) and the vehicle Trans-Earth-Injection stage mass. Also, effects of mission abort requirements on optimal parking orbits are investigated. Off-periapsis maneuvers for Mars orbit capture were found to be cost effective in reducing the mission delta-V for the 2016 abort from Mars capture scenario. The total capture and departure delta-V was `split' between the capture maneuver and the departure maneuver to reduce the 2016 Mars departure delta-V to below the level of the corresponding stage of the 2014 baseline mission. Landing results are provided that show Mars landing site access from the optimal elliptic parking orbits for Mars excursion vehicles with low (0.2) and high (1.3 and 1.6) lift to drag ratio.

  12. Dust Devils and Convective Vortices on Mars

    Science.gov (United States)

    Ordonez-Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.

    2017-03-01

    Dust devils are low pressure convective vortices able to lift dust from the surface of a planet. They are a common feature on Mars and they can also be found on desertic locations on Earth. On Mars they are considered an important part of the atmospheric dust cycle. Dust in Mars is an essential ingredient of the atmosphere where it affects the radiative balance of the planet. Here we review observations of these dusty vortices from orbit, from in situ measurements on the surface of Mars and some of the models developed to simulate them.

  13. Phoenix - The First Mars Scout Mission

    Science.gov (United States)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. On May 25, 2008 Phoenix conducted the first successful powered decent on Mars in over 30 years. This paper will highlight some of the key changes since the 2008 IEEE paper of the same name, as well as performance through cruise, landing at the north pole of Mars and some of the preliminary results of the surface mission.

  14. The 1990 MB: The first Mars Trojan

    Science.gov (United States)

    Bowell, Edward

    1991-01-01

    Asteroid 1990 MB was discovered during the course of the Mars and Earth-crossing Asteroid and Comet Survey. An orbit based on a 9-day arc and the asteroid's location near Mars L5 longitude led to speculation that it might be in 1:1 resonance with Mars, analogous to the Trojan asteroids of Jupiter. Subsequent observations strengthened the possibility, and later calculations confirmed it. The most recent orbit shows that the asteroid's semimajor axis is very similar to that of Mars.

  15. Overview of Mars: SNC meteorite results

    Science.gov (United States)

    Waenke, H.

    1988-01-01

    The SNC meteorites according to their oxygen isotope ratios and various trace element ratios form a distinct group of 8 achondrites. Their young crystallization ages and fractionated REE pattern which exclude an asteroidal origin, were the first observations to point towards Mars as their parent body. In spite of the many arguments for Mars as the parent body of the SNC meteorites there does not exist a generally accepted model for the ejecting process and other dynamical problems involved. In this discussion it is, however, assumed that Mars is the SNC parent body. The chemical composition of Mars is examined.

  16. insurgents in Northern Uganda

    African Journals Online (AJOL)

    and the rebel movements in northern Uganda, see Human Rights Watch 2003, and ... of Uganda enacted an Amnesty Act in 2000, and to date more than ten thousand ..... Amnesty Certificate, and then in theory, a package.20 In the case of former .... [H]uman rights obligations are contracted on an international level.

  17. Northern blotting analysis

    DEFF Research Database (Denmark)

    Josefsen, Knud; Nielsen, Henrik

    2011-01-01

    Northern blotting analysis is a classical method for analysis of the size and steady-state level of a specific RNA in a complex sample. In short, the RNA is size-fractionated by gel electrophoresis and transferred by blotting onto a membrane to which the RNA is covalently bound. Then, the membran...

  18. Northern blotting analysis

    DEFF Research Database (Denmark)

    Josefsen, Knud; Nielsen, Henrik

    2011-01-01

    is analysed by hybridization to one or more specific probes that are labelled for subsequent detection. Northern blotting is relatively simple to perform, inexpensive, and not plagued by artefacts. Recent developments of hybridization membranes and buffers have resulted in increased sensitivity closing...

  19. 1990 Northern, Iran Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A magnitude 7.7 earthquake occurred in the Gilan Province between the towns of Rudbar and Manjil in northern Iran on Thursday, June 21, 1990 (June 20 at 21:00 GMT)....

  20. Aram Dorsum, Candidate ExoMars Rover Landing Site: a Noachian Inverted Fluvial Channel System in Arabia Terra Mars

    Science.gov (United States)

    Balme, Matthew; Grindrod, Peter; Sefton-Nash, Elliot; Davis, Joel; Gupta, Sanjeev; Fawdon, Peter

    2016-04-01

    Much of Mars' Noachian-aged southern highlands is dissected by systems of fluvial channels and valleys > 3.7 Ga in age. Arabia Terra, lying between the southern highlands and the northern lowlands, is similarly ancient, yet apparently has few valley networks. This regional lack of valley networks only matches Noachian precipitation predictions from climate models if the Noachian climate was dry and cold [1]. In this scenario, highlands dissection was caused by transient flows of meltwater from large, regionally restricted ice-bodies. However, new results [2,3] show that Arabia Terra is not as poorly dissected as previously thought, and in fact there are extensive networks of inverted channel systems. Here, we describe an example of such a system - Aram Dorsum - which has been studied extensively as an ExoMars Rover candidate landing site. Aram Dorsum is an ~100 km long, 1-2 km wide, branching, flat-topped ridge system, in western Arabia Terra. We have mapped the system using CTX images, DEMs and other data. We interpret the ridge system to be fluvial in origin, preserved in positive relief due to infill and differential erosion; this working hypothesis is used as a conceptual framework for the study. Aram Dorsum is a branching, multi-level, contributory network, set in surrounding floodplains-like material. This demonstrates that it was a relatively long-lived, aggradational fluvial system, rather than an erosional outflow or bedrock-carved fluvial channel. Interestingly, the system shows little evidence for unconfined lateral channel migration, so there must have been significant bank stability. Aram Dorsum was therefore probably once a sizable river and, as just one example of many similar systems, is an exemplar for the middle part of a regional sediment transport system that could have extended from the southern highlands to the northern lowlands. Like Aram Dorsum, many of these other recently-recognized fluvial systems have an origin more consistent with

  1. The Mars Science Laboratory Mars Hand Lens Imager (MSL MAHLI)

    Science.gov (United States)

    Minitti, Michelle E.; Edgett, Kenneth S.; Msl Mastcam/Mahli/Mardi Team

    2007-10-01

    The Mars Science Laboratory (MSL) rover mission, slated to begin Martian surface operations in 2010, seeks to explore the past and present habitability of a yet-to-be-selected site on Mars. Armed with a suite of instruments capable of spectral, chemical, mineralogical, organic and isotopic analyses, MSL will comprehensively study the Martian atmosphere and rocks and soils on the Martian surface. The Mars Hand Lens Imager (MAHLI), the "geologist's handlens" for MSL, supports habitability studies through aiding the selection of samples for in-depth analysis and placing such samples in a geologic and geomorphic context. More broadly, the goal of MAHLI is to examine the texture, morphology, structure, mineralogy, and stratigraphy of rocks, soils, frost and ice at the microscale. MAHLI will achieve this objective using capabilities new to Martian cameras including a CCD with a Bayer Pattern Filter coupled with a focusable lens. The Bayer Pattern Filter produces RGB color images akin to those taken by the standard commercial digital camera. Placement of MAHLI by the MSL Robotic Arm (RA) at a particular distance from the sample of interest and MAHLI's internal focus mechanism combine to achieve a desired image resolution. At its closest placement (22.5 mm), MAHLI has 9 µm/pixel resolution. In practice, RA placement may be sufficiently uncertain that 9 µm/pixel will not be achieved regularly; however, resolutions in the 12-15 µm/pixel range are expected for typical high resolution images. Depending on the target distance and its surface relief, the target may not be in focus over the entire image. For those cases, MAHLI acquires a series of images taken at a range of focus positions that bracket the location of best focus. MAHLI's onboard software is capable of merging this stack of images, into a single best-focus image. MAHLI can image in natural illumination but it also possesses four, white light emitting diodes (LED) for illumination of samples in shadow or at

  2. Detection and Mapping of Ice Clouds in Mars' Mesosphere

    Science.gov (United States)

    Sefton-Nash, E.; Teanby, N. A.; Calcutt, S. B.; Hurley, J.; Irwin, P. G. J.

    2012-03-01

    We map ice cloud occurrence in Mars' mesosphere using > 2 Mars years worth of limb spectra acquired by the Mars Climate Sounder. We find two distinct seasonal regimes with short periods/latitudes of increased formation and limited longitudinal bias.

  3. The case for Mars III: Strategies for exploration - Technical

    Science.gov (United States)

    Stoker, Carol R. (Editor)

    1989-01-01

    Papers on issues related to Mars exploration are presented, covering topics such as the social implications of manned missions to Mars, mission strategies, mission designs, the economics of a Mars mission, Space Station support for a Mars mission, a Diagnostic and Environmental Monitoring System, and a zero-g CELSS/recreation facility for an earth/Mars crew shuttle. Other topics include biomedical concerns and fitness in spaceflight, spaceflight environment habitability, the Mars Rover/Sample Return Mission, a rooitic Mars surface sampler, a Mars Orbiter, and scientific goals of Mars exploration. Additional topics include Space Station evolution, mission options, modeling advanced space systems, computer support for Mars missions, launch system options, advanced propulsion techniques, the utilization of resources on Mars, the development of a Martian base, and options for mobility on Mars.

  4. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission

    CERN Document Server

    Lemmon, Mark T; Bell, James F; Smith, Michael D; Cantor, Bruce A; Smith, Peter H

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {\\mu}m effective radius during northern summer and a 2 {\\mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{\\deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{\\deg}. In addition to water ice clouds, ...

  5. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record over 5 Mars Years of the Mars Exploration Rover Mission

    Science.gov (United States)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 micrometer effective radius during northern summer and a 2 micrometer effective radius at the onset of a dust lifting event. The solar longitude (L (sub s)) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50 and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  6. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  7. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars

  8. Enhanced chlorophyll a and primary production in the northern Arabian Sea during the spring intermonsoon due to green Noctiluca scintillans bloom

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Jyothibabu, R.; Maheswaran, P.A.; Jayaraj, K.A.; Achuthankutty, C.T.

    stream_size 24818 stream_content_type text/plain stream_name Mar_Biol_Res_8_182a.pdf.txt stream_source_info Mar_Biol_Res_8_182a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 2 Author version...: Mar. Biol. Res., vol.8; 2012; 182-188 Enhanced chlorophyll a and primary production in the northern Arabian Sea during the spring intermonsoon due to green Noctiluca (N. scintillans) bloom N. V. Madhu a, *, R. Jyothibabu a , P. A. Maheswaran b...

  9. Experimental Alteration of Basalt to Support Interpretation of Remote Sensing and In Situ Meausrements from Mars

    Science.gov (United States)

    Bell, M. S.

    2014-01-01

    Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere [1, 2]. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates [3] as well. The MER (Mars Exploration Rovers) rovers previously reported results of in situ measurement indicating the presence of alteration minerals on Mars [4,5] and it was recently reported that the Mars Curiosity rover has detected alteration phases in situ at Yellowknife Bay in Gale crater as well [6,7]. An important discovery for Mars geochronology is that the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument on Curiosity detected phyllosilicates indicating that phyllosilicate formation on Mars extended beyond the Noachian Epoch [8]. These discoveries indicate that Mars was globally altered by water in the past but does not constrain formation conditions for alteration phase occurrences, which have important implications for the evolution of the surface and the biological potential on Mars. Understanding the alteration assemblages produced by a range of conditions is vital for the interpretation of phyllosilicate spectral signatures as well as in situ measurements and to decipher the environment and evolution of early Mars. The martian surface has been intensely altered by meteorite impacts whose effects include brecciation and melting of target materials as well as the initiation of hydrothermal circulation in a hydrous target [9,10,11,12]. Impact effects may facilitate aqueous alteration of a basaltic target because the rate of silicate dissolution is a function of the degree of crystallinity, surface area, and temperature. The resultant alteration mineralogies from shocked basaltic target material

  10. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    Science.gov (United States)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  11. Breakthrough in Mars balloon technology

    Science.gov (United States)

    Kerzhanovich, V. V.; Cutts, J. A.; Cooper, H. W.; Hall, J. L.; McDonald, B. A.; Pauken, M. T.; White, C. V.; Yavrouian, A. H.; Castano, A.; Cathey, H. M.; Fairbrother, D. A.; Smith, I. S.; Shreves, C. M.; Lachenmeier, T.; Rainwater, E.; Smith, M.

    2004-01-01

    Two prototypes of Mars superpressure balloons were flight tested for aerial deployment and inflation in the Earth's stratosphere in June, 2002. One was an 11.3 m diameter by 6.8 m high pumpkin balloon constructed from polyethylene film and Zylon (PBO) tendons, the second was a 10 m diameter spherical balloon constructed from 12 μm thick Mylar film. Aerial deployment and inflation occurred under parachute descent at 34 km altitude, mimicing the dynamic pressure environment expected during an actual Mars balloon mission. Two on-board video cameras were used on each flight to provide real-time upward and downward views of the flight train. Atmospheric pressure and temperature were also recorded. Both prototypes successfully deployed from their storage container during parachute descent at approximately 40 m/s. The pumpkin balloon also successfully inflated with a 440 g charge of helium gas injected over a 1.5-min period. Since the helium inflation system was deliberately retained after inflation in this test, the pumpkin balloon continued to fall to the ocean where it was recovered for post-flight analysis. The less robust spherical balloon achieved only a partial (~70%) inflation before a structural failure occurred in the balloon film resulting in the loss of the vehicle. This structural failure was diagnosed to result from the vigorous oscillatory motion of the partially inflated balloon, possibly compounded by contact between the balloon film and an instrumentation box above it on the flight train. These two flights together represent significant progress in the development of Mars superpressure balloon technology and pave the way for future flight tests that will include post-deployment flight of the prototype balloons at a stable altitude.

  12. The fluvial history of Mars.

    Science.gov (United States)

    Carr, Michael H

    2012-05-13

    River channels and valleys have been observed on several planetary bodies in addition to the Earth. Long sinuous valleys on Venus, our Moon and Jupiter's moon Io are clearly formed by lava, and branching valleys on Saturn's moon Titan may be forming today by rivers of methane. But by far the most dissected body in our Solar System apart from the Earth is Mars. Branching valleys that in plan resemble terrestrial river valleys are common throughout the most ancient landscapes preserved on the planet. Accompanying the valleys are the remains of other indicators of erosion and deposition, such as deltas, alluvial fans and lake beds. There is little reason to doubt that water was the erosive agent and that early in Mars' history, climatic conditions were very different from the present cold conditions and such that, at least episodically, water could flow across the surface. In addition to the branching valley networks, there are large flood features, termed outflow channels. These are similar to, but dwarf, the largest terrestrial flood channels. The consensus is that these channels were also cut by water although there are other possibilities. The outflow channels mostly postdate the valley networks, although most are still very ancient. They appear to have formed at a time when surface conditions were similar to those that prevail today. There is evidence that glacial activity has modified some of the water-worn valleys, particularly in the 30-50° latitude belts, and ice may also be implicated in the formation of geologically recent, seemingly water-worn gullies on steep slopes. Mars also has had a long volcanic history, and long, sinuous lava channels similar to those on the Moon and Venus are common on and around the large volcanoes. These will not, however, be discussed further; the emphasis here is on the effects of running water on the evolution of the surface.

  13. Mars Descent Imager (MARDI) on the Mars Polar Lander

    Science.gov (United States)

    Malin, M.C.; Caplinger, M.A.; Carr, M.H.; Squyres, S.; Thomas, P.; Veverka, J.

    2001-01-01

    The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (???6 ?? 6 ?? 12 cm, including baffle; geography (e.g., context for other lander instruments: precise location, detailed local relief); and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 x 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 X 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a "best final nonpowered descent image" will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 x 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view. Copyright 2001 by the American Geophysical Union.

  14. Prediction of secular acceleration of axial rotation of Mars

    Science.gov (United States)

    Barkin, Yu. V.

    2009-04-01

    northern direction to Taimyr peninsula. Thus the gravitational attraction of superfluous mass of the core (19 % from the Earth mass) causes secular asymmetric inversion tide [2] of fluids which effectively manages to be modeled by two points with variable masses. In the given work the attempt to construct a similar model of the directed secular redistribution of fluid masses of Mars from a southern hemisphere in northern is undertaken with the purpose of an explanation of observably tendencies in redistribution of masses between hemispheres and with the purpose of a prediction of the new phenomena in its rotary motion. The hypothetical assumption is made, that secular redistribution of fluid masses from a southern hemisphere in northern hemisphere of Mars mainly is determined by areocentric axis OP directed to the pole P with coordinates 570N, 820 E (as is known in this direction the centre of mass of Mars relatively the centre of a figure on 2.8 km is displaced). Material points with masses m2 and m1 settle down at poles of geocentric axis OP on a surface of Mars, and their masses change linearly in the time with velocities [5]: ṁ2 = 0.402 × 1015kg/yr and ṁ1 = 0.257 × 1015kg/yr. The given modeling characteristics correspond to prospective secular variations of coefficients of the second and third zonal harmonics of gravitational potential of Mars: J˙2= - 57.0 × 10-11 1/yr and ˙J3 = -4.94 × 10-11 1/yr, more less agreed for today with the data of observations (Dehant, private communication, 2008) [6]. Let's emphasize, that the discussed phenomena of asymmetry of hemispheres, intensity of inversion processes, and bipolarity and inversion of all structures of Mars much more expressive, than at the Earth. Therefore we in the right to expect the greater efficiency in application of geodynamic model and more significant secular effects in rotation of Mars in comparison with the Earth. The constructed model has allowed to estimate non-tidal acceleration of

  15. New perspectives on ancient Mars.

    Science.gov (United States)

    Solomon, Sean C; Aharonson, Oded; Aurnou, Jonathan M; Banerdt, W Bruce; Carr, Michael H; Dombard, Andrew J; Frey, Herbert V; Golombek, Matthew P; Hauck, Steven A; Head, James W; Jakosky, Bruce M; Johnson, Catherine L; McGovern, Patrick J; Neumann, Gregory A; Phillips, Roger J; Smith, David E; Zuber, Maria T

    2005-02-25

    Mars was most active during its first billion years. The core, mantle, and crust formed within approximately 50 million years of solar system formation. A magnetic dynamo in a convecting fluid core magnetized the crust, and the global field shielded a more massive early atmosphere against solar wind stripping. The Tharsis province became a focus for volcanism, deformation, and outgassing of water and carbon dioxide in quantities possibly sufficient to induce episodes of climate warming. Surficial and near-surface water contributed to regionally extensive erosion, sediment transport, and chemical alteration. Deep hydrothermal circulation accelerated crustal cooling, preserved variations in crustal thickness, and modified patterns of crustal magnetization.

  16. MNSM - A Future Mars Network Science Mission

    Science.gov (United States)

    Chicarro, A. F.

    2012-04-01

    Following ESA' s successful Mars Express mission, European efforts in Mars Exploration are now taking place within the joint ESA-NASA Mars Exploration Programme, starting in 2016 with the Trace Gases Orbiter (TGO) focusing on atmospheric trace gases and in particular methane, and with the Entry and Descent Module (EDM). In 2018, a joint NASA-ESA rover will perform sample caching as well as geological, geochemical and exobiological measurements of the surface and the subsurface of Mars. A number of missions for 2020 and beyond are currently under study. Among those, a possible candidate is a Mars Network Science Mission (MNSM) of 3-6 surface stations, to investigate the interior of the planet, its rotational parameters and its atmospheric dynamics. These important science goals have not been fully addressed by Mars exploration so far and can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet such as a Mars Network mission. In addition, the geology, mineralogy and astrobiological significance of each landing site would be addressed, as three new locations on Mars would be reached. Such Mars Network Science Mission has been considered a significant priority by the planetary science community worldwide for the past two decades. In fact, a Mars Network mission concept has a long heritage, as it was studied a number of times by ESA, NASA and CNES (e.g., Marsnet, Intermarsnet, Netlander and MarsNEXT mission studies) since 1990. Study work has been renewed in ESA recently with MNSM Science and Engineering Teams being set up to update the scientific objectives of the mission and to evaluate its technical feasibility, respectively. The current mission baseline includes three ESA-led small landers with a robotic arm to be launched with a Soyuz rocket and direct communications to Earth (no need of a dedicated orbiter). However, a larger network could be put in place through international collaboration, as several

  17. Dry Mars: Parched Rocks and Fallen Dust

    Science.gov (United States)

    Treiman, Allan H.

    2001-01-01

    While "following the water" to find life on Mars, it is easy to overlook evidence that Mars is harshly dry, and to neglect ideas that do not invoke water. Direct evidence for a dry Mars comes from the ALH 84001 meteorite, which has seen little or no liquid water during its last 3.9 billion years on Mars. Its aridity is difficult to reconcile with a Mars of abundant near-surface surface water or with episodes of warm wet climate. Alternative scenarios are also possible, even likely, for the martian gullies and debris flows that have been cited as evidence of liquid water. It is reasonable that the gullies flows are the remnants of massive dust avalanches, comparable to large climax snow avalanches seen on Earth. Mars' surface is now desiccated, and at least part of it has been equally desiccated for the past 3.9 billion years. With this background, and the wealth of atmospheric, imaging, and chemical data available from Mars, one must be very cautious in evaluating claims for liquid water recently at or near Mars' surface. Additional information is contained in the original extended abstract.

  18. Results of the MarCom questionnaire

    NARCIS (Netherlands)

    Verhagen, H.J.

    2002-01-01

    On request of MarCom a questionnaire has been prepared to investigate the opinion of PIANC members and others about the quality and the usefulness of the MarCom working group reports. The results of this questionnaire were presented and discussed at the Sydney Conference (September 2002).

  19. High Resolution Surface Science at Mars

    Science.gov (United States)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  20. Planet Mars story of another world

    CERN Document Server

    Forget, François; Lognonné, Philippe

    2008-01-01

    Give an insight of Mars by adopting an outline based on history rather than on subtopic (atmosphere, surface, interior). This work looks at its evolution, and incorporates the results from the space missions of Mars Express, Spirit and Opportunity. It also examines its formation from the ashes of dead stars, more than 4 5 billion years ago.

  1. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  2. Geographical Distribution of Crater Depths on Mars

    Science.gov (United States)

    Stepinski, T. F.

    2010-03-01

    Global maps of crater depths on Mars are constructed using a new dataset that lists depths of >75,000 craters. Distribution of crater depths is interpreted in terms of cryosphere extent, and the locations of deepest craters on Mars are identified.

  3. NASA Facts, Mars as a Planet.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. Photographs, showing Mars as seen from Earth through a telescope, show dark markings and polar caps present. Photographs from Mariner 7, Mariner 4, and Mariner 9 are included. Presented is a composite of several Mariner 9…

  4. Navigation services of the Mars Network

    Science.gov (United States)

    Ely, T. A.; Guinn, J.; Quintanilla, E.

    2003-01-01

    The Mars Network provides proximity based communications and navigation services to support Mars exploration. The network will be comprised of science orbiters with a MN relay transceiver, and potentially, dedicated telecommunication orbiters. The common MN transceiver, called Electra, is currently in deployment, and is being designed for both communications and radiometric tracking.

  5. Are you ready for Mars? - Main media events surrounding the arrival of ESA's Mars Express at Mars

    Science.gov (United States)

    2003-11-01

    Launched on 2 June 2003 from Baikonur (Kazakhstan) on board a Russian Soyuz launcher operated by Starsem, the European probe -built for ESA by a European team of industrial companies led by Astrium - carries seven scientific instruments that will perform a series of remote-sensing experiments designed to shed new light on the Martian atmosphere, the planet’s structure and its geology. In particular, the British-made Beagle 2 lander, named after the ship on which Charles Darwin explored uncharted areas of the Earth in 1830, will contribute to the search for traces of life on Mars through exobiology experiments and geochemistry research. On Christmas Eve the Mars Express orbiter will be steered on a course taking it into an elliptical orbit, where it will safely circle the planet for a minimum of almost 2 Earth years. The Beagle 2 lander - which will have been released from the mother craft a few days earlier (on 19 December) - instead will stay on a collision course with the planet. It too should also be safe, being designed for atmospheric entry and geared for a final soft landing due to a sophisticated system of parachutes and airbags. On arrival, the Mars Express mission control team will report on the outcome of the spacecraft's delicate orbital insertion manoeuvre. It will take some time for Mars Express to manouvre into position to pick communications from Beagle 2. Hence, initially, other means will be used to check that Beagle 2 has landed: first signals from the Beagle 2 landing are expected to be available throughout Christmas Day, either through pick-up and relay of Beagle 2 radio signals by NASA’s Mars Odyssey, or by direct pick-up by the Jodrell Bank radio telescope in the UK. Mars Express will then pass over Beagle 2 in early January 2004, relaying data and images back to Earth. The first images from the cameras of Beagle 2 and Mars Express are expected to be available between the end of the year and the beginning of January 2004. The key dates

  6. Connecting Robots and Humans in Mars Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned

  7. The transformative value of liberating Mars

    CERN Document Server

    Haqq-Misra, Jacob

    2014-01-01

    Humanity has the knowledge to solve its problems but lacks the moral insight to implement these ideas on a global scale. New moral insight can be obtained through transformative experiences that allow us to examine and refine our underlying preferences, and the eventual landing of humans on Mars will be of tremendous transformative value. Before such an event, I propose that we liberate Mars from any controlling interests of Earth and allow Martian settlements to develop into a second independent instance of human civilization. Such a designation is consistent with the Outer Space Treaty and allows Mars to serve as a test bed and point of comparison by which to learn new information about the phenomenon of civilization. Rather than develop Mars through a series of government and corporate colonies, let us steer the future by liberating Mars and embracing the concept of planetary citizenship.

  8. Dosimetric investigations on Mars-96 mission.

    Science.gov (United States)

    Semkova, J; Dachev, T s; Matviichuk, Y u; Koleva, R; Tomov, B; Baynov, P; Petrov, V; Nguyen, V; Siegrist, M; Chene, J; d'Uston, C; Cotin, F

    1994-10-01

    The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.

  9. Biogenic catalysis of soil formation on Mars?

    Science.gov (United States)

    Bishop, J. L.

    1998-01-01

    The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.

  10. Tectonic implications of Mars crustal magnetism.

    Science.gov (United States)

    Connerney, J E P; Acuña, M H; Ness, N F; Kletetschka, G; Mitchell, D L; Lin, R P; Reme, H

    2005-10-18

    Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an approximately 400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics.

  11. Emirates Mars Mission Planetary Protection Plan

    Science.gov (United States)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  12. Mars Spark Source Prototype Developed

    Science.gov (United States)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  13. Sunrise over Mars - electronic transmission

    Science.gov (United States)

    1976-01-01

    Caption: 'Taken during the Viking Orbiter 1's 40th revolution of Mars, this electronically transmitted image shows sunrise over the tributary canyons of a high plateau region. The white areas are bright clouds of water ice.' As the sun rises over Noctis Labryinthus (the labyrinth of the night), bright clouds of water ice can be observed in and around the tributary canyons of this high plateau region of Mars. This color composite image, reconstructed from three individual black and white frames taken through violet, green, and orange filters, vividly shows the distribution of the clouds against the rust colored background of this Martian desert. The picture was reconstructed by JPL's Image Processing Laboratory using in-flight calibration data to correct the color balance. Scientists have puzzled why the clouds cling to the canyon areas and, only in certain areas, spill over onto the plateau surface. One possibility is that water which condensed during the previous afternoon in shaded eastern-facing slopes of the canyon floor is vaporized as the early morning sun falls on those same slopes. The area covered is about 10,000 square kilometers (4000 square miles), centered at 9 degrees South, 95 degrees West, and the large partial crater at lower right is Oudemans. The picture was taken on Viking Orbiter 1's 40th revolution of the planet. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (pages 108-109), by James Schultz.

  14. Anaerobic Nitrogen Fixers on Mars

    Science.gov (United States)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  15. Radiation Shielding Optimization on Mars

    Science.gov (United States)

    Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.

    2013-01-01

    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.

  16. A Mars Exploration Discovery Program

    Science.gov (United States)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  17. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  18. Simultaneous Mars Express / MGS observations of plasma near Mars

    Science.gov (United States)

    Brain, D.; Luhmann, J.; Halekas, J.; Frahm, R.; Winningham, D.; Barabash, S.

    2006-12-01

    Since late 2003, Mars Express (MEX) and Mars Global Surveyor (MGS) have been making complementary in situ measurements (in terms of both instrument and orbit) of the Martian plasma environment. Study of MGS and MEX data in tandem provides an opportunity to mitigate the shortcomings of each dataset and increase our overall understanding of the Martian solar wind interaction and atmospheric escape. Close passes of spacecraft (conjunctions) are one particularly powerful means of increasing the utility of measurements, as evidenced by the Cluster mission at Earth. At Mars, conjunctions might be used to obtain more complete simultaneous and/or co-located plasma measurements, which can be used to study a variety of phenomena, including measurements of auroral-like particle acceleration near crustal fields and the three-dimensional motion and shape of plasma boundaries. We will present an analysis of approximately forty conjunctions (instances with instantaneous spacecraft separation smaller than 400 km) of MEX and MGS identified between January 2004 and February 2006. The closest pass was ~40~km, near the South Pole. Conjunctions occur both at mid-latitudes (when the surface-projected orbit tracks of the two spacecraft nearly overlap), and at the poles. We will present comparisons of MEX Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) data with MGS Magnetometer and Electron Reflectometer (MAG/ER) data for these events. Our case studies include intercomparison of MEX and MGS electron data, the addition of MGS magnetic field and MEX ion data, and the inclusion of solar wind proxy information to establish context. In addition to these close conjunctions, we will present the preliminary results of a search for times when MEX and MGS pass through the same region of space separated by a delay (for time evolution of plasma populations in certain regions), and times when they occupy the same flux tube (for spatial evolution of particle distributions). Continued study of

  19. Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars

    Science.gov (United States)

    Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.

    2006-01-01

    Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.

  20. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

    Science.gov (United States)

    Ruff, Steven W.; Farmer, Jack D.

    2016-11-01

    The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2.nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.

  1. Energetics of the martian atmosphere using the Mars Analysis Correction Data Assimilation (MACDA) dataset

    Science.gov (United States)

    Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark

    2016-09-01

    The energetics of the atmosphere of the northern hemisphere of Mars during the pre-winter solstice period are explored using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation, with the quasi-geostrophic omega equation providing vertical velocities. Traveling waves are typically triggered by geopotential flux convergence. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a global-scale dust storm. During the non-GDS years, results agree with that of a previous study using a general circulation model simulation. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.

  2. Mars Descent Imager (MARDI) on the Mars Polar Lander

    Science.gov (United States)

    Malin, M. C.; Caplinger, M. A.; Carr, M. H.; Squyres, S.; Thomas, P.; Veverka, J.

    2001-08-01

    The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (~6 × 6 × 12 cm, including baffle; rocket-powered deceleration. Observational goals will include studies of (1) surface morphology (e.g., nature and distribution of landforms indicating past and present environmental processes) (2) local and regional geography (e.g., context for other lander instruments: precise location, detailed local relief) and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 × 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 × 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a ``best final nonpowered descent image'' will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 × 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view.

  3. Mars Aqueous Chemistry Experiment (MACE)

    Science.gov (United States)

    Benton, Clark C. (Editor)

    1995-01-01

    The concept of an aqueous-based chemical analyzer for Martian surface materials has been demonstrated to be feasible. During the processes of analysis, design, breadboarding, and most importantly, testing, it has become quite apparent that there are many challenges in implementing such a system. Nonetheless, excellent progress has been made and a number of problems which arose have been solved. The ability to conduct this work under a development environment which is separate and which precedes the project-level development has allowed us to find solutions to these implementation realities at low cost. If the instrument had been selected for a mission without this laboratory pre-project work, the costs of implementation would be much higher. In the four areas covered in Sections D, E, F, and G of this Final Report, outstanding progress has been made. There still remains the task of flight-qualifying certain of the components. This is traditionally done under the aegis of a Flight Project, but just as the concept development can be done at much lower cost when kept small and focused, so could the qualification program of critical parts benefit. We recommend, therefore, that NASA consider means of such qualifications and brass-boarding, in advance of final flight development. This is a generic recommendation, but hardware such as the Mars aqueous chemistry experiment (MACE) and other similarly-new concepts are particularly applicable. MACE now has wide versatility, in being able to reliably dispense both liquids and solids as chemical reagents to an entire suite of samples. The hardware and the experiment is much simpler than was developed for the Viking Biology instrument, yet can accomplish all the inorganic chemical measurements that the Viking desing was capable of. In addition, it is much more flexible and versatile to new experiment protocols (and reagents) than the Viking design ever could have been. MACE opens up the opportunity for many different scientific

  4. DS-2 Mars Microprobe Battery

    Science.gov (United States)

    Frank, H.; Kindler, A.; Deligiannis, F.; Davies, E.; Blankevoort, J.; Ratnakumar, B. V.; Surampudi, S.

    1999-01-01

    In January of 1999 the NM DS-2 Mars microprobe will be launched to impact on Mars in December. The technical objectives of the missions are to demonstrate: key technologies, a passive atmospheric entry, highly integrated microelectronics which can withstand both low temperatures and high decelerations, and the capability to conduct in-situ, surface and subsurface science data acquisition. The scientific objectives are to determine if ice is present below the Martian surface, measure the local atmospheric pressure, characterize the thermal properties of the martian subsurface soil, and to estimate the vertical temperature gradient of the Martian soil. The battery requirements are 2-4 cell batteries, with voltage of 6-14 volts, capacity of 550 mAh at 80C, and 2Ah at 25C, shelf life of 2.5 years, an operating temperature of 60C and below, and the ability to withstand shock impact of 80,000 g's. The technical challenges and the approach is reviewed. The Li-SOCL2 system is reviewed, and graphs showing the current and voltage is displayed, along with the voltage over discharge time. The problems encountered during the testing were: (1) impact sensitivity, (2) cracking of the seals, and (3) delay in voltage. A new design resulted in no problems in the impact testing phase. The corrective actions for the seal problems involved: (1) pre weld fill tube, (2) an improved heat sink during case to cover weld and (3) change the seal dimensions to reduce stress. To correct the voltage delay problem the solutions involved: (1) drying the electrodes to reduce contamination by water, (2) assemblage of the cells within a week of electrode manufacture, (3) ensure electrolyte purity, and (4) provide second depassivation pulse after landing. The conclusions on further testing were that the battery can: (1) withstand anticipated shock of up to 80,000 g, (2) meet the discharge profile post shock at Mars temperatures, (3) meet the required self discharge rate and (4) meet environmental

  5. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  6. Examining Traveling Waves in Mars Atmosphere Reanalyses

    Science.gov (United States)

    Greybush, Steven J.; Wilson, R. John

    2015-11-01

    Synoptic-scale eddies (traveling waves) are a key feature of the variability of Mars atmosphere weather in the extratropics, and are linked to the initiation of dust storms. Mars reanalyses, which combine satellite observations with simulations from a Mars Global Climate Model (MGCM), provide a four-dimensional picture of the evolution of these waves in terms of temperature, winds, pressure, and aerosol fields. The Ensemble Mars Atmosphere Reanalysis System (EMARS) has created multiple years of Mars weather maps through the assimilation of Thermal Emission Spectrometer (TES) and Mars Climate Sounder (MCS) temperature profiles using the ensemble Kalman filter and the GFDL MGCM. We investigate the robustness of the synoptic eddies to changes in the aerosol fields, model parameters, data assimilation system design, and observation dataset (TES vs. MCS). We examine the evolution of wavenumber regimes, their seasonal evolution, and interannual variability. Finally, reanalysis fields are combined with spacecraft visible imagery (e.g. MGS Mars Orbital Camera), demonstrating the link between meteorological fields (temperature, pressure, and wind) and dust fronts.

  7. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  8. Mars surface albedo and changes

    CERN Document Server

    Vincendon, Mathieu; Altieri, Francesca; Ody, Anouck

    2014-01-01

    The pervasive Mars dust is continually transported between surface and atmosphere. When on the surface, dust increases the albedo of darker underlying rocks and regolith, which modifies climate energy balance and must be quantified. Remote observation of surface albedo absolute value and albedo change is however complicated by dust itself when lifted in the atmosphere. Here we present a method to calculate and map the bolometric solar hemispherical albedo of the Martian surface using the 2004 - 2010 OMEGA imaging spectrometer dataset. This method takes into account aerosols radiative transfer, surface photometry, and instrumental issues such as registration differences between visible and near-IR detectors. Resulting albedos are on average 17% higher than previous estimates for bright surfaces while similar for dark surfaces. We observed that surface albedo changes occur mostly during the storm season due to isolated events. The main variations are observed during the 2007 global dust storm and during the fol...

  9. Mars Reconnaissance Orbiter Wrapper Script

    Science.gov (United States)

    Gladden, Roy; Fisher, Forest; Khanampornpan, Teerapat

    2008-01-01

    The MRO OLVM wrapper script software allows Mars Reconnaissance Orbiter (MRO) sequence and spacecraft engineers to rapidly simulate a spacecraft command product through a tool that simulates the onboard sequence management software (OLVM). This script parses sequence files to determine the appropriate time boundaries for the sequence, and constructs the script file to be executed by OLVM to span the entirety of the designated sequence. It then constructs script files to be executed by OLVM, constructs the appropriate file directories, populates these directories with needed input files, initiates OLVM to simulate the actual command product that will be sent to the spacecraft, and captures the results of the simulation run to an external file for later review. Additionally, the tool allows a user to manually construct the script, if desired, and then execute the script with a simple command line.

  10. Phoenix Deepens Trenches on Mars

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander took this false color image on Oct. 21, 2008, during the 145th Martian day, or sol, since landing. The bluish-white areas seen in these trenches are part of an ice layer beneath the soil. The trench on the upper left, called 'Dodo-Goldilocks,' is about 38 centimeters (15 inches) long and 4 centimeters (1.5 inches) deep. The trench on the right, called 'Upper Cupboard,' is about 60 centimeters (24 inches) long and 3 centimeters (1 inch) deep. The trench in the lower middle is called 'Stone Soup.' The Phoenix mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Chromatin domains and prediction of MAR sequences.

    Science.gov (United States)

    Boulikas, T

    1995-01-01

    Polynuceosomes are constrained into loops or domains and are insulated from the effects of chromatin structure and torsional strain from flanking domains by the cross-complexation of matrix-attached regions (MARs) and matrix proteins. MARs or SARs have an average size of 500 bp, are spaced about every 30 kb, and are control elements maintaining independent realms of gene activity. A fraction of MARs may cohabit with core origin replication (ORIs) and another fraction might cohabit with transcriptional enhancers. DNA replication, transcription, repair, splicing, and recombination seem to take place on the nuclear matrix. Classical AT-rich MARs have been proposed to anchor the core enhancers and core origins complexed with low abundancy transcription factors to the nuclear matrix via the cooperative binding to MARs of abundant classical matrix proteins (topoisomerase II, histone H1, lamins, SP120, ARBP, SATB1); this creates a unique nuclear microenvironment rich in regulatory proteins able to sustain transcription, replication, repair, and recombination. Theoretical searches and experimental data strongly support a model of activation of MARs and ORIs by transcription factors. A set of 21 characteristics are deduced or proposed for MAR/ORI sequences including their enrichment in inverted repeats, AT tracts, DNA unwinding elements, replication initiator protein sites, homooligonucleotide repeats (i.e., AAA, TTT, CCC), curved DNA, DNase I-hypersensitive sites, nucleosome-free stretches, polypurine stretches, and motifs with a potential for left-handed and triplex structures. We are establishing Banks of ORI and MAR sequences and have undertaken a large project of sequencing a large number of MARs in an effort to determine classes of DNA sequences in these regulatory elements and to understand their role at the origins of replication and transcriptional enhancers.

  12. Enhanced Engineering Cameras (EECAMs) for the Mars 2020 Rover

    Science.gov (United States)

    Maki, J. N.; McKinney, C. M.; Sellar, R. G.; Copley-Woods, D. S.; Gruel, D. C.; Nuding, D. L.; Valvo, M.; Goodsall, T.; McGuire, J.; Litwin, T. E.

    2016-10-01

    The Mars 2020 Rover will be equipped with a next-generation engineering camera imaging system that represents an upgrade over the previous Mars rover engineering cameras flown on the Mars Exploration Rover (MER) mission and the Mars Science Laboratory (MSL) rover mission.

  13. Mar del Plata, ¿una ciudad a puro servicio?

    OpenAIRE

    1998-01-01

    Fil: Atucha, Ana Julia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina. Fil: López, María Teresa. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina. Fil: Volpato, Guillermo. Universidad Nacional de Mar del Plata. Facultad de Ciencias Económicas y Sociales; Argentina.

  14. Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Science.gov (United States)

    Stoker, Carol R.

    2014-01-01

    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  15. Degradation of Victoria Crater, Mars

    Science.gov (United States)

    Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.

    2008-01-01

    The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional

  16. Possible organosedimentary structures on Mars

    Science.gov (United States)

    Rizzo, Vincenzo; Cantasano, Nicola

    2009-10-01

    This study, using the Microscopic Imager (MI) of NASA Rover Exploration Mission's (REM) ‘Opportunity’, aims to explain the origin of laminated sediments lying at Meridiani Planum of Mars, and of the strange spherules, known as blueberries, about which several hypotheses have been formulated. To this purpose, images of the sedimentary textures of layers and fragments captured by REM have been analysed; sediments that NASA has already established as ‘pertinent to water presence’. Our study shows that such laminated sediments and the spherules they contain could be organosedimentary structures, probably produced by microorganisms. The laminated structures are characterized by a sequence of a thin pair of layers, which have the features of skeletal/agglutinated laminae and whose basic constituents are made by a partition of septa and vacuoles radially arranged around a central one. The growth of these supposed organosedimentary masses is based on the ‘built flexibility’ of such a basal element; it may be a coalescing microfossil formed by progressive film accretion (calcimicrobe), in a variety of geometrical gross forms, such as a repeated couplet sequence of laminae or domal mass and large composite polycentric spherule, both in elevation. The acquired structural and textural data seem to be consistent with the existence of life on Mars and could explain an origin of sediments at Meridiani Planum similar to that of terrestrial stromatolites. The Martian deposits, probably produced by cyanobacterial activity, and the embedded blueberries could represent a recurrent and multiform product of colonies with sheath forms, resembling in shape those of the fossil genus Archaeosphaeroides (stromatolites of Fig Tree, South Africa).

  17. MEMOS - Mars Environment Monitoring Satellite

    Science.gov (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish developments and heritage in small- / microsatellites like Astrid-2, SMART-1 or the upcoming rendezvous and formation flying demonstration mission PRISMA.

  18. Seismicity in Northern Germany

    Science.gov (United States)

    Bischoff, Monika; Gestermann, Nicolai; Plenefisch, Thomas; Bönnemann, Christian

    2013-04-01

    Northern Germany is a region of low tectonic activity, where only few and low-magnitude earthquakes occur. The driving tectonic processes are not well-understood up to now. In addition, seismic events during the last decade concentrated at the borders of the natural gas fields. The source depths of these events are shallow and in the depth range of the gas reservoirs. Based on these observations a causal relationship between seismicity near gas fields and the gas production is likely. The strongest of these earthquake had a magnitude of 4.5 and occurred near Rotenburg in 2004. Also smaller seismic events were considerably felt by the public and stimulated the discussion on the underlying processes. The latest seismic event occurred near Langwedel on 22nd November 2012 and had a magnitude of 2.8. Understanding the causes of the seismicity in Northern Germany is crucial for a thorough evaluation. Therefore the Seismological Service of Lower Saxony (NED) was established at the State Office for Mining, Energy and Geology (LBEG) of Lower Saxony in January 2013. Its main task is the monitoring and evaluation of the seismicity in Lower Saxony and adjacent areas. Scientific and technical questions are addressed in close cooperation with the Seismological Central Observatory (SZO) at the Federal Institute for Geosciences and Natural Resources (BGR). The seismological situation of Northern Germany will be presented. Possible causes of seismicity are introduced. Rare seismic events at greater depths are distributed over the whole region and probably are purely tectonic whereas events in the vicinity of natural gas fields are probably related to gas production. Improving the detection threshold of seismic events in Northern Germany is necessary for providing a better statistical basis for further analyses answering these questions. As a first step the existing seismic network will be densified over the next few years. The first borehole station was installed near Rethem by BGR

  19. Recent enhancements to the MARS15 code

    Energy Technology Data Exchange (ETDEWEB)

    Nikolai V. Mokhov et al.

    2004-05-12

    The MARS code is under continuous development and has recently undergone substantial improvements that further increase its reliability and predictive power in numerous shielding, accelerator, detector and space applications. The major developments and new features of the MARS15 (2004) version described in this paper concern an extended list of elementary particles and arbitrary heavy ions and their interaction cross-sections, inclusive and exclusive nuclear event generators, module for modeling particle electromagnetic interactions, enhanced geometry and histograming options, improved MAD-MARS Beam Line Builder, enhanced Graphical-User Interface, and an MPI-based parallelization of the code.

  20. The resources of Mars for human settlement

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.

    1989-01-01

    Spacecraft exploration of Marshas shown that the essential resources necessary for life support are present on the Martian surface. The key life-support compounds O2, N2, and H2O are available on Mars. The soil could be used as radiation shielding and could provide many useful industrial and construction materials. Compounds with high chemical energy, such as rocket fuels, can be manufactured in-situ on Mars. Solar power, and possibly wind power, are available and practical on Mars. Preliminary engineering studies indicate that fairly autonomous processes can be designed to extract and stockpile Martian consumables.

  1. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  2. On Mars Exploration Rovers - Spirit and Opportunity

    Institute of Scientific and Technical Information of China (English)

    李颖; 吴文忠

    2004-01-01

    NASA's twin Mars exploration rovers, now named Spirit and Opportunity, are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists eyes and hands, exploring an environment where humans can't yet go.

  3. NASA Set for 2001 Mars Odyssey

    Institute of Scientific and Technical Information of China (English)

    陈国宁

    2001-01-01

    人类对火星的探索处于起步阶段,却体现出了不屈不饶的精神。NASA在1999年的两次发射太空船均以失败告终,今年发射The Mars Odyssey获得成功。文章告诉我们:The Mars Odyssey will complete its 400-million-mile journey in October.让我们在金秋十月等候The Mars Odyssey发回的关于火星的信息吧。

  4. Evidence for collisionless magnetic reconnection at Mars

    Science.gov (United States)

    Eastwood, J. P.; Brain, D. A.; Halekas, J. S.; Drake, J. F.; Phan, T. D.; Øieroset, M.; Mitchell, D. L.; Lin, R. P.; Acuña, M.

    2008-01-01

    Using data from Mars Global Surveyor (MGS) in combination with Particle-In-Cell (PIC) simulations of reconnection, we present the first direct evidence of collisionless magnetic reconnection at Mars. The evidence indicates that the spacecraft passed through the diffusion region where reconnection is initiated and observed the magnetic field signatures of differential electron and ion motion - the Hall magnetic field - that uniquely indicate the reconnection process. These are the first such in-situ reconnection observations at an astronomical body other than the Earth. Reconnection may be the source of Mars' recently discovered auroral activity and the changing boundaries of the closed regions of crustal magnetic field.

  5. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  6. Non-volant mammals from Nucleo Santa Virginia, Serra do Mar State Park, Sao Paulo, Brazil

    OpenAIRE

    2015-01-01

    This study presents data on the composition and species richness of non-flying mammals in the northern part of the Parque Estadual da Serra do Mar, called Nucleo Santa Virginia (NSV - around 17000 hectares of Atlantic Forest), Sao Paulo state, southeastern Brazil. The species list was based on ca. 660 km of line-transects, 25512 hours of cameras traps, 7740 trap. nights for small mammals, and 394 track-station. days, as well as occasional records and registers from local people (period 2002 t...

  7. Wrinkle ridges in the floor material of Kasei Valles, Mars: Nature and origin

    Science.gov (United States)

    Watters, Thomas R.; Craddock, Robert A.

    1991-01-01

    Wrinkle ridges on Mars occur almost exclusively in smooth plains material referred to as ridged plains. One of the largest contiguous units of ridged plains occurs on Lunae Planum on the eastern flank of the Tharsis rise. The eastern, western, and northern margins of the ridged plains of Lunae Planum suffered extensive erosion in early Amazonian channel-forming events. The most dramatic example of erosion in early Amazonian plains is in Kasei Valles. The nature an origin of the wrinkle ridges in the floor material of Kasei Valles are discussed.

  8. Moderate resolution thermal mapping of Mars - The channel terrain around the Chryse basin

    Science.gov (United States)

    Christensen, P. R.; Kieffer, H. H.

    1979-01-01

    Moderate resolution (about 30 km) thermal inertia estimates have been made for several regions in the northern hemisphere of Mars. Examples of these maps are presented for the region 0-45 deg N, 0-90 deg W. In the region adjoining the Chryse basin there are two major channels, Kasei Vallis and Ares Vallis, whose floor materials have higher thermal inertia than the surrounding upland regions. Moreover, there are numerous craters in the region which have high inertia-low albedo features on the crater floor.

  9. Relays from Mars demonstrate international interplanetary networking

    Science.gov (United States)

    2004-08-01

    On 4 August at 14:24 CEST, as Mars Express flew over one of NASA’s Mars exploration rovers, Opportunity, it successfully received data previously collected and stored by the rover. The data, including 15 science images from the rover's nine cameras, were then downlinked to ESA’s European Space Operations Centre in Darmstadt (Germany) and immediately relayed to the Mars Exploration Rovers team based at the Jet Propulsion Laboratory in Pasadena, USA. NASA orbiters Mars Odyssey and Mars Global Surveyor have so far relayed most of the data produced by the rovers since they landed in January. Communication compatibility between Mars Express and the rovers had already been demonstrated in February, although at a low rate that did not convey much data. The 4 August session, at a transmit rate of 42.6 megabits in about six minutes, set a new mark for international networking around another planet. The success of this demonstration is the result of years of groundwork and was made possible because both Mars Express and the Mars rovers use the same communication protocol. This protocol, called Proximity-1, was developed by the international Consultative Committee for Space Data Systems, an international partnership for standardising techniques for handling space data. Mars Express was 1400 kilometres above the Martian surface during the 4 August session with Opportunity, with the goal of a reliable transfer of lots of data. Engineers for both agencies plan to repeat this display of international cooperation today, 10 August, with another set of Opportunity images. “We're delighted how well this has been working, and thankful to have Mars Express in orbit,” said Richard Horttor of NASA's Jet Propulsion Laboratory, Pasadena, California, project manager for NASA's role in Mars Express. JPL engineer Gary Noreen of the Mars Network Office said: “the capabilities that our international teamwork is advancing this month could be important in future exploration of Mars

  10. Beagle 2: The Next Exobiology Mission to Mars

    Science.gov (United States)

    Gibson, Everett K., Jr.; Pillinger, Colin T.; Wright, Ian P.; Morse, Andy; Stewart, Jenny; Morgan, G.; Praine, Ian; Leigh, Dennis; Sims, Mark R.

    2001-01-01

    Beagle 2 is a 60 kg probe (with a 30 kg lander) developed in the United Kingdom for inclusion on the European Space Agency's 2003 Mars Express. Beagle 2 will deliver to the Martian surface a payload which consists of a high percentage of science instruments to landed spacecraft mass. Beagle 2 will be launched in June, 2003 with Mars Express on a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. Beagle 2 will land on Mars on December 26, 2003 in the Isidis Planitia basin (approximately 10 degrees N and 275 degrees W), a large sedimentary basin that overlies the boundary between ancient highlands and northern plains. Isidis Planitia, the third largest basin on Mars, which is possibly filled with sediment deposited at the bottom of long-standing lakes or seas, offers an ideal environment for preserving traces of life. Beagle 2 was developed to search for organic material and other volatiles on and below the surface of Mars in addition to the study of the inorganic chemistry and mineralogy. Beagle 2 will utilize a mechanical mole and grinder to obtain samples from below the surface, under rocks and inside rocks. A pair of stereo cameras will image the landing site along with a microscope for examination of surface and rock samples. Analyses will include both rock and soil samples at various wavelengths, X-ray spectrometer and Mossbauer spectrometer as well as a search for organics and other light element species (e.g. carbonates and water) and measurement of their isotopic compositions. Beagle 2 has as its focus the goal of establishing whether evidence for life existed in the past on Mars at the Isidis Planitia site or at least establishing if the conditions were ever suitable. Carbonates and organic components were first recognized as existing on Mars when they were found in the Martian meteorite Nakhla. Romanek et al showed the carbonates in ALH84001 were formed at low temperatures. McKay et al noted possible evidence of early life on Mars within the

  11. Northern Pintail Telemetry [ds231

    Data.gov (United States)

    California Department of Resources — Using radio-telemetry, female northern pintail (Anas acuta) survival, distribution, and movements during late August-March in Central California were determined...

  12. MarsCAT: Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster

    Science.gov (United States)

    Bering, E. A., III; Pinsky, L.; Li, L.; Jackson, D. R.; Chen, J.; Reed, H.; Moldwin, M.; Kasper, J. C.; Sheehan, J. P.; Forbes, J.; Heine, T.; Case, A. W.; Stevens, M. L.; Sibeck, D. G.

    2015-12-01

    The MarsCAT (Mars Array of ionospheric Research Satellites using the CubeSat Ambipolar Thruster) Mission is a two 6U CubeSat mission to study the ionosphere of Mars proposed for the NASA SIMPLeX opportunity. The mission will investigate the plasma and magnetic structure of the Martian ionosphere, including transient plasma structures, magnetic field structure and dynamics, and energetic particle activity. The transit plan calls for a piggy back ride with Mars 2020 using a CAT burn for MOI, the first demonstration of CubeSat propulsion for interplanetary travel. MarsCAT will make correlated multipoint studies of the ionosphere and magnetic field of Mars. Specifically, the two spacecraft will make in situ observations of the plasma density, temperature, and convection in the ionosphere of Mars. They will also make total electron content measurements along the line of sight between the two spacecraft and simultaneous 3-axis local magnetic field measurements in two locations. Additionally, MarsCAT will demonstrate the performance of new CubeSat telemetry antennas designed at the University of Houston that are designed to be low profile, rugged, and with a higher gain than conventional monopole (whip) antennas. The two MarsCAT CubeSats will have five science instruments: a 3-axis DC magnetometer, adouble-Langmuir probe, a Faraday cup, a solid state energetic particle detector (Science Enhancement Option), and interspacecraft total electron content radio occulation experiment. The MarsCAT spacecraft will be solar powered and equipped with a CAT thruster that can provide up to 4.8 km/s of delta-V, which is sufficient to achieve Mars orbit using the Mars 2020 piggyback. They have an active attitude control system, using a sun sensor and flight-proven star tracker for determination, and momentum wheels for 3-axis attitude control.

  13. Farewell to the Earth and the Moon -ESA's Mars Express successfully tests its instruments

    Science.gov (United States)

    2003-07-01

    The routine check-outs of Mars Express's instruments and of the Beagle-2 lander, performed during the last weeks, have been very successful. "As in all space missions little problems have arisen, but they have been carefully evaluated and solved. Mars Express continues on its way to Mars performing beautifully", comments Chicarro. The views of the Earth/Moon system were taken on 3 July 2003 by Mars Express's High Resolution Stereo Camera (HRSC), when the spacecraft was 8 million kilometres from Earth. The image taken shows true colours; the Pacific Ocean appears in blue, and the clouds near the Equator and in mid to northern latitudes in white to light grey. The image was processed by the Instrument Team at the Institute of Planetary Research of DLR, Berlin (Germany). It was built by combining a super resolution black and white HRSC snap-shot image of the Earth and the Moon with colour information obtained by the blue, green, and red sensors of the instrument. “The pictures and the information provided by the data prove the camera is working very well. They provide a good indication of what to expect once the spacecraft is in its orbit around Mars, at altitudes of only 250-300 kilometres: very high resolution images with brilliant true colour and in 3D,” says the Principal Investigator of the HRSC, Gerhard Neukum, of the Freie Universität of Berlin (Germany). This camera will be able to distinguish details of up to 2 metres on the Martian surface. Another striking demonstration of Mars Express's instruments high performance are the data taken by the OMEGA spectrometer. Once at Mars, this instrument will provide the best map of the molecular and mineralogical composition of the whole planet, with 5% of the planetary surface in high resolution. Minerals and other compounds such as water will be charted as never before. As the Red Planet is still too far away, the OMEGA team devised an ingenious test for their instrument: to detect the Earth’s surface

  14. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  15. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-07-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k2 of 0.1697 ± 0.0027 (3-σ). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C30 and, for the first time, C50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C30 for ∼1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics (l = 60-80) than previous solutions.

  16. Eskers and other evidence of wet-based glaciation in Phlegra Montes, Mars.

    Science.gov (United States)

    Gallagher, Colman; Balme, Matt

    2016-04-01

    Although glacial landsystems produced under warm/wet based conditions are very common on Earth, glaciological and landform evidence indicates that glaciation on Mars during the Amazonian period (3 Ga to present) has been characterised by cold/dry based glaciers, consistent with the prevailing cold, hyperarid conditions. However, this presentation describes a system of sinuous ridges, interpreted as eskers (1), emerging from the degraded piedmont terminus of a Late Amazonian (˜150 Ma) glacier in the southern Phlegra Montes region of Mars. This is probably the first identification of martian eskers that can be directly linked to their parent glacier. Together with their contextual landform assemblage, the eskers are indicative of glacial melting and subglacial meltwater routing but the confinement of the system to a well-defined, regionally significant graben, and the absence of eskers elsewhere in the region, suggests that melting was a response to locally enhanced geothermal heat flux, rather than regional, climate-induced warming. Now, however, new observations reveal the presence of many assemblages of glacial abrasion forms and associated channels that could be evidence of more widespread wet-based glaciation in Phlegra Montes, including the collapse of several distinct ice domes. This landform assemblage has not been described in other glaciated, mid-latitude regions of the martian northern hemisphere. Moreover, Phlegra Montes are flanked by lowlands displaying evidence of extensive volcanism, including contact between plains lava and piedmont glacial ice. These observations suggest that the glaciation of Phlegra Montes might have been strongly conditioned by both volcanism and more restricted forms of ground-heating. These are important new insights both to the forcing of glacial dynamic and melting behaviour on Mars by factors other than climate and to the production of liquid water on Mars during the Late Amazonian. (1) Gallagher, C. and Balme, M. (2015

  17. Investigating the retention of bright and dark ejecta from small rayed craters on mars

    Science.gov (United States)

    Calef, Fred J., III

    2010-12-01

    Impact cratering is one of the principal geologic processes operating throughout the solar system. On Mars, small rayed impact craters (SRC) form continuously and randomly on the surface. Ejecta retention, the timespan and ability of excavated ejecta to remain in place around a crater rim, records a lineage of recent surface processes. However, the timescales under which small rayed craters are produced and their origin, whether terrestrial or cosmic, plays an important role in further investigating surface processes and possible recent climate variations. By examining thousands of randomly chosen panchromatic images from the Mars Orbiter Camera Narrow Angle (MOCNA) camera, a population of 630 SRC was catalogued across three equatorial and two polar regions on Mars. The survey of MOCNA images also revealed intriguing Enigmatic Linear Features (ELFs) in the northern hemisphere of Mars, which a short side study revealed to be a unique form of dust-devil track. From statistically examining several physical parameters, dust deposition and periglacial erosion were found to be the major factors affecting ejecta retention for the SRC. SRC morphology revealed ejecta retention sequences that followed four stages of ejecta retention from the initial impact to eventual erasure from the surface. By reconstructing the current cratering rate from estimates of atmospheric filtering, it was possible to calculate the ejecta retention age across Mars. In general, SRC ejecta are retained on the surface for <100 ka. Based on ejecta morphology and retention age estimates, a possible shift from depositional to erosional processes just south of the Martian equator is suspected to have occurred within this timeframe.

  18. Mars Atmospheric CO2 Condensation Above the North and South Poles as Revealed by Radio Occultation, Climate Sounder, and Laser Ranging Observations

    Science.gov (United States)

    Hu, Renyu; Cahoy, Kerri; Zuber, Maria T.

    2012-01-01

    We study the condensation of CO2 in Mars atmosphere using temperature profilesretrieved from radio occultation measurements from Mars Global Surveyor (MGS) as wellas the climate sounding instrument onboard the Mars Reconnaissance Orbiter (MRO),and detection of reflective clouds by the MGS Mars Orbiter Laser Altimeter (MOLA). Wefind 11 events in 1999 where MGS temperature profiles indicate CO2 condensation andMOLA simultaneously detects reflective clouds. We thus provide causal evidence thatMOLA non-ground returns are associated with CO2 condensation, which strongly indicatestheir nature being CO2 clouds. The MGS and MRO temperature profiles together revealthe seasonal expansion and shrinking of the area and the vertical extent of atmosphericsaturation. The occurrence rate of atmospheric saturation is maximized at high latitudes inthe middle of winter. The atmospheric saturation in the northern polar region exhibits moreintense seasonal variation than in the southern polar region. In particular, a shrinking ofsaturation area and thickness from LS 270 to 300 in 2007 is found; this is probablyrelated to a planet-encircling dust storm. Furthermore, we integrate the condensation areaand the condensation occurrence rate to estimate cumulative masses of CO2 condensatesdeposited onto the northern and southern seasonal polar caps. The precipitation flux isapproximated by the particle settling flux which is estimated using the impulse responses ofMOLA filter channels. With our approach, the total atmospheric condensation mass canbe estimated from these observational data sets with average particle size as the onlyfree parameter. By comparison with the seasonal polar cap masses inferred from thetime-varying gravity of Mars, our estimates indicate that the average condensate particleradius is 822 mm in the northern hemisphere and 413 mm in the southern hemisphere.Our multi-instrument data analysis provides new constraints on modeling the global climateof Mars.

  19. An origin of life on Mars.

    Science.gov (United States)

    McKay, Christopher P

    2010-04-01

    Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one-possibly preserved in ancient permafrost. A way to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids).

  20. Mars One the ultimate reality TV show?

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book dissects the hype and hubris of the Mars One venture. Every aspect of the mission design is scrutinized, from the haphazard selection process to the unproven mission architecture. A controversial project, many professional astronauts consider Mars One a reckless attempt, yet it gained popular attention. This go-to reference guide provides the reader with insights into the myriad issues arising from the project's loss of funding, loss of sponsorship, loss of TV rights. It explains what contributed to an overly optimistic assessment of Mars One's mission-specific technology, and what captivated the public and the many willing candidates despite these flaws. From the author of Survival and Sacrifice in Mars Exploration (2015) among many more books on spacefaring, this is yet another up-to-the-minute account of an emerging player in the private space market from an expert on the subject.

  1. Radiolytic Alteration of Biosignatures on Mars

    Science.gov (United States)

    Quinn, R. C.

    2016-05-01

    When exposed to ionizing radiation, a complex distribution of redox states and reactive intermediates form in both perchlorate and nitrate salts. These reactive species then act to alter the forms of organic biosignatures preserved on Mars.

  2. Atmosphere of Mars - Mariner IV models compared.

    Science.gov (United States)

    Eshleman, V. R.; Fjeldbo, G.; Fjeldbo, W. C.

    1966-01-01

    Mariner IV models of three Mars atmospheric layers analogous to terrestrial E, F-1 and F-2 layers, considering relative mass densities, temperatures, carbon dioxide photodissociation and ionization profile

  3. Current understanding of the aeronomy of Mars

    Science.gov (United States)

    Nagy, Andrew F.; Grebowsky, Joseph M.

    2015-12-01

    This paper provides a short overview of our current understanding of the upper atmosphere/ionosphere of Mars including the escaping neutral atmosphere to space that plays a key role in the current state of the Mars upper atmosphere. The proper definition of the word "aeronomy" relates to the upper atmosphere where ionization is important. Currently there is a paucity of measurements of the internal physical structure of the Martian upper atmosphere/ionosphere. Much that we know has been deduced from theoretical models that predict many more things than thus far measured. The newest Mars orbital missions, the US MAVEN and Indian MOM missions, just beginning their science analyses, will provide the measurements needed to fully characterize the aeronomy of Mars.

  4. CO2 Removal from Mars EMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  5. Enabling Tethered Exploration on Mars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong science motivations exist for exploring hard to reach terrain on Mars and the leading systems proposed to do so require tethers. While tethers are used...

  6. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  7. Surface chemistry and mineralogy. [of planet Mars

    Science.gov (United States)

    Banin, A.; Clark, B. C.; Waenke, H.

    1992-01-01

    The accumulated knowledge on the chemistry and mineralogy of Martian surface materials is reviewed. Pertinent information obtained by direct analyses of the soil on Mars by the Viking Landers, by remote sensing of Mars from flyby and orbiting spacecraft, by telescopic observations from earth, and through detailed analyses of the SNC meteorites presumed to be Martian rocks are summarized and analyzed. A compositional model for Mars soil, giving selected average elemental concentrations of major and trace elements, is suggested. It is proposed that the fine surface materials on Mars are a multicomponent mixture of weathered and nonweathered minerals. Smectite clays, silicate mineraloids similar to palagonite, and scapolite are suggested as possible major candidate components among the weathered minerals.

  8. Geodesy and cartography. [of planet Mars surface

    Science.gov (United States)

    Davies, Merton E.; Batson, Raymond M.; Wu, Sherman S. C.

    1992-01-01

    An overview of geodesy and cartography of Mars over the past century is presented. The modern exploration began with the Mariner 4, 6, and 7 flyby missions, followed by the Mariner 9 and Viking missions that mapped the entire surface of Mars. The primary modern changes to the coordinate system have led to improved measurements of the rotational period, the direction of the spin axis, and the size and shape of Mars. Planimetric mapping based on Mariner 9 pictures began with a 1:25-M-scale sheet and 30 1:5-M-scale sheets that covered the entire Martian surface. The quality of the Viking Orbiter pictures was greatly improved over Mariner 9 and led to the publication of 140 controlled photomosaic sheets at a scale of 1:2 M. Two digital data bases have been compiled for Mars - the digital image model and the digital terrain model.

  9. CO2 Removal from Mars EMU Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  10. Origin of the tertiary red beds in the Northern part of the Duero Basin (Spain). I. Grain size, roundness, and sphericity

    NARCIS (Netherlands)

    Mabesoone, J.M.

    1961-01-01

    Red sediments of Tertiary age crop out alongside the southern border of the Cantabrian Mountains in the northern part of the Duero basin. They consist mainly of conglomerates with quartzite pebbles, sandstones, and sandy, loamy, and marly deposits, all with a deep red colour. Detailed analyses were

  11. Ongoing Mars Missions: Extended Mission Plans

    Science.gov (United States)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  12. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    Science.gov (United States)

    Pla-García, Jorge

    2017-04-01

    Introduction: The Mars Regional Atmospheric Modeling System (MRAMS) was used to predict meteorological conditions that are likely to be encountered by the Mars 2020 (NASA) Rover at several of their respective proposed landing sites during entry, descent, and landing at Ls5 [1] and by the ExoMars (ESA) Rover at one of the final landing sites. MRAMS is ideally suited for this type of investigation; the model is explicitly designed to simu-late Mars' atmospheric circulations at the mesoscale and smaller with realistic, high-resolution surface proper-ties [2, 3]. One of the sights studied for both rovers was Mawrth Vallis (MV), an ancient water outflow channel with light colored clay-rich rocks in the mid-latitude north hemisphere (Oxia Palus quadrangle). MV is the northernmost of the Mars2020 and ExoMars landing sites and the closest to the northern polar cap water source. The primary source of water vapor to the atmosphere is the northern polar cap during the northern summer. In order to highlight MV habitability implications, additional numerical experiments at Ls90, 140 and 180, highest column abundance of water vapor is found over MV [4], were performed to study how the atmospheric circulation connects MV with the polar water source. Once the winter CO2 retreats, the underlying polar water ice is exposed and begins to sublimate. The water is transported equatorward where it is manifested in the tropical aphelion cloud belt. If transport is assumed to be the result of the summer Hadley Cell, then the polar water is carried aloft in the northern high latitude rising branch before moving equatorward and eventually toward the southern high latitudes. Thus, the mean meridional summer circulation precludes a direct water vapor connection between MV and the polar source. Around the equinoxes (Ls0 and Ls180), there is a brief transition period where the rising branch quickly crosses from one hemisphere into the other as it migrates to its more typical solstitial location

  13. Meteorites on Mars observed with Mars Exploration Rovers

    Science.gov (United States)

    Schroder, C.; Rodionov, D.S.; McCoy, T.J.; Jolliff, B.L.; Gellert, Ralf; Nittler, L.R.; Farrand, W. H.; Johnson, J. R.; Ruff, S.W.; Ashley, James W.; Mittlefehldt, D. W.; Herkenhoff, K. E.; Fleischer, I.; Haldemann, A.F.C.; Klingelhofer, G.; Ming, D. W.; Morris, R.V.; de Souza, P.A.; Squyres, S. W.; Weitz, C.; Yen, A. S.; Zipfel, J.; Economou, T.

    2008-01-01

    Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity's traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as 'Meridiani Planum.' Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. Chondrites have not been identified to date, which may be a result of their lower strengths and probability to survive impact at current atmospheric pressures. Impact craters directly associated with Heat Shield Rock, Barberton, or Santa Catarina have not been observed, but such craters could have been erased by eolian-driven erosion. Copyright 2008 by the American Geophysical Union.

  14. Vitoria y Grocio frente al mar

    Directory of Open Access Journals (Sweden)

    Nicolás Salom-Franco

    2010-03-01

    Full Text Available Este ensayo exclusivo para nuestra Revista Estudios Socio-Jurídicos del doctor Nicolás Salom Franco, contiene una verdadera primicia jurídica en nuestro medio. La supuesta primera respuesta al conocido opúsculo de Hugo Grocio El mar libre, dada por un ignorado jesuita flamenco, el padre Nicolás Bonaert, titulada Minos o el mar seguro, fascinante historia que nuestro escritor invitado desarrolla en su historia.

  15. Rocks: Windows to History of Mars

    Science.gov (United States)

    2004-01-01

    This full-resolution image taken by the panoramic camera onboard the Mars Exploration Rover Spirit before it rolled off the lander shows the rocky surface of Mars. Scientists are eager to begin examining the rocks because, unlike soil, these 'little time capsules' hold memories of the ancient processes that formed them. Data from the camera's red, green and blue filters were combined to create this approximate true color picture.

  16. Rocks: Windows to History of Mars-2

    Science.gov (United States)

    2004-01-01

    This full-resolution image taken by the panoramic camera onboard the Mars Exploration Rover Spirit before it rolled off the lander shows the rocky surface of Mars. Scientists are eager to begin examining the rocks because, unlike soil, these 'little time capsules' hold memories of the ancient processes that formed them. The lander's deflated airbags can be seen in the foreground. Data from the camera's red, green and blue filters were combined to create this approximate true color picture.

  17. Seismic detection of meteorite impacts on Mars

    OpenAIRE

    Teanby, N.A.; Wookey, J.

    2011-01-01

    Abstract Meteorite impacts provide a potentially important seismic source for probing Mars? interior. It has recently been shown that new craters can be detected from orbit using high resolution imaging, which means the location of any impact-related seismic event could be accurately determined thus improving the constraints that could be placed on internal structure using a single seismic station. This is not true of other seismic sources on Mars such as sub-surface faulting, whic...

  18. NASA reschedules Mars mission for 2018

    Science.gov (United States)

    Gwynne, Peter

    2016-04-01

    NASA has announced that its next mission to Mars will be launched in May 2018 following the discovery of a leak in a key scientific instrument. The mission - Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) - was originally scheduled to launch last month and reach Mars later this year, but the new launch window means it will now not land on the red planet until November 2018.

  19. Mars ascent propulsion on a minimum scale

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.C.; Guernsey, C.S.

    1998-03-03

    A concept is presented for a single stage vehicle intended to lift a Mars sample to an orbital rendezvous. At 200 kg liftoff mass, it can potentially be delivered by a Mars Pathfinder size aeroshell. Based on launch vehicle design principles, propellants are pumped from thin-walled low pressure tanks into compact high pressure thrusters. Technical risk is reduced by using non-cryogenic propellants, and by driving piston pumps with heated helium.

  20. Mars to orbit with pumped hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J C

    1999-04-27

    A propulsion point design is presented for lifting geological samples from Mars. Vehicle complexity is kept low by choosing a monopropellant single stage. Little new development is needed, as miniature pump fed hydrazine has been demonstrated. Loading the propellant just prior to operation avoids structural, thermal, and safety constraints otherwise imposed by earlier mission phases. Hardware mass and engineering effort are thereby diminished. The Mars liftoff mass is 7/8 hydrazine, <5% propulsion hardware, and >3% each for the payload and guidance.

  1. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  2. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  3. Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

    Science.gov (United States)

    Zuber,Maria T.; Smith, David E.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Hauck, Steven A., Jr.; Peale, Stanton J.; Barnouin, Oliver S.; Head, James W.; Johnson, Catherine L.; Lemoine, Frank G.; Mazarico, Erwan; Sun, Xiaoli; Torrence, Mark H.; Freed, Andrew M.; Klimczak, Christian; Margot, Jean-Luc; Oberst, Juergen; Perry, Mark E.; McNutt, Ralph L., Jr.; Balcerski, Jeffrey A.; Michel, Nathalie; Talpe, Matthieu J.; Yang, Di

    2012-01-01

    Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury s topography occurred after the earliest phases of the planet s geological history.

  4. Recurring Slope Lineae and Future Exploration of Mars

    Science.gov (United States)

    McEwen, Alfred; Byrne, Shane; Chevrier, Vincent; Chojnacki, Matt; Dundas, Colin; Masse, Marion; Mattson, Sarah; Ojha, Lujendra; Pommerol, Antoine; Toigo, Anthony; Wray, James

    2014-05-01

    Recurring slope lineae (RSL) on Mars may be evidence for the seasonal flow or seepage of water on relatively warm slopes. RSL are narrow (250 K to >300 K. Over the past Martian year we have monitored active RSL in equatorial (0°-15°S) regions of Mars, especially in the deep canyons of Valles Marineris [McEwen et al., 2014, Nature Geoscience]. These equatorial RSL are especially active on north-facing slopes in northern summer and spring and on south-facing slopes in southern spring and summer, following the most normal solar incidence angles on these steep slopes. More recently we have confirmed RSL near 35°N in the low-albedo and low-altitude Acidalia Planitia. All RSL locations have warm peak daily temperatures (typically >273 K at the surface) in the seasons when RSL are active, and occur on steep, rocky, low-albedo slopes. However, most times and places with these properties lack apparent RSL, so there are additional, unseen requirements. We do not know what time of day RSL are actively flowing. Seasonal variation in the atmospheric column abundance of water vapor does not match the RSL activity. Seasonal melting of shallow ice best explains the RSL observations, but the origin and replenishment of such ice is not understood, especially in the tropics. Laboratory experiments are consistent with two key MRO observations: (1) that seeping water darkens basaltic soils but may only produce weak water absorption bands undetectable in ratio spectra after partial dehydration during the low-humidity middle afternoon conditions when MRO observes; and (2) the flows are more linear than under terrestrial conditions and do not erode channels under Martian atmospheric pressures [Masse et al., 2014, LPSC]. No dry process is known to create such slowly creeping seasonal flows. The potential for equatorial water activity creates new exploration opportunities, to search for extant life, as well as challenges such as the definition of special regions for planetary protection.

  5. Eolian Soft-Sediment Deformation Records on Earth and Mars

    Science.gov (United States)

    Chan, M. A.; Okubo, C. H.; Bruhn, R. L.

    2014-12-01

    Eolian (wind-blown) dune deposits are widespread on Earth and Mars, with soft-sediment deformation preserved in cross-bedded sandstone deposits comprising important records of past environmental conditions. Exceptional 3-D exposures of the Jurassic Navajo Sandstone, in the Vermilion Cliffs National Monument of northern Arizona, contain distinctive intervals of decameter- scale soft-sediment contortions, up-turned dune sets, brittle strain, massive layers with breccia blocks, and associated geomorphic mounds. Both field studies and remote-controlled unmanned aerial vehicles (airplane or kite) images respectively provide "ground truth" and "bird's-eye" perspectives of the deformation. The nature of the continuous folds within stratigraphically constrained beds indicates confining layers breached by rapid fluid expulsion, strain softening, and cataclastic flow of partially lithified sandstone under water-saturated conditions (i.e., a relatively high-water table), consistent with theoretical and laboratory studies of deformation in saturated sand. Loose grain packing and high porosity and permeability in eolian sands allow for water-filled pores, which are conducive for soft-sediment deformation. The likely driver for this observed deformation was liquefaction-induced ground failure from strong ground motion, such as long-duration surface waves of a large earthquake. These eolian examples preserve complex geologic stories and serve as paleoenvironmental records. Mars Reconnaissance Orbiter (MRO) HiRISE images of exposed layer contortions and soft-sediment deformation in Candor Chasma are remarkably similar to the Jurassic examples. The Jurassic analog examples provide baseline criteria to help interpret high-water table conditions and subsequent strong ground motion in the late Hesperian to early Amazonian sediments on the floor of Candor Chasma and other chasmata of Valles Marineris.

  6. Human Mars Missions: Cost Driven Architecture Assessments

    Science.gov (United States)

    Donahue, Benjamin

    1998-01-01

    This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.

  7. Mars Exploration Rover thermal test program overview

    Science.gov (United States)

    Pauken, Michael T.; Kinsella, Gary; Novak, Keith; Tsuyuki, Glenn

    2004-01-01

    In January 2004, two Mars Exploration Rovers (MER) landed on the surface of Mars to begin their mission as robotic geologists. A year prior to these historic landings, both rovers and the spacecraft that delivered them to Mars, were completing a series of environmental tests in facilities at the Jet Propulsion Laboratory. This paper describes the test program undertaken to validate the thermal design and verify the workmanship integrity of both rovers and the spacecraft. The spacecraft, which contained the rover within the aeroshell, were tested in a 7.5 m diameter thermal vacuum chamber. Thermal balance was performed for the near earth (hot case) condition and for the near Mars (cold case) condition. A solar simulator was used to provide the solar boundary condition on the solar array. IR lamps were used to simulate the solar heat load on the aeroshell for the off-sun attitudes experienced by the spacecraft during its cruise to Mars. Each rover was tested separately in a 3.0 m diameter thermal vacuum chamber over conditions simulating the warmest and coldest expected Mars diurnal temperature cycles. The environmental tests were conducted in a quiescent nitrogen atmosphere at a pressure of 8 to 10 Torr. In addition to thermal balance testing, the science instruments on board the rovers were tested successfully in the extreme environmental conditions anticipated for the mission. A solar simulator was not used in these tests.

  8. Urey: Mars Organic and Oxidant Detector

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version Some key components of a NASA-funded instrument being developed for the payload of the European Space Agency's ExoMars mission stand out in this illustration of the instrument. The instrument is the Urey: Mars Organic and Oxidant Detector. It can check for the faintest traces of life's molecular building blocks. If those are present, it can assess whether they were produced by anything alive. It can also evaluate harsh environmental conditions that could be erasing those molecular clues. ExoMars is planned as a rover to be launched in 2013 and search on Mars for signs of life. Samples of Martian soil collected by a drill on the rover will be delivered to the Urey instrument. The instrument component called the sub-critical water extractor adds water and heats the sample, getting different types of organic compounds to dissolve into the water at different temperatures. The Mars organic detector uses a fluorescent reagent and laser to detect organic chemicals. The micro-capillary electrophoresis component separates different types of organic chemicals from each others for identifying which ones are present in the sample. The Mars oxidant instrument, part of which is on a separately mounted deck unit not pictured, assesses how readily organic material would be broken down by the radiation, atmosphere and soil chemistry of the site.

  9. Mars and How to Observe It

    CERN Document Server

    Grego, Peter

    2012-01-01

    Mars has long been a favorite subject for astronomers, both amateur and professional. Known as the Red Planet because of its distinct color, it shines brightly in the skies when it is closest to the Earth every two years. Exciting to view through a telescope, this most Earth-like of planets transforms into a real world showing phases, brilliant polar ice caps, seasonal changes in its dusty desert markings, and atmospheric phenomena. Mars and How to Observe It takes readers on a planet-wide tour of the Red Planet and explains how a variety of dynamic forces has shaped it through the ages. This book explains how amateur astronomers can view Mars successfully to create accurate observational drawings and secure high-resolution CCD images of the planet. Peter Grego is an accomplished author, an experienced amateur astronomer who has been actively observing Mars for over 30 years. Using the latest imagery and data from Mars probes and rovers, Mars and How to Observe It presents an up-to-date guide on our current u...

  10. Robust, affordable, semi-direct Mars mission

    Science.gov (United States)

    Salotti, Jean-Marc

    2016-10-01

    A new architecture is proposed for the first manned Mars mission, based on current NASA developments (SLS and Orion), chemical propulsion for interplanetary transit, aerocapture for all vehicles, a split strategy, and a long stay on the surface. Two important choices make this architecture affordable and appropriate for the first mission. The first is splitting the Earth return vehicle into two parts that are launched separately and dock in Mars orbit. This is necessary to make aerocapture feasible and efficient, which considerably reduces mass. The second is reducing the crew to 3 astronauts. This simplifies the mission and reduces the SLS payload mass under the 45-metric ton limit for a direct TMI (trans-Mars injection) burn without LEO assembly. Only 4 SLS launches are required. The first takes the Mars ascent vehicle and in situ resource utilization systems to the planet's surface. The second takes the first part of the Earth return vehicle, the habitat, into Mars orbit. Two years later, two further SLS launches take a dual-use habitat (outbound trip and surface), Orion, and an enhanced service module to LEO, and then into Mars orbit, followed by the landing of the habitat on the surface. Transit time is demonstrated to be easily reduced to less than 6 months, with relatively low impact on propellant mass and none at all on the architecture.

  11. Assessing Group Dynamics in a Mars Simulation

    Science.gov (United States)

    Bishop, S. L.

    2007-10-01

    International interest in psychosocial functioning generally and issues of group and inter-group function for space crews has increased as focus has shifted towards longer duration spaceflight and, particularly, the issues involved in sending a human crew to Mars (Kanas, et al., 2001; Dawson, 2002). Planning documents for a human mission to Mars such as the NASA Design Reference Mission (DRM 1.0) emphasize the need for adaptability of crewmembers and autonomy in the crew as a whole (Hoffman and Kaplan, 1997). Similarly a major study by the International Space University (ISU, 1991) emphasized the need for autonomy and initiative for a Mars crew given that many of the scenarios that will be encountered on Mars cannot be rehearsed on earth and given the lack of any realistic possibility for rescue of the crew. This research project was only one subset of data collected during the larger AustroMars Expedition at the Mars Desert Research Facility (MDRS) in 2006. The participating crew comprises part of a multi-year investigation on teams utilizing the MDRS facility. The program of research has included numerous researchers since 2002 with a progressive evolution of key foci addressing stress, personality, coping, adaptation, cognitive functioning, and group identity assessed across the duration period of the individual missions.

  12. Urey: Mars Organic and Oxidant Detector

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version Some key components of a NASA-funded instrument being developed for the payload of the European Space Agency's ExoMars mission stand out in this illustration of the instrument. The instrument is the Urey: Mars Organic and Oxidant Detector. It can check for the faintest traces of life's molecular building blocks. If those are present, it can assess whether they were produced by anything alive. It can also evaluate harsh environmental conditions that could be erasing those molecular clues. ExoMars is planned as a rover to be launched in 2013 and search on Mars for signs of life. Samples of Martian soil collected by a drill on the rover will be delivered to the Urey instrument. The instrument component called the sub-critical water extractor adds water and heats the sample, getting different types of organic compounds to dissolve into the water at different temperatures. The Mars organic detector uses a fluorescent reagent and laser to detect organic chemicals. The micro-capillary electrophoresis component separates different types of organic chemicals from each others for identifying which ones are present in the sample. The Mars oxidant instrument, part of which is on a separately mounted deck unit not pictured, assesses how readily organic material would be broken down by the radiation, atmosphere and soil chemistry of the site.

  13. The Search for Life on Mars

    Science.gov (United States)

    Mumma, Michael J.

    2012-01-01

    For centuries, the planet Mars has been regarded as a possible abode for life. Serious searches for the signatures of life began in the 19th century, and continue via telescopic investigations and landed missions. While early work focused on phenomenology and bordered on fantasy, modern scientific inquiry has emphasized the search for chemical signatures of life in the soil and rocks at the planet's surface, and the search for biomarker gases in the atmosphere. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. The discovery of methane on Mars will be described, along with the ongoing extended search for clues to its origins. The possible origins of Mars methane will be discussed in the context of terrestrial analogue sites where geologic and biologic methane production now occurs - ranging from sub-permafrost zones in the arctic to hydrothermal vents in the deep ocean. Terrestrial organisms that could prosper on Mars today will be mentioned. I will briefly touch upon experiments conducted by landed spacecraft, ranging from the Viking Life Science Experiments in 1976 to the impending Mars Science laboratory, and the Trace Gas Orbiter and ExoMars missions now being developed for flight in the coming decade.

  14. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  15. Nuevos registros del parásito Probopyrus pacificensis (Isopoda: Bopyridae en el sur de Nayarit y norte de Jalisco, México New records of the parasite Probopyrus pacificensis (Isopoda: Bopyridae in southern Nayarit and northern Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Alberto Ocaña-Luna

    2009-04-01

    Full Text Available Se presentan nuevos registros de Probopyrus pacificensis en el arroyo San Francisco, sur de Nayarit y en el arroyo Palo María, norte de Jalisco en el Pacífico mexicano, parasitando a camarones de agua dulce de la especie Macrobrachium tenellum.New observations of Probopyrus pacificensis were recorded in Arroyo San Francisco, southern Nayarit, and Arroyo Palo María, northern Jalisco, in the Mexican Pacific, infesting the freshwater shrimp Macrobrachium tenellum.

  16. The Lemmatisation of Adverbs in Northern Sotho*

    Directory of Open Access Journals (Sweden)

    D.J. Prinsloo

    2011-10-01

    Full Text Available

    Abstract: To date Northern Sotho metalexicographers have focused their attention on lemma-tisation problems in respect of the so-called main or primary part of speech categories, viz. nouns and verbs. See, for example, Prinsloo and De Schryver (1999 and Prinsloo and Gouws (1996. No attention has been given to the lemmatisation of adverbs. The latter are regarded by Ziervogel and Mokgokong (1975: 114, Introduction as a "secondary part of speech". The treatment of adverbs in Northern Sotho dictionaries is marred by inconsistencies such as omissions from the macrostruc-ture, insufficient and inconsistent labelling, inferior treatment in the microstructure, under-utiliza-tion of the mediostructure and outer texts, and reflects a lack of a strategy of selection of items for lemmatisation. Linguistic descriptions of adverbs in currently available grammars vary substan-tially and therefore confuse learners of the language and inexperienced lexicographers1. The aim of this article is to offer solutions to the lemmatisation problems regarding adverbs in Northern Sotho and to propose guiding entries for paper and electronic dictionaries which could serve as models for future dictionaries. The treatment of adverbs in Northern Sotho dictionaries will also be criti-cally evaluated, especially in terms of frequency of use and target users' needs.

    Keywords: LEXICOGRAPHY, LEMMATISATION, ADVERBS, INFORMATION RETRIEV-AL, ELECTRONIC DICTIONARY, MACROSTRUCTURE, MICROSTRUCTURE, CROSS-REFER-ENCING, MEDIOSTRUCTURE, DICTIONARY, AFRICAN LANGUAGES, BACK MATTER, NORTHERN SOTHO

    Opsomming: Die lemmatisering van bywoorde in Noord-Sotho. Tot dusver het Noord-Sotho metaleksikograwe hulle aandag bepaal by lemmatiseringsprobleme ten opsigte van die sogenaamde primêre woordkategorieë, naamlik naamwoorde en werkwoorde. Vergelyk byvoorbeeld, Prinsloo en De Schryver (1999 en Prinsloo en Gouws (1996. Geen aandag is gegee aan die lemmatisering van bywoorde nie

  17. Polygonal Ridge Networks on Mars

    Science.gov (United States)

    Kerber, Laura; Dickson, James; Grosfils, Eric; Head, James W.

    2016-10-01

    Polygonal ridge networks, also known as boxwork or reticulate ridges, are found in numerous locations and geological contexts across Mars. While networks formed from mineralized fractures hint at hot, possibly life-sustaining circulating ground waters, networks formed by impact-driven clasting diking, magmatic dikes, gas escape, or lava flows do not have the same astrobiological implications. Distinguishing the morphologies and geological context of the ridge networks sheds light on their potential as astrobiological and mineral resource sites of interest. The most widespread type of ridge morphology is characteristic of the Nili Fossae and Nilosyrtis region and consists of thin, criss-crossing ridges with a variety of heights, widths, and intersection angles. They are found in ancient Noachian terrains at a variety of altitudes and geographic locations and may be a mixture of clastic dikes, brecciated dikes, and mineral veins. They occur in the same general areas as valley networks and ancient lake basins, but they are not more numerous where these features are concentrated, and can appear in places where they morphologies are absent. Similarly, some of the ridge networks are associated with hydrated mineral detections, but some occur in locations without detections. Smaller, light-toned ridges of variable widths have been found in Gale Crater and other rover sites and are interpreted to be smaller version of the Nili-like ridges, in this case formed by the mineralization of fractures. This type of ridge is likely to be found in many other places on Mars as more high-resolution data becomes available. Hellas Basin is host to a third type of ridge morphology consisting of large, thick, light-toned ridges forming regular polygons at several superimposed scales. While still enigmatic, these are most likely to be the result of sediment-filled fractures. The Eastern Medusae Fossae Formation contains large swaths of a fourth, previously undocumented, ridge network type

  18. Fertilization in northern forests

    DEFF Research Database (Denmark)

    Hedwall, Per Ola; Gong, Peichen; Ingerslev, Morten

    2014-01-01

    resources into food, health and industrial products and energy. Fertilization in Sweden and Finland is currently practiced by extensive fertilization regimens where nitrogen fertilizers are applied once, or up to three times, during a rotation period, mainly in mature forest. This type of fertilization......Forests of northern ecosystems respond slowly to management activities and the possibilities to increase the growth in a short-term perspective and meet swift increases in society's demand for biomass are small. An exception among the silvicultural measures is fertilization which can be applied...... in combination with present management systems and, almost instantly, enhances forest productivity. There may, however, be both economic and environmental constraints to large-scale applications of fertilizers in forest. Here we review the literature concerning biomass production of forests under different...

  19. Glyphosate in northern ecosystems.

    Science.gov (United States)

    Helander, Marjo; Saloniemi, Irma; Saikkonen, Kari

    2012-10-01

    Glyphosate is the main nonselective, systemic herbicide used against a wide range of weeds. Its worldwide use has expanded because of extensive use of certain agricultural practices such as no-till cropping, and widespread application of glyphosate-resistant genetically modified crops. Glyphosate has a reputation of being nontoxic to animals and rapidly inactivated in soils. However, recent evidence has cast doubts on its safety. Glyphosate may be retained and transported in soils, and there may be cascading effects on nontarget organisms. These processes may be especially detrimental in northern ecosystems because they are characterized by long biologically inactive winters and short growing seasons. In this opinion article, we discuss the potential ecological, environmental and agricultural risks of intensive glyphosate use in boreal regions.

  20. Mars Through the Eye of HiRISE

    Science.gov (United States)

    McEwen, A. S.; Hirise, T.

    2007-05-01

    The High Resolution Imaging Science Experiment (HiRISE) has acquired more than 2 Tb of data in more than 1,000 images of Mars at resolutions as high as 25 cm/pixel in the 3 PM mapping orbit of Mars Reconnaissance Orbiter. Each image consists of data from up to 14 CCD detectors and could contain as many as 3 giga-pixels. Early results include (1) improved knowledge of the stratigraphy of the north polar layered deposits and the origin of the thick basal unit; (2) discovery that rocks are uniformly abundant in the Vastitas Borealis Formation covering the northern lowlands; (3) imaging of past landing sites has provided new insights and surprises about the nature of these surfaces; (4) fine layered deposits in Valles Marineris, Meridiani Planum, Arabia Terra and elsewhere are often cut by indurated and/or bleached joints and faults, most likely due to precipitation from fluids; (5) regions of Mars rich in phyllosilicate minerals [Murchie et al., submitted] are seen to consist of layered deposits with fine-scale fractures and polygons; (6) lava flows through Athabasca Valles were surprisingly thick flows that were deflated and drained, leaving behind a veneer of lava with abundant evidence for lava-water interactions; (7) stratigraphic studies reveal two major episodes of fluvial/lacustrine activity in Holden crater, and we've detected exposures of ancient megabreccia in the crater walls; (8) recent large (3-60 km) impact craters have created a range of apparently fluvially-modified landforms; (9) a small cluster of craters from a very recent impact event created a large (~2 km) wide blast zone with thousands of dust avalanches; (10) relatively bright deposits associated with very recent activities in gullies appear to consist of materials eroded from the crater slopes; (11) the south polar residual cap of CO2 has a range of newly-discovered morphologies that constrain models for landscape evolution; and(12) geysers or cold jets associated with sublimation of the