WorldWideScience

Sample records for lycophyte isoetes engelmannii

  1. Root apical meristem diversity in extant lycophytes and implications for root origins.

    Science.gov (United States)

    Fujinami, Rieko; Yamada, Toshihiro; Nakajima, Atsuko; Takagi, Shoko; Idogawa, Ai; Kawakami, Eri; Tsutsumi, Maiko; Imaichi, Ryoko

    2017-08-01

    Root apical meristem (RAM) organization in lycophytes could be a key to understanding the early evolution of roots, but this topic has been insufficiently explored. We examined the RAM organization of lycophytes in terms of cell division activities and anatomies, and compared RAMs among vascular plants. RAMs of 13 species of lycophytes were semi-thin-sectioned and observed under a light microscope. Furthermore, the frequency of cell division in the RAM of species was analyzed using thymidine analogs. RAMs of lycophytes exhibited four organization types: type I (Lycopodium and Diphasiastrum), II (Huperzia and Lycopodiella), III (Isoetes) and RAM with apical cell (Selaginella). The type I RAM found in Lycopodium had a region with a very low cell division frequency, reminiscent of the quiescent center (QC) in angiosperm roots. This is the first clear indication that a QC-like region is present in nonseed plants. At least four types of RAM are present in extant lycophytes, suggesting that RAM organization is more diverse than expected. Our results support the paleobotanical hypothesis that roots evolved several times in lycophytes, as well as in euphyllophytes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Isoetes mississippiensis: A new quillwort from Mississippi, USA

    Directory of Open Access Journals (Sweden)

    Peter W. Schafran

    2016-11-01

    Full Text Available Isoetes mississippiensis S.W. Leonard, W.C. Taylor, L.J. Musselman and R.D. Bray (Isoetaceae, Lycopodiophyta is a new species known from two sites along tributaries of the Pearl River in southern Mississippi. This species is distinguished from other species in the southeastern United States by a combination of character states including a basic diploid (2n=22 chromosome count, laevigate megaspores, and a narrow velum covering less than one-third of the adaxial sporangium wall.

  3. Isoetes mississippiensis: A new quillwort from Mississippi, USA

    Science.gov (United States)

    Schafran, Peter W.; Leonard, Steven W.; Bray, Rebecca D.; Taylor, W. Carl; Musselman, Lytton J.

    2016-01-01

    Abstract Isoetes mississippiensis S.W. Leonard, W.C. Taylor, L.J. Musselman and R.D. Bray (Isoetaceae, Lycopodiophyta) is a new species known from two sites along tributaries of the Pearl River in southern Mississippi. This species is distinguished from other species in the southeastern United States by a combination of character states including a basic diploid (2n=22) chromosome count, laevigate megaspores, and a narrow velum covering less than one-third of the adaxial sporangium wall. PMID:28127238

  4. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages

    Directory of Open Access Journals (Sweden)

    Mandoli Dina F

    2010-10-01

    Full Text Available Abstract Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants, lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense, and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels. We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns

  5. Spatial Distribution Pattern of Populations of Isoetes sinensis Palmer, an Endangered Quillwort in China

    Institute of Scientific and Technical Information of China (English)

    WANG Jingyuan; Robert Wahiti Gituru; CHEN Jinming; WANG Qingfeng

    2006-01-01

    The distribution pattern of Isoetes sinensis populations was investigated in relation to its biological characteristics such as age structure and regeneration mode, and the microenvironment. Contagious distribution pattern was found in populations of all sizes. Under the same climatic and site conditions, the heterogeneity of microenvironment resulting from the different depths of water and soil erosion significantly affected the type and scale of distribution patterns of Isoetes sinensis populations. Even at the same site, the center and the edges of the water body had different effects on the distribution pattern of the plants. As one of the co-dominants, the distribution of Isoetes sinensis in communities was affected by other dominant species, especially by the evergreen grass species. Water is the major factor determining the distribution pattern of Isoetes sinensis in various communities. The pattern of contagious distribution was observed in different size of populations of I. sinensis, however the Lloyd indices obtained for the populations of various sizes differed significantly.

  6. Three dwarf lycophytes from the Carboniferous of Argentina*)

    NARCIS (Netherlands)

    Archangelsky, S.; Azcuy, C.L.; Wagner, R. H.

    1981-01-01

    Impressions of the bark of two small lycophytes, Bumbudendron paganzianum gen. et sp. nov. and Bumbudendron nitidum sp. nov., are described from middle Carboniferous shales in the Sierra de Paganzo. Lepidodendroid leaf cushions with a well-developed leaf scar showing a single trace, and the presence

  7. Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J

    2013-04-01

    Little is known about how a predominantly passive hydraulic stomatal control in ferns and lycophytes might impact water use under stress. Ferns and lycophytes occupy a diverse array of habitats, from deserts to rainforest canopies, raising the question of whether stomatal behaviour is the same under all ecological strategies and imposes ecological or functional constraints on ferns and lycophytes. We examined the stomatal response of a diverse sample of fern and lycophyte species to both soil and atmospheric water stress, assessing the foliar level of the hormone abscisic acid (ABA) over drought and recovery and the critical leaf water potential (Ψl) at which photosynthesis in droughted leaves failed to recover. The stomata of all ferns and lycophytes showed very predictable responses to soil and atmospheric water deficit via Ψl, while stomatal closure was poorly correlated with changes in ABA. We found that all ferns closed stomata at very low levels of water stress and their survival afterwards was limited only by their capacitance and desiccation tolerance. Ferns and lycophytes have constrained stomatal responses to soil and atmospheric water deficit as a consequence of a predominantly passive stomatal regulation. This results in a monotypic strategy in ferns and lycophytes under water stress.

  8. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration...... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...... malate at dawn, compared with at dusk, and also by changes in the titratable acidity (lmol H+ equivalents) of leaves. Leaves high in malate showed not only higher underwater net photosynthesis at low external CO2 concentrations but also lower apparent photorespiration. Suppression by CAM of apparent...

  9. A Preliminary Study of Crassulacean Acid Metabolism (CAM) in the Endangered Aquatic Quillwort Isoetes sinensis Palmer in China

    Institute of Scientific and Technical Information of China (English)

    PangXin-an; WangQing-feng; GituruW.Robert; LiuHong; YangXiao-lin; LiuXing

    2003-01-01

    Isoetes sinensis Palmer (Isoetaceae) is an aquatic or amphibious plant that is critically endangered in China. Previous studies have revealed the crassulacean acid metabolism (CAM)-like photosynthetic pathway occurs commonly in submerged leaves in genus Isoetes. Water chemistry parameters and the titratable acidity content of the plant extract were measured from samples obtained in the early morning (7:00) and late afternoon (15=00) from two I.sinensis populations in China. One population occurs in the eulittoral zone of a freshwater tidal river at low elevation (134 m) and another occurs in a densely vegetated, high elevation (1 100 m) alpine shallow pool. Significant difference sin pH and titratable acidity of the plant extract were detected between the morning and afternoon samples. These changes are associated with diurnal changes in water chemistry. Our results provide the first evidence for the existence of the CAM pathway in the East Asian endemic Isoetes sinensis Palmer.The magnitude of fluctuations in the titratable acidity of the plant extract may be correlated with the severe carbon limitation imposed on the plants by its aquatic habitat.

  10. A Preliminary Study of Crassulacean Acid Metabolism (CAM) in the Endangered Aquatic Quillwort Isoetes sinensis Palmer in China

    Institute of Scientific and Technical Information of China (English)

    Pang Xin-an; Wang Qing-feng; Gituru W.Robert; Liu Hong; Yang Xiao-lin; Liu Xing

    2003-01-01

    Isoetes sinensis Palmer (Isoetaceae) is an aquatic or amphibious plant that is critically endangered in China. Previous studies have revealed the crassulacean acid metabolism (CAM)-like photosynthetic pathway occurs com-monly in submerged leaves in genus Isoetes. Water chemistry parameters and the titratable acidity content of the plant extract were measured from samples obtained in the early morning (7:00) and late afternoon (15:00) from two I.sinensis populations in China. One population occurs in the eulittoral zone of a freshwater tidal river at low elevation (134 m) and another occurs in a densely vegetated, high elevation (1 100 m) alpine shallow pool. Significant differences in pH and titratable acidity of the plant extract were detected between the morning and afternoon samples. These changes are associated with diurnalchanges in water chemistry. Our results provide the first evidence for the exist-ence of the CAM pathwa in the East Asian endemic Isoetes sinensis Palmer.The magnitude of fluctuations in the titratable acidity of the plant extract mayb e correlated with the severe carbon limitation imposed on the plants by its aquatic habitat.

  11. Effects of Lead on Ultrastructure of Isoetes sinensis Palmer (Isoetaceae, a Critically Endangered Species in China.

    Directory of Open Access Journals (Sweden)

    Guohua Ding

    Full Text Available Isoetes sinensis Palmer (Isoetaceae is a critically endangered fern that is a marsh plant (that is an aquatic or amphibious plant in China. To evaluate damage or influence of lead (Pb on cell ultrastructure in I. sinensis, we used 2000mg·L-1 Pb(NO32 solution to treat I. sinensis for 35d, and used transmission electron microscope (TEM to observe the cell ultrastructure of leaf blades and roots of the plant. Our results indicated that Pb induced distinct changes of the organelles including chloroplast, mitochondria, nucleolus and vacuole. The level of damage organ was lower leaf > upper leaf > root The typical performance of the damages caused by lead shown that part of the nucleolus cracked; the cristae dilated, matrix vacuolized and membrane structure blurred in mitochondria; the vacuole cracked; grana lamella decreased, stroma lamella loosed, starch grains decreased, and membrane structure was disrupted in chloroplasts; Pb deposits were present on cell wall. The damages to chloroplasts and mitochondria were relatively severe, while damage to the nucleus was relatively lighter. The damage to the cell ultrastructure of leaf blades with direct contact with Pb was more severe than that without direct contact with Pb.

  12. Genetic diversity in Isoetes yunguiensis,a rare and endangered endemic fern in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jinming; Wahiti R.Gituru; LIU Xing; WANG Qingfeng

    2007-01-01

    Isoetes yunguiensis is an endangered and endemic fern in China.Field survey indicated that only one population and no more than 50 individuals occur in the wild.The genetic variation of 46 individuals from the population remaining at Pingha (Guizhou Province,China)was assessed by Random Amplified Polymorphic DNA (RAPD)fingerprinting.Twelve primers were screened from sixty ten-bp arbitrary primers,and a total of 95 DNA fragments were scored.Of these,62.1%were polymorphic loci,which indicated that high level genetic variation existed in the natural population.The accumulation of genetic variation in the history of the taxon and the apparent minimal reduction effect on genetic diversity following destruction of habitat might be responsible for the high level genetic diversity presently remaining in the I.yunguiensis population.However,with the continuing decrease of population size,the genetic diversity will gradually be lost.We suggest that the materials from the extant population should be used for re-establishment of the populations.

  13. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis.

    Science.gov (United States)

    Pedersen, Ole; Rich, Sarah Meghan; Pulido, Cristina; Cawthray, Gregory Robert; Colmer, Timothy David

    2011-04-01

    • Underwater photosynthesis by aquatic plants is often limited by low availability of CO(2), and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO(2) and O(2) concentrations. • CAM activity was indicated by 9.7-fold higher leaf malate at dawn, compared with at dusk, and also by changes in the titratable acidity (μmol H(+) equivalents) of leaves. Leaves high in malate showed not only higher underwater net photosynthesis at low external CO(2) concentrations but also lower apparent photorespiration. Suppression by CAM of apparent photorespiration was evident at a range of O(2) concentrations, including values below air equilibrium. At a high O(2) concentration of 2.2-fold the atmospheric equilibrium concentration, net photosynthesis was reduced substantially and, although it remained positive in leaves containing high malate concentrations, it became negative in those low in malate. • CAM in aquatic plants enables higher rates of underwater net photosynthesis over large O(2) and CO(2) concentration ranges in floodwaters, via increased CO(2) fixation and suppression of photorespiration.

  14. Degree of Hybridization in Seed Stands of Pinus engelmannii Carr. In the Sierra Madre Occidental, Durango, Mexico.

    Directory of Open Access Journals (Sweden)

    Israel Jaime Ávila-Flores

    Full Text Available Hybridization is an important evolutionary force, because interspecific gene transfer can introduce more new genetic material than is directly generated by mutations. Pinus engelmannii Carr. is one of the nine most common pine species in the pine-oak forest ecoregion in the state of Durango, Mexico. This species is widely harvested for lumber and is also used in reforestation programmes. Interspecific hybrids between P.engelmannii and Pinus arizonica Engelm. have been detected by morphological analysis. The presence of hybrids in P. engelmannii seed stands may affect seed quality and reforestation success. Therefore, the goals of this research were to identify introgressive hybridization between P. engelmannii and other pine species in eight seed stands of this species in Durango, Mexico, and to examine how hybrid proportion is related to mean genetic dissimilarity between trees in these stands, using Amplified Fragment Length Polymorphism (AFLP markers and morphological traits. Differences in the average current annual increment of putative hybrids and pure trees were also tested for statistical significance. Morphological and genetic analyses of 280 adult trees were carried out. Putative hybrids were found in all the seed stands studied. The hybrids did not differ from the pure trees in vigour or robustness. All stands with putative P. engelmannii hybrids detected by both AFLPs and morphological traits showed the highest average values of the Tanimoto distance, which indicates: i more heterogeneous genetic material, ii higher genetic variation and therefore iii the higher evolutionary potential of these stands, and iv that the morphological differentiation (hybrid/not hybrid is strongly associated with the Tanimoto distance per stand. We conclude that natural pairwise hybrids are very common in the studied stands. Both morphological and molecular approaches are necessary to confirm the genetic identity of forest reproductive material.

  15. Warming Nights and Increased Precipitation Event Size Decrease Picea engelmannii Productivity

    Science.gov (United States)

    Orgill, A. N.; Laflin, M.; Walker, B. J.; Gill, R. A.

    2010-12-01

    Climate change has the potential to change the distribution of upper treeline in alpine systems. Two elements of climate change—rising low temperatures and changes in precipitation event size--are likely to influence the physiological ecology of treeline species. Rising low temperatures will influence plant carbon status, likely increasing respiration but reducing low-temperature stress. Changes in precipitation event size and frequency may influence the duration of dry periods between rain events. This growth-chamber study was designed to observe the physiological changes to Picea engelmannii (Engelman Spruce), a dominant treeline species in the subalpine, as the seedlings were subjected to warmer nighttime temperatures and less frequent but heavier waterings. The hypothesis was that warm nights were going to increase respiration rates, which would therefore decrease the available carbon and reduce productivity. The changes in water were expected to increase the time that the P. engelmannii were dry with the additional water not compensating for the time between events. Two growth chambers were programmed to the same daytime temperatures, but with one set three degrees warmer to imitate nighttime warming. Daylength was set to mimic daily patterns in the subalpine of central Utah, USA. Half of the seedlings received a watering schedule similar to its indigenous location, and the other half received an increase of 50% in water, but 50% more time between watering. There was a significant interaction between temperature and watering frequency. Maximum photosynthetic rates were sensitive to watering frequency in ambient conditions, but watering frequency had no influence under elevated nighttime temperature. Results indicated that the plants with longer periods between watering had higher glucose levels than the more frequently watered plants. Overall, the trees grown at ambient temperature with the more frequent watering were more productive than all other

  16. Morphology and ultrastructure of megaspores and microspores of Isoetes sehnemii Fuchs (Lycophyta

    Directory of Open Access Journals (Sweden)

    Cecilia Macluf

    2010-06-01

    Full Text Available The morphology and wall ultrastructure of megaspores and microspores of Isoetes sehnemii that grows in Brazil were analyzed as part of the study of the Isoetaceae present in Southern South America. The observations were performed with light, scanning and transmission electron microscopes. The megaspores are trilete, 350-450μm in equatorial diameter. The surface is reticulate. In section, the sporoderm is 100μm thick including the ornamentation. The wall is composed of a siliceous perispore, which consists of short fused flatten, elements forming a three-dimensional mesh. The exospore has two zones of different structure. The endospore is fibrillar. The microspores are monolete, 21-27μm in equatorial diameter. The sporoderm is composed of a sporopollinic rugulate perispore. A space between the paraexospore and the exospore is evident. The exospore is compact. The endospore is fibrillar. The ultrastructural analysis akes hoologies evident concerning structure and organization of the layers belo the perispore in both spore types. A possible similarity and stability in the ultrustructure of the present spores and fossils could be also inferred. In addition, there would be a correlation among the plant habitat, the spore ornamentation and the geographic distribution.A morfologia e a ultraestrutura da parede de megasporos e microspores de Isoetes sehnemii que crescem no Brasil foram analisados como parte do estudo de Isoetaceae presente no sul da América do Sul. As observações foram realizadas com microscopias de luz e eletrônicas de transmissão e varredura. Os megasporos são triletes com 350-450μm de diâmetro equatorial. A superfície é reticulada. Em secção o esporoderma possui 100μm de espessura incluindo ornamentação. A parede é composta de um perisporo silicoso que consiste de elementos fusionados curtos e achatados formando uma rede tridimensional. O exosporo tem duas zonas com diferentes estruturas. O endosporo é fibrilar. Os

  17. Caracteres diagnósticos foliares en táxones ibéricos de Isoetes L. (Isoetaceae, Pteridophyta

    Directory of Open Access Journals (Sweden)

    Rolleri, Cristina H.

    2003-12-01

    Full Text Available This is a comparative study of foliar morphology of the species of Isoetes L. growing in the Iberian Península. The taxa included are /. durieui and /. histrix (terrestrial, /. setaceum, and /. velatum subsp. Velatum (amphibious, and /. brochonii, I. echinosporum, I. x hickeyi, I. lacustre, I. longissimum and /. velatum subsp. Asturicense (aquatic. Material of an undescribed amphibious tetraploid taxon related to /. velatum was also included in this study and referred as Isoetes sp. until proper description. Several Iberian collections, together with European and American specimens of some of the taxa were analyzed. Selected diagnostic characters of the microphylls are: cuticular ornamentation (striae, ridges and warts, cuticular flanges, epidermal patterns, stomata distribution and dimensions, foliar transverse sectíons outline, degree of development of the mesophyll, presence or absence, and distribution of the mechanical tissues (collenchyma, diaphragms, and presence or absence and type of intercellular pectic protuberances. All characters are stable, and do not vary with the age of the plants or the microphylls. Cuticular striae, ridges and warts, as well as stomata develop early in plantlets. Stomata present in the microphylls of two aquatic taxa (/. longissimum, I. velatum subsp. asturicense suggest that their absence is not entirely due to influence of aquatic environment. Collenchyma occurs, also, in species growing in different habitats. Restored herbarium material proved to be as useful as fresh or fixed material, an important advantage in the case of Isoetes species, many of which grow in vulnerable áreas or are known only through herbarium specimens due to destruction of their pristine habitats.Se presenta un estudio de morfología foliar comparada en los táxones del género Isoetes que crecen en la Península Ibérica: /. durieui e /. histrix (terrestres, /. setaceum, I. velatum subsp. velatum (anfibios e /. brochonii, I

  18. Comparison of terpene composition in Engelmann spruce (Picea engelmannii) using hydrodistillation, SPME and PLE.

    Science.gov (United States)

    Mardarowicz, Marek; Wianowska, Dorota; Dawidowicz, Andrzej L; Sawicki, Ryszard

    2004-01-01

    Terpenes emitted by conifer trees are generally determined by analysing plant extracts or essential oils, prepared from foliage and cones using steam distillation. The application of these procedures limits experiments to cut plant materials. Recently headspace techniques have been adopted to examine terpene emission by living plants. This paper deals with the application of solid-phase micro-extraction (SPME) for the analysis of terpenes emitted by conifers foliage of Engelmann spruce (Picea engelmannii), including its seedlings. The compositions of SPME extracts obtained for destroyed and non-destroyed old and juvenile spruce needles were compared with the compositions of essential oils and pressurised liquid extraction (PLE) extracts corresponding to the same plant materials. No substantial differences have been found in the qualitative terpene composition estimated by analysing essential oil and PLE and SPME extracts from non-destroyed old and juvenile foliage. The disintegration of spruce needles results in the formation of a significant amount of myrcene in the case of the old conifer foliage and non-terpenoic compounds in the case of juvenile conifer foliage. This phenomenon can be attributed to enzymatic reactions occurring in the destroyed plant cells.

  19. Fern and lycophyte guard cells do not respond to endogenous abscisic acid.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J

    2012-04-01

    Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.

  20. Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Alyssa Ann Carrell

    2014-07-01

    Full Text Available Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine and Picea engelmannii (Engelmann spruce growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota—a small number of major species that are consistently associated with the host across individuals and species—is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  1. Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation.

    Science.gov (United States)

    Carrell, Alyssa A; Frank, Anna C

    2014-01-01

    Conifers predominantly occur on soils or in climates that are suboptimal for plant growth. This is generally attributed to symbioses with mycorrhizal fungi and to conifer adaptations, but recent experiments suggest that aboveground endophytic bacteria in conifers fix nitrogen (N) and affect host shoot tissue growth. Because most bacteria cannot be grown in the laboratory very little is known about conifer-endophyte associations in the wild. Pinus flexilis (limber pine) and Picea engelmannii (Engelmann spruce) growing in a subalpine, nutrient-limited environment are potential candidates for hosting endophytes with roles in N2 fixation and abiotic stress tolerance. We used 16S rRNA pyrosequencing to ask whether these conifers host a core of bacterial species that are consistently associated with conifer individuals and therefore potential mutualists. We found that while overall the endophyte communities clustered according to host species, both conifers were consistently dominated by the same phylotype, which made up 19-53% and 14-39% of the sequences in P. flexilis and P. engelmannii, respectively. This phylotype is related to Gluconacetobacter diazotrophicus and other N2 fixing acetic acid bacterial endophytes. The pattern observed for the P. flexilis and P. engelmannii needle microbiota-a small number of major species that are consistently associated with the host across individuals and species-is unprecedented for an endophyte community, and suggests a specialized beneficial endophyte function. One possibility is endophytic N fixation, which could help explain how conifers can grow in severely nitrogen-limited soil, and why some forest ecosystems accumulate more N than can be accounted for by known nitrogen input pathways.

  2. Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes.

    Science.gov (United States)

    Hsieh, Yves S Y; Harris, Philip J

    2012-07-01

    Little is known about the structures of the xyloglucans in the primary cell walls of vascular plants (tracheophytes) other than angiosperms. Xyloglucan structures were examined in 13 species of gymnosperms, 13 species of monilophytes (ferns sensu lato), and two species of lycophytes. Wall preparations were obtained, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analysed by matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry and by high-performance anion-exchange chromatography. The xyloglucan oligosaccharide profiles from the gymnosperm walls were similar to those from the walls of most eudicotyledons and non-commelinid monocotyledons, indicating that the xyloglucans were fucogalactoxyloglucans, containing the fucosylated units XXFG and XLFG. The xyloglucan oligosaccharide profiles for six of the monilophyte species were similar to those of the gymnosperms, indicating they were also fucogalactoxyloglucans. Phylogenetically, these monilophyte species were from both basal and more derived orders. However, the profiles for the other monilophyte species showed various significant differences, including additional oligosaccharides. In three of the species, these additional oligosaccharides contained arabinosyl residues which were most abundant in the profile of Equisetum hyemale. The two species of lycophytes examined, Selaginella kraussiana and Lycopodium cernuum, had quite different xyloglucan oligosaccharide profiles, but neither were fucogalactoxyloglucans. The S. kraussiana profile had abundant oligosaccharides containing arabinosyl residues. The L. cernuum profile indicated the xyloglucan had a very complex structure.

  3. Ever since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes.

    Science.gov (United States)

    Haufler, Christopher H

    2014-12-01

    There have been three periods of significant discovery in the exploration of fern and lycophyte genetics. First, during the 1930s, Andersson-Kottö conducted crossing studies on ferns. The publication of Manton's magnum opus on fern chromosomes in 1950 stimulated the second. The third emerged from Klekowski's 1973 American Journal of Botany publication that posed hypotheses linking breeding system dynamics and polyploid genetic architecture. Although Klekowski's assertions (predominant inbreeding and active polyploid genomes) were not supported, his hypotheses served as the impetus for improving our knowledge of the evolutionary mechanisms of ferns and lycophytes. It is now understood that (1) homosporous vascular plants are genetically diploid at high chromosome numbers and (2) both heterosporous and homosporous plants store and release genetic variation through a similar range of breeding systems. However, the seeming paradox of diploid genetic expression in homosporous vascular plants with high chromosome numbers remains unresolved. Ongoing and future research should include (1) more studies of gametophyte biology to elucidate the range and frequency of different breeding systems; (2) genomic analyses and new research on the mechanisms controlling bivalent formation to help discover how and why homosporous plant chromosomes appear so structurally stable; (3) considering whether the frequency of allopolyploidy in lineages can help explain why some are highly polyploid; and (4) chromosome painting studies to identify the dynamics of chromosome behavior in homosporous vascular plants. These open questions and continuing investigations demonstrate the longstanding impact of Klekowski's stimulating contribution.

  4. The first complete chloroplast genome sequence of a lycophyte,Huperzia lucidula (Lycopodiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Paul G.; Karol, Kenneth G.; Mandoli, Dina F.; Kuehl,Jennifer V.; Arumuganathan, K.; Ellis, Mark W.; Mishler, Brent D.; Kelch,Dean G.; Olmstead, Richard G.; Boore, Jeffrey L.

    2005-02-01

    We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8x depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,671 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperziachloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophytechloroplast genome data also enable a better reconstruction of the basaltracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.

  5. Spatial Genetic Structure within and among Seed Stands of Pinus engelmannii Carr. and Pinus leiophylla Schiede ex Schltdl. & Cham, in Durango, Mexico

    Directory of Open Access Journals (Sweden)

    María Elena Ortiz-Olivas

    2017-01-01

    Full Text Available Studies of spatial genetic structure (SGS are important because they offer detailed insights into historical demographic and evolutionary processes and provide important information regarding species conservation and management. Pinus engelmannii and P. leiophylla var. leiophylla are two important timber tree species in Mexico, covering about 2.5 and 1.9 million hectares, respectively. However, studies in relation to population genetics are unfortunately scant. The aim of this research was to use amplified fragment length polymorphisms (AFLP analysis to identify potential differences in spatial genetic structure within and among seven Pinus engelmannii and nine P. leiophylla var. leiophylla seed stands in Durango, Mexico. Within the 16 seed stands of the two tested pine species, no significant SGS was detected, although SGS was detected among the seed stands. We concluded that the collection of seed in only some seed stands should not significantly alter the degree of genetic differentiation within the (collected seed. Distances between seed orchards and pollen propagators of more than 24 km for P. engelmannii and 7 km for P. leiophylla may be sufficient to limit contamination. Finally, local seeds should be used for (reforestation.

  6. Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil

    Directory of Open Access Journals (Sweden)

    FELIPE C. NETTESHEIM

    2014-03-01

    Full Text Available A community of Ferns and Lycophytes was investigated by comparing the occurrence of species on different slopes of a paleoisland in Southeastern Brazil. Our goal was to evaluate the hypothesis that slopes with different geographic orientations determine a differentiation of Atlantic Forest ferns and lycophytes community. We recorded these plants at slopes turned towards the continent and at slopes turned towards the open sea. Analysis consisted of a preliminary assessment on fern beta diversity, a Non Metric Multidimensional Scaling (NMDS and a Student t-test to confirm if sites sampling units ordination was different at each axis. We further used the Pearson coefficient to relate fern species to the differentiation pattern and again Student's t-test to determine if richness, plant cover and abundance varied between the two sites. There was a relatively low number of shared species between the two sites and ferns and lycophytes community variation was confirmed. Some species were detected as indicators of the community variation but we were unable to detect richness, plant cover or abundance differences. Despite the evidence of this variation between the slopes, further works are needed to evaluate which processes are contributing to determine this pattern.

  7. Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil.

    Science.gov (United States)

    Nettesheim, Felipe C; Damasceno, Elaine R; Sylvestre, Lana S

    2014-03-01

    A community of Ferns and Lycophytes was investigated by comparing the occurrence of species on different slopes of a paleoisland in Southeastern Brazil. Our goal was to evaluate the hypothesis that slopes with different geographic orientations determine a differentiation of Atlantic Forest ferns and lycophytes community. We recorded these plants at slopes turned towards the continent and at slopes turned towards the open sea. Analysis consisted of a preliminary assessment on fern beta diversity, a Non Metric Multidimensional Scaling (NMDS) and a Student t-test to confirm if sites sampling units ordination was different at each axis. We further used the Pearson coefficient to relate fern species to the differentiation pattern and again Student's t-test to determine if richness, plant cover and abundance varied between the two sites. There was a relatively low number of shared species between the two sites and ferns and lycophytes community variation was confirmed. Some species were detected as indicators of the community variation but we were unable to detect richness, plant cover or abundance differences. Despite the evidence of this variation between the slopes, further works are needed to evaluate which processes are contributing to determine this pattern.

  8. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  9. Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern.

    Science.gov (United States)

    Yokota, Takao; Ohnishi, Toshiyuki; Shibata, Kyomi; Asahina, Masashi; Nomura, Takahito; Fujita, Tomomichi; Ishizaki, Kimitsune; Kohchi, Takayuki

    2017-04-01

    Endogenous brassinosteroids (BRs) in non-flowering land plants were analyzed. BRs were found in a liverwort (Marchantia polymorpha), a moss (Physcomitrella patens), lycophytes (Selaginella moellendorffii and S. uncinata) and 13 fern species. A biologically active BR, castasterone (CS), was identified in most of these non-flowering plants but another biologically active BR, brassinolide, was not. It may be distinctive that levels of CS in non-flowering plants were orders of magnitude lower than those in flowering plants. 22-Hydroxycampesterol and its metabolites were identified in most of the non-flowering plants suggesting that the biosynthesis of BRs via 22-hydroxylation of campesterol occurs as in flowering plants. Phylogenetic analyses indicated that M. polymorpha, P. patens and S. moellendorffii have cytochrome P450s in the CYP85 clans which harbors BR biosynthesis enzymes, although the P450 profiles are simpler as compared with Arabidopsis and rice. Furthermore, these basal land plants were found to have multiple P450s in the CYP72 clan which harbors enzymes to catabolize BRs. These findings indicate that green plants were able to synthesize and inactivate BRs from the land-transition stage.

  10. A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods.

    Science.gov (United States)

    Ratcliffe, B; El-Dien, O G; Klápště, J; Porth, I; Chen, C; Jaquish, B; El-Kassaby, Y A

    2015-12-01

    Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.

  11. Distribution patterns of ferns and lycophytes in the Coastal Region of the state of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Felipe Gonzatti

    2016-01-01

    Full Text Available ABSTRACT A survey of ferns and lycophytes of the Coastal Region of the state of Rio Grande do Sul (CRRS was performed based on field work and collections of the main regional herbaria. The following were evaluated for each species: preferential habits (terrestrial, epiphytic or aquatic, geographic distribution patterns and habitats (forest, grassland, and wetland. The occurrence of a latitudinal gradient in diversity was tested over five latitudinal ranges using the Sørensen Similarity Index. A total of 17 lycophyte and 206 fern species representing 28 families was found between the latitudes of 29° and 34°S. Exclusively terrestrial species were predominant (162, with the majority (113 exhibiting wide Neotropical distributions, followed by species that also occurred in the state of Paraná (44. The forest habitat harbored the greatest number of species (159, while grasslands had the fewest (26. Cluster analysis showed pronounced floristic differentiation among latitudinal Ranges III (31°01' to 32°S and IV (32°01' to 31°S, with a similarity index of only 0.41. Our results demonstrate a strong north-to-south reduction in species richness in the study area, which is related to environmental conditions along the latitudinal gradient and, especially, microclimatic differences in the transition zone between the Atlantic Forest and Pampa biomes.

  12. Richness of ferns and lycophytes in a gallery forest in the central region of Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Rodrigo Lehn

    2013-03-01

    Full Text Available This paper presents the floristic survey of ferns and lycophytes occurring in a gallery forest in the central region of Mato Grosso do Sul, Brazil. In the study area, 29 species and 2 varieties were recorded. Dryopteridaceae and Pteridaceae were the richest families (8 and 5 species, respectively and Elaphoglossum and Blechnum were the richest genera (3 species each one. Preferably, the listed species occur within the forest (68%, they occupy the terrestrial substrate (77.4%, and they are hemicryptophyte (77.4% and rosulate (64.5%. We observed four species still not mentioned for Mato Grosso do Sul, which are Blechnum lanceola L., Elaphoglossum pachydermum (Fée T. Moore, Lindsaea lancea (L. Bedd var lancea, and Mickelia nicotianifolia (Sw. R. C. Moran et al., which has its southern limit of distribution in Brazil, in the study area.

  13. Female Gametophyte Development and Endangered Mechanism Research inIsoetes yunguiensis%云贵水韭雌配子体发育及其濒危机制的研究

    Institute of Scientific and Technical Information of China (English)

    沈玮; 谭桂娟; 刘子玥; 路靖; 刘保东

    2015-01-01

    In order to understand the reproductive process and endangered reason ofIsoetes yunguiensis, its female gametophytes were obtained by artiifcial culture, the development of female gametophyte was observed by using semithin section technology. The results showed that the germination rate of megaspore was 26%. The female gametophyte was heterotrophic, and developed in megaspore wall throughout its lifetime. There were only two neck canal cells and no ventral canal cell in archegonium development ofI. yunguiensis. The main reasons led to reproductive endanger could be female gametophyte development stop in free nuclear stage, less neck wall cell or arranged disorders, neck canal cell abnormal, apoptosis of egg, and so on. Meanwhile, free nuclear is one of important steps in reproductive biology and systematics study ofIsoetes. The missing ventral canal cell might be a characteristic of simplicity evolution ofIsoetes.%为了解云贵水韭(Isoetes yunguiensis)的生殖过程和濒危原因,采用人工培养获得其雌配子体,用半薄切片法观察雌配子体发育过程。结果表明,云贵水韭的大孢子萌发率约为26%;雌配子体异养,终生都在大孢子细胞壁内发育;颈卵器发育只有2枚颈沟细胞而无腹沟细胞。雌配子体发育停止在游离核时期、颈壁细胞数量偏少或排列紊乱、颈沟细胞异常、卵细胞凋亡等可能是导致生殖濒危的原因。同时,游离核是水韭生殖生物学研究和系统学研究的重要环节之一;缺失腹沟细胞可能是水韭类简化性进化的特征之一。

  14. Improving collection efforts to avoid loss of biodiversity: lessons from comprehensive sampling of lycophytes and ferns in the subtropical Atlantic Forest

    Directory of Open Access Journals (Sweden)

    André Luís de Gasper

    2016-01-01

    Full Text Available ABSTRACT Estimating species richness with herbarium data and new collections allows us to understand the distribution of diversity. We investigated the accuracy of lycophyte and fern sampling along a vegetation gradient in the subtropical Atlantic Forest in southern Brazil. We compiled lycophyte and fern collection metadata and estimated species richness and assessed sampling accuracy for sixty 50 x 50 km units using ACE, Chao 1, Chao 2, Jackknife 1 and Jackknife 2 estimators. We compiled data for 12,779 fern specimens of 441 species, 67 of which were sampled in only one unit (singletons and 35 in two units (duplicates. Of the 60 units examined, only 11 had observed values that were above 70% of their estimated values, and 14 had observed levels between 65-70% of the estimated values, meaning that 35 units had a sampling accuracy of less than 65%. In spite of the long history of lycophyte and fern collecting in the study area, there remain units with a lower than expected sampling accuracy for a subtropical forest. This finding indicates that a sizeable collection effort is needed in order to discover the actual distribution of species before the effects of fragmentation and deforestation become permanent.

  15. Mid-Late Devonian assemblages of herbaceous lycophytes from northern Argentina and Bolivia: Age assessment with palynomorphs and invertebrates and paleobiogeographic importance

    Science.gov (United States)

    Di Pasquo, Mercedes; Noetinger, Sol; Isaacson, Peter; Grader, George; Starck, Daniel; Morel, Eduardo; Folnagy, Heidi Anderson

    2015-11-01

    Implications of a new collection of lycophytes of the genera Haplostigma Seward and Paleostigma Kräusel and Dolianiti from southern Bolivia and northern Argentina are presented. Fragmented herbaceous stems of lycophytes preserved as compressions, impressions and casts come from the Middle and Late Devonian Pescado (Huamampampa), Los Monos and Iquiri formations at Mataral, Yesera, Angosto del Pescado and Balapuca. The interbedded shales and siltstones bearing the lycophytes were also examined for palynology. They yielded mostly terrestrial palynomorphs with Grandispora pseudoreticulata and other Eifelian to Givetian species and fewer microplanktonic species (i.e., acritarchs, prasinophytes, chitinozoans). At Yesera, diagnostic spores and elements of the microplankton suggest a Givetian-Frasnian up to early Famennian age for the Haplostigma beds. Moreover, presence of the same brachiopod taxon in the Haplostigma intervals at Yesera Dique (palynologically barren) and Yesera Centro supports their correlation. This new information supports terrestrial connections between these Bolivian and Argentine areas and other regions of South America in the Eifelian - Givetian Afrosouthamerican Subrealm, which extended up to the early Famennian.

  16. More flowers or new cladodes? Environmental correlates and biological consequences of sexual reproduction in a Sonoran Desert prickly pear cactus, Opuntia engelmannii

    Science.gov (United States)

    Bowers, Janice E.

    1996-01-01

    Should a platyopuntia expend all aerolar meristems in flower production, now new cladodes could be produced, and further reproductive effort and vegetative growth would cease. To investigate the trade-off between flower and cladode production, the numbers of flowers, fruits, and cladodes were monitored for 4 years on 30 Opuntia engelmannii Salm-Dyek, plants on Tumamoc Hill, Tucson, Arizona. Plant size controlled the number of flowers initiated each spring. The proportion of flowers that developed (i.e., did not abort) was perhaps determined by December-February rainfall in the months before bloom, with more being developed in the wettest years. Models based on different ratios of initiated cladodes to initiated flowers demonstrated that continued high investment in flowers and fruits would eventually terminate reproduction altogether; therefore periods of high sexual reproduction should alternate with periods of high vegetative growth. In the first 3 years of this study, the ratio of new cladodes to initiated flowers was low, showing a high investment in sexual reproduction. As suggested by the model, the population recouped this investment in the fourth year, when the number of new cladodes was nearly 3 times the 1992-1994 mean, and the number of initiated flowers was only 73% of the 3-year mean.

  17. Phylogenetic Analysis of K+ Transporters in Bryophytes, Lycophytes, and Flowering Plants Indicates a Specialization of Vascular Plants

    Science.gov (United States)

    Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Benito, Begoña; Haro, Rosario; Sklodowski, Kamil; Rodríguez-Navarro, Alonso; Dreyer, Ingo

    2012-01-01

    As heritage from early evolution, potassium (K+) is absolutely necessary for all living cells. It plays significant roles as stabilizer in metabolism and is important for enzyme activation, stabilization of protein synthesis, and neutralization of negative charges on cellular molecules as proteins and nucleic acids. Land plants even enlarged this spectrum of K+ utilization after having gone ashore, despite the fact that K+ is far less available in their new oligotrophic habitats than in sea water. Inevitably, plant cells had to improve and to develop unique transport systems for K+ accumulation and distribution. In the past two decades a manifold of K+ transporters from flowering plants has been identified at the molecular level. The recently published genome of the fern ally Selaginella moellendorffii now helps in providing a better understanding on the molecular changes involved in the colonization of land and the development of the vasculature and the seeds. In this article we present an inventory of K+ transporters of this lycophyte and pigeonhole them together with their relatives from the moss Physcomitrella patens, the monocotyledon Oryza sativa, and two dicotyledonous species, the herbaceous plant Arabidopsis thaliana, and the tree Populus trichocarpa. Interestingly, the transition of green plants from an aqueous to a dry environment coincides with a dramatic reduction in the diversity of voltage-gated potassium channels followed by a diversification on the basis of one surviving K+ channel class. The first appearance of K+ release (Kout) channels in S. moellendorffii that were shown in Arabidopsis to be involved in xylem loading and guard cell closure coincides with the specialization of vascular plants and may indicate an important adaptive step. PMID:22876252

  18. 极危孑遗蕨类中华水韭叶结构的系统学意义%The systematic significance on the leaves structure of the critically endangered pteridophyte Isoetes sinensis

    Institute of Scientific and Technical Information of China (English)

    刘子玥; 严岳鸿; 刘保东; 李小溪

    2015-01-01

    水韭属是濒危的孑遗植物,是研究古生态及其物种演化的活化石。本文用扫描电子显微镜和透射电子显微镜观察了中华水韭叶片的结构特征,首次报道了:(1)通气道横隔细胞在同一平面以5~7个放射状短臂相互连接,且细胞表面有数百个微纤毛;(2)叶表皮为复表皮;(3)光合细胞以5~7个短臂在3D空间相互连接;(4)叶脉不分支,管胞的环纹与初生壁间另有连接结构,管胞周围有薄壁细胞紧密包围;(5)舌足与叶肉嵌合处各有表皮;(6)自气孔下室观察了气孔器的内侧结构,为气孔研究拓展了视野。认为水韭属叶片的超微3D结构具有稳定的特殊性和复杂性,与近源的石松科及卷柏科相差甚远,证明水韭有孤立的演化路线。%Isoetes, belonging to the endangered and relict plant, is the living fossil that helps to study the paleoecology and the evolution of plants. The structures’ features of the Isoetes sinensis Palmer’ s leaves were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). Some results are first reported:(1) The transverse septa cells in the parichnos are linked together by 5~7 radial galianconisms at the sameplane, and there are hundreds of microfilaments on the surface of the cells;(2) Leaf epidermis is multiple epidermis;(3) In the 3D space, photosynthetic cells are linked together by 5~7 galianconisms;(4) Vein doesn’ t branch, and there is a linking structure between annulation of annular vessel and primary wall, and annular vessel is tightly surrounded by parenchymal cells;(5) There are epidermis in the chimerism of the glossopodium and that of the mesophyll;(6) The inner structure of the stomatal apparatus are observed through the substomatic chamber, which broadens the horizon for the study of stoma. It is believed that the ultramicro 3D structure of the Isoetes leaf has its stable particularity and

  19. The effects of fragmentation on Araucaria forest: analysis of the fern and lycophyte communities at sites subject to different edge conditions

    Directory of Open Access Journals (Sweden)

    Vinícius Leão da Silva

    2015-06-01

    Full Text Available Edge effects impact species richness and composition as a result of environmental changes caused by fragmentation. This study analyzed edge effects on a community of terrestrial ferns and lycophytes in an Araucaria forest in Brazil at sites subjected to differing edge conditions: (1 a site bordering a road running through the interior of a conservation unit, and (2 a site bordering an agricultural property. Twelve 10 × 10 m plots were selected at the edge and in the interior of each site, and accounted for a total of 48 plots. The edges had lost their characteristic floristic identity, suggesting that many species are sensitive to variations in environmental conditions. The edge effect had a negative impact on species richness as shown by the greater average numbers of fern and lycophyte species in forest interiors at both sites. The results showed that the forest fragments in contact with agricultural areas were subjected to more intense edge effects than the fragments bordering a road within a conservation unit.

  20. Lycophytes and ferns composition of Atlantic Forest conservation units in western Paraná with comparisons to other areas in southern Brazil

    Directory of Open Access Journals (Sweden)

    Mayara Lautert

    2015-12-01

    Full Text Available This study surveyed lycophyte and fern species in four forest fragments in western Paraná, Brazil, and compared them to 15 other fragments with different plant formations from the Atlantic Forest biome in southern Brazil. In total, five lycophyte species (in two families and two genera and 98 species and two varieties of ferns (in 16 families and 38 genera were registered in the four fragments. The most represented families were Pteridaceae (23 spp., Polypodiaceae (18 spp., Aspleniaceae (13 spp., and Thelypteridaceae (11 spp.. Asplenium (12 spp., Thelypteris (10 spp., and Blechnum (seven spp. were among the most represented genera. The occurrence of Dicksonia sellowiana was noteworthy because it was associated with seasonal semideciduous forest and is threatened in Brazil. Similarity among areas was determined by a cluster analysis (UPGMA and Sørensen’s index and the relation between similarity and geographic distance was determined through Matel’s analysis. The analyses revealed greater similarity among the four study areas and, for these areas as a whole, greater similarity to fragments in Rio Grande do Sul, which is evidence that these areas have similar environmental conditions.

  1. Rare Carboniferous and Permian glacial and non-glacial bryophytes and associated lycophyte megaspores of the Paraná Basin, Brazil: A new occurrence and paleoenvironmental considerations

    Science.gov (United States)

    Ricardi-Branco, Fresia; Rohn, Rosemarie; Longhim, Marcia Emilia; Costa, Juliana Sampaio; Martine, Ariel Milani; Christiano-de-Souza, Isabel Cortez

    2016-12-01

    Fossil bryophytes are rare because their preservation is compromised by the presence of a thin cuticle (if any) and a lack of lignin. Except for the occurrence of one bryophyte in the glacial Dwyka Group of the Karoo Basin, the other rare Late Paleozoic records in Gondwana are notably from the Paraná Basin in Southeast/South Brazil. Four bryophyte sites (including a newly discovered one) were found in the lower part of the thick Permo-Carboniferous glacial succession of the Itararé Group, and one was found in the Guadalupian Teresina Formation, which was roughly assigned to an epeiric sea (or "lake") dominated by a warm, semi-arid climate. This study describes the fossils from the new occurrence from the Itararé Group and discusses the context in which the bryophyte beds originated in the basin. The new samples confirm that all of the bryophytes of the Itararé Group can be classified as Dwykea araroii Ricardi-Branco et al. (a possible pleurocarp) and are associated with the lycophyte megaspore Sublagenicula brasiliensis (Dijkstra) Dybová-Jachowicz. In the much younger Teresina Formation, the bryophytes are Yguajemanus yucapirus Cristiano-de-Souza et al. and Capimirinus riopretensis Cristiano-de-Souza et al., and abundant charophytes and rare dwarf lycophyte stems and bracts are present in the same layers. Although the two stratigraphic units represent distinct paleoenvironments and climates, they seem to share some characteristics: a) the bryophyte assemblages were transported very little; b) they were deposited in very calm environments; c) they were the main components (along with some lycophytes) of local or poorly diversified regional vegetation. The low number of species, which is characteristic of opportunistic communities, can be explained by local or regional conditions that would have been stressful for the vascular plants in other areas. During the deposition of the Itararé Group, the main control was probably the cold climate in addition to a

  2. Phylogeny and Classification of the Extant Lycophytes and Ferns from China%中国现代石松类和蕨类的系统发育与分类系统

    Institute of Scientific and Technical Information of China (English)

    张宪春; 卫然; 刘红梅; 何丽娟; 王丽; 张钢民

    2013-01-01

    Lycophytes and ferns are spore-bearing vascular plants, and are important groups in the evolution history of land plants. With the progress of molecular systematic, the relationships of the major groups have been resolved, and the traditional concepts have been revised. Meanwhile, new systematic arrangements have been proposed and are continuously being revised and updated. In the present review, the most recent phylogenetic studies were discussed and a new classification system of the extant lycophytes and ferns from China was also proposed. The system comprises five subclasses, 14 orders, 39 families with 12 subfamilies, and about 140 genera of lycophytes and ferns distributed in China.%石松类和蕨类植物是以孢子繁殖的维管植物,在陆地植物演化上占据重要地位.随着分子系统学研究的开展,各大类群间的系统发育关系得以阐明,传统上的概念得以修正,新的现代石松类和蕨类植物的分类系统也被提出,并不断得到完善.该文介绍国内外在蕨类植物系统发育方面的研究成果,重点讨论中国分布的类群的分类处理.文中提出了一个完整的中国现代石松类和蕨类植物的分类系统,包括5亚纲、14目、39科及12亚科、约140余属.

  3. Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii, the bryophyte Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baier Margarete

    2010-06-01

    Full Text Available Abstract Background Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS, which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin. Results Here, the genomes of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana were screened for ORFs encoding chloroplast peroxidases. The identified genes were compared for their amino acid sequence similarities and gene structures. Stromal and thylakoid-bound ascorbate peroxidases (APx share common splice sites demonstrating that they evolved from a common ancestral gene. In contrast to most cormophytes, our results predict that chloroplast APx activity is restricted to the stroma in Chlamydomonas and to thylakoids in Physcomitrella. The moss gene is of retrotransposonal origin. The exon-intron-structures of 2CP genes differ between chlorophytes and streptophytes indicating an independent evolution. According to amino acid sequence characteristics only the A-isoform of Chlamydomonas 2CP may be functionally equivalent to streptophyte 2CP, while the weakly expressed B- and C-isoforms show chlorophyte specific surfaces and amino acid sequence characteristics. The amino acid sequences of chloroplast PrxII are widely conserved between the investigated species. In the analyzed streptophytes, the genes are unspliced, but accumulated four introns in Chlamydomonas. A conserved splice site indicates also a common origin of chlorobiont PrxQ. The similarity of splice sites also demonstrates that streptophyte glutathione peroxidases (GPx are of common origin. Besides

  4. 贵州省现代石松类植物种类及其保护价值(Ⅰ)%Species and Protection Value of Extant Lycophytes in Guizhou Province(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    韩国营; 宋培浪; 于美玲; 赵厚涛

    2013-01-01

    为了解贵州省药用孢子植物资源种类和分布,通过文献整理和野外调查对贵州省现代石松类植物进行了研究.结果表明,贵州现代石松类植物(lycophytes)石松科(Lycopodiaceae)药用植物有3属13种1变型,其中雷山石杉(Huperzia leishanensis X.Y.Wang)、皱边石杉[Huperzia crispata (Ching ex H.S.Kung) Ching]、峨眉石杉[Huperzia emeiensis (Ching & H.S.Kung) Ching & H.S.Kung]、昆明石杉(Huperzia kunmingensis Ching)和四川石杉[Huperzia sutchueniana (Herter) Ching]5种为中国特有.同时整理出贵州省石松科植物名录(3属16种1变型),对药用种类的保护价值及其分布产地进行描述,并简述了贵州省石松类植物分类系统及部分种类分类地位的变更情况.

  5. 印江洋溪自然保护区石松类及蕨类植物初步研究%Studies on Lycophytes and Ferns Flora of The Region of Yangxi Nature Reserve in Yinjiang county

    Institute of Scientific and Technical Information of China (English)

    王美娟; 苟光前; 孙巧玲; 吴菲菲

    2015-01-01

    The floristic composition and geographic feature of Lycophytes and Ferns in Yangxi Nature Reserve were analyzed based on field investigation and data collection ,with the main objective was to identify the fern resources of this region. Results were as follows;20 families including 56 generas and 126 species (including the subspecies) were distributed in the region of Yangxi, most of them were Asplenium, Pteris or Polysti-chum;The type of pteridoflora was complicated. In this area, the pteridophyte which accounting for 65. 08%in the total species had significant temperate property, the temperate species occupied an absolute advantage. Among them, 57species were the East-Asia species, accounting for 45. 24%, it reflected that the pterido-phyte in Yangxi Nuture Reserve belonged to the East-Asia distribution. Besides, there have39 species of tropical distribution and 5 species of cosmopolitans, indicating that pteridophyte in this area had close rela-tionship with tropical distribution Otherwise, 22 species of China unique flora showed that the region had a regional particularity;As the same as the most areas in Guizhou province, Yangxi Nature Reserve located in transition section, a large part of genera(51. 76%) contained only one species, suggesting that the pterido-phyte in this area had transitivity.%为掌握印江洋溪自然保护区的石松类及蕨类植物的资源情况,通过野外调查,查阅文献资料和分析.得出以下结论:印江洋溪自然保护区石松类及蕨类植物共20 科56 属126 种(含种以下分类单位) ,其中以铁角蕨属、凤尾蕨属、耳蕨属等为主.保护区石松类及蕨类植物区系成分复杂,区内温带种占绝对优势,占总种数的65.08%,具有温带性质.其中东亚分布57种,占总种数的45.24%,属于东亚植物区系.热带成分种共有39种,世界广布种共有5种,说明该地区植物与热带、亚热带有一定的联系;同时有22种中国特有成分分布说明该地区具有地

  6. Ferns and lycophytes of Pernambuco State, Brazil: Metaxyaceae

    Directory of Open Access Journals (Sweden)

    Iva Carneiro Leão Barros

    2010-09-01

    Full Text Available The present paper elucidates part of the fern flora of Pernambuco State. Metaxyaceae is native to the state and is represented by a single species, Metaxya rostrata (Kunth C. Presl. Descriptions and illustrations, as well as geographical distribution and habitats, are presented.

  7. Uptake of inorganic phosphorus by the aquatic plant Isoetes australis inhabiting oligotrophic vernal rock pools

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Pulido, Cristina; Pedersen, Ole

    2017-01-01

    experiment revealed high amounts of Pi translocation internally in the plant which seemed to go from roots and oldest leaves to younger leaves. As a result of the high root to shoot ratio, high surface area, root uptake kinetics, and sediment Pi availability, roots accounted for 87% of plant Pi uptake...

  8. TAXONOMIC COMPOSITION AND ECOLOGICAL DATA OF THE LYCOPHYTES AND MONILOPHYTES FROM SIERRA DE TAMAULIPAS, TAMAULIPAS, MEXICO

    Directory of Open Access Journals (Sweden)

    Ana María Hernández-Mendoza

    2015-11-01

    Full Text Available En el presente estudio se enlistan las licofitas y monilofitas que habitan en la sierra de Tamaulipas, registrándose un total de 18 familias, 38 géneros, 91 especies y ocho variedades. La familia Pteridaceae es la más representativa tanto en géneros (13 como en especies (36, siendo el género Cheilanthes el más sobresaliente, además se registran por primera vez 23 taxones para el estado de Tamaulipas. Se recolectó una especie que se consideraba había desaparecido de la zona como es el caso de Schaffneria nigripes Fée, que desde hace 30 años no se había vuelto a encontrar. El único taxón endémico para el estado fue Notholaena brevistipes Mickel. Los ejemplares que se mencionan en el trabajo como Anemia sp., Elaphoglossum sp. y Selaginella hansenii Hieron. vel. aff., Cheilanthes eatonii Baker vel. aff. y Ch. lozanoi (Maxon R.M. Tryon & A.F. Tryon podrían tratarse de nuevas especies. En este trabajo se incluye la distribución de las especies por tipos de vegetación, microhábitats y algunos datos ecológicos. Se identificaron cinco tipos de vegetación y tres asociaciones vegetales en el área de estudio.

  9. In situ O2 dynamics in submerged Isoetes australis:

    DEFF Research Database (Denmark)

    Pedersen, Ole; Pulido Pérez, Cristina; Rich, S.M.;

    2011-01-01

    , and the potential importance of the achlorophyllous leaf bases to underwater net photosynthesis (PN) and radial O2 loss to sediments is highlighted. O2 microelectrodes were used in situ to monitor pO2 in leaves, shallow sediments, and water in four vernal pools. The role of the achlorophyllous leaf bases in gas......O2 and although sediment O2 declined substantially during the night, it did not become anoxic. The achlorophyllous leaf bases were 34% of the surface area of the shoots, and enhanced by 2.5-fold rates of underwater PN by the green portions, presumably by increasing the surface area for CO2 entry...

  10. MX Siting Investigation. DTN/OBTS Field Surveys. Volume III. Biological Resources Nevada and Utah.

    Science.gov (United States)

    1981-11-30

    Tumble mustard F MYCW Lepidium fremontii Desert pepperweed F CW,W CACTACEAE Echinocereus engelmannii Hedgehog cactus S MY Ferocactus acant’,jodes...Lepidium sp. Pepperweed F MS Sisymbrium altissimum Tumble mustard F Js Sisymbrium sp. Tumble mustard F BS CACTACEAE Echinocereus engelmannii Engelmannii...Streptanthella F BS,W lorostris StetnhlaTwist flower F PJ cordatus CACTACEAE Echinocereus Hedgehog cactus S BIS triglochidiatus Opuntia erinacea Prickly pear S PJ

  11. The Exploitation and Utilization of Lycophyte and Fern Resources in Xishuangbanna, Yunnan%西双版纳石松类和蕨类植物资源及其开发利用

    Institute of Scientific and Technical Information of China (English)

    苏波; 常艳芬

    2015-01-01

    西双版纳位于云南省南部,共有野生石松类和蕨类植物363种,隶属于76属31科.西双版纳石松类和蕨类植物区系以水龙骨科(Polypodiaceae)、蹄盖蕨科(Athyriaceae)、金星蕨科(Thelypteridaceae)、铁角蕨科(Aspleniaceae)、凤尾蕨科(Pteridaceae)、卷柏科(Selaginellaceae)的植物最为丰富,亚洲热带分布成分占绝对优势.这363种蕨类植物中,以陆生种类最多,有246种,占总种数的67.8%,其次是附生和石生.本研究对西双版纳地区的石松类和蕨类植物资源利用状况进行了详细的调查,并对资源的开发和保护提出若干意见.

  12. Field Surveys, IOC Valleys. Biological Resources Survey, Dry Lake Valley, Nevada. Volume II, Part I.

    Science.gov (United States)

    1981-08-01

    members of the cactaceae family: Coryphantha vivipara, Echinocereus engelmannii, Sclerocactus pubispinus, Opuntia erinacea, Opuntia polycantha, and...Streptantnus cordatus ArFtemisia tr-identata Arem s p. Cactaceae Aster sp. Corypnantha vivipara* Baiy pleniradiata Ectinocereus engelmannii* c W -acis sp

  13. Aquatic CAM photosynthesis: a brief history of its discovery

    Science.gov (United States)

    Keeley, Jon E.

    2014-01-01

    Aquatic CAM (Crassulacean Acid Metabolism) photosynthesis was discovered while investigating an unrelated biochemical pathway concerned with anaerobic metabolism. George Bowes was a significant contributor to this project early in its infancy. Not only did he provide me with some valuable perspectives on peer review rejections, but by working with his gas exchange system I was able to take our initial observations of diel fluctuations in malic acid to the next level, showing this aquatic plant exhibited dark CO2 uptake. CAM is universal in all aquatic species of the worldwide Lycophyta genus Isoetes and non-existent in terrestrial Isoetes. Outside of this genus aquatic CAM has a limited occurrence in three other families, including the Crassulaceae. This discovery led to fascinating adventures in the highlands of the Peruvian Andes in search of Stylites, a terrestrial relative of Isoetes. Stylites is a plant that is hermetically sealed from the atmosphere and obtains all of its carbon from terrestrial sources and recycles carbon through CAM. Considering the Mesozoic origin of Isoetes in shallow pools, coupled with the fact that aquatic Isoetes universally possess CAM, suggests the earliest evolution of CAM photosynthesis was most likely not in terrestrial plants.

  14. A Precious Fern Species Discovered in Jiulong, Sichuan

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Supported by the US National Science Foundation and the National Natural Science Foundation of China, a rare and endangered fern, Isoetes hypsophila, was discovered by a Sino-US research team headed by Prof. SUN Hang from the CAS Kunming Institute of Botany (KIB) and Dr. David E. Boufford from Harvard University in a recent trip to Jiulong, Sichuan, during its botanical survey in the Hengduan Mountains in south China. Scientists say the plant is found for the first time in the region.

  15. Dicty_cDB: Contig-U07096-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available B-N-A-10 Picea engelmannii x P... 46 1.5 1 ( EX343038 ) GQ03013.SP6_P08 GQ030 - Xylem planings - daytime ...... 46 1.5 1 ( EX342679 ) GQ03013.B7_P08 GQ030 - Xylem planings - daytime a... 46 1.5 1 ( AE013218 ) Buchnera a

  16. Evaluation of funnel traps for estimating tree mortality and associated population phase of spruce beetle in Utah

    Science.gov (United States)

    E. Matthew Hansen; Barbara J. Bentz; A. Steven Munson; James C. Vandygriff; David L. Turner

    2006-01-01

    Although funnel traps are routinely used to manage bark beetles, little is known regarding the relationship between trap captures of spruce beetle (Dendroctonus rufipennis Kirby) and mortality of Engelmann spruce (Picea engelmannii Parry ex Engelm.) within a 10 ha block of the trap. Using recursive partitioning tree analyses, rules...

  17. Spruce beetle-induced changes to Engelmann spruce foliage flammability

    Science.gov (United States)

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2014-01-01

    Intermountain Engelmann spruce (Picea engelmannii Parry ex Engelm) stands affected by the spruce beetle (Dendroctonus rufipennis Kirby) represent a unique and growing fuel complex. In this study, we quantified and compared the changes in moisture content, chemistry, and flammability of foliage from trees in three crown condition classes: unattacked (green [G]),...

  18. MX Siting Investigation. Preliminary Biological and Cultural Resources Inventory and Environmental Evaluation of the Proposed Operational Base Sites in Coyote Spring Valley and the Milford-Beryl Area.

    Science.gov (United States)

    1981-03-20

    Stanleya pinriata (desert prince- plume) Stanleya sp. X CACTACEAE Echinocereus engelmannii (Engel- X X X X X X mann echinocereus) Ferocactus acanthodes...TABLE 3-3 (Cont.) Site Number Species 1 2 3 4 5 6 7 8 9 CACTACEAE (Cont.) Ferocactus sp X X X X *Neolloydia sp. X *-Opuntia basilaris (beavertail X X

  19. Palynological evidence for late Westphalian-early Stephanian vegetation change in the Dobrudzha Coalfield, NE Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, T.K.H.; Cleal, C.J. [National Museum of Wales, Cardiff (United Kingdom)

    2007-05-15

    The Dobrudzha Coalfield in northeast Bulgaria has coal-bearing deposits ranging from latest Namurian to early Stephanian age (late Bashkirian to Moscovian age). Palynology of the coals in the upper Makedonka, Krupen and Gurkovo formations has been used to identify major changes in the vegetation during late Westphalian and early Stephanian times. The palynomorphs were grouped in two different ways (according to general morphotype and according to parent plant group) and stratigraphical trends in the two sets of groups used to identify vegetation change through the succession. Detrended Correspondence Analysis was also used to identify ecological relationships between the palynofloras. In the upper Makedonka and Krupen formations, lycophyte spores mostly comprise 15-25 % of the palynofloras in the thicker seams, but in the thinner coals they can represent up to 55 %. Of the other plant groups, ferns are the most abundant, representing 31-69 % in the thicker seams, 12-41 % in the thinner seams. In the Gurkovo Formation coals, lycophytes form an even smaller part of the palynological spectra, usually less than 10 % and in only one sample just over 25 %; fern spores make up 43-57 % of the palynofloras. This is in contrast to the palynofloras reported from contemporaneous elastic deposits in South Wales, most of which consist mostly of 34-60 % lycophyte spores and 14-34 % fern spores. Even more marked is the difference from the contemporancous coals formed in lowland settings in the USA, which have mostly {gt} 50 % lycophyte spores. This evidence suggests that the timing of the decline in abundance of arborescent lycophytes varied according to elevation above sea-level. In lowland coastal settings, the lycophytes remained dominant until middle-late Cantabrian times, but in more inland areas they were progressively replaced mainly by arborescent ferns during late Westphalian times.

  20. Book Review

    Directory of Open Access Journals (Sweden)

    Dedy Darnaedi

    2012-12-01

    Full Text Available B.S. Parris, R. Kiew, R.C.K. Chung, L.G. Saw  & E. Soepadmo (eds. 2010. Flora of Peninsular Malaysia, Series I. Ferns and Lycophytes. Vol  1.  Malayan Forest Records No. 48. Forest Research Institute Malaysia, Ministry of Natural Resources and Environment, Malaysia, 249 pp. Price: RM80/USD60. 

  1. Selaginella devolii (Selaginellaceae), a new species from Taiwan

    NARCIS (Netherlands)

    Chang, H.-M.; Lu, P.-F.; Hsu, T.-C.; Chiou, W.-L.

    2011-01-01

    Selaginella devolii sp. nov. is described from four populations located in central and southern Taiwan. It is an annual prostrate lycophyte, growing on moist rocky slopes. Its diagnostic characteristics include its small size, tiny broadly ovate trophophylls, complanate strobili, and sporangia which

  2. Pteridophyta collected in Northern Nigeria and Northern Cameroon

    Directory of Open Access Journals (Sweden)

    Jan kornaś

    2014-01-01

    Full Text Available 25 species of Pteridophyta were collected in Northern Nigeria (mainly the Lake Chad Basin and the Mandara Mts. and in the neighbouring parts of Cameroon. 11 of them have not been recorded previously from this area: Isoetes schweinfurthii A. Br. in Bak., Selaginella tenerrima A. Br. ex Kuhn, Ophioglossum gomenzianum Welw. ex A. Br., Marsilea coromandeliana Willd., M. distorta A. Br., M. nubica A. Br., M. subterranea Lepr. ex A. Br., Azolla africana Desv., Ceratopteris richardii Brogn., Adiantum capillus-veneris Linn., and Actiniopleris semiflabellata Pic. Ser.

  3. Patterns of lichen diversity in Yellowstone National Park

    Science.gov (United States)

    Eversman, S.; Wetmore, C.M.; Glew, K.; Bennett, J.P.

    2002-01-01

    We here report 359 species in 103 genera from Yellowstone National Park. We found 71.3% of the total number of species in Picea engelmannii forests and 57.4% of the total number in Pseudotsuga menziesii stands. This compares to 42.3% of the species in Pinus contorta and 37.0% of the species in Pinus contorta/Pinus albicaulis stands. The presence of old Pseudotsuga menziesii and mature Picea engelmannii indicates that the forests have not burned for at least 300 yr, contributing to higher lichen diversity. The drier lodgepole pine and whitebark pine forests burn more frequently than every 300 yr and have fewer microhabitats for lichen growth. Species with thalli large enough to identify are beginning to recolonize substrates burned in the 1988 fires. Bryoria fremontii and Letharia vulpina exhibit levels of mercury and sulfur higher than those in other specimens in the region.

  4. Field Surveys, IOC Valleys. Volume II, Part II. Biological Resources Survey, Pine and Wah Wah Valleys, Utah.

    Science.gov (United States)

    1981-08-01

    members of the family Cactaceae : Coryphantha vivipara, Sclerocactus pubispinus, Opuntia spp., and Echinocereus engelmannii. The individuals were widely...Sclerocactus pubispinus (family Cactaceae ) was found on Sites 2/16, 3/6, 3/12, and 3/14. Coryphantha vivipara (family cactaceae ), a taxon Currently Under...family Cactaceae : Echinocereus engelmanii, Echinocereus sp., Opuntia erinacea, Opuntia sp., Sclerocactus pubispinus, Sclerocactus sp., and Coryphantha

  5. The aquatic vegetation in the Dokka delta, Randsfjorden. Status and assessment of the consequences of the Dokka regulation; Vannvegetasjonen i Dokkadeltaet, Randsfjorden. Status og vurdering av konsekvenser av Dokka-reguleringen

    Energy Technology Data Exchange (ETDEWEB)

    Brandrud, T.E.; Mjelde, M.; Roerslett, B.

    1994-08-01

    In connection with regulation of the Dokka river system for hydroelectric power production, the aquatic vegetation of the Dokka delta before and immediately after regulation have been investigated, mainly by means of transect analyses including under water photography. As described in this report, the vegetation was found to be rich in species and luxuriant compared to that of the rest of Randsfjorden and dominated by the species Isoetes setacea, Subularia aquatica, Eleocharis acicularis, Ranunculus reptans and Isoetes lacustris. Due to the regulation, the water drains away from the great shallows in late winter and exposes the vegetation to drought and freeze. The drought keeps the Elodea canadensis in check in the delta. However, because of the very extensive delta shallows the delta experiences ice erosion and removal of fine material. The regulation will probably have relatively little short-term impact on the water vegetation. In the long run, however, regulation may contribute to a somewhat faster over-growing of some delta forms because of reduced flood discharge and reduced mud transport in the delta. 59 refs., 22 figs., 18 tabs.

  6. Palynological evidence for Pennsylvanian (Late Carboniferous) vegetation change in the Sydney Coalfield, eastern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, T.K.; Zodrow, E.L.; Cleal, C.J.; Thomas, B.A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Geology

    2010-07-15

    The palynology of elastic samples from seven stratigraphical levels in the late Moscovian Sydney Mines Formation, exposed along the shore at Bras d'Or, Nova Scotia, has been investigated. Most of the samples were from roof shales of major coals; the one sample that was not yielded a much higher proportion of pollen derived from extra-basinal vegetation. The four stratigraphically lower roof shale samples yielded essentially similar palynological spectra, with 39 {+-} 4% lycophytes, 9 {+-} 4% sphenophylls, 23 {+-} 4% tree-ferns, 12 4% other ferns and 5 {+-} 3% cordaites. The palynology of the upper part of the investigated succession suggests a shift in vegetation towards one favouring more marattialean tree-ferns, cordaites and conifers, and fewer lycophytes. This correlates with changes in drainage patterns as the alluvial plain migrated seawards and thus changed water tables. No evidence was found to suggest significant climate change at this time.

  7. Spikemoss patterns : Systematics and historical biogeography of Selaginellaceae

    OpenAIRE

    Weststrand, Stina

    2016-01-01

    Selaginellaceae, spikemosses, is a heterosporous plant family belonging to the lycophytes. With an estimated age of some 350 million years, the family is historically important as one of the oldest known groups of vascular plants. Selaginellaceae is herbaceous with a worldwide distribution. However, the majority of the ca. 750 species in the single genus Selaginella are found in the tropics and subtropics. This thesis aims at elucidating the systematics and historical biogeography of Selagine...

  8. Dr. Roberto Miguel Klein Herbarium (FURB, Blumenau, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Andre de Gasper

    2014-10-01

    Full Text Available The premise of this study is to present the collection of the FURB herbarium, its collection area and type specimens, as well as its projects and contributions to the flora of the Subtropical Atlantic Forest. The FURB herbarium currently has nearly 41,000 records of vascular plants and has the largest collection of lycophytes and ferns in Southern Brazil, with more than 8,000 records. More than 4,500 scanned images of 4,436 species are available online, and it is expected that the whole collection will be scanned in less than one year. There are 198 families of angiosperms, 33 of ferns, three of lycophytes and six of gymnosperms. All collections of the Floristic and Forest Inventory of Santa Catarina project are recorded in FURB, which represents almost 35,000 herbarium specimens. The families with the largest number of species are: Cyperaceae (109 species, Rubiaceae (129, Solanaceae (131, Poaceae (155, Melastomataceae (157, Myrtaceae (257, Orchidaceae (288, Fabaceae (323, and Asteraceae (426, between angiosperms. Among the ferns and lycophytes are: Hymenophyllaceae (30, Thelypteridaceae (31, Aspleniaceae (32, Dryopteridaceae (43, Pteridaceae (54 and Polypodiaceae (60. There are five type specimens among them: one holotype, one isotype and three paratypes. To date, the FURB herbarium has donated 19,521 herbarium duplicates for identification or expansion of other herbaria.

  9. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants.

    Science.gov (United States)

    Petraglia, Alessandro; De Benedictis, Maria; Degola, Francesca; Pastore, Giovanni; Calcagno, Margherita; Ruotolo, Roberta; Mengoni, Alessio; Sanità di Toppi, Luigi

    2014-03-01

    Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 μM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.

  10. Targets of an invasive species: oviposition preference and larval performance of Cactoblastis cactorum (Lepidoptera: Pyralidae) on 14 North American opuntioid cacti.

    Science.gov (United States)

    Jezorek, Heather A; Stiling, Peter D; Carpenter, James E

    2010-12-01

    Cactoblastis cactorum Berg (Lepidoptera: Pyralidae), the cactus moth, is a well-known biological control agent of prickly pear cactus (Cactaceae: Opuntia Miller). The arrival of the moth in Florida and its subsequent spread through the southeastern United States poses a threat to opuntioid diversity in North America. Of particular concern are the ecological and economic impacts the moth could have in the southwestern United States and Mexico, where both native and cultivated Opuntia species are important resources. It is unknown which species would best support larval development if the moth were to spread further westward in North America. This study aimed to determine if ovipositing females demonstrate preferences for any of 14 common opuntioids native to or naturalized in Mexico and the southwestern United States; which of these opuntioids best support larval development; and if oviposition preference correlates with larval performance, as predicted by simple adaptive models. Results from a field experiment showed that female moths preferred O. engelmannii Salm-Dyck ex Engelmann variety linguiformis (Griffiths) Parfitt and Pinkava and O. engelmannii variety engelmannii for oviposition. A generalized linear model showed number of cladodes and degree of spininess to be significant predictors of oviposition activity. Results from a no-choice larval survival experiment showed Consolea rubescens (Salm-Dyck ex de Candolle.) Lemaire and O. streptacantha Lemaire to be the best hosts. Epidermal toughness was a significant predictor of most larval fitness parameters. In general, oviposition preference was not correlated with larval performance. A lack of co-evolutionary history between C. cactorum and North American opuntioid species may help explain this disconnect.

  11. Field Surveys, IOC Valleys. Volumes II-I and II-II. Biological Resources Survey, Dry Lake Valley, Nevada and Pine and Wah Wah Valleys, Utah. Supplement. Spring Survey of the IOC Valleys.

    Science.gov (United States)

    1981-08-01

    pinnata X K CACTACEAE Coryphantha vivipara x Opuntia echinocarpa K 0 x K K K 5putaerinacea K Op’untia sp. x X -12- TABLE 3-1 (Cont.) Shelter site...pilosus x Lepidium montanun X CACTACEAE Opuntia echinocarpa x x Opuntia erinacea X X X CHENOPODIACEAE Atriplex canescens X X X Ceratoides lanata X X X X...Stanleya pinnata X CACTACEAE Coryphantha vivipara var. rosea X Echinocereus engelmannii X opuntia echinocarpa X X X X X X X X Opuntia erinacea XX X X X X x

  12. Análisis del crecimiento e incremento de cinco pináceas de los bosques de Durango, México

    OpenAIRE

    Sacramento Corral R.; José de Jesús Návar Cháidez

    2005-01-01

    Diversas ecuaciones de crecimiento e incremento en diámetro, altura y volumen fueron ajustadas y validadas para las especies Pinus durangensis, P. cooperi, P. leiophylla, P. engelmannii y P. herrerae que se distribuyen naturalmente en la región de El Salto, Durango, México. Los resultados mostraron que a través del modelo de Chapman-Richards la primera especie presenta los crecimientos e incrementos mayores cuando el crecimiento se estima a nivel grupo de árboles e individualmente. El trabajo...

  13. Differential effects of propofol and isoflurane on the relationship between EEG Narcotrend index and clinical stages of anaesthetic depth in sheep undergoing experimental cardiac surgery.

    Science.gov (United States)

    Otto, Klaus A

    2016-02-01

    The electroencephalogram (EEG) Narcotrend index (NI) has been shown to improve anaesthetic depth monitoring in isoflurane-anaesthetised sheep. Data obtained from 13 anaesthetised juvenile female sheep were analysed retrospectively in order to assess the relationship between clinical stages of anaesthesia (CS) and NI during both propofol and isoflurane anaesthesia. Polynomial regression analysis revealed no significant association between CS and NI for propofol (R = 0.374, R(2) = 0.140, P = 0.403) but for isoflurane anaesthesia (R = 0.548, R(2) = 0.301, P = 0.010) there was a significant relationship. Furthermore, a strong correlation existed between end-tidal isoflurane concentration (ISOET) and CS (r = -0.463, P = 0.008). A combination of assessment of clinical signs and analogous EEG patterns is recommended during propofol anaesthesia.

  14. Vegetación de las pilas o pilancones de la sierra de Guadarrama y La Serena (España

    Directory of Open Access Journals (Sweden)

    Baonza Díaz, Jorge

    2009-06-01

    Full Text Available Weathering pits are wetlands of geomorphologic and biological interest, but this common fact is obscured by the different names used by biologists, such as the ambiguous name of rock pool. Aquatic or amphibious plant communities are known around the world, principally from SE North-America and Tropical Africa, but few are known from Spain. Here, I study the vegetation of weathering pits from two different localities: La Serena (Southweast Spain and Sierra de Guadarrama (central Spain. Plant communities change with depth of water and depth of sediment in the weathering pits. Some of them are characterized by Crassula vaillantii or Isoetes velatum.Las pilas o pilancones son unos humedales de interés tanto geomorfológico como biológico, aunque esta identidad ha pasado inadvertida por haberse usado distintas denominaciones en cada campo científico. Las comunidades acuáticas o anfibias vegetales de los pilancones han sido estudiadas en diversas partes del mundo, especialmente en el SE de Norteamérica y en África tropical, pero apenas hay referencias de España. En el presente trabajo se estudia la vegetación encontrada en los pilancones de dos zonas distantes, La Serena (Badajoz y la sierra de Guadarrama (Madrid. Estas comunidades varían según el nivel de máxima inundación que alcanza la pila y la profundidad del sedimento, con comunidades dominadas por Crassula vaillantii o Isoetes velatum, entre otras.

  15. The disintegration of populations of underwater plants in soft water lakes enriched with acidic organic matter

    Directory of Open Access Journals (Sweden)

    Józef Szmeja

    2011-01-01

    Full Text Available The characteristics of habitats, individuals and populations of four submerged macrophytes, Lobelia dortmanna L., Isoetes lacustris L., Sphagnum denticulatum Brid. and Fontinalis antipyretica Hedw., were studied in 12 soft water oligohumic lakes which had no inflow of allochtonic DOM and the DOC concentration in the water was <4.0 mg C dm-3 and 13 humic lakes enriched with allochthonous dissolved organic matter (DOM from drained peat bogs and ranging in DOC water concentration from 4.1 to 44.0 mg C dm-3. The analyses of population disintegration were conducted basing on characteristics of individuals (size, habitat, fertility and populations (aggregation density index, settlement index of the population area. The settlement index of the population area for Lobelia, Fontinalis, Isoetes, Sphagnum decreased from 8.4 to 6.2 g d.w. m-2, 4.6 to 0.01 g d.w. m-2, 85.4 to <0.001 g d.w. m-2 and 39.3 to 7.2 g d.w. m-2, respectively. Similar trends were observed in aggregation density. The general pattern of the disintegration of populations of these species was always similar. It was independent of the source macrophytes drew resources from or their susceptibility to environmental changes. Individuals began to be eliminated from the deep and central parts of the population area. The remainder of the populations, which persist in the shallowest, best-illuminated part of the area, are themselves endangered by disturbances caused by wavy motion. The only populations of submerged macrophytes which can survive in polyhumic lakes under such conditions are those which are resistant to disturbances common in the shallow littoral (Lobelia dortmanna, Fontinalis antipyretica.

  16. Plant mitochondrial genome peculiarities evolving in the earliest vascular plant lineages

    Institute of Scientific and Technical Information of China (English)

    Volker KNOOP

    2013-01-01

    In plants,the mitochondrial DNA has evolved in peculiar ways.Simple circular mitochondrial genomes found in most other eukaryotic lineages have expanded tremendously in size.Mitochondrial DNAs in some flowering plants may in fact be larger than genomes of free-living bacteria.Introns,retrotransposons,pseudogene fragments,and promiscuous DNA copied from the chloroplast or nuclear genome contribute to the size expansion but most intergenic DNA remains unaccounted for so far.Additionally,frequent recombination results in heterogeneous pools of coexisting,subgenomic mtDNA molecules in angiosperms.In contrast,the mitochondrial DNAs of bryophytes,the extant representatives of very early splits in plant phylogeny,are more conservative in structural evolution and seem to be devoid of active recombination.However,whereas mitochondrial introns are highly conserved among seed plants (spermatophytes),not a single one of more than 80 different introns in bryophyte mtDNAs is conserved among the three divisions,liverworts,mosses,and hornworts.Lycophytes are now unequivocally identified as living representatives of the earliest vascular plant branch in a crucial phylogenetic position between bryophytes and later diversifying tracheophytes including spermatophytes.Very recently,mtDNAs have become available for the three orders of extant lycophytes-Isoetales,Selaginellales,and Lycopodiales.As I will discuss here,the lycophyte mtDNAs not only show a surprising diversity of features but also previously unseen novelties of plant mitochondrial DNA evolution.The transition from a gametophyte-dominated bryophyte lifestyle to a sporophytedominated vascular plant lifestyle apparently gave rise to several peculiar independent changes in plant chondrome evolution.

  17. Selaginella genome analysis – entering the ‘homoplasy heaven’ of the MADS world

    Directory of Open Access Journals (Sweden)

    Lydia eGramzow

    2012-09-01

    Full Text Available In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKCC and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I; vegetative and floral tissues in sporophytes (MIKCC; and male gametophytes (MIKC*, but their functions in other plants are largely unknown. The complete set of MADS-box genes has been described for several angiosperms and a moss, Physcomitrella patens. Our examination of the complete genome sequence of a lycophyte, Selaginella moellendorffii, revealed 19 putative MADS-box genes (13 Type I, 3 MIKCC, and 3 MIKC*. Our results suggest that the most recent common ancestor of vascular plants possessed at least two Type I and two Type II genes. None of the S. moellendorffii MIKCC genes were identified as orthologs of any floral organ identity genes. This strongly corroborates the view that the clades of floral organ identity genes originated in a common ancestor of seed plants after the lineage that led to lycophytes had branched off, and that expansion of MIKCC genes in the lineage leading to seed plants facilitated the evolution of their unique reproductive organs. The number of MIKC* genes and the ratio of MIKC* to MIKCC genes is lower in S. moellendorffii and angiosperms than in P. patens, correlated with reduction of the gametophyte in vascular plants. Our data indicate that Type I genes duplicated and diversified independently within lycophytes and seed plants. Our observations on MADS-box gene evolution echo morphological evolution since the two lineages of vascular plants appear to have arrived independently at similar body plans. Our annotation of MADS-box genes in S. moellendorffii provides the basis for functional studies to reveal the roles of this crucial gene family in basal vascular

  18. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants

    Directory of Open Access Journals (Sweden)

    Blinov Alexander

    2010-04-01

    Full Text Available Abstract Background Chromodomain-containing Gypsy LTR retrotransposons or chromoviruses are widely distributed among eukaryotes and have been found in plants, fungi and vertebrates. The previous comprehensive survey of chromoviruses from mosses (Bryophyta suggested that genomes of non-seed plants contain the clade which is closely related to the retrotransposons from fungi. The origin, distribution and evolutionary history of this clade remained unclear mainly due to the absence of information concerning the diversity and distribution of LTR retrotransposons in other groups of non-seed plants as well as in fungal genomes. Results In present study we preformed in silico analysis of chromodomain-containing LTR retrotransposons in 25 diverse fungi and a number of plant species including spikemoss Selaginella moellendorffii (Lycopodiophyta coupled with an experimental survey of chromodomain-containing Gypsy LTR retrotransposons from diverse non-seed vascular plants (lycophytes, ferns, and horsetails. Our mining of Gypsy LTR retrotransposons in genomic sequences allowed identification of numerous families which have not been described previously in fungi. Two new well-supported clades, Galahad and Mordred, as well as several other previously unknown lineages of chromodomain-containing Gypsy LTR retrotransposons were described based on the results of PCR-mediated survey of LTR retrotransposon fragments from ferns, horsetails and lycophytes. It appeared that one of the clades, namely Tcn1 clade, was present in basidiomycetes and non-seed plants including mosses (Bryophyta and lycophytes (genus Selaginella. Conclusions The interkingdom distribution is not typical for chromodomain-containing LTR retrotransposons clades which are usually very specific for a particular taxonomic group. Tcn1-like LTR retrotransposons from fungi and non-seed plants demonstrated high similarity to each other which can be explained by strong selective constraints and the

  19. Climate, decay, and the death of the coal forests.

    Science.gov (United States)

    Hibbett, David; Blanchette, Robert; Kenrick, Paul; Mills, Benjamin

    2016-07-11

    After death, most of the biological carbon in organisms (Corg) is returned to the atmosphere as CO2 through the respiration of decomposers and detritivores or by combustion. However, the balance between these processes is not perfect, and when productivity exceeds decomposition, carbon sequestration results. An unparalleled interval of carbon sequestration in Earth's history occurred during the Late Carboniferous (Pennsylvanian) and Permian Periods (ca. 323-252 Ma), when arborescent vascular plants related to living club mosses (Lycophytes), ferns (Monilophytes), horsetails (Equisetophytes) and seed plants (Spermatophytes) formed extensive forests in coastal wetlands. On their death, these plants became buried in sediments, where they transformed into peat, lignite, and, finally, coal.

  20. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum.

  1. Stomatal Blue Light Response Is Present in Early Vascular Plants1[OPEN

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-01-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K+ accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. PMID:26307440

  2. The evolution, morphology and development of fern leaves

    Directory of Open Access Journals (Sweden)

    Alejandra eVasco

    2013-09-01

    Full Text Available Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearl all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development.

  3. Functional diversity of macrophyte communities within and between Pyrenean lakes

    Directory of Open Access Journals (Sweden)

    Enric BALLESTEROS

    2009-02-01

    Full Text Available Submersed vegetation is a common feature in about 70% Pyrenean high mountain (>1500 m a.s.l. lakes. Isoetids and soft-water elodeids are common elements of this underwater flora and can form distinct vegetation units (i.e. patches of vegetation dominated by different species within complex mosaics of vegetation in shallow waters (<7 m. Since isoetids exert a strong influence on sediment biogeochemistry due to high radial oxygen loss, we examined the small scale characteristics of the lake environment (water and sediment associated to vegetation patches in order to ascertain potential functional differences among them. To do so, we characterised the species composition and biomass of the main vegetation units from 11 lakes, defined plant communities based on biomass data, and then related each community with sediment properties (redox and dissolved nutrient concentration in the pore water and water nutrient concentration within plant canopy. We also characterised lake water and sediment in areas without vegetation as a reference. A total of twenty-one vegetation units were identified, ranging from one to five per lake. A cluster analysis on biomass species composition suggested seven different macrophyte communities that were named after the most dominant species: Nitella sp., Potamogeton praelongus, Myriophyllum alterniflorum, Sparganium angustifolium, Isoetes echinospora, Isoetes lacustris and Carex rostrata. Coupling between macrophyte communities and their immediate environment (overlying water and sediment was manifested mainly as variation in sediment redox conditions and the dominant form of inorganic nitrogen in pore-water. These effects depended on the specific composition of the community, and on the allocation between above- and belowground biomass, and could be predicted with a model relating the average and standard deviation of sediment redox potential from 0 down to -20 cm, across macrophyte communities. Differences in pore

  4. Helechos y afines del santuario de fauna y flora de Iguaque, Boyacá. Colombia

    Directory of Open Access Journals (Sweden)

    Murillo María Teresa

    1996-06-01

    Full Text Available The altitudinal distribution of 31 genera and 62 species of fems and allied plants has been studied along three transects in the Carrizal, Chaina and San Pedro sections. The transects of the Carrizal and San Pedro sections rise to San Pedro
    de Iguaque lagoon trough westem and eastem slopes of the septentrional zone of Fauna and nora Sanctuary of Iguaque. The genera richest in species are polydium with 11 species, Asplenium, Elaphoglossum y Blechnum with 5 species. The typical genera of paramo are lamesonia, Lycopodium, Huperzia, Blechnum and Isoetes The distribution and number of species was compared in three sections: species number is highest in Carrizal section; in San Pedro section the number is low but there are sorne predominant species: Pleridium sguilinum (L. Kuhn, lycopodium thyodies Willd. and Cheílanthes lendigera (Cav. Sw. Of vegetation of Chaina section is a transition of montane low forests. of higher number in this section is probably due to location in the Iguaque or Cane bed river. Of taxa are concentrated between Andean forest and subparamo zones. Fem species seem limited in their distribution and are considered specífic
    in their ecological requirementa.
    Se reconocen 31 géneros y 62 especies de helechos y afines en tres transectos ubicados en los sectores Carrizal, Chaina y San Pedro. En los sectores Carrizal y San Pedro, los transectos ascienden por los flancos occidental y oriental de la parte septentrional del santuario hasta la laguna de Iguaque. Los géneros mejor representados son Polypodium con 11 especies, Aspleuinum, Elaphoglossum y Blechnum con 5 especies. Se encontraron géneros caracteristicos del páramo: lamesonia, lycopodium, huperzia,  Blechnum e Isoetes compara la distribución y el número de especies en los tres sectores: el mayor número de especies se observa en el sector Carrizal; en el sector San Pedro es menor pero se detecta predominio de las especies Pleridium aquiliun (L

  5. Dicty_cDB: Contig-U13210-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available DR451089 ) WS00954.BR_K12 IS-B-N-A-10 Picea engelmannii x Pi... 46 0.35 1 ( DN203564 ) USDA-FP_139589 5th Instar Glass...y-winged Sharpshoo... 46 0.35 1 ( DN203476 ) USDA-FP_139501 5th Instar Glass...y-winged Sharpshoo... 46 0.35 1 ( DN203471 ) USDA-FP_139496 5th Instar Glassy-winged Sharpshoo... 46 0....35 1 ( DN203427 ) USDA-FP_139452 5th Instar Glassy-winged Sharpshoo... 46 0.35 1 ( DN203388 ) USDA-FP_139413 5th Instar Glass...y-winged Sharpshoo... 46 0.35 1 ( DN199204 ) USDA-FP_135918 5th Instar Glass

  6. Light requirements of seagrasses determined from historical records of light attenuation along the Gulf coast of peninsular Florida.

    Science.gov (United States)

    Choice, Zanethia D; Frazer, Thomas K; Jacoby, Charles A

    2014-04-15

    Seagrasses around the world are threatened by human activities that degrade water quality and reduce light availability. In this study, light requirements were determined for four common and abundant seagrasses along the Gulf coast of peninsular Florida using a threshold detecting algorithm. Light requirements ranged from 8% to 10% of surface irradiance for Halophila engelmannii to 25-27% of surface irradiance for Halodule wrightii. Requirements for all species differed from previous reports generated at other locations. Variations were attributed to morphological and physiological differences, as well as adaptation to light histories at specific locations. In addition, seagrasses were absent from stations with significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a and color. These results confirm the need to address links between increased anthropogenic nutrient loads, eutrophication, reduced light penetration, and loss of seagrasses and the services they provide.

  7. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    Science.gov (United States)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  8. Photosynthethic carbon reduction by seagrasses exposed to ultraviolet b radiation. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-15

    The species of seagrasses were selected on the basis of their dominance in the marine system, contribution to total productivity, and importance to the life histories of organisms in the Indian River lagoon system along the central Florida east coast. The three seagrasses were Halophilia engelmannii, Halodule wrightii, and Syringodium filiforme. These seagrasses form an excellent experimental system as their areas of dominance fall more or less along a natural gradient of UV-B and photosynthetically active radiation (PAR) penetration. The sensitivity of photosynthesis in the seagrasses was determined and their photosynthetic response to levels of UV-B simulating atmospheric ozone depletion was monitored. Further experiments explore the possible attenuation or repair of UV-B induced photosynthetic inhibition by PAR, the role of epiphytic growth upon seagrasses as a protective UV-B shield, and the inhibition of photosynthesis in response to UV-A is studied.

  9. Photosynthethic carbon reduction by seagrasses exposed to ultraviolet B radiation

    Science.gov (United States)

    1979-01-01

    The species of seagrasses were selected on the basis of their dominance in the marine system, contribution to total productivity, and importance to the life histories of organisms in the Indian River lagoon system along the central Florida east coast. The three seagrasses were Halophilia engelmannii, Halodule wrightii, and Syringodium filiforme. These seagrasses form an excellent experimental system as their areas of dominance fall more or less along a natural gradient of UV-B and photosynthetically active radiation (PAR) penetration. The sensitivity of photosynthesis in the seagrasses was determined and their photosynthetic response to levels of UV-B simulating atmospheric ozone depletion was monitored. Further experiments explore the possible attenuation or repair of UV-B induced photosynthetic inhibition by PAR, the role of epiphytic growth upon seagrasses as a protective UV-B shield, and the inhibition of photosynthesis in response to UV-A is studied.

  10. Using lake sediment records to reconstruct bark beetle disturbances in western North America

    Directory of Open Access Journals (Sweden)

    Jesse Lee Morris

    2013-12-01

    Full Text Available The recent outbreak of native bark beetles in western North America is unprecedented in severity and scale, at least during the historical period. The aim of this work is to develop a proxy-based methodology to understand how bark beetle disturbances are recorded in lake sediments. Three hypotheses are tested to determine how the ecological impacts of severe spruce beetle (Dendroctonus rufipennis disturbances are recorded following mortality of Engelmann spruce (Picea engelmannii. Outbreaks are hypothesized to: (1 decrease the ratio of spruce to fir pollen; (2 increase soil erosion and mobilize terrestrial C; and (3 leach foliar N, enhancing algal productivity. To test these hypotheses, sediment cores from spruce beetle-affected basins were analyzed for pollen, insect remains, organic and minerogenic content, and isotopic and elemental concentrations. The dataset was tested statistically using generalized linear mixed models (GLMMs to determine if the response variables differed significantly between outbreak and non-outbreak periods. 

  11. Deep undercooling of tissue water and winter hardiness limitations in timberline flora.

    Science.gov (United States)

    Becwar, M R; Rajashekar, C; Bristow, K J; Burke, M J

    1981-07-01

    Deep undercooled tissue water, which froze near -40 C, was found in winter collected stem and leaf tissue of the dominant timberline tree species of the Colorado Rocky Mountains, Engelmann spruce (Picea engelmannii (Parry) Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and in numerous other woody species in and below the subalpine vegetation zone. Previous work on numerous woody plants indicates that deep undercooling in xylem makes probable a -40 C winter hardiness limit in stem tissue. Visual injury determinations and electrolyte loss measurements on stem tissue revealed injury near -40 C associated with the freezing of the deep undercooled stem tissue water. These results suggest that the winter hardiness limit of this woody flora is near -40 C. The relevance of deep undercooling in relation to timberline, the upper elevational limit of the subalpine forest, is discussed.

  12. Evolutionary differences in Δ13C detected between spore and seed bearing plants following exposure to a range of atmospheric O2:CO2 ratios; implications for paleoatmosphere reconstruction

    Science.gov (United States)

    Porter, Amanda S.; Yiotis, Charilaos; Montañez, Isabel P.; McElwain, Jennifer C.

    2017-09-01

    The stable carbon isotopes of fossil plants are a reflection of the atmosphere and environment in which they grew. Fossil plant remains have thus stored information about the isotopic composition and concentration of atmospheric carbon dioxide (pCO2) and possibly pO2 through time. Studies to date, utilizing extant plants, have linked changes in plant stable carbon isotopes (δ13Cp) or carbon isotope discrimination (Δ13C) to changes in pCO2 and/or pO2. These studies have relied heavily on angiosperm representatives, a phylogenetic group only present in the fossil record post-Early Cretaceous (∼140 million years ago (mya)), whereas gymnosperms, monilophytes and lycophytes dominated terrestrial ecosystems prior to this time. The aim of this study was to expand our understanding of carbon isotope discrimination in all vascular plant groups of C3 plants including lycophytes, monilophytes, gymnosperms and angiosperms, under elevated CO2 and sub-ambient O2 to explore their utility as paleo-atmospheric proxies. To achieve this goal, plants were grown in controlled environment chambers under a range of O2:CO2 ratio treatments. Results reveal a strong phylogenetic dependency on Δ13C, where spore-bearing (lycophytes and monilophytes) have significantly higher 13C discrimination than seed plants (gymnosperms and angiosperms) by ∼5‰. We attribute this strong phylogenetic signal to differences in Ci/Ca likely mediated by fundamental differences in how spore and seed bearing plants control stomatal aperture. Decreasing O2:CO2 ratio in general resulted in increased carbon isotope discrimination in all plant groups. Notably, while all plant groups respond unidirectionally to elevated atmospheric CO2 (1900 ppm and ambient O2), they do not respond equally to sub-ambient O2 (16%). We conclude that (1) Δ13C has a strong phylogenetic or 'reproductive grade' bias, whereby Δ13C of spore reproducing plants is significantly different to seed reproducing taxa. (2) Δ13C increases

  13. Limnology of Botos Lake, a tropical crater lake in Costa Rica.

    Science.gov (United States)

    Umaña, G

    2001-12-01

    Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.

  14. Effects of flooding on the spatial distribution of soil seed and spore banks of native grasslands of the Pantanal wetland

    Directory of Open Access Journals (Sweden)

    Patricia Carla de Oliveira

    2015-09-01

    Full Text Available ABSTRACTTo better understand the role that flooding plays in shaping plant communities of native floodable grasslands of the Pantanal and to characterize the spatial distribution of plants, we present the results of a survey of soil seed and spore banks using the seedling emergence method. We hypothesized that terrain subjected to the deepest and longest flooding should have higher propagule abundance and richness. The species composition and distribution of seeds and spores in the soil were assessed at five sites using three sampling positions at each according to inundation intensity. In each sample position 2cm-thick soil samples were collected in quadrats to a depth of 10cm. Litter was also collected as an independent layer. Sample monitoring in the greenhouse resulted in the emergence of 5489 seedlings, or 6353 propagules.m-2. Both the litter layer and the deepest soil layer had low abundances. A total of forty-four morphospecies (16 families were recorded. Both seedling abundance and species richness were concentrated in the more floodable center sections. Isoetes pedersenii, Eleocharis minima, Sagittaria guayanensis, Rotala mexicana, Eleocharis plicarhachis, and Panicum laxum were the most abundant species. The species composition and spatial distribution of the propagule bank suggests that flooding plays a crucial role in seasonal vegetation dynamics in Pantanal wetlands, mediated by the ability of the soil to host seeds and spores during dry season.

  15. Conservation of Mediterranean wetlands: interest of historical approach.

    Science.gov (United States)

    Daoud-Bouattour, Amina; Muller, Serge D; Jamaa, Hafawa Ferchichi-Ben; Saad-Limam, Samia Ben; Rhazi, Laïla; Soulié-Märsche, Ingeborg; Rouissi, Maya; Touati, Besma; Jilani, Imtinène Ben Haj; Gammar, Amor Mokhtar; Ghrabi-Gammar, Zeineb

    2011-10-01

    The wetlands of North Africa are an endangered and invaluable ecological heritage. Some of these wetlands are now protected by various conservation statutes; which actual impact has not yet been reliably evaluated. This article aims to assess the conservation management (Nature Reserve and Ramsar site) of a protected Tunisian lake, Majen Chitane, by using palaeoecological, historical and modern data, and by comparing it with the unprotected lake Majen Choucha. While located in similar environments, these lakes are today home to very different flora. Baseline conditions reconstructed from literature indicate that both lakes were very similar until the 1950s, and comparable to the current state of Majen Choucha, housing rich oligotrophic plant communities. In the 1960s, at the time that cultivation of the adjacent peatland began, Majen Chitane underwent strong ecological changes as the initial oligotrophic plant, diatom and zooplankton communities were replaced by eutrophication-tolerant ones. Eutrophication led to the local extinction of 40-55% of the hydrophytic and temporary-pool plant species, including those characteristic of the Isoetion. Given the damages and despite the recent conservation status of the site, it's unlikely that Majen Chitane will undergo any natural regeneration. Restoring it would start with completely protecting the complex lake-peatland and re-introducing the locally extinct species from Majen Choucha. This work exemplifies the usefulness of connecting palaeoecological, historical and modern data for the conservation of Mediterranean wetlands.

  16. Amino acid transporter inventory of the Selaginella genome

    Directory of Open Access Journals (Sweden)

    Daniel eWipf

    2012-04-01

    Full Text Available Amino acids play fundamental roles in a multitude of functions including protein synthesis, hormone metabolism, nerve transmission, cell growth, production of metabolic energy, nucleobase synthesis, nitrogen metabolism and urea biosynthesis. Selaginella as a member of the lycophytes is part of an ancient lineage of vascular plants that had arisen ~400 million years ago. In angiosperms, which have attracted most of the attention for nutrient distribution so far, we have been able to identify many of the key transporters for nitrogen. Their role is not always fully clear, thus an analysis of Selaginella as a representative of an ancient vascular plant may help shedding light on the evolution and function of these diverse transporters. Here we analyze the genes for transporters involved in cellular uptake of amino acids present in the Selaginella genome.

  17. Ammonium and urea transporter inventory of the Selaginella and Physcomitrella genomes

    Directory of Open Access Journals (Sweden)

    Roberto eDe Michele

    2012-04-01

    Full Text Available Ammonium and urea are important nitrogen sources for autotrophic organisms. Plant genomes encode several families of specific transporters for these molecules, plus other uptake mechanisms such as aquaporins and ABC transporters. Selaginella and Physcomitrella are representatives of lycophytes and bryophytes, respectively, and the recent completion of their genome sequences provided us with an opportunity for comparative genome studies, with special emphasis on the adaptive processes that accompanied the conquest of dry land and the evolution of a vascular system. Our phylogenetic analysis revealed that the number of genes encoding urea transporters underwent a progressive reduction during evolution, eventually down to a single copy in vascular plants. Conversely, no clear evolutionary pattern was found for ammonium transporters, and their number and distribution in families varies between species. In particular Selaginella, similar to rice, favors the AMT2/MEP family of ammonium transporters over the plant-specific AMT1 type. In comparison, Physcomitrella presents several members belonging to both families.

  18. Amino Acid transporter inventory of the selaginella genome.

    Science.gov (United States)

    Wipf, Daniel; Loqué, Dominique; Lalonde, Sylvie; Frommer, Wolf B

    2012-01-01

    Amino acids play fundamental roles in a multitude of functions including protein synthesis, hormone metabolism, nerve transmission, cell growth, production of metabolic energy, nucleobase synthesis, nitrogen metabolism, and urea biosynthesis. Selaginella as a member of the lycophytes is part of an ancient lineage of vascular plants that had arisen ∼400 million years ago. In angiosperms, which have attracted most of the attention for nutrient transport so far, we have been able to identify many of the key transporters for nitrogen. Their role is not always fully clear, thus an analysis of Selaginella as a representative of an ancient vascular plant may help shed light on the evolution and function of these diverse transporters. Here we annotated and analyzed the genes encoding putative transporters involved in cellular uptake of amino acids present in the Selaginella genome.

  19. Ammonium and urea transporter inventory of the selaginella and physcomitrella genomes.

    Science.gov (United States)

    De Michele, Roberto; Loqué, Dominique; Lalonde, Sylvie; Frommer, Wolf B

    2012-01-01

    Ammonium and urea are important nitrogen sources for autotrophic organisms. Plant genomes encode several families of specific transporters for these molecules, plus other uptake mechanisms such as aquaporins and ABC transporters. Selaginella and Physcomitrella are representatives of lycophytes and bryophytes, respectively, and the recent completion of their genome sequences provided us with an opportunity for comparative genome studies, with special emphasis on the adaptive processes that accompanied the conquest of dry land and the evolution of a vascular system. Our phylogenetic analysis revealed that the number of genes encoding urea transporters underwent a progressive reduction during evolution, eventually down to a single copy in vascular plants. Conversely, no clear evolutionary pattern was found for ammonium transporters, and their number and distribution in families varies between species. In particular Selaginella, similar to rice, favors the AMT2/MEP family of ammonium transporters over the plant-specific AMT1 type. In comparison, Physcomitrella presents several members belonging to both families.

  20. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    Science.gov (United States)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  1. Unique Responsiveness of Angiosperm Stomata to Elevated CO2 Explained by Calcium Signalling

    Science.gov (United States)

    Brodribb, Timothy J.; McAdam, Scott A. M.

    2013-01-01

    Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca2+-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca2+-dependent stomatal signalling. We conclude that the evolution of Ca2+-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2. PMID:24278470

  2. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  3. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.

    Directory of Open Access Journals (Sweden)

    Preeti Arya

    Full Text Available NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR. In the present study, we have employed a genome-wide survey (using stringent computational analysis of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.

  4. A phylogenetic approach to study the origin and evolution of the CRINKLY4 family

    Directory of Open Access Journals (Sweden)

    Natalia eNikonorova

    2015-10-01

    Full Text Available Cell-cell communication plays a crucial role in plant growth and development and relies to a large extent on peptide ligand-receptor kinase signalling mechanisms. The CRINKLY4 (CR4 family of receptor-like kinases is involved in a wide range of developmental processes in plants, including mediating columella stem cell identity and differentiation in the Arabidopsis thaliana root tip. Members of the CR4 family contain a signal peptide, an extracellular part, a single-pass transmembrane helix and an intracellular cytoplasmic protein kinase domain. The main distinguishing features of the family are the presence of seven ‘crinkly’ repeats and a TUMOR NECROSIS FACTOR RECEPTOR (TNFR-like domain in the extracellular part. Here, we investigated the evolutionary origin of the CR4 family and explored to what extent members of this family are conserved throughout the green lineage. We identified members of the CR4 family in various dicots and monocots, and also in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. In addition, we attempted to gain insight in the evolutionary origin of different CR4-specific domains, and we could detect ‘crinkly’ repeat containing proteins already in single celled algae. Finally, we related the presence of likely functional CR4 orthologues to its best described signalling module comprising CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 40 (CLE40, WUSCHEL RELATED HOMEOBOX 5 (WOX5, CLAVATA 1 (CLV1 and ARABIDOPSIS CR4 (ACR4, and established that this module likely is already present in bryophytes and lycophytes.

  5. Computational Identification Raises a Riddle for Distribution of Putative NACHT NTPases in the Genome of Early Green Plants.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2016-01-01

    NACHT NTPases and AP-ATPases belongs to STAND (signal transduction ATPases with numerous domain) P-loop NTPase class, which are known to be involved in defense signaling pathways and apoptosis regulation. The AP-ATPases (also known as NB-ARC) and NACHT NTPases are widely spread throughout all kingdoms of life except in plants, where only AP-ATPases have been extensively studied in the scenario of plant defense response against pathogen invasion and in hypersensitive response (HR). In the present study, we have employed a genome-wide survey (using stringent computational analysis) of 67 diverse organisms viz., archaebacteria, cyanobacteria, fungi, animalia and plantae to revisit the evolutionary history of these two STAND P-loop NTPases. This analysis divulged the presence of NACHT NTPases in the early green plants (green algae and the lycophyte) which had not been previously reported. These NACHT NTPases were known to be involved in diverse functional activities such as transcription regulation in addition to the defense signaling cascades depending on the domain association. In Chalmydomonas reinhardtii, a green algae, WD40 repeats found to be at the carboxyl-terminus of NACHT NTPases suggest probable role in apoptosis regulation. Moreover, the genome of Selaginella moellendorffii, an extant lycophyte, intriguingly shows the considerable number of both AP-ATPases and NACHT NTPases in contrast to a large repertoire of AP-ATPases in plants and emerge as an important node in the evolutionary tree of life. The large complement of AP-ATPases overtakes the function of NACHT NTPases and plausible reason behind the absence of the later in the plant lineages. The presence of NACHT NTPases in the early green plants and phyletic patterns results from this study raises a quandary for the distribution of this STAND P-loop NTPase with the apparent horizontal gene transfer from cyanobacteria.

  6. Growth strategies and threshold responses to water deficit modulate effects of warming on tree seedlings from forest to alpine

    Science.gov (United States)

    Lazarus, Brynne E.; Castanha, Cristina; Germino, Matthew; Kueppers, Lara M.; Moyes, Andrew B.

    2017-01-01

    1.Predictions of upslope range shifts for tree species with warming are based on assumptions of moisture stress at lower elevation limits and low temperature stress at high elevation limits. However, recent studies have shown that warming can reduce tree seedling establishment across the entire gradient from subalpine forest to alpine via moisture limitation. Warming effects also vary with species, potentially resulting in community shifts in high elevation forests. 2.We examined the growth and physiology underlying effects of warming on seedling demographic patterns. We evaluated dry mass (DM), root length, allocation above- and belowground, and relative growth rate (RGR) of whole seedlings, and their ability to avoid or endure water stress via water-use efficiency and resisting turgor loss, for Pinus flexilis, Picea engelmannii and Pinus contorta seeded below, at, and above treeline in experimentally warmed, watered, and control plots in the Rocky Mountains, USA. We expected that growth and allocation responses to warming would relate to moisture status and that variation in drought tolerance traits would explain species differences in survival rates. 3.Across treatments and elevations, seedlings of all species had weak turgor-loss resistance, and growth was marginal with negative RGR in the first growth phase (-0.01 to -0.04 g/g/d). Growth was correlated with soil moisture, particularly in the relatively small-seeded P. contorta and P. engelmannii. P. flexilis, known to have the highest survivorship, attained the greatest DM and longest root but was also the slowest growing and most water-use-efficient. This was likely due to its greater reliance on seed reserves. Seedlings developed 15% less total DM, 25% less root DM, and 11% shorter roots in heated compared to unheated plots. Higher temperatures slightly increased DM, root length and RGR where soils were wettest, but more strongly decreased these variables under drier conditions. 4.Synthesis: The surprising

  7. La vegetación azonal paramunade la Cordillera Oriental colombiana: síntesis fitosociológica preliminar

    Directory of Open Access Journals (Sweden)

    Rangel Churio Orlando

    2006-06-01

    Full Text Available El presente estudio aplica el uso de herramientas sistematizadas y los conceptos clásicos de la fitosociología en la identificación, caracterización y síntesis preliminar de las unidades de vegetación azonal presentes en la cordillera Oriental, revisando las propuestas anteriores de clasificación y analizando conjuntamente la información obtenida de 500 levantamientos realizados en la cordillera por numerosos investigadores entre 1976 y 2001 abarcando el área comprendida entre las regiones paramunas de Almorzadero al norte, Sumapaz al sur y occidente y la Sierra Nevada del Cocuy al oriente, distribuidos entre los límites con la vegetación de bosque altoandino (3.000 m hasta el superpáramo (4.435 m, incluyendo algunas localidades extrazonales (2.800 m. Se diferenciaron en total 136 unidades de vegetación distribuidas en seis clases, cinco órdenes, 17 alianzas, 61 asociaciones, 13  subasociaciones y 34 variantes, además, de 14  comunidades, agrupadas en cuatro tipos principales
    de vegetación: acuática y de ribera, cojines de pantano, herbácea de pantanos y turberas, y arbustiva de matorrales y chuscales. Los páramos del centro de la cordillera comparten la mayor riqueza de alianzas (diez,
    seguidos por los de la región Sur (nueve y los de Chingaza (ocho; la mayor riqueza de asociaciones se concentra en los páramos del sur y centro de la cordillera y en la región de la Sierra Nevada del Cocuy (25, 21 y 18 respectivamente. La vegetación de cinco alianzas presenta distribución restringida, tres de ellas existentes
    en la región de Tota, una en el centro de la cordillera y la restante en la región de Chingaza; el mayor número
    de asociaciones con distribución restringida se presenta en los páramos del Centro de la cordillera (diez, en la
    región de Tota (siete y en la región Sur (cinco. La vegetación de las alianzas Ditricho-Isoetion y Oreobolio-Plantagion posee amplia distribución a lo largo de

  8. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world.

    Science.gov (United States)

    Liepe, Katharina J; Hamann, Andreas; Smets, Pia; Fitzpatrick, Connor R; Aitken, Sally N

    2016-02-01

    We investigated adaptation to climate in populations of two widespread tree species across a range of contrasting environments in western Canada. In a series of common garden experiments, bud phenology, cold hardiness, and seedling growth traits were assessed for 254 populations in the interior spruce complex (Picea glauca, P. engelmannii, and their hybrids) and for 281 populations of lodgepole pine (Pinus contorta). Complex multitrait adaptations to different ecological regions such as boreal, montane, coastal, and arid environments accounted for 15-20% of the total variance. This population differentiation could be directly linked to climate variables through multivariate regression tree analysis. Our results suggest that adaptation to climate does not always correspond linearly to temperature gradients. For example, opposite trait values (e.g., early versus late budbreak) may be found in response to apparently similar cold environments (e.g., boreal and montane). Climate change adaptation strategies may therefore not always be possible through a simple shift of seed sources along environmental gradients. For the two species in this study, we identified a relatively small number of uniquely adapted populations (11 for interior spruce and nine for lodgepole pine) that may be used to manage adaptive variation under current and expected future climates.

  9. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Science.gov (United States)

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  10. Genetical genomics identifies the genetic architecture for growth and weevil resistance in spruce.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck. in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1 genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2 master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce.

  11. Photosynthetic response of seagrasses to ultraviolet-a radiation and the influence of visible light intensity.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1982-02-01

    Inhibition of photosynthesis by ultraviolet-A radiation (UV-A, 315-380 nanometers) was examined in three marine angiosperms: Halophila engelmannii Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz. Sensitivity to UV-A and photosensitization to UV-A by photosynthetically active radiation (PAR, 380-700 nanometers) were characterized.Net photosynthesis by Halodule and Syringodium was unaffected by UV-A irradiation in the absence of PAR. Irradiation of Syringodium by a combined beam of UV-A and PAR resulted in photosynthetic inhibition. The depression of net photosynthesis was found to be a function of PAR intensity at a fixed level of UV-A irradiation. Inhibition of photosynthesis in Halodule by the combined beam was minimal and suggests adaptation to environmental irradiation levels.Halophila was the only species examined, subject to photosynthetic inhibition by UV-A in the absence of PAR. Irradiation with PAR intensities characteristic to Halophila in the natural system as the combined beam, appeared to negate the inhibition. Increasing the PAR component of the combined beam above environmental norms resulted in photosynthetic inhibition greater than that observed for UV-A alone.

  12. Photosynthetic Response of Seagrasses to Ultraviolet-A Radiation and the Influence of Visible Light Intensity 1

    Science.gov (United States)

    Trocine, Robert P.; Rice, John D.; Wells, Gary N.

    1982-01-01

    Inhibition of photosynthesis by ultraviolet-A radiation (UV-A, 315-380 nanometers) was examined in three marine angiosperms: Halophila engelmannii Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz. Sensitivity to UV-A and photosensitization to UV-A by photosynthetically active radiation (PAR, 380-700 nanometers) were characterized. Net photosynthesis by Halodule and Syringodium was unaffected by UV-A irradiation in the absence of PAR. Irradiation of Syringodium by a combined beam of UV-A and PAR resulted in photosynthetic inhibition. The depression of net photosynthesis was found to be a function of PAR intensity at a fixed level of UV-A irradiation. Inhibition of photosynthesis in Halodule by the combined beam was minimal and suggests adaptation to environmental irradiation levels. Halophila was the only species examined, subject to photosynthetic inhibition by UV-A in the absence of PAR. Irradiation with PAR intensities characteristic to Halophila in the natural system as the combined beam, appeared to negate the inhibition. Increasing the PAR component of the combined beam above environmental norms resulted in photosynthetic inhibition greater than that observed for UV-A alone. PMID:16662205

  13. Mapping spatial resources with GPS animal telemetry: foraging manatees locate seagrass beds in the Ten Thousand Islands, Florida, USA

    Science.gov (United States)

    Slone, Daniel H.; Reid, James P.; Kenworthy, W. Judson

    2013-01-01

    Turbid water conditions make the delineation and characterization of benthic habitats difficult by traditional in situ and remote sensing methods. Here, we develop and validate modeling and sampling methodology for detecting and characterizing seagrass beds by analyzing GPS telemetry records from radio-tagged manatees. Between October 2002 and October 2005, 14 manatees were tracked in the Ten Thousand Islands (TTI) in southwest Florida (USA) using Global Positioning System (GPS) tags. High density manatee use areas were found to occur off each island facing the open, nearshore waters of the Gulf of Mexico. We implemented a spatially stratified random sampling plan and used a camera-based sampling technique to observe and record bottom observations of seagrass and macroalgae presence and abundance. Five species of seagrass were identified in our study area: Halodule wrightii, Thalassia testudinum, Syringodium filiforme, Halophila engelmannii, and Halophila decipiens. A Bayesian model was developed to choose and parameterize a spatial process function that would describe the observed patterns of seagrass and macroalgae. The seagrasses were found in depths <2 m and in the higher manatee use strata, whereas macroalgae was found at moderate densities at all sampled depths and manatee use strata. The manatee spatial data showed a strong association with seagrass beds, a relationship that increased seagrass sampling efficiency. Our camera-based field sampling proved to be effective for assessing seagrass density and spatial coverage under turbid water conditions, and would be an effective monitoring tool to detect changes in seagrass beds.

  14. Role of Nurse Logs in Forest Expansion at Timberline

    Science.gov (United States)

    Johnson, A. C.; Yeakley, A.

    2008-12-01

    Nurselogs, known to be key sites of forest regeneration in lower elevation temperate forests, may be important sites for seedling establishment at expanding timberline forests. To determine factors associated with seedling establishment and survival on nurselogs at timberline, fourteen sites, located across a precipitation gradient in the Washington North Cascades Mountains, were examined. Site attributes including seedling type and height, disturbance process introducing downed wood, wood decay type, shading, slope gradient, aspect, and temperature and water content of wood and adjacent soil were determined along 60 m long transects. Nurselogs were found at 13 out of 14 sites; sites typically associated with greater than 80% shade and downed wood having a high level of wood decay. Downed wood serving as nurselogs originated from blowdown, snow avalanches, and forest fires. In total, 46 of 136 downed wood pieces observed served as nurselogs. Seedlings on nurselogs included mountain hemlock (Tsuga mertensiana), Pacific silver fir (Abies amabilis), yellow cedar (Chamaecyparis nootkatensis), subalpine fir (Abies lasiocarpa), Engelmann spruce (Picea engelmannii), and western larch (Larix occidentalis). Nurselogs had significantly higher temperatures (p = 0.015) and higher moisture contents (p = 0.019) than the adjacent soil. Per equal volumes weighed, nurselogs had on average of 23.8 g more water than the adjacent soil. Given predictions of climate warming and associated summer drought conditions in Pacific Northwest forests, the moisture provided by nurselogs may be integral for conifer survival and subsequent timberline expansion in some landscapes.

  15. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.

    Directory of Open Access Journals (Sweden)

    Dullat Harpreet K

    2011-03-01

    Full Text Available Abstract Background In conifers, terpene synthases (TPSs of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. Results The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs and full-length cDNAs in several spruce (Picea species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis, 5 from white spruce (P. glauca, and 4 from hybrid white spruce (P. glauca × P. engelmannii, which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. Conclusions The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling.

  16. Extinct mountain goat ( Oreamnos harringtoni) in Southeastern Utah

    Science.gov (United States)

    Mead, Jim I.; Agenbroad, Larry D.; Phillips, Arthur M.; Middleton, Larry T.

    1987-05-01

    The extinct Harrington's mountain goat ( Oreamnos harringtoni Stock) is predominantly known from dry cave localities in the Grand Canyon, Arizona, in addition to two sites in the Great Basin, Nevada, and from San Josecito Cave, Nuevo Leon, Mexico. A dry shelter in Natural Bridges National Monument, on the central Colorado Plateau, southeastern Utah, preserves numerous remains of the extinct mountain goat in addition to pack rat middens. Remains from a 100-cm stratigraphic profile indicate that O. harringtoni lived on the plateau >39,800 yr B.P., the oldest directly dated find of extinct mountain goat. Plant macrofossils indicate that Engelmann's spruce ( Picea engelmannii), limber pine ( Pinus flexilis), rose ( Rosa cf. woodsii), and Douglas fir ( Pseudotsuga menziesii) grew during the late Pleistocene where a riparian and a pinyon-juniper ( Pinus edulis-Juniperus osteosperma) community now predominates; Douglas fir are found only in mesic, protected, north-facing areas. Limber pine, Douglas fir, bark, and grasses were the major dietary components in the dung. A springtime diet of birch ( Betula) is determined from pollen clumps in dung pellets.

  17. Movement of elements into the atmosphere from coniferous trees in subalpine forests of colorado and Idaho

    Science.gov (United States)

    Curtin, G.C.; King, H.D.; Mosier, E.L.

    1974-01-01

    Exudates from conifer trees, presumably consisting largely of volatile materials, were sampled at 19 subalpine localitites in Colorado and Idaho where anomalous amounts of several metals were determined in vegetation and mull during previous geochemical testing. The trees sampled were lodgepole pine (Pinus contorta), Engelmann spruce (Picea engelmannii) and Douglas fir (Pseudotsuga menziesii). The condensed exudates were passed through No. 40 Whatman filters, and through 5-micron, 0.45-micron, and 0.05-micron average-pore-diameter membrane filters, evaporated to dryness, and each residue was ashed and analyzed by a semiquantitative spectrographic method. The ashed residues of the exudates contain lithium, beryllium, boron, sodium, magnesium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, arsenic, strontium, yttrium, zirconium, molybdenum, silver, lead, bismuth, cadmium, tin, antimony, barium, and lanthanum. The presence of these elements suggests that volatile exudates from vegetation are a medium for the transport of elements in the biogeochemical cycle in subalpine environments. Thus, air sampling and analysis of aerosols derived from volatile exudates may be a useful tool in geochemical exploration. ?? 1974.

  18. A Quantitative Index of Forest Structural Sustainability

    Directory of Open Access Journals (Sweden)

    Jonathan A. Cale

    2014-07-01

    Full Text Available Forest health is a complex concept including many ecosystem functions, interactions and values. We develop a quantitative system applicable to many forest types to assess tree mortality with respect to stable forest structure and composition. We quantify impacts of observed tree mortality on structure by comparison to baseline mortality, and then develop a system that distinguishes between structurally stable and unstable forests. An empirical multivariate index of structural sustainability and a threshold value (70.6 derived from 22 nontropical tree species’ datasets differentiated structurally sustainable from unsustainable diameter distributions. Twelve of 22 species populations were sustainable with a mean score of 33.2 (median = 27.6. Ten species populations were unsustainable with a mean score of 142.6 (median = 130.1. Among them, Fagus grandifolia, Pinus lambertiana, P. ponderosa, and Nothofagus solandri were attributable to known disturbances; whereas the unsustainability of Abies balsamea, Acer rubrum, Calocedrus decurrens, Picea engelmannii, P. rubens, and Prunus serotina populations were not. This approach provides the ecological framework for rational management decisions using routine inventory data to objectively: determine scope and direction of change in structure and composition, assess excessive or insufficient mortality, compare disturbance impacts in time and space, and prioritize management needs and allocation of scarce resources.

  19. Remote Sensing of Sonoran Desert Vegetation Structure and Phenology with Ground-Based LiDAR

    Directory of Open Access Journals (Sweden)

    Joel B. Sankey

    2014-12-01

    Full Text Available Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  20. Climatic Influences on Wood Anatomy and Tree-Ring Features of Great Basin Conifers at a New Mountain Observatory

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2014-10-01

    Full Text Available Premise of the study: A network of mountain observing stations has been installed in the Great Basin of North America. NevCAN (Nevada Climate-ecohydrological Assessment Network, which spans a latitudinal range of 2.5° and two elevation ranges of about 2000 m each, enabled us to investigate tree growth in relation to climate. Methods: We analyzed wood anatomy and tree-ring characteristics of four conifer species in response to different levels of water availability by comparing a low- and a high-elevation population. Chronologies of earlywood and latewood widths, as well as cellular parameters, were developed from the year 2000 to 2012. Results: At the southern (drier and warmer sites, Pinus monophylla had smaller cell lumen, tracheid diameter, and cell wall thickness. Pinus monophylla and P. flexilis showed bigger cellular elements at the higher elevations, whereas the opposite pattern was found in Picea engelmannii and Pinus longaeva. When all species and sites were pooled together, stem diameter was positively related with earlywood anatomical parameters. Discussion: We have provided a glimpse of the applications that NevCAN, as a new scientific tool, could allow in the general field of botany. In particular, we were able to investigate how differences in water stress related to elevation lead to changes in xylem anatomy.

  1. Remote sensing of Sonoran Desert vegetation structure and phenology with ground-based LiDAR

    Science.gov (United States)

    Sankey, Joel B.; Munson, Seth M.; Webb, Robert H.; Wallace, Cynthia S.A.; Duran, Cesar M.

    2015-01-01

    Long-term vegetation monitoring efforts have become increasingly important for understanding ecosystem response to global change. Many traditional methods for monitoring can be infrequent and limited in scope. Ground-based LiDAR is one remote sensing method that offers a clear advancement to monitor vegetation dynamics at high spatial and temporal resolution. We determined the effectiveness of LiDAR to detect intra-annual variability in vegetation structure at a long-term Sonoran Desert monitoring plot dominated by cacti, deciduous and evergreen shrubs. Monthly repeat LiDAR scans of perennial plant canopies over the course of one year had high precision. LiDAR measurements of canopy height and area were accurate with respect to total station survey measurements of individual plants. We found an increase in the number of LiDAR vegetation returns following the wet North American Monsoon season. This intra-annual variability in vegetation structure detected by LiDAR was attributable to a drought deciduous shrub Ambrosia deltoidea, whereas the evergreen shrub Larrea tridentata and cactus Opuntia engelmannii had low variability. Benefits of using LiDAR over traditional methods to census desert plants are more rapid, consistent, and cost-effective data acquisition in a high-resolution, 3-dimensional context. We conclude that repeat LiDAR measurements can be an effective method for documenting ecosystem response to desert climatology and drought over short time intervals and at detailed-local spatial scale.

  2. Pennsylvanian - Early Cisuralian interglacial macrofloristic succession in Paraná Basin of the State of São Paulo

    Science.gov (United States)

    Bernardes-de-Oliveira, Mary Elizabeth Cerruti; Kavali, Pauline Sabina; Mune, Sandra Eiko; Shivanna, Mahesh; Souza, Paulo Alves de; Iannuzzi, Roberto; Jasper, André; Hoelzel, Amanda; Boardman, Daiana R.; Rohn, Rosemarie; Ricardi-Branco, Fresia

    2016-12-01

    One of the most completely preserved glacial sedimentary records from the Late Carboniferous to the Early Permian time corresponds to the Itararé Group, which presents a large outcropping thickness in the northeastern border of Paraná Basin, especially in the State of São Paulo. This unit corresponds to the base of the Gondwana I Supersequence and is composed of continental to marine glacial and interglacial deposits. Based on some macrofloristic, lithostratigraphic and palynostratigraphic data, a formal scheme of the macrofloral succession is herein proposed for this interval, comprising five associations in ascending stratigraphic order namely: (1) Dwykea-Sublagenicula-Calamospora Association (recorded in Campinas Municipality), composed of lycophyte megaspores (Sublagenicula, Trileites and Calamospora sp.) and some bryophytes (Dwykea), concerning to a coastal glacial or coastal interglacial environment; (2) Eusphenopteris-Nothorhacopteris-Botrychiopsis Association (registered in Itapeva and Buri municipalities), composed of Eusphenopteris, Nothorhacopteris, Botrychiopsis, Paracalamites spp. along with Sphenophyllum, Koretrophyllites, Noeggerathiopsis and rare Cordaicarpus and Samaropsis - concerning to an interglacial deltaic plain associated to coal forming swamps with cold temperate hydro-hygrophilous vegetation; (3) Paranocladus-Ginkgophyllum-Brasilodendron Association (registered in Monte Mor Municipality), composed of the first conifers of the Paraná Basin (Paranocladus, Paranospermum and few Buriadia-type), lycophytes (Brasilodendron, Bumbudendron), Ginkgophyllum, Noeggerathiopsis, Samaropsis and Cordaicarpus and rare Nothorhacopteris, Botrychiopsis, Koretrophyllites and Sphenophyllum, interpreted as interglacial deltaic flood plain; (4) Dwykea-Sublagenicula-Calamospora Recurrent Association (recorded in Salto Municipality), composed of bryophytes (Dwykea) and lycopod megaspores, very similar to the first association, related to a coastal glacial or

  3. Evolutionary conservation of plant gibberellin signalling pathway components

    Directory of Open Access Journals (Sweden)

    Reski Ralf

    2007-11-01

    Full Text Available Abstract Background: Gibberellins (GA are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.

  4. Conserved roles of CrRLK1L receptor-like kinases in cell expansion and reproduction from algae to angiosperms

    Directory of Open Access Journals (Sweden)

    Sergio Galindo Trigo

    2016-08-01

    Full Text Available Receptor-like kinases (RLKs are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant-pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants.

  5. Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms

    Science.gov (United States)

    Galindo-Trigo, Sergio; Gray, Julie E.; Smith, Lisa M.

    2016-01-01

    Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant–pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants. PMID:27621737

  6. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  7. Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza.

    Science.gov (United States)

    Saha, Jayita; Chatterjee, Chitrita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2014-04-01

    The over-expression of plant specific SnRK2 gene family members by hyperosmotic stress and some by abscisic acid is well established. In this report, we have analyzed the evolution of SnRK2 gene family in different plant lineages including green algae, moss, lycophyte, dicot and monocot. Our results provide some evidences to indicate that the natural selection pressure had considerable influence on cis-regulatory promoter region and coding region of SnRK2 members in Arabidopsis and Oryza independently through time. Observed degree of sequence/motif conservation amongst SnRK2 homolog in all the analyzed plant lineages strongly supported their inclusion as members of this family. The chromosomal distributions of duplicated SnRK2 members have also been analyzed in Arabidopsis and Oryza. Massively Parallel Signature Sequencing (MPSS) database derived expression data and the presence of abiotic stress related promoter elements within the 1 kb upstream promoter region of these SnRK2 family members further strengthen the observations of previous workers. Additionally, the phylogenetic relationships of SnRK2 have been studied in all plant lineages along with their respective exon-intron structural patterns. Our results indicate that the ancestral SnRK2 gene of land plants gradually evolved by duplication and diversification and modified itself through exon-intron loss events to survive under environmental stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Final Report for Regulation of Embryonic Development in Higher Plants

    Energy Technology Data Exchange (ETDEWEB)

    Harada, John J. [University of California, Davis

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulated by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.

  9. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    Directory of Open Access Journals (Sweden)

    Yuan-Jie Zhang

    Full Text Available Dehydroascorbate reductase (DHAR, which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens and eudicots (e.g. Arabidopsis thaliana. In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  10. The range of bioinclusions and pseudoinclusions preserved in a new Turonian (~90 ma) amber occurrence from Southern Australia.

    Science.gov (United States)

    Quinney, Annie; Mays, Chris; Stilwell, Jeffrey D; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    A new Turonian amber occurrence, representing the oldest in situ amber locality in Australia and the southern-most locality in Gondwana, has recently been discovered in the Otway Basin of Victoria. The amber was collected from petroleum cores and many pieces contain a range of inclusions that can provide information on the depositional history of the resin. To date, one species of fern spore (Cyathidites minor) and one species of lycophyte spore (Kraeuselisporites sp?) have been conclusively identified in the amber, along with filamentous microorganisms and degraded plant matter. Several samples are also rife with pseudoinclusions as reported recently in other ambers. The abundance of preserved particulate debris and wind dispersed spores suggest that the Otway amber formed subaerially. Furthermore, based on the range of bioinclusions and forms of pseudoinclusions preserved within a single piece of amber, the locus of hardening for individual samples is variably interpreted as occurring in the tree tops, on the tree trunk or on the ground surface. Notably, specific inclusion assemblages are associated with certain colours of amber. By extension, and in accordance with recent studies, amber colour may be indicative of depositional environment. Variation in the environment of solidification may, therefore, be sufficient to account for the broad range of morphological characteristics preserved in a single amber deposit.

  11. The range of bioinclusions and pseudoinclusions preserved in a new Turonian (~90 ma amber occurrence from Southern Australia.

    Directory of Open Access Journals (Sweden)

    Annie Quinney

    Full Text Available A new Turonian amber occurrence, representing the oldest in situ amber locality in Australia and the southern-most locality in Gondwana, has recently been discovered in the Otway Basin of Victoria. The amber was collected from petroleum cores and many pieces contain a range of inclusions that can provide information on the depositional history of the resin. To date, one species of fern spore (Cyathidites minor and one species of lycophyte spore (Kraeuselisporites sp? have been conclusively identified in the amber, along with filamentous microorganisms and degraded plant matter. Several samples are also rife with pseudoinclusions as reported recently in other ambers. The abundance of preserved particulate debris and wind dispersed spores suggest that the Otway amber formed subaerially. Furthermore, based on the range of bioinclusions and forms of pseudoinclusions preserved within a single piece of amber, the locus of hardening for individual samples is variably interpreted as occurring in the tree tops, on the tree trunk or on the ground surface. Notably, specific inclusion assemblages are associated with certain colours of amber. By extension, and in accordance with recent studies, amber colour may be indicative of depositional environment. Variation in the environment of solidification may, therefore, be sufficient to account for the broad range of morphological characteristics preserved in a single amber deposit.

  12. Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns.

    Science.gov (United States)

    Cai, Shengguan; Chen, Guang; Wang, Yuanyuan; Huang, Yuqing; Marchant, Blaine; Wang, Yizhou; Yang, Qian; Dai, Fei; Hills, Adrian; Franks, Peter J; Nevo, Eviatar; Soltis, Doug; Soltis, Pamela; Sessa, Emily; Wolf, Paul G; Xue, Dawei; Zhang, Guoping; Pogson, Barry J; Blatt, Mike R; Chen, Zhong-Hua

    2017-02-23

    ABA-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 Mya. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis thaliana and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis thaliana and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report new molecular and physiological evidence for the presence of active stomatal control in ferns.

  13. Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress

    Directory of Open Access Journals (Sweden)

    Xuedong Yang

    2016-05-01

    Full Text Available The HSF (heat shock factor gene family contains highly conserved plant-specific transcription factors that play an important role in plant high-temperature stress responses. The present study aimed to characterize the HSF transcription factor genes in tomato (Solanum lycopersicum, which is an important vegetable crop worldwide and the model plant for fruit development studies. Twenty-six SlyHSF genes were identified in tomato, and the phylogenetic analysis showed the possible evolution profile of subgroups among in the plant kingdom. A new group O was identified that involved HSF genes in primitive plant species, like in the green algae, mosses and lycophytes. The gene structure and motifs of each SlyHSF were comprehensively analyzed. We identified orthologous, co-orthologous and paralogous HSF gene pairs in tomato, Arabidopsis and rice, and constructed a complex interaction network among these genes. The SlyHSF genes were expressed differentially in different species and at a higher level in mature fruits. The qPCR analysis was performed and showed SlyHSF genes greatly participate in plant heat tolerant pathways. Our comprehensive genome-wide analysis provided insights into the HSF gene family of tomatoes.

  14. Phylogeny and evolution of charophytic algae and land plants%轮藻和陆地植物系统发育及其进化

    Institute of Scientific and Technical Information of China (English)

    仇寅龙

    2008-01-01

    Charophytic algae and land plants together make up a monophyletic group, streptophytes, which represents one of the main lineages of multicellular eukaryotes and has contributed greatly to the change of the environment on earth in the Phanerozoic Eon. Significant progress has been made to understand phylogenetic relationships among members of this group by phylogenetic studies of morphological and molecular data over the last twenty-five years. Mesostigma viride is now regarded as among the earliest diverging unicellular organisms in streptophytes. Characeae are the sister group to land plants. Liverworts represent the first diverging lineage of land plants. Hornworts and lycophytes are extant representatives of bryophytes and vascular plants, respectively, when early land plants changed from gametophyte to sporophyte as the dominant generation in the life cycle. Equisetum, Psilotaceae, and ferns constitute the monophyletic group of monilophytes, which are sister to seed plants. Gnetales are related to conifers, not to angiosperms as previously thought. Amborella, Nymphaeales, Hydatellaceae, Illiciales, Trimeniaceae, and Austrobaileya represent the earliest diverging lineages of extant angiosperms. These phylogenetic results, together with recent progress on elucidating genetic and developmental aspects of the plant life cycle, multicellularity, and gravitropism, will facilitate evolutionary developmental studies of these key traits, which will help us to gain mechanistic understanding on how plants adapted to environmental challenges when they colonized the land during one of the major transitions in evolution of life.

  15. Selaginella moellendoffii telomeres: conserved and unique features in an ancient land plant lineage

    Directory of Open Access Journals (Sweden)

    Eugene V Shakirov

    2012-07-01

    Full Text Available Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendoffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S. moellendorffii and found it to consist of TTTAGGG repeats, typical of most plants. Telomere tracts in S. moellendorffii range from 1-5.5 kb, closely resembling Arabidopsis thaliana. We identified several S. moellendorffii genes encoding sequence homologues of proteins involved in telomere maintenance in other organisms, including CST complex components and the telomere-binding proteins POT1 and TRFL. Notable sequence similarities and differences were uncovered among the telomere-related genes in some of the plant lineages. Taken together, the data indicate that comparative analysis of the telomere complex in early diverging land plants such as S. moellendorffii and green algae will yield important insights into the evolution of telomeres and their protein constituents.

  16. Occurrence of arbuscular mycorrhizas and dark septate endophytes in pteridophytes from a Patagonian rainforest, Argentina.

    Science.gov (United States)

    Fernández, Natalia Verónica; Messuti, María Inés; Fontenla, Sonia Beatriz

    2013-06-01

    Arbuscular mycorrhizas (AM) are one of the most widespread types of symbiotic associations. Pteridophytes occupy an important position in the evolution of vascular plants. However, their mycorrhizal state remains poorly understood. The aim of this work was to describe the general mycorrhizal status and the occurrence of dark septate endophytes (DSE) in the pteridophytic flora of a Valdivian temperate forest in Patagonia, Argentina. First, the roots of nine terrestrial species representing six families were examined, and this information was then compared with other surveys concerning the occurrence of AM in other pteridophytic species within the same Valdivian temperate forest. AM were recorded in 98.6% of the samples analyzed in this work and all of them corresponded to the Paris-type morphology. DSEs were also present within the roots of all terrestrial species. A comparison to published results in other ferns and lycophytes that have been studied in this Valdivian temperate forest (161 sporophytes, 21 species and 10 families) was made. Clear differences in colonization patterns between eusporangiate/leptosporangiate and epiphytic/terrestrial species became evident and are discussed.

  17. Arbuscular mycorrhiza formation in cordate gametophytes of two ferns, Angiopteris lygodiifolia and Osmunda japonica.

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Sakoda, Aki; Ebihara, Atsushi; Yukawa, Tomohisa; Imaichi, Ryoko

    2013-01-01

    Mycorrhizal symbiosis is common among land plants including pteridophytes (monilophytes and lycophytes). In pteridophytes with diplohaplontic life cycle, mycorrhizal formations were mostly reported for sporophytes, but very few for gametophytes. To clarify the mycorrhizal association of photosynthetic gametophytes, field-collected gametophytes of Angiopteris lygodiifolia (Marattiaceae, n = 52) and Osmunda japonica (Osmundaceae, n = 45) were examined using microscopic and molecular techniques. Collected gametophytes were mostly cut into two pieces. One piece was used for light and scanning microscopic observations, and the other for molecular identification of plant species (chloroplast rbcL sequences) and mycorrhizal fungi (small subunit rDNA sequences). Microscopic observations showed that 96 % (50/52) of Angiopteris and 95 % (41/43) of Osmunda gametophytes contained intracellular hyphae with arbuscules and/or vesicles and fungal colonization was limited to the inner tissue of the thick midribs (cushion). Fungal DNA analyses showed that 92 % (48/52) of Angiopteris and 92 % (35/38) of Osmunda have sequences of arbuscular mycorrhizal fungi, which were highly divergent but all belonged to Glomus group A. These results suggest that A. lygodiifolia and O. japonica gametophytes consistently form arbuscular mycorrhizae. Mycorrhizal formation in wild fern gametophytes, based on large-scale sampling with molecular identification of host plant species, was demonstrated for the first time.

  18. Four hundred million years of silica biomineralization in land plants.

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E; Fischer, Woodward W

    2015-04-28

    Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history.

  19. Molecular Evolution and Expression Divergence of Aconitase (ACO Gene Family in Land Plants

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2016-12-01

    Full Text Available Aconitase (ACO is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants.

  20. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns.

    Science.gov (United States)

    Nardmann, Judith; Werr, Wolfgang

    2012-01-01

    The growth of land plants depends on stem cell-containing meristems which show major differences in their architecture from basal to higher plant species. In Arabidopsis, the stem cell niches in the shoot and root meristems are promoted by WUSCHEL (WUS) and WOX5, respectively. Both genes are members of a non-ancestral clade of the WUS-related homeobox (WOX) gene family, which is absent in extant bryophytes and lycophytes. Our analyses of five fern species suggest that a single WUS orthologue was present in the last common ancestor (LCA) of leptosporangiate ferns and seed plants. In the extant fern Ceratopteris richardii, the WUS pro-orthologue marks the pluripotent cell fate of immediate descendants of the root apical initial, so-called merophytes, which undergo a series of stereotypic cell divisions and give rise to all cell types of the root except the root cap. The invention of a WUS-like function within the WOX gene family in an ancestor of leptosporangiate ferns and seed plants and its amplification and sub-functionalisation to different stem cell niches might relate to the success of seed plants, especially angiosperms.

  1. The origin and evolution of phototropins

    Directory of Open Access Journals (Sweden)

    Fay-Wei eLi

    2015-08-01

    Full Text Available Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae. Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants, but remained single-copy genes in liverworts and hornworts—an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants. We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.

  2. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators

    Directory of Open Access Journals (Sweden)

    Shucai eWang

    2016-03-01

    Full Text Available OVATE FAMILY PROTEINS (OFPs are a class of proteins with a conserved OVATE domain. OVATE protein was first identified in tomato as a key regulator of fruit shape. OFPs are plant-specific proteins that are widely distributed in the plant kingdom including mosses and lycophytes. Transcriptional activity analysis of Arabidopsis OFPs (AtOFPs in protoplasts suggests that they act as transcription repressors. Functional characterization of OFPs from different plant species including Arabidopsis, rice, tomato, pepper and banana suggests that OFPs regulate multiple aspects of plant growth and development, which is likely achieved by interacting with different types of transcription factors including the KNOX and BELL classes, and/or directly regulating the expression of target genes such as Gibberellin 20 oxidase (GA20ox. Here, we examine how OVATE was originally identified, summarize recent progress in elucidation of the roles of OFPs in regulating plant growth and development, and describe possible mechanisms underpinning this regulation. Finally, we review potential new research directions that could shed additional light on the functional biology of OFPs in plants.

  3. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls.

    Science.gov (United States)

    Wang, Maojun; Yuan, Daojun; Gao, Wenhui; Li, Yang; Tan, Jiafu; Zhang, Xianlong

    2013-01-01

    Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.

  4. Late Carboniferous palaeobotany of the upper Bideford Formation, north Devon: a coastal setting for a Coal Measures flora

    Energy Technology Data Exchange (ETDEWEB)

    Cleal, C.J.; Thomas, B.A. [Natural Museums & Galleries Wales, Cardiff (United Kingdom)

    2004-07-01

    The Culm Seams are thin coals in the Upper Carboniferous upper Bideford Formation of north Devon. Clastic sedimentary rocks associated with the coals have yielded a fossil macroflora dominated by the remains of the Calamostachyales and Medullosales, together with subsidiary lycophytes, sphenophylls, ferns, lagenostomaleans, rare cordaites, and a possible early cycad. The flora is probably early Langsettian in age, which is in agreement with the evidence of the non-marine bivalves and marine bands. It is broadly similar in composition to contemporaneous macrofloras from South Wales. It is unlikely to represent an assemblage formed from plant remains subject to long-distance transportation. Rather, it was probably preserved in the lower reaches of a 'bird-foot' delta that had temporarily transgressed into the Culm Basin. The distal margin of this delta would represent a comparable habitat to the levees of the rivers further inland, and thus would have supported vegetation similar to that which generated the more usual Coal Measures macrofloras.

  5. Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom

    Science.gov (United States)

    Gachet, María Salomé; Schubert, Alexandra; Calarco, Serafina; Boccard, Julien; Gertsch, Jürg

    2017-01-01

    The remarkable absence of arachidonic acid (AA) in seed plants prompted us to systematically study the presence of C20 polyunsaturated fatty acids, stearic acid, oleic acid, jasmonic acid (JA), N-acylethanolamines (NAEs) and endocannabinoids (ECs) in 71 plant species representative of major phylogenetic clades. Given the difficulty of extrapolating information about lipid metabolites from genetic data we employed targeted metabolomics using LC-MS/MS and GC-MS to study these signaling lipids in plant evolution. Intriguingly, the distribution of AA among the clades showed an inverse correlation with JA which was less present in algae, bryophytes and monilophytes. Conversely, ECs co-occurred with AA in algae and in the lower plants (bryophytes and monilophytes), thus prior to the evolution of cannabinoid receptors in Animalia. We identified two novel EC-like molecules derived from the eicosatetraenoic acid juniperonic acid, an omega-3 structural isomer of AA, namely juniperoyl ethanolamide and 2-juniperoyl glycerol in gymnosperms, lycophytes and few monilophytes. Principal component analysis of the targeted metabolic profiles suggested that distinct NAEs may occur in different monophyletic taxa. This is the first report on the molecular phylogenetic distribution of apparently ancient lipids in the plant kingdom, indicating biosynthetic plasticity and potential physiological roles of EC-like lipids in plants. PMID:28120902

  6. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    Science.gov (United States)

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  7. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    Science.gov (United States)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  8. Holocene Climate, Fire and Vegetation Change Inferred from Lacustrine Proxies in the Tropical Andes, Laguna Yanacocha, SE Peru

    Science.gov (United States)

    Axford, Y.; Isaacson, M.; Matthews-Bird, F.; Schellinger, G. C.; Carrio, C. L.; Kelly, M. A.; Lowell, T. V.; Beal, S. A., Jr.; Stroup, J. S.; Tapia, P. M.

    2016-12-01

    We present a 12,000-year long paleoenvironmental reconstruction from a small high-elevation lake in southeastern Peru. Climate and environmental change are inferred from chironomid species assemblages, charcoal abundance, size and morphology, and the abundance of some important pollen and spore types (Poaceae, Asteraceae, Isoetes). We employ a new chironomid training set developed for tropical South America (Matthews-Bird et al. 2016) to interpret shifts in chironomid assemblages. The sedimentary record from Yanacocha was first discussed by Beal et al. (2014), who reconstructed Hg deposition and measured metals, biogenic silica and loss-on-ignition through the Holocene. Additional downcore proxies are presented by Stroup et al. (this meeting). Yanacocha sits at 4910 m asl and less than 2 km from Quelccaya Ice Cap (QIC), but the lake's watershed has been topographically isolated from glacier meltwater since 12.3 ka. We compare our inferences from biological proxies with independent constraints on paleoclimate derived from published reconstructions of QIC fluctuations. Previous studies found that temperature was the primary driver of late Holocene fluctuations of QIC (e.g., Stroup et al. 2014), but records from the broader region indicate the Holocene also saw major changes in hydroclimate. Most modern precipitation at Yanacocha derives from the Amazon Basin to the east, and El Niño years are associated with drier conditions. Holocene sediments at Yanacocha likely thus record both changes in temperature and hydroclimate. Vegetation was sparse and no charcoal was preserved prior to 11.7 ka, whereas the early Holocene saw the highest overall pollen concentrations of the entire record and the onset of charcoal preservation. An increase in charcoal abundance, decrease in pollen concentrations, and shifts in vegetation and chironomid assemblages at Yanacocha suggest drier conditions from 9 to 3.5 ka, consistent with widespread regional evidence for early to middle

  9. Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: implications for the uplift history of the Central Andes.

    Science.gov (United States)

    Graham, A; Gregory-Wodzicki, K M; Wright, K L

    2001-09-01

    An assemblage of 33 fossil pollen and spores, recovered from the 3600-m high Pislepampa locality of E. W. Berry, Eastern Cordillera, Bolivia, adds considerably to our knowledge of three aspects of the region in late Neogene time: (1) the paleovegetation, (2) the paleoclimate, and (3) the paleoelevation of the Central Andes. The plant microfossils recognized are Isoetes, Lycopodium (three types), Cnemidaria, Cyathea (three types), Grammitis, Hymenophyllum, Pteris, trilete fern spores (two types), Danaea, monolete fern spores (four types), Podocarpus, Gramineae, Palmae, Ilex, cf. Oreopanax, Cavanillesia, cf. Pereskia, Compositae (three types), Ericaceae, Tetrorchidium, and unknowns (three types). The diversity of the Compositae suggest that this flora has a maximum age around the Miocene-Pliocene boundary, that is, 6-7 million years. All members of the paleocommunity presently grow in the bosque montano húmedo (cloud forest) along the eastern slope of the Central Andes of Bolivia, which occurs between MATs (mean annual temperatures) of ∼10° and 20°C. The Pislepampa flora probably represents the lower limits of this forest because the fossil leaves collected by Berry from the same locality all have entire margins, suggesting that the flora grew near the cloud forest-tropical forest transition. Presently, the lower limit of the cloud forest forest has MATs of ∼20°C, a mean annual precipitation between 1000 and 1500 mm, and that part containing most of the identified genera of fossil pollen is found at elevations ∼1200-1400 m. These conditions are thus inferred for the Pislepampa flora; however, because of the uncertainty of the magnitude of global climate change and of possible changes in the ecological range of plant genera, we estimate an error of at least ±1000 m for the paleoelevation estimate. When the total uplift is corrected for probable amounts of erosionally driven isostatic rebound, the paleoelevation estimate suggests that from one-third to one

  10. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range

    Directory of Open Access Journals (Sweden)

    Cristina Pulido

    2014-08-01

    Full Text Available Distribution of aquatic macrophytes in lakes is related to geographical, morphological, catchment and water chemistry variables as well as human impacts, which modify the original environment. Here, we aim at building statistical models to establish the ecological niches of 11 aquatic macrophytes (10 different phanerogams and the genus Nitella from oligotrophic soft-water lakes and infer their ecological requirements and environmental constraints at the southernmost limit of their distribution. Macrophyte occurrence and environmental variables were obtained from 86 non-exploited oligotrophic soft-water lakes from the Pyrenees (Southern Europe; 42º50´N, 1º00´E; macrophytes inhabited 55 of these lakes. Optimum ranges and macrophyte occurrence were predicted in relation to 18 geographical, morphological, catchment and water chemistry variables using univariate and multivariate logistic models. Lakes at low altitude, in vegetated catchments and with low water concentration of NO3- and SO4-2, were the most suitable to host macrophytes. In general, individual species of aquatic macrophytes showed clear patterns of segregation along conductivity and pH gradients, although the specific combination of variables selected in the best models explaining their occurrence differed among species.  Based on the species response to pH and conductivity, we found Isoetes lacustris have its optimum in waters with low conductivity and pH (i.e. negative monotonic response. In contrast, Callitriche palustris, Ranunculus aquatilis, Subularia aquatica, Nitella spp., and Myriophyllum alterniflorum showed an optimum at intermediate values (i.e. unimodal response, whereas Potamogeton berchtoldii, Potamogeton alpinus, and Ranunculus trichophyllus as species had their optimum at relatively high water pH and conductivity (i.e. positive monotonic response. This pattern has been observed in other regions for the same species, although with different optima and tolerance

  11. Mesophyll conductance and leaf carbon isotope composition of two high elevation conifers along an altitudinal gradient

    Science.gov (United States)

    Guo, J.; Beverly, D.; Cook, C.; Ewers, B.; Williams, D. G.

    2016-12-01

    Carbon isotope ratio values (δ13C) of conifer leaf material generally increases with elevation, potentially reflecting decreases in the leaf internal to ambient CO2 concentration ratio (Ci/Ca) during photosynthesis. Reduced stomatal conductance or increased carboxylation capacity with increasing elevation could account for these patterns. But some studies reported conifers δ13C increased with altitude consistently, but Ci/Ca did not significantly decrease and leaf nitrogen content remained constant with increasing of altitude in Central Rockies. Variation in leaf mesophyll conductance to CO2 diffusion, which influences leaf δ13C independently of effects related to stomatal conductance and carboxylation demand, might reconcile these conflicting observations. Leaf mass per unit area (LMA) increases with altitude and often correlates with δ13C and mesophyll conductance. Therefore, we hypothesized that increases in δ13C of conifers with altitude are controlled mainly by changes in mesophyll conductance. To test this hypothesis, leaf δ13C, photosynthetic capacity, leaf nitrogen content, LMA, and mesophyll conductance were determined on leaves of two dominant conifers (Pinus contorta and Picea engelmannii) along a 90-km transect in SE Wyoming at altitudes ranging from 2400 to 3200 m above sea level. Mesophyll conductance was determined by on-line 13C discrimination using isotope laser spectroscopy. We expected to observe relatively small differences in stomatal conductance and decreases in mesophyll conductance from lower and higher altitude sites. Such a pattern would have important implications for how differences in leaf δ13C values across altitude are interpreted in relation to forest water use and productivity from scaling of leaf-level water-use efficiency.

  12. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    Science.gov (United States)

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  13. Recovery of floral and faunal communities after placement of dredged material on seagrasses in Laguna Madre, Texas

    Science.gov (United States)

    Sheridan, P.

    2004-03-01

    The objectives of this project were to determine how long alterations in habitat characteristics and use by fishery and forage organisms were detectable at dredged material placement sites in Laguna Madre, Texas. Water, sediment, seagrass, benthos, and nekton characteristics were measured and compared among newly deposited sediments and nearby and distant seagrasses each fall and spring over three years. Over this period, 75% of the estimated total surface area of the original deposits was either re-vegetated by seagrass or dispersed by winds and currents. Differences in water and sediment characteristics among habitat types were mostly detected early in the study. There were signs of steady seagrass re-colonization in the latter half of the study period, and mean seagrass coverage of deposits had reached 48% approximately three years after dredging. Clovergrass Halophila engelmannii was the initial colonist, but shoalgrass Halodule wrightii predominated after about one year. Densities of annelids and non-decapod crustaceans were generally significantly greater in close and distant seagrass habitats than in dredged material habitat, whereas densities of molluscs were not significantly related to habitat type. Nekton (fish and decapod) densities were almost always significantly greater in the two seagrass habitats than in dredged material deposits. Benthos and nekton communities in dredged material deposits were distinct from those in seagrass habitats. Recovery from dredged material placement was nearly complete for water column and sediment components after 1.5 to 3 years, but recovery of seagrasses, benthos, and nekton was predicted to take 4 to 8 years. The current 2 to 5 years dredging cycle virtually insures no time for ecosystem recovery before being disturbed again. The only way to ensure permanent protection of the high primary and secondary productivity of seagrass beds in Laguna Madre from acute and chronic effects of maintenance dredging, while ensuring

  14. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires

  15. Effects of Bark Beetle Infestation on Secondary Organic Aerosol Precursors in the Western United States

    Science.gov (United States)

    Huff Hartz, K. E.; Amin, H.; Dodson, C.; Atkins, P. T.; Hallar, G.

    2009-12-01

    Bark beetles are a potentially destructive force in forest ecosytems; however, it is not known how insect attacks affect the atmosphere. Other insects, such as the weevil (Strophosoma melanogrammum) attacks on spruce trees in Denmark, have a significant local effect on monoterpene emissions. In fact, a single weevil induced a three-fold increase in monoterpene emission, and the response lasted for several weeks. Mountain pine bark beetles (Dendroctonus ponderosae) have infested the forests in the vicinity of Storm Peak Laboratory near Steamboat Springs, Colorado. Emissions were sampled from the headspace of bark at the trunk and from the tree branches in the canopy from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce (Picea engelmannii) trees. The emissions were collected onto scent traps, containing 110 mg of Porapak Q sorbent, using PAS-500 micro air samplers set to a 0.4 mL/min flow rate for two hours. After collection, the scent traps were spiked with a recovery standard, perdeutrated decane, and extracted with 1.5 mL hexanes (in three portions). The analytes in the extracts were separated and detected using gas chromatography/mass spectroscopy. The analytes were identified and quantified using calibration curves from authentic standards, and when authentic standards were not available, the NIST mass spectra library and Adams retention time indices were used. The samples from lodgepole pine trees suggest an enhancement in the 3-carene, beta-phellandrene, and estragole (methyl chavicol) emissions upon bark beetle infestation. The samples from the Engelmann spruce trees suggest an enhancement in the 1,4-cineole, p-cymene, and beta-phellandrene emissions upon bark beetle infestation. A shift in the type and the quantity of VOC emissions due to bark beetle infestation may lead increases in SOA from these forests, since potent SOA precursors are produced.

  16. Late Quaternary environments and biogeography in the Great Basin

    Science.gov (United States)

    Thompson, R. S.; Mead, J. I.

    1982-01-01

    Plant and animal remains found in packrat ( Neotoma spp.) middens and cave fill from the eastern and southern Great Basin region reveal the presence of subalpine conifers and boreal mammals at relatively low elevations during the Late Wisconsin. Limber pine ( Pinus flexilis) and bristlecone pine ( P. longaeva) were important in the late Pleistocene plant communities throughout this region. Spruce ( Picea cf. engelmannii) and common juniper ( Juniperus communis) were present in some of the more northerly localities, and Douglas fir ( Pseudotsuga menziesii) and white fir ( Abies concolor) were present in southern and eastern localities. Single needle pinyon pine ( Pinus monophylla), common across this region today, was apparently not present north of the Sheep Range of southern Nevada during the Late Wisconsin. Pikas ( Ochotona cf. princeps), small boreal mammals present in only a few Great Basin mountain ranges today, were common throughout the region. Heather voles ( Phenacomys cf. intermedius) have been found in two cave fill deposits in Nevada, though they are unknown in the Great Basin today. Limber and bristlecone pines are generally restricted to rocky substrates in modern subalpine habitats in the Great Basin, and this may also have been the case when these plants grew at lower elevations during the Late Wisconsin. Subalpine conifers were present on the rock outcrops sampled by the packrat middens, but shrub communities, perhaps dominated by sagebrush ( Artemisia spp.), may have been present on alluvial valley-bottom substrates. Forested habitats would thus have been isolated habitat islands, as they are today. Boreal small mammals, including pikas and heather voles, were able to colonize the Great Basin mountain ranges during the late Pleistocene. We suggest that these mammals were able to survive in the intervening valley-bottoms under a cool-summer climatic regime, and that continuous forest or woodland corridors were not necessary for migration.

  17. Ecosystem CO2/H2O fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles

    Science.gov (United States)

    Frank, John M.; Massman, William J.; Ewers, Brent E.; Huckaby, Laurie S.; Negrón, José F.

    2014-06-01

    Disturbances are increasing globally due to anthropogenic changes in land use and climate. This study determines whether a disturbance that affects the physiology of individual trees can be used to predict the response of the ecosystem by weighing two competing hypothesis at annual time scales: (a) changes in ecosystem fluxes are proportional to observable patterns of mortality or (b) to explain ecosystem fluxes the physiology of dying trees must also be incorporated. We evaluate these hypotheses by analyzing 6 years of eddy covariance flux data collected throughout the progression of a spruce beetle (Dendroctonus rufipennis) epidemic in a Wyoming Engelmann spruce (Picea engelmannii)-subalpine fir (Abies lasiocarpa) forest and testing for changes in canopy conductance (gc), evapotranspiration (ET), and net ecosystem exchange (NEE) of CO2. We predict from these hypotheses that (a) gc, ET, and NEE all diminish (decrease in absolute magnitude) as trees die or (b) that (1) gc and ET decline as trees are attacked (hydraulic failure from beetle-associated blue-stain fungi) and (2) NEE diminishes both as trees are attacked (restricted gas exchange) and when they die. Ecosystem fluxes declined as the outbreak progressed and the epidemic was best described as two phases: (I) hydraulic failure caused restricted gc, ET (28 ± 4% decline, Bayesian posterior mean ± standard deviation), and gas exchange (NEE diminished 13 ± 6%) and (II) trees died (NEE diminished 51 ± 3% with minimal further change in ET to 36 ± 4%). These results support hypothesis b and suggest that model predictions of ecosystem fluxes following massive disturbances must be modified to account for changes in tree physiological controls and not simply observed mortality.

  18. A preliminary evaluation of throughfall sampling techniques in a mature coniferous forest

    Institute of Scientific and Technical Information of China (English)

    Darryl.E.Carlyle-Moses; Chad.E.Lishman; Adam.J.McKee

    2014-01-01

    Rainfall, throughfall and stemflow were measured and canopy interception loss was derived for 14 rainfall events from June 22 to Au-gust 30, 2008 within a mature declining hybrid white spruce (Picea glauca (Moench) Voss × P. engelmannii Parry ex Engelm.)-subalpine fir (Abies lasiocarpa (Hook.) Nutt.) - lodgepole pine (Pinus contorta var. latifolia Dougl. ex Loud.) stand in south-central British Columbia, Can-ada. Stemflow was negligible during the study period, while, respectively, throughfall and canopy interception loss accounted for approximately 59.4% and 40.6% of the 50.1 mm of cumulative rainfall. Throughfall variability was assessed with three approaches involving roving and stationary wedge-type gauges, and stationary trough gauges. Throughfall exhibited large spatial variability with the coefficient of variability of study period throughfall sampled using 16 stationary trough gauges being 30.3%, while it was 38.0% and 28.7% for 32 stationary and 32 roving wedge gauges, respectively. Our analysis suggests that a roving gauge method is better than a stationary approach since the errors associated with event mean throughfalls are summed quadratically and a greater portion of the canopy area is sampled. Trough gauges were more efficient than wedge gauges; however, this efficiency was less than expected given their much larger sampling areas, suggesting that spatial autocor-relation lengths of throughfall may be longer than the trough systems. The spatial distribution of throughfall showed a high degree of temporal persistence throughout the study suggesting the existence of stable“wet”and“dry”inputs to the floors of these coniferous forests.

  19. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.

    Directory of Open Access Journals (Sweden)

    Erica A H Smithwick

    Full Text Available Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1 quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2 determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA. Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m. Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R²<0.29. Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st Century.

  20. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    Directory of Open Access Journals (Sweden)

    Sarah J Hart

    Full Text Available Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1 how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis infestation of Engelmann spruce (Picea engelmannii across the Southern Rocky Mountains; and 2 how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height, not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  1. Primer registro de megafloras y palinología en estratos de la Formación Tarija (Pennsylvaniano, Arroyo Aguas Blancas, Provincia de Salta, Argentina: Descripción de dos especies nuevas First record of megafloras and palynology in the Tarija Formation (Pennsylvanian, Aguas Blancas creek, Salta Province, Argentina: Description of two new species

    Directory of Open Access Journals (Sweden)

    Mercedes di Pasquo

    2009-01-01

    sed and illustrated for the first time. Two new species, Malanzania starckii (Lycophyte and Grumosisporites delpapae (trilete spore are described. Molds and impressions of platispermic seeds (Samaropsis nunezii García emend. A. Archangelsky, Cordaicarpus cesariae Gutiérrez, Ganuza, Morel and Arrondo emend. A. Archangelsky, impressions of articulated stems (Paracalamites australis Rigby emend. Zampirolli and Bernardes de Oliveira and compressions/impressions of fragmented leaves {Cordaites riojanus Archangelsky and Leguizamón, Ginkgophyllum sp. cf G. diazii Archangelsky and Arrondo were recorded. This assemblage is attributed to the Pennsylvanian s.l. based on stratigraphic ranges of platispermic seeds. The palynological assemblage is made up of 101 species of which 53 are authocthonous and 48 are reworked. The former group is composed of 34 trilete spore species, 11 monosaccate pollen grains, one bisaccate pollen grain and seven algal species. The reworked group comprises 27 trilete spores and cryptospores, 20 species of acritarchs, prasinophytes and other algae and one chitinozoan. The whole assemblage is attributed to the late Bashkirian-Moscovian based on the recognition of exclusive species of the D. bireticulatus-C. chacoparanensis (BC Zone (e.g., Dictyotriletes bireticulatus (Ibrahim Potonié and Kremp emend. Smith and Butterworth, Crucisaccites latisulcatus Lele and Maithy, Verrucosisporites morulatus (Knox Potonié and Kremp emend. Smith and Butterworth. The vegetation, mainly composed of Lycophytes, Sphenophytes, Pteridophytes and Gymnosperms, would have developed in different continental palaeoenvironments like lakes and rivers fed by mountain glaciers.

  2. Pennsylvanian and Cisuralian palynofloras from the Los Sauces area, La Rioja Province, Argentina: Chronological and paleoecological significance

    Energy Technology Data Exchange (ETDEWEB)

    Pasquo, Mercedes di; Azcuy, Carlos L. [University/Organization, CONICET Institute CICyTTP, CICyTTP- CONICET Diamante - CP, Entre Rios (Argentina); Vergel, Maria del M. [INSUGEO-CONICET y Universidad Nacional de Tucuman, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Miguel Lillo 205, San Miguel de Tucuman (Argentina)

    2010-08-01

    Three outcrops of the Libertad and Sauces Formations from the Los Sauces area La Rioja Province, western Argentina, yielded the nine palynoassemblages studied here. Two assemblage zones are defined on the basis of the stratigraphic distribution and ranges of seventy five species of palynomorphs (42 species of spores, 32 pollen taxa and one fungus). Only thirteen species are common to both assemblages and ten species are first records for the Paganzo Basin. Assemblage 1 from the Libertad Formation is dominated by trilete spores of Cristatisporites (lycophyte) and Punctatisporites (pteridophyte). Monosaccate pollen (Coniferales/Cordaitales) is frequently present. Pteridosperms, mostly represented by Cyclogranisporites, are especially abundant in one level together with scarce striate bisaccate pollen grains. Assemblage 2 of the Sauces Formation is dominated by trilete spores related to the Pteridophyta (e.g., Horriditriletes, Converrucosisporites, Granulatisporites) and Sphenophyta. Monosaccate (Cordaitales/Coniferales) and taeniate and non-taeniate bisaccate pollen grains (Pteridospermales/Coniferales), are equally subordinated. Monosulcate pollen (Cycadophyta) and fungi (Portalites gondwanensis) are rare. Assemblage 1 is mainly Moscovian; assemblage 2 Asselian-Sakmarian. This interpretation is based on correlation of assemblage 1 to the DMb (Mid Pennsylvanian) and assemblage 2 to the FS (Early Cisuralian) Biozones of the Paganzo Basin (Argentina). The taxonomic composition of the Ahrensisporites cristatus-Crucisaccites monoletus (Mid-Late Pennsylvanian) and the Protohaploxypinus goraiensis Subzone (Asselian-Sakmarian) of the Vittatina costabilis (Early Cisuralian) Biozones of the Parana Basin (Brazil) support this correlation. The continental freshwater depositional setting of this part of the Paganzo Basin is supported by the dominance of terrestrial palynomorphs and phytoclasts, the presence of coal and carbonaceous shales, and the occurrence of plant megafossils

  3. A Role of TDIF Peptide Signaling in Vascular Cell Differentiation is Conserved Among Euphyllophytes.

    Science.gov (United States)

    Hirakawa, Yuki; Bowman, John L

    2015-01-01

    Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related) family peptide hormone, TDIF (tracheary element differentiation inhibitory factor), regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, ferns and lycophytes). We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM) in Ginkgo biloba, Adiantum aethiopicum, and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and ferns were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. biloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the fern Asplenium × lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  4. A Comprehensive Phylogeny Reveals Functional Conservation of the UV-B Photoreceptor UVR8 from Green Algae to Higher Plants

    Science.gov (United States)

    Fernández, María B.; Tossi, Vanesa; Lamattina, Lorenzo; Cassia, Raúl

    2016-01-01

    Ultraviolet-B (UV-B) is present in sunlight (280–315 nm) and has diverse effects on living organisms. Low fluence rate of exposure induces a specific photomorphogenic response regulated by the UV-B response locus 8 (UVR8) receptor. UVR8 was first described in Arabidopsis thaliana. In the absence of stimuli it is located in the cytoplasm as a homodimer. However, upon UV-B irradiation, it switches to a monomer and interacts with the ubiquitin ligase E3 COP1 via the UVR8 β-propeller domain and the VP core. This induces the expression of the transcription factor HY5 leading to changes in the expression of genes associated with UV-B acclimation and stress tolerance. UVR8 senses UV-B through tryptophan residues being Trp233 and 285 the most important. Based on the comparison and analysis of UVR8 functionally important motifs, we report a comprehensive phylogeny of UVR8, trying to identify UVR8 homologs and the ancestral organism where this gene could be originated. Results obtained showed that Chlorophytes are the first organisms from the Viridiplantae group where UVR8 appears. UVR8 is present in green algae, bryophytes, lycophytes, and angiosperms. All the sequences identified contain tryptophans 233 and 285, arginines involved in homodimerization and the VP domain suggesting they are true UVR8 photoreceptors. We also determined that some species from bryophytes and angiosperms contain more than one UVR8 gene copy posing the question if UVR8 could constitute a gene family in these species. In conclusion, we described the functional conservation among UVR8 proteins from green algae to higher plants. PMID:27895654

  5. The highest-copy repeats are methylated in the small genome of the early divergent vascular plant Selaginella moellendorffii

    Directory of Open Access Journals (Sweden)

    Quan Hui

    2008-06-01

    Full Text Available Abstract Background The lycophyte Selaginella moellendorffii is a vascular plant that diverged from the fern/seed plant lineage at least 400 million years ago. Although genomic information for S. moellendorffii is starting to be produced, little is known about basic aspects of its molecular biology. In order to provide the first glimpse to the epigenetic landscape of this early divergent vascular plant, we used the methylation filtration technique. Methylation filtration genomic libraries select unmethylated DNA clones due to the presence of the methylation-dependent restriction endonuclease McrBC in the bacterial host. Results We conducted a characterization of the DNA methylation patterns of the S. moellendorffii genome by sequencing a set of S. moellendorffii shotgun genomic clones, along with a set of methylation filtered clones. Chloroplast DNA, which is typically unmethylated, was enriched in the filtered library relative to the shotgun library, showing that there is DNA methylation in the extremely small S. moellendorffii genome. The filtered library also showed enrichment in expressed and gene-like sequences, while the highest-copy repeats were largely under-represented in this library. These results show that genes and repeats are differentially methylated in the S. moellendorffii genome, as occurs in other plants studied. Conclusion Our results shed light on the genome methylation pattern in a member of a relatively unexplored plant lineage. The DNA methylation data reported here will help understanding the involvement of this epigenetic mark in fundamental biological processes, as well as the evolutionary aspects of epigenetics in land plants.

  6. A Comprehensive Phylogeny Reveals Functional Conservation of the UV-B Photoreceptor UVR8 from Green Algae to Higher Plants.

    Science.gov (United States)

    Fernández, María B; Tossi, Vanesa; Lamattina, Lorenzo; Cassia, Raúl

    2016-01-01

    Ultraviolet-B (UV-B) is present in sunlight (280-315 nm) and has diverse effects on living organisms. Low fluence rate of exposure induces a specific photomorphogenic response regulated by the UV-B response locus 8 (UVR8) receptor. UVR8 was first described in Arabidopsis thaliana. In the absence of stimuli it is located in the cytoplasm as a homodimer. However, upon UV-B irradiation, it switches to a monomer and interacts with the ubiquitin ligase E3 COP1 via the UVR8 β-propeller domain and the VP core. This induces the expression of the transcription factor HY5 leading to changes in the expression of genes associated with UV-B acclimation and stress tolerance. UVR8 senses UV-B through tryptophan residues being Trp233 and 285 the most important. Based on the comparison and analysis of UVR8 functionally important motifs, we report a comprehensive phylogeny of UVR8, trying to identify UVR8 homologs and the ancestral organism where this gene could be originated. Results obtained showed that Chlorophytes are the first organisms from the Viridiplantae group where UVR8 appears. UVR8 is present in green algae, bryophytes, lycophytes, and angiosperms. All the sequences identified contain tryptophans 233 and 285, arginines involved in homodimerization and the VP domain suggesting they are true UVR8 photoreceptors. We also determined that some species from bryophytes and angiosperms contain more than one UVR8 gene copy posing the question if UVR8 could constitute a gene family in these species. In conclusion, we described the functional conservation among UVR8 proteins from green algae to higher plants.

  7. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra: evidence from herbivore damage for subfunctionalization and functional divergence

    Directory of Open Access Journals (Sweden)

    Frost Christopher J

    2010-05-01

    Full Text Available Abstract Background Cinnamyl Alcohol Dehydrogenase (CAD proteins function in lignin biosynthesis and play a critical role in wood development and plant defense against stresses. Previous phylogenetic studies did not include genes from seedless plants and did not reflect the deep evolutionary history of this gene family. We reanalyzed the phylogeny of CAD and CAD-like genes using a representative dataset including lycophyte and bryophyte sequences. Many CAD/CAD-like genes do not seem to be associated with wood development under normal growth conditions. To gain insight into the functional evolution of CAD/CAD-like genes, we analyzed their expression in Populus plant tissues in response to feeding damage by gypsy moth larvae (Lymantria dispar L.. Expression of CAD/CAD-like genes in Populus tissues (xylem, leaves, and barks was analyzed in herbivore-treated and non-treated plants by real time quantitative RT-PCR. Results CAD family genes were distributed in three classes based on sequence conservation. All the three classes are represented by seedless as well as seed plants, including the class of bona fide lignin pathway genes. The expression of some CAD/CAD-like genes that are not associated with xylem development were induced following herbivore damage in leaves, while other genes were induced in only bark or xylem tissues. Five of the CAD/CAD-like genes, however, showed a shift in expression from one tissue to another between non-treated and herbivore-treated plants. Systemic expression of the CAD/CAD-like genes was generally suppressed. Conclusions Our results indicated a correlation between the evolution of the CAD gene family and lignin and that the three classes of genes may have evolved in the ancestor of land plants. Our results also suggest that the CAD/CAD-like genes have evolved a diversity of expression profiles and potentially different functions, but that they are nonetheless co-regulated under stress conditions.

  8. Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1

    KAUST Repository

    Wakuta, Shinji

    2015-01-24

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  9. Phylogeny of Selaginellaceae: There is value in morphology after all!

    Science.gov (United States)

    Weststrand, Stina; Korall, Petra

    2016-12-01

    The cosmopolitan lycophyte family Selaginellaceae, dating back to the Late Devonian-Early Carboniferous, is notorious for its many species with a seemingly undifferentiated gross morphology. This morphological stasis has for a long time hampered our understanding of the evolutionary history of the single genus Selaginella. Here we present a large-scale phylogenetic analysis of Selaginella, and based on the resulting phylogeny, we discuss morphological evolution in the group. We sampled about one-third of the approximately 750 recognized Selaginella species. Evolutionary relationships were inferred from both chloroplast (rbcL) and single-copy nuclear gene data (pgiC and SQD1) using a Bayesian inference approach. The morphology of the group was studied and important features mapped onto the phylogeny. We present an overall well-supported phylogeny of Selaginella, and the phylogenetic positions of some previously problematic taxa (i.e., S. sinensis and allies) are now resolved with strong support. We show that even though the evolution of most morphological characters involves reversals and/or parallelisms, several characters are phylogenetically informative. Seven major clades are identified, which each can be uniquely diagnosed by a suite of morphological features. There is value in morphology after all! Our hypothesis of the evolutionary relationships of Selaginella is well founded based on DNA sequence data, as well as morphology, and is in line with previous findings. It will serve as a firm basis for further studies on Selaginella with respect to, e.g., the poorly known alpha taxonomy, as well as evolutionary questions such as historical biogeographic reconstructions. © 2016 Weststrand and Korall. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY 4.0).

  10. New observations on the Middle Fork Eel River coal-bearing beds, Mendocino County, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Bartley, Russell H. [Mendocino County Museum, 400 East Commercial Street, Willits, CA 95490 (United States); Bartley, Sylvia E. [Noyo Hill House, 28953 Highway 20, Fort Bragg, CA 95437 (United States); Springer, David J. [College of the Redwoods-Mendocino Coast, 1211 Del Mar Drive, Fort Bragg, CA 95437 (United States); Erwin, Diane M. [Museum of Paleontology, 1101 Valley Life Sciences Building, University of California, Berkeley, CA 94720 (United States)

    2010-08-01

    Mid-19th century reports of ''immense'' coal outcrops in the Middle Fork Eel River (MFER) drainage near Round Valley in California's northern Coast Ranges fueled the early geological interest in this area, with mine development the primary focus of many studies. It was not until Samuel G. Clark's 1940 ''Geology of the Covelo District, Mendocino County, California,'' that the coal was placed in its regional geologic context and assigned to the Miocene, a determination that relied primarily on a Desmostylus hesperus molar found in shale overlying the coal and an associated equivocal, though Miocene-compatible, marine molluscan fauna. Our investigation of the MFER coal-bearing beds has provided new data from foraminifera, marine mollusks, fish remains, and the first reported fossil plants, which as a whole support Clark's Miocene age assignment. We also present an updated stratigraphy proposing under modern-day stratigraphic protocols that the informal name Sand Bank beds (SBb) be used in place of the Temblor Formation to refer to the SBb coal-bearing fluvial-marine unit. Analysis of the SBb stratigraphy and sedimentology reveals the presence of a fluvial system that flowed from a distal upland region southward toward the paleocoast of California. An abundant diverse palynoflora containing lycophytes, ferns, conifers, and mesic, thermophillic herbaceous and woody angiosperms indicates the drainage flowed through a coastal swampy forested bottomland and estuarine environment before emptying into a coastal basin. Presence of Taxodium-like wood, foliage, pollen, and other ''hydrophiles'' suggests the MFER coal was a local mire buried by the progradation of the SBb fluvial system during a regressive phase, an interpretation to be tested with future field work and detailed compositional analysis of the coal. (author)

  11. Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins

    Directory of Open Access Journals (Sweden)

    Žárský Viktor

    2008-04-01

    Full Text Available Abstract Background Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures. Results The Rho GTPase-binding domain (GBD/FH3 reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm formins that define a specific branch (Class III of the formin family. Conclusion We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms.

  12. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity.

    Science.gov (United States)

    Cheng, Tao; Xu, Chao; Lei, Li; Li, Changhao; Zhang, Yu; Zhou, Shiliang

    2016-01-01

    The internal transcribed spacer (ITS) of nuclear ribosomal DNA is one of the most commonly used DNA markers in plant phylogenetic and DNA barcoding analyses, and it has been recommended as a core plant DNA barcode. Despite this popularity, the universality and specificity of PCR primers for the ITS region are not satisfactory, resulting in amplification and sequencing difficulties. By thoroughly surveying and analysing the 18S, 5.8S and 26S sequences of Plantae and Fungi from GenBank, we designed new universal and plant-specific PCR primers for amplifying the whole ITS region and a part of it (ITS1 or ITS2) of plants. In silico analyses of the new and the existing ITS primers based on these highly representative data sets indicated that (i) the newly designed universal primers are suitable for over 95% of plants in most groups; and (ii) the plant-specific primers are suitable for over 85% of plants in most groups without amplification of fungi. A total of 335 samples from 219 angiosperm families, 11 gymnosperm families, 24 fern and lycophyte families, 16 moss families and 17 fungus families were used to test the performances of these primers. In vitro PCR produced similar results to those from the in silico analyses. Our new primer pairs gave PCR improvements up to 30% compared with common-used ones. The new universal ITS primers will find wide application in both plant and fungal biology, and the new plant-specific ITS primers will, by eliminating PCR amplification of nonplant templates, significantly improve the quality of ITS sequence information collections in plant molecular systematics and DNA barcoding.

  13. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  14. Genome-wide analysis of the NADK gene family in plants.

    Directory of Open Access Journals (Sweden)

    Wen-Yan Li

    Full Text Available BACKGROUND: NAD(H kinase (NADK is the key enzyme that catalyzes de novo synthesis of NADP(H from NAD(H for NADP(H-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. PRINCIPAL FINDINGS: We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30% in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the

  15. An in silico analysis of the mitochondrial protein import apparatus of plants

    Directory of Open Access Journals (Sweden)

    Whelan James

    2010-11-01

    Full Text Available Abstract Background An in silico analysis of the mitochondrial protein import apparatus from a variety of species; including Chlamydomonas reinhardtii, Chlorella variabilis, Ectocarpus siliculosus, Cyanidioschyzon merolae, Physcomitrella patens, Selaginella moellendorffii, Picea glauca, Oryza sativa and Arabidopsis thaliana was undertaken to determine if components differed within and between plant and non-plant species. Results The channel forming subunits of the outer membrane components Tom40 and Sam50 are conserved between plant groups and other eukaryotes. In contrast, the receptor component(s in green plants, particularly Tom20, (C. reinhardtii, C. variabilis, P. patens, S. moellendorffii, P. glauca, O. sativa and A. thaliana are specific to this lineage. Red algae contain a Tom22 receptor that is orthologous to yeast Tom22. Furthermore, plant mitochondrial receptors display differences between various plant lineages. These are evidenced by distinctive motifs in all plant Metaxins, which are absent in red algae, and the presence of the outer membrane receptor OM64 in Angiosperms (rice and Arabidopsis, but not in lycophytes (S. moellendorffii and gymnosperms (P. glauca. Furthermore, although the intermembrane space receptor Mia40 is conserved across a wide phylogenetic range, its function differs between lineages. In all plant lineages, Tim17 contains a C-terminal extension, which may act as a receptor component for the import of nucleic acids into plant mitochondria. Conclusions It is proposed that the observed functional divergences are due to the selective pressure to sort proteins between mitochondria and chloroplasts, resulting in differences in protein receptor components between plant groups and other organisms. Additionally, diversity of receptor components is observed within the plant kingdom. Even when receptor components are orthologous across plant and non-plant species, it appears that the functions of these have expanded or

  16. Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns.

    Science.gov (United States)

    Knie, Nils; Fischer, Simon; Grewe, Felix; Polsakiewicz, Monika; Knoop, Volker

    2015-09-01

    The "Monilophyte" clade comprising ferns, horsetails and whisk ferns receives unequivocal support from molecular data as the sister clade to seed plants. However, the branching order of its earliest emerging lineages, the Equisetales (horsetails), the Marattiales, the Ophioglossales/Psilotales and the large group of leptosporangiate ferns has remained dubious. We investigated the mitochondrial nad2 and rpl2 genes as two new, intron-containing loci for a wide sampling of taxa. We found that both group II introns - nad2i542g2 and rpl2i846g2 - are universally present among monilophytes. Both introns have orthologues in seed plants where nad2i542g2 has evolved into a trans-arrangement. In contrast and despite substantial size extensions to more than 5kb in Psilotum, nad2i542g2 remains cis-arranged in the monilophytes. For phylogenetic analyses, we filled taxonomic gaps in previously investigated mitochondrial (atp1, nad5) and chloroplast (atpA, atpB, matK, rbcL, rps4) loci and created a 9-gene matrix that also included the new mitochondrial nad2 and rpl2 loci. We extended the taxon sampling with two taxa each for all land plant outgroups (liverworts, mosses, hornworts, lycophytes and seed plants) to minimize the risk of phylogenetic artefacts. We ultimately obtained a well-supported molecular phylogeny placing Marattiales as sister to leptosporangiate ferns and horsetails as sister to all remaining monilophytes. In addition, an indel in an exon of the here introduced rpl2 locus independently supports the placement of horsetails. We conclude that under dense taxon sampling, phylogenetic information from a prudent choice of loci is currently superior to character-rich phylogenomic approaches at low taxon sampling. As here shown the selective choice of loci and taxa enabled us to resolve the long-enigmatic diversifications of the earliest monilophyte lineages.

  17. Convergent Evolution of Fern-Specific Mitochondrial Group II Intron atp1i361g2 and Its Ancient Source Paralogue rps3i249g2 and Independent Losses of Intron and RNA Editing among Pteridaceae

    Science.gov (United States)

    Zumkeller, Simon Maria; Knoop, Volker; Knie, Nils

    2016-01-01

    Mitochondrial intron patterns are highly divergent between the major land plant clades. An intron in the atp1 gene, atp1i361g2, is an example for a group II intron specific to monilophytes (ferns). Here, we report that atp1i361g2 is lost independently at least 4 times in the fern family Pteridaceae. Such plant organelle intron losses have previously been found to be accompanied by loss of RNA editing sites in the flanking exon regions as a consequence of genomic recombination of mature cDNA. Instead, we now observe that RNA editing events in both directions of pyrimidine exchange (C-to-U and U-to-C) are retained in atp1 exons after loss of the intron in Pteris argyraea/biaurita and in Actiniopteris and Onychium. We find that atp1i361g2 has significant similarity with intron rps3i249g2 present in lycophytes and gymnosperms, which we now also find highly conserved in ferns. We conclude that atp1i361g2 may have originated from the more ancestral rps3i249g2 paralogue by a reverse splicing copy event early in the evolution of monilophytes. Secondary structure elements of the two introns, most characteristically their domains III, show strikingly convergent evolution in the monilophytes. Moreover, the intron paralogue rps3i249g2 reveals relaxed evolution in taxa where the atp1i361g2 paralogue is lost. Our findings may reflect convergent evolution of the two related mitochondrial introns exerted by co-evolution with an intron-binding protein simultaneously acting on the two paralogues. PMID:27492234

  18. Plant diversity in a changing world: Status, trends, and conservation needs

    Directory of Open Access Journals (Sweden)

    Richard T. Corlett

    2016-02-01

    Full Text Available The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes, with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.

  19. Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway.

    Science.gov (United States)

    Ma, Lu; Hatlen, Andrea; Kelly, Laura J; Becher, Hannes; Wang, Wencai; Kovarik, Ales; Leitch, Ilia J; Leitch, Andrew R

    2015-09-02

    The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  1. Evolution of the life cycle in land plants

    Institute of Scientific and Technical Information of China (English)

    Yin-Long QIU; Alexander B.TAYLOR; Hilarv A.McMANUS

    2012-01-01

    All sexually reproducing eukaryotes have a life cycle consisting of a haploid and a diploid phase,marked by meiosis and syngamy (fertilization).Each phase is adapted to certain environmental conditions.In land plants,the recently reconstructed phylogeny indicates that the life cycle has evolved from a condition with a dominant free-living haploid gametophyte to one with a dominant free-living diploid sporophyte.The latter condition allows plants to produce more genotypic diversity by harnessing the diversity-generating power of meiosis and fertilization,and is selectively favored as more solar energy is fixed and fed into the biosystem on earth and the environment becomes more heterogeneous entropically.Liverworts occupy an important position for understanding the origin of the diploid generation in the life cycle of land plants.Hornworts and lycophytes represent critical extant transitional groups in the change from the gametophyte to the sporophyte as the independent free-living generation.Seed plants,with the most elaborate sporophyte and the most reduced gametophyte (except the megagametophyte in many gymnosperms),have the best developed sexual reproduction system that can be matched only by mammals among eukaryotes:an ancient and stable sex determination mechanism (heterospory) that enhances outcrossing,a highly bimodal and skewed distribution of sperm and egg numbers,a male-driven mutation system,female specialization in mutation selection and nourishment of the offspring,and well developed internal fertilization.The study of evolution of the land plant life cycle requires a multidisciplinary approach that considers morphology,development,genetics,phylogeny,ecology,and evolution in an integrated fashion,and will deepen our understanding of plant evolution.

  2. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-D-galactose residues.

    Science.gov (United States)

    O'Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H; Fry, Stephen C

    2015-08-01

    -MeGal in charophytes and lycophytes but not in the 'intervening' bryophytes confirms that cell-wall chemistry changed drastically between major phylogenetic grades. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants.

    Science.gov (United States)

    Liu, Ping-Li; Du, Liang; Huang, Yuan; Gao, Shu-Min; Yu, Meng

    2017-02-07

    Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases in plants and play crucial roles in development and stress responses. The evolutionary relationships among LRR-RLK genes have been investigated in flowering plants; however, no comprehensive studies have been performed for these genes in more ancestral groups. The subfamily classification of LRR-RLK genes in plants, the evolutionary history and driving force for the evolution of each LRR-RLK subfamily remain to be understood. We identified 119 LRR-RLK genes in the Physcomitrella patens moss genome, 67 LRR-RLK genes in the Selaginella moellendorffii lycophyte genome, and no LRR-RLK genes in five green algae genomes. Furthermore, these LRR-RLK sequences, along with previously reported LRR-RLK sequences from Arabidopsis thaliana and Oryza sativa, were subjected to evolutionary analyses. Phylogenetic analyses revealed that plant LRR-RLKs belong to 19 subfamilies, eighteen of which were established in early land plants, and one of which evolved in flowering plants. More importantly, we found that the basic structures of LRR-RLK genes for most subfamilies are established in early land plants and conserved within subfamilies and across different plant lineages, but divergent among subfamilies. In addition, most members of the same subfamily had common protein motif compositions, whereas members of different subfamilies showed variations in protein motif compositions. The unique gene structure and protein motif compositions of each subfamily differentiate the subfamily classifications and, more importantly, provide evidence for functional divergence among LRR-RLK subfamilies. Maximum likelihood analyses showed that some sites within four subfamilies were under positive selection. Much of the diversity of plant LRR-RLK genes was established in early land plants. Positive selection contributed to the evolution of a few LRR-RLK subfamilies.

  4. A comprehensive phylogeny reveals functional conservation of the UV-B photoreceptor UVR8 from green algae to higher plants

    Directory of Open Access Journals (Sweden)

    María Belén Fernández

    2016-11-01

    Full Text Available UV-B is present in sunlight (280- 315 nm and has diverse effects on living organisms. Low fluence rate of exposure induces a specific photomorphogenic response regulated by the UV-B response locus 8 UVR8 receptor. UVR8 was first described in Arabidopsis thaliana. In the absence of stimuli is located in the cytoplasm as a homodimer, however, upon UV-B irradiation, it switches to a monomer and interacts with the ubiquitin ligase E3 COP1 via the UVR8 β- propeller domain and the VP core. This induces the expression of the transcription factor HY5 leading to changes in the expression of genes associated with UV-B acclimation and stress tolerance. UVR8 senses UV-B through tryptophan residues being Trp233 and 285 the most important. Here we report a comprehensive phylogeny of UVR8, trying to identify UVR8 homologs and the ancestral organism where this gene could be originated based on the comparison and analysis of UVR8 functionally important motifs. Results obtained showed that Chlorophytes are the first organisms from the Viridiplantae group where UVR8 appear. UVR8 is present in green algae, bryophytes, lycophytes and angiosperms. All the sequences identified contain tryptophans 233 and 285, arginines involved in homodimerization and the VP domain suggesting they are true UVR8 photoreceptors. We also determined that some species from bryophytes and angiosperms contain more than one UVR8 gene copy opening the question if UVR8 could constitute a gene family in these species. In conclusion, we described the functional conservation among UVR8 proteins from green algae to higher plants.

  5. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    Science.gov (United States)

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  6. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    Science.gov (United States)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  7. Highly informative single-copy nuclear microsatellite DNA markers developed using an AFLP-SSR approach in black spruce (Picea mariana and red spruce (P. rubens.

    Directory of Open Access Journals (Sweden)

    Yong-Zhong Shi

    Full Text Available Microsatellites or simple sequence repeats (SSRs are highly informative molecular markers for various biological studies in plants. In spruce (Picea and other conifers, the development of single-copy polymorphic genomic microsatellite markers is quite difficult, owing primarily to the large genome size and predominance of repetitive DNA sequences throughout the genome. We have developed highly informative single-locus genomic microsatellite markers in black spruce (Picea mariana and red spruce (Picea rubens using a simple but efficient method based on a combination of AFLP and microsatellite technologies.A microsatellite-enriched library was constructed from genomic AFLP DNA fragments of black spruce. Sequencing of the 108 putative SSR-containing clones provided 94 unique sequences with microsatellites. Twenty-two of the designed 34 primer pairs yielded scorable amplicons, with single-locus patterns. Fourteen of these microsatellite markers were characterized in 30 black spruce and 30 red spruce individuals drawn from many populations. The number of alleles at a polymorphic locus ranged from 2 to 18, with a mean of 9.3 in black spruce, and from 3 to 15, with a mean of 6.2 alleles in red spruce. The polymorphic information content or expected heterozygosity ranged from 0.340 to 0.909 (mean = 0.67 in black spruce and from 0.161 to 0.851 (mean = 0.62 in red spruce. Ten SSR markers showing inter-parental polymorphism inherited in a single-locus Mendelian mode, with two cases of distorted segregation. Primer pairs for almost all polymorphic SSR loci resolved microsatellites of comparable size in Picea glauca, P. engelmannii, P. sitchensis, and P. abies.The AFLP-based microsatellite-enriched library appears to be a rapid, cost-effective approach for isolating and developing single-locus informative genomic microsatellite markers in black spruce. The markers developed should be useful in black spruce, red spruce and other Picea species for

  8. Net ecosystem exchange of carbon dioxide and evapotranspiration response of a high elevation Rocky Mountain (Wyoming, USA) forest to a bark beetle epidemic

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2011-12-01

    Bark beetle epidemics have caused major disturbance in the forests of western North America where significant tree mortality alters the balance of ecosystem photosynthesis, carbon balance, and water exchange. In this study we investigate the change in the growing-season light-response of net ecosystem exchange of carbon dioxide (NEE) and evapotranspiration (ET) in a high elevation Rocky Mountain forest over the three years preceding and three years following a bark beetle outbreak. The GLEES AmeriFlux site (southeastern Wyoming, USA) is located in a high elevation subalpine forest dominated by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) and recently experienced an epidemic of spruce beetle (Dendroctonus rufipennis). The peak beetle outbreak occurred in 2008, and has impacted 35% of the stems and 90% of the basal area of Engelmann spruce, which accounts for 30% of the trees and 70% of the basal area of the forest. Two semi-empirical light response curves for eddy-covariance carbon flux were compared, with a logistic sigmoid performing better because of residual bias than a rectangular hyperbola (Michaelis-Menten) at estimating the quantum yield of photosynthesis. In the first two years after the peak beetle outbreak the original quantum yield of 0.015 mol mol-1 was reduced by 25%. By the third year it was reduced by a half, which was composed of declines of 45% in the ecosystem's responses to diffuse radiation and 60% to direct radiation. The light-saturated rate of photosynthesis decreased by 10% in the first two years post outbreak, and fell by 40% in the third year. After the peak outbreak, the cumulative NEE over the growing season was reduced by over a half from a sink of 185 gC m-2 to 80 gC m-2, and by the third year it was reduced to near zero, or carbon neutral. The change in the ET response to light was similar in all years after the peak outbreak where the slope of the response curve was decreased by 25%. This led to a

  9. A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis).

    Science.gov (United States)

    Ralph, Steven G; Chun, Hye Jung E; Kolosova, Natalia; Cooper, Dawn; Oddy, Claire; Ritland, Carol E; Kirkpatrick, Robert; Moore, Richard; Barber, Sarah; Holt, Robert A; Jones, Steven J M; Marra, Marco A; Douglas, Carl J; Ritland, Kermit; Bohlmann, Jörg

    2008-10-14

    Members of the pine family (Pinaceae), especially species of spruce (Picea spp.) and pine (Pinus spp.), dominate many of the world's temperate and boreal forests. These conifer forests are of critical importance for global ecosystem stability and biodiversity. They also provide the majority of the world's wood and fiber supply and serve as a renewable resource for other industrial biomaterials. In contrast to angiosperms, functional and comparative genomics research on conifers, or other gymnosperms, is limited by the lack of a relevant reference genome sequence. Sequence-finished full-length (FL)cDNAs and large collections of expressed sequence tags (ESTs) are essential for gene discovery, functional genomics, and for future efforts of conifer genome annotation. As part of a conifer genomics program to characterize defense against insects and adaptation to local environments, and to discover genes for the production of biomaterials, we developed 20 standard, normalized or full-length enriched cDNA libraries from Sitka spruce (P. sitchensis), white spruce (P. glauca), and interior spruce (P. glauca-engelmannii complex). We sequenced and analyzed 206,875 3'- or 5'-end ESTs from these libraries, and developed a resource of 6,464 high-quality sequence-finished FLcDNAs from Sitka spruce. Clustering and assembly of 147,146 3'-end ESTs resulted in 19,941 contigs and 26,804 singletons, representing 46,745 putative unique transcripts (PUTs). The 6,464 FLcDNAs were all obtained from a single Sitka spruce genotype and represent 5,718 PUTs. This paper provides detailed annotation and quality assessment of a large EST and FLcDNA resource for spruce. The 6,464 Sitka spruce FLcDNAs represent the third largest sequence-verified FLcDNA resource for any plant species, behind only rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), and the only substantial FLcDNA resource for a gymnosperm. Our emphasis on capturing FLcDNAs and ESTs from cDNA libraries representing herbivore

  10. A conifer genomics resource of 200,000 spruce (Picea spp. ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis

    Directory of Open Access Journals (Sweden)

    Holt Robert A

    2008-10-01

    Full Text Available Abstract Background Members of the pine family (Pinaceae, especially species of spruce (Picea spp. and pine (Pinus spp., dominate many of the world's temperate and boreal forests. These conifer forests are of critical importance for global ecosystem stability and biodiversity. They also provide the majority of the world's wood and fiber supply and serve as a renewable resource for other industrial biomaterials. In contrast to angiosperms, functional and comparative genomics research on conifers, or other gymnosperms, is limited by the lack of a relevant reference genome sequence. Sequence-finished full-length (FLcDNAs and large collections of expressed sequence tags (ESTs are essential for gene discovery, functional genomics, and for future efforts of conifer genome annotation. Results As part of a conifer genomics program to characterize defense against insects and adaptation to local environments, and to discover genes for the production of biomaterials, we developed 20 standard, normalized or full-length enriched cDNA libraries from Sitka spruce (P. sitchensis, white spruce (P. glauca, and interior spruce (P. glauca-engelmannii complex. We sequenced and analyzed 206,875 3'- or 5'-end ESTs from these libraries, and developed a resource of 6,464 high-quality sequence-finished FLcDNAs from Sitka spruce. Clustering and assembly of 147,146 3'-end ESTs resulted in 19,941 contigs and 26,804 singletons, representing 46,745 putative unique transcripts (PUTs. The 6,464 FLcDNAs were all obtained from a single Sitka spruce genotype and represent 5,718 PUTs. Conclusion This paper provides detailed annotation and quality assessment of a large EST and FLcDNA resource for spruce. The 6,464 Sitka spruce FLcDNAs represent the third largest sequence-verified FLcDNA resource for any plant species, behind only rice (Oryza sativa and Arabidopsis (Arabidopsis thaliana, and the only substantial FLcDNA resource for a gymnosperm. Our emphasis on capturing FLcDNAs and

  11. Arboreal forage lichens in partial cuts – a synthesis of research results from British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Susan K. Stevenson

    2007-04-01

    Full Text Available The mountain ecotype of the woodland caribou (Rangifer tarandus caribou is highly dependent on the arboreal hair lichens Bryoria spp. and Alectoria sarmentosa during winter. In parts of British Columbia, partial-cutting silvicultural systems have been used in an effort to provide continuously usable winter habitat for mountain caribou, while allowing some timber removal. We reviewed available information about the changes in hair lichens after partial cutting in Engelmann spruce (Picea engelmannii – subalpine fir (Abies lasiocarpa forests of British Columbian and Idaho. Generally, abundance of Bryoria spp. in the lower canopy of individual residual trees increases with increased exposure after partial cutting, until the new regeneration begins to shelter the lower canopy of the residuals. Heavy basal area removal, however, results in low lichen availability at the stand level for many years. Abundance of Bryoria on the regeneration is low, and appears to be limited largely by the structure of the young trees, not by lichen dispersal, although dispersal capability may be limiting in Alectoria. Both distributional and physiological data suggest that Bryoria is intolerant of prolonged wetting, and that increased ventilation, rather than increased light, accounts for enhanced Bryoria abundance in the partial cuts. Alectoria sarmentosa reaches its physiological optimum in the lower canopy of unharvested stands; its growth rates are somewhat reduced in the more exposed environment of partial cuts. Both genera are capable of rapid growth: over a 7-year period, individual thalli of A. sarmentosa and Bryoria spp. (excluding those with a net biomass loss due to fragmentation in an unlogged stand more than tripled their biomass. Calculated growth rates, as well as dispersal potential, are influenced by fragmentation. Bryoria produces more abundant, but smaller, fragments than Alectoria, and fragmentation in both genera increases in partial cuts. In

  12. The early to mid-Miocene environment of Antarctica

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.

    2012-12-01

    Paleoecological studies in the Transantarctic Mountains of the McMurdo region provide evidence that the climate was both warmer and wetter in the early to mid-Miocene than it was during the late Miocene. The climate change was accompanied by a shift from wet- to cold-based glaciation in the TAM and the probable growth of the polar ice sheet. Terrestrial and freshwater aquatic fossil assemblages from the Friis Hills (77°S) and the Olympus Range (77°S), with endpoint 40Ar/39Ar ages on tephras of 19.76 Ma and 14.07 Ma, respectively, indicate climatic cooling during the interval. At c.14 Ma, the temperature dropped below the threshold required to support the plants and insects of a tundra biome, and they became extinct. This interpretation is supported by pollen studies from Ross Sea cores. The extinction of the tundra biota on the continent appears to have been time-transgressive, occurring at 12.8 Ma on the Antarctic Peninsula. Evidence of climatic cooling from early to mid-Miocene is based on a decrease in biodiversity. During interglacial phases of the early Miocene, the poorly drained valley of the Friis Hills supported a sexually-reproducing moss community dominated by Campylium cf. polygamum, which today grows on the margins of lakes and in soil between boulders. Wood and leaves of Nothofagus (Southern Beech), and the seeds of at least five other angiosperm species are preserved as fossils. In addition, there are abundant megaspores and spiny, curved leaves of the aquatic lycopod Isoetes (Quillwort), as well as chitinous remains of curculionid beetles and Chironomidae (midges). During glacial phases, the only fossils found are Nothofagus leaves of a species which appears to be different than that associated with the interglacial phases. Pollen supports the interpretation that there was more than one species of Nothofagus in the vegetation. The types and numbers of species indicate that the vegetation was a shrub tundra. The closest modern analog for the fossil

  13. Miocene Antarctic Terrestrial Realm

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.; Marchant, D. R.

    2009-12-01

    The discovery of several locations in the Transantarctic Mountains that contain macrofossils and pollen is transforming our understanding of late Cenozoic Antarctica. The most southerly location is on the Beardmore Glacier (85.1°S) about 500 km from the South Pole. The environment was an active glacial margin in which plants, insects and freshwater mollusks inhabited the sand and gravel bars and small lakes on an outwash plain. In addition to leaves and wood of dwarf Nothofagus (Southern Beech) shrubs, achenes of Ranunculus (Buttercup), in situ cushion growth forms of mosses and a vascular plant, the assemblages contains various exoskeletal parts of carabid and curculionid beetles and a cyclorrhaphan fly, the shells of freshwater bivalve and gastropod species and a fish tooth. Initially the deposits were assigned a Pliocene age (3.5 Ma) but a mid- to early Miocene age is more probable (c. 14 - 25 Ma) based on correlation of fossil pollen from the deposits with 39Ar/40Ar dated pollen assemblages from the McMurdo Dry Valleys locations. The oldest location within the Dry Valleys also involved an active ice margin but was part of a valley system that was completely deglaciated for intervals long enough for thick paleosols to develop. The Friis Hills fossil deposits of the Taylor Valley region (77.8°S) are at least 19.76 Ma based on the 39Ar/40Ar age of a volcanic ash bed. The valley floor during the non-glacial phases had poorly-drained soils and the extensive development of mossy mires. Wood and leaves of Nothofagus are abundant in lacustrine deposits. The silts of shallow fluvial channels contain abundant megaspores and spiky leaves of the aquatic lycopod Isoetes (Quillwort). Fossils of beetles are also present in these deposits. During the glacial phases, proglacial lakes were surrounded by dwarfed, deciduous Nothofagus shrubs. The youngest fossils recovered from the Dry Valleys are from the Olympus Range (77.5°S) with an age of 14.07 Ma. The environment was an

  14. Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhang

    Full Text Available BACKGROUND: Flavodiiron proteins (FDPs comprise a group of modular enzymes that function in oxygen and nitric oxide detoxification in Bacteria and Archaea. The FDPs in cyanobacteria have an extra domain as compared to major prokaryotic enzymes. The physiological role of cyanobacteria FDPs is mostly unknown. Of the four putative flavodiiron proteins (Flv1-4 in the cyanobacterium Synechocystis sp. PCC 6803, a physiological function in Mehler reaction has been suggested for Flv1 and Flv3. PRINCIPAL FINDINGS: We demonstrate a novel and crucial function for Flv2 and Flv4 in photoprotection of photosystem II (PSII in Synechocystis. It is shown that the expression of Flv2 and Flv4 is high under air level of CO(2 and negligible at elevated CO(2. Moreover, the rate of accumulation of flv2 and flv4 transcripts upon shift of cells from high to low CO(2 is strongly dependent on light intensity. Characterization of FDP inactivation mutants of Synechocystis revealed a specific decline in PSII centers and impaired translation of the D1 protein in Delta flv2 and Delta flv4 when grown at air level CO(2 whereas at high CO(2 the Flvs were dispensable. Delta flv2 and Delta flv4 were also more susceptible to high light induced inhibition of PSII than WT or Delta flv1 and Delta flv3. SIGNIFICANCE: Analysis of published sequences revealed the presence of cyanobacteria-like FDPs also in some oxygenic photosynthetic eukaryotes like green algae, mosses and lycophytes. Our data provide evidence that Flv2 and Flv4 have an important role in photoprotection of water-splitting PSII against oxidative stress when the cells are acclimated to air level CO(2. It is conceivable that the function of FDPs has changed during evolution from protection against oxygen in anaerobic microbes to protection against reactive oxygen species thus making the sustainable function of oxygen evolving PSII possible. Higher plants lack FDPs and distinctly different mechanisms have evolved for

  15. Molecular Evolution of VEF-Domain-Containing PcG Genes in Plants

    Institute of Scientific and Technical Information of China (English)

    Ling-Jing Chen; Zhao-Yan Diao; Chelsea Specht; Z.Renee Sung

    2009-01-01

    Arabidopsis VERNALIZATION2 (VRN2),EMBRYONIC FLOWER2 (EMF2),and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering,vegetative development,and seed development,respectively.Together with Arabidopsis VEF-L36,they share a VEF domain that is conserved in plants and animals.To investigate the evolution of VEF-domain-containing genes (VEF genes),we analyzed sequences related to VEF genes across land plants.To date,24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified.The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2.EMF2-like sequences are not only widespread among angiosperms,but are also found in genomic sequences of gymnosperms,lycophyte,and moss.No FIS2- or VEF-L36-like sequences were recovered from plants other than Arabidopsis,including from rice and poplar for which whole genomes have been sequenced.Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa.VRN2 homologs are recovered as a clade nested within the larger EMF2 clade.FIS2 and VEF-L36 are recovered in the VRN2 clade.VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid Ⅰ and eurosid Ⅱ lineages.We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes.Phyiogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EMF2/VRN2 divergence in accordance with species relationship.Existence of EMF2-like sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages.A proposed sequence of events,based on domain organization and occurrence of

  16. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes.

    Science.gov (United States)

    Ogilvie, Huw A; Imin, Nijat; Djordjevic, Michael A

    2014-10-06

    Small, secreted signaling peptides work in parallel with phytohormones to control important aspects of plant growth and development. Genes from the C-TERMINALLY ENCODED PEPTIDE (CEP) family produce such peptides which negatively regulate plant growth, especially under stress, and affect other important developmental processes. To illuminate how the CEP gene family has evolved within the plant kingdom, including its emergence, diversification and variation between lineages, a comprehensive survey was undertaken to identify and characterize CEP genes in 106 plant genomes. Using a motif-based system developed for this study to identify canonical CEP peptide domains, a total of 916 CEP genes and 1,223 CEP domains were found in angiosperms and for the first time in gymnosperms. This defines a narrow band for the emergence of CEP genes in plants, from the divergence of lycophytes to the angiosperm/gymnosperm split. Both CEP genes and domains were found to have diversified in angiosperms, particularly in the Poaceae and Solanaceae plant families. Multispecies orthologous relationships were determined for 22% of identified CEP genes, and further analysis of those groups found selective constraints upon residues within the CEP peptide and within the previously little-characterized variable region. An examination of public Oryza sativa RNA-Seq datasets revealed an expression pattern that links OsCEP5 and OsCEP6 to panicle development and flowering, and CEP gene trees reveal these emerged from a duplication event associated with the Poaceae plant family. The characterization of the plant-family specific CEP genes OsCEP5 and OsCEP6, the association of CEP genes with angiosperm-specific development processes like panicle development, and the diversification of CEP genes in angiosperms provides further support for the hypothesis that CEP genes have been integral to the evolution of novel traits within the angiosperm lineage. Beyond these findings, the comprehensive set of CEP

  17. Phylogeny and expression analyses reveal important roles for plant PKS III family during the conquest of land by plants and angiosperm diversification

    Directory of Open Access Journals (Sweden)

    Lulu Xie

    2016-08-01

    Full Text Available AbstractPolyketide synthases (PKSs utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, type I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and twenty-five land plants (one bryophyte, one lycophyte, two basal angiosperms, sixteen core eudicots, and five monocots. PKS III sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Clade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within α-helixes in late appeared branches of clade A, account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional

  18. Phylogeny and Expression Analyses Reveal Important Roles for Plant PKS III Family during the Conquest of Land by Plants and Angiosperm Diversification.

    Science.gov (United States)

    Xie, Lulu; Liu, Pingli; Zhu, Zhixin; Zhang, Shifan; Zhang, Shujiang; Li, Fei; Zhang, Hui; Li, Guoliang; Wei, Yunxiao; Sun, Rifei

    2016-01-01

    Polyketide synthases (PKSs) utilize the products of primary metabolism to synthesize a wide array of secondary metabolites in both prokaryotic and eukaryotic organisms. PKSs can be grouped into three distinct classes, types I, II, and III, based on enzyme structure, substrate specificity, and catalytic mechanisms. The type III PKS enzymes function as homodimers, and are the only class of PKS that do not require acyl carrier protein. Plant type III PKS enzymes, also known as chalcone synthase (CHS)-like enzymes, are of particular interest due to their functional diversity. In this study, we mined type III PKS gene sequences from the genomes of six aquatic algae and 25 land plants (1 bryophyte, 1 lycophyte, 2 basal angiosperms, 16 core eudicots, and 5 monocots). PKS III sequences were found relatively conserved in all embryophytes, but not exist in algae. We also examined gene expression patterns by analyzing available transcriptome data, and identified potential cis-regulatory elements in upstream sequences. Phylogenetic trees of dicots angiosperms showed that plant type III PKS proteins fall into three clades. Clade A contains CHS/STS-type enzymes coding genes with diverse transcriptional expression patterns and enzymatic functions, while clade B is further divided into subclades b1 and b2, which consist of anther-specific CHS-like enzymes. Differentiation regions, such as amino acids 196-207 between clades A and B, and predicted positive selected sites within α-helixes in late appeared branches of clade A, account for the major diversification in substrate choice and catalytic reaction. The integrity and location of conserved cis-elements containing MYB and bHLH binding sites can affect transcription levels. Potential binding sites for transcription factors such as WRKY, SPL, or AP2/EREBP may contribute to tissue- or taxon-specific differences in gene expression. Our data shows that gene duplications and functional diversification of plant type III PKS enzymes

  19. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants

    Directory of Open Access Journals (Sweden)

    Wang Hongbin

    2009-05-01

    Full Text Available Abstract Background The 12-oxo-phytodienoic acid reductases (OPRs are enzymes that catalyze the reduction of double-bonds in α, β-unsaturated aldehydes or ketones and are part of the octadecanoid pathway that converts linolenic acid to jasmonic acid. In plants, OPRs belong to the old yellow enzyme family and form multigene families. Although discoveries about this family in Arabidopsis and other species have been reported in some studies, the evolution and function of multiple OPRs in plants are not clearly understood. Results A comparative genomic analysis was performed to investigate the phylogenetic relationship, structural evolution and functional divergence among OPR paralogues in plants. In total, 74 OPR genes were identified from 11 species representing the 6 major green plant lineages: green algae, mosses, lycophytes, gymnosperms, monocots and dicots. Phylogenetic analysis showed that seven well-conserved subfamilies exist in plants. All OPR genes from green algae were clustered into a single subfamily, while those from land plants fell into six other subfamilies, suggesting that the events leading to the expansion of the OPR family occurred in land plants. Further analysis revealed that lineage-specific expansion, especially by tandem duplication, contributed to the current OPR subfamilies in land plants after divergence from aquatic plants. Interestingly, exon/intron structure analysis showed that the gene structures of OPR paralogues exhibits diversity in intron number and length, while the intron positions and phase were highly conserved across different lineage species. These observations together with the phylogenetic tree revealed that successive single intron loss, as well as indels within introns, occurred during the process of structural evolution of OPR paralogues. Functional divergence analysis revealed that altered functional constraints have occurred at specific amino acid positions after diversification of the paralogues

  20. Molecular characterization of the 14-3-3 gene family in rice and its expression studies under abiotic stress.

    Science.gov (United States)

    Yashvardhini, Niti; Bhattacharya, Saurav; Chaudhuri, Shubho; Sengupta, Dibyendu Narayan

    2017-09-27

    14-3-3 isoforms were relatively less conserved at the C-terminal region across plant groups. Both Os 14-3-3f and Os 14-3-3g were inducible with differential gene expression levels under different abiotic stress and developmental stages in sensitive and tolerant indica rice cultivars as confirmed both at transcript and protein level. Plant 14-3-3s has been well characterized to function in several signaling pathways, biotic as well as abiotic stress and nutrient metabolism. We attempted comprehensive analysis of 14-3-3 genes in different plant lineages such as green algae (Chlamydomonas reinhardtii), moss (Physcomitrella patens) and lycophyte (Selaginella moellendorffii), dicot Arabidopsis thaliana and monocot Oryza sativa sub sp. japonica at the gene and protein level. Sequence alignment results revealed that 14-3-3 isoforms were evolutionarily conserved across all taxa with variable C-terminal end. Phylogenetic analysis indicated that the majority of 14-3-3 isoforms in rice belong to the non-epsilon group that clustered separately from the dicot group. Segmental duplication event played a significant role in the expansion of both, Arabidopsis and rice, 14-3-3 isoforms as revealed by synteny studies. In silico gene expression using Massive Parallel Signature Sequencing and microarray analysis revealed that 14-3-3 isoforms have variable expression in different tissue types and under different abiotic stress regime in Arabidopsis and japonica rice. Both, semi-quantitative and qPCR results, confirmed that Os14-3-3f and Os14-3-3g were inducible under abiotic stress in lamina and roots of indica rice and relatively higher under salinity and cold stress in Nonabokra, under dehydration stress in N-22 and under exogenous ABA in IR-29 usually after 3-6 h of treatment. Both, 14-3-3f and 14-3-3g, were highly expressed in flag leaves, stems and panicles and mature roots. These results were further confirmed by immunoblot analysis of rice cultivars using Os14-3-3f antibody

  1. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic

  2. Climate- and disturbance-driven changes in vegetation composition and structure limit future potential carbon storage in the Greater Yellowstone Ecosystem, USA

    Science.gov (United States)

    Henne, Paul D.; Hawbaker, Todd J.; Zhao, Feng; Huang, Chengquan; Berryman, Erin M.; Zhu, Zhiliang

    2016-04-01

    the largest increases in lodgepole pine (Pinus contorta; 332% increase) and spruce/fir (Picea engelmannii, Abies lasiocarpa; 243% increase) stands. In model runs with the historic fire regime, average stand age and live biomass remained consistent with pre-1988 values during the 200-year simulation period; biomass increased significantly only in recently-logged areas. In contrast, a marked shift to younger stands with lower biomass occurred in the future fire scenario. Average stand age declined from 112 years to 31 years in lodgepole pine stands, and from 191 years to 65 years in spruce/fir stands, with consequent reductions in living biomass. A smaller shift in stand age was simulated for douglas-fir (Pseudotsuga menziesii) stands (i.e. 121 to 92 years). These fire-driven changes in stand age and biomass coincided with important shifts in species abundances. Specifically, lodgepole pine stands replaced large areas previously dominated by spruce and fir. Our results suggest that the potential for increasing the amount of fossil fuel emissions offset by carbon sequestration on public lands in the American West is limited by ongoing changes in disturbance regimes. Instead, land managers may need to consider strategies to adapt to climate change impacts.

  3. Recent Relationships of Tree Establishment and Climate in Alpine Treelines of the Rocky Mountains

    Science.gov (United States)

    Germino, M. J.; Graumlich, L. J.; Maher, E. J.

    2007-12-01

    pine (Pinus albicaulis) and Engelmann Spruce (Picea engelmannii) to significantly positive for subalpine fir (Abies lasiocarpa). Seedling establishment was consistently associated with microsite features such as resident trees and herbs that alter sunlight and temperature for small seedlings, and the effect was strongest for subalpine fir and least evident for whitebark pine. For all species and treelines, establishment in microsites with the least amount of overhead tree cover (furthest from forest in the alpine, in exposed locations) occurred in years with warmer summer temperatures. These patterns of establishment are consistent with previous and current experimental studies of terrestrial and solar radiation and temperature effects on tree seedlings at treeline. Our findings indicate that local treeline response to climate variability may vary as a function of current landscape patterns of tree and herb cover, and tree species assemblages that are unique to different treelines. Local shifts in tree species composition that are ongoing may thus pose a significant issue in forecasting future treeline change.

  4. 黔西滇东地区早三叠世早期植物化石研究的新进展%New Research Progress on the Paleofiora in the Earliest Triassic of Western Guizhou and Eastern Yunnan, South China

    Institute of Scientific and Technical Information of China (English)

    陈建华; 喻建新; 黄其胜; Jean Broutin; 宋倩倩; 陈斌

    2011-01-01

    Early Lower Triassic plants are little known in China, especially in South China. This paper presents the paleofloral assemblage from the top of Xuanwei and the lower of the Kayitou Formations in western Guizhou and eastern Yunnan, China.Fossil plants in this area (Annularia shirakii, Lobatannularia sp. , Paracalamites stenocostatus, Gigantopteris sp. , Pecopteris sp. , which are all the Permian relicts) from the bottom of the Kayitou Formation described by other people in 1970s are covered. In addition, many important new fossil plants in the evolution during the Permian-Triassic interval, such as Isoetes Annalepis (including A. zeilleri , A. brevicystis ) , Peltaspermacae Peltaspermum (including P. martinsii, P. lobutalurn, P.sp. ), Lepidodendron and Stigmaria and so on are also reported. Both the new type and the “Gigantopteris-fiora” relicts are characterized with the Early Triassic Induan paleofloral features in South China. This paleofloral assemblage contains 31 species in 14 genera. These fossil plants are in association with an early Lower Triassic marine fauna (Bivalves, Ostracods, Brachiopods and Ammonites). So the geological age of this paleoflora is Early Triassic Induan stage, while the FAD of Annalepis is regarded as the marker, representing the beginning of Triassic. Based on analyzing paleofiora and limnology of the top of Xuanwei and the lower of Kayitou Formations, it is concluded that tropical and humid conditions persisted in western Guizhou and eastern Yunnan throughout the Permian and Earliest Triassic.%早三叠世华南地区海相沉积广为发育.陆相沉积仅在海南岛和康滇古陆的东缘零星分布,植物化石非常罕见.报道的植物化石采自黔西滇东陆相岔河剖面宣威组顶部、海陆过渡相密德剖面和土城剖面的卡以头组下部,与晚二叠世晚期宣威组植物化石比较,植物类型单调,保存较破碎,共计14属31种,其中以Annalepis为主的石松纲5种;楔叶纲5

  5. Genome wide identification of chilling responsive microRNAs in Prunus persica

    Directory of Open Access Journals (Sweden)

    Barakat Abdelali

    2012-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNAs (sRNAs approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. For this reason, we chose to identify and characterize the conserved and non-conserved miRNA component of peach (Prunus persica (L. Batsch focusing our efforts on both the recently released whole genome sequence of peach and sRNA transcriptome sequences from two tissues representing non-dormant leaves and dormant leaf buds. Conserved and non-conserved miRNAs, and their targets were identified. These sRNA resources were used to identify cold-responsive miRNAs whose gene targets co-localize with previously described QTLs for chilling requirement (CR. Results Analysis of 21 million peach sRNA reads allowed us to identify 157 and 230 conserved and non-conserved miRNA sequences. Among the non-conserved miRNAs, we identified 205 that seem to be specific to peach. Comparative genome analysis between peach and Arabidopsis showed that conserved miRNA families, with the exception of miR5021, are similar in size. Sixteen of these conserved miRNA families are deeply rooted in land plant phylogeny as they are present in mosses and/or lycophytes. Within the other conserved miRNA families, five families (miR1446, miR473, miR479, miR3629, and miR3627 were reported only in tree species (Populustrichocarpa, Citrus trifolia, and Prunus persica. Expression analysis identified several up-regulated or down-regulated miRNAs in winter buds versus young leaves. A search of the peach proteome allowed the prediction of target genes for most of the conserved miRNAs and a large fraction of non-conserved miRNAs. A fraction of predicted targets in peach have not been previously reported in other

  6. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    Science.gov (United States)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit "Tocantins Fossil Trees Natural Monument". In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry

  7. A Comparison of Classifications of Families of Chinese Vascular Plants among Flora Republicae Popularis Sinicae, Flora of China and the New Classifications%中国植物志、Flora of China和维管植物新系统中科的比较

    Institute of Scientific and Technical Information of China (English)

    骆洋; 何延彪; 李德铢; 王雨华; 伊廷双; 王红

    2012-01-01

    Flora Republicae Popularis Sinicae (FRPS) and Flora of China (FOC) are the Floras with the largest number of plant species recorded so far in the world, both of which have provided comprehensive scientific database for effective conservation and sustainable use of plant diversity and plant resources. Based on molecular data, the Angiosperm Phylogeny Group's system of classification was proposed in 1998, and updated in 2003 and 2009, respectively. Such approach was also applied to other groups of vascular plants. As molecular systematics enters into a mature phase, the linear sequences derived from the new molecular-based framework classifications such as APG has been widely adopted to the study and application for entire vascular plants. In this paper, we compare Chinese vascular plants at the family level among Flora Republicae Popularis Sinicae, Flora of China and the new classifications. It is confirmed that there are 38 (out of a total of 48) families of lycophytes and ferns, 10 (out of 12) families of gymnosperms and 261 ( out of 414 ) families of angiosperms in China. Although the total number of families of Chinese vascular plants does not vary as much as expected (300 in FRPS, and 309 in FOC and APG, respectively), the circumscriptions of a number of families changed greatly. In addition, we also discussed the changes of some important families of angiosperms in China.%《中国植物志》和“Flora of China”是目前世界上最大型、记录植物种类最多的植物志,它为有效保护和合理利用我国的植物资源提供了极为重要的基础信息和科学依据.近年来,基于分子系统学研究提出的APG系统被广泛接受,相应方法得到的系统也相继应用于整个维管植物中.以APG系统为代表的维管植物新系统为全面和系统地修订植物志提供了新的系统框架.本文依据最新的分子系统学“线性排列”成果与《中国植物志》和“Flora of China”在科级水平上进行对

  8. Pteridófitas de Santa Catarina: um olhar sobre os dados do Inventário Florístico Florestal de Santa Catarina, Brasil Ferns and Fern allies from Santa Catarina State: a "look at the data" from Santa Catarina Floristic Forest Inventory, Brazil

    Directory of Open Access Journals (Sweden)

    André Luís de Gasper

    2012-06-01

    Full Text Available Uma das unidades federativas com melhor conhecimento de sua flora, Santa Catarina é o primeiro estado a concluir o Inventário Florístico Florestal na atualidade. Coberto por Floresta Ombrófila Densa, Floresta Ombrófila Mista, Floresta Estacional Decidual e formações associadas, possui grande riqueza de espécies. Este trabalho visa apresentar as espécies de pteridófitas coletadas nas 563 unidades amostrais visitadas. Ao todo 324 espécies foram registradas, das quais 300 são samambaias e 24, licófitas. Estas pertencem a 29 famílias e 94 gêneros, sendo as famílias com maior riqueza específica Polypodiaceae (48 espécies, Pteridaceae (42 e Dryopteridaceae (38. Os gêneros com maior diversidade de espécies foram Asplenium e Thelypteris, com 27 espécies, seguido por Blechnum com 15. Destacam-se ainda 75 espécies consideradas endêmicas para o bioma. 18 registros novos para a flora de Santa Catarina foram feitos. A distribuição por região fitoecológica é a que segue: 288 espécies para a Floresta Ombrófila Densa (128 exclusivas desta região fitoecológica, 177 para a Floresta Ombrófila Mista (30 exclusivas e 57 para a Floresta Estacional Decidual (três exclusivas. Foram registradas ainda 17 espécies para a restinga. Destaca-se a importância do registro de Asplenium lacinulatum, espécie coletada em área de intensa exploração imobiliária e novo registro para Santa Catarina e Alansmia senilis primeiro registro para o Sul do Brasil.Santa Catarina is the first Brazilian state to complete its Forest and Floristic Inventory, and is considered one of the states with a well-known flora. This region is covered by evergreen tropical rain forest, Araucaria forest, seasonal deciduous forest and associated ecosystems, and shows high species richness. This paper presents a list of ferns collected in 563 sampling units. Altogether, 324 species were recorded (300 ferns and 24 lycophytes, which belong to 29 families and 94 genera. The