WorldWideScience

Sample records for lwr zirconium components

  1. LWR nuclear power plant component failures

    International Nuclear Information System (INIS)

    Schmidt, W.H.

    1980-10-01

    An analysis of the most significant light water reactor (LWR) nuclear power plant component failures, from information in the computerized Nuclear Safety Information Center (NSIC) data bank, shows that for both pressurized water reactor (PWR) and boiling water reactor (BWR) plants the component category most responsible for reactor shutdowns is valves. Next in importance for PWR shutdowns is steam generators followed by seals of all kinds. For BWR plants, seals, and pipes and pipe fittings are the second and third most important component failure categories which lead to reactor shutdown. The data are for records extending from early 1972 through September 1978. A list of the most significant component categories and a breakdown of the number of component citations for both PWR and BWR reactor types are presented

  2. Nonlinear analysis of LWR components: areas of investigation/benefits/recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. J. [ed.

    1980-04-01

    The purpose of this study is to identify specific topics of investigation into design procedures, design concepts, methods of analysis, testing practices, and standards which are characterized by nonlinear behavior (both geometric and material) and which are considered to offer some economic and/or technical benefits to the LWR industry (excluding piping). In this study these topics were collected, compiled, and subjectively evaluated as to their potential benefit. The topics considered to have the greatest benefit/impact potential are discussed. The topics listed are based upon the experience of ODAI and also based upon a sampling of over 100 engineers/scientists in the LWR industry. The topics of investigation were found to fall basically into three areas: component, code interpretation, and load/failure mechanism. The topics are arbitrarily reorganized into six areas of investigation: Fracture, Fatigue, Vibration/Dynamic/Seismic, Plasticity, Component/Computational Considerations, and Code Interpretation.

  3. Nonlinear analysis of LWR components: areas of investigation/benefits/recommendations

    International Nuclear Information System (INIS)

    Brown, S.J.

    1980-04-01

    The purpose of this study is to identify specific topics of investigation into design procedures, design concepts, methods of analysis, testing practices, and standards which are characterized by nonlinear behavior (both geometric and material) and which are considered to offer some economic and/or technical benefits to the LWR industry (excluding piping). In this study these topics were collected, compiled, and subjectively evaluated as to their potential benefit. The topics considered to have the greatest benefit/impact potential are discussed. The topics listed are based upon the experience of ODAI and also based upon a sampling of over 100 engineers/scientists in the LWR industry. The topics of investigation were found to fall basically into three areas: component, code interpretation, and load/failure mechanism. The topics are arbitrarily reorganized into six areas of investigation: Fracture, Fatigue, Vibration/Dynamic/Seismic, Plasticity, Component/Computational Considerations, and Code Interpretation

  4. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  5. The 5-year Results of an Oxidized Zirconium Femoral Component for TKA

    Science.gov (United States)

    Innocenti, Massimo; Carulli, Christian; Matassi, Fabrizio; Villano, Marco

    2009-01-01

    Osteolysis secondary to polyethylene wear is one of the major factors limiting long-term performance of TKA. Oxidized zirconium is a new material that combines the strength of a metal with the wear properties of a ceramic. It remains unknown whether implants with a zirconium femoral component can be used safely in TKA. To answer that question, we reviewed, at a minimum of 5 years, the clinical outcome and survivorship of a ceramic-surfaced oxidized zirconium femoral component implanted during 98 primary TKAs between April 2001 and December 2003. Survivorship was 98.7% at 7 years postoperatively. No revision was necessary and only one component failed because of aseptic loosening. Mean Knee Society score improved from 36 to 89. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component in TKA. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19798541

  6. The technologies of zirconium production for nuclear fuel components in Ukraine

    International Nuclear Information System (INIS)

    Semenov, G.R.

    2000-01-01

    Perspectives of development zirconium alloys and WWER-1000 assemble components production in Ukraine are considered. Basic technological production processes of zirconium alloys in conditions of Ukrainian enterprises and modern requirements are analyzed. The critical processes on technical and economic criteria are defined. The main directions of activity and steps on technological processes improvement for production quality providing are offered. (author)

  7. Residual life assessment of major LWR components: NPAR approach and results

    International Nuclear Information System (INIS)

    Shah, V.N.; Weidenhamer, G.H.; Vora, J.P.

    1991-01-01

    The nuclear plant aging research (NPAR) program is systematically addressing the technical issues associated with understanding and managing aging of major LWR components. Twenty-one major components have been identified and prioritized according to their relevance to plant safety. Qualitative aging assessment has identified pertinent design features, materials, stressors, environments, aging mechanisms. and failure modes for each of the components. Emerging inspection, surveillance, and monitoring methods to characterize aging damage and mitigation methods to reduce the damage are currently being assessed. The results of all these assessments are used to develop life-assessment procedures for the components and are included in appropriate documents supporting the regulatory requirements for license renewal. (author)

  8. Proceedings [of the] symposium on zirconium alloys for reactor components

    International Nuclear Information System (INIS)

    1992-01-01

    A two day symposium on zirconium alloys for reactor components (ZARC-91) was organised during 12-13, 1991. There were 6 invited talks and 43 contributed papers in 10 technical sessions. This symposium, took stock of the progress achieved in the development, design, fabrication and quality assurance of zirconium alloy components and emphasized the R and D efforts required for meeting the challenges posed by the rapid growth of nuclear power in our country. Topics like physical metallurgy, corrosion and irradiation behaviour, and in-service inspection were also covered. The proceedings/papers are arranged under the headings: (1)invited talks, (2)fabrication, (3)design requirement, (4)quality assurance, (5)irradiation damage and PIE, (6)corrosion and hydriding, and (7)in-service inspection. (N.B.). refs., figs., tabs

  9. Total knee arthroplasty with an oxidised zirconium femoral component: ten-year survivorship analysis.

    Science.gov (United States)

    Ahmed, I; Salmon, L J; Waller, A; Watanabe, H; Roe, J P; Pinczewski, L A

    2016-01-01

    Oxidised zirconium was introduced as a material for femoral components in total knee arthroplasty (TKA) as an attempt to reduce polyethylene wear. However, the long-term survival of this component is not known. We performed a retrospective review of a prospectively collected database to assess the ten year survival and clinical and radiological outcomes of an oxidised zirconium total knee arthroplasty with the Genesis II prosthesis. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS) and a patient satisfaction scale were used to assess outcome. A total of 303 consecutive TKAs were performed in 278 patients with a mean age of 68 years (45 to 89). The rate of survival ten years post-operatively as assessed using Kaplan-Meier analysis was 97% (95% confidence interval 94 to 99) with revision for any reason as the endpoint. There were no revisions for loosening, osteolysis or failure of the implant. There was a significant improvement in all components of the WOMAC score at final follow-up (p zirconium TKA gives comparable rates of survival with other implants and excellent functional outcomes ten years post-operatively. Total knee arthroplasty with an oxidised zirconium femoral component gives comparable long-term rates of survival and functional outcomes with conventional implants. ©2016 The British Editorial Society of Bone & Joint Surgery.

  10. Characteristic test technology for PWR fuel and its components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho; Jeong, Yong Hwan; Park, Sang Yoon; Kim, Kyeng Ho; Nam, Cheol; Baek, Jong Hyuk; Lee, Myung Ho; Choi, Byoung Kwon; Song, Kun Woo; Kang, Ki Won; Kim, Keon Sik; Kim, Jong Hun; Kim, Young Min; Yang, Jae Ho; Song, Kee Nam; Kim, Hyung Kyu; Kang, Heung Seok; Yoon, Kyung Ho; Chun, Tae Hyun; In, Wang Kee; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Characteristic tests of fuel assembly and its components being developed in the Advanced LWR Fuel Development Project supported by the mid-long term nuclear R and D program are described in this report. Performance verification of fuel and its components by the characteristic tests are essential to their development. Fuel components being developed in the Advanced LWR Fuel Development Project are zirconium alloy cladding, UO{sub 2} and burnable absorber pellets, spacer grid and top and bottom end pieces. Detailed test plans for those fuel components are described in this report, and test procedures of cladding and pellet are also described in the Appendix. Examples of the described tests are in- and out-of- pile corrosion and mechanical tests such as creep and burst tests for the cladding, in-pile capsule and ramp tests for the pellet, mechanical tests such as strength and vibration, and thermal-hydraulic tests such as pressure drop and critical heat flux for the spacer grid and top and bottom end pieces. It is expected that this report could be used as the standard reference for the performance verification tests in the development of LWR fuel and its components. 11 refs., 9 figs., 2 tabs. (Author)

  11. Technical program to study the benefits of nonlinear analysis methods in LWR component designs. Technical report TR-3723-1

    International Nuclear Information System (INIS)

    Raju, P.P.

    1980-05-01

    This report summarizes the results of the study program to assess the benefits of nonlinear analysis methods in Light Water Reactor (LWR) component designs. The current study reveals that despite its increased cost and other complexities, nonlinear analysis is a practical and valuable tool for the design of LWR components, especially under ASME Level D service conditions (faulted conditions) and it will greatly assist in the evaluation of ductile fracture potential of pressure boundary components. Since the nonlinear behavior is generally a local phenomenon, the design of complex components can be accomplished through substructuring isolated localized regions and evaluating them in detail using nonlinear analysis methods

  12. Nonlinear analysis of LWR components: areas of investigation/benefits/recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. J. [ed.

    1980-04-01

    The purpose of this study is to identify specific topics of investigation into design procedures, design concepts, methods of analysis, testing practices, and standards which are characterized by nonlinear behavior (both geometric and material) and which are considered to offer some economic and/or technical benefits to the LWR industry (excluding piping). In this study these topics were collected, compiled, and subjectively evaluated as to their potential benefit. The topics considered to have the greatest benefit/impact potential are discussed. The topics of investigation were found to fall basically into three areas: component, code interpretation, and load/failure mechanism. The topics are arbitrarily reorganized into six areas of investigation: Fracture, Fatigue, Vibration/Dynamic/Seismic, Plasticity, Component/Computational Considerations, and Code Interpretation.

  13. Modelling of zirconium alloys corrosion in LWRs

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Berezina, I.G.; Kritskij, A.V.; Stjagkin, P.S.

    1999-01-01

    Chemical parameters, that exerted effect on Zr+1%Nb alloy corrosion and deserved consideration during reactor operation, were defined and a model was developed to describe the influence of physical and chemical parameters on zirconium alloys corrosion in nuclear power plants. The model is based on the correlation between the zirconium oxide solubility in high-temperature water under the influence of the chemical parameters and the measured values of fuel cladding corrosion under LWR conditions. The intensity of fuel cladding corrosion in the primary circuits depends on the coolant water quality, growth of iron oxide deposits and vaporization portion. Mathematically, the oxidation rate can be expressed as a sum of heat and radiation components. The temperature dependence on the oxidation rate can be described by the Arrenius equation. The radiation component of Zr uniform corrosion equation is a function of several factors such as neutron fluency, the temperature the metallurgical composition and et. We assume that the main factor is the changing of water chemistry and the H 2 O 2 concentration play the determinative role. Probably, the influence of H 2 O 2 is based on the formation of unstable compound ZrO 3 ·nH 2 O and Zr(OH) 4 with high solubility. The validity of the used formulae was confirmed by corrosion measurements on WWER and RBMK fuel cladding. The model can be applied for calculating the reliability of nuclear fuel operation. (author)

  14. Aging assessment and mitigation for major LWR [light water reactor] components

    International Nuclear Information System (INIS)

    Shah, Y.N.; Ware, A.G.; Conley, D.A.; MacDonald, P.E.; Burns, J.J. Jr.

    1989-01-01

    This paper summarizes some of the results of the Aging Assessment and Mitigation Project sponsored by the US Nuclear Regulatory Commission (USNRC), Office of Nuclear Regulatory Research. The objective of the project is to develop an understanding of the aging degradation of the major light water reactor (LWR) structures and components and to develop methods for predicting the useful life of these components so that the impact of aging on the safe operation of nuclear power plants can be evaluated and addressed. The research effort consists of integrating, evaluating, and updating the available aging-related information. This paper discusses current accomplishments and summarizes the significant degradation processes active in two major components: pressurized water reactor pressurizer surge and spray lines and nozzles, and light water reactor primary coolant pumps. This paper also evaluates the effectiveness of the current inservice inspection programs and presents conclusions and recommendations related to aging of these two major components. 37 refs., 7 figs., 3 tabs

  15. Investigation of LWR environmental effect on fatigue lifetime of austenitic stainless steel component

    International Nuclear Information System (INIS)

    Kim, J. S.; Youm, H. K.; Jin, T. E.

    1999-01-01

    The fatigue lifetime of principal components in nuclear power plant is evaluated by using the design fatigue curves in ASME B and PV code during design process. However, it is inadequate to evaluate fatigue lifetime considering the LWR environmental effect by these design fatigue curves because these are presented only under atmosphere environment. Therefore, many studies are recently performed for the design fatigue curves considering LWR environmental effect and are presented that the design fatigue curves in ASME B and PV code can be non-conservative. In present paper, the limits and differences of the design fatigue curves considering environmental effect are presented. To investigate the change of fatigue lifetime according to each design fatigue curve, the CUFs for the pressurizer spray nozzle partly composed of austenitic stainless steel are calculated according to each one. Finally, if the evaluation result can not be satisfied with fatigue design requirement, the alternatives to reduce design cumulative usage factor are discussed. (author)

  16. Corrosion behaviour of E110- and E635- type zirconium alloys under PWR irradiation simulating conditions

    International Nuclear Information System (INIS)

    Markelov, V.A.; Novikov, V.V.; Kon'kov, V.F.; Tselishchev, A.V.; Dologov, A.B.; Zmitko, M.; Maserik, V.; Kocik, J.

    2008-01-01

    As structural materials for VVER 1000 fuel rod claddings and FA components use is made of zirconium alloys E110 (Zr 1Nb) and E635 (Zr 1.2Sn 1Nb 0.35Fe) that meet the design parameters of operation. Nonetheless, the work is in progress to perfect those alloys to reach higher corrosion and shape change resistance. At VNIINM updated E110M and E635M alloys have been developed on E110 and E635 bases. To assess the corrosion behaviour of the updated alloys in comparison to the base alloys their cladding samples were tested in RVS 3 loop of LWR 15 reactor (NRI, Rez) in PWR water chemistry with coolant surface and volume boiling. The data are presented on the influence effected by in pile irradiation for up to 324 days on oxide coat thickness and microstructure of fuel claddings produced from the four tested alloys. It has been revealed that E110 alloy its updated version E110M and E635M alloy compared to E635 have higher corrosion resistances. The paper discusses th+e results on the in pile corrosion of cladding samples from the alloys under study in comparison to the results acquired for similar samples tested in LWR 15 inactive channel and under autoclave conditions. Using methods of TEM, EDX analyses of extraction replicas dislocation structure and phase composition changes were studied in samples of all four alloy claddings LWR 15 reactor irradiated to the material damage dose of 1.5 dpa. The interrelation is discussed between irradiation effected strengthening and corrosion of fuel claddings made of E110 and E635 type zirconium alloys and the evolution of their structure and phase states

  17. No difference in in vivo polyethylene wear particles between oxidized zirconium and cobalt-chromium femoral component in total knee arthroplasty.

    Science.gov (United States)

    Minoda, Yukihide; Hata, Kanako; Iwaki, Hiroyoshi; Ikebuchi, Mitsuhiko; Hashimoto, Yusuke; Inori, Fumiaki; Nakamura, Hiroaki

    2014-03-01

    Polyethylene wear particle generation is one of the most important factors affecting mid- to long-term results of total knee arthroplasties. Oxidized zirconium was introduced as a material for femoral components to reduce polyethylene wear generation. However, an in vivo advantage of oxidized zirconium on polyethylene wear particle generation is still controversial. The purpose of this study was to compare in vivo polyethylene wear particles between oxidized zirconium total knee prosthesis and conventional cobalt-chromium (Co-Cr) total knee prosthesis. Synovial fluid was obtained from the knees of 6 patients with oxidized zirconium total knee prosthesis and from 6 patients with conventional cobalt-chromium (Co-Cr) total knee prosthesis 12 months after the operation. Polyethylene particles were isolated and examined using a scanning electron microscope and image analyser. Total number of particles in each knee was 3.3 ± 1.3 × 10(7) in the case of oxidized zirconium (mean ± SD) and 3.4 ± 1.2 × 10(7) in that of Co-Cr (n.s.). The particle size (equivalent circle diameter) was 0.8 ± 0.3 μm in the case of oxidized zirconium and 0.6 ± 0.1 μm in that of Co-Cr (n.s.). The particle shape (aspect ratio) was 1.4 ± 0.0 in the case of oxidized zirconium and 1.4 ± 0.0 in that of metal Co-Cr (n.s). Although newly introduced oxidized zirconium femoral component did not reduce the in vivo polyethylene wear particles in early clinical stage, there was no adverse effect of newly introduced material. At this moment, there is no need to abandon oxidized zirconium femoral component. However, further follow-up of polyethylene wear particle generation should be performed to confirm the advantage of the oxidized zirconium femoral component. Therapeutic study, Level III.

  18. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  19. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    International Nuclear Information System (INIS)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO 2 fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed

  20. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  1. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  2. Management of waste cladding hulls. Part II. An assessment of zirconium pyrophoricity and recommendations for handling waste hulls

    International Nuclear Information System (INIS)

    Kullen, B.J.; Levitz, N.M.; Steindler, M.J.

    1977-11-01

    This report reviews experience and research related to the pyrophoricity of zirconium and zirconium alloys. The results of recent investigations of the behavior of Zircaloy and some observations of industrial handling and treatment of Zircaloy tubing and scrap are also discussed. A model for the management of waste Zircaloy cladding hulls from light water reactor fuel reprocessing is offered, based on an evaluation of the reviewed information. It is concluded that waste Zircaloy cladding hulls do not constitute a pyrophoric hazard if, following the model flow sheet, finely divided metal is oxidized during the management procedure. Steps alternative to the model are described which yield zirconium in deactivated form and also accomplish varying degrees of transuranic decontamination. Information collected into appendixes is (1) a collation of zirconium pyrophoricity data from the literature, (2) calculated radioactivity contents in Zircaloy cladding hulls from spent LWR fuels, and (3) results of a laboratory study on volatilization of zirconium from Zircaloy using HCl or Cl 2

  3. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  4. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  5. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  6. Challenges in design of zirconium alloy reactor components

    International Nuclear Information System (INIS)

    Kakodkar, Anil; Sinha, R.K.

    1992-01-01

    Zirconium alloy components used in core-internal assemblies of heavy water reactors have to be designed under constraints imposed by need to have minimum mass, limitations of fabrication, welding and joining techniques with this material, and unique mechanisms for degradation of the operating performance of these components. These constraints manifest as challenges for design and development when the size, shape and dimensions of the components and assemblies are unconventional or untried, or when one is aiming for maximization of service life of these components under severe operating conditions. A number of such challenges were successfully met during the development of core-internal components and assemblies of Dhruva reactor. Some of the then untried ideas which were developed and successfully implemented include use of electron beam welding, cold forming of hemispherical ends of reentrant cans, and a large variety of rolled joints of innovative designs. This experience provided the foundation for taking up and successfully completing several tasks relating to coolant channels, liquid poison channels and sparger channels for PHWRs and test sections for the in-pile loops of Dhruva reactor. For life prediction and safety assessment of coolant channels of PHWRs some analytical tools, notably, a computer code for prediction of creep limited life of coolant channels has been developed. Some of the future challenges include the development of easily replaceable coolant channels and also large diameter coolant channels for Advanced Heavy Water Reactor, and development of solutions to overcome deterioration of service life of coolant channels due to hydriding. (author). 5 refs., 13 figs., 1 tab

  7. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  8. ERDA LWR plant technology program: role of government/industry in improving LWR performance

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented under the following chapter headings: executive summary; LWR plant outages; LWR plant construction delays and cancellations; programs addressing plant outages, construction delays, and cancellations; need for additional programs to remedy continuing problems; criteria for government role in LWR commercialization; and the proposed government program

  9. Mitigation of harmful effects of welds in zirconium alloy components

    International Nuclear Information System (INIS)

    Coleman, C.E.; Doubt, G.L.; Fong, R.W.L.; Root, J.H.; Bowden, J.W.; Sagat, S.; Webster, R.T.

    1995-01-01

    Welding produces local residual tensile stresses and changes in texture in components made from zirconium alloys. In the heat-affected zone in tubes or plates, the basal plane normals are rotated into the plane of the component and perpendicular to the direction of the weld. Thin-walled Zircaloy-2 tubes containing an axial weld do not reach their full strength because they always fail prematurely in the weld when pressurized to failure in a fixed-end burst test. Reinforcing the weld by increasing its thickness by 25% moves the failure to the parent metal and improves the biaxial strength of the tube by 20 to 25% and increases the total elongation by 200 to 450%. In components made from Zr-2.5Nb, the texture in the heat-affected zone promotes delayed hydride cracking (DHC) driven by tensile residual stress. Although the texture is not much affected by heat-treatments below 630 o C and large grain interaction stresses remain as a result of mixed textures, macro-residual tensile stresses can be relieved by heat treatment to the point where the probability of cracking is very low. (author)

  10. Mitigation of harmful effects of welds in zirconium alloy components

    International Nuclear Information System (INIS)

    Coleman, C.E.; Doubt, G.L.; Fong, R.W.L.; Root, J.H.; Bowden, J.W.; Sagat, S.; Webster, R.T.

    1993-10-01

    Welding produces local residual tensile stresses and changes in texture in components made from zirconium alloys. In the heat-affected zone in tubes or plates, the basal plane normals are rotated into the plane of the component and perpendicular to the direction of the weld. Thin-walled zircaloy-2 tubes containing an axial weld do not reach their full strength, because they always fail prematurely in the weld when pressurised to failure in a fixed-end burst test. Reinforcing the weld by increasing its thickness by 25% moves the failure to the parent metal, improves the biaxial strength of the tube by 20 to 25%, and increases the total elongation by 200 to 450%. In components made from Zr-2.5Nb, the texture in the heat-affected zone promotes delayed hydride cracking (DHC) driven by tensile residual stress. Although the texture is not much affected by heat-treatments below 630 degrees celsius and large grain interaction stresses remain as a result of mixed textures, macro-residual tensile stresses can be relieved by heat-treatment to the point where the probability of cracking is very low

  11. Mitigation of harmful effects of welds in zirconium alloy components

    International Nuclear Information System (INIS)

    Coleman, C.E.; Doubt, G.L.; Fong, R.W.L.; Root, J.H.; Bowden, J.W.; Sagat, S.

    1994-01-01

    Welding produces local residual tensile stresses and changes in texture in components made from zirconium alloys. In the heat-affected zone in tubes or plates, the basal plane normals are rotated into the plane of the component and perpendicular to the direction of the weld. Thin-walled Zircaloy-2 tubes containing an axial weld do not reach their full strength because they always fail prematurely in the weld when pressurized to failure in a fixed-end burst test. Reinforcing the weld by increasing its thickness by 25% moves the failure to the parent metal and improves the biaxial strength of the tube by 20 to 25% and increases the total elongation by 200 to 450%. In components made from Zr-2.5Nb, the texture in the heat-affected zone promotes delayed hydride cracking (DHC) driven by tensile residual stress. Although the texture is not much affected by heat-treatments below 630 C and large grain interaction stresses remain as a result of mixed textures, macro-residual tensile stresses can be relieved by heat treatment to the point where the probability of cracking is very low

  12. Status and task of the study on the hydrogen embrittlement of zirconium alloys

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Furuta, Teruo; Seino, Shun; Komatsu, Kazushi.

    1995-08-01

    As the burnup of the LWR fuel is extended, waterside corrosion and hydrogen pickup increase in the Zircaloy cladding. Hydrogen embrittlement of Zircaloy is one of the main factors which may limit the life of the fuel rod. This report presents a review on the hydrogen embrittlement of zirconium and its alloys including the irradiated materials. Research tasks for the reduction of ductility in the high burnup fuel cladding are also discussed. Many fundamental investigations have been performed on the hydrogen embrittlement of zirconium alloys. However, the embrittlement mechanism of the high burnup fuel cladding is complicated. Especially, a coupled effect of hydrides and radiation defects are expected to be pronounced with neutron dose increase. In order to evaluate the reduction of ductility of the higher burnup fuel cladding properly, it is necessary to investigate the coupled effect of these two factors by systematic examinations. (author) 64 refs

  13. Principles of MONJU maintenance. Characteristic of MONJU maintenance and reflection of LWR maintenance experience to FBR

    International Nuclear Information System (INIS)

    Nakai, Satoru; Nishio, Ryuichi; Uchihashi, Masaya; Kaneko, Yoshihisa; Yamashita, Hironobu; Yamaguchi, Atsunori; Aoki, Takayuki

    2014-01-01

    A sodium cooled fast breeder reactor (FBR) has unique systems and components and different degradation mechanism from light water reactor (LWR) so that need to establish maintenance technology in accordance with its features. The examination of the FBR maintenance technology is carried out in the special committee for considering the maintenance for Monju established in the Japan Society of Maintenology (JSM). As a result of the study such as extraction of Monju maintenance feature, maintenance technology benchmark between Monju and LWR components and survey of LWR maintenance experience, it is clear that principles of maintenance are same as LWR, necessity of LWR maintenance experience reflection and points to be considered in Monju maintenance. The road map to establish a FBR maintenance technology in the technical aspect became clear and it is vital to acquire operation and maintenance experience of the plant to implement this road map, and to establish a fast reactor maintenance. (author)

  14. Development of top nozzle for Korean standard LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Kim, I. K.; Choi, K. S.; Kim, Y. H.; Lee, J. N.; Kim, H. K. [KNFC, Taejon (Korea, Republic of)

    2001-10-01

    Performance evaluation was executed for each component and its assembly for the deduced Top Nozzles to develop the new Top Nozzle for LWR. This new Top Nozzle is composed of the optimum components among the derived Top Nozzles that have been evaluated in the viewpoint of structural integrity, simpleness of dismantle and assembly, manufacturability etc. In this study, the developed Top Nozzle satisfied all the related design criteria. In special, it makes fuel repair time reduced by assembling and disassembling itself as one body, and improves Fuel Assembly holddown ability by revising the design parameters of its spring and the structural integrity through the betterment of its geometrical shpae of Flange and Holddown Plate as compared with the existing LWR Top Nozzles.

  15. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  16. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  17. Accelerated irradiation growth of zirconium alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Fidleris, V.

    1989-01-01

    This paper discusses how sponge zirconium and Zr-2.5 wt% Nb, Zircaloy, or Excel alloys all exhibit accelerated irradiation growth compared with high-purity crystal-bar zirconium for irradiation temperatures between 550 to 710 K and fluences between 0.1 to 10 x 10 25 n · m -2 (E > 1 MeV). There is generally an incubation period or fluence before the onset of accelerated or breakaway growth, which is dependent on the particular material being irradiated, its metallurgical condition before irradiation, and the irradiation temperature. Transmission electron microscopy has shown that there is a correlation between accelerated irradiation growth and the appearance of c-component vacancy loops on basal planes. Measurements in some specimens indicate that a significant fraction of the strain can be directly attributed to the loops themselves. There is considerable evidence to show that their formation is dependent both on the specimen purity and on the irradiation temperature. Materials that have a high interstitial-solute content contain c-component loops and exhibit high growth rates even at low fluences ( 2 :5 n · m -2 , E > 1 MeV). For sponge zirconium and the Zircaloys, c-component loop formation and the associated acceleration of growth (breakaway) during irradiation occurs because the intrinsic interstitial solute (mainly, oxygen, carbon and nitrogen) in the zirconium matrix is supplemented by interstitial iron, chromium, and nickel from the radiation-induced dissolution of precipitates. (author)

  18. Light Water Reactor (LWR) safety

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2006-01-01

    In this paper, a historical review of the developments in the safely of LWR power plants is presented. The paper reviews the developments prior to the TMI-2 accident, i.e. the concept of the defense in depth, the design basis, the large LOCA technical controversies and the LWR safety research programs. The TMI-2 accident, which became a turning point in the history of the development of nuclear power is described briefly. The Chernobyl accident, which terrified the world and almost completely curtailed the development of nuclear power is also described briefly. The great international effort of research in the LWR design-base and severe accidents, which was, respectively, conducted prior to and following the TMI-2 and Chernobyl accidents is described next. We conclude that with the knowledge gained and the improvements in plant organisation/management and in the training of the staff at the presently-installed nuclear power stations, the LWR plants have achieved very high standards of safety and performance. The Generation 3 + LWR power plants, next to be installed, may claim to have reached the goal of assuring the safety of the public to a very large extent. This review is based on the historical developments in LWR safety that occurred primarily in USA. however, they are valid for the rest of the Western World. This review can not do justice to the many many fine contributions that have been made over the last fifty years to the cause of LWR safety. We apologize if we have not mentioned them. We also apologize for not providing references to many of the fine investigations, which have contributed towards LWR safety earning the conclusions that we describe just above

  19. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  20. Radiation induced defect flux behaviors at zirconium based component

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun; Kwon, Jun Hyun; Lee, Gyeong Geun

    2013-01-01

    In commercial reactor core, structure materials are located in high temperature and high pressure environment. Therefore, main concern of structure materials is corrosion and mechanical properties change than radiation effects on materials. However, radiation effects on materials become more important phenomena because research reactor condition is different from commercial reactor. The temperature is lower than 100 .deg. C and radiation dose is much higher than that of commercial reactor. Among the radiation effect on zirconium based metal, radiation induced growth (RIG), known as volume conservative distortion, is one of the most important phenomena. Recently, theoretical RIG modeling based on radiation damage theory (RDT) and balance equation are developed. However, these growth modeling have limited framework of single crystal and high temperature. To model theoretical RIG in research reactor, qualitative mechanism must be set up. Therefore, this paper intent is establishing defect flux mechanism of zirconium base metal in research reactor for RIG modeling. After than theoretical RIG work will be expanded to research reactor condition

  1. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1975-01-01

    The chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behaviour of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  2. Design basis for creep of zirconium alloy components in a fast neutron flux

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Fidleris, V.

    1974-01-01

    The Chalk River Nuclear Laboratory's experience with the creep of zirconium alloys in a neutron flux is described. Fast neutron flux changes the creep behavior of zirconium alloys and new design criteria for in-reactor applications are needed. From experimental results empirical relations describing the effects of neutron flux, stress, temperature, time, and anisotropy on creep rate were established. The relations are applied to the design of pressure tubes. (author)

  3. Characteristics of polyethylene and zirconium-hydride moderator for the NSRR tests

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yamazaki, Toshi; Sobajima, Makoto.

    1994-03-01

    Pulse irradiation tests of FBR fuels under the sodium cooling conditions are planned for the phase III program in the NSRR (Nuclear Safety Research Reactor), following the phase I and II programs of the LWR fuel tests under the simulated RIA (Reactivity Initiated Accident) conditions. A proto-type irradiation capsule for the FBR fuel rod tests and a sodium loop to purify and to charge sodium into the capsule are under construction for the tests. In the NSRR tests, neutron moderator is needed to thermalize neutrons from the driver core and to subject transient energy high enough to cause the test fuel failure. The light water has been used for the NSRR LWR fuel tests as the coolant/moderator material. Polyethylene and zirconium-hydride are candidates of the moderator for the FBR fuel tests. The capability of the moderators are investigated in the pulse irradiation tests in the NSRR. Both of the moderators indicated good capability of realizing high thermal neutron flux to subject energy depositions comparable to the light water or higher. Estimations by the SRAC code system indicated reasonable good agreement with the test results. In addition, heating tests of the moderators did not cause gas decomposition nor dissociation, indicating that the moderators are operative at temperatures up to 300degC. (author)

  4. Methods for the preparation of ultra-pure anhydrous zirconium tetrafluoride from zirconium tetraborohydride, researches in connection with halide glasses

    International Nuclear Information System (INIS)

    Tortevois, R.

    1990-01-01

    The synthesis of ultrapure zirconium tetrafluoride, the main component of fluorozirconate based optical fibers, was successfully attempted from zirconium tetraborohydride. Of the fluorinating agents used, nitrogen trifluoride doesn't react with zirconium tetraborohydride while xenon difluoride reacts too violently and leads to phases which contain boron. The fluorination in a compatible solvent enabled us to minimize the degradation. The best results were obtained with the fluorination of Zr(BH 4 ) 4 dissolved in CFCl 3 at -40 deg C by anhydrous HF. Using several analytical methods such as graphite furnace atomic absorption and proton activation, we analyzed the purity. The degree of transition element impurities is less than the ppm level for ZrF 4 . The dehydration of ZrF 4 ,H 2 O and ZrF 4 ,3H 2 O at room temperature by CIF 3 in gaseous and liquid state was also investigated. At exceptionally low temperature, this process allows oxide and oxyfluoride components to be reduced

  5. Some recent trends in the use of zirconium alloys for nuclear service

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.

    1992-01-01

    Without any exception nuclear power reactors particularly the water cooled ones, operating in the World use natural or slightly enriched uranium oxide fuel pellets with zirconium alloy cladding. While the zirconium alloys have proven to be successful in their designed usage, a desire for longer lifetimes of core components and increased duty cycle puts more demand on materials performance. This demand has led to more in depth studies of phenomena associated with zirconium alloy corrosion mechanism, fine tuning of the zirconium alloy composition, development of fabrication techniques and to the evaluation of newer zirconium alloys for critical applications. (author). 5 refs., 32 figs

  6. Process for surface treatment of zirconium-containing cladding materials for fuel element or other components for nuclear reactors

    International Nuclear Information System (INIS)

    Videm, K.G.; Lunde, L.R.; Kooyman, H.H.

    1975-01-01

    A process for the surface treatment of zirconium-base cladding materials for fuel elements or other components for nuclear reactors is described. The treatment includes pickling the cladding material in a fluoride-containing bath, and then applying a protective coating through oxidation to the pickled cladding material. The fluoride-containing contaminants which remain on the surface of the cladding material during pickling are removed or rendered harmless by anodic oxidation

  7. Investigation of valve failure problems in LWR power plants

    International Nuclear Information System (INIS)

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems

  8. Laser-Based Additive Manufacturing of Zirconium

    Directory of Open Access Journals (Sweden)

    Himanshu Sahasrabudhe

    2018-03-01

    Full Text Available Additive manufacturing of zirconium is attempted using commercial Laser Engineered Net Shaping (LENSTM technique. A LENSTM-based approach towards processing coatings and bulk parts of zirconium, a reactive metal, aims to minimize the inconvenience of traditional metallurgical practices of handling and processing zirconium-based parts that are particularly suited to small volumes and one-of-a-kind parts. This is a single-step manufacturing approach for obtaining near net shape fabrication of components. In the current research, Zr metal powder was processed in the form of coating on Ti6Al4V alloy substrate. Scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS as well as phase analysis via X-ray diffraction (XRD were studied on these coatings. In addition to coatings, bulk parts were also fabricated using LENS™ from Zr metal powders, and measured part accuracy.

  9. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  10. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Appajosula S., E-mail: Appajosula.Rao@nrc.gov

    2014-04-01

    Austenitic stainless steels (SSs) are extensively being used in the fabrication of light water reactor (LWR) core internal components. It is because these steels have relatively high ductility, fracture toughness and moderate strength. However, the LWR internal components exposure to neutron irradiation over an extended period of plant operation degrades the materials mechanical properties such as the fracture toughness. This paper summarizes some of the results of the existing open literature data on irradiation assisted stress corrosion cracking (IASCC) of 316 CW steels that have been published by the United States Nuclear Regulatory Commission (USNRC), industry, academia, and other research agencies.

  11. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  12. Five year survival analysis of an oxidised zirconium total knee arthroplasty.

    Science.gov (United States)

    Holland, Philip; Santini, Alasdair J A; Davidson, John S; Pope, Jill A

    2013-12-01

    Zirconium total knee arthroplasties theoretically have a low incidence of failure as they are low friction, hard wearing and hypoallergenic. We report the five year survival of 213 Profix zirconium total knee arthroplasties with a conforming all polyethylene tibial component. Data was collected prospectively and multiple strict end points were used. SF12 and WOMAC scores were recorded pre-operatively, at three months, at twelve months, at 3 years and at 5 years. Eight patients died and six were "lost to follow-up". The remaining 199 knees were followed up for five years. The mean WOMAC score improved from 56 to 35 and the mean SF12 physical component score improved from 28 to 34. The five year survival for failure due to implant related reasons was 99.5% (95% CI 97.4-100). This was due to one tibial component becoming loose aseptically in year zero. Our results demonstrate that the Profix zirconium total knee arthroplasty has a low medium term failure rate comparable to the best implants. Further research is needed to establish if the beneficial properties of zirconium improve long term implant survival. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Investigation of valve failure problems in LWR power plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

  14. Innovative approaches in the manufacture of zirconium alloy components for PHWRs

    International Nuclear Information System (INIS)

    Rao, M.N.; Srivastava, R.K.

    2005-01-01

    Selection of an appropriate route for the fabrication of Zirconium alloy fuel components has a direct bearing on the quality of finished product. Many sophisticated and intricate processes such as vacuum arc melting, extrusion, hot rolling and cold working processes - swaging, drawing and sheet rolling are employed. Many advances were made in eddy current and ultrasonic evaluation to meet the stringent quality control requirement and locate the micro flaws. Emphasis was laid on achieving high recoveries and manufacture the product at minimum cost. Several creative and innovative processes were adopted particularly in the fabrication of end caps and spacers. The spacers were produced through the wire route and subsequently parting them into tiny spacers, which is entirely different from the conventional route of fabricating the sheets followed by blanking and coining. This has improved the material recovery and the lead time has been reduced substantially. The end caps used for the closure of clad tubes have to meet the most stringent quality requirements to avoid micro-flaws. The manufacturing processes adopted have direct influence on the integrity of the finished product. Special defect standards were developed to identify and eliminate micro-flaws and thereby ensure consistent and repetitive quality product. The paper brings out the above innovative approaches made in fabrication and quality control techniques in the manufacture of fuel components for PHWR fuel bundles. (author)

  15. Weight of Polyethylene Wear Particles is Similar in TKAs with Oxidized Zirconium and Cobalt-chrome Prostheses

    Science.gov (United States)

    Kim, Jun-Shik; Huh, Wansoo; Lee, Kwang-Hoon

    2009-01-01

    Background The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components. Questions/purposes We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component. Patients and Methods One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other. There were 73 women and 27 men with a mean age of 55.6 years (range, 44–60 years). The minimum followup was 5 years (mean, 5.5 years; range, 5–6 years). Polyethylene wear particles were analyzed using thermogravimetric methods and scanning electron microscopy. Results The weight of polyethylene wear particles produced at the bearing surface was 0.0223 ± 0.0054 g in 1 g synovial fluid in patients with an oxidized zirconium femoral component and 0.0228 ± 0.0062 g in patients with a cobalt-chrome femoral component. Size and shape of polyethylene wear particles were 0.59 ± 0.05 μm and 1.21 ± 0.24, respectively, in the patients with an oxidized zirconium femoral component and 0.52 ± 0.03 μm and 1.27 ± 0.31, respectively, in the patients with a cobalt-chrome femoral component. Knee Society knee and function scores, radiographic results, and complication rate were similar between the knees with an oxidized zirconium and cobalt-chrome femoral component. Conclusions The weight, size, and shape of polyethylene wear particles were similar in the knees with an oxidized zirconium and a cobalt-chrome femoral component. We found the theoretical advantages of this surface did not provide the actual advantage. Level of Evidence Level I, therapeutic study. See the guidelines for Authors for a complete

  16. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  17. PASCAL, Probabilistic Fracture Mechanics Analysis of Structural Components in Aging LWR

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Onizawa, Kunio; Li, Yinsheng; Kato, Daisuke

    2005-01-01

    A - Description of program or function: PASCAL (PFM analysis of Structural Components in Aging LWR) is a PFM (Probabilistic Fracture Mechanics) code for evaluating the failure probability of aged pressure components. PASCAL has been developed as a part of the JAERI's research program on aging and structural integrity of LWR components, in order to respond to the increasing need of the probabilistic methodology in the regulation and inspection of nuclear components with the objective to provide a rational tool for the evaluation of the reliability and integrity of structural components. In order to improve the accuracy and reliability of the analysis code, some new fracture mechanics models or computational techniques are introduced considering the recent progress in the state of the art and performance of PC. Thus some new analysis models and original methodologies were introduced in PASCAL such as the elastic-plastic fracture criterion based on R6 method, a new crack extension model of semi-elliptical crack evaluation and so on. Moreover a function to evaluate the effect of embrittlement recovery by annealing of irradiated RPV is also introduced in the code based on the USNRC R.G. 1.162(1996). The code has been verified through various failure analysis results and international PTS round robin analysis ICAS which had been organized by the Principal Working Group 3 of OECD/NEA/CSNI. In order to attain a high usability, PASCAL Ver.1 with GUI provides an exclusive FEM pre-processor Pre-PASCAL for generating the input load transient data, a GUI system for generating the input data for PASCAL main processor of main solver and post-processor for output data. - Pre-PASCAL: Pre-PASCAL is an exclusive 3-D FEM pre-processor for generating the input transient data provided with 3 RPV mesh models and two simple specimen mesh models, i.e. CT and CCP. Almost the same input data format with that of PASCAL main processor is used. Output data of temperature and stress distribution

  18. LWR-core behaviour project

    International Nuclear Information System (INIS)

    Paratte, J.M.

    1982-07-01

    The LWR-Core behaviour project concerns the mathematical simulation of a light water reactor in normal operation (emergency situations excluded). Computational tools are assembled, i.e. programs and libraries of data. These computational tools can likewise be used in nuclear power applications, industry and control applications. The project is divided into three parts: the development and application of calculation methods for quantisation determination of LWR physics; investigation of the behaviour of nuclear fuels under radiation with special attention to higher burnup; simulation of the operating transients of nuclear power stations. (A.N.K.)

  19. Safety aspects and operating experience of LWR plants in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Yoshioka, T.; Toyota, M.; Hinoki, M.

    1977-01-01

    To develop nuclear power generation for the future, it is necessary to put further emphasis on safety assurance and to endeavour to devise measures to improve plant availability, based on the careful analysis of causes that reduce plant availability. The paper discusses the results of studies on the following items from such viewpoints: (1) Safety and operating experience of LWR nuclear power plants in Japan: operating experience with LWRs; improvements in LWR design during the past ten years; analysis of the factors affecting plant availability; (2) Assurance of safety and measures to increase availability: measures for safety and environmental protection; measures to reduce radiation exposure of employees; appropriateness of maintenance and inspection work; measures to increase plant availability; measures to improve reliability of equipment and components; (3) Future technical problems. (author)

  20. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  1. Recycling U and Pu in LWR

    International Nuclear Information System (INIS)

    Zheng Hualing.

    1986-01-01

    This article, from viewpoints of technical feasibility, safety evaluation and socioeconomic benefit-risk analysis, introduces and comments on history and status of recycling U and Pu in LWR, dealing with reactor, reprocessing, conversion and fuel element fabrication et al. Author has analysed LWR fuel cycle strategies in China and made a proposal

  2. Zirconium and hafnium

    Science.gov (United States)

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  3. Minimizing hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Ambler, J.F.R.; Eadie, R.L.

    1985-01-01

    Zirconium alloy components can fail by hydride cracking if they contain large flaws and are highly stressed. If cracking in such components is suspected, crack growth can be minimized by following two simple operating rules: components should be heated up from at least 30K below any operating temperature above 450K, and when the component requires cooling to room temperature from a high temperature, any tensile stress should be reduced as much and as quickly as is practical during cooling. This paper describes the physical basis for these rules

  4. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  5. EURLIB-LWR-45/16 and - 15/5. Two board group libraries for LWR-shielding problems

    Energy Technology Data Exchange (ETDEWEB)

    Herrnberger, V

    1982-04-01

    Specifications of the broad group cross section libraries EURLIB-LWR-45/16 and -15/5 are given. They are based on EURLIB-III data and produced for LWR shielding problems. The elements considered are H, C{sub 12}, O, Na, Al, Si, Ca, Cr, Mn, Fe, Ni, Zr, U{sub 235}, U{sub 238}. The cross section libraries are available upon request from EIR, RSIC, NEA-CPL and IAEA-NDS. (author) Refs, figs, tabs

  6. Preliminary Study for Radioactivity Evaluation of MSR compared with LWR

    International Nuclear Information System (INIS)

    Lee, Geun Hyeong; Kim, Hee Reyoung

    2014-01-01

    LWR uses fuel as 235 U and fissile material as solid (enriched uranium). Those cannot control its component artificially and hard to change fuel frequently. Therefore this fuel remains as much as possible. That makes risk of high radiation leakage because of long neutron irradiation time. On the other hand, MSR (Molten Salt Reactor) uses fuel as thorium-uranium; fissile 233 U when 232 Th absorbs one neutron, and fissile material as liquid (molten salt). It has plenty of benefits respect to radioactive safety. It leads nuclear fuel dump when accident happens, diminishes basic fission substances' radiation and even the cost (Th exist 3∼4 times more on the earth compared with natural uranium). Source term is much lower than conventional LWR in order to processing time. Radiation exposure from volatile fission products in severe accidents is thought to be negligible due to the continuous removal mechanism. The generation of high level radioactive wastes from MSR is estimated to be much smaller than that of conventional LWR because of its less converting probability of thorium to minor actinides. It was thought the fundamental approach to MSR would make it possible to realize the safety of reactor when considering the severe accidents affecting on nuclear power plants due to natural disaster

  7. Preliminary Study for Radioactivity Evaluation of MSR compared with LWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geun Hyeong; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    LWR uses fuel as {sup 235}U and fissile material as solid (enriched uranium). Those cannot control its component artificially and hard to change fuel frequently. Therefore this fuel remains as much as possible. That makes risk of high radiation leakage because of long neutron irradiation time. On the other hand, MSR (Molten Salt Reactor) uses fuel as thorium-uranium; fissile {sup 233}U when {sup 232}Th absorbs one neutron, and fissile material as liquid (molten salt). It has plenty of benefits respect to radioactive safety. It leads nuclear fuel dump when accident happens, diminishes basic fission substances' radiation and even the cost (Th exist 3∼4 times more on the earth compared with natural uranium). Source term is much lower than conventional LWR in order to processing time. Radiation exposure from volatile fission products in severe accidents is thought to be negligible due to the continuous removal mechanism. The generation of high level radioactive wastes from MSR is estimated to be much smaller than that of conventional LWR because of its less converting probability of thorium to minor actinides. It was thought the fundamental approach to MSR would make it possible to realize the safety of reactor when considering the severe accidents affecting on nuclear power plants due to natural disaster.

  8. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  9. Method of reducing zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    A method was developed for making nuclear-grade zirconium from a zirconium compound, which ismore economical than previous methods since it uses aluminum as the reductant metal rather than the more expensive magnesium. A fused salt phase containing the zirconium compound to be reduced is first prepared. The fused salt phase is then contacted with a molten metal phase which contains aluminum and zinc. The reduction is effected by mutual displacment. Aluminum is transported from the molten metal phase to the fused salt phase, replacing zirconium in the salt. Zirconium is transported from the fused salt phase to the molten metal phase. The fused salt phase and the molten metal phase are then separated, and the solvent metal and zirconium are separated by distillation or other means. (DN)

  10. Workshop on initiation of stress corrosion cracking under LWR conditions: Proceedings

    International Nuclear Information System (INIS)

    Nelson, J.L.; Cubicciotti, D.; Licina, G.J.

    1988-05-01

    A workshop titled ''Initiation of Stress Corrosion Cracking under LWR Conditions'' was held in Palo Alto, California on November 13, 1986, hosted by the Electric Power Research Institute. Participants were experts on the topic from nuclear steam supply and component manufacturers, public and private research laboratories, and university environments. Presentations included discussions on the definition of crack initiation, the effects of environmental and electrochemical variables on cracking susceptibility, and detection methods for the determination of crack initiation events and measurement of critical environmental and stress parameters. Examination of the questions related to crack initiation and its relative importance to the overall question of cracking of LWR materials from these perspectives provided inputs to EPRI project managers on the future direction of research efforts designed to prevent and control cracking. Thirteen reports have been cataloged separately

  11. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  12. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  13. Status of LWR fuel design and future usage of JENDL

    International Nuclear Information System (INIS)

    Ito, Takuya

    2008-01-01

    For all conventional LWR fuel design codes of LWR fuel manufactures in Japan, the cross section library are based on the ENDF/B. Recently we can see several movements for the utilization of JENDL library for the LWR fuel design. The latest version of NEUPHYS cross section library is based on the JENDL-3.2. To accelerate this movement of JENDL utilization in LWR fuel design, it is necessary to prepare a high quality JENDL document, systematic validation of JENDL and to appeal them abroad effectively. (author)

  14. Metallurgy of zirconium and hafnium

    International Nuclear Information System (INIS)

    Baryshnikov, N.V.; Geger, V.Eh.; Denisova, N.D.; Kazajn, A.A.; Kozhemyakin, V.A.; Nekhamkin, L.G.; Rodyakin, V.V.; Tsylov, Yu.A.

    1979-01-01

    Considered are those properties of zirconium and of hafnium, which are of practical interest for the manufacture of these elements. Systematized are the theoretical and the practical data on the procedures for thermal decomposition of zirconia and for obtaining zirconium dioxide and hafnium dioxide by a thermal decomposition of compounds and on the hydrometallurgical methods for extracting zirconium and hafnium. Zirconium and hafnium fluorides and chlorides production procedures are described. Considered are the iodide and the electrolytic methods of refining zirconium and hafnium

  15. Is it the end of history for LWR safety?

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2004-01-01

    In this essay a parallel is drawn between the struggle for recognition, which is argued by Fukuyama as the 'motor' of human history and that waged by the LWR safety for the public to recognize the LWR plants as a source of safe nuclear power. The end of history for the ''human struggle for recognition'' as the capitalistic liberal democracy is equated with the ''end of history'' for the LWR safety to provide assurance to the public of termination of a severe accident it ever would occur. It is suggested that we are near ''the end of history'' of the LWR safety for the new-design LWR plants but fall short for the presently-installed plants. The essay bases these suggestions on an examination of the history of nuclear power development in U.S.A., but also considering the more recent regulatory and public acceptance developments in Europe and the rest of the World. (author)

  16. Perspectives on the economic risks of LWR accidents

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Burke, R.P.

    1986-01-01

    Models which can be used for the analysis of the economic risks from events which may occur during LWR operation have been developed. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant forced outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The economic consequence models have been applied in studies of the economic risks from the operation of US LWR plants. The results of the analyses provide some important perspectives regarding the economic risks of LWR accidents. The analyses indicate that economic risks, in contrast to public health risks, are dominated by the onsite costs of relatively high-frequency forced outage events. Even for severe (e.g., core-melt) accidents, expected offsite costs are less than expected onsite costs for a typical US plant

  17. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling; Elaboration de zirconium par reduction de tetrachlorure de zirconium par magnesothermie. Etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Basin, N

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl{sub 4} + 2 Mg = 2 MgCl{sub 2}. By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  18. Zirconium - an imported mineral commodity

    International Nuclear Information System (INIS)

    1983-10-01

    This report examines Canada's position in regard to the principal zirconium materials: zircon; fusion-cast zirconium-bearing refractory products; zirconium-bearing chemicals; and zirconium metal, master alloys, and alloys. None of these is produced in Canada except fused alumina-zirconia and certain magnesium-zirconium alloys and zirconium-bearing steels. Most of the 3 000-4 000 tonnes of the various forms of zircon believed to be consumed in Canada each year is for foundry applications. Other minerals, notably chromite, olivine and silica sand are also used for these purposes and, if necessary, could be substituted for zircon. Zirconium's key role in Canada is in CANDU nuclear power reactors, where zirconium alloys are essential in the cladding for fuel bundles and in capital equipment such as pressure tubes, calandria tubes and reactivity control mechanisms. If zirconium alloys were to become unavailable, the Canadian nuclear power industry would collapse. As a contingency measure, Ontario Hydro maintains at least nine months' stocks of nuclear fuel bundles. Canada's vulnerability to short-term disruptions to supplies of nuclear fuel is diminished further by the availability of more expensive electricity from non-nuclear sources and, given time, from mothballed thermal plants. Zirconium minerals are present in many countries, notably Australia, the Republic of South Africa and the United States. Australia is Canada's principal source of zircon imports; South Africa is its sole source of baddeleyite. At this time, there are no shortages of either material. Canada has untapped zirconium resources in the Athabasca Oil Sands (zircon) and at Strange Lake along the ill-defined border between Quebec and Newfoundland (gittinsite). Adequate metal and alloy production facilities exist in France, Japan and the United States. No action by the federal government in regard to zirconium supplies is called for at this time

  19. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  20. Implementation of static generalized perturbation theory for LWR design applications

    International Nuclear Information System (INIS)

    Byron, R.F.; White, J.R.

    1987-01-01

    A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed

  1. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  2. Review and comparison of WWER and LWR Codes and Standards

    International Nuclear Information System (INIS)

    Buckthorpe, D.; Tashkinov, A.; Brynda, J.; Davies, L.M.; Cueto-Felgeueroso, C.; Detroux, P.; Bieniussa, K.; Guinovart, J.

    2003-01-01

    The results of work on a collaborative project on comparison of Codes and Standards used for safety related components of the WWER and LWR type reactors is presented. This work was performed on behalf of the European Commission, Working Group Codes and Standards and considers areas such as rules, criteria and provisions, failure mechanisms , derivation and understanding behind the fatigue curves, piping, materials and aging, manufacturing and ISI. WWERs are essentially designed and constructed using the Russian PNAE Code together with special provisions in a few countries (e.g. Czech Republic) from national standards. The LWR Codes have a strong dependence on the ASME Code. Also within Western Europe other codes are used including RCC-M, KTA and British Standards. A comparison of procedures used in all these codes and standards have been made to investigate the potential for equivalencies between the codes and any grounds for future cooperation between eastern and western experts in this field. (author)

  3. Assesment On The Possibility To Modify Fabrication Equipment For Fabrication Of HWR And LWR Fuel Elements

    International Nuclear Information System (INIS)

    Tri-Yulianto

    1996-01-01

    Based on TOR BATAN for PELITA VI. On of BATAN program in the fuel element production technology section is the acquisition of the fuel element fabrication technology for research reactor as well as power reactor. The acquisition can be achieved using different strategies, e.g. by utilizing the facility owned for research and development of the technology desired or by transferring the technology directly from the source. With regards to the above, PEBN through its facility in BEBE has started the acquisition of the fuel element fabrication technology for power reactor by developing the existing equipment initially designed to fabricate HWR Cinere fuel element. The development, by way of modifying the equipment, is intended for the production of HWR (Candu) and LWR (PWR and BWR) fuel elements. To achieve above objective, at the early stage of activity, an assesment on the fabrication equipment for pelletizing, component production and assembly. The assesment was made by comparing the shape and the size of the existing fuel element with those used in the operating reactors such as Candu reactors, PWR and BWR. Equipment having the potential to be modified for the production of HWR fuel elements are as followed: For the pelletizing equipment, the punch and dies can be used of the pressing machine for making green pellet can be modified so that different sizes of punch and dies can be used, depending upon the size of the HWR and LWR pellets. The equipment for component production has good potential for modification to produce the HWR Candu fuel element, which has similar shape and size with those of the existing fuel element, while the possibility of producing the LWR fuel element component is small because only a limited number of the required component can be made with the existing equipment. The assembly equipment has similar situation whit that of the component production, that is, to assemble the HWR fuel element modification of few assembly units very probable

  4. Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2013-08-01

    Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

  5. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  6. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  7. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  8. Technical report on LWR design decision methodology. Phase I

    International Nuclear Information System (INIS)

    1980-03-01

    Energy Incorporated (EI) was selected by Sandia Laboratories to develop and test on LWR design decision methodology. Contract Number 42-4229 provided funding for Phase I of this work. This technical report on LWR design decision methodology documents the activities performed under that contract. Phase I was a short-term effort to thoroughly review the curret LWR design decision process to assure complete understanding of current practices and to establish a well defined interface for development of initial quantitative design guidelines

  9. Method of separating hafnium from zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    English. A new anhydrous method was developed for separating zirconium and hafnium, which gives higher separation factors and is more economical than previous methods. A molten phase, comprising a solution of unseparated zirconium and hafnium and a solvent metal, is first prepared. The molten metal phase is contacted with a fused salt phase which includes a zirconium salt. Zirconium and hafnium separation is effected by mutual displacement with hafnium being transported from the molten metal phase to the fused salt phase, while zirconium is transported from the fused salt phase to the molten metal phase. The solvent metal is less electropositive than zirconium. Zinc was chosen as the solvent metal, from a group which also included cadmium, lead, bismuth, copper, and tin. The fused salt phase cations are more electropositive than zirconium and were selected from a group comprising the alkali elements, the alkaline earth elements, the rare earth elements, and aluminum. A portion of the zirconium in the molten metal phase was oxidized by injecting an oxidizing agent, chlorine, to form zirconium tetrachlorid

  10. Creep damage in zircaloy-4 at LWR temperatures

    International Nuclear Information System (INIS)

    Keusseyan, R.L.; Hu, C.P.; Li, C.Y.

    1978-08-01

    The observation of creep damage in the form of grain boundary cavitation in Zircaloy-4 in the temperature range of interest to Light Water Reactor (LWR) applications is reported. The observed damage is shown to reduce the ductility of Zircaloy-4 in a tensile test at LWR temperatures

  11. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  12. Experimental studies of relevance on zirconium nitrate raffinate sludge for its disposal as well as zirconium recovery

    International Nuclear Information System (INIS)

    Brahmananda Reddy, G.; Narasimha Murty, B.; Ravindra, H.R.

    2013-01-01

    One of the many routes of production of nuclear grade zirconium dioxide involve separation of zirconium and hafnium by solvent extraction of zirconium nitrate using tri-n-butyl phosphate followed by precipitation of zirconium with ammonia and finally calcination of the so obtained hydrated zirconia at elevated temperature. The zirconium feed solution as is generated from digestion of zirconium washed dried frit (produced by the caustic fusion of zircon sand which is one of the beach sand heavy minerals) in nitric acid contain considerable amount of sludge material and after solvent extraction this whole sludge material rests with raffinate. This sludge material has a scope to contain considerable amounts of zirconium along with other metal ions such as hafnium, aluminium, iron, etc. besides nitric acid and it constitutes one of the important solid wastes that needs to be disposed suitably. One of the disposal means of this sludge material is to use it as a land fill for which two important criteria are to be viz the pH of 10% solid waste solution should be near to neutral pH and the loss on ignition at 550℃ on dry basis of the sludge to be below 20%. In order to study the implications of presence of varying amounts of zirconium nitrate in the sludge on the pH of 10% solution of the sludge various synthetic zirconium nitrate solid waste were prepared using the sludge material generated at the laboratory during the analysis of zirconium washed dried frit. Presence of zirconium in the sludge is expected to decrease the overall pH of the 10% solution of the sludge because zirconium is prone to hydrolyze especially locally when zirconium ion comes into contact with water according to the chemical equation Zr 4+ H 2 O → ZrO 2+ + 2H + . From this equation, it is clear that for every one mole of zirconium ions two moles of hydrogen ions are produced. This is verified experimentally using the synthetically prepared sludge materials with varying amounts of zirconium

  13. Flexible fuel cycle system for the transition from LWR to FBR

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Sasahira, Akira; Inoue, Tadashi; Minato, Kazuo; Sato, Seichi

    2009-01-01

    Japan will deploy commercial fast breeder reactor (FBR) from around 2050 under the suitable conditions for the replacement of light water reactor (LWR) with FBR. The transition scenario from LWR to FBR is investigated in detail and the flexible fuel cycle initiative (FFCI) system has been proposed as a optimum transition system. The FFCI removes ∼95% uranium from LWR spent fuel (SF) in LWR reprocessing and residual material named Recycle Material (RM), which is ∼1/10 volume of original SF and contains ∼50% U, ∼10% Pu and ∼40% other nuclides, is treated in FBR reprocessing to recover Pu and U. If the FBR deployment speed becomes lower, the RM will be stored until the higher speed again. The FFCI has some merits compared with ordinary system that consists of full reprocessing facilities for both LWR and FBR SF during the transition period. The economy is better for FFCI due to the smaller LWR reprocessing facility (no Pu/U recovery and fabrication). The FFCI can supply high Pu concentration RM, which has high proliferation resistance and flexibly respond to FBR introduction rate changes. Volume minimization of LWR SF is possible for FFCI by its conversion to RM. Several features of FFCI were quantitatively evaluated such as Pu mass balance, reprocessing capacities, LWR SF amounts, RM amounts, and proliferation resistance to compare the effectiveness of the FFCI system with other systems. The calculated Pu balance revealed that the FFCI could supply enough but no excess Pu to FBR. These evaluations demonstrated the applicability of FFCI system to the transition period from LWR to FBR cycles. (author)

  14. Localized deformation of zirconium-liner tube

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Uchida, Masaaki

    1988-03-01

    Zirconium-liner tube has come to be used in BWR. Zirconium liner mitigates the localized stress produced by the pellet-cladding interaction (PCI). In this study, simulating the ridging, stresses were applied to the inner surfaces of zirconium-liner tubes and Zircaloy-2 tubes, and, to investigate the mechanism and the extent of the effect, the behavior of zirconium liner was examined. As the result of examination, stress was concentrated especially at the edge of the deformed region, where zirconium liner was highly deformed. Even after high stress was applied, the deformation of Zircaloy part was small, since almost the concentrated stress was mitigated by the deformation of zirconium liner. In addition, stress and strain distributions in the cross section of specimen were calculated with a computer code FEMAXI-III. The results also showed that zirconium liner mitigated the localized stress in Zircaloy, although the affected zone was restricted to the region near the boundary between zirconium liner and Zircaloy. (author)

  15. Zirconium isotope separation process

    International Nuclear Information System (INIS)

    Peterson, S.H.; Lahoda, E.J.

    1988-01-01

    A process is described for reducing the amount of zirconium 91 isotope in zirconium comprising: forming a first solution of (a) a first solvent, (b) a scavenger, and (c) a zirconium compound which is soluble in the first solvent and reacts with the scavenger when exposed to light of a wavelength of 220 to 600 nm; irradiating the first solution with light at the wavelength for a time sufficient to photoreact a disproportionate amount of the zirconium compound containing the zirconium 91 isotope with the scavenger to form a reaction product in the first solution; contacting the first solution, while effecting the irradiation, with a second solvent which is immiscible with the first solvent, which the second solvent is a preferential solvent for the reaction product relative to the first solvent, such that at least a portion of the reaction product is transferred to the second solvent to form a second solution; and separating the second solution from the first solution after the contacting

  16. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  17. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  18. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  19. Zirconium and cast zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Krone, K

    1977-04-01

    A survey is given on the occurence of zirconium, production of Zr sponge and semi-finished products, on physical and mechanical properties, production of Zr cast, composition of the commercial grades and reactor grades qualities, metal cutting, welding, corrosion behavior and use.

  20. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling

    International Nuclear Information System (INIS)

    Basin, N.

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl 4 + 2 Mg = 2 MgCl 2 . By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  1. Long-term embrittlement of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1990-08-01

    This progress report summarizes work performed by Argonne National Laboratory on long-term embrittlement of cast duplex stainless steels in LWR systems during the six months from April to September 1988. Characteristics of the primary mechanism of aging embrittlement (i.e., spinodal decomposition of ferrite) and synergistic effects of alloying and impurity elements that influence the kinetics of the primary mechanism are discussed. Several secondary metallurgical processes of embrittlement, strongly dependent on the C, N, Ni, Mo, and Si content of various heats, are identified. Information on kinetics and data on impact properties are analyzed and correlated with microstructural characteristics to provide a unified method of extrapolating accelerated-aging data to reactor operating conditions. Fracture toughness data are presented for several heats of cast stainless steel aged at temperatures between 320 and 450 degrees C for times up to 10,000 h. Mechanical property data are analyzed to develop the procedure and correlations or predicting the kinetics and extent of embrittlement of reactor components from known material parameters. The method and examples of estimating the impact strength and fracture toughness of cast components during reactor service are described. The lower-bound values of impact strength and fracture toughness for cast stainless steels at LWR operating temperatures are defined. 42 refs., 14 figs., 6 tabs

  2. Neutron activation of chlorine in zirconium and zirconium alloys use of the matrix as comparator

    International Nuclear Information System (INIS)

    Cohen, I.M.; Gomez, C.D.; Mila, M.I.

    1981-01-01

    A procedure is described for neutron activation analysis of chlorine in zirconium and zirconium alloys. Calculation of chlorine concentration is performed relative to zirconium concentration in the matrix in order to minimize effects of differences in irradiation and counting geometry. Principles of the method and the results obtained are discussed. (author)

  3. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  4. Extraction of zirconium from raffinate stream of Zirconium Oxide Plant raffinate

    International Nuclear Information System (INIS)

    Pandey, Garima; Chinchale, R.; Renjith, A.U.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2013-01-01

    Recovery of metals from dilute streams is a major task in nuclear industry in the view of environmental remediation and value recovery. Presently solvent extraction process is employed on the commercial scale to recover nuclear pure zirconium using TBP as extractant. The waste stream of TBP extraction process contains about 1.2 gpl of Zirconium in nitrate form. At present there is no process to recover Zirconium from this raffinate stream. Hence, under the present study recovery of zirconium from the raffinate stream of Zirconium Oxide Plant Raffinate has been investigated. TBP, which is the most commonly used solvent in the nuclear industry is not suitable for the extraction of zirconium from lean solution at low acidity as its distribution coefficient is less than one. In search of a suitable extractant Mixed Alkyl Phosphine Oxide (MAPO) was investigated as potential carrier. Parametric batch studies for various equilibrium data like extractant concentration, strippant concentration, solvent reusability, equilibration time, acidity etc. were done to optimize the process condition. For the distribution studies, equal volumes of the raffinate and organic phase were shaken at room temperature in digital wrist action shaker for 10 minutes to ensure complete equilibrium. It was found that 0.1 M MAPO in 80:20 dodecane: isodecanol is suitable for extraction of Zr at 2 N acidity. 0.1 M MAPO gives distribution coefficient in the range of 12-15 for Zr. The slope of log-log plot between MAPO concentration and K, suggests involvement of 3 molecules of MAPO in the formation of extracting species. 0.2 M Oxalic acid was able to completely back extract Zr from the organic phase into aqueous phase. Also good regeneration capacity of MAPO projects its potential to be used as extractant for the process. Based on the equilibrium studies, Dispersion Liquid Membrane configuration in hollow fiber contactor was explored for the extraction of Zirconium from Zirconium Nitrate Pure

  5. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  6. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  7. Evaluation of a Zirconium Recycle Scrubber System

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bruffey, Stephanie H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from a synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.

  8. Modification in band gap of zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S. [Department of Physics, ISLE, IPS Academy, Indore (M.P.) (India); Mishra, A. [School of Physics, Devi Ahilya Vishwavidyalaya, Indore (M.P.) (India); Shrivastava, B. D. [Govt. P. G. College, Biora (M.P.) (India)

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  9. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Avramova, Maria

    2007-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3D) modeling of the reactor core to ensure a realistic description of physical phenomena. The operational flexibility of Light Water Reactor (LWR) plants can be improved by utilizing accurate 3D coupled neutronics/thermal-hydraulics calculations for safety margins evaluations. There are certain requirements to the coupling of thermal-hydraulic system codes and neutron-kinetics codes that ought to be considered. The objective of these requirements is to provide accurate solutions in a reasonable amount of CPU time in coupled simulations of detailed operational transient and accident scenarios. These requirements are met by the development and implementation of six basic components of the coupling methodologies: ways of coupling (internal or external coupling); coupling approach (integration algorithm or parallel processing); spatial mesh overlays; coupled time-step algorithms; coupling numerics (explicit, semi-implicit and implicit schemes); and coupled convergence schemes. These principles of the coupled simulations are discussed in details along with the scientific issues associated with the development of appropriate neutron cross-section libraries for coupled code transient modeling. The current trends in LWR nuclear power generation and regulation as well as the design of next generation LWR reactor concepts along with the continuing computer technology progress stimulate further development of these coupled code systems. These efforts have been focused towards extending the analysis capabilities as well as refining the scale and level of detail of the coupling. This article analyses the coupled phenomena and modeling challenges on both global (assembly-wise) and local (pin-wise) levels. The issues related to the consistent qualification of coupled code systems as well as their application to different types of LWR transients are presented. Finally, the advances in numerical

  10. Modeling the economic consequences of LWR accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Aldrich, D.C.; Rasmussen, N.C.

    1984-01-01

    Models to be used for analyses of economic risks from events which may occur during LWR plant operation are developed in this study. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The models can be used by both the nuclear power industry and regulatory agencies in cost-benefit analyses for decisionmaking purposes. The newly developed economic consequence models are applied in an example to estimate the economic risks from operation of the Surry Unit 2 plant. The analyses indicate that economic risks from US LWR operation, in contrast to public health risks, are dominated by relatively high-frequency forced outage events. Even for severe (e.g., core-melt) accidents, expected offsite costs are less than expected onsite costs for the Surry site. The implications of these conclusions for nuclear power plant operation and regulation are discussed

  11. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Robert, E-mail: robert.montgomery@pnnl.gov [Pacific Northwest National Laboratory (United States); Tomé, Carlos, E-mail: tome@lanl.gov [Los Alamos National Laboratory (United States); Liu, Wenfeng, E-mail: wenfeng.liu@anatech.com [ANATECH Corporation (United States); Alankar, Alankar, E-mail: alankar.alankar@iitb.ac.in [Indian Institute of Technology Bombay (India); Subramanian, Gopinath, E-mail: gopinath.subramanian@usm.edu [University of Southern Mississippi (United States); Stanek, Christopher, E-mail: stanek@lanl.gov [Los Alamos National Laboratory (United States)

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  12. Components made of corrosion-resistent zirconium alloy and method for its production

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Urquhart, A.W.; Vermilyea, D.A.

    1977-01-01

    The invention deals with a method to increase the resistance of zirconium alloys to blister corrosion which mainly occurs in boiling-water nuclear reactors. According to the method described, the surface of the alloy body is coated with a thin film of a suitable electronically conducting material. Gold, silver, platinum, nickel, chromium, iron and niobium are suitable as coating materials. The invention is more closely explained by means of examples. (GSC) [de

  13. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  14. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  15. The need for LWR metrology standardization: the imec roughness protocol

    Science.gov (United States)

    Lorusso, Gian Francesco; Sutani, Takumichi; Rutigliani, Vito; van Roey, Frieda; Moussa, Alain; Charley, Anne-Laure; Mack, Chris; Naulleau, Patrick; Constantoudis, Vassilios; Ikota, Masami; Ishimoto, Toru; Koshihara, Shunsuke

    2018-03-01

    As semiconductor technology keeps moving forward, undeterred by the many challenges ahead, one specific deliverable is capturing the attention of many experts in the field: Line Width Roughness (LWR) specifications are expected to be less than 2nm in the near term, and to drop below 1nm in just a few years. This is a daunting challenge and engineers throughout the industry are trying to meet these targets using every means at their disposal. However, although current efforts are surely admirable, we believe they are not enough. The fact is that a specification has a meaning only if there is an agreed methodology to verify if the criterion is met or not. Such a standardization is critical in any field of science and technology and the question that we need to ask ourselves today is whether we have a standardized LWR metrology or not. In other words, if a single reference sample were provided, would everyone measuring it get reasonably comparable results? We came to realize that this is not the case and that the observed spread in the results throughout the industry is quite large. In our opinion, this makes the comparison of LWR data among institutions, or to a specification, very difficult. In this paper, we report the spread of measured LWR data across the semiconductor industry. We investigate the impact of image acquisition, measurement algorithm, and frequency analysis parameters on LWR metrology. We review critically some of the International Technology Roadmap for Semiconductors (ITRS) metrology guidelines (such as measurement box length larger than 2μm and the need to correct for SEM noise). We compare the SEM roughness results to AFM measurements. Finally, we propose a standardized LWR measurement protocol - the imec Roughness Protocol (iRP) - intended to ensure that every time LWR measurements are compared (from various sources or to specifications), the comparison is sensible and sound. We deeply believe that the industry is at a point where it is

  16. Assessment of LWR piping design loading based on plant operating experience

    International Nuclear Information System (INIS)

    Svensson, P.O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading

  17. Design consideration on severe accident for future LWR

    International Nuclear Information System (INIS)

    Omoto, A.

    1998-01-01

    Utilities' Severe Accident Management strategies, selected based on Individual Plant Examination, are in the process of implementation for each operating plant. Activities for the next generation LWR design are going on by Utilities, NSSS vendors and Research Institutes. The proposed new designs vary from evolutionary design to revolutionary design such as the supercritical LWR. Discussion on the consideration of Severe Accident in the design of next generation LWR is being held to establish the industry's self-regulatory document on containment design and its performance, which ABWR-IER (Improved Evolutionary Reactor) on the part of BWR and Evolutionary APWR and New PWR21 on the part of PWR are expected to comply. Conceptual design study for ABWR-IER will illustrate an example of design approach for the prevention and mitigation of Severe Accident and its impact on capital cost

  18. Zirconium behaviour in purex process solutions

    International Nuclear Information System (INIS)

    Shu, J.

    1982-01-01

    The extraction behaviour of zirconium, as fission product, in TBP/diluent- HNO 3 -H 2 O systems, simulating Purex solutions, is studied. The main purpose is to attain an increasing in the zirconium decontamination factor by adjusting the extraction parameters. Equilibrium diagram, TBP concentration, aqueous:organic ratio, salting-out effects and, uranium loading in the organic phase were the main factors studied. All these experiments had been made with zirconium in the 10 - 2 - 10 - 3 concentration range. The extractant degradation products influence uppon the zirconium behaviour was also verified. With the obtained data it was possible to introduce some modification in the standard Purex flow-sheet in order to obtain the uranium product with higher zirconium decontamination. (Author) [pt

  19. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    Medrano, R.E.

    1975-01-01

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  20. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 1. Summary: alternatives for the back of the LWR fuel cycle types and properties of LWR fuel cycle wastes projections of waste quantities; selected glossary

    International Nuclear Information System (INIS)

    1976-05-01

    Volume I of the five-volume report contains executive and technical summaries of the entire report, background information of the LWR fuel cycle alternatives, descriptions of waste types, and projections of waste quantities. Overview characterizations of alternative LWR fuel cycle modes are also included

  1. New solvent extraction process for zirconium and hafnium

    International Nuclear Information System (INIS)

    Takahashi, M.; Katoh, Y.; Miyazaki, H.

    1984-01-01

    The authors' company developed a new solvent extraction process for zirconium and hafnium separation, and started production of zirconium sponge by this new process in September 1979. The process utilizes selective extraction of zirconium oxysulfate using high-molecular alkyl amine, and has the following advantages: 1. This extraction system has a separation factor as high as 10 to 20 for zirconium and hafnium in the range of suitable acid concentration. 2. In the scrubbing section, removal of all the hafnium that coexists with zirconium in the organic solvent can be effectively accomplished by using scrubbing solution containing hafnium-free zirconium sulfate. Consequently, hafnium in the zirconium sponge obtained is reduced to less than 50 ppm. 3. The extractant undergoes no chemical changes but is very stable for a long period. In particular, its solubility in water is small, about 20 ppm maximum, posing no environmental pollution problems such as are often caused by other process raffinates. At the present time, the zirconium and hafnium separation operation is very stable, and zirconium sponge made by this process can be applied satisfactorily to nuclear reactors

  2. 'CANDLE' burnup regime after LWR regime

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nagata, Akito

    2008-01-01

    CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burnup strategy can derive many merits. From safety point of view, the change of excess reactivity along burnup is theoretically zero, and the core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. About 40% of natural or depleted uranium undergoes fission without the conventional reprocessing and enrichment. If the LWR produced energy of X Joules, the CANDLE reactor can produce about 50X Joules from the depleted uranium left at the enrichment facility for the LWR fuel. If we can say LWRs have produced energy sufficient for full 20 years, we can produce the energy for 1000 years by using the CANDLE reactors with depleted uranium. We need not mine any uranium ore, and do not need reprocessing facility. The burnup of spent fuel becomes 10 times. Therefore, the spent fuel amount per produced energy is also reduced to one-tenth. The details of the scenario of CANDLE burnup regime after LWR regime will be presented at the symposium. (author)

  3. Characteristics Data Base: Programmer's guide to the LWR Quantities Data Base

    International Nuclear Information System (INIS)

    Jones, K.E.; Moore, R.S.

    1990-08-01

    The LWR Quantities Data Base is a menu-driven PC data base developed as part of OCRWM's waste, technical data base on the characteristics of potential repository wastes, which also includes non-LWR spent fuel, high-level and other materials. This programmer's guide completes the documentation for the LWR Quantities Data Base, the user's guide having been published previously. The PC data base itself may be requested from the Oak Ridge National Laboratory, using the order form provided in Volume 1 of publication DOE/RW-0184

  4. A Brief Assessment of North Korea's Capacities for Building an Experimental LWR

    International Nuclear Information System (INIS)

    Lee, Jung Hyu; An, Jin Soo

    2011-01-01

    On November 2010, North Korea revealed the construction site of 100 MWt (thermal) experimental LWR in the early stage with a target operation date of 2012. And they claimed that their first LWR construction project is proceeding with strictly domestic talent and resources. Introduction of LWR imposes various technical challenges, even though North Korea has experiences in the construction and management of graphite-moderated and gas-cooled reactor. So, there are doubts about whether they can successfully complete the project in time without any external support. In this paper, to estimate the fate of the LWR construction, we focused on the North Korea's capability to deal with the technical challenges which differ from those of gas-graphite reactor

  5. Fine-grained zirconium-base material

    Science.gov (United States)

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  6. LWR Spent Fuel Management for the Smooth Deployment of FBR

    International Nuclear Information System (INIS)

    Fukasawa, T.; Yamashita, J.; Hoshino, K.; Sasahira, A.; Inoue, T.; Minato, K.; Sato, S.

    2015-01-01

    Fast breeder reactors (FBR) and FBR fuel cycle are indispensable to prevent the global warming and to secure the long-term energy supply. Commercial FBR expects to be deployed from around 2050 until around 2110 in Japan by the replacement of light water reactors (LWR) after their 60 years life. The FBR deployment needs Pu (MOX) from the LWR-spent fuel (SF) reprocessing. As Japan can posses little excess Pu, its balance control is necessary between LWR-SF management (reprocessing) and FBR deployment. The fuel cycle systems were investigated for the smooth FBR deployment and the effectiveness of proposed flexible system was clarified in this work. (author)

  7. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  8. New zirconium alloys for nuclear application; Novas ligas de zirconio para aplicacao nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, R.M.; Andrade, A.H.P., E-mail: rmlobo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Zirconium alloys are widely used in the nuclear industry, mainly in fuel cladding tubes and structural components for PWR plants. The service life of these components, which operate under high temperatures conditions ({approx} 300 deg C), has led to developing new alloys with the aim to improve the mechanical properties, corrosion resistance and irradiation damage. The variation in the composition of the alloy produces second phase particles which alter the materials properties according to their size and distribution, is essential therefore, knowledge their characteristics. Analysis of second phase particles in zirconium alloys are carried out by scanning electron microscopy, transmission electron microscopy and image analysis. This study used the zircaloy-4 to illustrate the characterization of these alloys through the study of second phase particles. (author)

  9. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  10. Zirconium

    Science.gov (United States)

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  11. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  12. Extractive metallurgy of zirconium--1945 to the present

    International Nuclear Information System (INIS)

    Franklin, D.G.; Adamson, R.B.

    1984-01-01

    Although the history of the reduction of zirconium dates from 1824 and the first ductile zirconium metal was produced in the laboratory in 1914, modern reduction practice was pioneered by the U.S. Bureau of Mines starting in 1945. This paper reviews the history of the extractive metallurgy of zirconium from the early work of W. J. Kroll and co-workers at the Bureau of Mines in Albany, Ore., through the commercial development of the production of reactor-grade zirconium metal which was spurred by the requirements of the Naval Reactor Program and the development of commercial nuclear power. Technical subjects covered include processes for opening the ore, zirconium-hafnium separation, chlorination of zirconium oxide, reduction processes, and electrowinning of zirconium metal. Proposed new processes and process modifications are reviewed

  13. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  14. Purification of zirconium concentrates

    International Nuclear Information System (INIS)

    Brown, A.E.P.

    1976-01-01

    A commercial grade ZrO 2 and an ammonium uranate (yellow cake) are obtained from the caldasito ore processing. This ore is found in the Pocos de Caldas Plateau, State of Minas Gerais, Brazil. Caldasito is an uranigerous zirconium ore, a mixture of zircon and baddeleyite and contains 60% ZrO 2 and 0,3% U 3 O 8 . The chemical opening of the ore was made by alkaline fusion with NaOH at controlled temperature. The zirconium-uranium separation took place by a continuous liquid-liquid extraction in TBP-varsol-HNO 3 -H 2 O system. The raffinate containing zirconium + impurities (aluminium, iron and titanium) was purified by an ion exchange operation using a strong cationic resin [pt

  15. Determination of zirconium by fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Sonar, V.R.; Gaikwad, R.; Raul, S.; Das, D.K.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Zirconium is used in a wide range of applications including nuclear clad, catalytic converters, surgical appliances, metallurgical furnaces, superconductors, ceramics, lamp filaments, anti corrosive alloys and photographical purposes. Irradiation testing of U-Zr and U-Pu-Zr fuel pins has also demonstrated their feasibility as fuel in liquid metal reactors. Different methods that are employed for the determination of zirconium are spectrophotometry, potentiometry, neutron activation analysis and mass spectrometry. Ion-selective electrode (ISE), selective to zirconium ion has been studied for the direct potentiometric measurements of zirconium ions in various samples. In the present work, an indirect method has been employed for the determination of zirconium in zirconium nitrate sample using fluoride ion selective electrode. This method is based on the addition of known excess amount of fluoride ion to react with the zirconium ion to produce zirconium tetra fluoride at about pH 2-3, followed by determination of residual fluoride ion selective electrode. The residual fluoride ion concentrations were determined from the electrode potential data using calibration plot. Subsequently, zirconium ion concentrations were determined from the concentration of consumed fluoride ions. A precision of about 2% (RSD) with the mean recovery of more than 94% has been achieved for the determination of zirconium at the concentration of 4.40 X 10 -3 moles lit -1

  16. Phase composition and properties of rapidly cooled aluminium-zirconium-chromium alloys

    International Nuclear Information System (INIS)

    Sokolovskaya, E.M.; Badalova, L.M.; Podd''yakova, E.I.; Kazakova, E.F.; Loboda, T.P.; Gribanov, A.V.

    1989-01-01

    Using the methods of physicochemical analysis the interaction of aluminium with zirconium and chromium is studied. Polythermal cross sections between Al 3 -Zr-Al 7 Cr and radial polythermal cross section from aluminium-rich corner with the ratio of components Zr:Cr=5:7 by mass are constructed. The effect of zirconium and chromium content on electrochemical characteristics of aluminium-base rapidly quenching alloys in systems Al-Cr, Al-Zr, Al-Cr-Zr. An increase in chromium concentration in oversaturated solid solution of Al-Cr system expands considerably the range of passive state. When Al 7 Cr phase appears the range of passive stae vanishes

  17. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  18. Quantitative analysis of nickel in zirconium and zircaloy; Dosage du nickel dans le zirconium et dans le zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Rastoix, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [French] On determine colorimetriquenent 10 a 1000 ppm de Ni dans le zirconium et le zircaloy par photo colorimetrie a 440 m{mu} de la dimethylglyoxime nickelique. Le dosage est rapide. Le fer, le cuivre, l'etain, le chrome ne genent pas aux concentrations habituellement rencontrees dans le zirconium et ses alliages. (auteur)

  19. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  20. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  1. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented

  2. Reaction- and melting behaviour of LWR-core components UO2, Zircaloy and steel during the meltdown period

    International Nuclear Information System (INIS)

    Hofmann, P.

    1976-07-01

    The reaction behaviour of the UO 2 , Zircaloy-4 and austenitic steel core components was investigated as a function of temperature (till melting temperatures) under inert and oxidizing conditions. Component concentrations varied between that of Corium-A (65 wt.% UO 2 , 18% Zry, 17% steel) and that of Corium-E (35 wt.% UO 2 , 10% Zry, 55% steel). In addition, Zircaloy and stainless steel were used with different degrees of oxidation. The paper describes systematically the phases that arise during heating and melting. The integral composition of the melts and the qualitative as well as quantitative analysis of the phases present in solidified corium are given. In some cases melting points have been determined. The reaction and melting behaviour of the corium specimens strongly depends on the concentration and on the degree of oxidation of the core components. First liquid phases are formed at the Zry-steel interface at about 1,350 0 C. The maximum temperatures of about 2,500 0 C for the complete melting of the corium-specimens are well below the UO 2 melting point. Depending on the steel content and/or degree of oxidation of Zry and steel, a homogeneous metallic or oxide melt or two immiscible melts - one oxide and the other metallic - are obtained. During the melting experiments performed under inert gas conditions the chemical composition of the molten specimens generally change by evaporation losses of single elements, especially of uranium, zirconium and oxygen. The total weight losses go up to 30%; under oxidizing conditions they are substantially smaller due to the occurrence of different phases. In air or water vapor, the occurrence of the phases and the melting behaviour of the core components are strongly influenced by the oxidation rate and the oxygen supply to the surface of the melt. In the case of the hypothetical core melting accident, a heterogeneous melt (oxide and metallic) is probable after the meltdown period. (orig./RW) [de

  3. Applications for zirconium and columbium alloys

    International Nuclear Information System (INIS)

    Condliff, A.F.

    1986-01-01

    Currently, zirconium and columbium are used in a wide range of applications, overlapping only in the field of corrosion control. As a construction material, zirconium is primarily used by the nuclear power industry. The use of zirconium in the chemical processing industry (CPI) is, however, increasing steadily. Columbian alloys are primarily applied as superconducting alloys for research particle accelerators and fusion generators as well as in magnetic resonance imaging for medical diagnosis

  4. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  6. High energy beam thermal processing of alpha zirconium alloys and the resulting articles

    International Nuclear Information System (INIS)

    Sabol, G.P.; McDonald, S.G.; Nurminen, J.I.

    1983-01-01

    Alpha zirconium alloy fabrication methods and resultant products exhibiting improved high temperature, high pressure steam corrosion resistance. The process, according to one aspect of this invention, utilizes a high energy beam thermal treatment to provide a layer of beta treated microstructure on an alpha zirconium alloy intermediate product. The treated product is then alpha worked to final size. According to another aspect of the invention, high energy beam thermal treatment is used to produce an alpha annealed microstructure in a Zircaloy alloy intermediate size or final size component. The resultant products are suitable for use in pressurized water and boiling water reactors

  7. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  8. Development of microstructure in thermomechanical processing of zirconium alloys

    International Nuclear Information System (INIS)

    Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Zirconium based alloys are used for the manufacture of fuel tubes pressure tubes calandria tubes and other components of Pressurized Heavy Water Reactors (PHWRS). In single or two phase zirconium alloy system a variety of microstructure can be generated by suitable heat treatments by the process of equilibrium and non equilibrium phase transformations Microstructure can also be modified by alloying with α and β stabilizers. The microstructure in Zr alloys could be single hexagonal phase (α alloys) two phase bcc and hexagonal (α + β alloys) phase, single metastable martensitic microstructure and β with ω phase. The microstructural and micro textural evolution during thermo mechanical treatments depends strongly on such initial microstructure. Hot extrusion is a significant bulk deformation step which decides the initial microstructure of the alloy. It is carried out at elevated temperature i e above the recrystallization temperature, which enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature, strain rate (Ram speed), reduction ratio etc. In the present paper development of microstructures, microtexture and texture have been examined. An attempt is also made to optimise the hot working parameters for different Zirconium alloys with help of these studies. (author)

  9. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector

    Directory of Open Access Journals (Sweden)

    Saas Laurent

    2017-01-01

    Full Text Available In the context of the simulation of the Severe Accidents (SA in Light Water Reactors (LWR, we are interested on the in-core corium pool propagation transient in order to evaluate the corium relocation in the vessel lower head. The goal is to characterize the corium and debris flows from the core to accurately evaluate the corium pool propagation transient in the lower head and so the associated risk of vessel failure. In the case of LWR with heavy reflector, to evaluate the corium relocation into the lower head, we have to study the risk associated with focusing effect and the possibility to stabilize laterally the corium in core with a flooded down-comer. It is necessary to characterize the core degradation and the stratification of the corium pool that is formed in core. We assume that the core degradation until the corium pool formation and the corium pool propagation could be modeled separately. In this document, we present a simplified geometrical model (0D model for the in-core corium propagation transient. A degraded core with a formed corium pool is used as an initial state. This state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate…. During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4.

  10. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  11. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Science.gov (United States)

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  12. The fluorimetric titration of zirconium in the ppm-range

    International Nuclear Information System (INIS)

    Linden, W.E. von der; Boef, G. den; Ozinga, W.

    1976-01-01

    A fluorimetric titration of zirconium(IV) with EDTA is proposed. The fluorescence intensity of the zirconium-morin complex is used to indicate the end-point. More than twenty other cations were investigated and it was found that they did not interfere, neither did common anions. Mercury(II) can only be tolerated in amount not exceeding that of zirconium. Bismuth(III) interferes and hafnium(IV0 is titrated together with zirconium. The relative standard deviation of the titration of 10ml of a solution containing 1 ppm of zirconium does not exceed 1.5%

  13. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany); Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Fanghänel, Th. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany)

    2016-04-15

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An–Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An–Al alloys using a LiCl–KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions. - Highlights: • Recovery of actinides was shown by electrorefining of U/Pu–Zr alloys in LiCl–KCl. • Constant current density of 20 mA/cm{sup 2} is applied. • Most of the actinides were dissolved avoiding zirconium co-dissolution. • Deterioration of the deposit quality by a small amount of co-deposited Zr is not observed.

  14. SEPARATING HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  15. Spectrophotometric titration of zirconium in siliceous materials

    International Nuclear Information System (INIS)

    Sugawara, K.F.; Su, Y.-S.; Strzegowski, W.R.

    1978-01-01

    An accurate and selective complexometric titration procedure based upon a spectrophotometrically detected end-point has been developed for the determination of zirconium in glasses, glass-ceramics and refractories. A p-bromomandelic acid separation step for zirconium imparts excellent selectivity to the procedure. The method is particularly important for the 1 to 5% concentration range where a simple, accurate and selective method for the determination of zirconium has been lacking. (author)

  16. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  17. The minimum attention plant inherent safety through LWR simplification

    International Nuclear Information System (INIS)

    Turk, R.S.; Matzie, R.A.

    1987-01-01

    The Minimum Attention Plant (MAP) is a unique small LWR that achieves greater inherent safety, improved operability, and reduced costs through design simplification. The MAP is a self-pressurized, indirect-cycle light water reactor with full natural circulation primary coolant flow and multiple once-through steam generators located within the reactor vessel. A fundamental tenent of the MAP design is its complete reliance on existing LWR technology. This reliance on conventional technology provides an extensive experience base which gives confidence in judging the safety and performance aspects of the design

  18. Oxidized zirconium versus cobalt-chromium against the native patella in total knee arthroplasty: Patellofemoral outcomes.

    Science.gov (United States)

    Matassi, Fabrizio; Paoli, Tommaso; Civinini, Roberto; Carulli, Christian; Innocenti, Massimo

    2017-10-01

    Oxidized zirconium (OxZr) has demonstrated excellent mechanical properties in vitro when used against articular cartilage; less coefficient of friction and less chondral damage have been found when compared with cobalt-chromium (CoCr) implants. However, controversy exists as to whether implants with a zirconium femoral component articulate safely with a native patella in total knee arthroplasty (TKA). To answer this question, the clinical and radiographic results were analysed from a group of patients who underwent a TKA with patella retention; the OxZr versus CoCr femoral components were compared. The present study prospectively evaluated 83 knees of 74 patients from 2009 to 2010. Each patient was evaluated clinically (visual analogue scale, Knee Society score, patellar score) and radiographically (long leg standing radiograph, anterior-posterior and latero-lateral projections, axial view of the patella) pre-operatively and postoperatively with a mean follow-up of 4.47years. The patellar tilt and shift, and progression of patellofemoral osteoarthritis were calculated with the axial view. There were no patient reported adverse reactions and none of the evaluated prostheses failed. Both the clinical and radiographic evaluations showed no statistically significant between-group differences. No adverse events were observed clinically or radiologically. These results justify pursuing the use of oxidized zirconium as an alternative bearing surface for a femoral component associated with patellar retention in TKA. Published by Elsevier B.V.

  19. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  20. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  1. Joint titrimetric determination of zirconium and hafnium

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Botbol, Moises; Bianco de Salas, G.N.; Cornell de Casas, M.I.

    1980-01-01

    A method for the joint titrimetric determination of zirconium and hafnium, which are elements of similar chemical behaviour, is described. The disodic salt of the ethylendiaminetetracetic acid (EDTA) is used for titration, while xilenol orange serves as final point indicator. Prior to titration it is important to evaporate with sulfuric acid, the solution resulting from the zirconium depolymerization process, to adjust the acidity and to eliminate any interferences. The method, that allows the quick and precise determination of zirconium and hafnium in quantities comprised between 0.01 and mg, was applied to the analysis of raw materials and of intermediate and final products in the fabrication of zirconium sponge and zircaloy. (M.E.L.) [es

  2. Components of the LWR primary circuit. Pt. 2

    International Nuclear Information System (INIS)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 0 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  3. Investigation of Zirconium Oxide Films in Different Dissolved Hydrogen Concentration

    International Nuclear Information System (INIS)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun

    2016-01-01

    It has been reported that in pre-transition zirconium oxide, the volume fraction of tetragonal zirconium oxide increased near the oxide/metal (O/M) interface, and the sub-stoichiometric zirconium oxide layer was observed. The diffusion of oxygen ion through the oxide layer is the rate-limiting process during the pre-transition oxidation process, and this diffusion mainly occurs in the grain boundaries. The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high-temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pre-transition zirconium oxide in high-temperature water chemistry. In this study, in situ Raman and TEM analysis were conducted for investigating the phase transformation of zirconium alloy in primary water. From this study, the following conclusions are drawn: 1. The zirconium alloy was oxidized in primary water chemistry for 100 d, and Raman and TEM were measured after 30, 50, 80, and 100 d from start-up. 2. TEM and FFT analysis showed that the zirconium oxide mostly consisted of the monoclinic phase. The tetragonal zirconium oxide was just found near the O/M interface

  4. Assessment of management alternatives for LWR wastes. Volume 6. Cost determination of the LWR waste management routes (treatment/conditioning/packaging/transport operations)

    International Nuclear Information System (INIS)

    Thiels, G.M.; Kowa, S.

    1993-01-01

    This report deals with the cost determination of a number of schemes for the treatment, conditioning, packaging, interim storage and transport operations of LWR wastes drawn up on the basis of Belgian, French and German practices in this particular area. In addition to the general procedure elaborated for determining, actualizing and scaling of plant and transport costs associated with the various schemes, in-depth calculations of each intermediate management stage are included in this report. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  5. A Brief Assessment of North Korea's Capacities for Building an Experimental LWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyu; An, Jin Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2011-10-15

    On November 2010, North Korea revealed the construction site of 100 MWt (thermal) experimental LWR in the early stage with a target operation date of 2012. And they claimed that their first LWR construction project is proceeding with strictly domestic talent and resources. Introduction of LWR imposes various technical challenges, even though North Korea has experiences in the construction and management of graphite-moderated and gas-cooled reactor. So, there are doubts about whether they can successfully complete the project in time without any external support. In this paper, to estimate the fate of the LWR construction, we focused on the North Korea's capability to deal with the technical challenges which differ from those of gas-graphite reactor

  6. Voltammetric determination of zirconium using azo compounds

    International Nuclear Information System (INIS)

    Orshulyak, O.O.; Levitskaya, G.D.

    2008-01-01

    The optimum conditions for zirconium complexation with azo compounds are found. The applicability of Eriochrome Red B, Calcon, and Calcion to the voltammetric determination of zirconium, total Zr(IV) and Hf(IV), and Zr(IV) in the presence of Zn(II), Cu(II), Cd(II), Ni(II), or Ti(IV) is demonstrated. The developed procedures are used to determine zirconium in a terbium alloy and in an alloy for airplane wheel drums [ru

  7. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1983-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  8. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1982-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  9. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  10. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  11. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  12. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    Science.gov (United States)

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  13. Development of information management system on LWR spent fuel

    International Nuclear Information System (INIS)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S.

    2002-01-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility

  14. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  15. Identification of the impacts of maintenance and testing upon the safety of LWR power plants. Part II. Final report

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.; Turnage, J.J.

    1980-04-01

    Information is presented concerning overview of literature relating to radiation exposure and operating experience; details of LWR-MTC3 classification system; histograms for individual BWR facilities depicting frequency of M and T mode and frequency of systems and components involved with M and T problems; histograms for individual PWR facilities depicting frequency of M and T mode and frequency of systems and components involved with M and T problems; and Fortran program for M and T data clustering

  16. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  17. Production of nuclear grade zirconium: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L., E-mail: L.Xu-2@tudelft.nl [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands); Xiao, Y. [Department of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Sandwijk, A. van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Q. [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Y. [Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands)

    2015-11-15

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr–Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr–Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt–metal equilibrium. In the present paper, the available Zr–Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  18. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  19. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  20. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    Science.gov (United States)

    Snead, L. L.; Terrani, K. A.; Katoh, Y.; Silva, C.; Leonard, K. J.; Perez-Bergquist, A. G.

    2014-05-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320-360 °C range to a maximum dose of 7.7 × 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  1. Review of zirconium-zircaloy pyrophoricity

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1984-11-01

    Massive zirconium metal scrap can be handled, shipped, and stored with no evidence of combustion or pyrophoricity hazards. Mechanically produced fine scrap such as shavings, turnings, or powders can burn but are not pyrophoric unless the particle diameter is less than 54 μm. Powders with particle diameters less than 54 μm can be both pyrophoric and explosive. Pyrophoric powders should be collected and stored underwater or under inert gas cover to reduce the flammability hazard. Opening sealed containers of zirconium stored underwater should be attempted with caution since hydrogen may be present. The factors that influence the ignition temperature have been explored in depth and recommendations are included for the safe handling, shipping, and storage of pyrophoric or flammable zirconium. 29 refs., 5 figs., 6 tabs

  2. Tests for depositing thin films of metallic zirconium; Essais de depot de zirconium metallique en couches minces

    Energy Technology Data Exchange (ETDEWEB)

    Bentolila, J.; Pattoret, A.; Platzer, R.

    1957-01-15

    The authors report a study which aimed at obtaining a thin, adhesive and non porous coating of metallic zirconium on a uranium substrate by means of chemical process. The main required condition was not to go beyond the uranium phase change temperature (650 C). Two kinds of tests have been performed: on the one hand, tests of reduction of zirconium tetrachloride in non aqueous solvent medium, and on the other hand, tests of vacuum decomposition of zirconium hydride. As far as the first tests are concerned, the authors studied organic solvent media (reduction by aluminium and lithium hydride, action of organic-magnesium compounds), and liquid ammoniac. For the second test type, they describe the apparatus, the preparation of the zirconium hydride, preparation of the substrate surfaces, coating preparation, and decomposition process. Results are discussed in terms of temperature, of presence of copper powder in the coating, of early surface hydriding of uranium, surface polishing.

  3. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  4. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings

    Science.gov (United States)

    Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar

    2018-02-01

    This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.

  5. Outline of Swedish activities on LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclear, Nykoeping (Sweden); Roennberg, G [OKG AB (Sweden)

    1997-12-01

    The presentation outlines the Swedish activities on LWR fuel and considers the following issues: electricity production; performance of operating nuclear power plants; nuclear fuel cycle and waste management; research and development in nuclear field. 4 refs, 4 tabs.

  6. High purity zirconium obtainment through the iodine compounds transport method

    International Nuclear Information System (INIS)

    Bolcich, J.C.; Zuzek, E.; Dutrus, S.M.; Corso, H.L.

    1987-01-01

    This paper describes the experimental method and the equipment designed, constructed and actually applied for the high purity zirconium obtainment from a zirconium sponge of the nuclear type. The mechanism of purification is based on the impure metal attack with gaseous iodine (at 200 deg C) to obtain zirconium tetra iodine as main product which is then transformed into a pure zirconium base (at 1000-1300 deg C), precipitating the metallic zirconium and releasing the gaseous iodine. From the first experiences carried out, pure zirconium has been obtained from an initial filament of 0.5 mm of diameter as well as wires up to 2.5 mm of diameter. This work presents the results from the studies and analysis made to characterize the material obtained. Finally, the refining methods to which the zirconium produced may be submitted so as to optimize the final purity are discussed. (Author)

  7. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  8. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  9. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  10. Performance of U-Pu-Zr fuel cast into zirconium molds

    International Nuclear Information System (INIS)

    Crawford, D.C.; Lahm, C.E.; Tsai, H.

    1992-01-01

    Current fabrication techniques for the integral fast reactor (IFR) fuel utilize injection casting into quartz molds after reprocessing in the IFR fuel cycle facility. The quartz molds are destroyed during the fuel demolding process, and the quartz residue must therefore be treated as contaminated waste. Alternatively, if the fuel can be cast into molds that remain as part of the fuel slugs (i.e., if the fuel can be left inside the molds for irradiation), then the quartz mold contribution to the waste stream can be eliminated. This possibility is being addresssed in an ongoing effort to evaluate the irradiation performance of fuel cast into zirconium sheaths rather than quartz molds. Zirconium was chosen as the sheath material because it is the component of the U-Pu-Zr fuel alloy that raises the alloy solidus temperatures and provides resistance to fuel-cladding chemical interaction (FCCI)

  11. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  12. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    International Nuclear Information System (INIS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-01-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described

  13. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  14. Study on material attractiveness aspect of spent nuclear fuel of LWR and FBR cycles based on isotopic plutonium production

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Saito, Masaki; Novitrian,; Waris, Abdul; Suud, Zaki

    2013-01-01

    Highlights: • The paper analyzes the plutonium production of recycling nuclear fuel option. • To evaluate material attractiveness based on intrinsic feature of material barrier. • Evaluation based on isotopic plutonium composition of spent fuel LWR and FBR. • Even mass number of plutonium gives a significant contribution to material barrier, in particular Pu-238 and Pu-240. • Doping MA in FBR blanket is effective to increase material barrier from weapon grade plutonium to more than MOX fuel grade. - Abstract: Recycling minor actinide (MA) as well as used uranium and plutonium can be considered to reduce nuclear waste production as well as to increase the intrinsic aspect of nuclear nonproliferation as doping material. Plutonium production as a significant aspect of recycling nuclear fuel option, gives some advantages and challenges, such as fissile material utilization of plutonium as well as production of some even mass number plutonium. The study intends to evaluate the material attractiveness based on the intrinsic feature of material barrier such as plutonium composition, decay heat and spontaneous fission neutron components from spent fuel (SF) light water reactor (LWR) and fast breeder reactor (FBR) cycles. A significant contribution has been shown by decay heat (DH) and spontaneous fission neutron (SFN) of even mass number of plutonium isotopes to the total DH and SFN of plutonium element, in particular from isotopic plutonium Pu-238 and Pu-240 contributions. Longer decay cooling time and higher burnup are effective to increase the material barrier (DH and SFN) level from reactor grade plutonium level to MOX grade plutonium level. Material barrier of plutonium element from spent fuel (SF) FBR in the core regions has similarity to the material barrier profile of SF LWR which can be categorized as MOX fuel grade plutonium. Plutonium compositions, DH and SFN components are categorized as weapon grade plutonium level for FBR blanket regions with no

  15. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Science.gov (United States)

    2010-04-01

    ... zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs...

  16. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  17. The Hydrogen Pickup Behavior for Zirconium-based Alloys in Various Out-of-pile Corrosion Test Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aomi, M.; Etoh, Y.; Ishimoto, S.; Une, K. [Nippon Nuclear Fuel Development, Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki-ken, 311-1313 (Japan); Ito, K. [Global Nuclear Fuel Japan Co., Ltd., 3-1 Uchikawa 2-chome, Yokosuka-shi, Kanagawa-ken, 239-0836 (Japan)

    2009-06-15

    An acceleration of hydrogen absorption in zirconium alloy claddings at high burnups is one of the most important issues limiting the fuel performance from the viewpoint of cladding integrity. In this context, advanced cladding materials with higher corrosion resistant and lower hydrogen absorption properties have been widely searched in various organizations. In this study, four kinds of zirconium-based alloys, whose in-pile data had been acquired [1,2] were subjected to comprehensive out-of-pile corrosion tests with various temperature and atmosphere conditions in order to investigate the correlation between in-pile and out-of-pile corrosion and hydrogen pick-up behavior, i.e. Zry-2, GNF-Ziron (Zry-2-based alloy with {approx}0.25 wt % of Fe), Hi-FeNi Zircaloy (Zry-2-based alloy with {approx}0.25 wt % of Fe and {approx}0.1 wt% Ni), and VB (Zr-based alloy containing Sn, Cr, and {approx}0.5 wt % of Fe). All the alloys were annealed in RXA condition. The out-of-pile corrosion tests were carried out in three different conditions of 400 deg. C steam, 475 deg. C supercritical water, and 290 deg. C LiOH aqueous solution. In addition to these alloys, several Zry-2-based alloys with various iron contents were tested in 290 deg. C LiOH aqueous solution. Among the four corrosion conditions, the 290 deg. C LiOH aqueous solution test well screened the hydrogen pick-up behavior of the alloys. The hydrogen absorption decreased with higher iron contents in the alloys in both the out-of-pile and in-pile conditions. Especially, the distinct suppression of hydrogen absorption was observed for VB with the highest iron content. The similar dependence of iron content on the hydrogen pick-up fraction was also obtained for the Zry-2-based alloys with different iron contents, which were corroded in the 290 deg. C LiOH aqueous solution condition. As for the corrosion behavior in the 290 deg. C LiOH aqueous solution condition, the weight gains of Zry-2, GNF-Ziron and VB followed the 1

  18. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  19. Processing fissile material mixtures containing zirconium and/or carbon

    Science.gov (United States)

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  20. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  1. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2B, User's guide to the LWR assemblies data base, Appendix 2C, User's guide to the LWR radiological data base, Appendix 2D, User's guide to the LWR quantities data base

    International Nuclear Information System (INIS)

    1987-12-01

    This User's Guide for the LWR Assemblies data base system is part of the Characteristics Data Base being developed under the Waste Systems Data Development Program. The objective of the LWR Assemblies data base is to provide access at the personal computer level to information about fuel assemblies used in light-water reactors. The information available is physical descriptions of intact fuel assemblies and radiological descriptions of spent fuel disassembly hardware. The LWR Assemblies data base is a user-oriented menu driven system. Each menu is instructive about its use. Section 5 of this guide provides a sample session with the data base to assist the user

  2. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  4. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  5. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  6. Separation process of zirconium and hafnium; Procede de separation du zirconium et du hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO{sub 3}{sup -} ions concentration, the role of the cation coming with NO{sub 3}{sup -}, as well as the influence of the concentration of zirconium in the solution on the separation coefficient {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (M.B.) [French] Des differents procedes de separation zirconium-hafnium, l'extraction par solvant en contre-courant est le procede le plus facilement utilisable a l'echelle industrielle. On utilise comme solvant le phosphate de tributyle, dilue avec du white spirit pour faciliter les decantations. Des essais preliminaires ont montre que le milieu nitrique semblait le plus favorable a l'extraction; mais beaucoup d'autres facteurs interviennent dans le processus de separation. Nous avons etudie successivement l'influence de l'acidite, celle de la concentration en ions NO{sub 3}{sup -}, le role du cation accompagnant NO{sub 3}{sup -}, ainsi que l'influence de la concentration en zirconium de la solution sur le coefficient de separation {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (MB)

  7. Generalized perturbation theory for LWR depletion analysis and core design applications

    International Nuclear Information System (INIS)

    White, J.R.; Frank, B.R.

    1986-01-01

    A comprehensive time-dependent perturbation theory formulation that includes macroscopic depletion, thermal-hydraulic and poison feedback effects, and a criticality reset mechanism is developed. The methodology is compatible with most current LWR design codes. This new development allows GTP/DTP methods to be used quantitatively in a variety of realistic LWR physics applications that were not possible prior to this work. A GTP-based optimization technique for incore fuel management analyses is addressed as a promising application of the new formulation

  8. Prevention of delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Coleman, C.E.; Ambler, J.F.R.

    1987-01-01

    Zirconium alloys are susceptible to a mechanism for crack initiation and propagation called delayed hydride cracking. From a review of component failures and experimental results, we have developed the requirements for preventing this cracking. The important parameters for cracking are hydrogen concentration, flaws, and stress; each should be minimized. At the design and construction stages hydrogen pickup has to be controlled, quality assurance needs to be at a high enough level to ensure the absence of flaws, and residual stresses must be eliminated by careful fabrication and heat treatment

  9. A study of the fixing of phosphoric ions by zirconium-montmorillonite; Etude de la fixation d'ions phosphoriques par la montmorillonite-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bittel, R; Boursat, C; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In connection with the research carried out on the purification of nuclear reactor water, we have undertaken a study of the ion-exchange properties of acid montmorillonite. In a previous paper, we described the preparation of zirconium-montmorillonite small plate. The present article aims to study some of the properties of the clay obtained. We have observed that zirconium-montmorillonite fixes very strongly the phosphorus from solutions of phosphoric acid or of phosphates: on 1 g of clay it is possible to fix 1,2 milli-atoms-gram of zirconium and the zirconium montmorillonite itself fixes 2,1 milli-atoms-gram of phosphorus. An explanation of these experimental results, which is as much chemical as mineralogical, is the hypothesis that the fixing of phosphoric ions modifies the distribution of the ions between the platelets and precipitates a very slightly soluble product of the type diphospho-zirconic acid. (author) [French] En rapport avec des recherches sur I'epuration de l'eau des reacteurs nucleaires nous avons entrepris une etude sur les proprietes d'echangeur d'ions de la montmorillonite-acide. Dans une precedente publication, nous avons decrit la preparation des plaquettes de montmorillonite-zirconium. La presente communication a pour but d'etudier quelques proprietes de l'argile obtenue. Nous avons constate que la montmorilionite-zirconium fixe le phosphore de solutions d'acide phosphorique ou de phosphate avec une grande intensite: sur 1 g d'argile, on peut fixer 1,2 atomes-gramme de zirconium, et la montmorillonite-zirconium fixe a son tour 2,1 milli-atomesgramme de phosphore. Une explication des resultats experimentaux, tant d'ordre chimique que d'ordre mineralogique, consiste en l'hypothese suivant laquelle la fixation d'ions phosphoriques modifierait la repartition des ions entre les feuillets avec precipitation du compose tres peu soluble (type: acide diphosphozirconique). (auteur)

  10. A computation model for the corrosion resistance of nanocrystalline zirconium metal

    International Nuclear Information System (INIS)

    Zhang Xiyan; Shi Minghua; Liu Nianfu; Wei Yiming; Li Cong; Qiu Shaoyu; Zhang Qiang; Zhang Pengcheng

    2007-01-01

    In this paper a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine zirconium has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of zirconium metal under different temperature was computed. The results show that the corrosion weight gain and rate constant of nanocrystalline zirconium is lower than that of zirconium with coarse grain size. And the corrosion rate constant and weight gain of nanocrystalline zirconium metal decrease with the decrease of grain size. So the refinement of grain size can remarkably improve the corrosion resistance of zirconium metal. (authors)

  11. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  12. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  13. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride

    International Nuclear Information System (INIS)

    McLaughlin, D.F.

    1989-01-01

    This patent describes an improvement in a method for separating hafnium tetrachloride from zirconium tetrachloride where a complex of zirconium-hafnium tetrachlorides and phosphorus oxychloride is prepared from zirconium-hafnium tetrachlorides and the complex of zirconium-hafnium tetrachlorides and phosphorus oxychloride is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and where a hafnium tetrachloride enriched stream is taken from the top of the column and a zirconium enriched tetrachloride stream is taken from the bottom of the column. The improvement comprising: prepurifying the zirconium-hafnium tetrachlorides, prior to preparation of the complex and introduction of the complex into a distillation column, to substantially eliminate iron chloride from the zirconium hafnium tetrachlorides, whereby buildup or iron chloride in the distillation column and in the reboiler is substantially eliminated and the column can be operated in a continuous, stable and efficient manner

  14. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium--2.5 wt percent niobium and zirconium--1.1 wt percent chromium--0.1 wt percent iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium--niobium and zirconium--chromium--iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 percent a cyclic frequency exceeding 0.116 Hz (10,000 cycles/ day) would be required to cause fatigue failure of the sheath before its design life is realized

  15. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium-2.5 wt% niobium and zirconium-1.1 wt% chronium-0.1 wt% iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium-niobium and zirconium-chromium-iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 per cent a cyclic frequency exceeding 0.116 Hz (10 000 cycles/day) would be required to cause fatigue failure of the sheath before its design life is realized. (author)

  16. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  17. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    International Nuclear Information System (INIS)

    Snead, L.L.; Terrani, K.A.; Katoh, Y.; Silva, C.; Leonard, K.J.; Perez-Bergquist, A.G.

    2014-01-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle–matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320–360 °C range to a maximum dose of 7.7 × 10 25 n/m 2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix

  18. Data needs for long-term dry storage of LWR fuel. Interim report

    International Nuclear Information System (INIS)

    Einziger, R.E.; Baldwin, D.L.; Pitman, S.G.

    1998-04-01

    The NRC approved dry storage of spent fuel in an inert environment for a period of 20 years pursuant to 10CFR72. However, at-reactor dry storage of spent LWR fuel may need to be implemented for periods of time significantly longer than the NRC's original 20-year license period, largely due to uncertainty as to the date the US DOE will begin accepting commercial spent fuel. This factor is leading utilities to plan not only for life-of-plant spent-fuel storage during reactor operation but also for the contingency of a lengthy post-shutdown storage. To meet NRC standards, dry storage must (1) maintain subcriticality, (2) prevent release of radioactive material above acceptable limits, (3) ensure that radiation rates and doses do not exceed acceptable limits, and (4) maintain retrievability of the stored radioactive material. In light of these requirements, this study evaluates the potential for storing spent LWR fuel for up to 100 years. It also identifies major uncertainties as well as the data required to eliminate them. Results show that the lower radiation fields and temperatures after 20 years of dry storage promote acceptable fuel behavior and the extension of storage for up to 100 years. Potential changes in the properties of dry storage system components, other than spent-fuel assemblies, must still be evaluated

  19. Implications of plutonium utilization strategies on the transition from a LWR economy to a breeder economy

    International Nuclear Information System (INIS)

    Newman, D.F.; Fleischman, R.M.; White, M.K.

    1977-02-01

    The plutonium interface between the LWR and LMFBR fuel cycles is examined for typical nuclear growth projections both with and without plutonium recycle in LWRs. In order to guarantee a fuel supply for projected LMFBR growth rates, significant multiple Pu recycle in LWRs will not be possible. However, about 78% of the benefit of multiple plutonium recycle between now and the turn of the century is realized by one recycle and then stockpiling spent MOX for the LMFBR. LMFBR reprocessing schecules are estimated based on accumulation of reprocessing load. These schedules are used to estimate the amount of plutonium recovered from LMFBR fuels and determine the residual LWR plutonium required to meet LMFBR demand. The stockpile of LWR produced plutonium in spent MOX is sufficient to fuel the LMFBR until commercial LMFBR reprocessing can be justified. After that time, recycle of plutonium in LWRs will be significantly limited by a continuing LMFBR demand for LWR plutonium due to the projected high LMFBR growth rate. LWR reprocessing requirements are estimated for the assumed condition that LWR plutonium recycle is not approved, but the LMFBR is still pursued as an energy option. The uncertainties presented by this condition are addressed qualitatively. However, in our judgment these uncertainties in the plutonium market would likely delay LMFBR growth to levels significantly below current projections

  20. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  1. Beryllium and zirconium

    International Nuclear Information System (INIS)

    Salesse, Marc

    1959-01-01

    Pure beryllium and zirconium, both isolated at about the same date but more than a century ago remained practically unused for eighty years. Fifteen years ago they were released from this state of inactivity by atomic energy, which made them into current metal a with an annual production which runs into tens of tons for the one and thousands for the other. The reasons for this promotion promise well for the future of the two metals, which moreover will probably find additional uses in other branches of industry. The attraction of beryllium and zirconium for atomic energy is easily explained. The curve of figure 1 gives the price per gram of uranium-235 as a function of enrichment: this price increases by about a factor of 3 on passing from natural uranium (0, 7 percent 235 U) to almost pure uranium-235. Because of their tow capture cross-section beryllium and zirconium make it possible, or at least easier, to use natural uranium and they thus enjoy an advantage the extent of which must be calculated for each reactor or fuel element project, but which is generally considerable. It will be seen later that this advantage should be based on figures which are even more favourable that would appear from the simple ratio 3 of the price of pure uranium- 235 contained in natural uranium. Reprint of a paper published in 'Industries Atomiques' - n. 1-2, 1959

  2. Application of FEM analytical method for hydrogen migration behaviour in Zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, K; Ohta, H [Takasago Research and Development Center, Mitsubishi Heavy Industries Ltd, Hyogo-ken (Japan)

    1997-02-01

    It is well recognized that the hydriding behaviours of Zirconium alloys are very significant problems as a safety issues. Also, it is well known that the diffusion of hydrogen in Zirconium alloys are affected not only by concentration but also temperature gradient. But in actual component, especially heat transfer tube such as fuel rod, we can not avoid the temperature gradient in some degree. So, it is very useful to develop the computer code which can analyze the hydrogen diffusion and precipitation behaviours under temperature gradient as a function of the structure of fuel rod. For this objective, we have developed the computer code for hydrogen migration behaviour using FEM analytical methods. So, following items are presented and discussed. Analytical method and conditions; correlation between the computed and test results; application to designing studies. (author). 8 refs, 4 figs, 2 tabs.

  3. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  4. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2015-01-01

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233 U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233 U

  5. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  6. Development of training simulator for LWR

    International Nuclear Information System (INIS)

    Sureshbabu, R.M.

    2009-01-01

    A full-scope training simulator was developed for a light water reactor (LWR). This paper describes how the development evolved from a desktop simulator to the full-scope training simulator. It also describes the architecture and features of the simulator including the large number of failures that it simulates. The paper also explains the three-level validation tests that were used to qualify the training simulator. (author)

  7. Quantitative analysis of nickel in zirconium and zircaloy

    International Nuclear Information System (INIS)

    Rastoix, M.

    1957-01-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [fr

  8. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  9. Titanium zirconium and hafnium coordination compounds with vanillin thiosemicarbazone

    International Nuclear Information System (INIS)

    Konunova, Ts.B.; Kudritskaya, S.A.

    1987-01-01

    Coordination compounds of titanium zirconium and hafnium tetrachlorides with vanillin thiosemicarbazone of MCl 4 x nLig composition, where n=1.5, 4 for titanium and 1, 2, 4 for zirconium and hafnium, are synthesized. Molar conductivity of ethanol solutions is measured; IR spectroscopic and thermochemical investigation are carried out. The supposition about ligand coordination via sulfur and azomethine nitrogen atoms is made. In all cases hafnium forms stable compounds than zirconium

  10. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  11. Modelling of Zirconium and Hafnium separation using continuous annular chromatography

    International Nuclear Information System (INIS)

    Moch-Setyadji; Endang Susiantini

    2014-01-01

    Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)

  12. Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1975-09-01

    This report contains experimentally determined data on the dynamic elastic moduli of zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium and Marz grade crystal bar zirconium. Data on both the dynamic Young's moduli and shear moduli of the alloys have been measured at room temperature and Young's modulus as a function of temperature has been determined over the temperature range 300 K to 1000 K. In every case, Young's modulus decreases linearly with increasing temperature and is expressed by an empirical equation fitted to the data. Differences in Young's modulus values determined from specimens with longitudinal axes parallel and perpendicular to the rolling direction are small, as are the differences between Young's moduli determined from strip, bar stock and fuel sheathing. (author)

  13. Application of environmentally-corrected fatigue curves to nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1996-01-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four US nuclear steam supply system vendors. For each facility, six locations were studied including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This paper discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  14. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  15. Spectrophotometric titration of sulfates in the presence of zirconium

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Kotova, S.S.; Molokanova, L.G.; Chekmarev, A.M.; Yagodin, G.A.

    1978-01-01

    The procedure has been proposed for express determination of sulphate ions in the presence of zirconium by spectrophotometric titration with the use of barium chloride and nitrochromazo as an indicator. The procedure is based on bonding zirconium into a more stable complex with EDTA (ethylenediaminotetraacetic acid). The presence of excess of EDTA and zirconium (4) complexonate in the solution being titrated does not affect the titration curve shape and the character of break on the curve in the equivalence point. A complete demasking of SO 4 2- is observed in the case of 1O-fold excess of EDTA with respect to zirconium (4). Statistic evaluation of the method has shown that the results of titration can be distorted by chance errors only

  16. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  17. Energy profit ratio on LWR by uranium recycles

    International Nuclear Information System (INIS)

    Amano, Osamu; Uno, Takeki; Matsushima, Jun

    2009-01-01

    Energy profit ratio is defined as the ratio of output energy/input system total energy. In case of electric power generation, input energy is a total for fuel such as uranium mining and enrichment, fuel transportation, build nuclear power plant, M and O and for disposal waste and decommission of reactor vessel. Output energy is the total electricity on LWR during the plant life. EPR on both PWR and BWR is high value using gas centrifuge enrichment compared other type of electric power generation such as a thermal power, a hydraulic power, a wind power and a photovoltaic power. How is the EPR on LWR by MOX? We need understanding the energy of reprocessing spent fuel, MOX fuel fabrication, low level waste disposal and high level radioactive glass disposal. As we show the material balance for two cases, the first is the case of long term storage and reprocessing before FBR, the second is the MOX fuel cycle on LWR plant. The MOX fuel recycle is better EPR value rather than the case of long term storage and reprocessing before FBR (LTSRBF). At the gaseous diffusion enrichment case, MOX fuel recycle has 15 to 18% higher EPR value than LTSRBF. At the gas centrifuge enrichment case the MOX fuel recycle has 17 to 18 higher EPR value than LTSRBF. MOX fuel recycle decreases the uranium mining and refine mass, enrichment separative work and the spent fuel interim storage. It tells us the MOX fuel recycle is good way from view of EPR. (author)

  18. Recycle of LWR actinides to an IFR

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    Large quantities of actinide elements are present in irradiated light water reactor fuel that is stored throughout the world. Because of the high fission to capture ratio for the transuranium (TRU) elements with the high energy neutrons in metal-fueled integral fast reactors (IFR), that reactor can consume these elements effectively. The stored fuel may represent valuable resource for the expanding application of fast power reactors. In addition, the removal of TRU elements from spent LWR fuel has the potential for increasing the capacity of high level waste facilities by reducing the heat load and may increase the margin of safety in meeting licensing requirement. Argonne National Laboratory is developing a pyrochemical process, which is compatible with the IFR fuel cycle for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. Two pyrochemical processes, that is, salt transport process and blanket processing study, are discussed in this paper. Also the experimental studies are reported. (K.I.)

  19. Effects of Listening While Reading (LWR on Swahili Reading Fluency and Comprehension

    Directory of Open Access Journals (Sweden)

    Filipo Lubua

    2016-10-01

    Full Text Available A number of studies have examined the contribution of technology in teaching such languages as English, French, and Spanish, among many others. Contrarily, most LCTL’s, have received very little attention. This study investigates if listening while reading (LWR may expedite Swahili reading fluency and comprehension. The study employed the iBook Author tool to create weekly mediated and interactive reading texts, with comprehension exercises, which were eventually used to collect descriptive and qualitative data from four Elementary Swahili students. Participants participated in a seven week reading program, which provided them with some kind of directed self-learning, and met with the instructor for at least 30 minutes every week for observation and more reading activities. The teacher recorded their reading scores, and a number of themes on how LWR influenced reading fluency and comprehension are discussed here. It shows that participants have a positive attitude towards LWR and they suggest it for all the reading classes.

  20. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  1. Contributions to LWR spent fuel storage and transport

    International Nuclear Information System (INIS)

    The papers included in this document describe the aspects of spent LWR fuel storage and transport-behaviour of spent fuel during storage; use of compact storage packs; safety of storage; design of storage facilities AR and AFR; description of transport casks and transport procedures

  2. Improving the safety of LWR power plants. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs

  3. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    International Nuclear Information System (INIS)

    Garcia G, N.; Ordonez R, E.

    2010-10-01

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP 2 O 7 ) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP 2 O 7 surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  4. A study of a production process for hafnium-free zirconium from zircon

    International Nuclear Information System (INIS)

    Ratanalert, N.

    1985-01-01

    The purpose of this experiment was to extract and purify the zirconium from zircon. The effects of time of extraction and stripping of zirconium, concentration of feed solution, concentration of hydrochloric acid in stripping process, equilibrium curve of extraction of zirconium and hafnium and equilibrium curve of stripping zirconium or scrubbing hafnium were studied from standard zirconium and hafnium. The results, subsequently were applied to the extraction procedures for zirconium from zircon. Minus 100 mesh zircon was fused with sodium hydroxide in the ratio of 1 : 6 at 700 degree C for l hour. After fusion the zirconate was leached with water and dissolved in hot concentrated hydrochloric acid. Zirconyl chloride octahydrate crystallized out when the solution was cooled. An agueons solution of zirconyl chloride was used as the feed to the hexone - thiocyanate solvent extraction process. This was prepared by dissolving zirconyl chloride octahydrate crystal in waster. This zirconium feed solution in 1 M HCl and 1 M N H 4 CNS was extracted with 2.7 m N H 4 CNS in hexone and then stripped with 3.6 M HCl the aqueous phase was got rid of thiocyanate ion by extracting with pure hexone, then the zirconium in aqueous phase was precipitated with sulfuric acid and ammonium hydroxide at pH 1.8 - 2.0 and zirconium oxide was obtained by ignition at 700 degree C. The process could be modified to improve the purity of zirconium by using cation exchange resin to get rid of thiocyanate ion after solvent extraction process

  5. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    Science.gov (United States)

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  7. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  8. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  9. Irradiation growth in zirconium alloys: a review

    International Nuclear Information System (INIS)

    Fidleris, V.

    1980-09-01

    The change in shape during irradiation without external stress, irradiation growth, was first discovered in uranium and later in graphite, zirconium and other core materials which exhibit anisotropic physical properties. The direction of maximum growth of metals invariably corresponds with the direction of minimum thermal expansion. In polycrystalline zirconium alloys growth is positive in the direction of maximum deformation during fabrication and in other directions it can be either positive or negative depending on the preferred orientation of grains (crystallographic texture). Growth increases gradually with temperature between 300 K and 620 K and rapidly with fluence up to about 1 x 10 25 n.m. -2 (Eμ1 MeV). At higher fluences the growth appears to saturate in annealed materials and reach a steady rate approximately proportional to dislocation density in cold-worked materials. Above 600 K both annealed and cold-worked materials have similar steady growth rates. Irradiation growth is caused by the segregation to different sinks of the vacancies and interstitials generated by irradiation, but the dominant types of sinks for each type of point defect and the mode of transport of the point defects to sinks cannot therefore be predicted theoretically. For the purpose of designing reactor core components empirical equations have been derived that can satisfactorily predict the steady state growth behaviour from texture and microstructure. (auth)

  10. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    Science.gov (United States)

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  11. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  12. International strategic minerals inventory summary report; zirconium

    Science.gov (United States)

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  13. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    Science.gov (United States)

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  14. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  15. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  16. LWR physics in SKODA Works

    International Nuclear Information System (INIS)

    Zbytovsky, A.; Lehmann, M.; Vyskocil, V.; Vacek, J.; Krysl, V.

    1980-01-01

    Computation of nuclear power reactors of the WWER-1000 type is described as are computer programs used by Skoda Works for the solution of neutron problems. The programs are analyzed for applicability in the unified program system of the CMEA countries which will be used in the preparation of safety reports, the evaluation of safety hazards, the design of fuel charges, economical studies etc. A detailed description is also presented of multigroup transport calculations and of the preparation of input data for macrocalculations of the heterogeneous lattices of LWR's. (author)

  17. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    International Nuclear Information System (INIS)

    Prince, B.E.; Hadley, S.W.

    1983-01-01

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of the time-dependent aspects of plutonium requirements and supply relative to this transition

  18. Methods for determination of zirconium in titanium alloys

    International Nuclear Information System (INIS)

    1985-01-01

    Two methods for determining zirconium content in titanium alloys are specified in this standard. One is the ion-exchange/mandelic acid gravimetry for Zr content below 20 % down to 1 % while the other is the mandelic acid gravimetry for Zr content below 20 % down to 0.5 %. In the former, a specimen is decomposed by hydrochloric acid and hydrofluoric acid. After substances such as titanium are oxidized by adding nitric acid, the liquid is adjusted into a 4N hydrochloric acid - gN hydrofluoric acid solution, which is them passed through an ion-exchange column. The niobium and tantalum contents are absorbed while the titanium and zirconium contents flow out. Perchloric acid and sulfuric acid are poured in the solution to remove hydrofluoric acid. Aqueous ammonia is added to produce hydroxide of titanium and zirconium, which is then filtered out. The hydroxyde is dissolved in hydrochloric acid, and mandelic acid is poured to precipitate the zirconium content. The precipitate is ignited and the weight of the oxide formed is measured. The coprecipitated titanium content is determined by the absorptiometric method using hydrogen peroxide. Finally, the weight of the oxide is corrected. In the latter determination method, on the other hand, only several steps of the above procedure are used, namely, decomposition by hydrochloric acid, precipitation of zirconium, ignition of precipitate, measurement of oxide weight and weight correction. (Nogami, K.)

  19. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  20. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-01-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  1. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik; Suzuki, Mitsutoshi; Su' ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  2. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  3. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  4. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  5. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    Science.gov (United States)

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  6. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  7. Separation of zirconium from hafnium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, Elaine C.B.; Palhares, Hugo G.; Ladeira, Ana Claudia Q., E-mail: elainecfelipe@yahoo.com.br, E-mail: hugopalhares@gmail.com, E-mail: ana.ladeira@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH){sub 4} and Hf(OH){sub 4} with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10{sup -2} mol L{sup -1} of Zr and 5.8 x 10{sup -3} mol L{sup -1} of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (q{sub max}) of the resins, the distribution coefficient (K{sub d}) for Zr and Hf and the separation factor (α{sub Hf}{sup Zr} ). The results of maximum loading capacity (q{sub max}) for Zr and Hf, in mmol g{sup -}1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (q{sub max} Z{sub r} = 2.21, Hf = 0.18), Dowex 50WX8 50 (q{sub max} Zr = 1.89, Hf = 0.13) and Amberlite (q{sub max} Zr = 1.64, Hf = 0.12). However, separations factors, α{sub Hf}{sup Zr}, showed that the resins are not selective. (author)

  8. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  9. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  10. Influence of zirconium ions on the sorption of carrier-free radiophosphate (32P)

    International Nuclear Information System (INIS)

    Friedmann, Ch.; Schoenfeld, T.

    1975-01-01

    In acid solutions the addition of zirconium ions largely affects the sorption of carrier-free radiophosphate on various materials. With some sorbents, such as diatomeceous earth, clay minerals or activated charcoal, the addition of small quantities of zirconium leads to a substantial increase of 32 P adsorption. On the other hand, important quantities of zirconium cause decrease of sorption. With alumina as an adsorbent, any addition of zirconium leads to reduced adsorption of radiophosphate. These phenomena are due to the formation of soluble zirconium-phosphate complex ions. (author)

  11. Minutes of the Twelfth LWR pressure vessel surveillance dosimtery improvement program meeting

    International Nuclear Information System (INIS)

    1989-01-01

    The 1983 Twelfth Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP) Meeting, which was held October 24-28, 1983. Sections 1 through 14 of this report provide documentation of agreements, commitments, and reports that are subject to the approval and concurrence of the participating laboratories and supporting agencies and organizations. Attachment No. 1 provides information on the preparation of a number of NUREG publications that will document the results of various aspects of the LWR-PV-SDIP. For each NUREG publication, a tentative ''Table of Contents'' is provided in addition to suggested interlaboratory writing assignments and camera-ready copy contribution due dates, as appropriate. Attachment No. 2 provides information on planning for the Fifth ASTM-EURATOM Symposium. Attachment No. 3 provides information on an ASTM press release about an MPC-6 meeting and dpa and E > 1 MeV exposure parameters. Attachments No. 4 and 5 provide copies of two LWR-PV-SDIP related papers presented at the Eleventh WRSR Information Meeting, October 24-28, 1983

  12. Determination of impurities in uranium--niobium (7.5%)--zirconium (2.5%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Arragon, Y

    1973-10-01

    The determination of 11 impurities in uranium--niobium-- zirconium alloys was studied. Elements of which the alloy is composed are considered and information is given on the determination of niobium by niobic acid precipitation. Selective elimination of the three components is discussed. Two liquid-liquid extractions are used. The nioblum is separated by methylisobutylketone in a hydrochloric --hydrofluoric medium and the zirconium and uranium by tributyl phosphate in a nitric medium. The determination of trace elements using electrochemical methods is discussed. Anodic re-dissolution polarography or square wave polarography enabled six elements (cadmium, copper, lead, zinc, bismuth, and thallium) to be determined in a carbonate medium together with aluminium in tetraethylammonium perchlorate, molybdenum in nitric acid, ammonium nitrate, and tungsten in hydrochloric acid with added double sodium and potassium tartrate. Fluorine was determined using ionometric techniques with a specific electrode and carbon was titrated by conductometry after combustion of the sample in an oxygen current. (auth)

  13. Photometric determination of zirconium in phosphorites by reaction with arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skaya, I V; Maksimov, A V

    1976-05-01

    The reaction between zirconium and arsenazo III has been studied over a wide range of hydrochloric acid concentration and under different conditions. 6 and 9 M HCl solutions are optimal for determining zirconium; the least effect of phosphate ions and color stability in time are observed in this case. The determination of zirconium should be carried out using 10-fold reagent excess and in 15-20 min after adding the reagent. The interference of phosphate ions has been estimated. A procedure has been developed for photometric determination of zirconium in phosphorites with prior acid separation of soluble impurities.

  14. A half-century of changes in zirconium alloys

    International Nuclear Information System (INIS)

    Mardon, J.P.; Barberis, P.; Hoffmann, P.B.

    2008-01-01

    This article presents the history of zirconium alloys for PWR and BWR technologies. For more than 20 years zirconium alloys have evolved to cope with demands of the reactor operators concerning the burn-up extension and new safety margins. The poor properties of Zircaloy-1 concerning corrosion have led researchers to add elements like iron by developing Zircaloy-3A and Zircaloy-3C, and resulting in Zircaloy-4 with tin addition (from 1.30% to 1.50%). Zircaloy-4 is now outdated for PWR and new zirconium alloys with niobium are used (M5, ZIRLO...) they present a better resistance to corrosion, to hydridation, to creep and they are less prone to dimensional changes under irradiation. (A.C.)

  15. Research and development of zirconium industry in China

    International Nuclear Information System (INIS)

    Liu Jianzhang; Tian Zhenye

    2001-01-01

    The development of uranium material for nuclear power and silicon material for information industry represents two revolutionary changes in the material field in 20-th century. The development of these kinds of materials not only brings about great revolution of technology in the material field, but also promotes the great advancement of the world economy. Zirconium or its alloy, as one of the most important material in atomic age, just as the same as foreign countries has been developed under promotion of nuclear submarine project in China, and building of civil nuclear power reactor then has been laid a solid foundation for zirconium industry and provide a broad market for zirconium material

  16. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a method for separating hafnium chloride from zirconium chloride using a distillation column, with a hafnium chloride enriched vapor stream taken from the top of the column and a zirconium enriched chloride stream taken from the bottom of the column. The improvement comprising: purifying the zirconium-hafnium chloride in a molten salt purification vessel prior to or after introduction into the distillation column to substantially eliminate iron chloride from the zirconium-hafnium chloride by at least periodically removing iron chloride from the molten salt purification vessel by electrochemically plating iron onto an electrode in the molten salt purification vessel. The molten salt in the molten salt purification vessel consisting essentially of a mixture of chlorides selected from the group consisting of alkali metals, alkaline earth metals, zirconium, hafnium, aluminum, manganese, and zinc

  17. Zirconium distribution in the system HNO3-H2O-TBP-diluent

    International Nuclear Information System (INIS)

    Shu, J.; Araujo, B.F. de.

    1984-01-01

    The extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems is studied in order to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a minimum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon zirconium behaviour was also verified. With the data obtained it was possible to introduce some modifications in the standard Purex flowsheet with the increase of the decontamination of uranium product from zirconium. (Author) [pt

  18. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  19. Manufacturing process to reduce large grain growth in zirconium alloys

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1987-01-01

    A method is described of treating cold worked zirconium alloys to reduce large grain growth during thermal treatment above its recrystallization temperature. The method comprises heating the zirconium alloy at a temperature of about 1300 0 F. to 1350 0 F. for about 1 to 3 hours subsequent to cold working the zirconium alloy and prior to the thermal treatment at a temperature of between 1450 0 -1550 0 F., the thermal treatment temperature being above the recrystallization temperature

  20. A study for small-medium LWR development of JAPC

    International Nuclear Information System (INIS)

    Okazaki, Toshihiko; Hida, Takahiko; Hoshi, Takashi; Kawahara, Hiroto; Tominaga, Kenji; Asano, Hiromitsu

    2011-01-01

    LWR (Light Water Reactor) power stations have accumulated many experiences of design, construction and operation. In addition, large-sized reactors have an advantage of economy of scale and 1,000 MWe LWR has therefore become the mainstream reactor in Japan. Meanwhile, introduction of the medium and small-sized LWRs (SMRs) has also been under review in Japan in order to respond to stagnant growth in electricity demand and electricity market liberalization or for investment risk mitigation; however, it has not been realized due to the economic disadvantage of scale. Therefore, JAPC has been developing the concept of SMR (300 MWe - 600 MWe) which is competitive to the large-sized LWR cooperating with Japanese plant makers (Hitachi, Toshiba Corporation and Mitsubishi Heavy Industries), assessing the possibility of realization of SMRs as one of the electric power sources in the future. As the result of the JAPC's study, we developed SMR concepts whose cost and safety are almost equal to large-sized LWR and confirmed technical feasibility of the concept in order to start developing basic design. In this paper, the outline of the SMR concepts and the current development status are presented. Concepts have been developed for two types of SMRs (i.e. BWR and PWR). As for the BWR type, reactor system is simplified by adopting natural circulation core method and CRD falling under gravity in order to downsize the reactor containments. As for the PWR type, the risk of LOCA occurrence is eliminated by unifying the primary system (e.g. incorporating steam generator into reactor). Furthermore, the primary system is simplified by adopting natural circulation core method in operation and containment vessel also become compact for the PWR. As for JAPC's further development of SMRs, key elements of SMR concepts are studied. In addition, the environment surrounding the SMRs has changed in recent years and the one with capacity exceeding 300-600 MWe class or small-sized reactor with

  1. Fabrication of high performance components for Indian nuclear reactors

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2011-01-01

    Nuclear Fuel Complex (NFC), a Unit of the Department of Atomic Energy (DAE) has been engaged for well over three-and-half decades in the manufacture of fuels for Pressurized Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs). All the fuel assembly components, like, fuel clad tubes, end plugs, spacers, spacer grids etc. are also being manufactured at NFC in Zirconium alloy material. Apart from the regular production of these components and finished fuel assemblies, NFC has also been engaged in the production of Zirconium alloy reactor core structurals, like, pressure tubes, calandria tubes, garter springs and reactivity control mechanisms for PHWRs and square channels for BWRs. While all these structural components are produced through standardized flow sheets, there have been continuous innovations carried out in the processes to meet the ever increasing end-use characteristics laid down by the utilities. The paper enumerates various aspects of different technologies developed at NFC for the manufacture of high performance components for reactor applications

  2. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  3. Determination of impurities in zirconium by emission spectrograph method

    International Nuclear Information System (INIS)

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  4. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  5. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  6. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  7. LWR aerosol containment experiments (LACE) program and initial test results

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.; Bloom, G.R.; McCormack, J.D.; Rahn, F.J.

    1985-01-01

    The LWR aerosol containment experiments (LACE) program is described. The LACE program is being performed at the Hanford Engineer Development Laboratory (operated by Westinghouse Hanford Company) and the initial tests are sponsored by EPRI. The objectives of the LACE program are: to demonstrate, at large-scale, inherent radioactive aerosol retention behavior for postulated high consequence LWR accident situations; and to provide a data base to be used for aerosol behavior . Test results from the first phase of the LACE program are presented and discussed. Three large-scale scoping tests, simulating a containment bypass accident sequence, demonstrated the extent of agglomeration and deposition of aerosols occurring in the pipe pathway and vented auxiliary building under realistic accident conditions. Parameters varied during the scoping tests were aerosol type and steam condensation

  8. Spectrofluorimetric determination of hafnium and zirconium with 3,7-dihydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takushi; Suzuki, Osamu; Seuzuki, Tetsuo; Murata, Akira

    1986-04-01

    The absorptive and fluorescent characteristics of the hafnium and zirconium complexes of 3-hydroxyflavone and its 12 hydroxy and methoxy derivatives have been studied. The fluorescence of the 1:1 hafnium - 3,7-dihydroxyflavone complex (lambdasub(ex.)397 nm,lambdasub(em.) 465 nm) in 3 M hydrochloric acid has been used to determine 2-40 ng ml/sup -1/ of hafnium. The fluorescence of the 1:1 zirconium - 3,7-dihydroxyflavone complex (lambdasub(ex.) 395 nm, lambda sub(em.) 465 nm) at pH 2.0 in 0.02 M sulphate solution has been used to determine 2-40 ng ml/sup -1/ of zirconium. These methods are very sensitive and can be used for the simultaneous determination of hafnium and zirconium with an error of about 5%.

  9. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    Science.gov (United States)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  10. Critical corrosion issues and mitigation strategies impacting the operability of LWR's

    International Nuclear Information System (INIS)

    Jones, R.L.

    1996-01-01

    Recent corrosion experience in US light water reactor nuclear power plants is reviewed with emphasis on mitigation strategies to control the cost of corrosion to LWR operators. Many components have suffered corrosion problems resulting in industry costs of billions of dollars. The most costly issues have been stress corrosion cracking of stainless steel coolant piping in boiling water reactors and corrosion damage to steam generator tubes in pressurized water reactors. Through industry wide R and D programs these problems are now understood and mitigation strategies have been developed to address the issues in a cost effective manner. Other significant corrosion problems for both reactor types are briefly reviewed. Tremendous progress has been made in controlling corrosion, however, minimizing its impact on plant operations will present a continuing challenge throughout the remaining service lives of these power plants

  11. Collaborative study of the colorimetric determination of zirconium in antiperspirant aerosols

    International Nuclear Information System (INIS)

    Beavin, P. Jr.

    1977-01-01

    A previously published method for determining zirconium in antiperspirant aerosols was collaboratively studied by 7 laboratories. The method consists of 2 procedures: a rapid dilution procedure for soluble zirconium compounds or a lengthier fusion procedure for total zirconium followed by colorimetric determination. The collaborators were asked to perform the following: Spiking materials representing 4 levels of soluble zirconium were added to weighed portions of a zirconium-free cream base concentrate and the portions were assayed by the dilution procedure. Spiking materials representing 4 levels of zirconium in either the soluble or the insoluble form (or as a mixture) were also added to portions of the same concentrate and these portions were assayed by the fusion procedure. They were also asked to concentrate and assay, by both procedures, 2 cans each of 2 commercial aerosol antiperspirants containing zirconyl hydroxychloride. The average percent recoveries and standard deviations for spiked samples were 99.8-100.2 and 1.69-2.71, respectively, for soluble compounds determined by the dilution procedure, and 93.8-97.4 and 3.09-4.78, respectively, for soluble and/or insoluble compounds determined by the fusion procedure. The average perent zirconium found by the dilution procedure in the 2 commercial aerosol products was 0.751 and 0.792. Insufficient collaborative results were received for the fusion procedure for statistical evaluation. The dilution procedure has been adopted as official first action

  12. Hydrogen outbreak of Zirconium Molybdate Hihydrate

    International Nuclear Information System (INIS)

    Miura, Yasuhiko; Fukuda, Kazuhiro; Ochi, Eiji

    2008-01-01

    JNFL is planning to construct a facility for enclosing the hull and end pieces produced due to reprocessing of spent fuel into stainless canisters after compressing, while those hull and end pieces enclosed into the stainless canisters are called 'compressed hulls'. Since the compressed hulls contain moisture absorbent Zirconium Molybdate Hihydrate accompanying hull and end pieces, there is a risk of outbreak of radiolysisradiolysis gas such as hydrogen, etc. by radiolysisradiolysis. This report intends to state the result of radiation irradiation experiment with the purpose of examining the volume of hydrogen outbreak from Zirconium Molybdate Hihydrate of the compressed hulls. (author)

  13. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  14. Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2

    International Nuclear Information System (INIS)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    1986-01-01

    The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) and ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models

  15. Safety-related LWR research. Annual report 1993

    International Nuclear Information System (INIS)

    Hueper, R.

    1994-06-01

    The reactor safety R and D work of the Karlsruhe Nuclear Research Centre (KfK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1993 summarizes the results on LWR safety. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status at the end of 1993. (orig./HP) [de

  16. Least squares methodology applied to LWR-PV damage dosimetry, experience and expectations

    International Nuclear Information System (INIS)

    Wagschal, J.J.; Broadhead, B.L.; Maerker, R.E.

    1979-01-01

    The development of an advanced methodology for Light Water Reactors (LWR) Pressure Vessel (PV) damage dosimetry applications is the subject of an ongoing EPRI-sponsored research project at ORNL. This methodology includes a generalized least squares approach to a combination of data. The data include measured foil activations, evaluated cross sections and calculated fluxes. The uncertainties associated with the data as well as with the calculational methods are an essential component of this methodology. Activation measurements in two NBS benchmark neutron fields ( 252 Cf ISNF) and in a prototypic reactor field (Oak Ridge Pool Critical Assembly - PCA) are being analyzed using a generalized least squares method. The sensitivity of the results to the representation of the uncertainties (covariances) was carefully checked. Cross element covariances were found to be of utmost importance

  17. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  18. Strength of zirconium--titanium martensites and deformation behaviour

    International Nuclear Information System (INIS)

    Banerjee, S.; Vijayakar, S.J.; Krishnan, R.

    1978-01-01

    The deformation behavior of pure zirconium and of zirconium--titanium alloys containing 5, 10, 15 and 20 wt % titanium was studied in two heat treated conditions: furnace cooled and water quenched from the β phase field. By comparing the flow stresses of the furnace cooled α and the water quenched α' (martensite) structures it was possible to isolate the strengthening contributions of the martensitic structure (comprising the contributions due to the small size of the martensite units and to the distributions of defects like dislocations and internal twins) from those arising from the solid solution. The internally twinned plate martensite structure in the Zr--15% Ti and the Zr--20% Ti alloys was responsible for a significant increase in strength, while the strengthening due to the dislocated lath martensite structure in the more dilute alloys was only marginal. Stress relaxation experiments revealed that strengthening associated with the martensite structure was mainly due to an increase in the athermal component of the flow stress. The effectiveness of the lath boundaries and the (10 anti 11) twin boundaries in offering resistance to an approaching deformation front (either slip or twin) was examined. While the lath boundaries were found to be transparent with respect to the propagation of slip dislocations and deformation twins, a majority of plate as well as twin boundaries were effective barriers against their propagation. TEM observations showed an extensive accumulation of geometrically necessary dislocations in the plastically deformed twinned martensites. Enhanced work hardening was related to the geometric slip distances in these structures in accordance with Ashby's one parameter work hardening theory for plastically inhomogeneous materials. The effect of the martensite structure on different components of the flow stress (dependent on or independent of grain size and strain) was discussed

  19. Mechanical resistance of zirconium implant abutments: A review of the literature

    Science.gov (United States)

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  20. Synthesis, Characterization and Antimicrobial Activity of Zirconium (IV) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shobhana; Jain, Asha; Saxena, Sanjiv [Univ. of Rajasthan, Jaipur (India)

    2012-08-15

    Heteroleptic complexes of zirconium (IV) derived from bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones of the general formula ZrLL' (where L'H{sub 2}=RCNH(C{sub 6}H{sub 4})SC : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R=-C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl(p) and L'H{sub 2}=R'C : (NOH)C : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R' = -CH{sub 2}CH{sub 3}, -C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl (p) were prepared by the reactions of zirconium tetrachloride with disodium salts of Schiff bases (L Na{sub 2}) and oximes of heterocyclic β-diketones (L' Na{sub 2}) in 1:1:1 molar ratio in dry refluxing THF. The structures of these monomeric zirconium (IV) complexes were elucidated with the help of elemental analysis, molecular weight measurements, spectroscopic (IR, NMR and mass) studies. A distorted trigonal bipyramidal geometry may be suggested for these heteroleptic zirconium (IV) complexes. The ligands (bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones) and their heteroleptic complexes of zirconium (IV) were screened against A. flavus, P. aeruginesa and E. coli.

  1. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  2. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  3. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E.

    1995-03-01

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants

  4. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  5. Interrelationship between structure and corrosion behaviour of zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, T [Bayer A.G., Leverkusen (Germany, F.R.)

    1979-05-01

    Due to plant failures caused by the break-down of zirconium grade 702 subjected to sulphuric acid the structure and corrosion behaviour of welded and as delivered specimens were tested for various heat treatments. It was shown by structure investigations and electron microprobe analysis that the corrosion behaviour of zirconium (in boiling 65 pct sulphuric acid) is strongly infuenced by the structure, which in its turn is dependent on the grade of purity and the prehistory of the material. Type, amount, and distribution of residual elements or precipitations caused by them are responsible for the corrosion resistance. This is valid particularly for the element iron. The plant failures mentioned here coincided with the examination results. Measures to improve the chemical resistance of pure zirconium subjected to extremely aggressive media were derived.

  6. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  7. EUV lithography for 22nm half pitch and beyond: exploring resolution, LWR, and sensitivity tradeoffs

    Science.gov (United States)

    Putna, E. Steve; Younkin, Todd R.; Leeson, Michael; Caudillo, Roman; Bacuita, Terence; Shah, Uday; Chandhok, Manish

    2011-04-01

    The International Technology Roadmap for Semiconductors (ITRS) denotes Extreme Ultraviolet (EUV) lithography as a leading technology option for realizing the 22nm half pitch node and beyond. According to recent assessments made at the 2010 EUVL Symposium, the readiness of EUV materials remains one of the top risk items for EUV adoption. The main development issue regarding EUV resists has been how to simultaneously achieve high resolution, high sensitivity, and low line width roughness (LWR). This paper describes our strategy, the current status of EUV materials, and the integrated post-development LWR reduction efforts made at Intel Corporation. Data collected utilizing Intel's Micro- Exposure Tool (MET) is presented in order to examine the feasibility of establishing a resist process that simultaneously exhibits <=22nm half-pitch (HP) L/S resolution at <=11.3mJ/cm2 with <=3nm LWR.

  8. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  9. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  10. [The clinical application of zirconium-dioxide-ceramics. Case report].

    Science.gov (United States)

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  11. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  12. Distribution of zirconium in the nitric acid-water-TPB-diluent system

    International Nuclear Information System (INIS)

    Shu, J.; Floh de Araujo, B.

    1984-10-01

    This paper deals with the extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems. The main purpose is to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a mininum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon ziconium behaviour was also verified. With the data obtained it was possible to introduce some modification in the standard Purex flow-sheet with the increase of the decontamination of uranium from zirconium. 5 refs., 9 figs

  13. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    Science.gov (United States)

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  14. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  15. Separation process of zirconium and hafnium

    International Nuclear Information System (INIS)

    Hure, J.; Saint-James, R.

    1955-01-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO 3 - ions concentration, the role of the cation coming with NO 3 - , as well as the influence of the concentration of zirconium in the solution on the separation coefficient β = α Zr / α Hf . (M.B.) [fr

  16. Zirconium diselenite microstructures, formation and mechanism

    Science.gov (United States)

    Naik, Chandan C.; Salker, A. V.

    2018-04-01

    In this work, a series of microstructures of zirconium diselenite (Zr(SeO3)2) has been prepared via a simple precipitation method at room temperature without adding any organic surfactants. Phase purity of the sample has been checked by X-ray Diffraction. From the SEM, FESEM, and TEM images spheroid nanoparticles to the starfish-like structure of zirconium diselenite are detected. The morphological evolution processes were investigated carefully following time-dependent experiments and a growth mechanism has been proposed. Two different crystal growth processes, the oriented attachment process accompanying the Ostwald ripening process were held responsible for the formation of a structure resembling starfish having four arms.

  17. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  18. Information on the evolution of severe LWR fuel element damage obtained in the CORA program

    International Nuclear Information System (INIS)

    Schanz, G.; Hagen, S.; Hofmann, P.; Sepold, L.; Schumacher, G.

    1992-01-01

    In the CORA program a series of out-of-pile experiments on LWR severe accidental situations is being performed, in which test bundles of LWR typical components and arrangements (PWR, BWR) are exposed to temperature transients up to about 2400deg C under flowing steam. The individual features of the facility, the test conduct, and the evaluation will be presented. In the frame of the international cooperation in severe fuel damage (SFD) programs the CORA tests are contributing confirmatory and complementary informations to the results from the limited number of in-pile tests. The identification of basic phenomena of the fuel element destruction, observed as a function of temperature, is supported by separate-effects test results. Most important mechanisms are the steam oxidation of the Zircaloy cladding, which determines the temperature escalation, the chemical interaction between UO 2 fuel and cladding, which dominates fuel liquefaction, relocation and resulting blockage formation, as well as chemical interactions with Inconel spacer grids and absorber units ((Ag, In, Cd) alloy or B 4 C), which are leading to extensive low-temperature melt formation around 1200deg C. Interrelations between those basic phenomena, resulting for example in cladding deformation ('flowering') and the dramatic hydrogen formation in response to the fast cooling of a hot bundle by cold water ('quenching') are determining the evolution paths of fuel element destruction, which are to be identified. (orig.)

  19. Hydrogen content in titanium and a titanium–zirconium alloy after acid etching

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Matthias J.; Walter, Martin S. [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Lyngstadaas, S. Petter [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway); Wintermantel, Erich [Institute of Medical and Polymer Engineering, Chair of Medical Engineering, Technische Universität München, Boltzmannstrasse 15, 85748 Garching (Germany); Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo (Norway)

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium–zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p < 0.01) on the titanium–zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium. - Highlights: ► TiZr alloy showed increased hydrogen levels over Ti. ► The alloying element Zr appeared to catalyze hydrogen absorption in Ti. ► Surface roughness was significantly increased for the TiZr alloy over Ti. ► TiZr alloy revealed nanostructures not observed for Ti.

  20. Zirconium-made equipment for the new La Hague reprocessing plants

    International Nuclear Information System (INIS)

    Decours, J.; Demay, R.; Bernard, C.; Mouroux, J.P.; Simonnet, J.

    1991-01-01

    The use of zirconium was developed to solve some problems of severe corrosion in boiling nitric medium, and to guarantee the service life of the equipment concerned. The paper presents the experience gained since the early 1970s, when the first units made of zirconium were used in French reprocessing plants. For the new La Hague UP3 and UP2 800 plants, it was decided to extend the use of zirconium to make large-scale equipment and, to do so, a major R and D program was implemented, of which the main results are presented

  1. In-situ stabilization of radioactive zirconium swarf

    Science.gov (United States)

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  2. SCDAP/RELAP5/MOD2 code manual

    International Nuclear Information System (INIS)

    Hohorst, J.K.

    1990-02-01

    This report describes the materials properties correlations and computer subcodes (MATPRO) developed for use with various light water reactor (LWR) accident analysis computer programs. Formulation of the materials properties are generally semiempirical in nature. The materials properties subcodes contained in this document are for uranium, uranium dioxide, mixed uranium-plutonium dioxide fuel, zircaloy cladding, zirconium dioxide, stainless steel, stainless steel oxide, silver-indium-cadmium alloy, boron carbide, Inconel 718, zirconium-uranium-oxygen melts, and fill gas mixtures. 452 refs., 230 figs., 139 tabs

  3. SCDAP/RELAP5/MOD2 code manual

    Energy Technology Data Exchange (ETDEWEB)

    Hohorst, J.K. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-02-01

    This report describes the materials properties correlations and computer subcodes (MATPRO) developed for use with various light water reactor (LWR) accident analysis computer programs. Formulation of the materials properties are generally semiempirical in nature. The materials properties subcodes contained in this document are for uranium, uranium dioxide, mixed uranium-plutonium dioxide fuel, zircaloy cladding, zirconium dioxide, stainless steel, stainless steel oxide, silver-indium-cadmium alloy, boron carbide, Inconel 718, zirconium-uranium-oxygen melts, and fill gas mixtures. 452 refs., 230 figs., 139 tabs.

  4. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  5. Study of some properties of zirconium phosphate; Etude de quelques proprietes du phosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Prospert, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-05-01

    Zirconium phosphate has been studied with a view to using it as an ion exchanger: the first objective was to develop a method of preparation easy to apply and also reproducible. To this end, several tests were carried out varying the molar ratios of phosphorus and of zirconium. Some physical properties such as the diffraction of X-rays were examined. The work then involved certain chemical properties, particularly the percentages of free water and structural water given by the loss on calcination, the Karl-Fisher method and the weight losses by thermogravimetry. Finally an attempts was made to apply the exchanger to the separation of alkaline ions. The static tests showed that the order of fixation of these ions was Cs{sup +} > Rb{sup +} >> K{sup +} > Na{sup +}. Tests with columns showed that Na{sup +} and K{sup +} were easily separable, as was the Rb{sup +}-Cs{sup +} mixture, this last pair being fairly difficult to dissociate. (author) [French] Le phosphate de zirconium a ete etudie en vue de son utilisation comme echangeur d'ions: le premier but a atteindre a ete de mettre au point une preparation pouvant se reveler facilement utilisable ainsi qu'aisement reproductible. A cet effet, plusieurs essais ont ete effectues en faisant varier les rapports molaires du phosphore et du zirconium. Quelques proprietes physiques, telle la diffraction des rayons X, ont ete abordees. Ensuite, l'etude a porte sur certaines proprietes chimiques, particulierement les pourcentages d'eau libre et d'eau de structure par des pertes au feu, utilisation de la methode de Karl-Fisher, ainsi que des pertes de poids a la thenmobalance. Enfin, on a tente d'utiliser l'echangeur a la separation des ions alcalins. Les etudes statiques ont permis de constater que l'ordre de fixation de ces ions etait Cs{sup +} > Rb{sup +} >> K{sup +} > Na{sup +}. Les essais effectues en colonne ont montre que Na{sup +} et K{sup +} etaient aisement separables entre eux, ainsi que du couple Rb{sup +}-Cs{sup +}, ce

  6. Fission product release from high gap-inventory LWR fuel under LOCA conditions

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.

    1980-01-01

    Fission product release tests were performed with light water reactor (LWR) fuel rod segments containing large amounts of cesium and iodine in the pellet-to-cladding gap space in order to check the validity of the previously published Source Term Model for this type of fuel. The model describes the release of fission product cesium and iodine from LWR fuel rods for controlled loss-of-coolant accident (LOCA) transients in the temperature range 500 to 1200 0 C. The basis for the model was test data obtained with simulated fuel rods and commercial fuel irradiated to high burnup but containing relatively small amounts of cesium and iodine in the pellet-to-cladding gap space

  7. ORIGEN2 libraries based on JENDL-3.2 for LWR-MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Katakura, Jun-ichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Onoue, Masaaki; Matsumoto, Hideki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2000-11-01

    A set of ORIGEN2 libraries for LWR MOX fuels was developed based on JENDL-3.2. The libraries were compiled with SWAT using the specification of MOX fuels that will be used in nuclear power reactors in Japan. The verification of the libraries were performed by the analyses of post irradiation examinations for the fuels from European PWR. By the analysis of PIE data from PWR in United States, the comparison was made between calculation and experimental results in the case of that parameters for making the libraries are different from irradiation conditions. These new libraries for LWR MOX fuels are packaged in ORLIBJ32, the libraries released in 1999. (author)

  8. Concept Feasibility Report for Electroplating Zirconium onto Uranium Foil - Year 2

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meinhardt, Kerry D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pederson, Larry R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    The Fuel Fabrication Capability within the U.S. High Performance Research Reactor Conversion Program is funded through the National Nuclear Security Administration (NNSA) NA-26 (Office of Material Management and Minimization). An investigation was commissioned to determine the feasibility of using electroplating techniques to apply a coating of zirconium onto depleted uranium/molybdenum alloy (U-10Mo). Electroplating would provide an alternative method to the existing process of hot roll-bonding zirconium foil onto the U-10Mo fuel foil during the fabrication of fuel elements for high-performance research reactors. The objective of this research was to develop a reproducible and scalable plating process that will produce a uniform, 25 μm thick zirconium metal coating on U-10Mo foil. In previous work, Pacific Northwest National Laboratory (PNNL) established a molten salt electroplating apparatus and protocol to plate zirconium metal onto molybdenum foil (Coffey 2015). During this second year of the research, PNNL furthered this work by moving to the U-10Mo alloy system (90 percent uranium:10 percent molybdenum). The original plating apparatus was disassembled and re-assembled in a laboratory capable of handling low-level radioactive materials. Initially, the work followed the previous year’s approach, and the salt bath composition was targeted at the eutectic composition (LiF:NaF:ZrF4 = 26:37:37 mol%). Early results indicated that the formation of uranium fluoride compounds would be problematic. Other salt bath compositions were investigated in order to eliminate the uranium fluoride production (LiF:NaF = 61:39 mol% and LiF:NaF:KF = 46.5:11.5:42 mol% ). Zirconium metal was used as the crucible for the molten salt. Three plating methods were used—isopotential, galvano static, and pulsed plating. The molten salt method for zirconium metal application provided high-quality plating on molybdenum in PNNL’s previous work. A key advantage of this approach is that

  9. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  10. Highly corrosion resistant zirconium based alloy for reactor structural material

    International Nuclear Information System (INIS)

    Ito, Yoichi.

    1996-01-01

    The alloy of the present invention is a zirconium based alloy comprising tin (Sn), chromium (Cr), nickel (Ni) and iron (Fe) in zirconium (Zr). The amount of silicon (Si) as an impurity is not more than 60ppm. It is preferred that Sn is from 0.9 to 1.5wt%, that of Cr is from 0.05 to 0.15wt%, and (Fe + Ni) is from 0.17 to 0.5wt%. If not less than 0.12wt% of Fe is added, resistance against nodular corrosion is improved. The upper limit of Fe is preferably 0.40wt% from a view point of uniform suppression for the corrosion. The nodular corrosion can be suppressed by reducing the amount of Si-rich deposition product in the zirconium based alloy. Accordingly, a highly corrosion resistant zirconium based alloy improved for the corrosion resistance of zircaloy-2 and usable for a fuel cladding tube of a BWR type reactor can be obtained. (I.N.)

  11. An overview of advanced high-strength nickel-base alloys for LWR applications

    International Nuclear Information System (INIS)

    Prybylowski, J.; Ballinger, R.G.

    1989-01-01

    This paper reviews our current understanding of the behavior of high strength nickel base alloys used in light water reactor (LWR) applications. Emphasis is placed on understanding the fundamental mechanisms controlling crack propagation in these environments. To provide a foundation for this survey, general mechanisms of stress corrosion cracking and hydrogen embrittlement are first reviewed. The behavior of high strength nickel base alloys in LWR environments, as well as in other relevant environments is then reviewed. Suggested mechanisms of crack propagation are discussed. Alternate alloys and microstructural modifications that may result in improved behavior are presented. It is now clear that, at temperatures near 100C, alloy X-750, the predominant high strength nickel base alloy used today in LWR applications, is susceptible to hydrogen embrittlement. A review of published data from hydrogen embrittlement studies of nickel base superalloys during electrolytic charging and in hydrogen sulfide/brine solutions suggests that other nickel base superalloys are available possessing resistance to hydrogen embrittlement superior to that of alloy X-750. Available results of tests in gaseous hydrogen suggest that reduced grain boundary precipitation and a fine distribution of intragranular precipitates that act as irreversible hydrogen traps is the optimum microstructure for hydrogen embrittlement resistance. 42 refs., 2 figs., 5 tabs

  12. Method of fabricating zirconium metal for use in composite type fuel cans

    International Nuclear Information System (INIS)

    Imahashi, Hiromichi; Inagaki, Masatoshi; Akabori, Kimihiko; Tada, Naofumi; Yasuda, Tetsuro.

    1985-01-01

    Purpose: To mass produce zirconium metal for fuel cans with less radiation hardening. Method: Zirconium sponges as raw material are inserted in a hearth mold and a procedure of melting the zirconium sponges portionwise by using a melting furnace having electron beams as a heat source while moving the hearth is repeated at least for once. Then, the rod-like ingot after melting is melted again in a vacuum or inert gas atmosphere into an ingot of a low oxygen density capable of fabrication. A composite fuel can billet is formed by using the thus obtained zirconium ingot and a zircalloy, and a predetermined composite type fuel can is manufactured by way of hot extrusion and pipe drawing fabrication. The raw material usable herein is zirconium sponge with an oxygen density of 400 ppm or higher and the content of impurity other than oxygen is between 1000 - 5000 ppm in total, or the molten material thereof. (Kamimura, M.)

  13. History of the development of zirconium alloys for use in nuclear reactors

    International Nuclear Information System (INIS)

    Rickover, H.G.; Geiger, L.D.; Lustman, B.

    1975-01-01

    The technical problems and the major decisions made during the early development of zirconium alloys for use in naval reactors are outlined. A summary is given of the development of commercial sources of supply for zirconium and hafnium metal over the period 1950 to 1965, and the problems encountered in obtaining zirconium needed for early naval prototype and shipboard reactors are identified. Steps taken in the Government procurement process are described and statistics on production amounts, prices, and inventory are included. Also included are the technical aspects associated with the development of zirconium for water-cooled nuclear reactors, beginning in early 1949 when the Bettis Atomic Power Laboratory was established as a part of the Naval Reactors Program. While in the course of the next 25 years, small-scale investigations were performed on other potential core structural materials such as stainless steel, niobium, aluminum, and beryllium, the pressure for continual development, improvement, and application of zirconium was predominant and unrelenting. (U.S.)

  14. Study of the production of zirconium tetrachloride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.

    1983-01-01

    The studies carried out on the production of zirconium tetrachloride by chlorination of pure zirconium oxide with carbon tetrachloride and chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride, the chlorination efficiency increases with the rise in temperature at intervals between 450 and 750 0 C. The flow of the carbon tetrachloride vapour was 1.50l/min. Higher temperatures of 700 to 850 0 C were used for the zirconium oxide chlorination in the presence of carbon, and the flowrate of the chlorine gas used in the process was 0.50 l/min. Pure zirconium oxide chlorination as well as zirconium oxide - carbon misture chlorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constant, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  15. Critical assessment of finite element analysis applied to metal–oxide interface roughness in oxidising zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Platt, P., E-mail: Philip.Platt@manchester.ac.uk [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Frankel, P. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom); Gass, M. [AMEC, Walton House, Faraday Street, Birchwood Park, Risley, Warrington WA3 6GA (United Kingdom); Preuss, M. [University of Manchester, School of Materials, Materials Performance Centre, Manchester M13 9PL (United Kingdom)

    2015-09-15

    As a nuclear fuel cladding material, zirconium alloys act as a barrier between the fuel and pressurised steam or lithiated water environment. Controlling degradation mechanisms such as oxidation is essential to extending the in-service lifetime of the fuel. At temperatures of ∼360 °C zirconium alloys are known to exhibit cyclical, approximately cubic corrosion kinetics. With acceleration in the oxidation kinetics occurring every ∼2 μm of oxide growth, and being associated with the formation of a network of lateral cracks. Finite element analysis has been used previously to explain the lateral crack formation by the development of localised out-of-plane tensile stresses at the metal–oxide interface. This work uses the Abaqus finite element code to assess critically current approaches to representing the oxidation of zirconium alloys, with relation to undulations at the metal–oxide interface and localised stress generation. This includes comparison of axisymmetric and 3D quartered modelling approaches, and investigates the effect of interface geometry and plasticity in the metal substrate. Particular focus is placed on the application of the anisotropic strain tensor used to represent the oxidation mechanism, which is typically applied with a fixed coordinate system. Assessment of the impact of the tensor showed that 99% of the localised tensile stresses originated from the out-of-plane component of the strain tensor, rather than the in-plane expansion as was previously thought. Discussion is given to the difficulties associated with this modelling approach and the requirements for future simulations of the oxidation of zirconium alloys.

  16. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Aktuğ, Salim Levent, E-mail: saktug@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Durdu, Salih, E-mail: durdusalih@gmail.com [The Department of Industrial Engineering, Giresun University, Merkez, Giresun 28200 (Turkey); Yalçın, Emine, E-mail: emine.yalcin@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Çavuşoğlu, Kültigin, E-mail: kultigin.cavusoglu@giresun.edu.tr [The Department of Biology, Giresun University, Merkez, Giresun 28200 (Turkey); Usta, Metin, E-mail: ustam@gtu.edu.tr [The Department of Materials Science and Engineering, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Materials Institute, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470 (Turkey)

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28 days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370 A/cm{sup 2} was minimum compared to uncoated zirconium coated at 0.260 and 0.292 A/cm{sup 2}. The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. - Highlights: • Hydroxyapatite was formed on zirconium at different current densities by single-step plasma electrolytic oxidation. • The amount of hydroxyapatite and calcium-based phases increased with

  17. Development of zirconium alloy tube manufacturing technology

    International Nuclear Information System (INIS)

    Kim, In Kyu; Park, Chan Hyun; Lee, Seung Hwan; Chung, Sun Kyo

    2009-01-01

    In late 2004, Korea Nuclear Fuel Company (KNF) launched a government funded joint development program with Westinghouse Electric Co. (WEC) to establish zirconium alloy tube manufacturing technology in Korea. Through this program, KNF and WEC have developed a state of the art facility to manufacture high quality nuclear tubes. KNF performed equipment qualification tests for each manufacturing machine with the support of WEC, and independently carried out product qualification tests for each tube product to be commercially produced. Apart from those tests, characterization test program consisting of specification test and characterization test was developed by KNF and WEC to demonstrate to customers of KNF the quality equivalency of products manufactured by KNF and WEC plants respectively. As part of establishment of performance evaluation technology for zirconium alloy tube in Korea, KNF carried out analyses of materials produced for the characterization test program using the most advanced techniques. Thanks to the accomplishment of the development of zirconium alloy tube manufacturing technology, KNF is expected to acquire positive spin off benefits in terms of technology and economy in the near future

  18. Lithium aluminate/zirconium material useful in the production of tritium

    Science.gov (United States)

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  19. Characterisation of neutron irradiation damage in zirconium alloys - a 'Round Robin' experiment

    International Nuclear Information System (INIS)

    Kelly, P.M.; Blake, R.G.; Jostsons, A.

    1977-01-01

    The nature of the damage structure in the neutron-irradiated zirconium specimens supplied as part of an international 'Round Robin' experiment has been studied using transmission electron microscopy. The damage structure consists entirely of a/3 dislocation loops and no evidence has been found for c component loops. Both vacancy and interstitial loops were found in specimens where inside/outside contrast analysis was possible. Quantitative measurements of loop size distributions and loop concentrations are reported. All specimens exhibited corduroy contrast to varying degress. (author)

  20. Cracking in LWR RPV head penetrations. Working material. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1995-01-01

    The IAEA Specialists' Meeting on Cracking in LWR RPV Head Penetrations was held at the ASTM Headquarters, Philadelphia, Pennsylvania, on May 2-4, 1995. It was attended by 39 participants from 12 countries. The meeting was held in the framework of the IAEA International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP) and was organized and sponsored by the Oak Ridge National Laboratory and the U.S. Nuclear Regulatory Commission. The purpose of the meeting was to review experience in the field for ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. Presentations were aimed at achieving a better understanding of the behaviour of reactor component materials, providing guidance and recommendations to assure reliability and adequate performance, and proposing directions for further investigations. Refs, figs and tabs

  1. Cracking in LWR RPV head penetrations. Working material. Proceedings of a specialists meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The IAEA Specialists` Meeting on Cracking in LWR RPV Head Penetrations was held at the ASTM Headquarters, Philadelphia, Pennsylvania, on May 2-4, 1995. It was attended by 39 participants from 12 countries. The meeting was held in the framework of the IAEA International Working Group on Life Management of Nuclear Power Plants (IWG-LMNPP) and was organized and sponsored by the Oak Ridge National Laboratory and the U.S. Nuclear Regulatory Commission. The purpose of the meeting was to review experience in the field for ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. Presentations were aimed at achieving a better understanding of the behaviour of reactor component materials, providing guidance and recommendations to assure reliability and adequate performance, and proposing directions for further investigations. Refs, figs and tabs.

  2. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    Science.gov (United States)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  3. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  4. Mechanical properties and annealing texture of zirconium sheets

    International Nuclear Information System (INIS)

    Hanif-ur-Rehman; Khawaja, F.A.

    1996-01-01

    Mechanical properties like yield strength (YS), ultimate tensile strength(UTS), percentage elongation and annealing texture has been studied in sheets of commercially pure zirconium. The YS and UTS decrease as a function of annealing temperature up to 600 V, but both quantities have maximum value in sample annealed at 800 deg. C. The percentage elongation decreased with increase in annealing temperature up to 600 deg. C. A slight decrease and minimum value of percentage elongation was observed at 650 and 800 C respectively. The texture development in the annealed samples has been studied by the X-ray diffraction method. The sampled annealed at 800 deg. C showed a texture component (0001) [01 bar 10] with orientation density of about 8 times random, while the samples annealed at 600,650 and 700 deg. C showed a texture component (0001)[2 bar 110] with orientation density of about 5 times random. Thus it is concluded, that the texture component (0001)[2 bar 110] and (0001)[01 bar 10] at 650 and 800 geg. C respectively, may be the responsible for the increase in YS and UTS and decrease in percentage elongation at these temperatures. (author)

  5. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  6. Recycle of LWR [Light Water Reactor] actinides to an IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs

  7. Characteristics of Pilger Die Materials for Nuclear Zirconium Alloy Tubes

    International Nuclear Information System (INIS)

    Park, Ki Bum; Kim, In Kyu; Park, Min Young; Kahng, Jong Yeol; Kim, Sun Doo

    2011-01-01

    KEPCO Nuclear Fuel Company's (KEPCO NF) tube manufacturing facility, Techno Special Alloy (TSA) Plant, has started cold pilgering operation since 2008. It is obvious that the cold pilgering process is one of the key processes controlling the quality and the characteristics of the tubes manufactured, i.e. nuclear zirconium alloy tube in KEPCO NF. Cold pilgering is a rolling process for forming metal tubes in which diameter and wall thickness are reduced in a number of forming steps, using ring dies at outside of the tube and a curved mandrel at inside to reduce tube cross sections by up to 90 percent. The OD size of tube is reduced by a pair of dies, and ID size and wall thickness is controlled simultaneously by mandrel. During the cold pilgering process, both tools are the critical components for providing qualified tube. Development of pilger die and mandrel has been a significant importance in the zirconium tube manufacturing and a major goal of KEPCO NF. The objective of this study is to evaluate the life time of pilger die during pilgering. Therefore, a comparison of the heat treatment and mechanical properties of between AISI 52100 and AISI H13 materials was made in this study

  8. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    Kjellbert, N.

    1978-03-01

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  9. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  10. low dose irradiation growth in zirconium

    International Nuclear Information System (INIS)

    Fortis, A.M.

    1987-01-01

    Low dose neutron irradiation growth in textured and recrystallized zirconium, is studied, at the Candu Reactors Calandria temperature (340 K) and at 77 K. It was necessary to design and build 1: A facility to irradiate at high temperatures, which was installed in the Argentine Atomic Energy Commission's RA1 Reactor; 2: Devices to carry out thermal recoveries, and 3: Devices for 'in situ' measurements of dimensional changes. The first growth kinetics curves were obtained at 365 K and at 77 K in a cryostat under neutron fluxes of similar spectra. Irradiation growth experiments were made in zirconium doped with fissionable material (0,1 at % 235 U). In this way an equivalent dose two orders of magnitude greater than the reactor's fast neutrons dose was obtained, significantly reducing the irradiation time. The specimens used were bimetallic couples, thus obtaining a great accuracy in the measurements. The results allow to determine that the dislocation loops are the main cause of irradiation growth in recrystallized zirconium. Furthermore, it is shown the importance of 'in situ' measurements as a way to avoid the effect that temperature changes have in the final growth measurement; since they can modify the residual stresses and the overconcentrations of defects. (M.E.L.) [es

  11. Study of zirconium-addition binary systems

    International Nuclear Information System (INIS)

    Wozniakova, B.; Kuchar, L.

    1975-01-01

    The curves are given of the solid and the liquid of binary zirconium-addition systems. Most additions reduce the melting temperature of zirconium. The only known additions to increase the melting temperature are nitrogen, oxygen and hafnium. Also given are the transformation curves of the systems and the elements are given which reduce or raise the temperature of α-β transformation. From the Mendeleev table into which are plotted the curves of the solid and the liquid of binary systems it is possible to predict the properties of unknown binary systems. For the calculations of the curves of the solid and the liquid, 1860 degC was taken as the temperature of zirconium melting. For the calculations of transformation curves, 865 degC was taken as the temperature of α-β transformation. The equations are given of the curves of the solid and the liquid and of the transformation curves of some Zr-addition systems. Also given are the calculated equilibrium distribution coefficients and the equilibrium distribution coefficients of the transformation of additions in Zr and their limit values for temperatures approximating the melting point or the temperature of the transformation of pure Zr, and the values pertaining to eutectic and peritectic or eutectoid and peritectoid temperatures. (J.B.)

  12. Bioremediation of zirconium from aqueous solution by coriolus versicolor: process optimization

    International Nuclear Information System (INIS)

    Amin, M.; Bhatti, H. N.; Sadaf, S.

    2013-01-01

    In the present study the potential of live mycelia of Coriolus versicolor was explored for the removal of zirconium from simulated aqueous solution. Optimum experimental parameters for the bioremediation of zirconium using C. versicolor biomass have been investigated by studying the effect of mycelia dose, concentration of zirconium, contact time and temperature. The isothermal studies indicated that the ongoing bioremediation process was exothermic in nature and obeyed Langmuir adsorption isotherm model. The Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) of bioremediation were also determined. The result showed that bioremediation of zirconium by live C. versicolor was feasible and spontaneous at room temperature. The equilibrium data verified the involvement of chemisorption during the bioremediation. The kinetic data indicated the operation of pseudo-second order process during the biosorption of zirconium from aqueous solution. Maximum bioremediation capacity (110.75 mg/g) of C. versicolor was observed under optimum operational conditions: pH 4.5, biomass dose 0.05 mg/100 mL, contact time 6 h and temperature 30 degree C. The results showed that C. versicolor could be used for bioremediation of heavy metal ions from aqueous systems. (author)

  13. Metholology for the selection of LWR safety R and D projects. Phase I, status report

    International Nuclear Information System (INIS)

    El-Sheikh, K.A.

    1980-03-01

    The objective of the LWR R and D Selection Methodology Program is to develop and demonstrate an R and D selection methodology appropriate for LWR safety technology. This report documents the development work from the program beginning in April, 1979 to the end of Fiscal Year 1979. The scope of work for this period included three tasks; methodology review (Task 1), measures development (Task 2), and methodology development for the first phase of application (Task 3). The accomplishments of these tasks are presented

  14. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  15. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  16. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  17. Synthesis, characterization and optical properties of novel N donor ligands-chelated zirconium(IV) complexes

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Mohajerani, Ezeddin; Khabbazi, Amir

    2012-11-01

    Novel zirconium complexes have been synthesized by using a mixture of zirconium nitrate, 1,2,4,5-benzen tetracarboxylic acid (H4btec), 1,10-phenanthroline(phen) and potassium thiocyanate. Monodentate coordination mode of btec acid for all complexes was investigated by FT-IR spectroscopy. The complexes were also characterized by UV-Vis, 1H NMR, CHN, ICP-AES. The reaction details and features were described and discussed. The photoluminescence emission of seven zirconium complexes was shown two series peaks: first, sharp and intense bands from 300 to 500 nm and broadened with less intensity from 650 to 750 nm for the second bands. Each of the zirconium compounds were doped in PVK:PBD blend as host. The ratio of zirconium complexes for each type were modified 8 wt.% in PVK:PBD(100:40). The electroluminescence spectra of zirconium complexes were indicated a red shift rather than PVK:PBD blend. We suggest that the electroplex occurring at PVK-Zr complex interface.

  18. An evaluated neutronic data file for elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Chiba, S.

    1994-09-01

    A comprehensive evaluated neutronic data file for elemental zirconium is derived and presented in the ENDF/B-VI formats. The derivation is based upon measured microscopic nuclear data, augmented by model calculations as necessary. The primary objective is a quality contemporary file suitable for fission-reactor development extending from conventional thermal to fast and innovative systems. This new file is a significant improvement over previously available evaluated zirconium files, in part, as a consequence of extensive new experimental measurements reported elsewhere

  19. Effect of zirconium addition on the recrystallization behaviour of a ...

    Indian Academy of Sciences (India)

    In the present work, zirconium was added to a commercial Al–Cu–Mg alloy and by heat treatment Al3Zr particles were precipitated and after forging, the grain size was an order of magnitude lower than the alloy without zirconium. Transmission electron microscopy was employed to characterize the second phase particles, ...

  20. Light water reactors development in Japan. (1) Introduction of LWR technology (PWR)

    International Nuclear Information System (INIS)

    Yamada, Ichita; Suzuki, Shigemitsu

    2008-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. Introduction of LWR technology (PWR) in Japan was reviewed in this article. Kansai Electric Power imported the Mihama-1 - a 340 MWe PWR built by Westinghouse Corp. It began operating in 1970 to supply power to the World Exposition (EXPO70). There followed a period in which designs was purchased from US vendors and they were constructed with the co-operation of Mitsubishi Heavy Industry, who would then receive a license to build similar plants in Japan and develop the capacity to design and construct PWRs by itself. Progress of designs, fabrications, project management and construction of PWRs were reviewed from technology transfer to its autonomy age. (T. Tanaka)

  1. Growth and characterization of oxide layers on zirconium alloys

    International Nuclear Information System (INIS)

    Maroto, A.J.G.; Bordoni, R.; Villegas, M.; Blesa, M.A.; Olmedo, A.M.; Iglesias, A.; Rigotti, G.

    1997-01-01

    Corrosion behaviour in aqueous media at high temperature of zirconium alloys has been extensively studied in order to elucidate the corrosion mechanism and kinetics. The characterization of the morphology and microstructure of these oxides through the different stages of oxide growth may contribute to understand their corrosion mechanism. Argentina has initiated a research program to correlate long term in and out-reactor corrosion of these alloys. This paper reports a comparative study of out of pile oxidation of Zr-2.5Nb and Zry-4, which are structural materials of in-core components of nuclear power plants. Kinetic data at different temperatures and microstructural characterization of the oxide films are presented. (author). 25 refs, 18 figs, 1 tab

  2. Growth and characterization of oxide layers on zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, A J.G.; Bordoni, R; Villegas, M; Blesa, M A; Olmedo, A M; Iglesias, A; Rigotti, G [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1997-02-01

    Corrosion behaviour in aqueous media at high temperature of zirconium alloys has been extensively studied in order to elucidate the corrosion mechanism and kinetics. The characterization of the morphology and microstructure of these oxides through the different stages of oxide growth may contribute to understand their corrosion mechanism. Argentina has initiated a research program to correlate long term in and out-reactor corrosion of these alloys. This paper reports a comparative study of out of pile oxidation of Zr-2.5Nb and Zry-4, which are structural materials of in-core components of nuclear power plants. Kinetic data at different temperatures and microstructural characterization of the oxide films are presented. (author). 25 refs, 18 figs, 1 tab.

  3. The addition zirconium effect on the solubility and activity of sulfur in liquid iron

    International Nuclear Information System (INIS)

    Burylev, B.P.; Mojsov, L.P.

    1994-01-01

    Critical analysis of reference data on thermodynamic properties of zirconium sulfides is conducted for evaluation of zirconium desulfonation ability in liquid steel. Sulfur solubility dependence on zirconium concentration in liquid iron is presented. Curves of sulfur solubility in liquid iron in the presence of other elements, including titanium, manganese, vanadium and chromium are presented for comparison. It is shown that equilibrium concentration of sulfur is much lower than standard sulfur concentrations in steel, therefore zirconium appears to be the best desulfonator among the metals considered

  4. A microstuctural study on accelerated zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Sohn, Seung Bum; Oh, Seung Jun; Jang, Jung Nam; Kim, Yong Soo; Jung, Yong Hwan; Baek, Jong Hyuk; Park, Jung Yong

    2005-01-01

    It has been reported that the effect of thermal redistribution of hydrides across the zirconium metaloxide interface, coupled with thermal feedback on the metal-oxide interface, is a dominating factor in the accelerated oxidation in zirconium alloys cladding PWR fuel. Basically this influence determines characteristic of oxide layer. Influence estimation for corrosion oxide layer due to hydrogen / hydride carried out because of investigation on the kinetic on accelerated oxidation due to hydride precipitation was preceded. Generally, it is known that ZrO 2 tetragonal layer structures play an important role as a barrier layer. So analysing the ZrO 2 monoclinic and tetragonal structure distribution is our main aim. Especially, this study focused on the hydride effects. In other words, the difference of crystal structure distribution between pre-hydrided and without hydrided specimen is just expected results. Experimental results of microstructure at zirconium metal-oxide interface through TEM and EBSD analysis was confirmed

  5. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  6. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, P.G.; Souza, J.R. de

    1991-01-01

    A gravimetric method for zirconium determination in refractories is described. X-ray fluorescence analysis is also employed in this experiment and considerations about interfering elements are presented. (M.V.M.)

  7. Study of the production of Zirconium tetracheoride by chlorination of its oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Abrao, A.

    1987-08-01

    This work describes the studies carried out on the production of zirconium tetrachloride by chlorianation of pure zirconium oxide with (a) carbon tetrachloride and (b) chlorine in the presence of carbon. In the process of chlorination with carbon tetrachloride it has been determined that efficiency increases with the rising of temperature between 450 and 750 0 C. The flow rate of the carbon tetrachloride vapour used was 1.50L/min. For the zirconium oxide chlorination in the presence of carbon, the study has been carried out at temperatures between 700 and 850 0 C and the flow rate of the chlorine gas used in the process was 0,50/Lmin. Pure zirconium oxide chlorination as well as zirconium oxide-carbon mixture chlrorination have been studied in connection with the time of reaction at different temperatures and the apparent rate constants, the activation energies, the order of reaction in relation to the concentration of the gases (CCl 4 and Cl 2 ) and the content of carbon in the pellet have all been determined. (Author) [pt

  8. Safety criteria related to microheterogeneities in LWR mixed oxide fuels

    International Nuclear Information System (INIS)

    Renard, A.; Mostin, N.

    1978-01-01

    The main safety aspets of PuO 2 microheterogeneities in the pellets of LWR mixed oxide fuels are reviewed. Points of interest are studied, especially the transient behaviour in accidental conditions and criteria are deduced for use in the specification and quality control of the fabricated product. (author)

  9. Fluorimetric determination of uranium in zirconium and zircaloy alloys

    International Nuclear Information System (INIS)

    Acosta L, E.

    1991-05-01

    The objective of this procedure is to determine microquantities of uranium in zirconium and zircaloy alloys. The report also covers the determination of uranium in zirconium alloys and zircaloy in the range from 0.25 to 20 ppm on 1 g of base sample of radioactive material. These limit its can be variable if the size of the used aliquot one is changed for the final determination of uranium. (Author)

  10. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  11. Preparation of zirconium molybdate gel generator

    International Nuclear Information System (INIS)

    Charoen, S.; Aungurarat, G.; Laohawilai, S.; Sukontpradit, W.; Jingjit, S.

    1994-01-01

    A procedure for preparation of 99mTc generator based on conversion to zirconium molybdate gel of 99Mo produced by neutron activation was reported. The gel was prepared from zirconium oxychloride solution pH 1.6, ammonium molybdate solution pH 3-5 and mole ratio of Zr:Mo 1:1 which had water content about 7-8%. Small generators containing 1-1.5 g of gel were eluted with average efficiencies of 77% and the activity peak in the first 3 ml of 10 ml of saline solution. The amount of Mo and Zr in eluates were below the acceptance limit. The gel generators of activity about 100 mCi were prepared and had the good performance in elutability and stability

  12. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  13. I2S-LWR Activation Analysis of Heat Exchangers Using Hybrid Shielding Methodology with SCALE6.1

    International Nuclear Information System (INIS)

    Matijevic, M.; Pevec, D.; Jecmenica, R.

    2016-01-01

    The Integral Inherently Safe Light Water Reactor (I2S-LWR) concept developed by Georgia Tech is a novel PWR reactor delivering electric power of 1000 MWe while implementing inherent safety features typical for Generation III+ small modular reactors. The main safety feature is based on integral primary circuit configuration, bringing together compact design of the reactor core with 121 fuel assembly (FA), control rod drive mechanism (CRDM), 8 primary heat exchangers (PHE), 4 passive decay heat removal systems (DHRS), 8 pumps, and other integral components. A high power density core based on silicide fuel is selected to achieve a high thermal power which is extracted with PHEs placed in the annual region between the barrel and the vessel. The complex and integrated design of I2S-LWR leads to activation of integral components, mainly made from stainless steel, so accurate and precise Monte Carlo (MC) simulations are needed to quantify potential dose rates to personnel during routine maintenance operation. This shielding problem is therefore very challenging one, posing a non-trivial neutron flux solution in a phase space. This paper presents the performance of the hybrid shielding methodologies CADIS/FW-CADIS implemented in the MAVRIC sequence of the SCALE6.1 code package. The main objective was to develop a detailed MC shielding model of the I2S-LWR reactor along with effective variance reduction (VR) parameters and to calculate neutron fluence rates inside PHEs. Such results are then utilized to find neutron activation rate distribution via 60Co generation inside of a stack of microchannel heat exchangers (MCHX), which will be periodically withdrawn for the maintenance. 59Co impurities are the main cause of (n,gamma) radiative gamma dose to personnel via neutron activation since 60Co has half-life of 5.27 years and is emitting high energy gamma rays (1.17 MeV and 1.33 MeV). The developed MC model was successfully used to find converged fluxes inside all 8 stacks of

  14. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  15. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Qualification of ARROTTA code for LWR accident analysis

    International Nuclear Information System (INIS)

    Huang, P.-H.; Peng, K.Y.; Lin, W.-C.; Wu, J.-Y.

    2004-01-01

    This paper presents the qualification efforts performed by TPC and INER for the 3-D spatial kinetics code ARROTTA for LWR core transient analysis. TPC and INER started a joint 5 year project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, the ARROTTA code was chosen to perform multi-dimensional kinetics calculations such as rod ejection for PWR and rod drop for BWR. To qualify ARROTTA for analysis of FSAR licensing basis core transients, ARROTTA has been benchmarked for the static core analysis against plant measured data and SIMULATE-3 predictions, and for the kinetic analysis against available benchmark problems. The static calculations compared include critical boron concentration, core power distribution, and control rod worth. The results indicated that ARROTTA predictions match very well with plant measured data and SIMULATE-3 predictions. The kinetic benchmark problems validated include NEACRP rod ejection problem, 3-D LMW LWR rod withdrawal/insertion problem, and 3-D LRA BWR transient benchmark problem. The results indicate that ARROTTA's accuracy and stability are excellent as compared to other space-time kinetics codes. It is therefore concluded that ARROTTA provides accurate predictions for multi-dimensional core transient for LWRs. (author)

  17. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  18. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  19. The concept of fuel cycle integrated molten salt reactor for transmuting Pu+MA from spent LWR fuels

    International Nuclear Information System (INIS)

    Hirose, Y.; Takashima, Y.

    2001-01-01

    Japan should need a new fuel cycle, not to save spent fuels indefinitely as the reusable resources but to consume plutonium and miner actinides orderly without conventional reprocessing. The key component is a molten salt reactor fueled with the Pu+MA (PMA) separated from LWR spent fuels using fluoride volatility method. A double-tiered once-through reactor system can burn PMA down to 5% remnant ratio, and can make PMA virtually free from the HAW to be disposed geometrically. A key issue to be demonstrated is the first of all solubility behavior of trifluoride species in the molten fuel salt of 7 LiF-BeF 2 mixture. (author)

  20. Radiochemical determination of zirconium by inductively coupled plasma mass spectrometry (ICPMS)

    International Nuclear Information System (INIS)

    Oliveira, Thiago C.; Oliveira, Arno Heeren de

    2013-01-01

    The zirconium isotope 93 Zr is a long-lived pure β-particle-emitting radionuclide thus occurring as one of the radionuclides found in nuclear reactors. It's produced from 235 U fission and from 92 Zr neutron activation. Due to its long half-life, 93 Zr is one of the interest radionuclides for assessment studies performance of waste storage or disposal. Measurement of 93 Zr is difficult owing to its trace level concentration and its low activity in nuclear wastes and further because its certified standards are not frequently available. The aim of this work was to apply a selective radiochemical separation methodology for 93 Zr determination in nuclear waste and analyze it by Inductively Coupled Plasma Mass Spectrometry (ICPMS). To set up the zirconium radiochemical separation procedure, a zirconium tracer solution was used in order to follow the zirconium behavior during the radiochemical separation. A tracer solution containing the main interferences, Ba, Co, Eu, Fe, Mn, Nb, Ni, Sr, and Y was used in order to verify the decontamination factor during separation process. The limit of detection of 0,039 ppb was obtained for zirconium standard solutions by ICPMS. Then, the protocol will be applied to low level waste (LLW) and intermediate level waste (ILW) from nuclear power plants. (author)

  1. Ab initio atomic simulation of hydrogen and iodine effects in zirconium

    International Nuclear Information System (INIS)

    Domain, Ch.

    2002-03-01

    In this work we present ab initio atomic simulations concerning the effects of hydrogen and iodine in hexagonal zirconium. We first studied the point defects in the dilute Zr-H (and to a less extend Zr-H-O) systems and concluded that it is better described within the generalised gradient approximation for the exchange and correlation functional. We calculated the hydrogen thermal diffusion coefficient in solid solution that agree very well with the experimental values. The calculated formation energy of different self-interstitial configuration are rather small (around 3 eV) and close to each other indicating the high complexity of these defects. We studied the core structure of the screw dislocation that has a preferential prismatic spreading. We also calculated the gamma surface for different gliding planes. The influence of hydrogen, that induces a significant reduction of the gamma surfaces excess energies, allows to qualitatively explain experimental results regarding some hydrogen effects on hexagonal zirconium plastic deformation. We also discussed the effect of zirconium hydride stoichiometry on gamma surfaces. The results concerning the iodine and oxygen adsorption on zirconium surfaces, inducing the evaluation of the effective surface energy reduction as a function of the iodine partial pressure allow for a better description of iodine induced stress corrosion cracking of zirconium. (author)

  2. Review of literature on the TMI accident and correlation to the LWR Safety Technology Program

    International Nuclear Information System (INIS)

    Miller, W.J.

    1980-05-01

    This report is the result of approximately two man-months of effort devoted to assimilating and comprehending significant publicly available material related to Three Mile Island Unit 2 and events during and subsequent to the accident experienced on March 28, 1979. Those events were then correlated with the Preliminary LWR Safety Technology Program Plan (Preliminary Program Plan) prepared for the US Department of Energy by Sandia National Lab. This report is being submitted simultaneously with the SAI report entitled Preliminary Prioritization of Tasks in the Draft LWR Safety Technology Program Plan

  3. Review of literature on the TMI accident and correlation to the LWR Safety Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.J.

    1980-05-01

    This report is the result of approximately two man-months of effort devoted to assimilating and comprehending significant publicly available material related to Three Mile Island Unit 2 and events during and subsequent to the accident experienced on March 28, 1979. Those events were then correlated with the Preliminary LWR Safety Technology Program Plan (Preliminary Program Plan) prepared for the US Department of Energy by Sandia National Lab. This report is being submitted simultaneously with the SAI report entitled Preliminary Prioritization of Tasks in the Draft LWR Safety Technology Program Plan.

  4. Control and monitoring of the localized corrosion of zirconium in acidic chloride solutions

    International Nuclear Information System (INIS)

    Fahey, J.; Holmes, D.; Yau, T.L.

    1995-01-01

    Zirconium in acidic chloride solutions which are contaminated with ferric or cupric cations is prone to localized corrosion. This tendency can be reduced by ensuring that the zirconium surface is clean and smooth. In this paper, the effect of surface condition on the localized corrosion of zirconium in acidic chloride solutions is predicted with potentiodynamic scans. These predictions are confirmed by weight loss tests on various combinations of surface finish and acid concentrations. A real time indication of localized corrosion is seen by monitoring the electrochemical noise produced between two similar electrodes immersed in an acidic chloride solutions. Electrochemical noise monitoring correlates well with the predictions from potentiodynamic and weight loss experiments. The electrochemical noise results show that while an elevated (more anodic) potential caused by ferric ion contamination may be a necessary condition for localized corrosion, it is not a sufficient condition: A smooth, clean zirconium surface reduces the localized corrosion of zirconium

  5. Cathodic behavior of zirconium in aqueous solutions

    International Nuclear Information System (INIS)

    Hine, F.; Yasuda, M.; Sato, H.

    1977-01-01

    The electrochemical behavior of Zr was studied by polarization measurements. The surface oxide and zirconium hydride formed by cathodic polarization of Zr have been examined by X-ray, SEM, and a hardness tester. Zirconium hydride would form on Zr cathode after the surface oxide is reduced at the potential, which is several hundred mV more noble than the predicted value shown by the Pourbaix diagram. The parameters for the hydrogen evolution reaction on the hydride formed Zr cathode differs from that on the oxide covered surface, which means that hydrogen evolution takes place on both surfaces under a different mechanism, while details are still veiled at present

  6. Quantitative analysis of textures produced in a hot-extruded zirconium plate

    International Nuclear Information System (INIS)

    Couterne, J.

    1967-01-01

    The textures produced in zirconium by the extrusion at 730 deg C of a cylindrical billet in the form of a plate having a rectangular cross-section, have been studied by the Schulz method using an isotropic standard. These textures have been determined both parallel to the plane of the plate and parallel to the plane of the sides, All the results are analyzed in a final discussion which makes it possible to show, in particular near the edges of the plate, that certain components of the textures observed in the two series of recordings are in fact aspects of the same texture seen from two different angles, It is shown furthermore that the zirconium thus shaped has cold-work textures and als recrystallisation textures formed after the preceding cold-working, If the observed textures are considered schematically, it can be see that two of these have already been described in the literature and are similar to those found in rolled products: these textures are such that the (0001) planes are inclined at 36 deg C and 60 deg C respectively with respect to a plan tangential to the curve (envelope of transverse flow rates) resulting from the extrusion geometry under consideration; the third texture is defined. by the fact that the (0001) plane is orthogonal to the exterior surfaces of the plate. The direction of extrusion associated with these planes and common to the three textures is of the type , Dilatometric tests have been carried out on samples taken both parallel and perpendicular to the extrusion direction, These tests show that the zirconium is dilatometrically anisotropic and that a plot of (α v )-a against temperature shows a change of gradient at 400 deg C, this latter effect may be due to the change in the electronic configuration of the metal occurring at this temperature. (author) [fr

  7. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tsuyoshi, E-mail: m-tsuyo@criepi.denken.or.j [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Kato, Tetsuya; Kurata, Masaki [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Yamana, Hajimu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-11-15

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the delta-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag{sup +}/Ag) in LiCl-KCl melts containing 0.13 in mol% UCl{sub 3} and 0.23 in mol% ZrCl{sub 4} at 773 K. To our knowledge, this is the first report on the electrochemical formation of the delta-(U, Zr) phase. The relative partial molar properties of uranium in the delta-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared delta-phase electrode.

  8. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    International Nuclear Information System (INIS)

    Murakami, Tsuyoshi; Kato, Tetsuya; Kurata, Masaki; Yamana, Hajimu

    2009-01-01

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the δ-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag + /Ag) in LiCl-KCl melts containing 0.13 in mol% UCl 3 and 0.23 in mol% ZrCl 4 at 773 K. To our knowledge, this is the first report on the electrochemical formation of the δ-(U, Zr) phase. The relative partial molar properties of uranium in the δ-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared δ-phase electrode.

  9. Arc melting in inert gas atmosphere of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.; Andrade, A.H.P. de

    1991-01-01

    The obtainment of metallic zirconium in laboratory scale with commercial and nuclear quality is the objective of the Metallurgy Department of IEN/CNEN - Brazil, so a melting procedure of zirconium sponge in laboratory scale using an arc furnace in inert atmosphere is developed. The effects of atmosphere operation, and the use of gas absorber and the sponge characteristics over the quality of button in as-cast reporting with hardness measures are described. (C.G.C.)

  10. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  11. High temperature brazing of primary-system components in the nuclear field

    International Nuclear Information System (INIS)

    Belicic, M.; Fricker, H.W.; Iversen, K.; Leukert, W.

    1981-01-01

    Apart from the well-known welding procedures, high-temperature brazing is successfully applied in the manufacture of primary components in the field of nuclear reactor construction. This technique is applied in all cases where apart from sufficient resistance and high production safety importance is laid on dimensional stability without subsequent mechanical processing of the components. High-temperature brazing is therefore very important in the manufacture of fuel rod spacers or control rod guide tubes. In this context, during one brazing process many brazing seams have to be produced in extremely narrow areas and within small tolerances. As basic materials precipitation hardening alloys with a high nickel percentage, austenitic Cr-Ni-steels or the zirconium alloy Zry 4 are used. Generally applied are: boron free nickel or zirconium brazing filler metals. (orig.)

  12. Hydrolysis of TBF and TiAP in presence of zirconium

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kulikov, I.A.; Kuprij, A.A.

    1992-01-01

    Acid hydrolysis of organic solutions of tributyl phosphate (TBP) and tri-iso-amylphosphate (TiAP) in n-paraffin diluent in the presence of zirconium (0.025-0.1 mole/l) at nitric acid concentration of 0.3-1 mole/l is studied. Hydrolysis of extractants in a two-phase system, modelling conditions of spent fuel reprocessing and consisting of 1.1 mole/l TAP, 3 mole/l nitric acid at zirconium concentration in water phase 0.05-0.11 mole/l, at water-organic phase ratio 10:1 and at 60 deg C is also studied. Constants of TAP hydrolysis in organic and water phases are determined. Mechanism of increasing the TAP hydrolysis rate in zirconium presence is discussed. 5 refs., 2 figs., 5 tabs

  13. Zirconium determination in refractories (gravimetric method)

    International Nuclear Information System (INIS)

    Capiotto, N.; Narahashi, Y.; Perish, C.G.; Souza, J.R.

    1991-01-01

    The zirconium determination in refractories is described, consisting in two separation methods for eliminating the interferences. The formatted product is calcined at 1100 0 C and determined gravimetrically as Zr P z 07. (author)

  14. The dupic fuel cycle synergism between LWR and HWR

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Lee, H.H.; Kim, K.P.; Sullivan, J.D.; Boczar, P.G.; Gadsby, R.D.

    1999-01-01

    The DUPIC fuel cycle can be developed as an alternative to the conventional spent fuel management options of direct disposal or plutonium recycle. Spent LWR fuel can be burned again in a HWR by direct refabrication into CANDU-compatible DUPIC fuel bundles. Such a linkage between LWR and HWR can result in a multitude of synergistic effects, ranging from savings of natural uranium to reductions in the amount of spent fuel to be buried in the earth, for a given amount of nuclear electricity generated. A special feature of the DUPIC fuel cycle is its compliance with the 'Spent Fuel Standard' criteria for diversion resistance, throughout the entire fuel cycle. The DUPIC cycle thus has a very high degree of proliferation resistance. The cost penalty due to this technical factor needs to be considered in balance with the overall benefits of the DUPIC fuel cycle. The DUPIC alternative may be able to make a significant contribution to reducing spent nuclear fuel burial in the geosphere, in a manner similar to the contribution of the nuclear energy alternative in reducing atmospheric pollution from fossil fuel combustion. (author)

  15. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  16. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  17. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility.

    Science.gov (United States)

    Li, H F; Zhou, F Y; Li, L; Zheng, Y F

    2016-04-19

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are zirconium-ruthenium alloys (1.25 × 10(-6) cm(3)·g(-1)-1.29 × 10(-6) cm(3)·g(-1) for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti-6Al-4V, ~3.5 × 10(-6) cm(3)·g(-1), CP Ti and Ti-6Al-7Nb, ~3.0 × 10(-6) cm(3)·g(-1)), and one-sixth that of Co-Cr alloys (Co-Cr-Mo, ~7.7 × 10(-6) cm(3)·g(-1)). Among the Zr-Ru alloy series, Zr-1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr-Ru alloy system as therapeutic devices under MRI diagnostics environments.

  18. Zirconium Phosphate Supported MOF Nanoplatelets.

    Science.gov (United States)

    Kan, Yuwei; Clearfield, Abraham

    2016-06-06

    We report a rare example of the preparation of HKUST-1 metal-organic framework nanoplatelets through a step-by-step seeding procedure. Sodium ion exchanged zirconium phosphate, NaZrP, nanoplatelets were judiciously selected as support for layer-by-layer (LBL) assembly of Cu(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) linkers. The first layer of Cu(II) is attached to the surface of zirconium phosphate through covalent interaction. The successive LBL growth of HKUST-1 film is then realized by soaking the NaZrP nanoplatelets in ethanolic solutions of cupric acetate and H3BTC, respectively. The amount of assembled HKUST-1 can be readily controlled by varying the number of growth cycles, which was characterized by powder X-ray diffraction and gas adsorption analyses. The successful construction of HKUST-1 on NaZrP was also supported by its catalytic performance for the oxidation of cyclohexene.

  19. Adsorption of zirconium from nitric acid solutions on hydrated tin dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tret' yakov, S Ya; Sharygin, L M; Egorov, Yu V

    1977-01-01

    Adsorption of zirconium from nitric acid solutions has been studied with the use of the labeled atom method on hydrated tin dioxide depending on the sorbate concentration, pH and prehistory of the solution. It has been found that adsorption behavior of zirconium essentially depends on its state in the solution.

  20. Modular approach to LWR in-core fuel management

    International Nuclear Information System (INIS)

    Urli, N.; Pevec, D.; Coffou, E.; Petrovic, B.

    1980-01-01

    The most important methods in the LWR in-core fuel management are reviewed. A modular approach and optimization by use of infinite multiplication factor and power form-factor are favoured. A computer program for rotation of fuel assemblies at reloads has been developed which improves further fuel economy and reliability of nuclear power plants. The program has been tested on the PWR core and showed to decrease the power form-factors and flatten the radial power distribution. (author)

  1. Superconductivity in zirconium-rhodium alloys

    Science.gov (United States)

    Zegler, S. T.

    1969-01-01

    Metallographic studies and transition temperature measurements were made with isothermally annealed and water-quenched zirconium-rhodium alloys. The results clarify both the solid-state phase relations at the Zr-rich end of the Zr-Rh alloy system and the influence upon the superconducting transition temperature of structure and composition.

  2. Recovery of zirconium from pickling solution, regeneration and its reuse

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, D. [Nuclear Fuel Complex, Hyderabad 500062 (India); Mandal, D., E-mail: dmandal10@gmail.com [Alkali Material & Metal Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Visweswara Rao, R.V.R.L.; Sairam, S.; Thakur, S. [Nuclear Fuel Complex, Hyderabad 500062 (India)

    2017-05-15

    Graphical abstract: The following compares the performance of fresh pickling solution (PS) and regenerated and used pickling solution (UPS). - Highlights: • Pickling of zircaloy tubes and appendages is carried out to remove oxide layer. • The pickling solution become saturated with zirconium due to reuse. • As NaNO{sub 3} concentration increases, conc. of Zr in pickling solution decreases. • Experimental results shows that, used pickling solution can be regenerated. • Regenerated solution may be reused by adding makeup quantities of HF-HNO{sub 3}. - Abstract: The pressurized heavy water reactors use natural uranium oxide (UO{sub 2}) as fuel and uses cladding material made up of zircaloy, an alloy of zirconium. Pickling of zircaloy tubes and appendages viz., spacer and bearing pads is carried out to remove the oxide layer and surface contaminants, if present. Pickling solution, after use for many cycles i.e., used pickling solution (UPS) is sold out to vendors, basically for its zirconium value. UPS, containing a relatively small concentration of hydrofluoric acid. After repeated use, pickling solution become saturated with zirconium fluoride complex and is treated by adding sodium nitrate to precipitate sodium hexafluro-zirconate. The remaining solution can be recycled after suitable makeup for further pickling use. The revenue lost by selling UPS is very high compared to its zirconium value, which causes monetary loss to the processing unit. Experiments were conducted to regenerate and reuse UPS which will save a good amount of revenue and also protect the environment. Experimental details and results are discussed in this paper.

  3. Experimental critical loadings and control rod worths in LWR-PROTEUS configurations compared with MCNPX results

    International Nuclear Information System (INIS)

    Plaschy, M.; Murphy, M.; Jatuff, F.; Seiler, R.; Chawla, R.

    2006-01-01

    The PROTEUS research reactor at the Paul Scherrer Inst. (PSI) has been operating since the sixties and has already permitted, due to its high flexibility, investigation of a large range of very different nuclear systems. Currently, the ongoing experimental programme is called LWR-PROTEUS. This programme was started in 1997 and concerns large-scale investigations of advanced light water reactors (LWR) fuels. Until now, the different LWR-PROTEUS phases have permitted to study more than fifteen different configurations, each of them having to be demonstrated to be operationally safe, in particular, for the Swiss safety authorities. In this context, recent developments of the PSI computer capabilities have made possible the use of full-scale SD-heterogeneous MCNPX models to calculate accurately different safety related parameters (e.g. the critical driver loading and the shutdown rod worth). The current paper presents the MCNPX predictions of these operational characteristics for seven different LWR-PROTEUS configurations using a large number of nuclear data libraries. More specifically, this significant benchmarking exercise is based on the ENDF/B6v2, ENDF/B6v8, JEF2.2, JEFF3.0, JENDL3.2, and JENDL3.3 libraries. The results highlight certain library specific trends in the prediction of the multiplication factor k eff (e.g. the systematically larger reactivity calculated with JEF2.2 and the smaller reactivity associated with JEFF3.0). They also confirm the satisfactory determination of reactivity variations by all calculational schemes, for instance, due to the introduction of a safety rod pair, these calculations having been compared with experiments. (authors)

  4. Delayed hydride cracking of zirconium alloy fuel cladding

    International Nuclear Information System (INIS)

    2010-10-01

    This report describes the work performed in a coordinated research project on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. It is the second in the series. In 2005-2009 that work was extended within a new CRP called Delayed Hydride Cracking in Zirconium Alloy Fuel Cladding. The project consisted of adding hydrogen to samples of Zircaloy-4 claddings representing light water reactors (LWRs), CANDU and Atucha, and measuring the rates of delayed hydride cracking (DHC) under specified conditions. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes details of the experimental procedures that led to a consistent set of data for LWR cladding. The participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in this report, which compiles the results, their analysis, discussions of their interpretation and conclusions and recommendations for future work. The research was coordinated by an advisor and by representatives in three laboratories in industrialized Member States. Besides the basic goal to transfer the technology of the testing technique from an experienced laboratory to those unfamiliar with the methods, the CRP was set up to harmonize the experimental procedures to produce consistent sets of data, both within a single laboratory and between different laboratories. From the first part of this project it was demonstrated that by following a standard set of experimental protocols, consistent results could be obtained. Thus, experimental vagaries were minimized by careful attention to detail of microstructure, temperature history and stress state in the samples. The underlying idea for the test programme was set out at the end of the first part of the project on pressure tubes. The

  5. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  6. In situ Investigation of Oxide Films on Zirconium Alloy in PWR Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Zirconium alloys are used as fuel cladding materials in nuclear power reactors, because these materials have a very low thermal neutron capture cross section as well as desirable mechanical properties. However, the Fukushima accident shows that the oxidation behavior of zirconium alloy is an important issue because the zirconium alloy functions as a shield of nuclear material (i.e., uranium, fission gas), and the degradation on zirconium cladding directly causes severe accident on nuclear power plant. Therefore, to ensure the safety of nuclear power reactors, the performance and sustainability of nuclear fuel should be understood. Currently, the water-metal interface is regarded as the rate-controlling site governing the rapid oxidation transition in high-burn-up fuels. Zirconium oxide is formed at the water-metal interface, and its structure and phase play an important role in determining its mechanical properties. In the early stage of the oxidation process, zirconium oxide with both tetragonal and monoclinic phases is formed. With an increase in the oxidation time to 150 h, the unstable tetragonal phase disappears and the monoclinic phase is dominant and possibly because of the stress relaxation according to previous and present results.

  7. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector - 15271

    International Nuclear Information System (INIS)

    Saas, L.; Le Tellier, R.; Bajard, S.

    2015-01-01

    In this document, we present a simplified geometrical model (0D model) for both the in-core corium propagation transient and the characterization of the mode of corium transfer from the core to the vessel. A degraded core with a formed corium pool is used as an initial state. This initial state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate...). During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4

  8. Amine extraction of lead(II) and zirconium(IV) with succinate media

    International Nuclear Information System (INIS)

    Mahamuni, S.V.; Mane, C.P.; Sargar, B.M.; Rajmane, M.M.; Anuse, M.A.

    2004-01-01

    Lead is an important constituent of various alloys, which are in increasing demand in manufacture of batteries and nuclear shielding while the use of zirconium in nuclear power plants as entirely cladding uranium fuel is most important. This study was carried out to optimize the extraction conditions for Pb(II) and zirconium(IV)

  9. Phyto-availability of zirconium in relation with initial speciation, solubility and soil characteristics

    International Nuclear Information System (INIS)

    Ferrand, E.; Benedetti, M.; Dumat, C.; Ferrand, E.; Leclerc-Cessac, E.

    2005-01-01

    During the last decades, the use of zirconium in industry has been widely developed and there is a potential risk of zirconium contamination. The long half-life isotope 93 Zr (T1/2=10 6 years) is largely observed in radioactive wastes. Therefore, the long-term prediction of the zirconium fate in the environment is essential. Due to its low solubility and strong tendency to polymerize, zirconium is usually considered as immobile, however the evidence of Zr mobility in certain conditions such as tropical weathering has been demonstrated. Soil-plant transfer is an important link in the chain of events which leads to radionuclide entry into the human food chain, but only few studies concern the Zr transfer to plants. The primary aim of this investigation is to verify if zirconium can be absorbed by edible plants (young peas and tomatoes) and to study the influence of Zr speciation on its availability. The second aim is to highlight the potential influence of plants on the Zr solubility in soil from the measurements of K d and with chemical extractions. Two agricultural top soils closed to the underground experimental laboratory (Meuse/Haute Marne, France) of the French National Agency for management of radioactive wastes (ANDRA) were collected: a sandy clayey loamy soil (A) and a clayey calcareous soil (B). The main differences between the two soils are: the pH, the texture and the carbonate content. In order to investigate the influence of the Zr speciation on its plant availability, soils were spiked with different forms of Zr chosen for their natural occurrence in the environment. Soil adsorption of Zr in batch experiments was realized (various initial [Zr], pH and I) in order to determine adsorption isotherms and partition coefficients (K d ). Tomatoes and peas were exposed to Zr by contact with the various soils during 8 days. After acidic digestion of the dried roots and aerial parts, the total Zr concentrations were measured by a quadrupole ICP-MS spectrometer

  10. Conductivity variations in composites of. alpha. -zirconium phosphate and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Slade, R.C.T.; Knowles, J.A. (Dept. of Chemistry, Exeter Univ. (UK))

    Composite proton-conducting solid electrolytes have been formed from {alpha}-zirconium hydrogen phosphate ({alpha}-Zr(HPO{sub 4}){sub 2}.H{sub 2}O, {alpha}-ZrP) and aluminas (Al{sub 2}O{sub 3}) in varying mole ratios. Conductivity variations as a function of temperature have been characterised and compared to that for a delaminated {alpha}-ZrP (no alumina). There are no appreciable conductivity enhancements on composite formation, but conductivity for materials ca. 50 mole% in alumina can be comparable to the delaminated materials. Differential scanning calorimetry shows the composites to have different thermal properties to simple admixtures. High resolution {sup 31}P NMR studies show reaction to form aluminium phosphate at the interface between components. (orig.).

  11. On composition and thermal degradation of basic zirconium sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Grizik, A A; Nekhamkin, L G; Kondrashova, I A; Serebrennikov, E L; Kerina, V P

    1988-02-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO/sub 4//sup 2-/:Zr, being 0.60+-0.03; 0.37+-0.04 and 0.176+-0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed.

  12. On composition and thermal degradation of basic zirconium sulfates

    International Nuclear Information System (INIS)

    Grizik, A.A.; Nekhamkin, L.G.; Kondrashova, I.A.; Serebrennikov, E.L.; Kerina, V.P.

    1988-01-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO 4 2- :Zr, being 0.60±0.03; 0.37±0.04 and 0.176±0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed

  13. Zirconium molybdate hydrate precipitates in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Magnaldo, A.; Noire, M.H.; Esbelin, E.; Dancausse, J.P.; Picart, S.

    2004-01-01

    This paper presents through 2 posters a general overview studies realised by CEA teams on deposits observed in the La Hague plant dissolution facilities. Their main constituents are metallic debris bound together with zirconium molybdate hydrate. A comprehensive study of zirconium molybdate hydrate formation included nucleation and growth kinetics was developed. Fouling mechanisms were consequently explained as influenced by the operation conditions. Pu insertion was also overviewed. Its behaviour is important when curative and preventive chemical treatments are considered. (authors)

  14. Zirconium microstructures: uncharted possibilities

    International Nuclear Information System (INIS)

    Samajdar, I.; Kumar, Gulshan; Singh, Jaiveer; Lodh, Arijit; Srivastava, D.; Tewari, R.; Dey, G.K.; Saibaba, N.

    2015-01-01

    The 'conventional' Zirconium microstructures can be significantly extended with information on: (i) microtexture, (ii) residual stresses and (iii) local mechanical properties. Though these involve different tools, but a consolidated microstructure can be crated. This is the theme of this presentation. Examples of this consolidated picture will be made from deformation twinning, recovery-recrystallization, burst ductility and orientation versus solid solution hardening. (author)

  15. Temperature dependence of lattice parameters of alpha-zirconium

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, M.

    1991-01-01

    This work presents a brief review of X-ray and thermal expansion determination of lattice parameters for α-Zirconium. Data reported by different authors cover almost all the field of existence of the hexagonal phase of Zirconium, from temperatures as low as 4.2 K up to about 1130 K, near the α→β transformation temperature. Polynomial expressions based on a least squares fitting of experimental data are also presented. The expressions obtained by Goldak et al. are considered to be the most complete. The influence of impurities on the lattice parameters is also discussed. (Author) [es

  16. Preliminary concepts for detecting national diversion of LWR spent fuel

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Cravens, M.N.

    1978-04-01

    Preliminary concepts for detecting national diversion of LWR spent fuel during storage, handling and transportation are presented. Principal emphasis is placed on means to achieve timely detection by an international authority. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program

  17. A contribution to the study of arc melting in inert gas atmospheres of zirconium sponge

    International Nuclear Information System (INIS)

    Julio Junior, O.

    1990-01-01

    Mettalic zirconium is a material of great interest in the nuclear industry due to its low thermal neutron cross section, high strength and corrosion resistance. The latter permits its use in the chemical industry. In this study, a critical bibliographic revision of the industrial processes used for the melting and consolidation of zirconium sponge has been carried out. A procedure for the melting of zirconium on a laboratory scale, has been established. An nonconsumable-electrode arc furnace have been used. The effect of process variables like atmosphere, melting current and getter, have been showed. The influence of sponge characteristics on the qualities of cast zirconium buttons have been studied. The present study is a contribution towards future investigations to obtain high purity cast zirconium and its alloys commercially known as zircaloy. (author)

  18. Design and development of novel MRI compatible zirconium- ruthenium alloys with ultralow magnetic susceptibility

    Science.gov (United States)

    Li, H.F.; Zhou, F.Y.; Li, L.; Zheng, Y.F.

    2016-01-01

    In the present study, novel MRI compatible zirconium-ruthenium alloys with ultralow magnetic susceptibility were developed for biomedical and therapeutic devices under MRI diagnostics environments. The results demonstrated that alloying with ruthenium into pure zirconium would significantly increase the strength and hardness properties. The corrosion resistance of zirconium-ruthenium alloys increased significantly. High cell viability could be found and healthy cell morphology observed when culturing MG 63 osteoblast-like cells and L-929 fibroblast cells with zirconium-ruthenium alloys, whereas the hemolysis rates of zirconium-ruthenium alloys are alloys and Ti-based alloys, the magnetic susceptibilities of the zirconium-ruthenium alloys (1.25 × 10−6 cm3·g−1–1.29 × 10−6 cm3·g−1 for zirconium-ruthenium alloys) are ultralow, about one-third that of Ti-based alloys (Ti–6Al–4V, ~3.5 × 10−6 cm3·g−1, CP Ti and Ti–6Al–7Nb, ~3.0 × 10−6 cm3·g−1), and one-sixth that of Co–Cr alloys (Co–Cr–Mo, ~7.7 × 10−6 cm3·g−1). Among the Zr–Ru alloy series, Zr–1Ru demonstrates enhanced mechanical properties, excellent corrosion resistance and cell viability with lowest magnetic susceptibility, and thus is the optimal Zr–Ru alloy system as therapeutic devices under MRI diagnostics environments. PMID:27090955

  19. Study of solution speciation, soil retention and soil-plant transfer of zirconium

    International Nuclear Information System (INIS)

    Ferrand, E.

    2005-12-01

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ( 93 Zr and 95 Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K d , values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  20. Preparation of zirconium molybdate gel for 99mTc gel generator

    International Nuclear Information System (INIS)

    Aliludin, Z.; Ohkubo, Masatake; Kushita, Kouhei

    1988-09-01

    Zirconium molybdate gel has excellent characteristics for use as column matrix material of 99m Tc generators. In this work, zirconium molybdate gels were prepared under different conditions; pH's of molybdate solutions from 2.5 to 7.0, Mo:Zr molar ratios from 0.7:1.0 to 1.3:1.0, drying temperatures from an ambient temperature to 200 deg C, and drying times from 1 h to 25 h. Contents of water, nitrate, molybdenum and zirconium were measured to examine the fundamental conditions in gel preparation. The Mo:Zr molar ratio was 1.0:1.0 for the most of gels obtained. A 99m Tc generator was prepared with an amorphous zirconium molybdate containing a tracer level of 99 Mo as column matrix material. Elution of 99m Tc was rapid and the average elution efficiency was 90 % for 6 ml elutions. Contents of radionuclidic impurities, Zr and Mo in the eluates, were low enough to meet the pharmacopoeia requirements for human use. (author)

  1. LWR pressure vessel irradiation surveillance dosimetry. Quarterly progress report, July--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G L; McElroy, W N; Lippincott, E P; Gold, R

    1978-12-01

    Program objectives and progress to date by the national laboratories in LWR pressure vessel irradiation surveillance dosimetry are summarized. Participants in the program include: Rockwell International, Hanford Engineering Development Laboratory, National Bureau of Standards, and Oak Ridge National Laboratory.

  2. Plastic deformation of particles of zirconium and titanium carbide subjected to vibration grinding

    Energy Technology Data Exchange (ETDEWEB)

    Kravchik, A.E.; Neshpor, V.S.; Savel' ev, G.A.; Ordan' yan, S.S.

    1976-12-01

    A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and titanium carbide subjected to vibration grinding. The carbide powders were produced by direct synthesis from the pure materials: metallic titanium and zirconium and acetylene black. As to the nature of their elastic deformation, zirconium and titanium carbides can be considered elastic-isotropic materials. During vibration grinding, the primary fracture planes are the (110) planes. Carbides of nonstoichiometric composition are more brittle.

  3. Experience gained in the current LWR that influence the design and operation of the LWR advanced from the viewpoint of safety analysis

    International Nuclear Information System (INIS)

    Barrera, J.; Corisco, M.; Riverola, J.

    2010-01-01

    Since the construction of the first light water reactors (LWR) safety analysis has played a very important role in the operation and its evolution to come up with designs that are currently operating. With new tools available, this role will see increased allowing more efficient operation with security assessments in real time, and a more efficient designs both in terms of fuel efficiency and from the security of the plant during operation.

  4. Oxygen control in solid fuel fired heating systems with zirconium oxide cells. Iltstyring af fastbraendselsfyrede anlaeg med zirkoniumoxidcelle

    Energy Technology Data Exchange (ETDEWEB)

    Zielke, U.

    1988-10-15

    During the heating season 87-88 the Jutland Technological Institute has carried out investigations of the zirconium oxygen meters of solid fuel heating units. The aim was to investigate whether the combustion of inflammable flue gas components on the surface of the oxygen meter cell is of any importance to the running and emissions of the units. The used zirconium oxide oxygen meters normally measure lower concentrations of oxygen as the paramagnetic comparator of the laboratory. The relative deviation is lowest at coal fired units (5.5% and highest at straw fired units (20%)). At several units there is a clear tendency towards increasing development of CO at an increasing surplus of air. Because of too large a surplus of air, and in consequence of this the formation of CO, the chimney waste of the units is increased by up to 6%. Both the surplus of air and the concentration of CO have been included as long term average values. Especially at the straw fired units, periodically very high concentrations of non-inflammable flue gas components can be found, resulting in an undesirable influence on the environment. The development of improved control systems and regulation equipment is recommended.

  5. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  6. Microencapsulated fuel technology for commercial light water and advanced reactor application

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Snead, Lance L.; Gehin, Jess C.

    2012-01-01

    The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

  7. Effect of nitrogen flow ratio on structure and properties of zirconium ...

    Indian Academy of Sciences (India)

    Abstract. In this study, zirconium nitride thin films were deposited on Si substrates by ion beam sputtering (IBS). Influence of N2/(N2+Ar) on the structural and physical properties of the films has been investigated with respect to the atomic ratio between nitrogen and zirconium. It was found that the thickness of layers ...

  8. Behaviour of LWR core materials under accident conditions. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-12-01

    At the invitation of the Government of the Russian Federation, following a proposal of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA convened a Technical Committee Meeting on Behaviour of LWR Core Materials Under Accident Conditions from 9 to 13 October 1995 in Dimitrovgrad to analyze and evaluate the behaviour of LWR core materials under accident conditions with special emphasis on severe accidents. In-vessel severe accidents phenomena were considered in detail, but specialized thermal hydraulic aspects as well as ex-vessel phenomena were outside the scope of the meeting. Forty participants representing eight countries attended the meeting. Twenty-three papers were presented and discussed during five sessions. Refs, figs, tabs

  9. Fretting wear behavior of zirconium alloy in B-Li water at 300 °C

    Science.gov (United States)

    Zhang, Lefu; Lai, Ping; Liu, Qingdong; Zeng, Qifeng; Lu, Junqiang; Guo, Xianglong

    2018-02-01

    The tangential fretting wear of three kinds of zirconium alloys tube mated with 304 stainless steel (SS) plate was investigated. The tests were conducted in an autoclave containing 300 °C pressurized B-Li water for tube-on-plate contact configuration. The worn surfaces were examined with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and 3D microscopy. The cross-section of wear scar was examined with transmission electron microscope (TEM). The results indicated that the dominant wear mechanism of zirconium alloys in this test condition was delamination and oxidation. The oxide layer on the fretted area consists of outer oxide layer composed of iron oxide and zirconium oxide and inner oxide layer composed of zirconium oxide.

  10. Studies on inorganic exchanger: zirconium antimonate

    International Nuclear Information System (INIS)

    Dash, A.; Balasubramanian, K.R.

    1992-01-01

    The inorganic exchanger zirconium antimonate has been prepared and its characteristics evaluated. A method has been developed for the separation of 90 Sr and 144 Ce from fission products solution using this exchanger. (author). 23 refs., 18 f igs., 9 tabs

  11. Pressure of saturated vapor of yttrium and zirconium acetylacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-08-01

    The static method and the flow method using /sup 91/Y and /sup 95/Zr radioactive indicators have been applied to determine pressure of saturated vapour of yttrium and zirconium acetylacetonates. Values of thermodynamic functions ..delta..Hsub(subl)=(98+-16)kJ/mol and ..delta..Ssub(subl.)=(155+-30)J/mol x K are calculated for sublimation of yttrium acetylacetonate. For sublimation of zirconium acetylacetonates ..delta..Hsub(subl) equals (116+-38) kJ/mol and ..delta..Ssub(subl) is equal to (198+-65) J/molxK.

  12. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The

  13. Safety research for LWR type reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The current R and D activities are to be seen in connection with the LWR risk assessment studies. Two trends are emerging, of which the one concentrates more on BWR-specific problems, and the other on the efficiency or safety-related assessment of accident management activities. This annual report of 1988 reviews the progress of work done by the institutes and departments of the Karlsruhe Nuclear Research Center, (KfK), or on behalf of KfK by external institutions, in the field of safety research. The papers of this report present the state of work at the end of the year 1988. They are written in German, with an abstract in English. (orig./HP) [de

  14. 40 CFR 721.10152 - Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica...

    Science.gov (United States)

    2010-07-01

    ...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...

  15. Reduced-Gravity Measurements of the Effect of Oxygen on Properties of Zirconium

    Science.gov (United States)

    Zhao, J.; Lee, J.; Wunderlich, R.; Fecht, H.-J.; Schneider, S.; SanSoucie, M.; Rogers, J.; Hyers, R.

    2016-01-01

    The influence of oxygen on the thermophysical properties of zirconium is being investigated using MSL-EML (Material Science Laboratory - Electromagnetic Levitator) on ISS (International Space Station) in collaboration with NASA, ESA (European Space Agency), and DLR (German Aerospace Center). Zirconium samples with different oxygen concentrations will be put into multiple melt cycles, during which the density, viscosity, surface tension, heat capacity, and electric conductivity will be measured at various undercooled temperatures. The facility check-up of MSL-EML and the first set of melting experiments have been successfully performed in 2015. The first zirconium sample will be tested near the end of 2015. As part of ground support activities, the thermophysical properties of zirconium and ZrO were measured using a ground-based electrostatic levitator located at the NASA Marshall Space Flight Center. The influence of oxygen on the measured surface tension was evaluated. The results of this research will serve as reference data for those measured in ISS.

  16. APEX nuclear fuel cycle for production of LWR fuel and elimination of radioactive waste

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.

    1981-08-01

    The development of a nuclear fission fuel cycle is proposed which eliminates all the radioactive fission product waste effluent and the need for geological-age high level waste storage and provides a long term supply of fissile fuel for an LWR power reactor economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 years old) to remove the stable nonradioactive (NRFP, e.g. lanthanides, etc.) and short-lived fission products SLFP e.g. half-lives of (1 to 2 years) and returning, in dilute form, the long-lived fission products, ((LLFPs, e.g. 30 y half-life Cs, Sr, and 10 y Kr, and 16 x 10 6 y I) and the transuranics (TUs, e.g. Pu, Am, Cm, and Np) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel are to be supplied through the use of a Spallator (linear accelerator spallation-target fuel-producer). The reprocessing of LWR fuel elements is to be performed by means of the Chelox process which consists of Airox treatment (air oxidation and hydrogen reduction) followed by chelation with an organic reagent (β-diketonate) and vapor distillation of the organometallic compounds for separation and partitioning of the fission products

  17. Formation of zirconium dioxide layers on microelectrode of zirconium. Inhibition of the hydrogen evolution reaction

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Fanelli, N.; Hromadová, Magdaléna

    2017-01-01

    Roč. 49, C (2017), s. 128-133 ISSN 0324-1130 R&D Projects: GA ČR(CZ) GA16-03085S Institutional support: RVO:61388955 Keywords : zirconium * ZrO2 * corrosion Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 0.238, year: 2016

  18. Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Bortun, Anatoly; Bortun, Mila; Pardini, James; Khainakov, Sergei A.; Garcia, Jose R.

    2010-01-01

    Powder (20-50 μm) mesoporous hydrous zirconium oxide was prepared from a zirconium salt granular precursor. The effect of some process parameters on product morphology, porous structure and adsorption performance has been studied. The use of hydrous zirconium oxide for selective arsenic removal from drinking water is discussed.

  19. Zircon Carburation Studies as Intermediate Stage in the Zirconium Fabrication

    International Nuclear Information System (INIS)

    Almagro Huertas, V.; Saenz de Tejada Gonzalez, L.; Lopez Rodriguez, M.

    1963-01-01

    Zirconium carbide and carbonitride mixtures were obtained by Kroll's method.Reaction products have been identified by micrography and X-ray diffraction analysis. The optimum graphite content in the initial charge for the carburation reaction has been studied. zirconium, silicon and carbon content in the final product has been controlled as a function of current in the furnace and reaction time.Further chlorination of the final product was performed successfully. (Author) 16 refs

  20. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    Science.gov (United States)

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  1. Development and testing of standardized procedures and reference data for LWR surveillance

    International Nuclear Information System (INIS)

    McElroy, W.N.

    1979-02-01

    The resources and talents of many national and international organizations and laboratories, both governmental and industrial, are being used to establish analysis methods for predicting the embrittlement condition of light water reactor (LWR) primary systems. The exact interrelationships and responsibilities between those developing, understanding, combining, and applying state-of-the-art technology in dosimetry, metallurgy, and fracture mechanics for reactor systems analysis are being carefully reviewed and studied. This has resulted in a more comprehensive definition of the scope of new and updated ASTM standards required for the analysis and interpretation of LWR pressure vessel surveillance results. Fifteen new and updated ASTM standards have now been identified, together with a restructuring of the main interfaces between the individual standard practices, guides, and methods. The paper briefly discusses these standards and the initial results of multi-laboratory research work involved in their validation and calibration

  2. Arsenic removal from aqueous solutions by sorption onto zirconium- and titanium-modified sorbents

    Directory of Open Access Journals (Sweden)

    Ignjatović Ljubiša

    2011-01-01

    Full Text Available Arsenic reduction in drinking water can include treatment by adsorption, switching to alternative water sources, or blending with water that has a lower arsenic concentration. Commercial sorbents MTM, Greensand and BIRM (Clack Corporation were modified with zirconium and titanium after activation. The modifications were performed with titanium tetrachloride and zirconium tetrachloride. The modified sorbents were dried at different temperatures. The sorption of arsenate and arsenite dissolved in drinking water (200μg L-1 onto the sorbents were tested using a batch procedure. After removal of the sorbent, the concentration of arsenic was determined by HG-AAS. Zirconium-modified BIRM showed the best performance for the removal of both arsenite and arsenate. Modification of the greensand did not affect arsenic sorption ability. Zirconium-modified BIRM diminished the concentration of total As to below 5 μg L-1.

  3. OPTIMIZATION OF COMPLEX MINERAL TANNING MATERIAL ON THE BASIS OF ALUMINIUM AND ZIRCONIUM

    Directory of Open Access Journals (Sweden)

    K. Toguzbaev

    2012-01-01

    Full Text Available Influence of acetate ion on stability of alumina-zirconium tanning to alkalization has been investigated in the paper. The investigation results have shown that at the ratio of Al3+:Zr4+:CH3COO = 1:1:1 it  is  possible  to  prepare  a  solution  of  masking   alumina-zirconium  tanning  (АЦД-М   with  high stability and low consumption of aluminum sulfate. The paper reveals that masking of alumina-zirconium tanning by natrium acetate allows to increase stability to alkalization and improve tanning properties. It has been established that for a stable increase of fatty matter viscosity and improvement of  leather water-resistant properties it is necessary to use water-insoluble aluminum and zirconium soaps of carboxylic acids.

  4. Some current engineering topics in nuclear power plant components

    International Nuclear Information System (INIS)

    Amana, M.

    1977-01-01

    An analysis based on the principle of fracture mechanics, is presented for several engineering problems occuring in nuclear power plant components. The specific problems covered are: underclad cracking; stress corrosion cracking; cracks in HAZ of nozzle weld; feedwater nozzle corner crack; shift of transition temperature due to neutron irradiation; LWR local-ECC thermal shock experiment; and design and material selection of RPV in terms of fracture mechanics. (B.R.H.)

  5. Photometric determination of yttrium in zirconium-containing materials

    International Nuclear Information System (INIS)

    Barbina, T.M.; Polezhaev, Yu.M.

    1984-01-01

    Comparative evaluation of the effect of different ways of eliminating the zirconium interfering effect on the results of yttrium photometric determination with arsenazo 2 in artificial mixtures of Y 2 O 3 and ZrO 2 , containing 5 and 10 mol.% Y 2 O 3 , has been carried out. The effect of Zr is eliminated by means of its precipitation by ammonium solution in the form of hydroxide and using camouflaging with 25% sulfosalicylic acid. Both ways do not provide a correct enough result. The use of non-reagent thermohydrolytic Zr precipitation during the analysis of zirconium-containing materials permits to obtain correct and well-reproducible results

  6. Analytical study of zirconium and hafnium α-hydroxy carboxylates

    International Nuclear Information System (INIS)

    Terra, V.R.

    1991-01-01

    The analytical study of zirconium and hafnium α-hydroxy carboxylates was described. For this purpose dl-mandelic, dl-p-bromo mandelic, dl-2-naphthyl glycolic, and benzilic acids were prepared. These were used in conjunction with glycolic, dl-lactic, dl-2-hydroxy isovaleric, dl-2-hydroxy hexanoic, and dl-2-hydroxy dodecanoic acids in order to synthesize the zirconium(IV) and hafnium(IV) tetrakis(α-hydroxy carboxylates). The compounds were characterized by melting point determination, infrared spectroscopy, thermogravimetric analysis, calcination to oxides and X-ray diffractometry by the powder method. (C.G.C)

  7. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  8. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructve testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined. A comprehensive bibliography of current NDT methods for cask evaluation in the USA, Great Britain, Japan and West Germany was compiled for this study

  9. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment.

    Science.gov (United States)

    Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-09-15

    Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Study of point defect clustering in electron and ion irradiated zirconium alloys

    International Nuclear Information System (INIS)

    Hellio, C.; Boulanger, L.

    1986-09-01

    Dislocation loops created by 500 keV Zr + ions and 1 MeV electrons in zirconium have a/3 type Burgers vectors, and in ion irradiated samples, loops lie preferentially on planes close to (1010). From in-situ observations of loop growth under 1 MeV electron irradiation in zirconium and dilute Zr (Nb,O) alloys, a strong increase of the vacancy migration energy with oxygen concentration was observed, from 0.72 eV for pure zirconium to 1.7 eV for Zr and Zr-1% Nb doped with 1800 ppm weight oxygen, indicating large trapping of vacancies by O single interstitials or clusters

  11. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement.

    Science.gov (United States)

    Coleman, Nichola J; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), (29)Si and (27)Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Impacts of transient heat transfer modeling on prediction of advanced cladding fracture during LWR LBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2016-03-15

    Highlights: • Use of constant heat transfer coefficient for fracture analysis is not sound. • On-time heat transfer coefficient should be used for thermal fracture prediction. • ∼90% of the actual fracture stresses were predicted with the on-time transient h. • Thermal-hydraulic codes can be used to better predict brittle cladding fracture. • Effects of surface oxides on thermal shock fracture should be accounted by h. - Abstract: This study presents the importance of coherency in modeling thermal-hydraulics and mechanical behavior of a solid for an advanced prediction of cladding thermal shock fracture. In water quenching, a solid experiences dynamic heat transfer rate evolutions with phase changes of the fluid over a short quenching period. Yet, such a dynamic change of heat transfer rates has been overlooked in the analysis of thermal shock fracture. In this study, we are presenting quantitative evidence against the prevailing use of a constant heat transfer coefficient for thermal shock fracture analysis in water. We conclude that no single constant heat transfer could suffice to depict the actual stress evolution subject to dynamic fluid phase changes. Use of the surface temperature dependent heat transfer coefficient will remarkably increase predictability of thermal shock fracture of brittle materials. The presented results show a remarkable stress prediction improvement up to 80–90% of the actual stress with the use of the surface temperature dependent heat transfer coefficient. For thermal shock fracture analysis of brittle fuel cladding such as oxidized zirconium-based alloy or silicon carbide during LWR reflood, transient subchannel heat transfer coefficients obtained from a thermal-hydraulics code should be used as input for stress analysis. Such efforts will lead to a fundamental improvement in thermal shock fracture predictability over the current experimental empiricism for cladding fracture analysis during reflood.

  13. Adsorption Isotherms of Cs+, Co2+, Zn2+ and Eu3+ on Zirconium Vanadate Ion-Exchanger

    International Nuclear Information System (INIS)

    Shady, S.A.; El-Ashery, S.M.; El-Naggar, I.M.

    2009-01-01

    Zirconium vanadate had been prepared by the dropwise addition of 0.1 M sodium vanadate and 0.1 M zirconyl chloride by molar ratio of zirconium/vanadium 2. Exchange isotherms for Cs + /H + , Co 2+ /H + ,Zn 2+ /H + and Eu 3+ /H + have been determined at 25, 40 and 60 degree C. Besides, it was proved that cesium, cobalt, zinc and europium are chemically adsorbed. Moreover, the heat of adsorption of these ions on zirconium vanadate had been calculated and indicated that zirconium vanadate is of endothermic behavior towards these ions

  14. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  15. Development of Zirconium alloys (for pressure tubes)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Hwang, S. K.; Kim, M. H. [Inha Univ., Incheon (Korea, Republic of); Kwon, S. I [Korea Univ., Seoul (Korea, Republic of); Kim, I. S. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  16. Clinical Outcomes of Zirconium-Oxide Posts: Up-to-Date Systematic Review.

    Science.gov (United States)

    Al-Thobity, Ahmad M

    2016-06-01

    The aim of this systematic review was to investigate the clinical outcomes of the use of zirconium-oxide posts in the past 20 years. The addressed question was: Do zirconium-oxide posts maintain the long-term survival rate of endodontically treated teeth? A database search was made of articles from January 1995 to December 2014; it included combinations of the following keywords: "zirconia," "zirconium oxide," "dowel/dowels," "post/posts," and "post and core." Exclusion criteria included review articles, experimental studies, case reports, commentaries, and articles published in a language other than English. Articles were reviewed by the titles, followed by the abstracts, and, finally, the full text of the selected studies. Four studies were included after filtering the selected studies according to the inclusion and exclusion criteria. In one study, the prefabricated zirconia posts with indirect glass-ceramic cores had significantly higher failure rates than other posts with direct composite cores. In two studies, no failure of the cemented posts was observed throughout the follow-up period. Due to the limited number of clinical studies, it can be concluded that the long-term success rate of prefabricated zirconium-oxide posts is unclear.

  17. Quantitative analysis of textures produced in a hot-extruded zirconium plate; Analyse quantitative des textures developpees dans une plaque de zirconium filee a chaud

    Energy Technology Data Exchange (ETDEWEB)

    Couterne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Institut national des sciences et techniques nucleaires, laboratoire de metallurgie

    1967-01-01

    The textures produced in zirconium by the extrusion at 730 deg C of a cylindrical billet in the form of a plate having a rectangular cross-section, have been studied by the Schulz method using an isotropic standard. These textures have been determined both parallel to the plane of the plate and parallel to the plane of the sides, All the results are analyzed in a final discussion which makes it possible to show, in particular near the edges of the plate, that certain components of the textures observed in the two series of recordings are in fact aspects of the same texture seen from two different angles, It is shown furthermore that the zirconium thus shaped has cold-work textures and als recrystallisation textures formed after the preceding cold-working, If the observed textures are considered schematically, it can be see that two of these have already been described in the literature and are similar to those found in rolled products: these textures are such that the (0001) planes are inclined at 36 deg C and 60 deg C respectively with respect to a plan tangential to the curve (envelope of transverse flow rates) resulting from the extrusion geometry under consideration; the third texture is defined. by the fact that the (0001) plane is orthogonal to the exterior surfaces of the plate. The direction of extrusion associated with these planes and common to the three textures is of the type <1010>, Dilatometric tests have been carried out on samples taken both parallel and perpendicular to the extrusion direction, These tests show that the zirconium is dilatometrically anisotropic and that a plot of ({alpha}{sub v})-a against temperature shows a change of gradient at 400 deg C, this latter effect may be due to the change in the electronic configuration of the metal occurring at this temperature. (author) [French] Les textures conferees au zirconium par filage a chaud a 730 deg C d'une billette cylindrique sous forme d'une plaque de section rectangulaire, ont

  18. Quantitative analysis of textures produced in a hot-extruded zirconium plate; Analyse quantitative des textures developpees dans une plaque de zirconium filee a chaud

    Energy Technology Data Exchange (ETDEWEB)

    Couterne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Institut national des sciences et techniques nucleaires, laboratoire de metallurgie

    1967-01-01

    The textures produced in zirconium by the extrusion at 730 deg C of a cylindrical billet in the form of a plate having a rectangular cross-section, have been studied by the Schulz method using an isotropic standard. These textures have been determined both parallel to the plane of the plate and parallel to the plane of the sides, All the results are analyzed in a final discussion which makes it possible to show, in particular near the edges of the plate, that certain components of the textures observed in the two series of recordings are in fact aspects of the same texture seen from two different angles, It is shown furthermore that the zirconium thus shaped has cold-work textures and als recrystallisation textures formed after the preceding cold-working, If the observed textures are considered schematically, it can be see that two of these have already been described in the literature and are similar to those found in rolled products: these textures are such that the (0001) planes are inclined at 36 deg C and 60 deg C respectively with respect to a plan tangential to the curve (envelope of transverse flow rates) resulting from the extrusion geometry under consideration; the third texture is defined. by the fact that the (0001) plane is orthogonal to the exterior surfaces of the plate. The direction of extrusion associated with these planes and common to the three textures is of the type <1010>, Dilatometric tests have been carried out on samples taken both parallel and perpendicular to the extrusion direction, These tests show that the zirconium is dilatometrically anisotropic and that a plot of ({alpha}{sub v})-a against temperature shows a change of gradient at 400 deg C, this latter effect may be due to the change in the electronic configuration of the metal occurring at this temperature. (author) [French] Les textures conferees au zirconium par filage a chaud a 730 deg C d'une billette cylindrique sous forme d'une plaque de section rectangulaire, ont ete

  19. Effects of cooling time on a closed LWR fuel cycle

    International Nuclear Information System (INIS)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-01-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  20. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    Science.gov (United States)

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  1. Standard problem exercise to validate criticality codes for spent LWR fuel transport container calculations

    International Nuclear Information System (INIS)

    Whitesides, G.H.; Stephens, M.E.

    1984-01-01

    During the past two years, a Working Group established by the Organization for Economic Co-Operation and Development's Nuclear Energy Agency (OECD-NEA) has been developing a set of criticality benchmark problems which could be used to help establish the validity of criticality safety computer programs and their associated nuclear data for calculation of ksub(eff) for spent light water reactor (LWR) fuel transport containers. The basic goal of this effort was to identify a set of actual critical experiments which would contain the various material and geometric properties present in spent LWR transport contrainers. These data, when used by the various computational methods, are intended to demonstrate the ability of each method to accurately reproduce the experimentally measured ksub(eff) for the parameters under consideration

  2. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    Science.gov (United States)

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  3. Bioactivity and biocompatibility of hydroxyapatite-based bioceramic coatings on zirconium by plasma electrolytic oxidation.

    Science.gov (United States)

    Aktuğ, Salim Levent; Durdu, Salih; Yalçın, Emine; Çavuşoğlu, Kültigin; Usta, Metin

    2017-02-01

    In the present work, hydroxyapatite (HAP)-based plasma electrolytic oxide (PEO) coatings were produced on zirconium at different current densities in a solution containing calcium acetate and β-calcium glycerophosphate by a single step. The phase structure, surface morphology, functional groups, thickness and roughness of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), eddy current method and surface profilometer, respectively. The phases of cubic-zirconia, calcium zirconate and HAP were detected by XRD. The amount of HAP and calcium zirconate increased with increasing current density. The surface of the coatings was very porous and rough. Moreover, bioactivity and biocompatibility of the coatings were analyzed in vitro immersion simulated body fluid (SBF) and MTT (3-(4,5-dimethyl thiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, hemolysis assay and bacterial formation. The apatite-forming ability of the coatings was evaluated after immersion in SBF up to 28days. After immersion, the bioactivity of HAP-based coatings on zirconium was greater than the ones of uncoated zirconium and zirconium oxide-based surface. The bioactivity of PEO surface on zirconium was significantly improved under SBF conditions. The bacterial adhesion of the coatings decreased with increasing current density. The bacterial adhesion of the coating produced at 0.370A/cm 2 was minimum compared to uncoated zirconium coated at 0.260 and 0.292A/cm 2 . The hemocompatibility of HAP-based surfaces was improved by PEO. The cell attachment and proliferation of the PEO coatings were better than the one of uncoated zirconium according to MTT assay results. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst.

    Science.gov (United States)

    Stevanović, Dragana; Pejović, Anka; Damljanović, Ivan; Minić, Aleksandra; Bogdanović, Goran A; Vukićević, Mirjana; Radulović, Niko S; Vukićević, Rastko D

    2015-04-30

    In situ generated zirconium catalyst from a sacrificial zirconium anode was successfully applied to promote Ferrier rearrangement of 3,4,5-tri-O-acetyl-D-glucal and 6-deoxy-3,4-di-O-acetyl-L-glucal (3,4-di-O-acetyl-L-rhamnal) in the presence of three thiols and eleven thiophenols as nucleophiles. A simple constant current electrolysis (20 mA, 0.4 F mol(-1)) of an acetonitrile solution of lithium perchlorate (0.1 M) containing the corresponding glycal and S-nucleophiles, using a zirconium anode and a platinum cathode resulted in the successful synthesis of the corresponding 2,3-unsaturated peracetylated thioglycosides (with an average anomer ratio α/β=4.129 in the case of peracetylated D-glucal and 8.740 in the case of L-rhamnal). The same procedure proved to be appropriate in synthesizing dihydropyran derivatives ('C-glycosides') using allyltrimethylsilane as the nucleophile (only 'α-anomers' were obtained). All new compounds were fully characterized by spectral data, whereas single-crystal X-ray analysis was performed for two thioglycosides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    Science.gov (United States)

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    Science.gov (United States)

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  7. Obtention of titanium and zirconium metallic

    International Nuclear Information System (INIS)

    Santos, P.R.G.; Rover, C.F.S.; Amaral, F.L.L.

    1988-01-01

    The development works of techniques and equipments for titanium and zirconium sponges obtention are mentioned. The Kroll Process used for the sponges production is described, consisting in the reduction of the metal tetracloride with magnesium in an inert atmosphere of helium or argon. (C.G.C.) [pt

  8. Behavior of LWR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    to evaluate the influence of irradiation and high burnup on fuel failure mechanisms during accident conditions. Under the extreme hypothetical assumption that in the case of a LOCA simultaneously all emergency core cooling systems fail, the consequences of a core meltdown accident and the possibilities to mitigate the consequences are investigated. Results are described on the meltdown behavior of LWR fuel rods, on the reaction behavior of mixtures of molten core components, and the most important core melt properties, on the interaction process of core melts with the concrete structure of a reactor and the associated fission product release

  9. Preparation and characterization of very pure zirconium tetrafluoride. Application to fluorinated glass

    International Nuclear Information System (INIS)

    Bridenne, M.

    1986-12-01

    The synthesis of anhydrous and very pure zirconium tetrafluoride from zirconium tetraborohydride is studied. Zr F 4 is used for fabrication of fluorozirconate glass. Zr (BH 4 ) 4 is purified by sublimation. Two fluorinating agents F 2 and anhydrous HF are used for fluorination. The apparatus is made of fluorinated polymers and a Kel-F prototype reactor was realized. 20 g of Zr F 4 are obtained in 44 hrs with a yield of 88 %. Purity is characterized by chemical analysis (atomique absorption spectroscopy and spark mass spectroscopy) and absorption of an optical fiber made of zirconium tetrafluoride. Cr, Ni, Co and Cu content is lower than 0.1 ppm. Possibility of pilot scale production is discussed [fr

  10. Study of solution speciation, soil retention and soil-plant transfer of zirconium; Etude de la speciation en solution, de la retention dans les sols et du transfert sol-plante du zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ferrand, E

    2005-12-15

    Within the framework of the risks prevention policy of Andra, the radioactive zirconium introduction ({sup 93}Zr and {sup 95}Zr) into the environment could be carried out starting from the nuclear waste whose storage is envisaged in deep geological layers. Thus, the goal of this study was to evaluate the parameters and phenomena influencing speciation (various chemical forms) and the soil-plant transfer of zirconium. Experiments of adsorption/desorption of zirconium with different ligands likely to be present in soils (goethite and humic acid) and with two soils, with contrasted characteristics, close to the underground research laboratory of Andra (Meuse) were carried out. These results of adsorption were then confronted with those obtained by the MUSIC and NICA-DONNAN models carried out using the computer code ECOSAT. Zr presents a strong affinity for the two types of soils and the soils constituents. Specific interactions of internal sphere type with the goethite were highlighted using the model. Soil-solution partition coefficients, or K{sub d}, values increase with pH and contact time. Various types of edible plants, pea (Pisum sativum L.) and tomato (Lycopersicon esculentum L cv. St Pierre) were cultivated in hydroponic conditions and in soils spiked with various sources of Zirconium. The maximum zirconium contents are mainly measured in the roots of the plants. The soil-plant transfer factors measured during these experiments show a weak bioavailability of zirconium. An influence of speciation on Zr bioavailability is however highlighted. Some chemical forms, such as oxychloride or acetate, are more easily mobilized than others by the plant. (author)

  11. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1986-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufactured in different countries and are presently used for european and intercontinental transports. The main advantages of these casks are: large payload, moderate cost, reliability, standardisation facilitating fabrication, operation and spare part supply [fr

  12. Expert system for estimating LWR plutonium production

    International Nuclear Information System (INIS)

    Sandquist, G.M.

    1988-01-01

    An Artificial Intelligence-Expert System called APES (Analysis of Proliferation by Expert System) has been developed and tested to permit a non proliferation expert to evaluate the capability and capacity of a specified LWR reactor and PUREX reprocessing system for producing and separating plutonium even when system information may be limited and uncertain. APES employs an expert system coded in LISP and based upon an HP-RL (Hewlett Packard-Representational Language) Expert System Shell. The user I/O interface communicates with a blackboard and the knowledge base which contains the quantitative models required to describe the reactor, selected fission product production and radioactive decay processes, Purex reprocessing and ancillary knowledge

  13. Scandium and zirconium ion complexing with salicylic acid

    International Nuclear Information System (INIS)

    Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10 -5 -10 -3 mole/l scandium forms mononuclear complexes composed of Sc(HSal) 3 (pH 2 (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to β 1 =(3+-1)x10 2 ; β 2 =(5.0+-0.6)x10 4 ; β 3 =(5.3+-0.3)x10 6

  14. Method to electrolytically precipitate metals onto zirconium objects

    International Nuclear Information System (INIS)

    Donaghy, R.E.

    1978-01-01

    Tubes and other formed bodies made of zirconium or zirconium alloys which serve to take up nuclear fuels, are plated by electrolytically depositing a metal film onto these in order to improve their mechanical and corrosion properties. The object is activated in a solution of ammonium bifluoride and sulphuric acid, whereby an electrically conducting solid and a loose layer is formed. This loose film is removed by using fluoboric acid or hydrofluoric silicic acid solution, ultrasonics, or strips of organic material (cotton, polyester, nylon). The plating of Cu, Ni, Cr is described in detail. The object is rinsed between the process steps with deionized water and finally degased at a temperature of 150-200 0 C. (IHOE) [de

  15. Decontamination and recycle of zirconium pressure tubes from Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Gantayet, L.M.; Verma, R.; Remya Devi, P.S.; Banerjee, S.; Kotak, V.; Raha, A.; Sandeep, K.C.; Joshi, Shreeram W.; Lali, A.M.

    2009-01-01

    An ion exchange process has been developed for decontamination of zirconium pressure tubes from Pressurized Heavy Water Reactor and recycling of neutronically improved zirconium. Distribution coefficient, equilibrium isotherm, kinetic and breakthrough data were used to develop the separation process. Effect of gamma radiation on indigenous resins was also studied to assess their suitability in high radiation field. (author)

  16. Deformation mechanisms and irradiation effects in zirconium alloys. A multi-scale study

    International Nuclear Information System (INIS)

    Onimus, Fabien

    2015-01-01

    Zirconium alloys have been used for more than 30 years in the nuclear industry as structural materials for the fuel assemblies of pressurized water reactors. In particular, the cladding tube, made of zirconium alloys, constitutes the first barrier against the dissemination of radioactive elements. It is therefore essential to have a good understanding and prediction of the mechanical behavior of these materials in various conditions. The work presented in this dissertation deals with an experimental study and numerical simulations, at several length scales, of the deformation mechanisms and the mechanical behavior of zirconium alloys before irradiation, but also after irradiation and under irradiation. The mechanical behavior of zirconium single crystal has been determined, during an original study, using tensile test specimens containing large grains. Based on this study, crystal plasticity constitutive laws have been proposed. A polycrystalline model has also been developed to simulate the behavior of unirradiated zirconium alloys. A thorough Transmission Electron Microscopy (TEM) study has been able to clarify the deformation mechanisms of zirconium alloys occurring after irradiation. The clearing of loops by gliding dislocations leading to the dislocation channeling mechanism has been studied in details. This phenomenon has also been simulated using a dislocation dynamics code. The macroscopic consequences of this process have also been analyzed. A polycrystalline model taking into account the specificity of this mechanism has eventually been proposed. This approach has then been extended to the post-irradiation creep behavior. The recovery of radiation defects during creep tests has been characterized by TEM and modeled using cluster dynamics method. Deformation modes during creep have also been studied and a simple model for the creep behavior has eventually been proposed. Finally, the mechanism responsible for the acceleration of irradiation growth that

  17. MULTILAYER COMPOSITE PLASMA COATINGS ON SCREEN PROTECTION ELEMENTS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available The paper contains results of investigations pertaining to an influence of plasma jet parameters (current, spraying distance, consumption of plasma formation gas (nitrogen, fractional composition of initial powder and degree of cooling with compressed air on anti-meteoric coating characteristics. Optimum modes (arc current 600 A; spray distance of 110 mm; consumption of plasma formation gas (nitrogen – 50 l/min; fractional composition of zirconium dioxide powder <50 μm; compressed air consumption for cooling – 1 m3/min; p = 4 bar make it possible to obtain anti-meteoric coatings based on zirconium dioxide with material utilization rate of 62 %, total ceramic layer porosity of 6 %. After exposure of compression plasma flows on a coating in the nitrogen atmosphere a cubic modification of zirconium oxide is considered as the main phase being present in the coating. The lattice parameter of cubic zirconium oxide modification is equal to 0.5174 nm. Taking into consideration usage of nitrogen as plasma formation substance its interaction with zirconium coating atoms occurs and zirconium nitride (ZrN is formed with a cubic crystal lattice (lattice parameter 0.4580 nm. Melting of pre-surface layer takes place and a depth of the melted layer is about 8 μm according to the results of a scanning electron microscopy. Pre-surface layer being crystallized after exposure to compression plasma flows is characterized by a homogeneous distribution of ele-ments and absence of pores formed in the process of coating formation. The coating structure is represented by a set of lar- ge (5–7 μm and small (1–2 μm zirconium oxide particles sintered against each other. Melting of coating surface layer and speed crystallization occur after the impact of compression plasma flows on the formed coating. Cracking of the surface layer arises due to origination of internal mechanical stresses in the crystallized part. While using a scanning electron microscopy a

  18. LIFE vs. LWR: End of the Fuel Cycle

    International Nuclear Information System (INIS)

    Farmer, J.C.; Blink, J.A.; Shaw, H.F.

    2008-01-01

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources (International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  19. FMDP Reactor Alternative Summary Report: Volume 3 - partially complete LWR alternative

    International Nuclear Information System (INIS)

    Greene, S.R.; Fisher, S.E.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 3 of a four volume report summarizes the results of these analyses for the partially complete LWR (PCLWR) reactor based plutonium disposition alternative

  20. FMDP Reactor Alternative Summary Report: Volume 3 - partially complete LWR alternative

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.R.; Fisher, S.E.; Bevard, B.B. [and others

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 3 of a four volume report summarizes the results of these analyses for the partially complete LWR (PCLWR) reactor based plutonium disposition alternative.

  1. Extraction and determination of hydrogen in uranium and zirconium; Extraction et dosage de l'hydrogene dans l'uranium et le zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Champeix, L; Coblence, G; Darras, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The method of desorption under vacuum at high temperatures in the solid phase, which gives good results in the case of steels, has been applied to uranium and zirconium. In these two metals hydrogen is found mainly in the form of hydride. It is chiefly a question of determining the most suitable temperature and the heating time necessary to obtain an almost total extraction of hydrogen. Two considerations must be taken into account in the choice of temperature. It should be such that on the one hand the hydride decomposes rapidly and completely at the reduced pressure applied, and on the other hand the diffusion of hydrogen through the metal takes place fairly quickly. The apparatus and the method used are described; systematic tests have led to the adoption of temperatures of 650 deg. C for uranium and 1050 deg. C for zirconium. (author) [French] La methode de desorption sous vide a chaud en phase solide, methode qui donne de bons resultats dans le cas des aciers, a ete appliquee a l'uranium et au zirconium. Dans ces deux metaux, l'hydrogene se trouve surtout a l'etat d'hydrure. Il s'agit essentiellement de determiner la temperature optimum et la duree du chauffage necessaire pour obtenir une extraction d'hydrogene pratiquement complete. Deux considerations interviennent dans le choix de la temperature. Elle doit etre telle que, d'une part la decomposition de l'hydrure se fasse rapidement et completement sous la pression reduite realisee et d'autre part que la diffusion de l'hydrogene a travers le metal soit assez rapide. L'appareil et le mode operatoire utilises sont decrits des essais systematiques ont conduit a adopter une temperature de 650 deg. C pour l'uranium et de 1050 deg. C pour le zirconium. (auteur)

  2. Tracing of salicylic acid additive during precipitation of zirconium

    International Nuclear Information System (INIS)

    Bharati Misra, U.; Gopala Krishna, K.; Narasimha Murty, B.; Yadav, R.B.

    2011-01-01

    This paper presents the results of experimental study carried out to know whether the salicylic acid used as an additive during the precipitation of zirconium using ammonium hydroxide solution goes into the filtrate, remains in the hydrated zirconia or gets distributed between the both under the ambient conditions of precipitation. Keeping its simplicity and amenability to adopt on a routine basis, spectrophotometric method has been chosen for the purpose among the many methods available and the problems associated in determining salicylic acid in the presence of zirconium and the medial measures to circumvent the same have been brought out in detail. (author)

  3. On the stabilization of niobium(V) solutions by zirconium(IV) and hafnium(IV)

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    Niobium cannot be separated from zirconium or hafnium when these elements occur together in solution with common anions such as chloride and sulphate. This is ascribed to the co-polymerization of niobium(V) and the hydrolysed ionic species of zirconium(IV) and hafnium(IV) to form colloidal...

  4. Calcification of MC3T3-E1 cells on titanium and zirconium.

    Science.gov (United States)

    Umezawa, Takayuki; Chen, Peng; Tsutsumi, Yusuke; Doi, Hisashi; Ashida, Maki; Suzuki, Shoichi; Moriyama, Keiji; Hanawa, Takao

    2015-01-01

    To confirm similarity of hard tissue compatibility between titanium and zirconium, calcification of MC3T3-E1 cells on titanium and zirconium was evaluated in this study. Mirror-polished titanium (Ti) and zirconium (Zr) disks and zirconium-sputter deposited titanium (Zr/Ti) were employed in this study. The surface of specimens were characterized using scanning electron microscopy and X-ray diffraction. Then, the cellular proliferation, differentiation and calcification of MC3T3-E1 cells on specimens were investigated. The surface of Zr/Ti was much smoother and cleaner than those of Ti and Zr. The proliferation of the cell was the same among three specimens, while the differentiation and calcification on Zr/Ti were faster than those on Ti and Zr. Therefore, Ti and Zr showed the identical hard tissue compatibility according to the evaluation with MC3T3-E1 cells. Sputter deposition may improve cytocompatibility.

  5. The separation of plutonium from uranium and fission products on zirconium phosphate columns

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I; Ruvarac, A [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    In recent years special attention has been given to the ion-exchange properties of zirconium phosphate and similar compounds in aqueous solutions. These inorganic cation exchangers are stable in oxidizing media and at elevated temperatures. Their resistance to ionizing radiation makes them particularly suitable for work with radioactive solutions. On account of this we considered ir worthwhile to investigate the separation of plutonium from uranium and fission products on zirconium phosphate columns. We were interested in nitric and solutions containing macro-amounts of uranium (a few grams per litre), and micro-amounts of plutonium and long-lived fission products. To obtain a better insight into the ion-exchange behaviour of the different ionic species towards zirconium phosphate, we first determined the dependence of the distribution coefficients of uranium, plutonium and fission product cations on the aqueous nitric acid concentration. Then, taking the distribution data as a guide, we separated plutonium on small glass columns filled with zirconium phosphate and calculated the decontamination factors (author)

  6. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  7. Reduction of nuclear waste burden from LWR by deployment of the SCNES

    International Nuclear Information System (INIS)

    Arie, Kazuo; Watanabe, Junko; Mori, Kenji; Kubota, Kenichi; Kawashima, Masatoshi; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Fujiie, Yoichi

    2009-01-01

    Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable solution to reduce nuclear waste burden produced by the current energy production system. (author)

  8. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  9. In Vivo Wear Performance of Cobalt-Chromium Versus Oxidized Zirconium Femoral Total Knee Replacements.

    Science.gov (United States)

    Gascoyne, Trevor C; Teeter, Matthew G; Guenther, Leah E; Burnell, Colin D; Bohm, Eric R; Naudie, Douglas R

    2016-01-01

    This study examines the damage and wear on the polyethylene (PE) inserts from 52 retrieved Genesis II total knee replacements to identify differences in tribological performance between matched pairs of cobalt-chromium (CoCr) and oxidized zirconium (OxZr) femoral components. Observer damage scoring and microcomputed tomography were used to quantify PE damage and wear, respectively. No significant differences were found between CoCr and OxZr groups in terms of PE insert damage, surface penetration, or wear. No severe damage such as cracking or delamination was noted on any of the 52 PE inserts. Observer damage scoring did not correlate with penetrative or volumetric PE wear. The more costly OxZr femoral component does not demonstrate clear tribological benefit over the standard CoCr component in the short term with this total knee replacement design. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  12. Sensitivity analysis on the zirconium ignition in a postulated SFP loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Sanggil; Lee, Jaeyoung; Kim, Sun-ki; Chun, Tae-hyun; Bang, Je-geon

    2016-01-01

    From both SFP complete LOCA experiments, it was observed that zirconium alloy cladding temperature was abruptly increased at a certain point and the cladding was almost fully oxidized. To capture this phenomenon, the concept of air oxidation breakaway model was adopted in MELCOR code. This paper examines this air oxidation breakaway model by comparing the SFP project test data and MELCOR code calculation results by using this model. The air oxidation model parameters are slightly altered to see their sensitivities on the occurrence of the zirconium ignition. Through such sensitivity analysis, limitations of the air oxidation breakaway model are revealed in comparison to the actual zirconium ignition phenomenon during air ingress scenarios. In addition, ways to overcome the identified limitations of the air oxidation model are recommended to estimate better the zirconium ignition phenomenon in SFP sequences. In this paper, the zirconium ignition phenomenon was reviewed and the model to capture this phenomenon was investigated. The model is the air oxidation breakaway model in MELCOR code, and its sensitivity of the model parameters on the time to ignition was studied. From the sensitivity analysis, the slight change of model parameters induce the large variation of the time to ignition. The model itself includes its weakness to fully represent both the air oxidation breakaway phenomenon and the followed zirconium ignition behavior. Furthermore, this model considers no effect of N2 on the cladding degradation and its promoted exothermic heat release

  13. Sensitivity analysis on the zirconium ignition in a postulated SFP loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggil; Lee, Jaeyoung [Handong Global Univ., Pohang (Korea, Republic of); Kim, Sun-ki; Chun, Tae-hyun; Bang, Je-geon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From both SFP complete LOCA experiments, it was observed that zirconium alloy cladding temperature was abruptly increased at a certain point and the cladding was almost fully oxidized. To capture this phenomenon, the concept of air oxidation breakaway model was adopted in MELCOR code. This paper examines this air oxidation breakaway model by comparing the SFP project test data and MELCOR code calculation results by using this model. The air oxidation model parameters are slightly altered to see their sensitivities on the occurrence of the zirconium ignition. Through such sensitivity analysis, limitations of the air oxidation breakaway model are revealed in comparison to the actual zirconium ignition phenomenon during air ingress scenarios. In addition, ways to overcome the identified limitations of the air oxidation model are recommended to estimate better the zirconium ignition phenomenon in SFP sequences. In this paper, the zirconium ignition phenomenon was reviewed and the model to capture this phenomenon was investigated. The model is the air oxidation breakaway model in MELCOR code, and its sensitivity of the model parameters on the time to ignition was studied. From the sensitivity analysis, the slight change of model parameters induce the large variation of the time to ignition. The model itself includes its weakness to fully represent both the air oxidation breakaway phenomenon and the followed zirconium ignition behavior. Furthermore, this model considers no effect of N2 on the cladding degradation and its promoted exothermic heat release.

  14. Synthesis of zirconium guanidinate complexes and the formation of zirconium carbonitride via low pressure CVD

    NARCIS (Netherlands)

    Potts, S.E.; Carmalt, C.J.; Blackman, C.S.; Abou-Chabine, F.; Pugh, D.; Davies, H.O.

    2009-01-01

    Thin films of zirconium carbonitride have been deposited on glass at 600 °C from two novel guanidinate precursors: [ZrCp'{¿2-(iPrN)2CNMe2}2Cl] (1) and [ZrCp'2{¿2-(iPrN)2CNMe2}Cl] (2) (Cp' ) monomethylcyclopentadienyl). Both compounds 1 and 2 were structurally characterized by X-ray crystallography.

  15. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  16. Development of zirconium/magnesium phosphate composites for immobilization of fission products

    International Nuclear Information System (INIS)

    Singh, D.; Tlustochowicz, M.; Wagh, A.S.

    1999-01-01

    Novel chemically bonded phosphate ceramics have been investigated for the capture and stabilization of volatile fission-product radionuclides. The authors have used low-temperature processing to fabricate zirconium phosphate and zirconium/magnesium phosphate composites. A zirconium/magnesium phosphate composite has been developed and shown to stabilize ash waste that has been contaminated with a radioactive surrogate of the 137 Cs and 90 Sr species. Excellent retention of cesium in the phosphate matrix system was observed in both short- and long-term leaching tests. The retention factor determined by the USEPA Toxicity Characteristic Leaching Procedure was one order of magnitude better for cesium that for strontium. The effective diffusivity, at room temperature, for cesium and strontium in the waste forms was estimated to be as low as 2.4 x 10 -13 and 1.2 x 10 -11 m 2 /s, respectively. This behavior was attributed to the capture of cesium in the layered zirconium phosphate structure via an intercalation ion-exchange reaction, followed by microencapsulation. However, strontium is believed to be precipitated out in its phosphate form and subsequently microencapsulated in the phosphate ceramic. The performance of these final waste forms, as indicated by the compression strength and the durability in aqueous environments, satisfies the regulatory criteria

  17. Towards an understanding of zirconium alloy corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1976-08-01

    A brief historical summary is given of the development of a programme for understanding the corrosion mechanisms operating for zirconium alloys. A general summary is given of the progress made, so far, in carrying through this programme. (author)

  18. Proceedings of the 2007 LWR Fuel Performance Meeting / TopFuel 2007 'Zero by 2010'

    International Nuclear Information System (INIS)

    2007-01-01

    ANS, ENS, AESJ and KNS are jointly organizing the 2007 International LWR Fuel Performance Meeting following the successful ENS TopFuel meeting held during 22-26 October, 2006 in Salamaca, Spain. Merging three premier nuclear fuel design and performance meetings: the ANS LWR Fuel Performance Meeting, the ENS TopFuel and Asian Water Reactor Fuel Performance Meeting (WRFPM) created this international meeting. The meeting will be held annually on a tri-annual rotational basis in USA, Asia, and Europe. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as performance experience in commercial and test reactors. The meeting excludes front end and back end fuel issues, however, it covers all front and/or back issues that impact fuel designs and performance

  19. Manufacturing of Zirconium products at Chepetsky Mechanical Plant, Stock Company. Prospects of development and products quality assurance

    International Nuclear Information System (INIS)

    Vergazov, K.; Shtuza, M.; Lozitsky, S.; Kutyavin, A.

    2015-01-01

    The report described all the steps required to fabricate zirconium components, starting from the procurement of feed material up to rolling of sheets, tubes, bars and manufacture of the applicable parts required to manufacture fuel assemblies. Automated state-of-the-art equipment used for advanced productivity, as well as various installations able to perform numerous inspection steps to assure quality of the manufactured products was showcased. The challenges to be addressed in the nearest future were also presented

  20. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study.

    Science.gov (United States)

    Mueller, Cornelia Katharina; Solcher, Philipp; Peisker, Andrè; Mtsariashvilli, Maia; Schlegel, Karl Andreas; Hildebrand, Gerhard; Rost, Juergen; Liefeith, Klaus; Chen, Jiang; Schultze-Mosgau, Stefan

    2013-07-01

    It was the aim of this study to analyze the influence of implant design and surface topography on the osseointegration of dental zirconium implants. Six different implant designs were tested in the study. Nine or 10 test implants were inserted in the frontal skull in each of 10 miniature pigs. Biopsies were harvested after 2 and 4 months and subjected to microradiography. No significant differences between titanium and zirconium were found regarding the microradiographically detected bone-implant contact (BIC). Cylindric zirconium implants showed a higher BIC at the 2-month follow-up than conic zirconium implants. Among zirconium implants, those with an intermediate Ra value showed a significantly higher BIC compared with low and high Ra implants 4 months after surgery. Regarding osseointegration, titanium and zirconium showed equal properties. Cylindric implant design and intermediate surface roughness seemed to enhance osseointegration. Copyright © 2013 Elsevier Inc. All rights reserved.